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Abstract 

This thesis describes the SANE (Segmentation According to Natural Examples) algorithm 
for learning to segment objects in static images from video data. SANE uses background 
subtraction to find the segmentation of moving objects in videos. This provides object seg- 
mentation information for each video frame. The collection of frames and segmentations 
foms a training set that SANE uses to learn the image and shape properties that corre- 
spond to the observed motion boundaries. Then, when presented with new static images, 
the model infers segmentations similar to the observed motion segmentations. 

SANE is a general method for learning environment-specific segmentation models. Be- 
cause it is self-supervised, it can adapt to a new environment and new objects with relative 
ease. Comparisons of its output to a leading image segmentation algorithm demonstrate 
that motion-defined object segmentation is a distinct problem fiom traditional image seg- 
mentation. The model outperforms a trained local boundary detector because it leverages 
the shape information it learned from the training data. 
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"The simple things you see are all complicated" 
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Chapter 1 

Introduction 

1.1 Vision requires grouping 

A picture is worth a thousand words, but a pixel is nearly worthless. A single pixel in 

an image carries very little useful data about the observed scene. Its brightness and color 

might be due to an object surface, lighting conditions, or instrument sensitivity. Its value 

may be corrupted by sensor noise. It provides no depth information. There are few useful 

vision tasks that can be performed with a single pixel. Thus, computer vision necessarily 

requires the aggregation of information from many pixels. Grouping pixels is an essential 

visual process. 

Although grouping is essential, it need not be explicit. Consider the classical optical 

flow equation of Horn and Schunck [18, 171: 

In order to overcome the aperture problem, that only motion perpendicular to the brightness 

gradient can be detected locally (Figure 1-I), a regularization term that encourages flow 

vectors to vary smoothly across an image ( ( u l +  u$ ) + (0; + x;)) is added to the flow error 

term ( (EXu + EYv + ~ $ 1 ~ ) .  This embodies a weak pixel-grouping assumption-that neigh- 

boring pixels are part of a coherent object motion. The popularity of Markov random field 

models in computer vision is entirely due to their utility in grouping the properties of multi- 

17 



Figure 1 - 1 : Left: Determining the motion of a moving object requires grouping information 
from multiple locations. Local information can only provide motion components that are 
parallel to the local image gradient. Right: The segments useful for computing stereo depth 
might differ from those useful for texture discrimination or compression. 

ple image pixels to make useful calculations, such as denoising [14], super-resolution [12], 

texture modeling [27], or stereo depth [5]. 

Even in the absence of physical requirements, grouping can provide computational ben- 

efits. Searching for the position of the upper-left hand comer of an object in a 200 pixel by 

200 pixel image might require the evaluation of 40,000 possible locations. If all possible 

rotations need to be considered, in 5 degree increments, that produces 2,880,000 compar- 

isons. Increasing the degrees of freedom further arbitrarily inflates the computational re- 

quirements. A reasonable scheme of grouping the pixels into locally similar regions might 

reduce the search space from 40,000 pixels to 100 regions. 

The ubiquity of grouping makes it as fundamental to the study of vision as the physics 

of light or the mathematics of projection geometry. Grouping covers a range of processes, 

from the relatively weak regularization constraints of the Horn and Schunck equation to the 

explicit division of image pixels into multiple disjoint sets. This later extreme is usually 

termed "image segmentation" and has been studied by both psychologists and computer 

vision scientists since at least the early twentieth century [36]. 



1.2 What segments? 

The first task in the study of image segmentation is specifying a proper criterion for the 

image regions. Are regions simply neighboring pixels that are nearly similar in color or 

brightness? Do they encompass entire physical objects? Can they contain high-variation 

internal textures? If so, how is textural similarity measured? 

Although many segmentation algorithms address these questions by choosing practi- 

cally computable optimizations of region statistics that produce visually appealing regions, 

the relationship between segmentation and regularization provides a better answer. Just as 

regularizers are chosen for their utility in accurately fitting desired functions, segmentation 

algorithms should be chosen for their utility to other computations in an agent's visual and 

non-visual systems (Figure 1 - 1). 

Because the term "image segmentation" often refers to optimizing purely image-based 

region properties, or even the production of regions that are simply visually appealing, 

the external utility approach to segmentation is better described as "object segmentation." 

Just as object-oriented programming marshals code and data into objects, the primitives 

that are most useful for a given task, object segmentation seeks to create pixel groupings 

that correspond to task-appropriate objects. If the task is purely image-based, such as 

compression, a segmentation based on the principle of minimum description length, such 

as LeClerc's algorithm [25], might be appropriate. Discovering the materials present in a 

scene, on the other hand, might be better served by a segmentation that explicitly respected 

surface texture and reflectivity properties. 

For any given object definition, it is important to determine what information is neces- 

sary to distinguish desirable object boundaries from all the other visual boundaries in the 

images. In many cases, local image information might not be sufficient and a successful 

object segmentation might require shape information or other "high-level" knowledge. 

The most principled way to develop an object segmentation algorithm is to integrate 

it into another system. A visual robotic navigation system, for example, might need to 

locate the boundaries of obstacles. Using the success or failure of the navigator as rein- 

forcement and the output of bump sensors as supervision, a segmentation algorithm could 
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Figure 1-2: The SANE algorithm learns the shape and image properties of moving objects 
in videos. Then it uses this information to infer the segmentation of objects in static images. 

be trained to maximize performance on the high level task, which might require balanc- 

ing computational requirements against segmentation correctness. An alternative to this 

fully integrated approach is to put forth a generally useful object definition and a method 

for providing training and testing ground-truth object segmentations. Segmentation perfor- 

mance is measured by the match between inferred and ground-truth segmentations. The 

measurements reflect the algorithm's utility to any system that requires the segmentation 

of the specified class of visual objects. 

Learning to segment motion-defined objects 

Motion provides a useful, general-purpose object definition for segmentation. Defining 

an object as a collection of elements that undergo coherent motion corresponds well to 

intuition. All the visually distinct elements of a car can be considered a single object 

because they frequently move together, but a pile of leaves is composed of many objects that 

move independently on a windy day. A robot manipulator must know whether a collection 

of pixels represents a single entity or something that will disintegrate at the slightest touch. 

Apart from their utility, motion-defined objects are desirable because their test and 

training example sets can be automatically generated. A video camera on a street corner can 



record hundreds of moving cars, people, or animals every hour, and software can use their 

motion to separate them from their surroundings. Thus motion-defined objects combine 

utility and practicality. 

This thesis describes the SANE (Segmentation According to Natural Examples) algo- 

rithm for learning to segment objects in static images from video data. SANE uses back- 

ground subtraction to find the segmentation of moving objects in videos. This provides 

object segmentation information for each video frame. The collection of frames and seg- 

mentations forms a training set that SANE uses to learn the image and shape properties 

that correspond to the observed motion boundaries. Then, when presented with new static 

images, the model infers segmentations similar to the observed motion segmentations. 

SANE is a general method for learning environment-specific segmentation models. Be- 

cause it is self-supervised, it can adapt to a new environment and new objects with relative 

ease. Comparisons of its output to a leading image segmentation algorithm demonstrate 

that motion-defined object segmentation is a distinct problem from traditional image seg- 

mentation. The model outperforms a trained local boundary detector because it leverages 

the shape information it learned from the training data. 





Chapter 2 

Related work 

2.1 Image segmentation 

Modern scientific interest in image segmentation derives from the work of Max Wertheimer 

and other Gestalt psychologists, who studied the visual properties that cause humans to 

perceive multiple image elements as unified groups. They identified grouping factors such 

as proximity, color, orientation, and common motion [36]. Many of the features used in 

computer image segmentation algorithms correspond to these classical principles. 

The work of Spelke et al. on the development of image-segmentation abilities in chil- 

dren is a particular inspiration for the work in this thesis. They determined that the ability 

to distinguish object boundaries by motion and depth perception developmentally precedes 

the ability to segment based on cues such as color, brightness, and texture [41]. These 

results suggest that segmentation with these cues can be learned from the more primitive 

modes of segmentation. 

In computer vision, image segmentation is considered an ill-defined problem because 

of the difficulty in quantitatively specifying the properties of a good segmentation. David 

Marr despaired "that the difficulties in trying to formulate what should be recovered as a 

region from an image are so great as to amount almost to philosophical problems [30]." 

While acknowledging this criticism, Shimon Ullman noted the existence of psychological 

evidence for segmentation processes that precede object recognition [46]. In addition to 

these difficulties, the problem of finding a segmentation that obeys specified region prop- 



erties with the fewest possible regions is known to be NP-complete [7]. 

As a result, there are multiple approaches to the image segmentation problem. Some 

algorithms model the properties of region boundaries. The Canny edge detector [6] defines 

a local operator for detecting likely edges and sought to produce well-connected edges 

through the use of multiple thresholds-effectively allowing borderline cases to be clas- 

sified as edges if they were connected to locations that were above the higher threshold. 

However, this hysteresis technique does not completely eliminate the possibility of broken 

edges, which prevent the Canny algorithm from being a true segmentation method. Kass 

et al.'s snakes algorithm [21] solves this problem by specifying the existence, initial size, 

and location of a set of complete image boundaries, and then uses gradient ascent to max- 

imize their match to local image boundary indicators, such as high-gradient regions, and 

boundary-shape smoothness requirements. The initialization requirements of snakes are 

alleviated in the more modern level-set segmentation algorithms [29]. Taking a different 

approach to the boundary -modeling problem, Shashua and Ullman developed a network 

of variables that can infer boundaries by passing information that allow the completion of 

contours across image regions that lack local edge information [39]. 

The boundary algorithms typically only model region borders and not their internal 

properties. Unsurprisingly, they are complimented by a group of region algorithms that 

operate by assigning segment labels to each pixel in an image. The best known of these is 

the Normalized Cuts algorithm developed by Shi and Malik [40]. This algorithm creates a 

weighted graph in which each pixel is connected to every other, and the weights represent 

the similarity between them. A cut of the graph is a set of edges whose removal divides 

the pixels into two groups. A minimum cut is the cut whose total edge weights are the 

smallest, which is biased towards separating small regions from the remainder of the image. 

Normalized Cuts corrects this bias by dividing the cut value by associativity factors that 

penalize small partitions. 

While Normalized Cuts divides an initially fully-connected graph into smaller regions, 

Felzenszwalb and Huttenlocher's algorithm [9] is an example of the region-growing ap- 

proach, which starts with each pixel in an individual segment and iteratively merges the 

pixels into larger regions. Regions in this algorithm can be either high-variance, as in the 



case of a highly textured surface, or low-variance, such as a region of constant color, and 

the merging procedure automatically adjusts its criteria to maintain these properties. 

Just as the boundary models largely ignore region interiors, these region models forego 

shape modeling. Although their methods tolerate noise in measurements of pixel asso- 

ciativity, it is difficult to make a model based on pairwise pixel similarity encode strong 

priors of region shape, which is probably why boundary-based methods appear to domi- 

nate domains such as medical imaging, where noise is high, but a great deal of prior shape 

knowledge is available. 

Yet another approach to image segmentation is based on the principle of minimum de- 

scription length, a criterion drawn from information theory, which casts segmentation as a 

data-compression problem. LeClerc developed a language that represents region interior 

variation and boundaries and finds segmentations that result in efficient image descrip- 

tions [25]. Zhu and Yuille demonstrated that snakes, region-growing, and the LeClerc 

method can be combined in a general framework [56]. 

The Geman and Geman image-restoration algorithm [14] can be viewed as a segmen- 

tation method that combines some boundary and region properties. The algorithm seeks 

to recover the true pixel brightnesses in a noise-corrupted image, but these uncorrupted 

values can also be considered segmentation labels when the regions are defined as areas 

of constant brightness. The Geman and Geman model represents the relationship between 

these labels with two Markov random fields (for more details on Markov random fields, 

see Section 2.2). One field enforces the constraint that neighboring pixels should be given 

the same label. The other field infers the presence or absence of boundaries between each 

pair of pixels. The presence of a boundary at a particular location makes the presence of 

nearby boundaries more likely and also makes it more likely that pixels on either side of 

the boundary will be given different labels. The segmentation model described in Chapter 

3 has many similarities to this formulation, except that it works on patches rather than pix- 

els, which allows it to capture more shape information and more complex region properties 

than this pixel-based model. 

If example image segmentations are available, supervised machine learning can be ap- 

plied to the problem. In recent years, there have been an increasing number of publications 



in this and related areas. Two important recent algorithms use human-segmented test and 

training data to learn boundary detection models. Martin et al. [32] studied the perfor- 

mance of brightness, color, and texture gradient-based detectors on the task of replicating 

human-determined boundaries from the Berkeley Segmentation Database [33]. By fitting 

combinations of features to the training data using logistic regression, Martin developed a 

detector that matched human performance more closely than well-known alternatives, such 

as the Canny edge detector [6]. The algorithm utilizes complex texture features extremely 

effectively, but classifies each pixel independently. Lacking a boundary-shape model, it's 

unable to complete boundaries across regions that lack local information. Konishi et al. [23] 

trained on the Sowerby and South Florida human -labeled boundary data sets and developed 

a new method for combining multiple features in their detector. They employed an adap- 

tive histogram and decision trees to represent the joint probability of the features, using the 

Chernoff information to determine which divisions are most useful for the edge-detection 

task. Although a version of the algorithm learned equivalents of the Canny techniques for 

extending edges across low-information regions, the results were improved only slightly, 

perhaps indicating the desirability of stronger shape information. Neither the Konishi and 

Martin algorithms ensure that all detected edges are part of closed boundaries, so neither is 

a hue segmentation algorithm. 

Hayman and Eklundh [ I  51 have contributed an algorithm that learns to combine multi- 

ple video cues on-line, bootstrapping the process from an initial motion-only segmentation 

algorithm. However, the algorithm does not learn a static-image segmentation model, it 

just utilizes static cues to improve its motion segmentation. 

Using a top-down approach, Borenstein and Ullman's class-specific segmentation algo- 

rithm [3] fits a stored database of object parts, derived from a manually segmented training 

set, to a new image to determine the appropriate segmentation. A more recent extension [4] 

requires two sets of images for training, one containing examples of the object class and the 

other consisting of out-of-class images, but does not need prespecified segmentations. An 

iterative technique determines the examples' figure-ground segmentations and constructs 

the appropriate object-part database. This technique assumes images in which the fore- 

ground objects are less variable across the set than the surrounding background regions, 



which may not be the case in some data, such as overhead pictures of cars on a highway. 

Among these learning algorithms, none provide a model for segmenting objects in static 

images that can capture useful shape and region information and provide a reasonable ex- 

pectation of generalizability to larger domains. The Konishi and Martin algorithms focus on 

local boundary detection, and the class-specific fragment databases used in the Borenstein 

and Ullman methods seem unlikely to generalize well. The Hayman and Eklundh algorithm 

uses motion as a starting point for learning, but only segments moving, not static, images. 

The other algorithms require human-supplied training data. All but the second Borenstein 

and Ullman algorithm require example human segmentations for training, which means 

that they are learning to match human-perceived regions of uncertain significance. Al- 

though Martin et al. note that human segmentations demonstrate remarkable consistency 

[33], that still does not address the question of the underlying region definition and whether 

they are useful inputs to other algorithms. The second Borenstein and Ullman algorithm 

relaxes the human-segmentation requirement, but the robustness of the learning technique 

and the practicality of gathering sufficient in-class images are unknown, and, ultimately, 

the learned models still reflect an unknown human object definition. 

Medical-imaging segmentation, such as the work of Leventon et al. [26], frequently 

attempts to duplicate the manual segmentation of organs or other body structures of interest. 

The use of human-provided training examples is ideal for these applications because the 

goal is to remove the need for humans to segment the images, and organ boundaries seem 

to be more precisely specified than human-segmented regions in typical natural images. 

Example segmentations of a particular object class could also be used to learn an object- 

detection model. In object detection, the goal is to discover image regions that contain 

examples of a particular object or object class. Some notable recent object detection al- 

gorithms include the Viola and Jones face detector [47] and Lowe's SIFT algorithm [28]. 

Both of these algorithms, like many other object-detection methods, draw bounding boxes 

around detected objects and do not find their boundaries in any detail. Differentiating be- 

tween a face and a car is done more effectively by detecting key features such as tires or 

eyes than by finding boundaries and comparing shapes. But many tasks, such as obstacle 

avoidance or optical flow, are much more sensitive to precise boundary location than they 



are to the types of objects present. Even object detection can benefit from a process that 

separates objects from their surroundings without requiring specific detection. Eliminating 

unwanted background variance can make detectors simpler and more effective. It's also 

useful to consider that object segmentation is founded on the notion that some boundary 

image and shape properties are broadly useful - an algorithm that learned to segment 

farm animals and then successfully segmented tractors would be considered a huge suc- 

cess. Object detection, on the other hand, focuses on discrimination. An object detector 

that is trained on farm animals and then detects a tractor would be a failure. It's now just a 

low-resolution segmentation algorithm. 

Fitzpatrick developed an algorithm that allows a robot to collect segmented object ex- 

amples by poking possible objects and observing their motion [lo], a strikingly similar 

approach to the method described in Chapter 3 for extracting example segmentations by 

passively observing motion. Fitzpatrick used the examples to learn to detect and segment 

specific objects, while the algorithms in this thesis learn to segment large classes of objects. 

2.2 Markov random fields 

The segmentation models introduced in Chapter 3 are based on Markov random fields 

(MRFs), a class of probabilistic graphical models that encode the relationships between 

multiple variables. To introduce Markov random fields properly, some notational conven- 

tions are required. The remainder of this thesis will adopt the convention that variables are 

denoted by capital letters (V) and their assignments by lower-case letters (V = o). The 

elements of vector-valued variables are indicated by subscripts (V,). Sets are upper-case 

(C) and their elements are lower-case (c). Sums and products over all possible assignments 

to a variable are indicated by the variable name (x,, n,), sums and products over set 

elements are indicated by the set name (&, nC). 
Markov random fields have been widely used since their introduction to computer vi- 

sion in Geman and Geman's work on image restoration [14]. A Markov random field is an 

undirected graph whose nodes represent variables of interest. If a graph contains variables 

V, and the neighbors of a particular variable V, are denoted N(V;:), the Markov property 



Figure 2-1: A Markov random field consisting of 6 variables arranged in 6 one-element 
and 7 two-element cliques. 

holds that P (& I V \ V, ) = P (V, IN (V, )), a variable is independent of the remainder of the 

graph given the values of its neighbors. A Markov chain is a one-dimensional MRE Figure 

2-1 shows a simple Markov random field. 

Unlike Bayesian networks, the joint distribution of the variables in an MRF cannot be 

found by multiplying local conditional probability functions. Instead, the Harnrnersley- 

Clifford theorem [I] states that every Markov random fields is a Gibbs random field, in 

which 

where C is the set of cliques, or mutual neighbors, in the graph1; Yc is a positive-valued 

compatibility function; and 

is a normalization constant called the "partition function." For a particular assignment to 

the variables in clique c, the larger the value of YC, the more likely the combination. 

~eaders unfamiliar with mathematical terms such as "cliques" can find excellent definitions on the Math- 
world web site at http://mathworld.wolfram.com/. 



2.3 MRF inference 

The necessity of normalizing the Markov random field energy function by Z makes in- 

ference in these models challenging. Geman and Geman demonstrated that samples can 

be drawn from Markov random fields using the procedure of Gibbs sampling and this 

technique can be combined with annealing to discover globally optimal assignments to 

a model [14]. Unfortunately, Gibbs sampling, a type of Markov chain Monte Carlo tech- 

nique, requires many iterations to produce useful samples in a large MRF, and the anneal- 

ing procedure requires a slow cooling schedule to ensure optimality. Therefore, it is not 

surprising that much of the research in Markov random fields has focused on discovering 

alternatives and approximations that make their use more practical. 

Besag [2] noted that simple hill-climbing produces globally adequate assignments to 

MRF variables in many instances. His iterative conditional modes (ICM) algorithm takes 

an initial assignment and scans through all the variables, making any local change that 

increases the probability of the overall assignment. Since individual modifications only 

affect a few clique potentials, the algorithm is extremely efficient, although it is most useful 

in cases where the initial assignment is nearly optimal. Some other well-known methods are 

the pseudo-likelihood approach, which approximates the joint MRF distribution with the 

product of all the local conditional probabilities, and the related mean-field approximation, 

which assumes that the influence of non-neighboring nodes can be represented by their 

mean assignments [27]. 

Currently, a new class of algorithms based on the belief propagation procedure, are as- 

cendent. Discovered by Pearl, belief propagation [37] is a pair of related algorithms that 

allow for efficient calculation of local marginal probabilities and global maximum a pos- 

teriori (MAP) estimates in tree-structured MRFs and Bayesian networks. Every variable 

V, has a set of possible assignments {oil and a message vector Mi+j for each neighbor 

V j  E N(Vi ) .  Belief propagation is an iterative algorithm with the message vectors initial- 

ized to 1. Given a pairwise MRF, which contains only one and two-element cliques, an 



iteration of the sum-product algorithm for computing marginal probabilities is 

An iteration of the max-product algorithm, which computes joint MAP estimates, only 

substitutes max for x, producing 

In a tree-structured MRF with I V I variables, either algorithm converges after at most I V I - 

1 iterations. Then, the sum-product messages can be used to calculate the single node 

marg inals 

or the max-product messages can be used to calculate the joint MAP estimate by selecting 

at every node. 

Although these results are only guaranteed for tree-structured MRFs, there is nothing 

in the algorithm that prevents its application to graphs containing loops. Commonly called 

"loopy belief propagation," this approach has found great favor among computer-vision 

researchers because it often produces useful approximate inference [5 11. The effectiveness 

of loopy belief propagation led to further study which revealed its relationship to Bethe 

free-energy models in statistical physics and the existence of more accurate physics-based 

approximate inference techniques [55]. 

To solve the possible non-convergence of loopy belief propagation, researchers have 

investigated altering the "step size" of the algorithm. Instead of replacing old messages 

with new ones after each iteration, a combination of the old and new messages is stored. 

Murphy et al. found that using a linear combination of the old and new messages improved 



convergence in some cases, but note that "in several cases the beliefs to which the algorithm 

converged were quite inaccurate" [35]. Heskes described "damping" the steps of loopy 

belief propagation by linearly combining the logarithms of new and old messages [16]. In 

this formulation, if Miej is a message that regular belief propagation would compute at 

time t and M;,~ is the damped message, 

= exp(A log + (1 - A) log M;;;) 

with damping factor A. 

A competing inference approach that has found favor with some vision researchers uses 

solutions to the minimum-cut graph problem to find MRF MAP estimates [5, 221. These 

methods impose some restrictions on the form of the MRF potentials and if the unknown 

variables are not binary they require multiple iterations of expensive graph construction and 

cutting to compute an approximate estimate. Currently, there is no consensus over whether 

these graph-cut methods are generally superior or inferior to loopy belief propagation on 

typical vision problems. Tappen and Freeman compared the two methods' performance 

on stereo problems and found that while graph cuts found higher-scoring assignments, 

those assignments were not necessarily more accurate compared to ground truth. This 

indicates that modeling choices were more important than inference algorithms on these 

problems [44]. 

2.4 MRF parameter estimation 

Creating a Markov random field model for a set of variables requires choosing values for 

the clique potential functions. There is no universal relationship between clique potential 

functions and the joint probability distributions of the clique's component variables, be- 

cause the normalizing partition function Z is necessary to all marginalizations and is influ- 

enced by all of the MRF's potentials. Certain graph structures can be decomposed, which 

results in a simple, closed-form relationship between clique potentials and marginals [19]. 

Unfortunately, large, grid-structured MRFs such as those described in Chapter 3 are not de- 



composable. Alternative maximum-likelihood approaches require computing the Z func- 

tion, which is intractable. As a result, approximate algorithms based on pseudo-likelihood, 

mean-field, or other approximations are frequently used. 

Another parameter-fitting procedure is iterative proportional fitting (IPF), which selects 

parameters that match the marginal probabilities of the model to a set of observed marginal 

probabilities [19]. For example, if a clique consisting of variables A and B has an observed 

probability k (A, B), and the current MRF parameters produce a marginal P(A, B), IPF 

updates 

These updates are guaranteed to converge and monotonically increase the log-likelihood 

of the data. However, they do require inferring clique marginals, which is intractable due 

to the partition function. One solution is to use approximate inference to efficiently com- 

puter the necessary marginals. Wainwright and Sudderth have proven that in an MRF with 
P(Vi, v.1 single and pairwise clique potentials, Yi (V,) = P ( q )  and Yi j  (6, Vj) = are 

fixed points of IPF using belief propagation inference [SO]. Subsequently, Wainwright et 

al. demonstrated that these parameter settings are also approximate maximum-likelihood 

estimates [49] and noted that they are exact compatibilities on a tree-structured MRF [48]. 

The two-element compatibility functions have a useful intuitive interpretation. If Yi j (& = 

vi, Vj = vj) = 1, the assignments are independent of each other, if Y > 1, they are pos- 

itively correlated and if Y < 1, they are negatively correlated. These approximations will 

be the bases for the compatibility functions used in this thesis work. These compatibilities 

have been used in MRF models prior to Wainwright and Sudderth's theoretical justifica- 

tion. For example, they are equivalent to the conditional probability compatibilities used 

by Freeman et al. [12]. 





Chapter 3 

The SANE Algorithm 

3.1 Algorithmic development 

The Segmentation According to Natural Examples (SANE) algorithm is an image seg- 

mentation algorithm that is trained via supervised machine learning to segment objects in 

individual static images. The training examples are automatically generated by a back- 

ground subtraction algorithm that segments moving objects from their surroundings in 

videos. Taken together the full system is a self-supervised learning procedure for train- 

ing static image segmentation models from videos of moving objects. 

The SANE algorithm developed from a boundary-detection method to a full segmenta- 

tion algorithm in three distinct stages. Each stage directly extended its predecessor, so the 

final algorithm is best described by its developmental history. The first version of SANE 

only modeled boundaries, the second version added more region-compatibility informa- 

tion, and the final version added explicit segmentation labels. After the main algorithmic 

discussion, a multiresolution extension, parameter training, and inference methods are de- 

scribed. 

3.2 Boundary model 

Segmentation and boundary detection are identical problems. Detecting the boundary of a 

region is equivalent to assigning that region's label to every interior pixel. By definition, 



Figure 3-1: Left: Boundaries are closed and separate pixels into segments, while open 
edge segments do not. Boundaries can be represented as a grid of local edge assignments. 
Right: The first boundary model on a small sample image, with edge nodes E and image 
data nodes I. 

boundaries are closed. An edge detector, such as the well-known Canny algorithm [6], 

which allows open edges, is not a boundary detector (Figure 3-1). The first SANE model 

attempted to learn the properties of object boundaries and perform segmentation by detect- 

ing complete, closed boundaries in each image. 

Boundaries can be represented by a collection of connected local boundary segments 

(Figure 3-l), which we will refer to as edges. Given an image, the task is to infer the correct 

assignments to the hidden edge variables, denoted E, from the available image information, 
t A  1 1  1;1,li1 i i  - I r . c ; - -  dk :J : !L  I  

I. Inspired by Freeman et al.'s [12] use of a Markov random field on image patches to solve 
1.t: ' .. = " ! '  f! 1 ,  # ! .  1t \ ;  : . I [ -  

the super-rekolution problem, the first boundary model ( ~ i ~ u r e  3-1) divides an input image 

into a lattice of 5 pixel by 5 pixel, non-overlapping patches. For each patch i1  there is an 

MRF node Zi representing the image data and an MRF node Ei indicating the shape of 

the object boundary segment passing through that region or representing the absence of a 

boundary segment at a location with the "empty edge" value. 
I . .I I  I ,  , I l l  , 1  . ' r 

when lattice location is important, patches and nodes will be indexed by their Cartesian lattice coordi- 
nates (i j). 



The edge nodes are connected to their edge-node neighbors in a first-order neighbor- 

hood and to their corresponding image node: N(Ei,  j )  = {Ei+l, j ,  Ei, j+l, Ei-1, j ,  Ei, j -1 ,  Zi, j }  

(Figure 3-1). This makes each image node independent of the remainder of the graph given 

the value of the edge node at that location. This conditional independence assumption, 

common in computer-vision MRF models, significantly limits the power of the model and 

eventually lead to the development of the second boundary model in Section 3.3. 

Some simple mathematical manipulation will illuminate the parameters of this model. 

Because the elements of I are conditionally independent, 

The P ( E )  term is a Markov random field with one and two-element cliques, C1 and C2. 

Therefore, 

Applying the compatibility approximations from Section 2.4 produces 

and 

Y i ( E i )  = P(Ei).  

The image nodes are real vector-valued variables representing image-patch features that 

are useful for distinguishing boundaries. In this thesis, all models use the average bright- 

ness of four patch regions as image features, as shown in Figure 3-2. Color models use 

the average red, green, and blue values of all the patch's pixels in addition to these local 

brightnesses. Earlier implementations represented each patch with the value of oriented 

derivative features evaluated at the center of each patch. The derivative features were re- 

placed by average brightness and color values because those were more successful in the 

boundary and image model described in Section 3.3. 



brightness: Ii=(biO,bi ,bi2,bi3) 

color: I-=(b b. b. b. red. green. bluei) 
1 10,11,12,13, 1, 1, 

Figure 3-2: Brightness models use average brightnesses of four patch regions as features. 
Color models add the average red, green, and blue values of all the patch's pixels as extra 
features. 

(Entry: (0,l) Inflection: (23) Exit: (4,O)) 

Figure 3-3: Any region boundary can be represented as a collection of edge patches. 

Edge variables, on the other hand, are discrete and range over a parameterization of all 

possible boundary edges that can pass through a 5 by 5 patch. Because region boundaries 

are closed, their constituent edges cannot terminate in the middle of a patch. Therefore, lo- 

cal edges are represented as an entry point on the border of the patch, an optional inflection 

point inside the patch, and an exit point on the border of the patch. The permitted coor- 

dinates for these locations are the integer-valued pixel locations in the patch. Figure 3-3 

shows an example boundary and one of its constituent edge values. This parameterization 

produces 27 17 possible local edge assignments, including the empty edge as a special case. 

Because this boundary model is supposed to produce segmentations, it is important to 



investigate its behavior with respect to the continuity of neighboring edge assignments. If 

an edge's exit location borders another patch, the model should guarantee that the assign- 

ment to that neighbor continues the edge, that it has an entry or exit point near to that 

location. 

Consider a function cont(ei, ej), which returns 1 if ei continues e j or if the two assign- 

ments do not have entries or exits along their common border, and 0 otherwise. Entries and 

exits are only considered to be continued if they are no more than 1.5 pixels distant from an 

entry or exit on a neighboring patch. The cont function does not penalize unmatched entries 

and exits through patch corners because they could continue onto two different neighboring 

patches. This ambiguity leads to problems which are discussed and solved in Section 3.4. 

Ideally, Y (ei, e j )  = E if cont(ei, ej) = 0, where e > 0 is a small value indicating 

low compatibility. Clearly, errors in probability estimation, caused by noisy training data, 

could prevent this from occurring. Unfortunately, so can perfect training data that consists 

of nothing but closed, continuous boundaries. 

A well-established technique of estimating discrete probabilities is to count the occur- 

rences of the values and then normalize the counts. In order to ensure that 0 probabilities 

do not occur as a result of sparse data, a Dirichlet prior distribution can be used, and the 

expectation of the posterior can provide the probability estimates 1131. This is equivalent 

to initializing all of the value counts to 1. However, this can cause problems with highly 

improbable neighboring edge pairs. Consider two edge assignments, ej and e), which never 

occur in the data, neither singly nor in combination. Assuming that the data points are pairs 

of neighboring assignments, after N data points are counted, 

1 1 
~ ( e i )  = - ~ ( e ) )  = - 

1 
2N'  2N' 

and ~ ( e j ,  e)) = - 
N '  

This produces a compatibility value of 

As N increases, the model makes these unobserved neighboring assignments more and 



more compatible with each other, the opposite of the desired behavior. This failure demon- 

strates the danger of combining Dirichlet priors with these approximate compatibilities in 

low-probability cases. 

The solution is to modify the compatibility function so that non-continuous neighbors 

are given value E . For this thesis, E = 1 0-lo, a value chosen by trial and error. This addition 

makes the neighbor compatibilities 

3.3 Boundary and image model 

In the boundary model, the relationship of the image nodes to the edge nodes limits the 

algorithm's ability to make some important distinctions. Consider a model trained on a 

cartoon world in which all objects are uniformly-colored regions. With sufficient training, 

the image patch likelihood would associate large color derivatives with edges, regardless 

of the particular patch colors. The edge compatibilities would define the expected rules 

of edge continuation--edges tend to neighbor similarly-oriented edges. But, although the 

training regions are all uniformly-colored, the boundary model cannot learn that an edge 

assignment should never leave green and red pixels grouped in the same segment (Figure 

3-4). 

In this case, the problem could be solved by expanding the space of edges to differen- 

tiate green-blue edges from red-blue edges. But that requires the user to manually choose 

the correct edge annotations for a data set, and each annotation vastly increases the number 

of potential assignments at each node. 

A superior solution is to combine the edge and patch variable at each location into a 

single node, as shown in Figure 3-4. This modifies the MRF probability function to 



Figure 3-4: Left: Conditionally independent image patches result in the merging of two 
incompatible regions, but merging image and edge variables allow the model to reject the 
match based on the region properties. Right: An example of the boundary-image model, 
combining E and I variables into the same nodes. 

the per-node compatibility function to 

and the neighbor compatibility function to 

The terms that only involve edge variables are equivalent to the original edge compatibility 
v ,  L ,  I l l -  

formulation, and the new terms encode information about the lmage patchgi donditibned 

on the edge assignment. Just as in the first model, adding the continuity term .', > I # '  & I ,  , ,; - 1  . 1 

encourages the formation of complete edges. I '  
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With these additions, the model can select boundaries depending on the qualities of the 

regions that they would encode. For example, in the situation shown in Figure 3-4, both 

neighboring edge assignments are eh = (0,2,2,2,4,2), while the two image patches are 

ibr and i bg .  T h e r e f ~  



is likely to be a high value since horizontal edges frequently co-occur. In the new model, 

If the model has never seen red and green pixels in the same region (i.e. unseparated by a 

boundary), P (is,, ibg leh , e h )  will be nearly 0 and the model will reject the assignment to 

the edges as unlikely. 

It is important to note that although merging the nodes increases the modeling burden 

because more probability distributions need to be estimated, it does not increase the com- 

putational complexity of inference. Since the image patches are visible, there is no increase 

in the number of hidden variables, and the hidden variables still range over the same sets of 

possible edge values. Incorporating the image data into the pairwise compatibilities is sim- 

ilar to the construction of the conditional random field (CRF) models proposed by Lafferty 

et al. [24]. CRFs assume that the distribution of hidden variables conditioned on visible 

data form an MRF, as opposed to the traditional MRF approach which models a joint dis- 

tribution of all variables, The MRFs described in this section can also be considered CRFs 

of the boundary nodes conditioned on the image data. 

3.4 Segmentation model 

Although detecting closed boundaries is equivalent to segmenting an image into regions, 

representing boundaries with local edge patches produces a solution space containing many 

non-segmentations; for example, any discontinuities between neighboring edge assign- 

ments precludes their use as a region boundary. Ideally, the penalty on discontinuities 

discussed in the previous models should prevent such assignments from occurring. How- 

ever, in practice they still occur. There are two possible sources of these errors: loopy 

belief propagation and the impossibility of enforcing continuity across image comers in 

our model. 

The first source of error is well-known. Belief propagation is guaranteed to produce 

exact MAP estimates in acyclic MRFs [37], but its application to cyclic graphical models 
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Figure 3-5: With pairwise cliques, it's impossible to predetermine which nearby patch is 
responsible for continuing an edge that exits at a corner. If the pixels are explicitly assigned 
labels and label continuity is enforced, the problem is solved. 

is known to produce errors in some cases, including algorithmic non-convergence [35]. 

When it converges, loopy belief propagation finds locally maximal assignments, but even 

that property is not guaranteed in non-convergent cases [52]. 

The corner-continuity problem is particular to our model and its reliance on two-element 

clique potentials. Consider an edge exiting a patch at coordinate (0,0), the upper-left pixel. 

The edge should be continued, but onto which neighboring patch? As shown in Figure 3-5, 

it would be acceptable for the boundary to extend onto the patch directly above, the patch 

to the left, or diagonally. The continuity of this edge is a joint property of the assignment to 

all four edge patches. Individually penalizing the failure of continuity between the edge in 

question and any one of its neighbors with a near-zero compatibility ignores the possibility 

that one of the other neighbors has continued the edge. 

Four-element clique potential functions would solve the corner problem, but not the 

problem of non-segmentation output due to inference errors. Fortunately, it is possible 

to simultaneously enforce comer continuity and transform the solution space so it only 

contains segmentations. The training and testing ground truths, produced by background 
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Figure 3-6: Segmentations of isolated objects can be represented by edges representing 
their boundaries combined with one-bit parities that indicate which segment lies on which 
side of the boundary. 

subtraction, label every pixel as "0" (background) or "1" (fore@!ound). These two pixel 

labels are sufficient to sepatate any number of non-overlapping image regions from their 

surroundings. Therefore, as demonstrated in Figure 3-6, the pixel regions in the training 

and test data can be represented with our existing edge model, enhanced by assigning a 

parity to each edge-a single bit indicating which side of the edge is given which region 

label. 

Clearly, this allows any model output to be interpreted as a valid segmentation because 

all of the pixels are explicitly assigned a region label. It also solves the corner continuity 

problem. As shown in Figure 3-5, enforcing a continuity rule that neighboring pixels must 

have the same region label unless they are separated by an edge allows continuity informa- 

tion about the corner-exit to propagae co~~-wtly. Since the lower-righ! edge has a region 

of white, region 1, pixels above it and a region of black, region 0, pixels below and to the 

left of it, the requirement that some edge above and/or to the left of it exists to continue the 

separation is propagated correctly. 4 I 

In this model, a segment variable, Si, is composed of an edge variable and a one-bit 

parity value, so Si = (Ei  , Pi). The Ei element is the same type of edge variable introduced 



in the previous sections. Adding parity is relatively simple. Unlike the previous modifica- 

tions, the parity information does not have to be learned, it only affects the continuity of 

neighboring assignments. The neighbor compatibility function becomes 

The new version of the cont function accepts two neighboring segment assignments and 

ensures that the pixels along their common boundary have identical labels unless they are 

separated by edges. If the same possible edges are considered at each patch, parity doubles 

the number of values to consider at each node, and squares the per-neighboring-pair over- 

head of the belief propagation algorithm. In practice, this expansion is computationally 

manageable. 

The parities only affect the compatibilities between neighbors; they carry no semantic 

information indicating which segment label indicates the object and which the background. 

Therefore, the model described above always has two equivalent MAP assignments, both 

with the same edge assignments, but with opposite parity bits at every node. This causes 

trouble with belief propagation inference because the algorithm is unable to break ties be- 

tween joint map assignments [54], which can result in inconsistent assignments to neigh- 

boring nodes. To avoid this problem, when creating an MRF for an image, SANE elimi- 

nates all of the parity 1 assignments from the assignment set of the upper-left node. Since 

the parity at this node is fixed, and its neighbors are forced to be compatible with it, there is 

no longer a MAP tie and the parity assignments propagate correctly across the MRF during 

inference. 

3.5 Multiresolution segmentation 

Many computer vision algorithms use multiresolution representations to combine the long- 

distance image relationships best captured at a low resolution with the precision possible 

at full resolution. In this vein, the multiresolution version of SANE consists of two linked 

MRFs, one defined on the full resolution image and the other on a half resolution rendering. 



Figure 3-7: Left: In a multiresolution SANE MRF, every half-resolution node (gray) is con- 
nected to the four fidl-resolution nodes that cover the equivalent area in the full-resolution 
image. Right: The compatibilities are set to require the full-resolution assignments to be 
compatible with the neighboring half-resolution assignment. 

Constructing these two MRFs requires two segmentation models, one trained on full-scale 

and one trained on half-scale images. 

As seen in Figure 3-7, the nodes of the two Markov random fields are intraconnected 

within each level as described previously and, additionally, each low resolution node is 

connected to the four full resolution nodes that are responsible for the equivalent area of 

the full-resolution image. The intralevel compatibilities are the same as they would be 

for two independent MRFs, and the interlevel compatibilities enforce consistency between 

each low-resolution assignment and the associated full-resolution assignments. 

Figure 3-7 demonstrates that for each half-resolution segmentation assignment, there 

is a full-resolution node that is responsible for matching each of its four comers. For 

example, an assignment to the full-resolution upper-left variable Sul implies a 5x5 array 

of pixel labels Lul and it is attached to a half-resolution node that assigns L h  to its pixels. 

Consistency demands that the sum of the squared differences between overlapping full and 

half-resolution labels, M (Lul ,  Lh) = xi, ( L ~ ~  ( i ,  j )  - Lh (i 12, j /2))2 is minimized. In 



order to avoid the complications of learning this relationship, and to allow flexibility for the 

inevitable minor variations between full and half-resolution assignments, multiresolution 

SANE assigns the compatibility between the nodes as 

The threshold of 4 was determined by trial and error. The compatibilities for the other three 

multiresolution relationships, upper-right, lower-left, and lower-right, are defined analo- 

gously. 

An alternative to these binary compatibilities would have been soft compatibilities sim- 

ilar to the intralevel compatibilities. In order for soft compatibilities to correctly balance 

the influence of multiresolution information with the other model parameters, they should 

be learned from training data just as the other painvise compatibilities were estimated. 

3.6 Training 

Training the segmentation model requires a video of moving objects against a still back- 

ground. The video is processed with the Stauffer and Crimson [42] or Migdal and Grim- 

son [34] background-subtraction algorithms, which produces a binary image for every 

video frame in which "1" pixels indicate a moving object and " 0  pixels indicate back- 

ground. Both algorithms work by modeling the appearance of each pixel in each frame 

with a mixture of Gaussians distributions. Every pixel has a unique distribution whose 

means and covariances are determined from the statistics of the pixel's color over the pre- 

viously observed video frames. After a period of initialization, the pixel distributions model 

the expected color of the background at that location and its expected variance, providing 

some robustness to noise and lighting changes. Outlier pixels are then labeled as belonging 

to foreground objects. The Migdal extension uses a Markov random field to improve the 

output, recognizing that moving objects are spatially and temporally adjacent groups of 

pixels and modeling this dependence. 

The background subtraction output only provides information about moving objects, 



so it produces a partially labeled dataset. For example, in a video of moving cars on a 

highway, the segmentation of disabled cars along the roadside will not be detected because 

static objects become part of the background. Clearly, training could be negatively affected 

by presenting the boundaries of such static objects as internal parts of a region and labeling 

them as empty edges. To alleviate this, a bounding box around the foreground pixels is 

computed and the remainder of the image is excluded from the training set. If multiple 

moving objects are present, a single bounding box containing all of them is computed. In 

any future work employing videos that frequently contain multiple simultaneously moving 

objects in environments containing many static objects, separate bounding boxes for each 

object would be more appropriate. 

Next, the regions inside the bounding box are extracted from the original video frame 

and the binary background subtraction image. The background subtraction image is con- 

verted into a binary edge image by scanning every row and column and labeling any tran- 

sition between " 1" and "0" as a boundary point. 

The segmentation model requires estimates of discrete and continuous probability func- 

tions. The edge values are discrete, with 27 17 possible values, while the image data are 

continuous, with a dimensionality and range dependent on the image features used. The 

edge-value distributions are computed by counting observed instances. The image feature 

distributions are represented using Gaussian kernel density estimates. 

The first task is estimating the edge probabilities P ( E i )  and P ( E i ,  E j )  from the exam- 

ples. The video processing steps described above result in a binary edge image. Dividing 

any edge image into 5x5 patches produces a set of edge and edge pair samples. Shifting the 

patch boundaries right or down by 1-4 pixels produces an additional set of samples from 

the same image. Rotating each example patch and its immediate surroundings through 360 

degrees (by 22.5 degree increments) further increases the number of sample edge and edge 

pairs harvested from each edge image and imparts rotational invariance to the resulting 

model. 

Because the model should be translationally invariant, the individual edge samples are 

pooled into a single set without regard to their image locations. The edge pairs can be 

similarly pooled without regard to location, but they divide into two separate sets-vertical 



Figure 3-8: The probability of a horizontal pairing of two edges is not necessarily equal 
the probability of their vertical pairing. Assuming rotational invariance, the probability of 
a horizontal pairing is equal to the probability of the vertical, rotated pair. 

and horizontal neighbors. As demonstrated in Figure 3-8, the statistics of these groups are 

different, but can be related through a -90 degree rotation of any horizontal pair into an 

equivalent vertical relationship if the model is rotationally invariant. Transforming all of 

the horizontal pairs in this manner represents all the pair samples as vertical relationships, 

concentrating them into fewer categories and making more efficient use of their informa- 

tion. 

After marshaling the training examples into their proper orientations, the problem of 

matching them to the appropriate edge parameterization remains. A 5x5 binary image patch 

can represent 225 possible values, but the parameterization described in Section 3.2 only 

contains 27 17 distinct edges. Therefore, each raw binary edge sample is represented by the 

most similar parameterized edge. The best match is found by comparing a rendered version 

of each parameterized edge to the binary image patch in question. The rendering of edge 

E is a 5x5 matrix S(E) where location S(E)(i, j )  = exp(-d (E, (i, j))) and d (E, (i, j)) 

is the distance between location (i, j) and the nearest location on edge E. For these calcu- 

lations, the integer pixel and edge coordinates are considered to be in the center of pixels. 

For example, (0,O) represents the center of the top-left pixel in the patch. Given a binary 

edge image patch, B, the error for parameterized edge E is xi, (S(E)(i, j )  - B(i, j ) )2 .  

In order to discourage bending the local boundary to slightly reduce the error, an edge con- 

taining an inflection point is only chosen if its error is at least a 30% improvement over the 

lowes t-error uninflected edge. 

In some cases, a 5x5 binary image patch provides too little support to select the correct 

parameterized edge. Because edges must be continuous with their neighbors in inference, 

all edge-fittings occur in pairs, choosing the pair of continuous neighboring edges that best 



fit the binary edge image data. SO, at each location (i, j) the software finds the lowest- 

scoring continuous matches for ((i, j), (i + 5, j)), ((i, j),  (i - 5, j), ((i, j) ,  (i, j + 5) ) ,  

and ((i, j) ,  (i, j - S)), if they are not off the edge of the image.2 Each pair is stored as an 

example of neighboring edge assignments and each (i, j )  value as a single edge sample. 

Any overcounting that results should be relatively evenly distributed and is not a cause for 

concern. 

Given sets of sample individual edges, the next step is to estimate the probability distri- 

butions P (Ei) and P (E i  , E j ) .  Assuming that both of these distributions are multinornial, 

the counts of the edge values observed in the training are sufficient to estimate them. The 

sets C ,  = {c,} and C ,  = {c,,,,} contain the counts of all of the observed edges and edge 

pairs. Excluding edges that were never observed, the posterior estimates are 

and 

The marginal probability of edge assignment ei is the number of times it has been observed 

plus one, divided by the number of possible edge assignments plus the total number of 

observed edge examples of any type. The marginal probability of an edge pair is also one 

more than the observed count divided by the number of possible edge pairs plus the total 

number of edge-pair observations. 

Two techniques are used in these estimates to handle the problem of data sparsity. First, 

the set of possible edge values is restricted to edges actually observed in the training data, 

which has the effect of reducing the number of edge pair values from 2 7 1 7 ~  = 7382089 

to IC,s 12. Secondly, the counts of each possible single or pair value are initialized to 1, as 

discussed in Section 3.2. This prevents unobserved edge combinations from receiving a 0 

probability. In practice, 0 probabilities often make inference difficult and are disallowed in 

MRF models by the Hammersley-Clifford theorem (see Chapter 2). 

2 ~ u e  to a coding error, the models used to produce the results in Chapter 4 do contain some discontinuous 
edge-pair samples. However, they are infrequent and should not have a significant impact on the results. 



The image probabilities, P (Ii I E i )  and P (Ii, Ij 1 Ei , E  j) are continuous and estimated 

by collecting samples using the same procedures described for collecting edge examples. 

The only differences are that image patches are collected rather than edge values and a 

separate store of samples is necessary for each edge and edge pair observed. The number 

of available samples is enhanced by observing multiple rotations of the underlying image 

data at each image location. Just as horizontal edge pairs can be rotated -90 degrees and 

counted as a vertical edge pair, their associated image information can be rotated and stored 

as image samples associated with the appropriate vertical edge pair. Because the image 

feature space is continuous and multi-dimensional, additional steps are taken to increase 

the density of estimates. The image pair probabilities are made to be reflection invariant, 

P (Ii, Zj I Ei , Ej) = P(R(Ii, Ij) 1 R(Ei , Ej)) where R is a horizontal or vertical reflection 

applied to both the edges and image data. This allows the concentration of samples into a 

smaller number of edge-pair groups, which produces more densely sampled data and better 

estimates. 

The single and pair distributions are related by 

The two probability distributions could be estimated separately, which would result in 

a computationally more efficient model because this calculation is relatively expensive. 

However, the compatibility approximations SANE uses (Section 2.4) appear to be sensitive 

to mismatches between the pair distributions and their marginals, so this explicit integration 

and summation is necessary. 

Although collecting enough image patches to provide a conditional image distribution 

for every edge and edge pair is difficult, in some cases there is too much data rather than 

too little. For example, the empty-edge assignment appears far more often than any other 

value because it is used to label all non-boundary image regions. Extracting and storing 

all the empty-edge image patches would quickly overwhelm available memory resources 

and make the resulting model cumbersome and slow. Therefore, the stored examples for 

each edge pair are downsampled and collected at a reduced rate if their number exceeds 



a specified threshold. In these experiments, if more than 8000 example image patches are 

stored for a particular edge-pair, 25% are randomly discarded and future examples are only 

accepted with 0.75 probability. Each time the threshold is passed, samples are discarded 

and the sampling rate for that combination is reduced to 0.75 of its previous value. Because 

the training data are so dominated by the empty edge and a few other highly probable 

assignments, the downsampling procedure is never applied to most edge-pair examples. 

The image-pair probabilities are represented by Gaussian kernel density estimates, as 

described by Russell and Norvig [38]. F is a function that converts an image patch into 

a real-valued feature vector of dimension d, in this case a vector of brightness and, pos- 

sibly, color averages (see Section 3.2). For each edge pair (ei, ej), the associated image 

pair samples are divided into two sets-the kernel set Ikij and the validation set IUi j .  The 

probability function defined by the kernel set is 

The only free parameter is o, the standard deviation of the Gaussian kernels. That is set 

during training by choosing an initial value of (T = 1 and repeatedly reducing it as long 

as the log likelihood of the elements of the validation set increases and o stays above 

the minimum value of c, which was chosen by trial and error. After cr is selected, all 

the points from both the kernel and validation sets are used as kernel centers in the final 

estimator. All the image features are preprocessed to have zero mean and unit variance. 

3.7 Inference 

Once all the appropriate probability functions have been estimated from training data, the 

segmentation of new images can be performed by constructing an MRF and using the belief 

propagation inference algorithm. 

Given an input image I with height h and width w ,  the algorithm divides it into a 

lattice of non-overlapping 5x5 patches { Ii, li = 0, . . . , h ; j = 0, . . . , w ). Each patch is 

assigned to a node Ni, = (Si, .j, li, .j) as described previously. The computational costs of 



the belief propagation inference algorithm, described in Section 2.3, are 0 (1 e 1 2, where 1 e 1 

is the maximum number of possible edge assignments at each node. Therefore, using the 

full set of 2717 possible edge assignments is impractical and each node is instead given a 

set of the locally most likely edge assignments. 

For each node Ni, j, the algorithm selects the 20 edge assignments that maximize P(E~, j = 

ei, j 1 Ii, j). After these initial sets of possible assignments are selected at each node, the as- 

signments at every neighbor (Ni-1, j, Ni+l, j, Ni, j-1, Ni, j+l) and every pair of neighbors 

({Ni-l,j, Ni+l,jI, {Ni-I,,, Ni, j-11, {Ni-~,j, Ni, j+l I, {Ni+l, j, Ni, j-11, {Ni+l, j, Ni,j+l}, 

INi, j-l, Ni, j+l }) are examined to discover neighboring edge assignments that cannot be 

continued correctly by any currently available assignment at Ni, j. For each uncontinuable 

neighbor or paired-neighbor assignment, the most locally likely edge that continues it is 

added to the set of possible edges. Unlike the cont function, continuity of edges that enter 

and exit through patch corners is considered because it is necessary to provide completing 

assignments at both of the bordering neighbors. This enhancement process is repeated until 

it converges and no more edges are added at any node. Finally, the edges (except at No, see 

Section 3.4) are paired with each of the two possible parity values which doubles the size 

of the final set of possible assignments at each node. 

The empty edge is always included in the original group of 20 edge assignments cho- 

sen at each location, because the algorithm should always be able to infer that no edge is 

present, even if local data strongly suggests an edge. Additionally, if the procedure de- 

scribed above does not result in the inclusion of the four side (((0,O) (0,4)), ((0,4) (4,4)), 

((4,4) (4,0)), ((48) (090))) 2m.l four corl-ler (((40) (094) (4,4)), ((0,4) (4,4) (4,0)), ((494) (430) 

(0,0)), ((4,O) (0,O) (0,4))) edges, they are added to the list. In some cases, their availability 

might help to close a segmentation boundary in an area with poor local information. 

The approximate maximum a posteriori (MAP) estimates of the S variables are calcu- 

lated via the max-product belief propagation algorithm described in Section 2.3. There is 

no guarantee of convergence for loopy MRFs. Therefore the segmentation algorithm stops 

belief propagation after 200 iterations and takes the approximate MAP estimate available 

at that point. 

Due to the errors that can result from applying loopy belief propagation, the results 



of this procedure are not necessarily the most probable joint variable assignment nor are 

they necessarily consistent. For example, it is possible that two neighboring nodes might 

be given assignments that do not obey edge and segment continuity. In the cases where 

belief propagation diverges, the results can sometimes be a checkerboard pattern of seg- 

mentation labels that alternate parity with each iteration. Therefore, results can sometimes 

be improved by adding Besag's iterative conditional modes (ICM) algorithm [2] as a post- 

processing step. ICM improves an existing assignment by repeatedly scanning across the 

nodes and making any change that improves the joint assignment's probability. After belief 

propagation ends, a restricted ICM is applied that only modifies the parity labels to improve 

their consistency given the selected edges. 

Another method of combating divergence or suboptimal estimates is to alter the belief 

propagation step size, as described in Section 2.3. In Chapter 4, the results using a standard 

step size of 1 are reported, along with the results produced by trying ten Heskes [I61 step 

sizes ranging from 0.1 to 1 and choosing the result with the maximum MRF configuration 

value. 



Chapter 4 

Experiments 

4.1 Experimental purpose 

The experiments in this chapter illuminate the performance of SANE on four data sets, and 

demonstrate its advantages over the standard Normalized Cuts segmentation algorithm [40] 

and the Martin trained boundary detection algorithm [32]. They demonstrate the relative 

value of different versions of the algorithm, and measure its ability to infer segmentations 

on a test set with different lighting or environment than its training set. 

4.2 Data sets 

SANE was tested on four data sets (Figure 4-1). The trafJic data consists of a single video 

recording of cars traveling down two roads. The original video was spatially split to pro- 

duce two videos, each covering traffic on a different road. The walking video shows the 

author walking back and forth in front of a whiteboard. Two other videos of many peo- 

ple individually walking across a room form the mwalk1500A and mwalk1500C data sets. 

These sequences were both filmed in the same room, with the same camera position and 

nearly the same subjects, but each has different lighting conditions. 

For the traffic videos, the background subtractions, which provide "ground truth" seg- 

mentations for training and testing were produced by the Stauffer and Grimson algorithm [42] 

The background subtractions for the other videos were produced by the Migdal and Grim- 



Figure 4- 1 : Sample images and background subtraction masks from each of the four data 
sets. From left to right: mwalk1500A, mwalk1500C, walking, and traffic. 

son [34] algorithm. These two methods are described in Section 3.6. 

Each data set was divided into training and testing examples. On the traffic data, the 

video of the left road became the training set, and the video of the right road became the 

testing set. The other videos were split temporally into training and testing sets - all 

frames prior to a certain time index were for training and the remainder for testing. 

Discarding the frames in which background subtraction detected no moving objects, 

the traffic data contains 1432 training frames and 2285 testing frames, the walking data 

contains 401 training and 200 testing frames, and both the mwalk1500A and mwalk1500C 

data sets contain 1201 training and 1200 testing frames. Three random subsets, each con- 

taining 200 training frames and 40 testing frames, were uniformly drawn from each data 

set. SANE and Martin models were trained on each of the training subsets and then were 

tested on the corresponding testing subsets, as was Normalized Cuts. The reported results 



are the average performance over the three subsets, and error bars in the graph represent 

the sample standard deviation over the three subsets, calculated as the square root of the 

unbiased sample variance. 

Throughout the results section, precision, recall, and the f-measure are used to measure 

the quality of the results. Precision (P) is the fraction of inferred object pixels that match the 

background subtraction, recall (R) is the fraction of background subtraction pixels that are 

detected, and f-measure, F = 2 P R / ( P  + R), combines both values. A perfect f-measure 

is 1 and getting every detection wrong produces an f-measure of 0. Randomly assigning 

"object" and "background" labels with equal probability would produce a recall of 0.5, but 

the precision would depend on the relative frequency of the two labels in the background 

subtraction. For example, if the background subtraction was evenly divided between the 

two labels, random assignment would produce a precision and f-measure of 0.5. But if only 

1 pixel in a large image was truly labeled "object" the random assignment's precision and 

f-measure would be nearly 0. 

The background subtraction is corrupted by noise, so even an apparently perfect seg- 

mentation might not score perfectly. In the background subtraction images, "1" indicates 

an object and "0" the background. SANE also outputs "1" and "0" segmentation labels, but 

does not determine which one belongs to the object. When measuring error, the label that 

achieves the highest f-measure is considered the "object" label. SANE'S goal is a segmen- 

tation that separates objects from their surroundings, so this method accurately measures 

its success in that mission. 

Both per-image and per-pixel statistics are reported. Per-image statistics are computed 

by finding the precision, recall, and f-measures for each image in a test set and then re- 

porting their average value across the set. They are useful because they measure the per- 

formance that can be expected given a random image drawn from the testing set, and they 

reflect that the segmentations of different images are computed independently. However, 

it is also often true that larger images are more difficult to segment correctly because they 

are more likely to contain multiple objects or potentially distracting non-object boundaries. 

Per-pixel statistics emphasize performance on larger images. These values are computed 

for a set by cumulatively counting all of the pixel-wise successes and errors across all test 



images. Per-pixel statistics are particularly useful for comparing SANE to the Normal- 

ized Cuts algorithm. Apart from the initial presentation of SANE results, all figures report 

per-image statistics unless the per-pixel results are useful for illustrating a particular point. 

4.3 SANE results 

There are four types of SANE model and four inference algorithms. Figures 4-2,4-3, and 

4-4 show the f-measures, precisions, and recalls for all sixteen combinations on the four 

data sets. The four model types are: 

a brightness-only, single resolution (bright) 

a brightness-only, multi-resolution (brighfmres) 

a color, single-resolution (color) 

a color, multiresolution (color,mres). 

The brightness and color features are discussed in Section 3.2 and the multiresolution mod- 

els are described in Section 3.5. The four inference algorithms are: 

a standard belief propagation (bp) 

a belief propagation followed by parity-flipping iterative conditional modes (bp,picm) 

a belief propagation using step-size search (bp,ss) 

a the combination of all three methods (bp,ss,picm). 

Details about the algorithms can be found in Section 3.7. Note especially that the bp,ss 

algorithm chooses the best step size by maximizing the MRF's configuration value, not by 

comparing its outputs to ground truth. 

The algorithm was more successful at segmenting the walking and traffic data sets than 

the mwalk sets. This is not surprising since the walking and traffic sets feature objects 

against relatively uncluttered, untextured backgrounds. The cars demonstrate less internal 

variation than walking people, and it's easier to learn to segment a single walking person 



F-measures (image) F-measures (pixel) 

bright bright,mres color color,mres bright bright,mres color color,mres 

bright color bright bright,mres color color,mres 

bright color color,mres bright bright,mres color color,mres 

bright bright,rnres color color,mres bright bright,mres color color,mres 

Figure 4-2: The f-measures of SANE models and inference methods on the data sets. 



Recisions (image) Precisions (pixel) 

bright bright,mres color color,mres bright bright,mres color color,rnres 

bright bright,mres color color,mres bright bright,mres color color,mres 

color bright bnght,mres bright color 

I 

bright bright,mres color color,mres bright bright,mres color color,mres 

Figure 4-3: The precisions of SANE models and inference methods on the data sets. 
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bright bright,mres color color,mres bright bright,mres color color,mres 

Figure 4-4: The recalls of SANE models and inference methods on the data sets. 



(walking) than multiple people (mwalk), some of whom do not appear in the training data. 

Despite these variations, performance was remarkably consistent. The highest average per- 

image f-measure on each data set ranged from 0.728 (mwalk1500A) to 0.780 (traffic). In 

almost all cases, recall values exceeded precision. This indicates that it is more common for 

object pixels to be overdetected than underdetected. In some cases, the extra pixels might 

constitute non-moving objects, such as the highway lane lines in the traffic images, that the 

performance measure marks as incorrect. In other cases, including some seen in Figure 4-5, 

part of the object's boundary is not detected, possibly due to poor local data or background 

clutter, which causes the object label to bleed across the image. Both types of errors harm 

precision without affecting recall. Multiresolution models using only brightness features 

almost universally underperformed their single resolution counterparts, trading too much 

precision for increased recall. The half-resolution layer's patches cover greater image area, 

and perhaps that reduces the effectiveness of the brightness features, since their average 

distances from an object boundary will subsequently increase. Color multiresolution mod- 

els were slightly better or roughly equal to color single resolution models; they improved 

precision on the mwalk sets, and provided some benefit on the walking data when step-size 

search was not used. Figure 4-6 contains several instances in which multiresolution fixed 

the label bleeding problem that can lead to low precision results. At coarse resolutions, the 

patch color averages might serve as a useful regional property-representing, for example, 

"this is a red region, and should not be merged with a blue regionw-more robustly than the 

finer-grained brightness averages. Single resolution color models also tended to improve 

precision-in all of the sequences at least some objects, such as the red cars, had strong 

color differences from their surroundings. 

None of the four inference algorithms consistently beat the others. Step-size search 

made a significant improvement on all the walking results, but not on the other data sets. It 

never appears to make results significantly worse, so it can be considered the best inference 

algorithm. The parity-flipping ICM step, which was originally added to fix some of the 

"checkerboard patterns that appear when belief propagation diverges (for examples, see 

Figure 4-6) never made a substantial difference. This is not surprising, since it can easily 

make a checkerboard worse by making a half-wrong area completely mislabeled if it picks 
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Figure 4-5: The five best and five worst color, multiresolution SANE results on the four 
data sets. All the results were computed using the step-size search @p,ss) method. 



the wrong square for its first flip. Perceptually, a checkerboard might appear to be a larger 

error than mislabeling a region, particularly if the region boundaries match well with an 

object boundary. The checkerboard results are also frequently unstable--continuing to run 

belief propagation causes the squares to oscillate between the two labels. A future error 

measure might penalize this instability directly because it truly represents a failure to make 

either classification, 

Figure 4-5 presents the five best and five worst results for the color, multiresolution 

models of each data set, inferred using the step-search method. Unsurprisingly, clear 

foreground-background separations, such as a single dark car or an individual surrounded 

by white pixels, appear in the best collection, while multiple objects and greater clutter 

produced some of the poorer output. Many of the bad examples contain objects at the edge 

of the frame, or only small object pieces, such as an ann or leg. These cases might indicate 

that the absence of part of the object boundary makes inference difficult, perhaps because 

that situation is not well-represented by the learned shape model or because a small input 

image make the creation of the half-resolution MRF level difficult. Weiss analyzed the 

performance of loopy belief propagation by considering the number of times evidence is 

over-counted [51]. Every message emitted by a node on a loop edge travels through the 

network, is multiplied by other messages, and returns to its source. The size and number of 

loops attached to a node at the edge of an MRF are different than they are for a central node, 

which changes the distribution of message over-counting and might cause some of these 

problems with objects at the edge of frames. Only the traffic data contains multiple moving 

objects in some example frames, and all of the five worst examples contain two full or par- 

tial cars. Because there are only two labels, segmenting multiple objects correctly requires 

a relatively unforgiving alternation between foreground and background labels. Failing to 

close the boundary of one car may make it extremely difficult to correctly label the other. 

The multi-label extensions described in Section 5.3 may alleviate this problem. 

Discarding ICM, which did not significantly affect the results, the color, multiresolution 

and step-size search variations all fixed some checkerboard patterns, the most visible effect 

of belief propagation non-convergence. In Figure 4-6, the five most improved examples 

from each technique contain at least one example of a fixed checkerboard. In other cases, 



Best improvements Worst degradations 
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Figure 4-6: Across all the test examples, examples demonstrating some effects of applying 
color models, multiresolution models, and step-size search. For each variation, the five 
most improved results are shown, along with the five most degraded results across all test 
examples. 



the changes improved the detection of object boundaries and the ability to distinguish them 

from internal borders. However, the modifications also made some of these boundary deter- 

minations worse, as can be seen in the degraded examples. The model might benefit from 

more sophisticated local features, which could reduce reliance on belief propagation accu- 

racy, or a higher-level shape model, which could use stronger priors to overcome uncertain 

image information. 

Unsurprisingly, many of the largest effects from each of these techniques occurred on 

the walking data set, corresponding to the statistics in Figure 4-2. All the best step-search 

improvements came fiom examples in this data set in which a fixed step size of 1 pro- 

duced at least a small checkerboard pattern. The step-size search was designed to eliminate 

these types of divergence. The walking data set, which exhibits a great deal of saturation, 

making the figure boundaries difficult to detect locally, may be particularly prone to non- 

convergence because the local detectors have such poor performance and the boundaries 

are frequently washed out. This hypothesis also explains why examples fiom this data set 

are among the best color and multiresolution improvements, and it is supported by the poor 

performance of Normalized Cuts and the Martin edge detector on this data set, which both 

rely on local boundary detection, as described in Sections 4.4 and 4.5. 



4.4 Comparing SANE and Normalized Cuts 

Comparing SANE to Normalized Cuts reveals that general-purpose segmentation does not 

always solve the object segmentation problem well. Despite designing the comparison to 

favor Normalized Cuts, the best it can do is match SANE'S performance on some of the 

data sets. In some significant situations it fails to solve the object segmentation problem 

as well as SANE. Although Normalized Cuts is an excellent generic image segmentation 

algorithm, the object segmentation task presents unique challenges that SANE handles 

better. 

Normalized Cuts [40] is a well-known general-purpose segmentation algorithm. It com- 

putes a matrix that represents the similarity between all pairs of image pixels and then 

segments the image by solving a related eigenproblem. The implementation used for these 

experiments, developed by Jianbo Shi and his students [8], measures the difference between 

image pixels by searching for the presence of brightness contours found by the Canny edge 

detector [6] between every pair of pixels. It was not trained or parameter-tuned for the test 

data set. 

Normalized cuts breaks an image into a user-specified number of regions. Comparing 

the output to an object-background segmentation, which only uses two labels, requires 

transforming the output into that form. In this comparison, the goal is to determine if the 

Normalized Cuts algorithm has produced segments that match the object segments well. If 

an image contained only one object, as in Figure 4-7, and Normalized Cuts produced three 

regions, the region that produced the best f-measure compared to the motion segmentation 

would be selected as the object region. The other two would be merged to represent the 

background. 

No test image contains more than 3 moving objects, so the subset of 3 or fewer Nor- 

malized Cuts regions that maximizes the f-measure are chosen to represent the foreground, 

and all other segments will be taken to represent the background. Dividing an object into 

many pieces violates the goals of object segmentation, so the foreground subset must only 

contain segments that do not touch one another. No test images contain touching moving 

objects. 
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Figure 4-7: A source image, a Normalized Cuts segmentation of that image, the ground- 
truth motion segmentation, and the selection of the foreground and background segments 
that best match the motion segmentation. 

This comparison scheme is very favorable to Normalized Cuts. It allows Normalized 

Cuts use of the ground truth to pick the best segments, which would be impossible in 

a real application where segmentations are unknown and inaccessible. For a setting of 

two regions, this corresponds to SANE'S ability to pick which label best matches the mo- 

tion objects, but for more than two regions it constitutes a large advantage for Normalized 

Cuts. Furthermore, it does not penalize the algorithm for subdividing the background, 

while SANE is punished for doing the same thing. Because the Normalized Cuts code 

only uses grayscale images, SANE is also restricted to brightness features. Since multires- 

olution only harms the performance of brightness-only models, only comparisons to the 

single-resolution brightness model are presented. Color features improved SANE'S output 

on all the data sets, but it would have been unfair to graft crude color features onto the 

publicly available Normalized Cuts code for the purposes of this comparison. Presumably 

color features could improve Normalized Cuts performance too, but those are best added by 

researchers with expertise in that code, since badly-designed color features could unfairly 

tip the scales towards SANE. 

In Figure 4-8, it is clear that Normalized Cuts closely matches SANE'S performance 

on the two mwalk data sets. On the traffic data, the per-image and per-pixel comparisons 

diverge in interesting ways. With two regions, Normalized Cuts matches or slightly im- 

proves on SANE'S per-image performance, but it performs much worse than SANE in the 

per-pixel statistics. Matching the best SANE per-pixel performance requires making 4 or 5 

regions, at which point the per-image performance starts to decline. Figures 4-9 and 4-10 

reveal that this improved per-pixel f-measure is only achieved at the expense of a large 
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Figure 4-8: The f-measures of brightness, single-resolution SANE and Normalized Cuts 
set for different numbers of segments. 
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Figure 4-9: The precisions of brightness, single-resolution SANE and Normalized Cuts set 
for different numbers of segments. 
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Figure 4-10: The recalls of brightness, single-resolution SANE and Normalized Cuts set 
for different numbers of segments. 



reduction of recall. With 3 regions, Normalized Cuts's recall is roughly 0.1 worse than 

SANE and it decreases to about 0.2 worse than SANE with 5 regions. At the same time, its 

precision soars towards 1. 

The examples in Figure 4- 1 1 reveal that with two Normalized Cuts regions, SANE does 

better on many larger, multi-object examples, which, not surprisingly, do not segment well 

with just a single cut. As the number of cuts increases, Normalized Cuts improves relative 

to SANE on these larger examples, but its recall numbers suffer because small, single 

object examples are subdivided. At the same time, over-segmentation improves precision 

by allowing the performance measure to select segments that have minimal overlap with 

non-obj ect pixels. 

On the walking data, no Normalized Cuts setting matched SANE'S performance. Figure 

4-12 makes it clear that Normalized Cuts does a poor job on many examples because it 

considers the external boundaries of the person to be less significant than his internal visual 

boundaries, or because it fails to detect pieces of the boundary, perhaps due to the saturation 

of the pixels bordering the whiteboard. 

These data indicate several limitations of using Normalized Cuts on the object detection 

problem. First, the need to prespecify parameters that control the number of segments 

generated presents difficulties since the number of objects is unknown and might vary, 

requiring different settings for different input. Secondly, both traffic and walking examples 

demonstrate that choosing the number of segments that matches the number of objects can 

still lead to poor performance if non-object boundaries are considered to be more visually 

significant. The first problem demands an algorithm with some ability to self-determine 

the number of possible objects and the second indicates a need for learning models of the 

significant boundaries in an environment or for a particular task; a manually specified, 

generic model will not always suffice. Although another generic segmentation algorithm 

might select a reasonable number of regions automatically, the problem of distinguishing 

object from non-object boundaries can probably only be practically solved by a learned 

model, as in the SANE algorithm. 
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Figure 4-1 1: Traffic examples in which SANE most outperformed Normalized Cuts, and 
vice-versa, for different numbers of Normalized Cuts regions. 
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Figure 4- 12: Walking examples in which SANE most outperformed Normalized Cuts, and 
vice-versa, for different numbers of Normalized Cuts regions. 



4.5 Comparing SANE and Martin's edge detector 

Martin et a1.k learned boundary detector [32] is a good contrast to the SANE approach. 

Like SANE, the Martin algorithm can be trained on a database of example segmentations, 

but unlike SANE it attempts to discover the best local boundary detector without learning 

a shape model or propagating information to neighboring sites. Martin detectors attempt to 

classify each point as "boundary" or "non-boundary" based on the image data in that point's 

immediate vicinity. Classification decisions are made independently at each image loca- 

tion. Thus the trained Martin detectors, which outperform many standard edge detection 

algorithms on the Berkeley Segmentation Database, rely on a strong local detection model, 

while SANE uses weak local detectors and relies on shape information for joint boundary 

determination. The Martin algorithm also strongly contrasts to Normalized Cuts because it 

focuses on modeling local boundary properties while Normalized Cuts is concerned with 

the joint similarities and differences of entire pixel regions. 

The comparison is difficult because the Martin algorithm outputs a map of boundary 

detections, rather than a segmentation. Each pixel in the boundary map has a value be- 

tween 0 and 1 that indicates the likelihood of it being a boundary pixel; the map must be 

thresholded to produce a binary boundary detection. SANE outputs are converted to bi- 

nary boundary images for the purpose of these comparisons by labeling all horizontal and 

vertical transitions between segment labels as boundary locations. 

The Martin and Fowlkes implementation of the edge detection training and testing al- 

gorithms [31] was used to compare the Martin detectors to SANE. Five detector classes 

were trained on the SANE data sets: 

a brightness gradient (bg) 

a color gradient (cg) 

a texture gradient (tg) 

a brightness and texture gradient (bgtg) 

a color and texture gradient (cgtg). 



The cg detector contains no brightness features, but the cgtg detector does. Each detector 

uses image data from a fixed, prespecified radius around the location to be classified. 

For these experiments, the Martin detectors were trained on each SANE training subset, 

just as the SANE models were, and tested on the corresponding testing subsets. In the 

original implementation, the detector radius varied according to the size of the input image. 

In the Berkeley Segmentation Database, the image size indicates the scale of the image 

boundaries. This is not consistently true in the SANE data sets, and fixed radii performed 

better in early experiments. The bg, cg, and tg detectors were trained with radii ranging 

from 1 to 10. The original Martin code used a 1:2 ratio of bg radius to tg radius in the bgtg 

detector, so these detectors ranged from 1 :2 to 10:20. For the same reason, the brightness, 

color, and texture radii in the cgtg detector ranged from 1 :2:2 to 10:20:20. 

Comparing boundary images is a difficult task. Simply overlapping two binary bound- 

ary maps and counting matches is not useful because a small misalignment can cause a 

complete mismatch, and the resulting score could indicate that two very similar boundaries 

are extremely different from one another. Martin introduced a method of comparing two 

boundaries by solving a bipartite graph matching problem. Given a binary detected bound- 

ary image and binary ground-truth boundary image, each boundary pixel in each image is 

considered as a graph node. The goal is to match each detected node to a unique ground- 

truth node. In turn, each ground-truth node can match at most one detected node. If a 

detected node matches a ground-truth node, it is considered to be an accurate detection. 

If it cannot be matched, it is inaccurate. The distance between two matched nodes cannot 

exceed a specified maximum. As with the detector radii, the original implementation var- 

ied these match distances relative to image size, but the modified implementation does not. 

Again, the reason is that the sizes of our images do not indicate the scale of the boundaries. 

In order to transform the soft boundary maps of the Martin detectors into binary bound- 

ary maps, the Martin error-measurement code chooses the threshold that maximizes the 

f-measure across the testing set. In a deployed application that required binary boundary 

detection, this threshold would need to be chosen during training. This extra degree of 

freedom benefits the Martin detectors in any comparison to SANE. 

The threshold also interacts with the maximum match size to confer another potential 



advantage. Consider an infinite maximum matching distance. Given two binary boundary 

images, the error between them simply depends on the number of boundary pixels in each. 

If they both contain the same number, the algorithm scores the detection perfect. The 

Martin algorithm outputs a soft boundary map and chooses the threshold that produces 

the best score. If the threshold increments are fine enough, and no two detections are 

given identical values, it is possible to pick a threshold such that the binary detection map 

contains exactly the same number of pixels as the ground truth map. This does not hold 

true when the threshold is chosen across a set of maps, but it suggests that larger match 

maximums favor the Martin algorithm over SANE. 

The results in Figures 4-13, 4- 14,4- 15, 4-16, 4- 17, and 4-1 8 make it clear that SANE 

outperforms Martin by virtue of its higher precision on these data sets. While the Martin 

detectors have little trouble finding object boundaries, they also detect many other non- 

object boundaries in the process. In all four data sets, the color, multiresolution SANE 

f-measures outperform all Martin detectors at all feature radii using the strict matching 

distance of 1. As the match maximum distance relaxes to 3 and 5, the Martin results 

improve, largely due to improved recall. Only on the traffic data at match radii 3 and 5 

do the Martin f-measures match SANE's performance. Figure 4-19 contains examples in 

which SANE's performance was superior to cgtg with feature radius 5 (one of the overall 

best-performing Martin detectors) using match maximum distance 3. Most of the Martin 

results are riddled with non-object boundaries compared to the SANE output. Similarly, 

the examples in Figure 4-20, demonstrate that extreme SANE recall failures are responsible 

for many of the cases in which cgtg is superior. 

Much of the performance disparity could derive from the data sets that each algorithm 

was originally designed for. Although the Martin detectors were retrained on the SANE 

data sets, the Berkeley Segmentation Database contains low-noise, high-resolution images, 

and much of the success of the Martin detectors on that set appears to be due to the use of the 

sophisticated texture gradient features [32]. The SANE sample images have much lower 

resolution and much poorer quality. There is less texture information available in each 

image, and boundaries are not as sharp. SANE'S local edge detectors are poor, but the shape 

model compensates. Also, the segmentations in the Berkeley database frequently include 



visually significant internal object regions, and it's unsurprising that a detector designed to 

detect all significant image boundaries will have difficulty learning to ignore those instances 

in which they do not correspond to object boundaries. The shape information stored in the 

SANE model appears to be more useful on this data than the sophisticated local Martin 

detectors. 
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Figure 4-13: The f-measures of color, multiresolution SANE and Martin models on traffic 
and walking data. 
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Figure 4-14: The f-measures of color, multiresolution SANE and Martin models on 
mwalkl500A and mwalk 1500C data. 
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Figure 4-15: The precisions of color, multiresolution SANE and Martin models on traffic 
and walking data. 
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Figure 4-16: The precisions of color, multiresolution SANE and Martin models on 
mwalk1500A and mwalk1500C data. 
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Figure 4-17: The recalls of color, multiresolution SANE and Martin models on traffic and 
walking data. 
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Figure 4-18: The recalls of color, multiresolution SANE and Martin models on 
mwalk1500A and mwalk1500C data. 



Figure 4-19: 'l'he examples in which color, multnesolution SANE most outperforms cgtg 
Martin with feature radius 5 using match maximum distance 3. 

Figure 4-20: The examples in which cgtg Martin with feature radius 5 most outperforms 
color, multiresolution SANE using match maximum distance 3. 



SANE segmentation compared to SANE boundary 

To understand the value of different model features, it is useful to remove them and ob- 

serve the changes in performance. Chapter 3 described the evolution of the SANE model 

in three steps: boundary-only, boundary and image, and the final segmentation model. Un- 

fortunately, recovering a working version of the first model is impractical. It used simple 

oriented edge detectors on each patch and represented the relevant probability densities 

with histograms, assuming conditional independence of detectors. The current model uses 

pixel features and represents their joint densities with kernel estimates. Using it to con- 

struct MRFs in the boundary-only style produced extremely poor results, far worse than 

the original model's output. 

Comparing the second type of model, a boundary model that uses image information 

in pairwise compatibilities, to the full segmentation model, reveals no appreciable differ- 

ence in boundary detection performance. Figure 4-21 uses the Martin error metric with a 

matching radius of 3 to compare the boundary detections produced by both models. In- 

tuition suggests that the segmentation models should produce better boundaries because 

the parity-matching requirements spreads information (the segmentation label) perpendic- 

ularly to the boundaries, which should cause better boundary completion and improve pre- 

cision by eliminating low-probability internal boundaries from consideration. However, 

this is not the case. The only noticeable statistical difference between the boundaries pro- 

duced by the two models is that step-size search is necessary for the segmentation model 

to achieve equivalent scores on the boundary detection task. This is almost certainly due to 

the checkerboard problem discussed in Section 4.3 , which creates many spurious bound- 

aries that can be largely eliminated with step-size search. The boundary model, lacking 

segmentation labels, does not suffer from this problem. 

Even if the segmentation labels do not improve the boundary performance, they are still 

valuable because they ensure the production of closed boundaries and valid segmentations, 

which the boundary model does not. 
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Figure 4-2 1 : The boundary-detection results of running with and without segmentation 
labels. 



4.7 Generality and capacity 

The previously discussed experiments have all involved testing and training data drawn 

from the same location and environmental conditions. Trying the models on other environ- 

ments and conditions explores their generality. 

In these cross-over experiments, models trained on the traffic training subsets seg- 

mented examples from the walking testing subsets, and vice-versa. Just as with the other 

experiments there were three training and three testing subsets per data set. The mwalk1500A 

and mwalk1500C models were crossed in the same manner. 

Unsurprisingly, running the walking models on the traffic data and vice-versa produced 

significantly worse results than those reported in Section 4.3, as seen in Figures 4-22 and 

4-23. Given the differences in the training data, it is unsurprising that a loss of precision 

produced most of the additional error. Crossing the mwalk1500A and mwalk1500C mod- 

els produced roughly no change in the brightness results and a relatively small decline 

in color model performance (Figures 4-24 and 4-25). The two sequences came from the 

same environment and contained many of the same people, but were filmed under differ- 

ent lighting conditions. Given the well-known sensitivity of color values to lighting, it is 

unsurprising that the color results were affected more by the swap. Again, lower precision 

accounted for the decline in color model performance. Since the shape of the objects in the 

sequences were very similar, the edge distributions in the models are probably responsible 

for a significant part of the lighting robustness. 

The capacity of a model to learn to segment multiple environments is another measure 

of SANE'S generalizability. Models trained on traffic and walking subsets were merged 

together and tested on both testing subsets, as were the mwalk1500A and mwalk1500C 

models. The mixed models substantially outperformed the cross-over models on the traffic 

data, but only made a small improvement on the cross-over walking results. The mixed 

color model improved more on the walking data than the brightness model did. The color 

information might have helped to differentiate the two data sets from each other and al- 

lowed the merged model to switch into a "walking mode." Models trained on both mwalk 

sequences performed roughly the same as the crossed-over models on each sequence, which 
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Figure 4-22: The results of running traffic-trained, walking-trained, and traffic and walking- 
trained models on the traffic data. 

is unsurprising since the cross-over models themselves performed so similarly to the native 

models on each set. The mixed colqr e d e l s  performed more poorly ,th,an the mixed bright- 

ness models or the cross-over color models on the mwalkl5OOC data. It is not clear why 

the mwalk1500A color models would outperfom color models that contained training ex- 

amples from mwalk1500C. Perhaps the minimum variance of the Gaussian kernels used to 

model the image patch conditional probabilities (see Section 3.6) were too large to model 

samples from such similar sequences with adequate resolution. The result of adding the 

mwalk1500C samples to the mwalk1500A samples might have been to effectively noise- 

corrupt the original estimates, resulting in the observed performance decline. 

Although more study is needed, the brightness SANE models have shown some ro- 

bustness to lighting conditions, and little generdizability to radical environmental change. 

Given SANE'S reliance on shape information, it is not surprising that a model trained on 
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Figure 4-23: The results of running walking-trained, traffic-trained, and traffic and walking- 
trained models on the walking data. 

cars fails to segment people well. The failure of mixed training sets to improve the walking 

results more could indicate a need for more robust local features or changes to the shape 

model, two possible areas for future work discussed in Chapter 5. 

As discussed in Section 2.1, segmentation differentiates itself from object detection 

both by the higher resolution of its boundaries and by its generality. The most desirable 

result of this research would be a version of SANE that, exposed to enough different ob- 

jects, could learn a model that at least encompassed all of them and hopefully generalized 

beyond them to unseen object classes. The results have demonstrated this phenomenon to a 

limited degree. There is some ability for SANE to encompass both the traffic and walking 

data, but it appears to be somewhat limited. Also, in many of the car results, we found 

that other "objects," such as the sides of the road or highway lane markers were frequently 

segmented. However these do not fit the motion definition of object described in Chapter 1 
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Figure 4-24: The results of running mwalk 1500A-trained, mwalk 1500C-trained, and 
mwalk1500A and mwalk1500C-trained models on the mwalk1500A data. 

so they can also be considered significant failures. Future work should further distinguish 

SANE from object . detection . t 1 4 !  { I  E . a allng the generality axis, and it will ilqdoubteqly require data 
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4.8 Computational requirements" " 
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Although there are no carefully measured statistics of SANE'S resource consumption, it 

is expensive both in space and time. These experiments employed a multithreaded Java 

implementation running on dual-processor Apple Xserve G5 computers with 2 or 2.5 giga- 

hertz processors. In inference, SANE typically required over 1 gigabyte of main memory 

for execution. Training required on the order of 6 to 12 hours per single-resolution model 

and resulted in model files ranging roughly between 400 and 700 megabytes. Training time 
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Figure 4-25: The results of running mwalk 1500C-trained, mwalk 1500A-trained, and 
mwalk1500A and mwalk 1500C-trained models on the mwalk1500C data. 

is dominated by fitting kernel density estimates. The total time required to perform both 

step=l and step-search segmentation ranged for a few minutes for images containing a few 

thousand pixels to a few hours for images containing tens of thousands of pixels. 

The segmentation running time is dominated by the construction of the MRF, partic- 

ularly in selecting the candidate scenes and setting the compatibilities. The latter step is 

expensive partially due to the marginalization discussed in Section 3.6. Constructing kernel 

density estimates of the single-node marginals that are guaranteed to match that calcula- 

tion would eliminate the need to constantly recompute these values and greatly speed MRF 

construction. It might be possible to create such estimates by drawing samples from the 

distributions involved in the marginalization. Additionally, finding sets of possible edges 

at each node such that neighboring assignments can be completed requires a great deal of 

searching. It seems likely that equivalent results might be obtained by only ensuring that 



the most probable neighboring assignments can be completed; this could lead to equivalent 

output, but require much less computation. 

It is unlikely that translating the code to C or C++ would make a significant difference 

in running time. Although many perceive Java code to be slow, this impression often arises 

from the high startup costs of the Java Virtual Machine (JVM). In these experiments, the 

SANE code ran for hours and days in a single JVM instance, so the startup penalties were 

insignificant and the code fully benefitted from just-in-time compilation, dynamic profiling, 

and other JVM benefits. However, the code relies heavily on object-oriented programming 

features and reimplementing it with more primitive data structures, using any reasonable 

language, might make it faster. 

It is certainly possible to construct a more memory-efficient SANE. The current imple- 

mentation relies on aggressive caching to improve speed, so much of the memory can be 

reclaimed at the cost of extra computation. 

4.9 Further questions 

The experiments have demonstrated that SANE can be successfully trained to segment a 

class of objects in a specific environment, and that it has a limited ability to generalize to 

multiple environments, which can probably be greatly enhanced by future extensions. The 

experiments do not address the question of what class of segmentation algorithms can be 

learned from motion data. The current SANE procedure requires a fixed camera and learns 

about objects that move in the observed world, but it seems unlikely that the set of moving 

objects is an adequate sampling of the set of all objects. According to the motion-based 

object definition, first discussed in Chapter 1, even things that seldom move, like rocks or 

desks or mountains, can be considered objects because they would move coherently if force 

were applied to them. However, it seems obvious that seldom-moving objects, like rocks 

or lichens, may have many visual properties that distinguish them from frequent movers, 

such as cats. They might lack legs or wheels. They might have complex branching shapes 

or highly irregular boundaries. Their surface textures might be different reflecting their 

mineral or vegetable nature. All of these factors make it likely that their visual properties 



will be underrepresented in any database of moving objects. 

Truly discovering how much segmentation can be automatically learned from the en- 

vironment will probably require the ability to extract motion-defined objects by means 

of depth perception and manipulation. Disparity information, captured by two cameras 

simultaneously (stereo) or by a single camera across time (structure from motion), can il- 

luminate the boundaries of many seldom-moving objects, and the ability to apply forces 

via manipulation can test boundary hypotheses when other information is unavailable. The 

use of manipulation to provide segmentation knowledge is similar to recent work by Fitz- 

patrick [lo] (see Section 2. I), but with the goal of learning better segmentation algorithms 

rather than focusing on detecting specific objects and their boundaries. 

Manipulation and depth perception also provide the opportunity to overcome the prob- 

lem of shadows. The background subtraction algorithm detected moving shadows and 

labeled them as part of a moving object. In the traffic images, for example, most cars have 

a shadow and SANE frequently detects them without penalty because they are considered 

to be "foreground." This does not correspond well with intuition, but it is difficult to avoid 

without adding special shadow-suppression machinery to the background subtracter. The 

ability to judge depth and to verify segmentation hypotheses by manipulation would be in- 

valuable in solving this problem because they can both provide data distinguishing shadow 

from object without requiring shadow-specific engineering. 

The experiments did not address the issue of scale-dependence. Apart from natural 

variations in the scale of car and people examples, the scales of the training and testing 

data were constant and identical. Because the shape model is local and has no overall 

object scale information, it seems likely that SANE would be robust to scale until the scale 

change significantly affected the local patch statistics. For example, a large change in scale 

could alter the prior probability of encountering boundary inflections or the distributions 

of inflection angles and could have a similar impact on pairwise edge assignment statistics. 

It is likely that making SANE robust to scale would require multi-scale training, just as it 

was made rotation invariant by training on multiple rotations of the data. 

Another unexplored topic is SANE'S ability to adapt to situations with similar objects 

to the training data, but substantially different backgrounds. The brightness models, which 



demonstrated the most lighting invariance, would probably perform best in such a situation, 

but for strong performance it's likely that diverse training backgrounds would be necessary. 

Finally, the dreaded checkerboard patterns indicate that some of SANE'S errors might 

be the result of inference errors and not the fault of the segmentation model. The step- 

size search method's relative success on the walking data support this conclusion since 

it discovers solutions that have higher MRF scores than those found by standard belief 

propagation. The next step in this exploration would be to try exact inference algorithms, 

such as Gibbs sampling [14], on some examples to determine the magnitude of the error 

attributable to inference approximation. Unfortunately, exact inference on a SANE MRF 

would be extremely computationally expensive, so picking worthwhile examples might be 

crucial to the experiment. Another possible source of approximation error is the compati- 

bility functions, which could also be better estimated with exact inference, as discussed in 

Section 2.4. 





Chapter 5 

Future work and conclusions 

5.1 Improved local features 

SANE'S biggest weakness is its lack of sophisticated local edge detectors. The Martin 

detectors demonstrate that a great deal can be achieved by using optimal local detectors, 

even though they consider each point as an independent detection problem. In contrast, 

SANE'S detectors perform extremely poorly when employed separately, frequently detect- 

ing no edges at all. This may be because they are attempting to determine a 5x5 edge 

segment rather than the boundary status of a particular pixel, which is more difficult to do 

without non-local information, but it's also likely related to the use of pixel-value features 

rather than employing image derivatives, textons, or other traditional boundary-detection 

features. 

Multiple experiments attempted to mate better image features to the SANE model, all 

without success. The output of the Martin edge detectors, derivative of Gaussian filters (as 

in the Canny detector [6]), and features derived from principal components analysis (for a 

description see Forsyth and Ponce [I 11) all failed to produce usable results. It seems likely 

that the use of kernel density estimates impeded the success of these alternate features. The 

Gaussian kernels used for the pixel features were spherical for simplicity. If the samples' 

variance is strongly aligned along a particular axis, elliptical kernels that can match that 

orientation might fit them better. Results using the output of the Martin detectors appeared 

to improve with the use of elliptical kernels. 



Konishi et al. [23] developed an adaptive approach for representing local image-feature 

probabilities for edge detection. Probabilities are represented with either adaptive his- 

tograms or decision trees; bin boundaries and decision cuts are selected to maximize the 

ability to distinguish between edge and non-edge image locations. The resulting repre- 

sentations are relatively compact and avoid over-fitting. Compared to the kernel density 

estimator, the Konishi approach might be less sensitive to the particular image features 

used, and it would focus modeling effort on discriminating between different edges. Be- 

cause the adaptive estimators were originally designed to perform a binary classification, 

while the SANE model has to choose between nearly 3000 edge classes, it might require 

substantial work to generalize the approach. 

The Martin detectors employ logistic regression, a much simpler and more restrictive 

estimator than kernel density estimates, and found it equal or superior to more complex 

estimation methods, such as support vector machines [32]. An early version of SANE used 

the differences between pixel brightnesses as image features, and modeled the probabilities 

of their absolute value with Gaussian distributions. It never performed very well, but it was 

a much smaller model with lower computational requirements. It seems likely that with the 

right image features, the overhead of the kernel density estimates would be superfluous and 

much simpler models would suffice. 

5.2 Continuous edge models 

SANE'S edge model is discretized into 27 17 possible assignments. This simplifies some of 

the estimation problems, but makes the model extremely sensitive to the training procedure 

that extracts parameterized edges from raw binary image patches. Consider two similar 

edges: (Entry:(3,0) Exit:(4,1)) and (Entry:(3,0) Inflection:(4,1) Exit:(4,2)). The procedure 

for matching edges only chooses to use inflection points to fit data if the result fits substan- 

tially better than the best uninflected boundary, so the second possibility might be chosen 

much less frequently than the first and be assigned a much lower prior probability. This 

also results in fewer supporting samples for computing image likelihoods related to the 

second edge. However. it could be argued that the two edges are very similar and should 



have very similar local probabilities. 

If the edge model was continuous, there would be six continuous variables representing 

the entry, exit, and inflection coordinates. Estimates of related probabilities and likelihoods 

could use functional forms that would naturally smooth over the parameters. The result 

would be that the particular details of the edge-fitting procedure would have less influence 

and training data would be used more effectively. 

The main difficulty is specifying a reasonable probability model for continuous edges. 

If the edges are represented by Gaussian compatibilities, the multiplicative updates of belief 

propagation pose no problem because the product of Gaussian functions is also Gaussian. 

However, naively multiplying non-Gaussian compatibilities can cause the functional form 

of the local beliefs to change with every update. Fortunately, a new method of nonparamet- 

ric belief propagation developed by Sudderth et al. [43] solves this problem by constructing 

tractable approximations of the messages after each update. 

5.3 T-junctions and multi-label segmentations 

The background subtraction method described in Section 3.6 can separate objects from a 

static background, but is not capable of separating two overlapping moving objects from 

each other. Doing this would require extra information, such as optical flow vectors or 

tracking data, that disambiguate the overlapping objects and the introduction of more pixel 

labels. The introduction of more sophisticated motion-segmentation techniques would be 

a highly useful extension that would allow training in more cluttered environments. 

The issue of overlapping objects can still be important in environments where moving 

objects never overlap one another during training. Although the partially-labeled training 

data only contains well-separated objects, a typical image might contain overlapping ob- 

jects, some of them static. The potential presence of static objects is the reason for limiting 

training to the bounding box around moving objects, but this is not possible during infer- 

ence in a deployed system. Success might depend on the ability to model multiple object 

segments that touch one another, despite the fact that the training data contained no such 

instances. 



Figure 5-1: Segmenting overlapping or touching objects from each other and the back- 
ground requires more than 2 segmentation labels. 

In order to address multiple touching object segments that need to be distinguished 

from each other and from the common background, two innovations are required. First, the 

current model only infers binary pixel labels, each image location is assigned a "0" or "1 ." 
This is sufficient if objects never touch one another, but more labels are required in other 

circumstances, as seen in Figure 5-1. According to the four-color theorem, an image can 

be divided into an arbitrary number of regions, whatever their configuration, with only four 

pixel labels [53]. So, the first expansion to the model is to move to four segment labels, "0" 

through "3." 

But adding more labels is insufficient without the ability to form more complex region 

intersections. The current model only allows a single edge to pass through an image region. 

To be generally useful, the extra labels must be combined with the ability to represent 

the intersection of three or more regions in a single patch. This is difficult because the 

background subtraction data only contains two or fewer regions in any patch. How can the 



conjunction of more regions be added if they are totally unsupported by the training data? 

Assuming that the touching object segments are independent of one another, a conjunc- 

tion of three or more regions can be modeled by the presence of two independent edge 

assignments at the same image location. Now the segmentation assignment at a node is 

Si = (Eio, Ei 1 ,  Pi), where Eio and Ei 1 are the two edge variables and Pi is an expanded 

parity value. Each E separates a particular object from its surroundings. Each edge defines 

two regions, so two overlapping edges can define as many as four independent regions. 

Each region needs one of the four segment labels, so the new Pi variables will range over 

24 (4!) values rather than 2. 

Implementing this algorithm in an efficient manner requires some restrictions on the 

values of Eio and Eil. Allowing any combination increases the (unpruned) state space at 

each node from 27 17 - 2  = 5434 to 27 1 7 ~  - 2 4  = 177,170,136. Additionally, there are 

a number of important special cases that govern the relationship between a node's edge 

assignments. The two edges must not be identical, or else finding the MAP assignment 

would necessarily choose identical edge pairs at every node. It's also important to handle 

the representation of a solitary edge. The most obvious way to represent a single edge is to 

assign one of the two edges to the empty edge, but in a boundary region the empty edge is 

extremely improbable, which will bias the model towards making undesirable multi-edge 

conjunctions. One solution is to allow one of the two edge assignments at each location to 

be empty edge without penalty. 

This extension has been implemented and undergone extremely preliminary testing on 

artificial data. Further testing and refinement to make its use practical on real images may 

be a focus of future work. 

5.4 Beyond Markov random fields 

The largest drawback of employing Markov random fields is the inability to capture truly 

global shape information. The variables in the SANE model are all tied to explicit image 

locations, so modeling a property such as "all objects are ellipses with a minor to major 

axis ratio of 2: 1" is impractical. A node verifying that property would need to be connected 



to all image locations and would be have to check this property for all possible segments. It 

is difficult to model global shape properties with collections of locally-connected parts, but 

most graphical model formalisms naturally lead to that style of representation. The other 

extreme is represented by techniques such as principal components analysis which capture 

the globally significant features and variations in data. A technique spanning this spectrum 

would be invaluable for future segmentation work. 

5.5 Conclusions 

The primary contributions of the Segmentation According to Natural Examples algorithm 

described in this thesis include: the formulation of the problem of learning a static image 

segmentation model from motion training data, a new Markov random field segmentation 

model, and learning algorithms for training the model to solve the object segmentation 

problem. 

The problem of learning image segmentation from motion-segmented training data is 

significant because it provides an objective method of generating training and testing data 

sets and a simple method for evaluating success and failure. It also fits into a larger frame- 

work of redefining image segmentation in terms of extracting objects from images, where 

the objects are defined to be useful to other systems, not only as visually significant regions. 

The MRF segmentation model uses variables that correspond to relatively large image 

patches and the boundaries that pass through them in order to capture shape, regional, and 

boundary information well. It can be viewed as a descendent of the original Geman and 

Geman [14] line and pixel-process model, which operated on the pixel scale, but using its 

more complex variables to capture more shape and image information. The success of the 

SANE model demonstrates the practicality of these larger, more sophisticated models given 

modern computer power and modern approximate inference and learning algorithms. 

The comparison of SANE'S performance to the Normalized Cuts algorithm showed that 

object segmentation does not necessarily correspond to a traditional image segmentation 

problem because a generic model of visual significance does not apply equally well to all 

objects. The comparison to the Martin detectors demonstrated the value of a strong shape 



model, showing that it can outperform sophisticated local detectors in a real-world case 

with low resolution and high noise, and when shape is an important cue. 

Finally, the SANE model demonstrated limited ability to generalize to new lighting 

conditions and a limited capacity to be trained to cover multiple environments. This is a 

clearly important area for future work, probably focused on improved local features and 

the incorporation of more and better shape information. 

The most direct applications for SANE would be to use it as a grouping step in prob- 

lems such as optical flow, as discussed in Chapter 1, or as a pre-processing step before 

applying object detection algorithms. In fact, a reliable object segmentation can eliminate 

the need for object detection, which typically requires searching across image locations, 

and allow the substitution of pure object recognition approaches in which the object has 

been localized, but not yet identified. Furthermore, by separating object and background 

pixels, SANE could reduce the modeling burden on recognition algorithms, eliminating the 

need for them to account for background variance. 

Ultimately, the widest use for segmentation lies in the domain of robotics. Navigation 

and manipulation can benefit from accurate division of the image into objects, even if 

the objects are unclassified. Furthermore, ego-motion and manipulation can provide new 

sources of data about motion objects, as described in Section 4.9. 

Apart from the specifics of the algorithm, this thesis demonstrates the interesting and 

important problems in the area of finding task-optimal segmentations. Although a great 

deal of outstanding work has focused on purely image-based segmentation performance, 

the move towards finding segmentations that infer useful properties, such as potential mo- 

tion boundaries, will hopefully lead to a larger and more robust role for image segmentation 

in real-world systems. 
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