3,355 research outputs found

    Nuclear Physics in a Susy Universe

    Full text link
    We refine a previous zeroth order analysis of the nuclear properties of a supersymmetric (susy) universe with standard model particle content plus degenerate susy partners. No assumptions are made concerning the Higgs structure except we assume that the degenerate fermion/sfermion masses are non-zero. This alternate universe has been dubbed Susyria and it has been proposed that such a world may exist with zero vacuum energy in the string landscape.Comment: 8 pages, 1 figur

    Perturbed angular correlation study of Ta-181-doped PbTi1-xHfxO3 compounds

    Full text link
    In this work, the hyperfine quadrupole interaction at Ta-doped PbTi1-xHfxO3 polycrystalline samples is studied for the first time. Powders with x=0.25, 0.50 and 0.75 were prepared and characterized by X-ray diffraction analysis. Perturbed Angular Correlation (PAC) analyses were done as a function of temperature, using low concentration Ta-181 nuclei as probes. In the ferroelectric and paraelectric phases of these compounds two sites were occupied by the probes. For each site the quadrupole frequency, asymmetry and relative distribution width parameters were obtained as a function of temperature above and below the Curie temperature (T-C). One of these sites was assigned to the regular Ti-Hf site, while the other one was assigned to some kind of defect. The behavior of the hyperfine parameters as a function of temperature was analyzed in terms of a recent published phase diagram and the presence of disorder below and above T-C. For the three compositions measured, the obtained hyperfine parameters present discontinuities which correspond to the ferroelectric-paraelectric phase transition. In both phases it was found broad frequency distributed interactions. The disorder in the electronic distribution would be responsible for the broad line width of the hyperfine interaction. (C) 2012 Elsevier B.V. All rights reserved

    A Wearable System for Jump Detection in Inline Figure Skating

    Get PDF
    This article presents the design and experimental evaluation of a non-invasive wearable sensor system that can be used to acquire crucial information about athletes’ performance during inline figure skating training. By combining distance and time-of-flight sensors and gyroscopes, the system is able to detect when jumps are performed and provides a live view of the data (e.g., the number and height of jumps) through a graphical user interface. The main novelty of our approach lies in the way in which the optical sensors are orientated. Typically, the sensors are orientated horizontally and positioned in pairs on the ground, where they measure the time interval between the moment the athlete leaves the ground and the moment they land. In our system, an optical sensor is placed under each foot and is vertically orientated so as to constantly measure the distance from the ground. In addition, a gyroscope sensor is placed on the athlete’s back, which provides information on the direction and angular momentum of the movement. By combining this data, the system provides the accurate detection of various jumps and technical elements without any constraints on the training ground. In this paper, the system is also compared to similar platforms in the literature, although there are no other specific systems that are available for inline figure skating. The results of the experimental evaluation, which was performed by high profile athletes, confirm its effectiveness in correctly detecting jumps, especially considering its compromise between precision and the overall cost of the equipment

    Topological solitons in highly anisotropic two dimensional ferromagnets

    Full text link
    e study the solitons, stabilized by spin precession in a classical two--dimensional lattice model of Heisenberg ferromagnets with non-small easy--axis anisotropy. The properties of such solitons are treated both analytically using the continuous model including higher then second powers of magnetization gradients, and numerically for a discrete set of the spins on a square lattice. The dependence of the soliton energy EE on the number of spin deviations (bound magnons) NN is calculated. We have shown that the topological solitons are stable if the number NN exceeds some critical value NcrN_{\rm{cr}}. For N<NcrN < N_{\rm{cr}} and the intermediate values of anisotropy constant Keff<0.35JK_{\mathrm{eff}} <0.35J (JJ is an exchange constant), the soliton properties are similar to those for continuous model; for example, soliton energy is increasing and the precession frequency ω(N) \omega (N) is decreasing monotonously with NN growth. For high enough anisotropy Keff>0.6JK_{\mathrm{eff}} > 0.6 J we found some fundamentally new soliton features absent for continuous models incorporating even the higher powers of magnetization gradients. For high anisotropy, the dependence of soliton energy E(N) on the number of bound magnons become non-monotonic, with the minima at some "magic" numbers of bound magnons. Soliton frequency ω(N)\omega (N) have quite irregular behavior with step-like jumps and negative values of ω\omega for some regions of NN. Near these regions, stable static soliton states, stabilized by the lattice effects, exist.Comment: 17 page

    Solid-State Nuclear Magnetic Resonance Analysis of Cytosine-Methylated DNA Dodecamer

    Get PDF
    The interaction of deoxyribonucleic acid (DNA) and cellular proteins is absolutely central to any biological understanding of DNA replication, transcription, and even gene regulation. Because an incumbent protein latches not onto the four bases but onto the backbone phosphate groups of the nucleic acid, backbone dynamics directly pertain to an understanding of basic cell processes. Studies have unambiguously proven that DNA exists in a balance of two conformations, BI and BII, defined by the difference in their backbone torsion angles. A given DNA sequence expresses a preference for either BI or BII, though both exist in most samples (and are presented as a ratio). Factors affecting that ratio include flanking sequence and methylation. When a DNA sample is methylated, which occurs at a cytosine, backbone dynamics at that site and perhaps even its neighbors are theoretically quenched due to the steric strain of a large attached group. DNA methylation is implicated in cancer diagnosis by new studies focusing on hypermethylation in CpG islands, This thesis uses solid-state deuterium NMR to study the backbone dynamics of the Dickerson dodecamer, [d(CGCGAATTCGCG)]2, which was the first synthetic BII conformer successfully crystallized (allowing for analysis in the solid state) and which contains the EcoRI binding site, GAATTC. This molecule is a good model system because a massive amount of information has been gathered on it not only using NMR, both high-resolution and solid-state, but also using x-ray diffraction, electron paramagnetic resonance, and all-atom molecular dynamics simulation. This thesis research shows the quenching of backbone dynamics due to C9 methylation

    Chandra spectroscopy of the hot star beta Crucis and the discovery of a pre-main-sequence companion

    Full text link
    In order to test the O star wind-shock scenario for X-ray production in less luminous stars with weaker winds, we made a pointed 74 ks observation of the nearby early B giant, beta Cru (B0.5 III), with the Chandra HETGS. We find that the X-ray spectrum is quite soft, with a dominant thermal component near 3 million K, and that the emission lines are resolved but quite narrow, with half-widths of 150 km/s. The forbidden-to-intercombination line ratios of Ne IX and Mg XI indicate that the hot plasma is distributed in the wind, rather than confined near the photosphere. It is difficult to understand the X-ray data in the context of the standard wind-shock paradigm for OB stars, primarily because of the narrow lines, but also because of the high X-ray production efficiency. A scenario in which the bulk of the outer wind is shock heated is broadly consistent with the data, but not very well motivated theoretically. It is possible that magnetic channeling could explain the X-ray properties, although no field has been detected on beta Cru. We detected periodic variability in the hard (hnu > 1 keV) X-rays, modulated on the known optical period of 4.58 hours, which is the period of the primary beta Cep pulsation mode for this star. We also have detected, for the first time, an apparent companion to beta Cru at a projected separation of 4 arcsec. This companion was likely never seen in optical images because of the presumed very high contrast between it and beta Cru in the optical. However, the brightness contrast in the X-ray is only 3:1, which is consistent with the companion being an X-ray active low-mass pre-main-sequence star. The companion's X-ray spectrum is relatively hard and variable, as would be expected from a post T Tauri star.Comment: Accepted for publication in MNRAS; 19 pages, 15 figures, some in color; version with higher-resolution figures available at http://astro.swarthmore.edu/~cohen/papers/bcru_mnras2008.pd

    EFFECT OF HYDRATION AND MACROMOLECULAR CROWDING ON PEPTIDE CONFORMATION, AGGREGATION AND FOLDING KINETICS

    Get PDF
    Protein folding/misfolding in vivo takes place in a highly crowded and confined environment. Such crowded environment can possibly lead to fewer water molecules surrounding a protein of interest than that seen under in vitro conditions wherein typically dilute aqueous solutions are used. When considering the aforesaid cellular characteristics, such as water depletion and macromolecular crowding; it is reasonable to assume that proteins may experience different energy landscapes when folding in vivo than in vitro. Therefore, we have investigated how degrees of hydration and macromolecular crowding affect the conformation, aggregation and folding kinetics of short peptides. In order to modulate the number of water molecules accessible to the peptide molecules of interest, we encapsulated the peptides in the aqueous core of reverse micelles formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and isooctane (IO) at different water loadings. Using this reverse micellar platform, we systematically studied the conformation and aggregation properties of alanine-based peptides and amyloid forming segments derived from amyloid beta peptides and yeast prion protein Sup35 at different hydration levels. Our studies demonstrated that limited hydration facilitates aggregate formation in these peptides and that removal of water imposes a free energy barrier to peptide association and aggregation. These studies have implications for understanding aggregate/amyloid formation in vivo where macromolecular crowding can change the solvation status of the peptides. Furthermore, we examined how the folding dynamics of secondary/supersecondary structural elements are modulated by a crowded environment in comparison to that of dilute aqueous solutions. To this effect we studied the thermal stability and folding-unfolding kinetics of three small folding motifs, i.e., a 34-residue alpha-helix, a 34-residue cross-linked helix-turn-helix, and a 16-residue beta-hairpin, in the presence of crowding agents (i.e. inert high mass polymers). Our results indicate that the folding-unfolding transition of alpha-helical peptides is insensitive to macromolecular crowding. However, we find that crowding leads to an appreciable decrease in the folding rate of the shortest beta-hairpin peptide. We propose a model considering both the static and dynamic effects arising from the presence of the crowding agent to rationalize these results

    The BG News February 24, 1988

    Get PDF
    The BGSU campus student newspaper February 24, 1988. Volume 70 - Issue 88https://scholarworks.bgsu.edu/bg-news/5766/thumbnail.jp

    Effect of posttranslational modification on the Na+, K+ ATPase kinetics

    Get PDF
    The Na+, K+ ATPase is an essential membrane protein in eukaryotic cells, which transports Na+ out of the cell in exchange for K+ into the cell. For this transport it hydrolyses one molecule of ATP for each cycle. The partial reactions of the ATPase cycle and the effects of posttranslational modifications on ATPase activity have been studied extensively. However, amalgamation of the reported rate constants for the partial reactions along with the effect of posttranslational modifications have never been attempted. We have designed a simplified four-state mathematical model of the Na+, K+ ATPase using published results for the partial reactions. We have incorporated the effect of the Na+ allosteric site and poise dependent glutathionylation and attempted to replicate K+ activated transient currents reported in voltage clamped cardiomyocytes. Our voltage clamped cardiomyocyte results indicate the K+ activated transient is an effect of poise dependent glutathionylation rather than the Na+ subsarcolemmal space. These results can be replicated to some extent by the proposed kinetic model. This is the first kinetic model of the Na+, K+ ATPase that incorporates both partial rate constants and a reported posttranslational modification which is able to reproduce voltage clamped cardiomyocyte data

    Fakeons, quantum gravity and the correspondence principle

    Full text link
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical particles as well as fake particles (fakeons). The locality assumption is applied to an interim classical action, since the true classical action is nonlocal and emerges from the quantization and a later process of classicization. The renormalizability assumption is refined to single out the special role of the gauge couplings. We show that the upgraded principle leads to an essentially unique theory of quantum gravity. In particular, in four dimensions, a fakeon of spin 2, together with a scalar field, is able to make the theory renormalizable while preserving unitarity. We offer an overview of quantum field theories of particles and fakeons in various dimensions, with and without gravity.Comment: Proceedings of the conference "Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics", Max Planck Institute for Mathematics in the Sciences, Leipzig, October 2018 - to appear in a book with the same title edited by F. Finster, D. Giulini, J. Kleiner and J. Tolksdorf - 21 page
    • …
    corecore