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ABSTRACT
Current video coding standards, and their reference im-
plementations, are architected as large monolithic and se-
quential algorithms, in spite of the considerable overlap of
functionality between standards, and the fact that they are
frequently implemented on highly parallel computing plat-
forms. The former leads to unnecessary complexity in the
standardization process, while the latter implies that imple-
mentations have to be rebuilt from the ground up to reflect
the parallel nature of the target.

The upcoming Reconfigurable Video Coding (RVC) stan-
dard currently developed at MPEG attempts to address
these issues by building a framework that supports the con-
struction of video standards as libraries of coding tools.
These libraries can be incrementally updated and extended,
and the tools in them can be aggregated to form complete
codecs using a streaming (or dataflow) programming model,
which preserves the inherent parallelism of the coding algo-
rithm. This paper presents the RVC framework and its un-
derlying dataflow programming model, along with the tool
support and initial results.

Categories and Subject Descriptors
D.3.0 [General]: SubjectsStandards; B.5.2 [Design Aids]:
Automatic Synthesis

General Terms
Standardization
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1. INTRODUCTION
The standardization efforts in the video coding field, be-

sides their main objective of guaranteeing interoperability of
compression systems, have also aimed at providing appro-
priate forms of specifications for wide and easy deployment.
ISO/IEC SC29/WG11, better known as MPEG, is a work-
ing group in ISO/IEC that has produced many important,
innovative and successful standards following these objec-
tives.

While at the beginning MPEG-1 and MPEG-2 were only
specified by textual descriptions, with the increasing com-
plexity of algorithms, starting with the MPEG-4 set of
standards, C or C++ specifications, also called reference
software, have become the formal specification of the stan-
dards. However, descriptions composed of non-optimized
non-modular software packages have begun to prove limit-
ing. Since in practice they are frequently the starting point
of an implementation, system designers must rewrite these
software packages not only to try to optimize performance,
but also to transform these descriptions into an appropri-
ate form adapted to the current system design. Existing
monolithic specifications hide the inherent data flow struc-
ture of the video coding algorithms, which is a significant im-
pediment for efficient implementation on any class of target
platform. Furthermore, the intrinsic concurrency and paral-
lelism of any modern video algorithm, which is an essential
characterictic for the efficient implementation on the next
generation of multicore platforms, is completely obscured by
reference SW written using pure sequential languages. The
required analysis and rewriting of the specification is diffi-
cult and time consuming, as it involves parallelizing a highly
complex sequential algorithm relying heavily on global stor-
age into a parallel implementation that exploits the manifold
forms of concurrency in it, and whose observable behavior
is identical.



At the same time, the evolution of video coding technolo-
gies leads to solutions that are increasingly complex to de-
sign and present significant overlap between successive stan-
dards. Traditionally, the monolithic nature of the reference
software required complete rewrites of the code for new stan-
dards and failed to take advantage of the overlap in function-
ality, effectively obscuring what is new and what is common
between an old and new standard specification.

Another problem of the current specification form, and a
consequence of the wide variety of video coding algorithms,
is the selection of the subsets of coding algorithms used by a
specific application domain. These (sub-)sets are also known
as “profiles” in MPEG. The “a priori” specification of a small
number of such profiles has become very problematic. Since
some algorithmic components are rather complex and only
to be implemented on certain devices, or are not required for
all applications, they are included only into standardized
“profiles”, which simply constitute subsets of coding algo-
rithms providing codecs implementations satisfying specific
application constraints. Interoperability is thus guaranteed
at the level of these standard profiles. However, such “trade-
off” subsets prevent the possibility of optimally satisfying a
variety of specific applications, whereas the specification of
too many profiles would result in an obstacle for guarantee-
ing interoperability. In any case the lack of modularity and
encapsulation properties of the specification form does not
help to support more flexible and dynamic ways to select
such algorithm subsets to satisfy other specific application
requirements.

Those requirements could include anything besides coding
efficiency, which is the traditional focus of current standard-
ization efforts. Although coding efficiency is fundamental,
other trade-offs, such as coding performance (in terms of
overall computational effort or latency), are not efficiently
realizable staying within current standard profiles. More-
over, the possibility of seeking these new trade-offs for codecs
and the motivations that lie behind such search of new “pro-
files” are increased on the one hand by the large number of
coding algorithms available in existing standard technology
(MPEG-1, MPEG-2, MPEG-4 Part 2 and part 10 including
AVC and SVC) and on the other hand by the increasing
number of application domains employing video compres-
sion, in addition to digital video broadcasting and storage,
which are looking for very specific optimizations.

Last, but not least, the current scheme for the definition
and standardization of new video coding technology results
in a noticeably long time span between a new idea/concept
is validated until it is implemented in products and appli-
cations as part of a worldwide standard. Each ISO/IEC
MPEG standard can be considered as a “frozen” version or
a snapshot of state-of-the-art of video compression taken a
few years before the standard is released in its final form
to the public. This delay is a significant impediment to
providing innovations to the market, thus opening the way
to ad-hoc proprietary solutions that jeopardize all efforts
made by standardization bodies to ensure interoperability
and openness to state of the art technology to all operators.

Considering all these problems and drawbacks of the pro-
cess used so far for developing a new standard, MPEG is
currently finalizing a new (standard) framework called Re-
configurable Video Coding (RVC). The goal of the MPEG
RVC effort is to address the limitations and problems pre-
sented above and thus offer a more flexible use and faster

path to innovation of MPEG standards in a way that is
competitive in the current dynamic environment. In order
to achieve these goals, a paradigm shift for both specifi-
cation formalism and for the concept of a standard video
codec itself is necessary. The new RVC standard is based
on building a unified library of video coding algorithms. So
what become standard is the “module” of a library that can
be updated incrementally as soon as new video technology
is demonstrated to be valuable. A RVC codec is specified
as a configuration of modules (called in MPEG Functional
Units), using an asynchronous data flow computation model.
Each module behavior is specified in RVC-Cal (an actor
data flow language) and the connections by and XML di-
alect called Functional unit Network Language (FNL). All
these languages are standardized by MPEG with the objec-
tive of, on one side providing all functionality an expres-
siveness appropriate for the RVC specification goals (mod-
ularity, compactness, expressiveness) and on the other side
to be supported by efficient tools that directly synthesize
both SW and HW implementations. In fact the new RVC
specification formalisms obviously provides advantages even
when employing the classical methods based on hand writ-
ing SW code or HDL code, however the possibility of gen-
erating such implementations by tool synthesis is certainly
much more attractive. Therefore the MPEG RVC effort has
the ambition to provide a more flexible way of providing
standard video technology using a specification formalism
laying at a higher level of abstraction than the one tradi-
tionally used, but at the same time provide a starting point
for implementation that is compatible with more efficient
methodologies for developing implementation for the next
generation of multicore and heterogeneous platforms. It can
be noticed that the effort of raising the abstraction level
and unifying a specification of both SW and HW is so far
experimented and tuned in the video coding field, but has
certainly a potential for a much wider usage in other signal
processing and communication application fields.

This paper introduces the components and new concepts
of the new MPEG RVC framework and then focuses on the
developments, challenges and initial results yielded by the
synthesis tools that directly generate both SW and HW im-
plementations from dataflow RVC specifications. The paper
continues with Sec. 2 with an introduction to the essential
concepts of the data flow approach and the basic elements
of the Cal dataflow language. Then Sec. 3 introduces
and describes the other different standard components of
the MPEG RVC framework: the languages for the descrip-
tion of new codec configurations and of the corresponding
bitstream syntax, the libraries of the standard video coding
algorithms and the instantiation of the behavioral model of
the decoder. Section 4 focuses on the non normative tools
that support the development of the MPEG RVC specifi-
cations and their implementations. It describes the tools
that supports simulation of the behavioral model and par-
ticularly all tools and their backhands that provides direct
synthesis of the standard RVC specification into SW and
HW implementations. Section 5 reports some results of the
implementations yielded by the new tools and discusses fur-
ther optimizations that could be employed to improve the
tool efficiency. Section 6 concludes the paper by summariz-
ing the results achieved so far and presenting some ideas for
future works and further developments.



2. DATAFLOW - PROGRAMMING WITH
STREAMS

The form of dataflow that we are concerned with in this
work is best viewed as dealing with streams, i.e. (possi-
bly unbounded) sequences of data objects called tokens. A
dataflow program is defined as a directed graph, where the
nodes represent computational units, called actors, and the
arcs represent the flow of data, a token stream flowing along
each arc.

Actors have input and output ports through which they
receive and send token from and to their environment. Each
connecting arc leads from an output port to an input port.
The flow of tokens along those arcs is lossless and order-
preserving: every token that the sending actor emits to the
output port is guaranteed to arrive at the connected input
port (of another actor or the same actor in the case of direct
feedback), and tokens arrive in exactly the order in which
they were sent. No guarantees are made beyond this, in
particular not with respect to timing, which the dataflow
model abstracts from. Consequently, actors send and receive
tokens in relative asynchrony, and tokens may be buffered
on the way from the sender to the receiver.

2.1 Actors
Actors are the basic computational entities of a dataflow

program. As in [7], the actors in our model execute by
performing a number of discrete computational steps, also
referred to as firings. During each firing, an actor may:

• consume tokens from its input ports,

• produce tokens on its output ports,

• modify its internal state (if it has any).

An actor may contain memory that it uses to store local
state. An important guarantee of the actor model is that
this state not be shared with other actors, i.e. actors com-
municate with one another exclusively through passing to-
kens along dataflow connections, and not through shared
state. This eliminates race conditions between actors, and
makes dataflow programs more resilient to the influences of
different scheduling policies.

A firing, once initiated, must terminate irrespective of the
environment of the actor, i.e. all conditions necessary for its
termination (such as the presence of sufficient input tokens)
must be ascertained before the firing is begun. Between fir-
ings, the actor is in quiescence, i.e it does not change its
state, does not consume tokens, and does not produce to-
kens.

2.2 The Cal Actor Language
Cal [5] is a for writing actors. It has been used in a wide

variety of applications and has been compiled to hardware
and software implementations, and work on mixed HW/SW
implementations is under way. Cal represents the basic
components of a dataflow actor with firing in a straightfor-
ward manner, providing structuring mechanisms that help
the user to understand the functioning of an actor, and that
aid tools to extract relevant information from an actor de-
scription at compile time.

A simple example of a Cal actor is shown in the Add

actor below, which has two input ports t1 and t2, and one
output port s, all of type int. The actor contains one action

that consumes one token on each input ports, and produces
one token on the output port. Actions define what happens
during the firing of an actor, and also when a firing may
occur. In this case, the declaration of input token variables
implies that there be one token on both ports t1 and t2.

actor Add () int t1, int t2 ⇒ int s :
action [a], [b] ⇒ [a + b] end

end

Actors may include state variables, such as the variable
sum in the Sum actor below. If they do, then actions may
modify those state variables in their bodies, which are frag-
ments of conventional imperative code between the do and
end keywords:

actor Sum () int t ⇒ int s :
int sum := 0;

action [a] ⇒ [sum]
do

sum := sum + a;
end

end

An actor may have any number of actions. The Merge

actor below has two, each of which copies a token from one
of the two inputs to the output port.

actor Merge () int Input1 , int Input2 ⇒ int Output:
action Input1: [x] ⇒ [x] end
action Input2: [x] ⇒ [x] end

end

Should a token be present on both input ports, either ac-
tion may fire. The actor above does not prescribe any policy
for choosing between the actions should they both be firable,
and consequently its result is non-deterministic. While oc-
casionally useful, non-determinism is a property that actor
writers need to be aware of and able to control, which is
why many constructs of the Cal language deal with ways
to specify action selection and constraining action firability,
and they permit tools to detect potential non-determinism.

One mechanism for picking actions is to use guards, con-
ditional expressions associated with an action. The Select

actor below reads and forwards a token from either port A

or B, depending on the value of the token read from the S

input port. That value is tested in the guards of the actions.

actor Select () boolean S, int A, int B ⇒ int Output:

action S: [sel], A: [v] ⇒ [v]
guard sel end

action S: [sel], B: [v] ⇒ [v]
guard not sel end

end

In general, guards are arbitrary boolean expressions that
may refer to input tokens and state variables.

Another way to control action selection is to order action
with respect to their priority. In the BiasedMerge actor a
priority order is established between the two actions labeled
A and B. It ensures that in case both actions can otherwise
fire, the one labeled A will be given preference over the one
labeled B.

actor BiasedMerge () int Input1 , int Input2 ⇒
int Output:

A: action Input1: [x] ⇒ [x] end
B: action Input2: [x] ⇒ [x] end



priority A > B; end
end

For an in-depth description of the language, the reader is
referred to the language report [5]. A large selection of ex-
ample actors is available at the OpenDF repository,1 among
them the MPEG-4 decoder discussed below.

3. RECONFIGURABLE VIDEO CODING
STANDARD

3.1 Requirements
The initial investigations for the definition of the MPEG

Reconfigurable Video Coding (RVC) framework [2, 1]
started in 2004. The new MPEG RVC (ISO) standard
is currently under its final stages of standardization (see
Fig. 1). From a standardization point of view the new con-
cept behind RVC is to unify the specification of existing
standards by using a common library of components, called
in RVC Functional Units (FUs), and to be also able to spec-
ify completely new configurations that may better satisfy
application-specific constraints by selecting standard com-
ponents from a library of standard coding algorithms. The
reasons that lead MPEG to search for such a new approach
for the specification of video compression algorithms have
been presented in details in Sec 1. Such motivations were
translated into a set of requirements that the new formal-
ism should have satisfied [14, 2]. As described above the
encapsulation capabilities of Cal actors satisfy the require-
ment of developing a library of modules that encapsulate
the essence of re-usable algorithms, the data dependencies
are made explicit by the data token exchanges at input and
output ports, and the the asynchronous behavior of a net-
work of actors abstracts from time so no specific scheduling,
beside the ones constrained by the intrinsic data dependen-
cies, is unnecessarily provided as standard specification, but
any scheduling compatible with the computation model and
appropriate for each specific implementation could be se-
lected. Therefore, the selection of Cal networks of actors
as base formalism for MPEG RVC resulted as the choice
better satisfying the fundamental requirements set by the
committee in the investigation phase. It can be noticed that
in principle any common imperative language could have
been used to implement the desired features, for instance
by appropriate C++ classes and methods, however the final
code would have resulted of more difficult readability, less
compact and conformance to the standard should have re-
lied on the correct ”constrained usage” of the language and
of such specific constructs by the users. Conditions that
would have been very difficult or impossible to enforce. The
choice thus was to standardize specific (sub)-sets with a few
necessary extensions of existing or new languages for each
required specification functionality. In fact the possibility
of dynamic configuration and reconfiguration of codecs also
requires new methodologies and new tools for describing the
new bitstream syntaxes and the parsers of such new codecs

3.2 Description of the standard components
Two ISO standards are defined so far within the MPEG

RVC framework: ISO/IEC 23001-4 [11]) (also called MPEG-
B part 4) and ISO/IEC 23002-4 [12]) (MPEG-C part 4).

1http://www.opendf.net

International Standard ISO/IEC 23001-4 defines the com-
ponents of the overall framework as well as the standard
languages that are used to specify an existing or a new codec
configuration of a RVC decoder. The essential component
of the normative specification of a codec configuration is the
dataflow description called in RVC the “Abstract Decoder
Model” (ADM). It is an executable description that specify
the overall input output behavior that all implementations
derived by such specification need to satisfy. So as to build
such ADM two normative inputs are necessary: the decoder
description and the and the standard library of components.
The Decoder Description (Fig. 2) includes two components:

• The Bitstream Syntax Description (BSD), spec-
ified by the RVC Bitstream Syntax Description Lan-
guage (RVC-BSDL), a language syntactically describ-
ing the structure of the input encoded bitstream which
is a subset of the standard MPEG Bitstream Syntax
Description Language (ISO/IEC 23001-4). Such de-
scription is used to specify the appropriate parser to
decode the corresponding input encoded data [13, 23].

• The FU Network Description (FND), which de-
scribes the structure of the decoder (i.e. the instanti-
ation of the library components (FUs)) and their con-
nections. It also specifies the values of the parameters
used for each instantiation of the different FUs com-
posing the decoder [4, 15, 24]. The FND is written in
the so called FU Network Language (FNL).

The syntax parser (built from the BSD), together with the
network of FUs (built using the FND and the instantiation of
the FUs from the RVC library), form the Abstract Decoder
Model (ADM), which finally constitutes the normative, in
the ISO/MPEG meaning, behavioral model of the decoder.
In summary the International Standard ISO/IEC 23001-4
defines/stamndardizes three new languages used to specify
the RVC ADM:

• RVC-Cal, a subset of Cal language operators and
constructs including a set of data types, used to specify
the RVC library of video coding algorithms or FUs,

• FNL, the language describing the network of FUs, es-
sentialli an XML dialect

• RVC-BSDL, a subset of the standard MPEG BSDL
with a few extensions, used to describe the bistream
syntax and implicitly the parsers of a new codec con-
figuration

The main reason for standardizing subsets, with a few mi-
nor extensions, of languages that could include more op-
erators and constructs was to facilitate the design of ef-
ficient synthesis tools that could translate RVC-Cal and
RVC-BSDL descriptions into respectively SW and HW im-
plementations and RVC-Cal parsers respectively. The fact
that such languages are fully supported by tools is an on-
vious Obviously the restrictions imposed The International
Standard ISO/IEC 23002-4 specifies the textual description
of the unified library of video coding algorithms employed
in the current MPEG standards. Up to now, two MPEG
standards/profiles are fully covered:

• MPEG-4 part 2 Simple Profile,

• MPEG-4 part 10 (AVC) Constrained Baseline Profile.
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Figure 1: Pictorial representation of Cal language and tools development and the timeline of the steps of
MPEG RVC standardization.

Several extensions are in development. Amendment 1 of
ISO/IEC 23002-4 will include the conformance testing pro-
cedure for the FU as well as the reference software writ-
ten in RVC-Cal of the RVC MPEG toolbox. It is planned
to be finally completed by Q1 of 2010. Amendment 2
of ISO/IEC23002-4, currently in advanced development,
will include MPEG-4 AVC High Profile (FREXT profile),
MPEG-4 SVC baseline profile, MPEG-4 Part 2 Advanced
Simple profile and MPEG-2 Main Profile. The mecha-
nisms for the transport of RVC codec descriptions and bit-
stream syntax descriptions are currently under core experi-
ment stage. Various scenarios enabling downloads and dy-
namic update of codec configurations on processing platform
are analyzed so as to verify what (if any) amendment to
MPEG-2 and MPEG-4 Systems standard [9, 10] are needed
to support the widest class of deployment scenarios for RVC
codecs.

3.3 The toolbox library
The innovative feature of the RVC standard that distin-

guishes it from traditional monolithic specification of video
coding standards is that video technology is unified into a
single library and the traditional concept of conformance to
a given MPEG standard need to be updated to the new
scenario. Figure 3 illustrates this conceptual view of confor-
mance to the RVC framework [21]. All the three types of
decoders are constructed and specified using the languages
standardized in MPEG-B. Hence, their normative specifica-
tion conform to the MPEG-B standard. A Type-1 decoder
is constructed using the FUs within the MPEG VTL only.
Hence, this type of decoder conforms to both the MPEG-B
and MPEG-C standards. A Type-2 decoder is constructed
using FUs from the MPEG VTL as well as one or more
proprietary libraries (VTL 1-n). This type of decoder con-
forms to the MPEG-B standard only. Finally, A Type-3

decoder is constructed using one or more proprietary VTL
(VTL 1-n), without using the MPEG VTL. This type of
decoder also conforms to the MPEG-B standard only. An
RVC decoder (i.e. conformant to MPEG-B) is composed
of coding tools described in VTLs according to the decoder

description. The MPEG VTL is described by MPEG-C.
The MPEG VTL is normatively specified using RVC-Cal.

Decoder type-1
or Decoder type-2
or Decoder type-3

MPEG VTL
(MPEG-C)

Video Tools
Libraries {1..N} 

Decoder Descrip�on

Coded data Decoded video

MPEG-B decoder

Figure 3: The conceptual view of RVC.

An appropriate level of granularity for the components of
the unified standard library is important, to enable an effec-
tive possibility of reconfigurations, for codecs, and an effi-
cient reuse of components in codec implementations. If the
library would have been composed of too coarse modules,
they would have resulted too large to enable their usage in
different and useful codec configurations, whereas, if library
component granularity level would have been too fine, the
number of modules in the library would have resulted too
large for an efficient and practical reconfiguration process
at the codec implementation side, and could have obscured
the desired high-level description and modeling features of
the RVC codec specifications. Most of the efforts behind the
development and standardization of the MPEG VTL were
devoted to study the best granularity trade-off level of the
VTL components. However, it must be noticed that the
choice of the best trade-off in terms of high-level descrip-
tion and module re-usability, does not affect the potential
parallelism of the algorithms that can be exploited in het-
erogeneous, multi-core and FPGA implementations by the
usage of proprietary libraries.

3.4 Instantiation process of a RVC ADM
As discussed above the process of generating a decoder im-
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Figure 2: Graphic representation of the components of the RVC standard. On top the normative descriptions
that are used to build the ADM. On bottom any non normative process that yields a conformant decoder
implementation of the normative ADM.

plementation on a decoding platform implies the acquisition
of a Decoder Description that fully specifies the architecture
of the decoder and the structure of the incoming bitstream.
So as to instantiate the corresponding decoder implementa-
tion, the decoding platform uses a library of building blocks
specified by MPEG-C. Conceptually, such library is a user
defined proprietary implementation of the MPEG RVC stan-
dard library, providing the same I/O behavior for each com-
ponent. Such library can be expressly developed to explicitly
expose an additional level of concurrency and parallelism ap-
propriate for implementing a new decoder configuration on
the user specific heterogeneous/multi-core target platforms.
The dataflow form of the standard RVC specification, with
the associated Model of Computation, guarantee that any
reconfiguration of the user defined proprietary library, de-
veloped at whatever lower level of granularity, provides an
implementation that is consistent with the (abstract) RVC
decoder model that is originally specified using the stan-
dard library. Figure 2 and 3 show how a decoding solu-
tion is built from, not only the standard specification of the
codecs in RVC-Cal by using the normative VTL, and this
already provides an explicit, concurrent and parallel model,
but also from any non-normative “platform-friendly” propri-
etary Video Tool Libraries, that increases if necessary the
level of explicit concurrency and parallelism for specific tar-

get platforms. Thus, the standard RVC specification, that
is already an explicit model for concurrent systems, can be
further improved or specialized by proprietary libraries that
can be used in the instantiation phase of an RVC codec im-
plementation.

3.5 Commonalities between decoders
All existing MPEG codecs are based on the same archi-

tecture, the hybrid decoding architecture including a parser
that extracts values for texture reconstruction and motion
compensation. Indeed, MPEG-4 SP and MPEG-4 AVC are
typical examples of hybrid decoders. Figure 4 shows the
main functional blocks composing an hybrid decoder archi-
tecture.

Encoded
Bitstream 

+

+
Decoded
Video

Parser
BSDL

Residu
RVC-CAL

Picture Buffering
RVC-CAL

Motion Compensation
RVC-CAL

Figure 4: Hybrid decoder structure



As mentioned earlier, a RVC decoder is described as a
block diagram with FNL [11], an XML dialect that describes
the network of interconnected actors instantiated from the
Standard MPEG tool library. Basing on the current final-
ized standards, results regarding two RVC design cases can
be reported by the works of RVC RVC experts [26, 15].
They are the specifications of MPEG-4 Simple Profile de-
coder and MPEG-4 AVC Constrained Baseline Profile de-
coder [6], both of them entirely written in RVC-Cal.

4. TOOLS
The fact that a new standard provides a streaming data

flow based specification of a complex processing system such
as a video decoder and that such specification has ”nice” fea-
tures and is a good starting point for various form of con-
current implementations, it does not mean that all imple-
mentation challenges are solved. Many methodologies can
be applied to a RVC ADM to yield a final implementation
including the ”old style” handwriting in whatever implemen-
tation language of the RVC ADM. However, the more at-
tracting approaches are the ones that employ tools for the
direct synthesis of SW and HW implementations. The rest
of the paper focuses on the tools that support such imple-
mentation approach reporting the tools developed so far, the
results obtained and discussing the paths, challenges and op-
timizations that currently remain open and active topics for
research.

4.1 Related Work and Tools
Since the behavior of the ADM is the conformance refer-

ence of any RVC specification, a simulator is needed for the
validation of any RVC specification. RVC-Cal is currently
supported by a portable interpreter infrastructure that can
simulate a network of actors (i.e any RVC-ADM). Such in-
terpreter was first developed in the Moses project 2. Moses
features a graphical network editor, and allows the user
to monitor actor execution (actor state and token values).
The project and related simulator, being no longer contin-
ued and maintained, has been superseded by two plugins in
the Eclipse environment: the Open Dataflow environment
(OpenDF 3 [3]) for editing Cal actor and the Graphiti ed-
itor for graphically editing networks. Cal programs (i.e.
network of actors) can also be simulated in the Ptolemy II 4

environment.

4.2 RVC-Cal Compiler Infrastructure
Once the ADM is validated by simulations the following

step is to develop a conformant implementation. If the tar-
get platform is SW, a compiler of RVC-Cal is the necessary
tool. A common compiler framework called Orcc (Open
RVC-Cal Compiler) has been designed and developed to
support the synthesis of SW codes from Cal language. Orcc
is the successor of a first version of software code genera-
tor called Cal2C and described in [26]. Cal2C translates
RVC-Cal actors to C and uses SystemC [8], a uniproces-
sor simulation framework, to implement the networks and
to create a scheduler for the actors. Cal2C has the following
limitations:

1. it is a monolithic compiler

2Moses project: http://www.tik.ethz.ch/ moses/
3Open Dataflow: http://opendf.sf.net/
4Ptolemy II: http://ptolemy.eecs.berkeley.edu/

2. it can only generate C code for each actor translation

3. it can only generate SystemC to schedule actor execu-
tions

4. it is not extensible.

networks

actors
RVC-CAL
front-end

intermediate
files

C back-end .c files

Java back-end .java files

LLVM back-end .ll files

VHDL back-end
.vhdl/.v

files
... back-end ... files

Figure 5: Open RVC-Cal Compiler Infrastructure.

Orcc overcomes such limitations by having been struc-
tured into different components: one front-end and several
back-ends, as illustrated in Fig. 5. The compilation process
transforming a given RVC-Cal dataflow program into a tar-
get language is a two-step process. First, the front-end (1)
parses the given networks, possibly hierarchical networks,
(2) flattens the network hierarchy and represents the result
as a ”flat” network, (3) parses actors and translates them
to an Intermediate Representation (IR), (4) serializes each
actor in IR form to a file. Then, the appropriate back-end
loads the flat network and actors representations, in IR form,
and generates code in the target language.

Orcc is provided as an Eclipse feature composed of two
plugins. Eclipse is a development environment as well as
an open extensible application framework upon which soft-
ware can be built [25]. The first “main” plugin allows back-
end implementations to read and write intermediate files
in memory and to manipulate the IR. It includes common
transformations, such as instantiation of actors and propa-
gation of constant parameters.

The second “back-ends” plugin has currently five func-
tional built-in implementations of back-ends: C, C++,
Java, VHDL/verilog and LLVM. Available back-ends pro-
duce software and hardware codes. The hardware code
generator presented in more details in [15] is part of Orcc,
it generates a hardware description from Cal by translat-
ing Orcc’s intermediate representation to a lower-level IR
called XLIM, and then compiling XLIM to a Hardware De-
scription Language (HDL). In future Orcc would probably
evolve proving a functionality directly generating a Verilog
or VHDL back-end from its own intermediate internal rep-
resentation.

4.3 Actor and Network Code Generation
Given a specific target language, actor code generation

follows the steps shown on Fig. 6. The IR is parsed and rep-
resented in-memory as instances of classes. Such classes sup-
port the visitor design pattern, which makes writing trans-
formations of the IR easier. Generic transformations can be
applied to the IR, depending on the back-end used. For in-
stance a generic transformation used by non-SSA back-ends
is a naive “out of SSA” translation, which allocates one vari-
able per SSA register and replaces φ assignments by copies.
The next step optionally extends the IR by adding back-end-
specific instructions where needed or desirable. Back-end-
specific instructions are increment/decrement for C/C++,
zext (zero extends) for LLVM, etc. The specific IR may then
undergo specific transformations. An example of a specific
transformation is a transformation in the LLVM back-end



that converts expressions to LLVM instructions. Finally,
the specific IR is translated to LLVM code.

IR

parse IR

generic transformations

IR to specific IR

specific transformations

template application

generated
code

Figure 6: Actor code generation steps

Network code generation is by far easier than actor code
generation. The network name, the list of broadcasts, in-
stances, and connections in the network, are passed to the
underlying template as attributes. The template is then
called to produce text as a result.

Orcc considers that all actors have data-dependent firing
conditions, and that the Dataflow Process Networks (DPN)
[20] model must be used. A DPN contains actors that com-
municate with each other using unidirectional FIFOs, where
reads are blocking and writes are nonblocking. DPNs must
be scheduled dynamically, hence actors are scheduled at run-
time by an actor scheduler. In [26], Wipliez et al. imple-
mented a SystemC actor scheduler, but recommended a new
scheduler be developed avoiding to use threads.

The scheduler recently developed is a uniprocessor simple
round-robin scheduler, yet it is very efficient compared to
the SystemC scheduler. The scheduler endlessly schedules
all actors one after the other according to an arbitrary order,
which in this case is simply the alphabetical order.

In the current version of the code generators, each actor
is translated separately and is connected with FIFO buffers.
Consequently, no cross-actor optimizations are employed at
the current level of development of the tool. If two actors
connected in this manner are specified to belong to differ-
ent clock domains, an asynchronous FIFO implementation
is selected, otherwise a synchronous FIFO is used for com-
pactness of the implementation. Actors interact by means
of FIFOs using a handshake protocol, which allows them to
detect when a data token is available or when a FIFO is full.

4.4 C-based Back-ends
Orcc comes with four built-in back-ends that use the same

specific IR: C, C++, Java and VHDL/verilog. The specific
IR only adds increment/decrement instructions and self-
assignment instructions. A self-assignment is an instruction
such as

x *= 3;

instead of the vanilla IR representation

tmp1 := load(x);

store(x, tmp1 * 3);

While not strictly necessary, these instructions makes the
output code look more similar to C.

The essential differences between the three following back-
ends C, C++, and Java are: (1) the generic transformations
that are applied, (2) the templates. Namely the C back-end
implementation of the write operation is that it merely re-
turns a pointer to the FIFO and advances the number of
tokens written in the FIFO: The write operations that may
be present in actions thus need to be moved before any store

done to the FIFO. Conversely, the C++ and Java back-ends
currently copy contents loaded from/stored to FIFOs and do
not need such a transformation. The rest of the differences
between these three languages is done at the template level.
Note that the C++ back-end is slightly more complex than
the others as it produces one header file and one implemen-
tation file per actor by using one template for each.

4.5 LLVM back-end
The key idea behind the development of an LLVM back-

end has two objectives. Since Orcc IR is closer to the LLVM
IR, thus generating LLVM directly from Orcc prevents a
loss of information that would occur when instead generat-
ing code using the C-based back-ends. Both Orcc IR and
the LLVM IR are in SSA form with an unlimited number of
registers, whereas C or Java need to allocate every variable
on the stack. Both IRs have an integer type with an arbi-
trary bit width, whereas most languages only support fixed
size integer types. Both IRs have instructions with simi-
lar semantics, those include assignment to a local variable,
load/store memory operations, φ assignments.

The main difference between LLVM and Orcc IR is that
conditional branch nodes, namely if and while, have no
direct equivalent in LLVM. The Control Flow Graph (CFG)
of a function in the LLVM IR is a list of basic blocks, each
basic block starting with a label. A basic block contains a
list of instructions, and ends with a terminator instruction,
such as a branch instruction or function return instruction.
As a result, the actor IR is augmented with LLVM-specific
nodes by a transformation pass that simplifies, flattens the
CFG, and adds label nodes and branch nodes. We believe
that Orcc IR needs to be improved by supporting labels on
control flow nodes if we want to remove such LLVM-specific
nodes.

A second difference between LLVM and the actor IR in
Orcc is the fact that Orcc IR supports arithmetic expressions
in assignments, load/store, and conditional branches, while
LLVM only has support for three-address code(3AC) [18].
Therefore, every expressions containing more than one fun-
damental operation in Orcc IR is translated into a series of
three-address code instructions before generating the LLVM
IR.

The LLVM back-end allows users to take advantage of
the LLVM infrastructure, surrounding off-line compilers for
X86, X86-64, PowerPC 32/64, ARM, Thumb, IA-64, Alpha,
SPARC, MIPS and CellSPU architectures, as well as a Just-
In-Time compiler for X86, X86-64, PowerPC 32/64 proces-
sors. As LLVM is becoming a commercial grade research
compiler, the code generated by the LLVM back-end will
continually benefit from improvements brought to LLVM



implementations.

4.6 VHDL/Verilog back-end
In case the target platform for the implementation of a

RVC ADM is based on reconfigurable or hardwired HW
technology a back-end for the generation of HDL is needed.
A first step of the HDL generation is based in language
transformation to obtain simpler language constructs. Then
a precompilation stage follows, Orcc performs basic source
code transformations so as to translate the actor structure in
a form more amenable to hardware implementations, such
as e.g. inlining procedures and function calls. Then the
canonical, closed actors are translated into a collection of
communicating threads.

In the current back-end implementation, an actor with N
actions is translated into N + 1 threads, one for each ac-
tion and another one for the action scheduler. The action
scheduler is the mechanism that determines which action to
fire next, based on the availability of tokens, the guard ex-
pression of each action (if present), the finite state machine
schedule, and action priorities.

The final phase of the translation process generates an
RTL implementation (in Verilog) from a set of threads in
SSA form. The first step simply substitutes operators in
expressions for hardware operators, creates the hardware
structures required to implement the control flow elements
(loops, if-then-else statements), and also generates the ap-
propriate muxing/demuxing logic for variable accesses, in-
cluding the φ elements in the SSA form.

The resulting basic circuit is then optimized in a sequence
of steps.

1. Bit-accurate constant propagation. This step
eliminates constant or redundant bits throughout the
circuit, along with all wires transmitting them. Any
part of the circuit that does not contribute to the result
is also removed, which roughly corresponds to dead
code elimination in traditional software compilation.

2. Static scheduling of operators. By default, oper-
ators and control elements interact using a protocol of
explicit activation—e.g., a multiplier will get triggered
by explicit signals signifying that both its operands are
available, and will in turn emit such a signal to down-
stream operators once it has completed multiplication.
In many cases, operators with known execution times
can be scheduled statically, thus removing the need for
explicit activation and the associated control logic. In
case operands arrive with constant time difference, a
fixed small number of registers can be inserted into the
path of the operand that arrives earlier.

3. Memory access optimizations. Arrays are mapped
to Block RAMs (BRAM) for FPGA implementation.
These usually small RAM blocks (typically 18 kBits)
are distributed across the FPGA, and can be ganged
up to form larger memories, or a number of small
arrays may be placed into one BRAM. Furthermore,
BRAMs usually provide two or more ports, which al-
lows for concurrent accesses to the same memory re-
gion. Based on an analysis of the sizes of arrays and
the access patterns, the backend maps array variables
to Block RAMs, and accesses to specific ports.

4. Pipelining, retiming. In order to achieve a desired
clock rate, it may be necessary to add registers to
the generated circuit in order to break combinatorial
paths, and to give synthesis back-ends more opportu-
nity for retiming.

Currently only Verilog generation is supported, but there is
no reason for which a VHDL generator back-end cannot be
developed using the same approach.

5. CASE STUDIES

5.1 RVC MPEG-4 Simple Profile Decoder de-
scription

Figure 7 reports a network representation of the RVC
MPEG-4 Simple Profile (SP) decoder description. The
parser is a hierarchical network of actors (each of them is
described in a separate FNL file). All other blocks are ac-
tors written in RVC-Cal. Figure 7 presents the structure
of the MPEG-4 SP ADM as described within MPEG RVC.
Essentially it is composed of four mains parts: the parser, a
luminance component (Y) processing path, and two chromi-
nance components (U, V) processing paths. Each of the
path is composed by its texture decoding processing stage
as well as its motion compensation stage (both are hierar-
chical RVC-CAL networks of Functional Units).
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Figure 7: MPEG-4 Simple Profile decoder descrip-
tion

The MPEG-4 SP ADM obviously results to be a dataflow
program (Figure 7, Table 3) that is is composed of 27
atomic FUs (or actors in dataflow programming) and 9 sub-
networks (actor/network composition). Single atomic ac-
tors can be instantiated several times, for instance there
are 42 actor instantiations in this dataflow program. Fig-
ure 8 shows a top-level view of the decoder. The main
functional blocks include the bitstream parser, the recon-
struction block, the 2-D inverse cosine transform, the frame
buffer and the motion compensation module. These func-
tional units are themselves hierarchical compositions of actor
networks.

5.2 HW synthesis
Some of the authors have performed an implementation

study [15], in which the RVC MPEG-4 SP decoder specified
in RVC-Cal according to the MPEG RVC formalism has
been implemented on an FPGA using a Cal-to-HDL code
generator. The objective of the design case was to support
30 frames of 1080p in the YUV420 format per second, which
amounts to a production of 93.3 Mbyte of video output per
second. The given target clock rate of 120 MHz implies
1.29 cycles of processing per output sample on average. The



results of the design case were encouraging in that the code
generated from the MPEG RVC-Cal specification did not
only outperformed the handwritten reference in VHDL, both
in terms of throughput and silicon area, but also allowed for
a significantly reduced development effort. Table 1 shows
the comparison between Cal specification and the VHDL
reference implemented over a Xilinx Virtex 2 pro FPGA
running at 100MHz.

It should be emphasized that this counter-intuitive result
cannot be attributed to the sophistication of the HDL syn-
thesis tool. On the contrary the tool does not perform a
number of potential optimizations, such as for instance op-
timizations involving more than one actor. Instead, the good
results appear to be yield by the implementation and devel-
opment process itself. The implementation approach was
based generating a proprietary implementation of the stan-
dard MPEG RVC toolbox composed of FUs of lower level of
granularity. Thus the implementation methodology was to
substitute the FU of the standard abstract decoder model of
the MPEG-4 SP with an equivalent hierarchical implemen-
tation, in terms of behavior. Essentially standard toolbox
FU were substituted with networks of FU described as ac-
tors of lower granularity. A notable difference of such imple-
mentation approach when compared with the classical hand
writing of HDL code from a textual or sequential specifi-
cation (i.e. a C/C++ program for instance) was that the
Cal specification of the proprietary implementation tool-
box (that can be directly derived from the standard RVC
toolbox) could go through significantly more design itera-
tions than the one applicable from a handwritten VHDL
reference —in spite of being developed in approximately a
quarter of the development time (including the time of de-
veloping the standard MPEG RVC toolbox from scratch).
Whereas a dominant part of the development of a classical
VHDL reference development need to be spent getting the
system to work correctly, the effort of the Cal specification
could be focused on optimizing system performance to meet
the design constraints.

Bitstream serialize parser acdc

idct2d

motionddr
Video

Figure 8: Top-level dataflow graph of the propri-
etary implementation of the RVC MPEG-4 decoder.

The initial design cycle of the proprietary RVC library re-
sulted in an implementation that was not only inferior to
the VHDL reference, but one that also failed to meet the
throughput and area constraints. Subsequent iterations ex-
plored several other points in the design space until arriving
at a solution that satisfied the constraints. At least for the
considered implementation study, the benefit of short design
cycles seem to outweigh the inefficiencies that resulted from

high-level synthesis and the reduced control over implemen-
tation details.

Size Speed Code Dev.
slices kMB/s Size time

BRAM kSLOC MM

Cal 3872, 22 290 4 3
VHDL 4637, 26 180 15 12
Improv. 1.2 1.6 3.75 4
factor

kMB/s=kilo macroblocks per second
kSLOC=kilo source lines of code

Table 1: Hardware synthesis results for a propri-
etary implementation of a MPEG-4 Simple Profile
decoder. The numbers are compared with a refer-
ence hand written design in VHDL.

In particular, the asynchrony of the programming model
and its realization in hardware allowed for convenient exper-
iments with design ideas. Local changes, involving only one
or a few actors, do not break the rest of the system in spite
of a significantly modified temporal behavior. In contrast,
any design methodology that relies on precise specification
of timing —such as RTL, where designers specify behavior
cycle-by-cycle— would have resulted in changes that prop-
agate through the design.

Table 1 shows the quality of result produced by the RTL
synthesis engine of the MPEG-4 SP video decoder. Note
that the code generated from the high-level dataflow RVC
description and proprietary implementation of the MPEG
toolbox actually outperforms the hand-written VHDL de-
sign in terms of both throughput and silicon area for a FPGA
implementation.

5.3 SW synthesis
Direct C-synthesis [24, 26] of the ADM specification of

the MPEG-4 SP provided by the RVC standard (Figure 7)or
in other words the dataflow program of a MPEG-4 SP de-
coder is another interesting case study for evaluating the
efficiency of the methodology. The SW code generator, also
presented in more details in [24], uses process network model
of computation [16] to implement the CAL dataflow model.
The compiler creates a multi-thread program from the given
dataflow model, where each actor is translated into a thread
and the connectivity between actors is implemented via soft-
ware FIFOs. Although the generation provides correct SW
implementations, inherent context switches occur during ex-
ecution, due to the concurrent execution of threads, that
may lead to inefficient SW execution if the granularity of
actor is too fine. The problem of multi-threaded programs
is discussed in [19]. A more appropriate solution that avoids
thread management are presented in [20, 22]. Instead of sus-
pending and resuming threads based on the blocking read
semantic of process network [17], actors are, instead, man-
aged by a user-level scheduler that select the sequence of ac-
tor firing. The scheduler checks, before executing an actor, if
it can fire, depending on the availability of tokens on inputs
and the availability of rooms on outputs. If the actor can fire,
it is executed (these two steps refers to the enabling func-
tion and the invoking function of [22]). If the actor cannot
fire, the scheduler simply tests the next actor to fire (sorted



following an appropriate given strategy) and so on. A code
generator based on such concept [26] is available at Orcc
website 5. Such compiler presents a scheduler that has the
two following characteristics: (1) actor firings are checked at
run-time (the dataflow model is not scheduled statically), (2)
the scheduler executes actors following a round-robin strat-
egy (actors are sorted a priori). For instance, in the case
of the standard RVC MPEG-4 SP dataflow model such gen-
erated mono-thread implementation is about 4 times faster
than the one obtainable by [24]. Table 2 shows that synthe-
sized C-software is faster than the simulated Cal dataflow
program (80 frames/s instead of 0.15 frames/s), and twice
the real-time decoding for a QCIF format (25 frames/s).
However it remains much slower than the automatically syn-
thesized hardware description by Cal2HDL [15].

MPEG4 SP Speed Clock speed Code size
decoder kMB/s GHz kSLOC

Cal simulator 0.015 2.5 3.4
Cal2C 8 2.5 10.4

Cal2HDL 290 0.12 4

Table 2: MPEG-4 Simple Profile decoder speed and
SLOC.

As mentioned above, the MPEG-4 SP dataflow program is
composed of 61 actor instantiations in the flattened dataflow
program. The flattened network becomes a C file that cur-
rently contains a round robin scheduler for the actor schedul-
ing and FIFOs connections between actors. Each actor be-
comes a C file containing all its action/processing with its
overall action scheduling/control. Its number of SLOC is
shown in Table 3. All of the generated files are successfully
compiled by gcc. For instance, the “ParserHeader” actor in-
side the “Parser” network is the most complex actor with
multiple actions. The translated C-file (with actions and
state variables) includes 2062 SLOC for both actions and
action scheduling. As a comparison, the original Cal file
contains 962 lines of codes.

MPEG-4 SP CAL C actors C scheduler
decoder
Number 27 61 1
of files

Code Size 2.9 19 2
(kSLOC)

Table 3: Code size and number of files automatically
generated for MPEG-4 Simple Profile decoder.

A comparison of the RVC-Cal description (Tab. 4) shows
that the MPEG-4 AVC decoder is twice more complex
in RVC-Cal than the MPEG-4 SP RVC-Cal description.
Some components of the model have already been redesigned
so as to improve pipelining and parallelism among actors. A
simulation of the MPEG-4 AVC RVC-Cal model on a Intel
Core 2 Duo @ 2.5Ghz is more than 2.5 slower than the RVC
MPEG-4 SP description.

Comparing to the MPEG-4 SP Cal model, the MPEG-4
AVC decoder has been developed exploiting more Cal opti-
mization possibilities (for instance processing of several to-
kens in one firing) while remaining fully conformant with the

5Open RVC-Cal Compiler: http://orcc.sf.net.

RVC-Cal standard. Thanks to the relevant complexity of a
MPEG-4 AVC RVC-Cal description, the direct synthesis of
a SW implementation is a meaningful way to test the effi-
ciency of the current RVC support tools. The performances
of the current SW code generation of the MPEG-4 AVC
decoder are quite promising since they can achieve up to
53 fps, considering that no inter-actor and platform specific
optimizations are performed so far by the synthesis tools.

MPEG-4 AVC CAL C actors C scheduler
decoder
Number 43 83 1
of files

Code Size 5.8 44 0.9
(kSLOC)

Table 4: Code size and number of files automatically
generated for MPEG-4 AVC decoder.

6. CONCLUSION AND OUTLOOK
This paper describes the essential components of the new

ISO/IEC MPEG Reconfigurable Video Coding framework
based on the streaming dataflow concept. The specifica-
tion of the RVC MPEG tool library, that unifies and covers
in modular form all MPEG video coding algorithms con-
tained in the monolithic specifications of the different ex-
isting MPEG video coding standards, shows that dataflow
programming is an appropriate way to build complex het-
erogeneous systems from high level system specifications.
The MPEG RVC framework is supported by a simulator,
software and hardware code synthesis that provide the low
level implementation of the actors and associated network
of actors for the different target implementation platforms
(multi-core processors or FPGA). The RVC-Cal dataflow
descriptions provided by the MPEG RVC standard result
very synthetic and expressive if compared to equivalent
specifications in the form of classical imperative languages.
Therefore, the languages and tools used for MPEG-RVC are
likely to be particularly efficient also for specifying other
streaming and complex signal processing systems. More-
over, RVC-Cal libraries can also be developed in the form
of proprietary implementations libraries to efficiently exploit
architectural features of the target implementation platform
in the synthesis process.

Extensions and improvements of the simulation and syn-
thesis tools supporting the RVC framework are currently in
development. They include the evolution of the software
and hardware code generators to support SW and HW co-
design, extended subsets of Cal language supported by the
two code generators, the development of scheduling tools for
mapping on multicore/codesign platforms and the evolution
of the current Open DataFlow environment and its Open
RVC-Cal Compiler infrastructure with more accurate and
extended profiling and debugging tools. The LLVM back-
end is also a promising solution to create efficient, adaptive
and portable video decoder implementations for a wide vari-
ety of platforms. The potential advantage of such approach
is to join the active research activities on LLVM and MPEG
RVC implementations, each contributing to achieve higher
efficiency of RVC Decoder implementations. In the future,
the LLVM integrated Virtual Machine will help to develop
the process capable of dynamically and efficiently instantiate



video coding tools. By combining the LLVM and the RVC
concept, a portable and universal MPEG decoder engine
that can dynamically configure a decoder implementation
according to a MPEG RVC description could be created.
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