1,038 research outputs found

    A Very High Level Logic Synthesis

    Get PDF
    The evolution of Computer Aided Design (CAD) calls for the incorporation of design specifications into a microelectronics system development cycle. This expansion requires the establishment of a new generation of CAD procedures, defined as Very High Level Logic Synthesis (VHLLS). The fundamental characteristics of open-ended VHLLS are: (1) front-end graphical interface; (2) time encapsulation; and (3) automatic translation into a behavioral description. Consequently, the VHLLS paradigm represents an advanced category of CAD-based microelectronics system design, built on a deep usage of expert systems and intelligent methods. Artificial Intelligence (AI) formalisms such as Knowledge Representation System (KRS) are necessary to model properties related to the very high level of specification such as: dealing with ambiguities and inconsistencies, reasoning, computing high-level specification, etc. A prototype VHLLS design suite, called Specification Procedure for Electronic Circuits in Automation Language (SPECIAL), is defined, compared with today\u27s commercial tools and verified using numerous design examples. As a result, a new family of formal and accelerated development methodologies has become feasible with a better understanding of formalized knowledge driving these design processes

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information

    A Graph Rewriting Approach for Transformational Design of Digital Systems

    Get PDF
    Transformational design integrates design and verification. It combines “correctness by construction” and design creativity by the use of pre-proven behaviour preserving transformations as design steps. The formal aspects of this methodology are hidden in the transformations. A constraint is the availability of a design representation with a compositional formal semantics. Graph representations are useful design representations because of their visualisation of design information. In this paper graph rewriting theory, as developed in the last twenty years in mathematics, is shown to be a useful basis for a formal framework for transformational design. The semantic aspects of graphs which are no part of graph rewriting theory are included by the use of attributed graphs. The used attribute algebra, table algebra, is a relation algebra derived from database theory. The combination of graph rewriting, table algebra and transformational design is new

    System specification and performance analysis

    Get PDF

    Reconfigurable video coding: a stream programming approach to the specification of new video coding standards

    Get PDF
    International audienceCurrent video coding standards, and their reference implementations, are architected as large monolithic and sequential algorithms, in spite of the considerable overlap of functionality between standards, and the fact that they are frequently implemented on highly parallel computing platforms. The former leads to unnecessary complexity in the standardization process, while the latter implies that implementations have to be rebuilt from the ground up to reflect the parallel nature of the target. The upcoming Reconfigurable Video Coding (RVC) standard currently developed at MPEG attempts to address these issues by building a framework that supports the construction of video standards as libraries of coding tools. These libraries can be incrementally updated and extended, and the tools in them can be aggregated to form complete codecs using a streaming (or dataflow) programming model, which preserves the inherent parallelism of the coding algorithm. This paper presents the RVC framework and its underlying data flow programming model, along with the tool support and initial results
    • 

    corecore