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In recent decades, more types and quantities of medical data have been collected 

due to advanced technology. A large number of significant and critical information is 

contained in these medical data. High efficient and automated computational methods are 

urgently needed to process and analyze all available medical data in order to provide the 

physicians with recommendations and predictions on diagnostic decisions and treatment 

planning.        

Traumatic pelvic injury is a severe yet common injury in the United States, often 

caused by motor vehicle accidents or fall. Information contained in the pelvic Computed 

Tomography (CT) images is very important for assessing the severity and prognosis of 

traumatic pelvic injuries. Each pelvic CT scan includes a large number of slices. 
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Meanwhile, each slice contains a large quantity of data that may not be thoroughly and 

accurately analyzed via simple visual inspection with the desired accuracy and speed. 

Hence, a computer-assisted pelvic trauma decision-making system is needed to assist 

physicians in making accurate diagnostic decisions and determining treatment planning in 

a short period of time.  

Pelvic bone segmentation is a vital step in analyzing pelvic CT images and 

assisting physicians with diagnostic decisions in traumatic pelvic injuries. In this study, a 

new hierarchical segmentation algorithm is proposed to automatically extract multiple-

level bone structures using a combination of anatomical knowledge and computational 

techniques. First, morphological operations, image enhancement, and edge detection are 

performed for preliminary bone segmentation. The proposed algorithm then uses a 

template-based best shape matching method that provides an entirely automated 

segmentation process. This is followed by the proposed Registered Active Shape Model 

(RASM) algorithm that extracts pelvic bone tissues using more robust training models than 

the Standard ASM algorithm. In addition, a novel hierarchical initialization process for 

RASM is proposed in order to address the shortcoming of the Standard ASM, i.e. high 

sensitivity to initialization. Two suitable measures are defined to evaluate the segmentation 

results: Mean Distance and Mis-segmented Area to quantify the segmentation accuracy.  

Successful segmentation results indicate effectiveness and robustness of the proposed 

algorithm. Comparison of segmentation performance is also conducted using both the 

proposed method and the Snake method. A cross-validation process is designed to 



 

xv 
 

demonstrate the effectiveness of the training models. 3D pelvic bone models are built after 

pelvic bone structures are segmented from consecutive 2D CT slices.  

Automatic and accurate detection of the fractures from segmented bones in 

traumatic pelvic injuries can help physicians detect the severity of injuries in patients. The 

extraction of fracture features (such as presence and location of fractures) as well as 

fracture displacement measurement, are vital for assisting physicians in making faster and 

more accurate decisions. In this project, after bone segmentation, fracture detection is 

performed using a hierarchical algorithm based on wavelet transformation, adaptive 

windowing, boundary tracing and masking. Also, a quantitative measure of fracture 

severity based on pelvic CT scans is defined and explored. The results are promising, 

demonstrating that the proposed method not only capable of automatically detecting both 

major and minor fractures, but also has potentials to be used for clinical applications.  
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Novelty and Contributions 

Medical data contains information that is vital for clinical diagnosis as well as 

treatment planning. Nowadays, varieties of clinical data are not optimally and 

comprehensively utilized towards medical decision making. This is because simple human 

inspection or traditional computational methods are incapable of extracting the hidden 

patterns contained in the data, which are very important to form recommendations and 

predictions for both diagnosis and treatment planning. Traumatic Pelvic Injury constitutes 

a major cause of death in the United States every year. A computer-assisted pelvic trauma 

decision making system is crucial to assist physicians make accurate and faster diagnostic 

decisions and treatment planning. Currently however, due to factors such as limited 

resolution of medical images, variations in bone tissues, complexity of pelvic structures, 

and significantly different geometrical characteristics of fractures, automatic segmentation 

of pelvic bone and detection of the bone fractures in CT scan remain as challenging tasks.  

In addition, the existing decision-making systems for traumatic injuries do not extract 

and/or consider the features automatically detected from medical images. The focus of this 

dissertation is on developing a system to extract diagnostic features from pelvic CT images, 

which incorporate new computational methodologies for automatic bone segmentation and 

fracture detection.  The proposed system has several novel components, including:    

1) A new segmentation algorithm for multiple pelvic CT scans is proposed, which 

consist of pre-processing, Shape Matching, and Registered Active Shape Model 

(RASM). For pre-processing, a hierarchical method to perform preliminary bone 
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segmentation is proposed that incorporates morphological operations, image 

enhancement, and edge detection. This method is explained in Chapter 2. Next, the 

proposed hierarchical segmentation method provides automation partially due to 

the use of a shape matching algorithm. This method is described in Chapter 3. 

2) A new image registration algorithm is devised to couple with Active Shape Model 

to create shape models. This registration method applies enhanced homogeneity 

feature extraction, correlation coefficient calculation for similarity measure, affine 

transformation, and Powell algorithm application. This algorithm is explained in 

Chapter 4.3. 

3) A new family of Active Shape Model algorithm – Registered Active Shape Model 

(RASM) is proposed in order to create more robust training models. The pelvic 

bones in each original training image have different sizes, rotation angles and 

locations. After the pelvic bones in each training image are registered to the 

corresponding anatomical template, more robust and reliable training models are 

created for better segmentation performance.  The RASM algorithm is explained in 

Chapter 4.4. 

4) Based on the designed RASM algorithm, another novel extension of this algorithm 

is used in this project. A hierarchical initialization algorithm is proposed, to address 

the main shortcoming of the Standard ASM – high sensitivity to initialization. If 

the shape model is not accurately placed, the Standard ASM method may fail to 

detect the target object. The proposed initialization process is composed of image 

registration, extracted bone features as well as prior edge detection results to 
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sequentially and automatically place the training models on each individual object. 

This is explained in Chapter 4.5.  

5) A training model validation process is designed to demonstrate that the selection of 

training data has a very small effect on the segmentation outcome. The validation 

process also shows that generated training models are reliable and effective. This is 

explained in Chapter 6.3.9. 

6) In this dissertation, an automated algorithm is designed to detect the fractures in the 

pelvic bone by analyzing the segmented images and detecting discontinuity. This 

method is achieved by creating a series of adaptive windows based on the 

boundaries extracted from the segmentation process performed by RASM. This 

algorithm sequentially tests the bone boundary of each slice for contour 

discontinuities which may indicate fracture. This technique is explained in Chapter 

5. 

7) The methodologies developed by this project can be applied for segmentation as 

well as detection of bone fracture in other types of medical images captured from 

other parts of human body. The method can also be used for segmentation of 

unanimated objects.  
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CHAPTER 1 Introduction 
 

1.1 Overview 

This chapter explains the importance and urgent demand of computer-assisted 

decision-making systems for traumatic injuries, especially for traumatic pelvic injuries. 

The chapter first provides an overview of Computed Tomography technology and anatomy 

of the pelvis. Then, a general overview of the relevant previous work in medical image 

segmentation methods is given. Finally, this chapter concludes with a high-level 

description of the ideas of the proposed method.   

1.2 Problem Statement 

Traumatic pelvic injuries are often high energy injuries that constitute a major 

cause of death in trauma patients. Every year, traumatic pelvic injuries contribute to cases 

of death and permanent disability. Latest U.S. statistics available from the National Center 

for Health Statistics shows that more than 40,000 motor vehicle related deaths occurred 

and more than 20,000 fall deaths occur every year [1]. According to the Centers for 

Disease Control and Prevention (CDC), trauma injury kills more people between the ages 

of 1 and 44 than any other disease or illness [2]. On average, 15 U.S. workers die each day 

from traumatic injuries [3], simultaneously, thousands of U.S. workers visit emergency 

rooms for treatment of work-related traumatic injuries every day [4]. More than 300 

patients with pelvic fractures were seen in less than 3 years at the University of Maryland 

Shock Trauma Center [5], and Patients with pelvic bone fractures who are present in shock 

have a mortality of 30-50% [6]. When combined with injuries in other body regions, for 
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example, the abdomen, the chance of mortality rises even higher, approaching 100% in 

some cases [6]. Among different types of trauma with a high impact on the lives of 

Americans, traumatic pelvic injuries, caused mainly by sports, falls and motor vehicle 

accidents contribute to a large number of mortalities every year [7, 8]. Traumatic pelvic 

injuries and associated complications, such as severe hemorrhage, multiple organ 

dysfunction syndrome (MODS), and blood clots traveling to the brain or lungs, result in 

the mortality rate from 8.6% to 50% [9]. From anatomical aspect, a pelvic fracture can be 

associated with bleeding, injury to the nerves, and internal organ damage as all of the vital 

structures run through pelvis. Complications, such as pain and impaired mobility are 

usually the result of nerve and organ damage associated with the pelvic fracture [10]. 

      Young people, especially those doing sports are at risk for pelvic fracture. Sudden 

muscle contractions normally occur with these fractures. Elderly people suffer from 

osteoporosis may get a pelvis fracture during a fall from standing or walking. Usually the 

structural integrity of the pelvic ring may not damage in these injuries, instead an 

individual bone may be broken. The main cause of a pelvic fracture is a motor vehicle 

accident, crush accident or fall from a high place.  

For the patients with traumatic pelvic injuries, information contained in pelvic 

Computed Tomography (CT) images is a very important resource for assessing the severity 

and prognosis of such injuries. Each pelvic CT scan consists of many slices; a large 

amount of data contained in each slice may not be thoroughly and accurately analyzed via 

simple visual observation. In addition, in the field of trauma medicine, caregivers are 

frequently confronted with situations in which they need to make rapid decisions based on 
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a massive amount of information. As such, developing a computer-assisted pelvic trauma 

decision-making system is the goal of this project. Such a system is necessary to assist 

physicians make accurate diagnostic and decide treatment planning decisions in a short 

period of time. Although some computer-assisted trauma decision making systems have 

been developed, but majority of them mainly reply on the similarities between 

demographics of the patients. The past cases in trauma databases provide the 

recommendation to get the outcome. Therefore, these recommendations may ignore the 

important information regarding the injury and not be accurate and reliable enough in 

making diagnostic decisions [48]. In our project, the system consider the wealth of 

information contained in medical data, conduct bone segmentation and fracture detection, 

build 3D pelvic bone models as well, which are highly important for assessing the injury 

severity. 

Automatic fracture detection from segmented bones in traumatic pelvic injuries can 

help physicians process and analyze the pelvic CT images and detect the severity of 

injuries in patients. If the fracture is due to a high-energy injury, there is often a large 

amount of bleeding, which can lead to shock. Depending on the direction and degree of 

force, the injuries can be very severe and become life-threatening. As a result, such injuries 

may require immediate and accurate decision-making. Hence, extraction of fracture 

features, such as presence and location of the fracture, as well as bone displacement 

measurement, is very important in order to assist physicians in making fast and accurate 

decisions. However, fracture detection in pelvic bones is very challenging due to the 

limited resolution of the original CT images and the complexity of pelvic structures and 
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their possible fractures. In addition, CT images are also susceptible to noise, partial volume 

effects, and in-homogeneities. These make fracture detection more challenging and time-

consuming. Fracture detection in pelvic CT images is still an under-explored field. To date, 

there are very few direct fracture detection studies focused on pelvic CT images. M. H. 

Moghari et al. [71] utilized a global registration for multi-fragment fracture fixation in 

femur bones. However, the method suffers from initial alignment errors, and the dataset 

only includes femur bones, generated randomly from 3-D data points. M. H. Moghari et al. 

[72] applied global registration of multiple bone fragments using Statistical Atlas Models, 

but due to the limited number of bone models, this work is not enough to capture all 

variations of the femur bone. S. Winkelbach et al. [73] used Pose Estimation of cylindrical 

fragments for bone fracture reduction; though this method is not fully automatic. There is 

also related work in X-ray images [74-76]. Douglas TS et al. [74] focused on early 

detection of fractures with low-dose digital x-ray images in a pediatric trauma unit, M. A. 

Png et al. [75] determined the presence of femoral fracture by measuring the neck shaft 

angle of the femur; however, these are indirect detection methods. V. L. F. Lum [76] used 

three texture features based combined classifiers to detect radius and femur fractures; 

however, this method suffered from the imbalanced dataset. When applying those methods 

of detecting fracture in X-ray images, it is hard to achieve desirable results in CT images 

because of their different characteristics, intensities and resolutions. 

1.3 Computed Tomography(CT)  

Computed tomography (CT) is a medical imaging method employing tomography 

created by computer processing [13].  CT scanning combines special x-ray equipment with 
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sophisticated computers to produce multiple images or pictures of the inside of the body, 

which appear as “slices” of tissues [14].  

CT images are composed of a certain number of pixels associated with the 

attenuation values of the tissue located at the corresponding points. Different sizes and 

numbers of pixels in CT images can be obtained from different CT devices. The smaller 

the size of pixels, the higher the spatial resolution of the image is. In CT images, the 

shadows are the regions with low absorption of X-ray, which are the low-density areas, 

such as the lungs while the white regions indicate high absorption of X-ray, which are 

high-density areas, such as bone. CT value is the numeric measure that describes the 

density. The unit is Hu (Hounsfield Unit). For example, the CT value of water is 0Hu. 

Different tissues in the human body have different densities; the CT values range from -

1000 Hu to +1000 Hu. Figure 1.1 is an example of CT imaging devices. Figure 1.2 shows a 

sample of pelvic CT image.  

 
Figure 1.1: CT imaging device (North Dallas Radiation Oncology Center) 
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Figure 1.2: Sample pelvic CT image. 

 

1.4 Anatomy of Pelvis 

The pelvis is the part of the trunk inferioposterior to the abdomen in the transition 

area between the trunk (torso) and the lower limbs [15]. The main function of the pelvis is 

to bear the weight of the upper body when sitting or standing. Many digestive and 

reproductive organs are located within the pelvis. There are also many large nerves and 

blood vessels passing through the pelvis and extending to the legs.  

In adults, the pelvis mainly consists of two hip bones, one is on the right side of the 

body and the other is on the left. These two hip bones consist of three separate bones: the 

ilium, ischium and pubis. Along with the hip bones, the sacrum is also the component of 

the pelvis, which is located in the upper-middle portion. This bone connects the spine and 

the pelvis. Figure 1.3 shows the pelvis structure.  
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Figure 1.3: A brief overview of pelvic structures. (Rush University Medical Center, Chicago, 
Illinois) 

 

1.5 Medical Image Segmentation 

Segmentation is the process of partitioning a digital image into multiple segments 

(sets of pixels), which collectively cover the entire image. The goal of segmentation is to 

change the representation of an image to analyze it in a more meaningful and easier 

manner [16]. The mathematical definition of image segmentation is given as follows:  

If the domain of the image is given by I, the segmentation problem is to determine 

the sets mS I⊂ , whose union is the entire image I. Thus, the sets which make up a 

segmentation satisfy  

1

M

m
m

I S
=

=∪                                                        (1.1) 

where m nS S∩ =∅  for m n≠ , and each mS is connected. In image processing field, pixel 

connectivity is the way in which two or three dimensional images related to their neighbors. 

Eight-connection is defined as follows. 
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 8-connected pixels are neighbors to every pixel that reaches one of their edges or 

corners. These pixels are connected horizontally, vertically, and diagonally. Each pixel 

with coordinates ( 1, 1)x y± ∓  or ( 1, 1)x y± ± or ( 1, )x y± or ( , 1)x y ± is connected to the 

pixel at ( , )x y . A path within the image is defined as the sequence of the connected pixels.  

Image segmentation algorithms play a significant role in many biomedical imaging 

applications, such as quantification of tissue volumes [17], diagnosis [18], localization of 

pathology [19], study of anatomical structure [20], treatment planning [21], partial volume 

correction of functional imaging data [22], and computer integrated surgery [23,24]. 

Currently, there is no general image segmentation algorithm which yields satisfied results 

for every medical image. Different clinical applications, different modalities of images, 

and other factors, such as different types of noise, require customized segmentation 

algorithms. For example, the segmentation of brain tissue differs from the segmentation of 

the pelvis or abdomen. General imaging artifacts, including noise, motion and other factors 

also influence the performance of segmentation methods. Therefore, it is difficult to select 

an appropriate approach for a specific segmentation issue.  

Medical segmentation is one of the vibrant research topics in the field of medical 

image processing. Several advanced methods have been introduced in recent years for the 

segmentation of medical images [2]. Currently, the existing image segmentation methods 

can be divided into the following categories: (1) thresholding approaches; (2) region 

growing approaches; (3) classifiers; (4) clustering approaches; (5) Markov random field 

models; (6) artificial neural networks; (7) deformable models, and (8) atlas guided 

approaches. Thresholding, classifier, clustering, and Markov random field approaches can 
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be considered as pixel classification methods. In recent years, new variations of these 

segmentation methods have been proposed [25-28]. A brief description of these existing 

image segmentation methods is given as follows: 

• Thresholding 

Thresholding technique segments an image by creating a binary partitioning of the 

image intensities [29]. An intensity value, called the “threshold”, is determined to separate 

the desired classes. The segmentation process is then achieved by grouping all pixels with 

intensity greater than the threshold into one class and all other pixels into another class. 

The technique is effective for the images that contain different structures with distinct 

intensities. It is often applied as the initial step in a sequence of processing operations. The 

first drawback of thresholding technique is that it cannot be directly applied to multi-

channel images. Secondly, it does not take into account the spatial characteristics of an 

image. Hence, often it is impossible to characterize the pixels in the segmented region with 

a single threshold value.  

• Region growing 

Region growing is a technique for extracting a connected region of an image based 

on a predefined criterion [30, 39]. In this method, an initial set of seeds is chosen and new 

points are added to the region if they meet a certain similarity criterion. Region growing is 

used for image processing applications, such as delineation of simple structures like tumors 

and lesions.  However, this technique is sensitive to the choice of the initial seed. It also 

requires manual interaction to form the seed points. Region growing can also be sensitive 

to noise, causing extracted regions to have holes resulting to disconnected regions. 
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• Clustering  

Clustering algorithms are also referred to as unsupervised methods [31, 40]. In 

cluster segmentation, a set of clusters are created to segment the target image into regions. 

Some of the commonly used clustering techniques are K-means [32], the fuzzy c-mean 

algorithm [33], and the expectation-maximization algorithm [34, 35]. Clustering 

algorithms do not directly incorporate spatial modeling and can be sensitive to noise and 

intensity in homogeneities. Also, calculation of inter- and intra- cluster distances is 

computationally expensive when the clusters have a large number of pixels.  

• Classifiers 

Classifier methods seek to partition a feature space derived from the image using 

data with known labels. Classifiers are supervised methods as they require a set of training 

data which have been manually segmented. The training set is used as references for 

automatically segmenting the new data. Nearest-neighbor classifier [45], k-nearest-

neighbor classifier [46], and maximum likelihood [47] are commonly used classification 

methods. One of the disadvantages of such classifiers is that they do not perform any 

spatial modeling. Another disadvantage is the requirement of manual interaction for 

obtaining the training data, which is time consuming. 

• Markov random field models 

Markov random field models (MKFS) is a statistical model which can be used for 

segmentation. MRFs are often incorporated into clustering segmentation algorithms such 

as K-means algorithm under a Bayesian prior model [36]. MRF models require proper 
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selection of the parameters controlling the strength of spatial interactions. Also, they 

usually require computationally intensive algorithms.  

• Artificial neural networks 

Artificial neural networks (ANNS) are massively parallel networks of processing 

nodes which can simulate biological learning. ANN represents a paradigm for machine 

learning and can be used in a variety of image segmentation techniques. The widest use of 

these methods is that ANN is treated as a classifier [37, 38], in which the weights of the 

ANN are using the training data, and the ANN is then used to segment the new data. The 

processing of ANN is usually simulated in a standard computer, compromising the 

potential computational advantages of ANN. Some types of ANNs can also be used as 

clustering methods for segmentation. 

• Deformable models 

Deformable models motivated by the physics of the problems are model-based 

techniques for marking region boundaries using closed curves or surfaces. In this approach, 

an initial contour is desired boundary first should be put near the desired boundary and 

then through an iterative relaxation process the position of the contour is improved. The 

disadvantage is that these deformable models methods require manual interaction to place 

an initial model and to choose appropriate parameters. A review of deformable models in 

medical image processing can be found in [41].  

• Atlas-guided approaches 

Atlas-guided methods are powerful tools for medical image segmentation that 

apply a standard atlas or template to guide segmentation. The atlas or template is generated 
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based on the previously known anatomical information. The atlas is then used as the 

reference frame for segmenting new images. The standard atlas-guided approach usually 

treats segmentation as a registration problem [42]. However, accurate segmentation of 

complex structures is difficult due to anatomical variability across individuals.  

• Other segmentation approaches 

There are also some other, often hybrid approaches, for image segmentation. For 

example, model-fitting is a segmentation method that fits a simple geometric shape such as 

parabola to the features in an image [43]. The difficulty of model-fitting is that the features 

in images must be extracted before the fitting can take place. Watershed algorithm 

segments images into homogeneous regions [44] using the concepts from mathematical 

morphology.  The main shortcoming of watershed algorithm is that it suffers from over-

segmentation, which occurs when the image is segmented into unnecessary regions.   

1.6 Proposed Method  

The first step in fracture detection is bone segmentation, which helps extract the 

bones from the CT images. Bone segmentation is very important for detecting the fractures 

in pelvic bones. Bone tissue segmentation by automated CT image processing can 

significantly reduce the time needed to examine medical images and to improve the 

accuracy of medical decision-making. However, automatic bone tissue segmentation from 

each CT image is very challenging due to the complexity of pelvic structures, and variation 

in bone structure from person to person. In addition, CT images are susceptible to noise, 

partial volume effects, and in-homogeneities. These make the bone segmentation more 
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challenging and time-consuming. 

In this project, a new hierarchical segmentation algorithm in multi-level pelvic CT 

scans is developed which can segment the pelvic bones from CT images automatically and 

accurately, as illustrated in Figure 1.4. The proposed method consists of four parts:  

preprocessing, edge detection, the best matching template detection and Registered Active 

Shape Model (RASM) with automatic initialization.  

 
 
 
 
 
 
 

 
 
 
 
 
 
       
 

   
Figure 1.4: Schematic diagram of pelvic bone segmentation 

 
As shown in Figure 1.4, the first step of segmentation is pre-processing. A multi-

stage pre-processing technique is introduced, which includes surrounding artifacts filtering, 

morphological operations, and image enhancement. This step first removes the 

surrounding artifacts present in the original image, such as CT table, cables, hands, and 

lower extremities. High frequency speckle noise is also removed from the images using a 

median filter. Next, the image is enhanced to emphasize the features of interest – for 

example, the pelvic bone is enhanced to higher intensity while less emphasis is placed on 
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soft tissues and other organs. Once image enhancement is conducted using brightness 

contrast stretching, a series of steps are applied for preliminary bone tissue segmentation, 

including the Canny edge detection technique to detect the edges of bone tissue, 

morphological operations to remove spurious edges and sub-edge connections and removal. 

The obtained preliminary segmented results are then used for detecting the best matching 

template. This process is performed by a template-based best shape matching algorithm 

[61] to design the segmentation process entirely automatically. For this technique, 100 

bone templates are created through manual selection from the Visible Human Project 

dataset [64], and these templates are compared to each CT slice in order to determine the 

best matched template, which allows the corresponding training shape models of each best 

matched template to be applied to the detected edge for bone segmentation. The final bone 

segmentation is conducted using the proposed Registered Active Shape Model (RASM), to 

extract pelvic bone tissues using more robust training models than the Standard ASM 

algorithm. In addition, a novel hierarchical initialization process for RASM is proposed in 

order to address the shortcoming of initialization to the Standard ASM that it is highly 

sensitive to the choice of initial points.   

After pelvic bones are extracted from 2D CT images, they are used to build the 3D 

pelvic bone models via the isosurface method. In order to quantify the segmentation 

accuracy, two suitable measures are defined to evaluate the segmentation results: Mean 

Distance and Mis-segmented Area. In order to test the reliability of the performance of 

training models, a cross-validation process is designed to test how much segmentation can 

be affected by variation in training sets. 
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Fracture detection is conducted after bone segmentation. In this project, a 

new hierarchical methodology consisting of a series of computational steps such as 

adaptive window creation, 2-D SWT application, masking, and boundary tracing is 

proposed. The ultimate goal of image segmentation and fracture detection is to generate 

recommendations for decision-making and treatment planning in traumatic pelvic injuries. 

An overall schematic diagram of high-level description for the decision-making system is 

illustrated in Figure 1.5.  

The rest of this dissertation is organized as follows. Proposed methods for bone 

segmentation and fracture detection as well as the results are presented in Chapters 2, 3, 4, 

5. Chapter 2 gives the methodology for preliminary bone segmentation, including pre-

processing and edge detection. Chapter 3 presents the methods for Shape Matching and 

best template detection.  In Chapter 4, the RASM algorithm and initialization process are 

presented. Chapter 5 explains the hierarchical method for fracture detection. Chapter 6 

concludes the dissertation and lists the future work.  

 

 

 

 

 

 

 

Figure 1.5: The framework of the proposed decision-making system. 
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CHAPTER 2 Methods for Pre-processing and Edge Detection 
 

2.1     Overview 

This chapter presents the methodology for preliminary bone segmentation. A 

complete schematic diagram for the initial segmentation process is shown in Figure 2.1. 

The initial segmentation process consists of a series of steps. The preprocessing algorithm 

for removing surrounding artifacts is given. The chapter proceeds by describing the 

methods for enhancing the brightness contrast of bone tissues in the original pelvic images. 

The next section explains the approaches for edge detection.  Example results for each sub-

section are given throughout the chapter.  

 

 

 

 

 

 

 

 

 

 

    

Figure 2.1: An overview of preliminary segmentation process 
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2.2 Pre-processing  

The main purpose of the pre-processing step is to separate the abdomen part as the 

main subject from the original pelvic CT images. There exist different surrounding 

artifacts in the original image, e.g. CT table, cables, hands, and lower extremities. 

Morphological operations are performed in the original image to separate different regions 

and to select the region with the largest area. Median filter is also applied to remove high 

frequency speckle noise. Diagram of the pre-processing steps is shown in Figure 2.2. The 

detail of extracting the abdomen part is laid out as follows: 

• Step01: In order to extract the abdominal region, a binary image is created based on 

the original image. A specified intensity value is set as the threshold. The pixels whose 

intensity values higher than this threshold are set to 1, and the pixels whose intensity 

values are less or equal to this threshold are set to 0. The abdominal region and some of the 

surrounding artifacts have a higher gray level value than the background. Consequently, 

the abdominal region and some of the artifacts are well separated from the background. 

• Step02: Morphological operations are conducted on the binary image. This step is 

designed to separate different objects in the extracted image. The pelvic region and some 

artifacts may be connected together in the extracted image; morphological operations are 

applied to make them disconnected and separated.  

• Step03: The region with the largest area – the abdomen is then selected. In this step, 

first the features of different regions, such as the area and centroid are calculated. Then, the 

region with the largest area is separated and selected.   
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• Step04: A mask is created with the same size of the identified region in step 3. This 

allows additional artifacts to be removed.   

• Step05: After the abdomen region is selected, median filter is applied in order to 

remove the existing high frequency speckle noise in the image. This step is vital to 

eliminate the noise as the noise can affect features of the structures of interest and degrade 

the overall quality of the image. Median filters are linear and are described using a mask in 

space. Median filters reduce noise without destroying the edges. By using median filter, 

the grey-level of each pixel is replaced by the median of the grey levels in the mask. What 

makes median filters differ from lowpass filter is the use of “median” as opposed to 

“average”. Example results are shown in Figure 2.3. The original images are processed 

based on the steps stated above. 

 

 

 

 
 

 

 

 

 

Figure 2.2: Diagram for the pre-processing (Abdominal region extraction) step. 
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2.3    Image Enhancement 

Image enhancement is an image processing task to improve the interpretability or 

perception of information in images for viewers [49]. Image enhancement is involved in 

our algorithm to emphasize the features of interest – the pelvic region, while 

simultaneously put less emphasis on soft tissues and other organs. This ensures that the 

original image quality is improved with “better” information reflected about pelvic bones.  

 

 

 

 

 

 

 

(a) Original pelvic CT image example A                       (b) Extracted abdominal region example B 
 

 

 

 

 

 

    

(c) Original pelvic CT image example B                           (d) Extracted abdominal region example B 

Figure 2.3: Example results for Abdominal Region Extraction. 
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The techniques for image enhancement are classified to two types: the techniques 

in spatial domain and the techniques in frequency domain. The first type focuses on 

manipulating pixel intensity directly, which is applied in this project. Brightness contrast 

stretching is conducted using s=T(r), where r is the grey level of the pixel (x, y) before 

image enhancement; s is the grey level of the pixel (x, y) after image enhancement. Figure 

2.4 shows the brightness contrast stretching process, which receive an image as the input 

and generate an enhanced version of this image as the output using computational 

algorithm. The contrast enhancement is determined using the transformation of s=T(r) to 

stretch the gray level of the object of interest. It creates better visibility of a particular 

range of gray level that corresponds to the object to be studied [50]. This stretch of gray 

level range is illustrated in Figure 2.5.  

 

 

 

 

 

 

 

                                       

Figure 2.4 Image enhancement via contrast stretching 
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selected such that the interval [s1, s2] covers the gray level range of the object of interest, 

and the interval [r1, r2] provides the desired range of gray level for a better visibility of the 

object in the target image. Contrast enhancement is applied in this project and example 

results for the image enhancement are displayed as Figure 2.6. In the figure, (a) and (c) are 

abdominal regions. (b) and (d) are the enhanced pelvic bones. Visually, the pelvic bone 

regions in (b) and (d) appear much brighter than (a) and (c), which indicate the enhanced 

information of pelvic bone regions. At the same time, the soft tissues and other organs 

become darker. The contrast enhancement is performed here to stretch the gray level of the 

bones and allows them to be the main focus of the analysis.  

 

 

 

 

 

 

Figure 2.5 Contrast enhancement processing 
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                     (a) Abdominal region example A.                                       (b) Enhanced pelvic bones example A. 
 

 

 

 

 

 

 

 

 

             (c) Abdominal Region example B.                                         (d) Enhanced pelvic bones example B. 

Figure 2.6: Example results for the image enhancement. 
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2.4    Edge Detection 

Edge detection is a fundamental tool in computer vision. In medical image 

processing, it is necessary to identify the boundary between the objects and separate the 

objects from each other. The edge of the image is the local area whose brightness changes 

significantly. The identification and extraction of the edge is very important for 

recognizing and understanding the entire image. Detected edges are normally the important 

features for image segmentation.  

Edge detection techniques have been developed since 1959. Currently, there are 

many different edge detection approaches, such as Sobel edge detector, Canny edge 

detector and Laplace edge detector. The result of applying an edge detector to an image 

may lead to a set of connected curves that indicate the boundaries of objects. Apply the 

Laplacian edge detector often creates double borders; while other edge detectors, such as 

the Sobel edge detector, sometimes may not form a closed region. The Canny edge 

detector [51], uses a multi-stage algorithm to detect a wide range of edges in images.  

In the proposed method, once the image enhancement is conducted, a series steps 

are taken for preliminary bone tissue segmentation, including Canny edge detection 

technique to detect the edges of bone tissue, morphological operations to remove spurious 

edges and sub-edges connection and removal. Figure 2.7 shows the schematic diagram for 

the entire edge detection process. The steps for edge detection are explained below.  

• Step1: Canny detector is applied to obtain the preliminary edges.  

• Step2: Morphological operations are performed to remove spurious edges and to 

make the bone edges continuous and smooth.  Figure 2.8 shows an example of removing 
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spurs.  

• Step3：The start and end pixels of each sub-edge are detected if there still remain a 

few disconnected edges. If there are less than 3 (where the number “3” was determined 

empirically) discontinuous pixels between the start and end pixels, a loop is formed to 

make them continuous. If the number of connected pixels of each sub-edge is less than 

three, it is considered isolated and those pixels are removed from the image.  

In Figure 2.9, example results of edge detection are given. Figure 2.9 (a) and (c) 

show examples of the original pelvic CT image. Figure 2.9 (b) and (d) are examples of 

edge detected pelvic bone. More results are shown in Chapter 6. The obtained preliminary 

segmentation results are used for detecting the best matching template, which is described 

in following chapter.   

 

 

 

 

 

 

 

 

 

Figure 2.7 Schematic diagram of preliminary pelvic bone segmentation.  
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Figure 2.8: Spurs Removal Process. 

 

                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Original pelvic CT image example A.                              (b) Edge detection of pelvic bone example A. 
 

 

 

 

 

            

 

 (c) Original pelvic CT image example B.                               (d) Edge detection of pelvic bone example B. 

Figure 2.9: Example results for the edge detection. 
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2.5    Summary 

In this chapter, the methodologies for pre-processing and edge detection were 

introduced. The pre-processing steps eliminate the surrounding artifacts of the pelvic bone 

region and extract the bone. Image enhancement is carried out via the brightness contrast 

stretching process, which makes the pelvic bones distinguished and shows them in a 

highlighted way. Preliminary bone segmentation is then conducted utilizing the Canny 

edge detection technique. The results for each section were given.  
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CHAPTER 3 Methods for Shape Matching and Best Template 
Detection 

  

3.1     Overview 

In the project, the proposed bone segmentation algorithm is designed that conducts 

segmentation entirely automatically. This avoids human interference during the 

segmentation process, and therefore reduces some of the human-caused errors and 

inaccuracies during the diagnostic process. Also, automatic segmentation process can help 

the physicians reduce the decision-making time, which is highly important for traumatic 

pelvic injuries, especially in urgent cases such as the patient having severe hemorrhage. 

This chapter starts with describing the theoretical foundations of the Shape Matching 

algorithm, and then it follows by explaining the application of Shape Matching algorithm 

in the automatic bone segmentation process.  

3.2    Shape Matching 

In computer vision, shape matching is a fundamental step in many applications. A 

survey of shape matching methods can be found in [52, 53]. Shape matching approaches 

can be divided into two categories: (1) feature-based approaches which make use of spatial 

arrangements of extracted features such as edge information, and (2) brightness-based 

approaches which directly use pixel brightness information. The feature-based approaches 

focus on the boundaries of silhouette images that do not include the internal marking and 

holes, and are represented only by a single-closed curve. These methods, due to these 

restrictions, result in losing some important information. Related work, based on Fourier 
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descriptors, can be found in [54, 55]. Graph structure, as another example of this family, is 

utilized in feature based representation methods, as shown in [56, 57].  

Huttenlocher et al. also developed methods based on Hausdorff distance [58].  

Recently a wavelet based method has been developed to extract density from shape points, 

showing good results in [59]. The second category of methods, based on brightness and 

intensity information, uses classifiers to classify different shapes [60]. Cootes applies a 

statistical model to iteratively match points based on intensity value [62]. Other intensity 

based methods use classifiers to classify different shapes [63]. The method in [61] uses 

simple sampling of shape, utilizing shape context descriptor to represent shapes. This 

method is very effective and robust to deformation, outliers and noise. Moreover, it does 

not require strictly as curve or contour as an input, i.e. it does not assume that all 

segmented shapes form a single connected curve or contour, and is therefore adopted in 

this project. 

A brief description of modified version of Shape Matching algorithm in [61] is 

given in this section. Two images are used for shape matching. The first image is the 

detected edge of each analyzed slice and the second image is one of 100 bone templates. 

The 100 anatomical bone templates for shape matching are created through manual 

selection of the bone regions from part of the male case of the Visible Human Project 

dataset [64]. These templates are from a male donor. In order to increase the segmentation 

accuracy, a female volunteer can be included in template matching process. This will 

ensure that the template matching process is more robust, and also the proper and correct 

bone templates will be matched to the input. In general, the bones of males are “larger and 
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more robust” than females, according to the Smithsonian National Museum of Natural 

History. Also, male bones tend to be thicker, especially at the places where muscles attach.  

These templates are compared to similar images of patients in order to determine 

the best matched template. An overview of the algorithm is illustrated in Figure 3.1 and 

each step of the algorithm is further described below.   

 

Figure 3.1: Shape matching process 
 

• Step 1: A number of control points are selected automatically in each image to 

allow matching between the images. The matching between the objects in the template r 

and the preliminary segmented bone can be built based on these control points. First, n1 

control points on the edges of the objects in the segmented image and n2 control points on 

the edges of the objects in the template image are sampled, because the edge points 

represent and describe the shape of object better than other points such as those inside the 

solid areas. The n1 points on the segmented object and n2 points on the template r object 
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represent a percentage of the total number of points around the edges of the objects in each 

image. 

• Step 2: Once the controls points are selected for both the images, the shape context 

is determined for each point on the contour of the objects in the images. Shape context is a 

descriptor used for each selected point in the sampled shape as described in step 1. For 

each point pi among the n1 and n2 control points on the shape of the corresponding objects 

in the segmented image and template r, the shape context of the point pi is defined using a 

coarse histogram hi(k) of the relative coordinates of the remaining n1 − 1 and n2 − 1 points 

in the corresponding contours as defined in (3.1): 

{ }( ) #A | ( )i i ih k q p q p bin k= ≠ − ∈                                            (3.1) 
 

where bin(k) is a region encompassed by two rays and two radii, and for any set A, #A is 

the number of sample points in the set A. This histogram defines the shape context of the 

point pi. The histogram bins are uniform in a log-polar space, making the descriptor more 

sensitive to the positions of nearby sample points. Figure 3.2 shows an example of the log-

polar bins used to compute the shape context.  
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Figure 3.2: Diagram of the log-polar bins used to compute the shape context. 
 

• Step 3: The matching cost for each individual point is determined. After computing 

all the shape context descriptors, consider a point pi  in the detected edge, and a point qj in 

the template image,  the cost of matching a point is as follows: 
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where hi(k) and hj(k) are the K-bin normalized histograms at pi and qj, respectively. This 

function determines the matching between any pair of points on the contours of the two 

objects and allows quantitative assessment of the fitness of any pairing. 

• Step 4: The matching cost between shapes in the segmented image and the template 

is determined. The overall cost of a match between the shape in the segmented image and 

the shape in the template image is the result of minimizing the sum of all individual point 

cost matches.  
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This process is repeated for all the 100 bone templates. After the best matched 

template is found, the corresponding training shape models of each best matched template 

can be directly applied to the preprocessed image for bone segmentation described in next 

Chapter.  

3.3    Summary 

The introduction of shape matching was given in the first part of this chapter. Next, 

the Shape Matching Algorithm applied in this work is described. This method is used to 

match the detected edge to every one of the available bone templates to find the best 

matched template. Sample results of shape matching were provided.  
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CHAPTER 4 Methods for Registered Active Shape Model 
  

4.1    Overview 

The last step of the segmentation method is explained in this Chapter. In this 

project, the Registered Active Shape Model (RASM) is proposed that can segment the 

pelvic bones from CT images automatically and accurately. Also, a novel initialization 

process is proposed for RASM using image registration and homogeneity features 

extracted from pelvic bone. This portion of the work was previously published in [77]. 

After pelvic bone structures are extracted from 2D CT images, 3D pelvic bone models are 

created based on continuous segmented bones in each slice. Two suitable evaluation 

measures to evaluate the final segmentation performance are defined as well. A cross-

validation process is designed to validate reliable performance of the training models. 

First, a review of Active Shape Model algorithm is presented, which is followed by 

a brief description of image registration techniques. The image registration method applied 

in this project is then presented in detail that includes the description of the homogeneity 

feature extraction algorithm. Later, the proposed RASM algorithm and the proposed 

automatic initialization approach for RASM are explained in detail. The proposed 

initialization process involves image registration and bone feature extraction as well as 

edge detection to sequentially and automatically place the training models of each 

individual object for the test images to extract the bone region from the background. Next, 

isosurface method is applied for 3D pelvic bone model creation based on 2D bone 

segmentation results. Mis-segmented Area and Mean Distance are separately defined to 
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evaluate the segmentation results. The cross-validation process for the training models is 

explained. Sample results for each step are given.  

4.2    Active Shape Model 

Active Shape Model [62] is a supervised learning technique that requires a set of 

labeled training images. The structure of interest in these images is represented by a series 

of landmarks manually placed along its boundaries. The statistical model of the desired 

structure is formed by extracting the shape and intensity information across the training set. 

This model is used to evaluate the possible deformation of each structure as the algorithm 

searches for the same structure in the test new images. 

The first step in constructing the shape model is to determine a set of n landmarks, 

which describe the structure of interest in every training image. A given object can be 

represented as a 2n element vector x given by x=[x1,…,xn, y1,…yn], where (xi, yi) provides 

the coordinates of landmark x. ASM uses an iterative approach that sets the model 

parameters b to the mean shape of x, i.e. x . Principle Component Analysis (PCA) is used to 

reduce the dimensionality of the dataset. xi can be approximated by: 

ix x Pb≈ +                                                              (6.1) 
 

where, P contains the eigenvectors of the PCA covariance matrix. Shape in this frame is 

defined by b; x is aligned with a new set of image points Y (representing the shape in a new 

image). The image points are then projected into the model space so that the parameters in 

b can be updated to match them. The process is repeated until there is no significant 

change in b between iterations. 
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4.3    Image Registration 

Image registration is the process of transforming different sets of data into the same 

coordinate system [70]. Data may be from different sensors, different times, or different 

viewpoints. Image registration is widely used in the fields of computer vision, medical 

imaging, pattern recognition, and remotely sensed data processing, and is a fundamental 

technique in comparing and integrating the data obtained from different measurements.   

Due to the diversity of images to be registered and various types of image 

degradations, designing a general method for all registration tasks is very challenging. The 

method must take into account the assumed type of geometric deformation between the 

images, noise corruption, required registration accuracy and dependent data characteristic 

as well as other factors. However, most of the registration methods are composed of the 

following four steps. 

• Feature detection. The main features such as edges, contours, corners, etc. are 

manually or automatically detected for further processing.  

• Feature matching. In this step the correspondence between the features detected in 

input image and those detected in the reference image is established.   

• Transform model estimation. The type of mapping functions as well as their 

parameters is estimated to align and map the input image with the reference image.  

• Image resampling and transformation. The input image is transformed by mapping 

functions. Image values in the non-integer coordinated are computed by the appropriate 

interpolation technique.  
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Image registration is required in the proposed method in order to get robust training 

models from different patients with respect to their bone variations (translation, rotation, 

scaling, etc.). The image registration in this project consists of these steps: enhanced 

homogeneity feature extraction from each training image [8], correlation coefficient 

calculation for similarity measure, affine transformation, and Powell algorithm for 

optimization. Homogeneity, in this project is defined as a composition of two components: 

standard deviation and discontinuity of the intensities. Standard deviation describes the 

contrast within a local region in the image and discontinuity measures the abrupt changes 

of gray, which is obtained using edge detection.  

Suppose ijs is the intensity of a pixel ijP at location ( , )i j in an M N× image, 

and ijw is a size d d× window centered at ( , )i j . 

The standard deviation of pixel ijP  is defined as: 

( 1)/2 ( 1)/2
2

2
( 1)/2 ( 1)/2

1 ( )
i d j d

ij pq ij
p i d q j d

s g
d

μ
+ − + −

= − − = − −

= −∑ ∑                                    (6.2) 

 
where 0 , 1,0 , 1i p M j q N≤ ≤ − ≤ ≤ −  

,i jμ  is the mean of the gray levels within window ijw , and is defined as : 

( 1)/2 ( 1)/2

2
( 1)/2 ( 1)/2

1 i d j d

ij pq
p i d q j d

g
d

μ
+ − + −

= − − = − −

= ∑ ∑                                              (6.3) 

 
Discontinuity is calculated using Sobel edge detector and it use the magnitude of the 

gradient as the measure:   

2 2
,i j x ye G G= +                                                             (6.4) 
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where xG and yG are the components of the gradient in x and y direction.  

Then the two values are normalized and Homogeneity value is determined:  

max
max

; max{ }ij
ij ij

s
S s s

s
= =                                                 (6.5) 

max
max

; max{ }ij
ij ij

e
E e e

e
= =                                                  (6.6) 

( , ) 1 ( , ) ( , )Homo i j E i j S i j= − ×                                              (6.7) 
 

Since the bone tissues in pelvic CT images have higher intensity values, they 

appear brighter than other regions in the CT images. From the definition of Homogeneity 

value defined above, it can be seen that, the greater the intensity difference between a pixel 

and its neighbor pixels within the window of size d d× , the smaller the value of 

Homogeneity. This allows the bone tissues to be effectively recognized and extracted for 

registration. 

Figure 4.1 shows the flowchart of the entire proposed image registration algorithm. 

Figure 4.2 show the results obtained by Homogeneity extraction from the original images. 

The results show that the Homogeneity features of bone tissue are clearly detected and the 

bone shapes are precisely represented. Also, other objects like soft tissues are removed. In 

Figure 4.2, (a) and (e) are the original pelvic CT images, (b) and (f) are the images based 

on the Homogeneity feature extraction from (a) and (e), (c) and (g) are brightness 

enhanced images and brightness is adjusted shown in (d) and (h).  The Homogeneity 

features are utilized for further image registration, which is described in next section.  
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Fig.2. Flowchart of image registration algorithm 

 

 

Figure 4.1:  Image registration algorithm. 

 

 

 

 (a)                                               (b)                                                    (c)                                               (d) 
 

 
(e)                                               (f)                                                     (g)                                                   (h) 

 
Figure 4.2: Example results for Homogeneity extraction 
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Figure 4.3 show the results of Homogeneity features based image registration. 

Visually, the size, location and rotation angle of the registered bone is more closely 

matched with the reference image rather than with the original input image (a). The 

maximum correlation value of 0.3947 is obtained through registration. Figure 4.3 (a) is the 

input image, (b) is reference image, (c) is the registered image.  The affine parameters are: 

translation- 32, 5.25; rotation- 5; scaling- 1.028;  

 
                                            (a)                                               (b)                                                 (c) 
 

Figure 4.3: Example result of image registration.  
 

4.4    Registered Active Shape Model 

In general, the standard ASM uses training images labeled with landmark points to 

generate statistical shape and intensity-level models of a desired object. The shape model 

can be iteratively deformed to locate the object in a test image [62]. The landmarks are 

points selected by an expert for the bone region in each registered image during the 

training phase. Then, the algorithm attempts to fit the shape model to the object. However, 

the pelvic bones in each original training image have different sizes, rotation angles and 

locations that may lead to unstable and unreliable shape models for inaccurate bone 

segmentation. 
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In order to overcome this, in the proposed method, a new algorithm called 

Registered Active Shape Model (RASM) is formed using the image registration technique 

introduced in previous chapter combined with the Standard ASM. This algorithm, i.e. 

RASM, is developed to create a set of more robust training models which will result in 

better segmentation. For each level in pelvic CT scans, all the training images are 

registered to the template to create the registered shape models, the templates are the same 

as defined in Chapter 3. The entire RASM algorithm includes two stages: training stage in 

which registered training models are created, and the testing stage that includes automatic 

initialization. Figure 4.4 provides the flowchart for the RASM algorithm. After the creation 

of training models, segmentation is performed on the test images. Since manual 

initialization may fail to segment the targeted objects accurately, an automated hierarchical 

initialization algorithm is used in the study. The automatic initialization process is 

illustrated in next section.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4: RASM Algorithm 
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(a)                                              (b) 
Figure 4.5: Comparison of results of standard shape model and registered shape model. 

 
 Figure 4.5 show the compared results of standard shape model and registered 

shape model. Figure 4.5 (a) is the shape model created from all training images without 

registration, (b) is the shape model created from all training images after registration. 

Visually, the bone regions in (a) are located in different initial positions while the bone 

regions in (b) are located closer to each other and within almost the same initial region. 

The size and rotation angels are also similar to each other, which allows the more robust 

shape model to be created.   

4.5    Initialization for RASM 

ASM takes a statistical approach that requires a set of labeled training images to 

determine variations of the desired shape in the testing new images. The standard ASM has 

been widely used in the recent years, but this method is highly sensitive to initialization. It 

requires that the initial position be correctly assigned to the training model in order to 

detect a target object in the image. Then the algorithm can attempt to fit the shape model to 

the object. If the shape model is not accurately placed, the Standard ASM method often 

fails to detect the target object.  
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This study addresses this shortcoming using a hierarchical initialization process 

that composes image registration, extracted bone features as well as prior edge detection 

results to sequentially place the training models for each individual object. This process 

avoids the need for manually indicating the initial positions. This will avoid human 

interference and reduce human-caused errors. The diagram of initialization process is 

illustrated in Figure 4.6. The diagram of segmentation using RASM and initialization 

process is shown in Figure 4.7. The algorithm is described as follows. 

• Step01: Each training input image Tn is registered to corresponding anatomical 

template, where n =1,…, N. N is the total number of training images. 

• Step02:  The coordinates for the landmarks in each bone structure are represented 

as (xp,l , yp,l ), for p =1,2,…, P, l =1,2,…,L, where P is the number of bones, L is the number 

of landmarks for each bone. The mean shapes are obtained using RASM. The landmarks 

are the points selected by the expert to outline the boundary of bone region in each 

registered training image. During the training process for creating shape models, the 

uppermost position of each bone is taken as the starting landmark of the shape model. 

• Step03: Centroid (Cp, Dp) is determined for all the mean shapes of the bones. All Cp 

values are sorted from the smallest to the largest. 

• Step04: Test image Em is registered to the corresponding template using 

homogeneity based image registration, where m =1,…, M, and M is the number of test 

images. 
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• Step05: Pre-processing and Edge Detection methods are applied to the test image 

Em to obtain the bone edges. The approximated contour of each piece of pelvic bone is 

detected.  

• Step06: Centroid (Cp’, Dp’) is determined for all approximated contours of each 

piece of pelvic bone in test images. All Cp’ values are sorted from the smallest to the 

largest. 

• Step07: The corresponding relationship between these two groups of centroids (Cp, 

Dp) and (Cp’, Dp’) is achieved based on their sorted positions, through which the 

corresponding relationship between different training models and bones in test images is 

also achieved. 

• Step08: The bounding box of each bone is determined for the test images. 

• Step09: In the test images, within each box bounding, the corresponding training 

model is assigned the initial position with the uppermost position of the bone edge, then 

each shape model is correctly placed.  
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Figure 4.6: Proposed initialization process 

 

 

 

 

 
 
 
 
 
 
 
 

 

Figure 4.7: Diagram of segmentation using RASM and initialization process 
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4.6   3D pelvic bone visualization 

                The radiologists usually observe and analyze the patients’ data with the 

combination of both 2D images and 3D models to make accurate diagnostic decisions in 

clinical diagnosis. In this dissertation, we apply the isosurface method to form the 3D 

pelvic bone models utilizing the segmented pelvic bones from 2D CT slices. In medical 

imaging area, isosurfaces may be used to demonstrate regions of a specific density in a 

three-dimensional CT scan. This method allows the visualization of organs, bones, or other 

structures. An isosurface is a 3D surface that represents points of an equal constant value 

within a volume of space-3D data distribution. Isosurface from the volume data is 

computed using the isosurface parameter specified. Isosurfaces are often used as data 

visualization methods, can be drawn on the screen very quickly.   

After the 2D bone structures are extracted from continuous CT slices, we set a 

sphere in 3D domain as 2 2 2 2{ = }x y z R+ + , a threshold as 0.5.  The pixel value of all the 

non-bone regions including the background, soft-tissue and all other organs represented in 

CT images are set to 0, and the bone regions are set to 1. An isofurface is therefore formed 

based on the threshold value to separate the bone region in each layer from the background. 

The isosurface connects the points that have the equal pixel value and represent a 3D 

model of pelvic bone structure.  

4.7  Summary 

In this chapter, the final step of the proposed segmentation algorithm was stated, 

using Registered Active Shape Model (RASM) to automatically extract pelvic bone tissues 

from multi-level pelvic CT images. A novel hierarchical initialization process for RASM 
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was also introduced and demonstrated. Finally, the method for 3D pelvic bone model 

creation is explained.   
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CHAPTER 5 Fracture Detection and Displacement 
Measurement 

  

5.1    Overview 

This chapter presents the methodology for fracture detection. The entire 

hierarchical process consists of a series of steps, e.g. adaptive window creation, 2-D SWT 

application, masking, and boundary tracing is described. The sample results of fracture 

detection, including major fracture detection, minor fracture detection, and no fracture 

detection are described separately. Statistical measures, i.e. accuracy, sensitivity and 

specificity prove the superiority and effectiveness of the proposed methodology. The next 

section explains the approaches in detail.  This portion of the work was previously 

published in [78, 79]. 

5.2    Methodology  

Automated fracture detection is important for making fast and accurate decisions 

and treatment planning. In order to detect the pelvic bone fractures successfully, utilizing 

the bone information contained in pelvic CT images is very useful. After bone 

segmentation, a multi-stage process is used for fracture detection in the pelvic CT scans. 

Fracture detection of pelvic bones includes several steps. First, pelvic bone segmentation is 

conducted via the proposed RASM algorithm. The image is separated into two regions, 

along an approximated axis of symmetry. The information from these two regions is used 

to create two sets of multiple adaptive windows. Later, 2-D Stationary Wavelet Transform 

(SWT) is applied to each window to test the contour discontinuities in each window using 
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boundary tracing. If there is a contour discontinuity in a window, then it is considered as a 

potential bone fracture. Figure 5.1 presents an overview of the fracture detection process. 

 
Figure 5.1: Schematic diagram of pelvic bone fracture detection 

 

5.2.1 Adaptive Window Creation  

Discontinuities around the bone boundary help identify the presence of fracture. 

Therefore, a detailed view of bone boundary is required. Creation of adaptive windows 

around the bone boundary will facilitate the process of identifying the discontinuities. 

Therefore, in this study, adaptive windows are created around the bone boundary to obtain 

a more detailed view of any discontinuities that may indicate fractures around the bone 

boundary. The appearance of bone fractures in a pelvic CT scan depends on the injury 

severity. Major fractures are usually visible while minor fractures may not severely distort 

the edge of the bone; instead they may appear as dual edges or a single sub-edge that is 
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slightly blurred compared to the neighboring edges. Therefore, it is important to refine the 

blurred boundary of each segmented bone in order to achieve accurate fracture detection. 

The refinement is done using a wavelet transform and edge detection which is later 

described in the following sections. However, due to local intensity variations, it may be 

difficult to achieve practical and desirable results by applying wavelet transform to the 

entire bone structure. Hence, the detected bone boundary is divided into a series of 

windows. The size and location of each window is determined by the area of the bone and 

boundary detected using the RASM. This is called adaptive windowing. The adaptive 

windowing algorithm is explained in detail as follows. 

Based on the segmentation formed by the RASM algorithm, landmarks are placed 

on the boundary of each segmented bone. The algorithm starts from the first segmented 

pelvic bone region. The adaptive window is created based on each landmark placed on the 

segmented bone boundary. The size of each window is determined by the distance between 

each landmark and its previous landmark, as well as the distance between each landmark 

and its previous landmark. The location of each adaptive window is detected based on the 

landmarks around the entire bone boundary, i.e., adaptive windowing. The adaptive 

windows are created as follows. 

The coordinates for the landmarks in each bone structure are represented as (xp,l , 

yp,l ), for p =1,2,…, N, l =1,2,…,M, where, N is the number of bones, M is the number of 

landmarks for each bone. 
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 The landmarks are located at the center position of each window. In order to 

ensure the size of the adaptive windows is suitable to cover the entire bone boundary, the 

length of the sides of the windows, Sp,l , is identified using (5.1), i.e.: 

2 2 2 2
, 1 , , 1 , , 1 , , 1 ,

,

( ) ( ) ( ) ( )
2

p l p l p l p l p l p l p l p l
p l

x x y y x x y y
S − − + +− + − + − + −

=                   (5.1) 

where (xp,l-1 , yp,l-1 ) is the previous landmark of each landmark (xp,l,yp,l ) and (xp,l+1 , yp,l+1 ) 

is the next landmark of each landmark (xp,l,yp,l ). 

Since the area of each adaptive window is small, in order to obtain more suitable 

virtualization effects, each window is scaled to the size of 256×256 by applying a bilinear 

interpolation technique [67]. After adaptive windowing, 2-D Stationary Wavelet 

Transform (SWT), non-bone region masking and boundary tracing, as described later, are 

performed on each window. As shown in Figure 5.2, each landmark is located at the center 

of each window.  

 
Figure 5.2: Example windows around the boundary of pelvic bone, positioned according to 

landmarks 
 

5.2.2 The 2-D Stationary Wavelet Transform 

After adaptive windowing, 2-D Stationary Wavelet Transform (SWT) is applied on 

each window in order to refine the blurred boundary of segmented pelvic bone. SWT is 



51 
 

 

applied in our work as it is designed to overcome any shift variation [13], the algorithm is 

explained as follows.   

The wavelet transform decomposes an input signal into different frequency 

components using a series of filtering operations. A wavelet is a function ( )a tϕ with a zero 

average. 

 
 ( ) 0t dtψ =∫                                                                (5.2) 

 
The wavelet generates a family of wavelets by scaling ( )tψ by a and translating it byθ : 
 

,
1( ) ( )a

tt
aaθ
θϕ ϕ −

=                                                             (5.3) 

 
The wavelet transform of a signal ( )s t at time θ  and scale a can be represented as: 
 

,( , ) ( ), ( )s aW a s t tθθ ϕ=                                                          (5.4) 
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tW a s t t
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= ∫                                                   (5.5) 

 * ( )ax ϕ θ=                                                                  (5.6) 
 

where (*) represents the convolution and ( )a tϕ is 
 

*1( ) ( )a
tt

aa
ϕ ϕ −

=                                                             (5.7) 

 
The convolution computes the wavelet transform of the input signal with dilated 

band-pass filters. Two sets of coefficients are obtained through wavelet transform, one is 

approximation coefficients, cAj, and the other is detail coefficients, cDj, where j is the level 

of decomposition, including horizontal, vertical and diagonal coefficients. Decimation 
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makes wavelet transform a shift-variant process, which means that classic wavelet 

transform of a translated version of a signal is not the same as the wavelet of the original. 

To overcome this shortcoming, stationary discrete wavelet transform is used in our study. 

The scaled window W is first decomposed via the 2-D Stationary Discrete Wavelet 

Transform. The classical Discrete Wavelet Transform (DWT) is not a space-invariant 

transform. The SWT is an algorithm which does not decimate the coefficients at every 

level of decomposition [68]. The filters at level i are up-sampled versions of those at level 

(i-1). As with the 2-D DWT, decomposition outputs approximation, horizontal, vertical 

and diagonal coefficients. In this application, three levels of decomposition are applied to 

window W using the Haar wavelet. The level 3 detail coefficients, cDj+1(h), cDj+1(v), cDj+1 

(d), are then extracted and used to reconstruct detail arrays Dh, Dv and Dd  of horizontal, 

vertical, and diagonal coefficients. Figure 5.3 represents decomposition of 2-D SWT. 

The accuracy and running speed are compared when extracting the up-sampled 

coefficients separately at 1st, 2nd, and 3rd level. The algorithm runs on the computer with 

2.80GHz Intel(R) Core(TM) i7 processor, 64-bit Operating System, 6.0 GB memory. For 

each CT slice, it takes approximately 0.5 seconds more for the 2nd level of stationary 

wavelet decomposition than the first level decomposition. While, the 3rd level of 

decomposition is only 1 second slower than the 1st level of decomposition, in terms of 

running speed. More noise is filtered out and edges are clearer in the 3rd level of 

decomposition compared to other two levels; this improves the accuracy of our fracture 

detection algorithm. Going to the 4th level adds another 1.5 second of additional delay 
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while not adding much to filtering performance. Hence, in order to achieve the balance 

between the running speed and accuracy, the 3rd level of SWT is applied in our work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
where,  
 
                                    
                                   Convolve with filter X the rows of the entry 
 
 
 
                                   Convolve with filter X the columns of the entry 
 
 
 
 
                                                                                                     where                Upsample 
 
 

 
 

Figure 5.3: Decomposition steps of 2-D SWT. 
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smoothed window to a binary image using Otsu’s threshold [69]. The threshold is 

computed to minimize the intra-class variance, defined as a weighted sum of variances of 

two classes, black and white pixels.  

2 2 2
1 1 2 2( ) ( ) ( ) ( ) ( )w t w t t w t tσ σ σ= +                                                 (5.8) 

 
Weight iw  is probability of each class separated by a threshold t and 2

iσ is variance of each 

class. Minimizing the intra-class variance is the same as maximizing inter-class variance:   

[ ]22 2 2
1 2 1 2( ) ( ) ( ) ( ) ( ) ( )b wt t w t w t t tσ σ σ μ μ= − = −                                 (5.9) 

 
where iw is probability of each class and iμ is the class mean. 

The contour is then extracted from the binary image. The unwanted edges are 

removed from the binary image to create an edge window. Later, a precise edge window 

We is obtained by removing the extra edges in the image using the pelvic bone contour and 

the mask. The process is defined as a combination of Wb and Wm. 

 
e b mW W W= ×                                                           (5.10) 

5.2.4 Boundary Tracing 

After masking, the last and final step in fracture detection is discontinuities 

detection. This is achieved by tracing the extracted bone edges. Sometimes, small artifacts 

surrounding the extracted bone edges may interfere with the boundary tracing. Therefore, 

these artifacts must be removed. These are removed by applying morphologic opening to 

all the objects in the image with area below a specific threshold. The remaining edges are 

then traced using the 8-neighborhood of each pixel and are returned as a matrix of pixel 

positions. The traced edges represent the pelvic bone contours. Depending on different 
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types of fracture and severity of fracture, if a fracture is present, then multiple boundaries 

can be identified in the selected window, then it is considered as a potential bone fracture. 

If the window has a single continuous boundary, then it is considered as no presence of 

fracture. Sample results of fracture detection are shown in Figure 5.4; more results detected 

from multi-slices of pelvic structure are shown in Chapter 6.  

   

Figure 5.4: Sample results of fracture detection. 
 

5.3   Quantitative displacement measure 
 

The quantitative displacement measurement is important to determine the pelvic 

injury severity. For the above detected fracture, the displacement is determined by 

measuring the distance between the tips of the fractures bone. If (xo, yo) is the coordinate of 

a tip of one piece of the fractured bone and (xs, ys) is the coordinate of a tip of the other 

piece of the same fractured bone, the gap d is calculated as follows. 

( )2 2( )o x o sd x x y y= − + −                                              (5.11) 

Due to the window scaling effect of the previous step, the gap da is calculated using 5. 

( )2 ,2( )
256

p l
a o x o s

S
d x x y y= − + − ×                                         (5.12) 

Figure 5.5 below shows the displacement measurement in the fractured bone. 
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Figure 5.5 Displacement calculation 

 
5.4   Summary 

This chapter presented a hierarchical method for detecting fractures in pelvic bones 

using adaptive windowing, boundary tracing, 2-D Stationary Wavelet Transform and while 

including anatomical information. Also, the quantitative measure of fracture severity in 

pelvic CT scans was defined. The results show that the proposed method is capable of 

detecting fractures in pelvic bones. Automated fracture detection, once verified with more 

data, will be an invaluable component of a larger modular system to extract features from 

CT images for a computer-assisted decision-making system. 
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CHAPTER 6 Results of Image Processing 
 
6.1    Overview 

This chapter provides the results of the proposed segmentation and fracture 

detection methodologies. The results of these steps include eliminating surrounding 

artifacts and extracting the pelvic region, image enhancement, edge detection, matching to 

a template, homogeneity extraction, image registration, segmentation using RASM, 3D 

pelvic model creation, and segmentation of key structures using different training models. 

Results using Snake method and results using RASM are compared and shown separately. 

In each step, the results obtained based on multiple samples are presented. These samples 

represent different slices of the CT scans taken from different patients. The variations 

among these samples allow better assessment and evaluation of the system performance 

when dealing with different shapes of bone of different patients. The dataset is explained in 

next section.  

6.2    Dataset 

The dataset has been obtained from the Virginia Commonwealth University 

Medical Center. Data have been collected from twenty patients with traumatic pelvic 

injuries. Forty-five to one hundred-twenty nine images are collected for each patient, 

which represent a variety of anatomical structures within a pelvic CT scan and display 

similar structures within the group of patients. Axial CT images with one to five millimeter 

slice thickness are used for the study. Images collected from five patients are used for 

training and the other fifteen patients’ images are used for testing. For fracture detection, a 
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total of twenty patients are used, out of which fifteen patients exhibit small to very severe 

bone fractures. The total number of images used from these twenty patients is 1346.  

6.3  Segmentation Results  

Results corresponding to different stages of the proposed methodology are 

presented in the following sections.  

6.3.1    Results for eliminating surrounding artifacts and extracting the pelvic region 

Figure 6.1 demonstrate the results of using the proposed pre-processing method to 

eliminate the surrounding artifacts such as the CT table and cabling. The inclusion of 

artifacts can influence the gray level statistics and make the segmentation process to be 

complicated.  The results of removing the surrounding artifacts and extracting the pelvic 

region are evaluated visually and also by calculating the percentage of the removed area in 

total area of the objects in the original image.  The mean area removed from each image in 

the testing dataset is approximately 6%. In Figure 6.1, the images in left column are the 

original images, it can be noticed that the cabling and other background objects exist in 

Figure 6.1 (a) and Figure 6.1(c). The images in right column show the results of 

eliminating cabling and other background objects which exist in (a) and (c), respectively. 

For all the test images, the method successfully eliminates the surrounding artifacts of 

abdominal regions.  
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                             (a) Raw CT slice example A.                             (b) Abdominal region after artifact removal example A. 
 

                              
(c) Raw CT slice example B.                             (d) Abdominal region after artifact removal example B. 

 
Figure 6.1: Sample results for extracting the pelvic region from the raw CT Image. 
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6.3.2     Results for image enhancement 

Examples of results produced by the method described in Section 2.3 are shown 

Figure 6.2. It can be seen in Figure 6.2 that the features of interest – the pelvic regions are 

emphasized in (b) and (d). These features appear much brighter for the image reviewers 

while simultaneously the non-interested features – soft tissues and other organs appear 

much darker compared with the bone regions. The results of image enhancement are 

evaluated visually. For the entire test dataset, the brightness of bone regions in all the test 

images is successfully adjusted and made brighter. The results will be used for better edge 

detection performance, which will be described in the next section. 
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         (a) Abdominal region after artifact removal example A.                             (b) Enhanced image example A. 

 
 

    
         (c) Abdominal region after artifact removal example B.                      (d) Enhanced image example B. 

 
Figure 6.2: Example results for image enhancement. 
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6.3.3   Results for edge detection 

Detected edges are normally the important features for image segmentation. This 

section shows the results of edge detection using the methodology described in Section 2.4. 

As shown in Figure 6.3, the images (a) and (c) in the left column are the enhanced images, 

the images (b) and (d) in the right column are the results of edge detection. The edges of 

pelvic bone regions are clearly defined. The results of edge detection are evaluated visually 

to see if the boundaries of pelvic bone regions are extracted completely. The validation 

process also tests if other non-bone regions are included during edge detection. For the 

entire test dataset, the edges in almost all of the test images are successfully extracted. 

However, by examining the results it can be observed that the connectivity of the bone 

tissues needs to be improved, as it can be seen in Figure 6.3(b). The next steps of the 

algorithm attempt to address these issues. The results will be used for matching a shape 

template in the next section. 
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                                     (a)                                                                           (b) 
 

   
                                 (c)                                                                            (d) 

Figure 6.3: Example results for preprocessing and edge detection 
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6.3.4 Results for matching a template to the analyzed slice 

In this section, results produced by the shape matching algorithm are presented. 

Shape matching is used to associate a template with each slice. The association is made by 

selecting the template with minimal matching cost to the detected edge obtained from last 

section, which can make the entire segmentation process automated. Choosing the template 

with minimum matching cost proves to be a simple and efficient technique for creating an 

accurate association. Sample results for template matching using the shape matching 

method, presented in Chapter 3, can be seen in Figure 6.3. The shape matching method 

proved to be robust in choosing suitable templates. In Figure 6.3, the input image - 

detected bone edge (the upper left image) is compared with all 100 bone templates 

(template examples on the right side), and the template with minimum matching cost 

26.6695 is achieved as the best matching template for the input image.  

Evaluation of the matching results of all test images are compared with 2-D 

correlation method and shown in Table 1. The results show that shape matching method 

proved to get higher matching accuracy than 2-D correlation coefficients method. 

Evaluation of the results of shape matching suggests that the accuracy of the tested 

TABLE 6.1 
EVALUATION OF THE MATCHING RESULTS USING SHAPE MATCHING AND 

CORRELATION COEFFICIENTS 

Similarity Criterion TOTAL NO. OF 
IMAGES 

 
Total No. of accurately 

matched images 
Accuracy 

Shape 
Matching 

675              598 0.859 

2-D Correlation 
Coefficients 

675              440 0.652 
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templates were matched with a suitable template is 85.9%.  Figure 6.4 shows the entire 

process of shape matching. Figure 6.5 show two more sample examples of best matched 

template for the analyzed slice. 

 

 

Figure 6.4: Example result of shape matching process 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                               (b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

   (c)                                                                           (d)   
Figure 6.5: Example result of finding best matching Template 

 

6.3.5 Results for Homogeneity Feature Extraction   

Figure 6.6 shows the results obtained by homogeneity extraction from original 

images. The results show that the homogeneity features of bone tissue are clearly detected 
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and the actual contours of the bones are precisely represented. Also, other objects such as 

soft tissues are removed. In Figure 6.6, (a) and (e) are original pelvic images, (b) and (f) 

are the images based on homogeneity feature extraction, (c) and (g) are brightness 

enhanced images and brightness is adjusted shown in (d) and (h).  The homogeneity 

features are utilized for image registration, as described in the following section.  
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                                     (a)                                                                           (b) 

   
                                 (c)                                                                           (d) 

Figure 6.6: Example results for homogeneity extraction. 
 

6.3.6 Results for image segmentation 

Figure 6.7 shows the segmentation results based on RASM with the proposed 

initialization processing. The results show that the proposed method accurately segments 

the pelvic bones (lumbar, ilium, sacrum, femur, pubis, ischium). The initial positions of 
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training models are also detected accurately. Results of the Standard ASM for segmenting 

pelvic bone are shown in Figure 6.8. The initial positions of training models are not 

correctly assigned in test images, which may be the main reason of inaccurate bone 

segmentation. Figure 6.9 represent the example results of pelvic bone segmentation via 

Standard ASM with manual initialization, the method fails to detect the target bones. This 

is because the training models are created without registration that they are not robust 

enough to capture the variability of the bone structures in testing images.  

The algorithm runs on MATLAB using a computer with a 2.80GHz Intel(R) 

Core(TM) i7 processor, 64-bit Operating System, and 6.0 GB memory. For each CT slice, 

it takes approximately six seconds to conduct automatic bone segmentation. For each CT 

scan, the average time efficiency for segmentation is eight minutes. The algorithm running 

in C++ runs much faster, and the total segmentation time for each CT scan is one minute. 

 

 

 

 

 

 

 

 

 

 



70 
 

 

 
 
 
 
 
 
 
 
 
 
 
                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7: Example of pelvic bone segmentation results via RASM with automatic initialization. 
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Figure 6.8: Example results of pelvic bone segmentation via Standard ASM without initialization. 

 

 

                                     
 
 

Figure 6.9: Example results of pelvic bone segmentation via Standard ASM with manual   

initialization. 

Figure 6.10 shows an example of inaccurate segmentation results using the 

proposed method, this case occurs when the system lacks the shape model information to 

match the specific target bone structures. And for this specific case, the appearance of a 

small bone structure beside the sacrum is because the position of the patient is tilted when 

his CT scan is taken.  

 

 

 

 

 

Figure 6.10 Inaccurate segmentation result. 
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6.3.7 Evaluation measures 

In order to quantify the segmentation accuracy, suitable measure is required to 

evaluate the segmentation results. In this section we give precise definitions for evaluation 

criteria that we believe are useful and intuitive for evaluation purposes.  

Mean Distance: Given two surfaces S1 and S2 we define the distance 2( , )nd p S  

between a point pn on a surface S1 and the surface S2 as: 

                                                                                                                                (6.1) 

We define the mean distance between surface S1 and the surface S2 as:  
 

                                                                                                                                            (6.2) 

where 
2

. denotes the Euclidean norm, pn denotes each landmark on surface S1 and pm 

denotes each landmark on surface S2, L denotes the total number of landmarks on the 

surface. 

Mis-segmented Area: The idea is to have a measure that represents the uncommon 

area of the segmented surface and gold standard surface of pelvic bone. Given two surfaces 

S1 and S2, we define the areas as A1 and A2, the Mis-segmented Area MA of two surfaces S1 

and S2 can be defined as: 

  Cardinality{G}                                                （6.3） 
where: 
 

1 2 1 2{ : , }G pixels p p A A p A A= ∈ ∪ ∉ ∩  

These results were evaluated by expert radiologist as ground truth for assessment. 

Visual inspection is also used for assisting to evaluate performance of pelvic bone 
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segmentation. The segmented bones are classified into three categories: Good, Acceptable, 

and Unacceptable. These categories were determined via consultation with a trauma 

physician, who identified actual bone contour as the ground truth.  

The segmentation results can be represented with a mean distance, used to identify 

the segmentation result as one of these three classes. The shapes represented with mean 

distances of less than 1.6± 0.2mm are classified as good, the shapes represented with mean 

distances between 1.6± 0.2mm and 2.2± 0.2mm are classified as acceptable, the shapes 

represented with mean distances more than 2.2± 0.2mm are classified as unacceptable. The 

segmentation result can also be represented with a mis-segmented area, identifying the 

segmentation result as one of these three classes. The shapes represented with mis-

segmented areas of less than 10% are classified as good, the shapes represented with mis-

segmented areas between 10% and 20% are classified as acceptable, the shapes represented 

with mis-segmented areas more than 20% are classified as unacceptable. Among all the 

segmentation results of 886 testing images across fifteen patients, 83.07% of them are 

classified as good, and 13.54% of them are acceptable and 3.39% of them are detected to 

be unacceptable. The total segmentation accuracy for both good and acceptable classes is 

96.61%. 

For different pelvic bone structures, the segmentation accuracy results are shown in 

Figure 6.11. The ilium, ischium, pubis and femur are almost always detected to be at least 

acceptable; however, the sacrum and lumbar show a number of unacceptable results. This 

may be because of the variation in bone shapes, blurred edge of the bones, poor quality of 

the original image, etc. The unacceptable results may be improved by further training of 
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models across a wider dataset or using more landmarks for training the model. 

Segmentation accuracy, including both good and acceptable results of different pelvic 

bones using the proposed method, the Standard ASM with manual initialization and the 

Standard ASM without initialization, are shown in Figure 6.12. The results show the 

superiority of the proposed method on all types of pelvic bones.  

 
 

Figure 6.11 Segmentation accuracy results using proposed method of different pelvic bone 
structures. 
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Figure 6.12 Segmentation accuracy including both Good and Acceptable results of different pelvic 

bones using proposed method, Standard ASM with manual initialization and Standard ASM 
without initialization.  

6.3.8 Compared results with Snake  

In this section we compare the segmentation performance using the proposed 

method and Active contour model (ACM), a special type of snakes. This method is often 

used in image segmentation. In Snakes, a deformable model is matched to a target in the 

image by means of energy minimization. A snake is initialized firstly near the target and 

the snake gets refined iteratively and moves towards the salient contour [80].  

We compare the segmentation performance using our proposed method with the 

performance using an automated seeding based Snake method [81].  Selecting appropriate 

seeds is very important for obtaining a satisfied segmentation result. This paper presents a 

method of automatic initial seeds creation that is suitable for pelvic CT segmentation. 

Firstly initial bone mask is established using preprocessing, wavelet analysis and a suitable 
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threshold. Next, refined bone mask is obtained using binary multiplication of the initial 

bone mask and the filtered image after applying Gaussian filtering. In order to form seeds 

that are close to the contour, Canny edge detection is utilized based on the refined mask 

and seeds are most likely located on the edge of the identified regions of interest. 

Seed growing step consists of growing each seed from the refined mask in its own 

neighborhood. The established growing criterion is based on neighborhood grey level 

statistics and gradient values. A curve is initialized based on the initial seeds. Such initial 

curve evolves and moves through the image according to a solution that attempts to 

minimize the energy function [81].  

Figure 6.9 shows the compared results using the proposed method – RASM and the 

Snake method. The segmentation results using RASM are shown in the left side, the results 

using Snake in left side are shown in the right side. From the results, we can see that the 

snake method detect two separated bones as one object. There are often pelvic bone 

structures which may be close to each other, e.g. femoral head and ilium, such that snake 

method may fail to detect those close and separated bones. Also as can be seen in the third 

group results, the non-bone region is wrongly detected as bone structure using Snake.  
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Figure 6.13: Compared results of pelvic bone segmentation via RASM and Snake methods. 
 
6.3.9 Considerations during Training 

Since ASM is a supervised learning method, we are required to test the reliability 

of the performance of training models. A cross-validation based method is designed to test 

how much different training data can affect the segmentation results.  

For the entire dataset (twenty patients), we shuffle the order of these data 

sets. Then four folders of data are created based on twenty subjects, each folder has five 



78 
 

 

subjects, and we define the folders as A, B, C and D. Leave one folder out is utilized for 

the cross-validation process. One subject is selected each time from one folder for testing,  

the remaining subjects in other three folders are used for creating three different training 

models, which apply to each selected testing subject. This process is designed to avoid 

choosing overlapping data for creating different training models and make them 

independent with each other. Different key pelvic bone structures, including right ilium, 

left ilium, right femur, left femur, right pubis and left pubis are segmented to demonstrate 

and compare the performance of training models. 

Table 6.2 shows the average segmentation performance for the testing subjects in A 

using three training models created from B, C, and D.  Table 6.3 presents the average 

segmentation performance for the testing subjects in B using three training models created 

from A, C, and D.  Table 6.4 shows the average segmentation performance for the testing 

subjects in C using three training models created from A, B, and D.  Table 6.5 presents the 

average segmentation performance for the testing subjects in D using three training models 

created from A, B, and C.  In the tables, MD denotes Mean Distance between the 

segmented surface and ground truth surface, which is defined in Chapter 6.3.7. 

Figure 6.14 and Figure 6.15 show the example results of right pelvic ilium bone 

segmentation using three different training models for two testing subjects. Figure 6.16 and 

Figure 6.17 present the example results of left pelvic ilium bone segmentation using three 

different training models for two testing subjects. Figure 6.18 shows the example results of 

right pelvic femur bone segmentation using three different training models for a testing 
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subject. Figure 6.19 shows the example results of left pelvic femur bone segmentation 

using three different training models for a testing subject. Figure 6.20 shows the example 

results of right pelvic pubic bone segmentation using three different training models for a 

testing subject. Figure 6.21 shows the results of left pelvic pubic bone segmentation using 

three different training models for a testing subject. 

For the segmentation performance, 90% of the total testing subjects are classified 

as good and there is slight difference among the segmentation results using different 

training models. Based on the entire performance of three different training models on key 

pelvic bone structures across testing subjects, we can conclude that the selection of training 

data to form training models has slight influence to the final segmentation results. Also, 

each training model performs well on different testing subjects and most of the 

segmentation results are classified as the Good. The created training models in this 

dissertation for pelvic bone segmentation are effective and reliable.  
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Table  6.2. Performance of three training models from B,C, and D for five testing subjects 
in A. 

 
Testing Subjects/Training Model Training Model 

B 

Training Model C Training Model D

First testing subject in A Good 

MD: 0.6± 0.2mm 

Good 

MD: 1.0± 0.2 mm 

Good 

MD: 1.5± 0.1 mm 

Second testing subject in A Good 

MD: 1.1± 0.2 mm 

Good 

MD: 1.2± 0.3 mm 

Good 

MD: 1.0± 0.2 mm 

Third testing subject in A Good 

MD: 0.8± 0.4 mm 

Good 

MD: 1.0± 0.5 mm 

Good 

MD: 0.9± 0.2 mm 

Fourth testing subject in A Acceptable 

MD: 1.7 ± 0.6 mm 

Good 

MD: 1.5± 0.2 mm 

Good 

MD: 1.3± 0.3 mm 

Fifth testing subject in A Good 

MD: 0.8± 0.2 mm 

Good 

MD: 0.8± 0.2 mm 

Good 

MD: 0.9± 0.4 mm 
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Table  6.3. Performance of three training models from A, C, and D for five testing subjects 
in B. 

 
Testing Subjects/Training Model Training Model A Training Model C Training Model D

First testing subject in B Good 

MD: 1.5± 0.2 mm 

Good 

MD: 1.6± 0.3 mm 

Good 

MD: 1.3± 0.4 mm 

Second testing subject in B Good 

MD: 0.6± 0.2 mm 

Good 

MD: 0.7± 0.4 mm 

Acceptable  

MD: 2.2± 0.8 mm 

Third testing subject in B Good 

MD: 1.6± 0.3 mm 

Good 

MD: 0.9± 0.2 mm 

Good 

MD: 1.2± 0.2 mm 

Fourth testing subject in B Good 

MD: 1.6± 0.2 mm 

Acceptable  

MD: 2.1± 0.7 mm 

Good 

MD: 1.0± 0.2 mm 

Fifth testing subject in B Good 

MD: 1.1± 0.4 mm 

Good 

MD: 0.8± 0.2 mm 

Good 

MD: 1.0± 0.2 mm 
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Table 6.4. Performance of three training models from A, B, and D for five testing subjects 
in C. 

Testing Subjects/Training Model Training Model A Training Model B Training Model D

First testing subject in C Good 

MD: 1.2± 0.4 mm 

Good 

MD: 1.0± 0.2 mm 

Good 

MD: 1.3± 0.3 mm 

Second testing subject in C Good 

MD: 0.8± 0.2 mm 

Good 

MD: 0.6± 0.2 mm 

Good 

MD: 0.6± 0.2 mm 

Third testing subject in C Acceptable 

MD: 2.2± 0.5 mm 

Acceptable  

MD: 1.9± 0.3 mm 

Good 

MD: 1.6± 0.3 mm 

Fourth testing subject in C Good 

MA: 1.6± 0.3 mm 

Good 

MA: 1.5± 0.2 mm 

Good 

MD: 1.3± 0.4 mm 

Fifth testing subject in C Good 

MD: 0.7± 0.2 mm 

Good 

MD: 0.6± 0.2 mm 

Good 

MD: 1.0± 0.1 mm 
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Table 6.5. Performance of three training models from A, B, and C for five testing subjects 
in D. 

Testing Subjects/Training Model Training Model A Training Model B Training Model C

First testing subject in D Good 

MD: 1.1± 0.4 mm 

Good 

MD: 1.1± 0.2 mm 

Good 

MD: 1.2± 0.3 mm 

Second testing subject in D Good 

MD: 1.0± 0.2 mm 

Good 

MD: 1.5± 0.2 mm 

Good 

MD: 1.4± 0.4 mm 

Third testing subject in D Good 

MD: 0.8± 0.2 mm 

Good 

MD: 1.3± 0.3 mm 

Good 

MD: 0.9± 0.4 mm 

Fourth testing subject in D Good 

MD: 1.5± 0.4mm 

Good 

MD: 1.6± 0.2 mm 

Acceptable 

MD: 2.1± 0.6 mm 

Fifth testing subject in D Good 

MD: 0.6± 0.2 mm 

Good 

MD: 0.7± 0.3 mm 

Good 

MD: 1.0± 0.3 mm 

 

    
Figure 6.14: Results of pelvic ilium bone segmentation using three different training models for a 

testing subject. 

 

 

 

 

 

 

Figure 6.15: Results of pelvic ilium bone segmentation using three different training models for a 
testing subject. 
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Figure 6.16: Results of pelvic ilium bone segmentation using three different training models for a 

testing subject. 
 

 

 

 

Figure 6.17: Results of pelvic ilium bone segmentation using three different training models for the 
second testing subject. 

 

     
Figure 6.18: Results of pelvic femur bone segmentation using three different training models for a 

testing subject. 

    
Figure 6.19: Results of pelvic femur bone segmentation using three different training models for a 

testing subject. 
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Figure 6.20: Results of pelvic pubic bone segmentation using three different training models for a 

testing subject. 
 

 
 
 
 
 
Figure 6.21: Results of pelvic pubic bone segmentation using three different training models for a 

testing subject. 
 

6.4   Results for Fracture Detection 

The results show that the method can successfully detect fracture even in the case 

of small fractures. Table 6.2 presents the performance of the method detecting fractures. 

The proposed method is highly sensitive to the discontinuities present in the bone and is 

also capable of detecting fractures that are very difficult to identify by visual inspection.  

Figures 6.22 through 6.23 show the results obtained at various stages of fracture 

detection. In these Figures, (a) is the original image, (b) is the extracted adaptive window 

after being scaled, (c) is the enhanced window after brightness contrast enhancing. This is 

done for better visualization effect. In addition, Figure 6.22 (d) shows the final fracture 

detection results.   In Figure 6.22, the patient suffers from a minor fracture in right iliac 

wing. Figure 6.22 (d) indicates the fracture detected in the right iliac wing. Figure 6.23 is 

the “no fracture” case. The result in Figure 6.23 (d) shows that the bone appears smooth 
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with no fracture. Figure 6.24 illustrates a patient with a very severe fracture in the right 

ilium bone. Fractures are detected from the windows of this bone region. Example of 

detected fractures shown in Figure 6.24 (d) indicates fractures in three different regions of 

the right ilium bone.   These results are evaluated by an expert radiologist and are 

considered acceptable. For 8.5% of the cases, the method was unable to capture the 

fracture. This may be due to the blurred edge of the bones, and the poor quality of the 

original image.  

 

  
 
 
 
 
 
 

                 (a)                                    (b)                                     (c)                                  (d) 
Figure 6.22.  Example of a detected broken boundary of pelvic bone, which may indicate a 

fracture. 
 
 
 
 
 
 
 
 

 
 

                 (a)                                    (b)                                     (c)                                  (d) 
Figure 6.23:  Example of a detected non-broken boundary of pelvic bone, which may indicate no 

fracture. 
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    (a)                                            (b)                                               (c)                                           (d) 

 
 

 
 

          
(a)                                            (b)                         
 
 
 
 
 

                 (a)                                    (b)                                     (c)                                  (d) 

Figure 6.24:  Example of a detected broken boundary of pelvic bone, which may indicate three 
fractures. 

The results of the proposed method are evaluated using the following criterions: 

sensitivity, specificity, and accuracy. We define the criterions as follows: 

True positives: Fracture window correctly identified as fracture 

False positives: Normal window incorrectly identified as fracture 

True negative: Normal window correctly identified as normal 

False negative: Fracture window incorrectly identified as normal 

Sensitivity=number of true positives/ (number of true positives + number of false negatives) 

Specificity=number of true negative/ (number of true negative + number of false positives) 
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Accuracy = (number of true positives + number of true negative)/ (number of true positives 

+ false negatives+ true negative+ false positives) 

All 1346 CT images of twenty patients are used to test the performance of the 

proposed method. 53880 adaptive windows are created based on all the landmarks. Table 

6.6 presents the performance of the method detecting fractures. Relative high accuracy, 

sensitivity and specificity have been achieved, which show the validity and superiority of 

the proposed method for fracture detection.  

Table  6.6. Performance of pelvic bone fracture detection. 

 
Among all 53800 windows, 53200 windows have no fracture while 680 windows 

contain fractures. Since the number of non-fracture windows is much more than the 

windows with fractures. In order to avoid the existing unbalance of the data, we randomly 

select 700 non-fracture windows to make the entire dataset balanced and evaluate the 

performance of the proposed method. The results are presented in Table 6.7. 

Table  6.7. Performance of pelvic bone fracture detection. 

 

Most of the windows which include fractures are located in the Ilium bones. 

Approximately fifty percent of these bones contain two or more fractured sites. In clinical 

diagnosis, extra information can be provided to a physician examining these bone areas, 

including the blood vessels and nerves. This will allow the physician to see if there is any 

Statistical Results Accuracy Sensitivity Specificity 
Rate % 89.5 91.5 89.5 

Statistical Results Accuracy Sensitivity Specificity 
Rate % 89.2 91.5 87 
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associated injury. Nonsurgical treatment or surgical treatment plans can be decided based 

on the diagnosis decisions.  

Figure 6.25 shows an inaccurate fracture detection result. This case happens 

because femoral head and ilium are too close to each other, such that part of both bones 

may fall into the same adaptive window. Thus, two broken bone pieces are detected in the 

window. 

 

  
Figure 6.25:  Example results of inaccurate fracture detection. 

In order to address this issue, we design a method of comparing the inaccurate 

detected window to the best matching template to decide if the corresponding window 

contains fracture or not.  After the best matching template is found, the bone structure is 

registered to the matched template using the method described in Chapter 4.3. Then, if any 

non-discontinuous window is detected, it is compared with the corresponding window at 

the same position in the best matching template to see if there is any discontinuity by the 

expert knowledge.  If the expecting result in the template is non-fracture, then this is 

detected as a false-positive result. An example result is shown in Figure 6.26. 
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Figure 6.26:  Example false-positive result. 

 
The algorithm runs on MATLAB using a computer with a 2.80GHz Intel(R) 

Core(TM) i7 processor, 64-bit Operating System, and 6.0 GB memory. For each CT slice, 

it takes approximately 0.5 seconds more for the 2nd level of stationary wavelet 

decomposition than the first level of decomposition. The average runtime is thirty five 

seconds per slice. In C++, the average runtime reduces to five seconds per slice.  

 
6.5 Results of 3D pelvic bone structure modeling 

Since 2D pelvic CT images provide limited and local information in each slice, 3D 

pelvic bone models are very often required to present a full range of the entire bone 

structure in clinical diagnosis. The radiologists usually observe and analyze the patients’ 
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data of both 2D slices and 3D bone models to make accurate diagnostic decisions. Figure 

6.27 shows example results of 3D pelvic bone structure modeling. After the pelvic bone 

from each continuous 2D pelvic CT image is successfully segmented, the 3D model is 

reconstructed utilizing these extracted 2D bone structures. The models are created using 

the isosurface method, as described in chapter 4.6. As we can see from Figure 6.27, a 

human’s 3D pelvic bone is clearly presented from different points of view. In our work, the 

pelvic model can be rotated to any angle which will help the physician comprehensively 

observe the entire pelvic bone structure and detect any abnormality of the patient. In 

addition, 3D visualization may be used for further validating the 2D segmentation results. 

However, for the specific measure of fracture or hemorrhage severity, 2D images should 

be utilized to provide more details. Figure 6.28 provides the 3D images of pelvic bones 

with fractures in Ilium bones.   
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Figure 6.27:  Example results of 3D pelvic bone structure. 

 
Figure 6.28:  Example results of 3D pelvic bone structure with fractured Ilium bones. 
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6.6   Summary and Discussion 

The main observations regarding the results based on the test images of the 

proposed methods are as follows: 

• The designed steps using morphological operations form a successful method for 

eliminating the majority of surrounding artifacts and extracting the pelvic region. 

• Brightness contrast stretching technique for image enhancement is involved in the 

proposed algorithm to emphasize the features of interest – the pelvic region, while 

simultaneously soft tissues and other organs are not the main focus of the analysis. 

This ensures that the original image quality is improved with much brighter regions 

of pelvic bones.  

• Satisfying results have been achieved by performing the proposed edge detection 

methodology. This allows the detected edges to be matched with the best matching 

template. The steps include Canny edge detector, morphological operations to 

remove spurious edges, and sub-edges connection and elimination. 

• Shape matching algorithm is applied to find the association between the detected 

edge of the examined slice and best matching template, which makes the entire 

segmentation automated. Results prove that using shape matching algorithm for 

detecting the best matching template obtain higher accuracy than 2D correlation 

coefficients.  

• Homogeneity feature extraction provides a novel approach for feature extraction 

from original images for image registration. Visual evaluation shows that pelvic 
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bone regions are clearly defined yielding a relatively accurate representation of the 

bone tissue.  

• A new image registration algorithm is formed using enhanced homogeneity feature 

extraction, correlation coefficient calculation for similarity measure, affine 

transformation, and Powell algorithm application. This image registration 

algorithm is combined with the ASM for developing the Registered Active Shape 

Model (RASM) algorithm to create a set of more robust training models which will 

result in better segmentation. Higher segmentation accuracy has been achieved 

using the RASM than the Standard ASM algorithm.  

• Standard ASM is highly sensitive to initialization and requires an initial position to 

be correctly assigned to the training model in order to detect a target object in the 

image. Hence, an automated hierarchical initialization algorithm is used in the 

study. The proposed initialization process involves image registration, and bone 

feature extraction as well as edge detection to sequentially and automatically place 

the training models of each individual object for the test images to extract the bone 

from the background.  Compared results demonstrate the proposed initialization 

process accurately place the shape models in the correct initial position of the bones.  

Created training models are also validated to be effective in extracting the pelvic 

bones. Compared results demonstrate that the proposed method can achieve better 

segmentation performance than the Snake method.  
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• After bone segmentation, 3D pelvic bone models are built based on all extracted 

bones from 2D images. All the slices are aligned with each other and the human 

pelvic bone structure is visually presented.  

• Two evaluation measures – Mean Distance and Mis-segmented Area are defined to 

quantitatively evaluate the segmentation performance. 

• After bone segmentation, a multi-stage process is used for fracture detection in 

pelvic CT scans. Fracture detection of pelvic bones includes several steps, they are 

adaptive window creation, 2-D SWT application, masking, boundary tracing. If 

there is a contour discontinuity in a window, then it is considered as a potential 

bone fracture. Visual enhancement and relative high accuracy, sensitivity and 

specificity show the superiority of the fracture detection algorithm. 
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CHAPTER 7 Conclusion and Future Work 
 
7.1     Overview 

This chapter provides a review of the main conclusions drawn from the 

methodologies and results described in this dissertation. Also, the chapter presents the 

future works which is the further exploration of the formation of the computer-assistant 

decision-making system for traumatic pelvic injuries.  

7.2      Conclusions 

This dissertation provides a framework for the pelvic bone segmentation and 

fracture detection. Pelvic CT scans of twenty patients are processed and bone structures 

from fifteen patients are accurately and automatically segmented using the proposed 

hierarchical approach which incorporates preprocessing, edge detection, Shape Matching, 

homogeneity based image registration and RASM with novel initialization. Segmentation 

results are evaluated using two quantitative measures and the compared results show that 

the proposed method performs better with higher segmentation accuracy than the Standard 

ASM. Also, compared results indicate that the proposed method performs better than 

Snake algorithm. Additionally, computation time taken by this method is less than the 

manual segmentation, making it practically applicable in automated processing of medical 

images. Different training models are created to segment key pelvic bone structures and 

the results show that the selection of training data does not have a large affect on the final 

segmentation performance. 3D pelvic bone models are built based on 2D segmentation 

results.  
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This dissertation also presents a method for detecting fractures in pelvic bones 

using adaptive windowing, boundary tracing, and 2-D Stationary Wavelet Transform while 

including anatomical information. The results show that the proposed method is capable of 

detecting even small fractures in pelvic bones. Automated fracture detection, once verified 

with more data, will be an invaluable component of a larger modular system to extract 

features from CT images for a computer-assisted decision-making system.  

7.3     Future Work 

Future work includes the following items: 

• Process a larger database, with higher resolution CT images to improve the 

performance of the algorithm for segmenting the bones and detecting the bone 

fracture.   

• Explore the quantitative measurement of fracture based on a larger dataset, e.g. 

horizontal displacement measure, as well as the determination of fracture type. 

• Explore 3D bone segmentation algorithms based on pelvic CT images with higher 

resolution.  

• Apply an appropriate rule-based methodology to generate rules for outcome 

prediction. This will form a decision-making system to provide Physicians with 

reliable recommendations on diagnosis as well as treatment planning.  

7.4      Summary 

In this chapter first the impact and the importance of the work was described. Then, 

the main conclusions of the proposed research were given. Finally, the main future work 

which needs to be conducted as the continuation of the project was outlined. 
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