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ABSTRACT 

 

The Na+, K+ ATPase is an essential membrane protein in eukaryotic cells, which 

transports Na+ out of the cell in exchange for K+ into the cell.  For this transport it 

hydrolyses one molecule of ATP for each cycle.  This 3 Na+ : 2 K+ ratio of positive 

charges creates a net outward current and maintains the electrochemical gradient for 

these cations across the membrane. This is important for the resting membrane 

potential of excitable cells and in addition the Na+ gradient generated by the ATPase 

provides the electrochemical energy for several counter and co-transporters in cells 

that derive their energy from the ions gradients maintained by the ATPase. 

A large body of work has been published on experiments performed with isolated 

Na+, K+ ATPase enriched membrane fragments from the kidney of several animals.  

This work has proven to be invaluable in elucidating the rate constants for the partial 

reactions of the Na+, K+ ATPase cycle.  However, certain inherent difficulties are 

apparent with this method, such as an inability to control both the internal and 

external ionic concentrations and the inability to determine posttranslational 

regulation that occurs in situ.  To understand the regulation of the Na+, K+ ATPase in 

situ whole-cell patch clamping has proven to be an excellent method.  However, it 

has been very difficult to reconcile the results observed for the rate constants of the 

partial reactions with the effect of posttranslational modifications. 

We have designed a simplified four-state mathematical model of the Na+, K+ ATPase 

using published results for the partial reactions.  This model has been tested and 

refined with data garnered from whole-cell patch clamping under circumstances that 

didn’t involve elucidation of a posttranslational modification. This allowed us to clarify 
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the difference between the kidney enzyme population and the heart enzyme 

population.  We also described the allosteric site effect in the whole cell patch 

clamped cardiac myocyte and incorporated it into the model using previously 

reported results in the isolated Na+, K+ ATPase-enriched membrane fragments. 

One of the critical difficulties in incorporating a posttranslational modification into a 

mathematical model of Na+, K+ ATPase function is that very little information on the 

effect that these alterations impart on specific partial reactions exist.  For the last 

twenty years the K+-activated transients reported using the whole-cell patch 

clamping technique have been attributed to the Na+ diffusion restricted space.  In this 

thesis we show that the transients are not due to restricted diffusion and propose an 

alternate hypothesis that suggests that transient changes to the level of β1 subunit 

glutathionylation are the cause for these transient currents.  These transient currents 

now offer us a measurable rate constant that can be incorporated into the 

mathematical model of the ATPase and with further refinement of the model to better 

reflect the experimental observations is clearly required. 

This work offers the first mathematical model of the Na+, K+ ATPase that can 

simulate both steady state and transient currents.  Attempts at reconciling the model 

with in situ whole-cell patch clamping experiments have offered insights into the 

kinetic differences between the kidney enzyme population and the heart enzyme 

population.  Amalgamation of work performed on the kidney enzyme and whole-cell 

patch clamping have allowed us to incorporate the Na+ allosteric site into the model. 

This has lead to the first ever kinetic model of the Na+, K+ ATPase to have a 

posttranslational regulatory effect incorporated with the ability to simulate what was 

once considered an effect derived from Na+ loading of a restricted diffusion space 

within the cell. 
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CHAPTER ONE 

 

INTRODUCTION 

 

The role of Na+, K+ ATPase. 

 

First described  in 1957 by Skou 1, the Na+, K+ ATPase is an essential membrane 

protein found in all eukaryotic cells.  Its function is to transport Na+ out of the cell and 

K+ into the cell.  For this transport it hydrolyses one molecule of ATP for each cycle.  

The complete cycle involves the exchange of three Na+ with two K+ and using one 

ATP molecule to pump against their respective ionic gradients.  This 3 Na+ : 2 K+ 

ratio of positive charges creates a net outward current and maintains the 

electrochemical gradient for these cations across the membrane.  This cation 

gradient is essential in maintaining the resting membrane potential of excitable cells 

2.  The Na+ gradient generated by the ATPase provides the electrochemical energy 

for several counter and co-transporters in cells, such as the Na+/Ca2+ exchanger,  

Na+/H+ exchanger, Na+-HCO co-transporter and sodium/glucose co-transporter 

(SGLT1) 3-5.  

Na+, K+ ATPase structure. 

 

The Na+, K+ ATPase was considered to be made up of predominantly two subunits, 

the alpha or catalytic subunit and the beta subunit. It was only confirmed in the early 

1990’s that a third gamma subunit coexisted in this complex 6.  It was subsequently 

realised that the gamma subunit belongs to a 7 member family of membrane 

proteins named after a conserved FXYD motif.  The Na+, K+ ATPase  is made up of 

an alpha:beta:gamma subunit ratio of 1:1:1 7.  The α subunit has three different 
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cytoplasmic domains and ten membrane helices.  The three cytoplasmic domains 

are; the actuator, the nucleotide binding site that binds ATP and the phosphorylation 

site that is phosphorylated by ATP and allows the transport of Na+ from the 

cytoplasmic to extracellular side of the pump.  Of the transmembrane helices M4-M6 

and M8 coordinate the transported cations, M9 interacts with the FXYD protein and 

M10 has a close association with the transmembrane helix of the β subunit 8. 

The β subunit has been shown to play a significant role in the chaperoning to and 

proper insertion of the α subunit into the plasma membrane 9,10.  The β subunit isn’t 

limited to this role and has been associated with modulating the activity of the α 

subunit 9,11.  Structurally the β subunit consists of an N-terminal cytoplasmic domain, 

a single transmembrane domain and an extensive extracellular domain.  The 

transmembrane helix of the β subunit runs closely to the M7 and M10 

transmembrane domains of the α subunit and has significant contacts  with these 

domains (see Figure 1.1) 8.  The extracellular surface of the β subunit has significant 

interactions with loop 7-8 of the α subunit 12.  These contacts have been implicated 

in the modulatory effects that the β subunit has on the catalytic activity of the α 

subunit 8. 

Several early papers described low molecular weight proteins that ran on a gel with 

the purified preparations of the Na+, K+ ATPase 13-15.  Forbush et al established that 

they were related to the Na+, K+ ATPase through it’s close association with a 

ouabain derivative 16.  Since these reports the FXYD family has been shown to be 

expressed in a variety of tissues with a specific-dependent manner and its 

association to the Na+, K+ ATPase has been confirmed in every tissue 17.  Even 

though the FXYD proteins are closely associated with the Na+, K+ ATPase they do 

not play an integral role in the basic function of the pump, however it has been 
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demonstrated that they can modulate pump function when co-expressed with the α/β 

heterodimer 18,19. 

 

 

 

Figure 1.1.  Architecture of Na
+
, K

+
 ATPase with bound MgF4

2-
 and K

+
.  Taken from 

Shinoda et al.  Crystal structure of the sodium–potassium pump at 2.4 Å resolution.  

Nature 459, 446-450 (21 May 2009). 
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The Na+, K+ ATPase cycle. 

 

For the Na+, K+ ATPase to function effectively there are specific requirements that it 

must fulfil during its cycle.  Firstly, it must be able to preferentially bind Na+ and K+ 

under unfavourable conditions with a low concentration of Na+ and a high 

concentration of K+ on the inside while it preferentially has to bind K+ in an 

environment of low K+ and high Na+ concentrations on the outside.  Therefore, there 

is a need for changing selectivity through subtle structural modifications to allow the 

pump to discriminate between these cations 20,21.  These structural conformations 

that define cation binding specificity have been termed E1 (High Na+ affinity poise) 

and E2 (High K+ affinity poise). 

Secondly, it is a requirement that the transported cations are occluded within the 

enzyme to provide a gating style mechanism and hence prevent the more 

energetically favoured reverse flow of cations under physiological conditions 22. 

The figure below shows a schematic of the Na+, K+ ATPase pumping cycle based on 

the Albers-Post scheme.  Beginning at reaction 1 intracellular binding of Na+ occurs 

to the α subunit at two sites in competition with K+ and at a third Na+ selective site.  

Once binding of Na+ at all 3 sites is complete phosphorylation of an aspartate 

residue occurs and the 3 Na+ ions are occluded within the pump molecule 23.  These 

Na+ ions are subsequently deoccluded and then released to the extracellular side of 

the membrane in a sequential fashion 24.  This is followed by the binding of two K+ 

ions at the competitive binding sites which has been described to occur in a 

sequential manner as well 25.  Occlusion of the two bound K+ ions is preceded by 

dephosphorylation and subsequent release of the K+ ions to the intracellular side of 
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the membrane.  Another ATP molecule then binds and the cycle begins again 

through the binding of intracellular Na+. 
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Figure 1.2.  Albers-Post scheme for catalytic cycle of Na
+
, K

+
 ATPase.
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Regulation of the Na+, K+ ATPase by intracellular cations. 

 

Considering that there is competitive binding between Na+ and K+ at intracellular 

binding sites potential changes in concentrations of either would logically have an 

effect on overall turnover rate and in turn have a regulatory effect. In 1981 Eisner et 

al described that the activity of the Na+, K+ ATPase was a function of the 

concentration of intracellular sodium in experiments using voltage-clamped sheep 

cardiac Purkinje fibres and Na+-sensitive microelectrodes.  These experiments 

showed that when the Purkinje fibres were loaded with Na+, in a K+-free extracellular 

solution, upon reactivation with the K+ congener Rb+ an exponential decay in pump 

activity correlated well with an exponential decay in intracellular sodium 

concentration as measured by the Na+-sensitive electrodes 26. Subsequent 

experiments performed on guinea pig ventricular myocytes using the whole-cell 

patch clamp technique showed that pump activity was indeed dependent on 

intracellular Na+ concentration (Figure 1.3).  Nakao and Gadsby concluded that 

intracellular Na+ activated pump activity had reached saturation with an intracellular 

Na+ concentration of ~50 mM 27.   
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Figure 1.3.  Saturable activation of Na
+
, K

+
 ATPase current at 0 mV by [Na]pip.  Taken 

from Nakao & Gadsby. [Na] and [K] dependence of the Na/K pump current-voltage 

relationship in guinea pig ventricular myocytes. J Gen Physiol. 1989 Sep;94(3):539-65. 

 

 

 

 

They  obtained a K0.5 value for activation by intracellular Na+ of 10 ± 0.5 mM with Cs+ 

as their K+ conger in their patch pipette solutions 27.  Similar experiments performed 

by Shattock et al in rabbit ventricular myocytes found the K0.5 for intracellular Na+ 

activation to be ~19 mM under conditions with physiological intracellular K+ 

concentrations 28. 
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Figure 1.4.  Relationship between extracellular [K
+
] and sodium pump current in cells 

isolated from control (●) and potassium depleted (○) rabbits.  Taken from Shattock et 

al. Sodium pump current measured in cardiac ventricular myocytes isolated from 

control and potassium depleted rabbits. Cardiovasc Res. 1994 Dec;28(12):1854-62. 

 

As revealed in the above graph the intracellular Na+ activation K0.5 is dependent on 

the intracellular concentration of K+, as was observed under conditions in which cells 

were K+ depleted by placing rabbits on K+ deficient diet for 25 days.  In figure 1.4 K+ 

depleted rabbit ventricular myocytes shift the activation curve to the left and a 

subsequent reduction in the K0.5 of intracellular Na+ to ~16mM is observed. 

The idea that K+ antagonises Na+ activation creates a potential regulatory site that 

can be described by molecular modelling of the partial rate reactions of the Na+, K+ 
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ATPase under physiological conditions.  The competition at the intracellular binding 

sites at the E1 poise between Na+ and K+ causes an observable decrease in the 

overall forward rate constant in the model published by Kong and Clarke 29.  This 

competition was experimentally described in the isolated rabbit kidney enzyme 

preparation by Schulz and Apell 30 at the E1 poise using changes in the fluorescence 

of RH421 as a measure of ion binding and release.  This is in agreement with 

several studies using the whole-cell patch clamping technique that reported that 

increasing K+ concentrations in the patch pipette causes a significant decrease in the 

measured pump current, as seen in figure 1.5.  This antagonism between Na+ and 

K+ ions is reflected in the regulation of the ATPase by extracellular cations. 
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Figure 1.5.  Pump current remaining after inhibition by [K
+
]pip at 0 mV.  Taken from 

Hansen et al.  Dependence of Na
+
-K

+
 pump current-voltage relationship on intracellular 

Na
+
, K

+
, and Cs

+
 in rabbit cardiac myocytes.  Am J Physiol Cell Physiol. 2002 

Nov;283(5):C1511-21. 
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Regulation of the Na+, K+ ATPase by extracellular cations. 

 

Early studies in ghost red blood cells found that extracellular K+ and its congeners 

had the ability to increase Na+, K+ ATPase activity in a concentration dependent 

manner 31 (Figure 1.6).  It was also described that there was an antagonistic effect of 

Na+ on the ability of K+ to increase ATPase activity 31-34. 

 

Figure 1.6.  Stimulation of adenosine-triphosphatase activity by external Li
+
 (□), K

+
 ( ), 

Rb
+
 (○) and Cs

+
 ( ) ions.  Graph plots µmoles of orthophosphate liberated/ml of 

‘ghosts’/hr (Y-axis) against concentration of external cation (X-axis).  Taken from 

Whittam & Ager.  Vectorial aspects of adenosine-triphosphatase activity in erythrocyte 

membranes.  Biochem J. 1964 Nov;93(2):337-48. 

 

Under conditions where intracellular and extracellular ion concentrations can be 

separately controlled and membrane voltage fixed in voltage-clamped cardiac 

myocytes Nakao & Gadsby reported that extracellular Na+ inhibits pump activity 

induced by activation through extracellular K+ in a concentration dependent manner.  

They showed that the pump activity was also determined by extracellular K+ and that 
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K0.5 of K+ activation was higher in Na+ containing than Na+-free extracellular 

solutions (Figure 1.7).  These observations indicated that extracellular Na+ and K+ 

competed either for similar binding sites or for similar transport pathways through the 

pump 27. 

 

 

 

 

Figure 1.7.  Activation of the Na/K pump current at 0 mV by [K
+
]o, at 150 mM [Na

+
]o 

for (A) or at zero [Na
+
] for (B).  Taken from Nakao & Gadsby. [Na] and [K] dependence 

of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J 

Gen Physiol. 1989 Sep;94(3):539-65. 
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Voltage-dependence of the Na+, K+ ATPase. 

 

The Na+, K+ ATPase generates an outward current through its exchange of 3 Na+ 

with 2 K+ ions.  The extra Na+ ion in the complete Na+, K+ ATPase cycle is 

electrogenic and the cycle is dependent on the membrane potential.  Gadsby et al 35 

were the first to investigate the effect of membrane potential on the Na+, K+ ATPase 

using the whole-cell patch clamping technique.  This technique afforded them 

excellent control over not only the intracellular ionic concentration but also over the 

membrane potential.  They measured pump currents between -140 mV and +60 mV, 

reporting a sigmoid shaped to the current-voltage (Ip-V) relationship which clearly 

demonstrated an effect of membrane potential on the pump current. 

Considering the electrogenicity of the pump is derived from the third Na+ ion 

transported it is of particular interest for understanding the steps in the pump cycle 

that depend on membrane potential.  Nakao and Gadsby reported that changes in 

the extracellular Na+ concentration altered the Ip-V relationship of the Na+, K+ 

ATPase 27.  They used several extracellular Na+ concentrations as seen in figure 1.8 

and observed that at very positive membrane potentials there was little effect of the 

concentration on pump current.  However, the slope of the Ip-V relationship at 

negative membrane potentials was markedly dependent on the Na+ concentration in 

the 50 to 150 mM range.  When the external concentration of Na+ was reduced to 

1.5 mM the positive slope was almost abolished. 
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Figure 1.8.  Graded influence of [Na
+
]o on the shape of the Na/K pump I-V relationship 

at 50 mM [Na
+
]pip and 5.4 mM [K

+
]o.  Taken from Nakao & Gadsby. [Na] and [K] 

dependence of the Na/K pump current-voltage relationship in guinea pig ventricular 

myocytes. J Gen Physiol. 1989 Sep;94(3):539-65. 

 

The main voltage step in the Na+ arm of the pump cycle has been attributed to the 

reverse rate constant of the Na+ translocation step or what can be considered the 

rebinding of extracellular Na+ 36. 

K+ translocation was thought to be voltage insensitive for many years.  However, 

studies in voltage-clamped Xenopus oocytes by Lafaire and Schwarz suggested a 

possible second membrane potential sensitive step in the K+ arm of the cycle 37.  

Rakowski et al confirmed what others had shown that the pump is voltage-

independent when extracellular Na+ is eliminated and as long as extracellular K+ 

concentrations are maintained at saturating levels (> 5 mM) 38.  However, as they 

reduced the concentration of extracellular K+ to levels below saturating they 
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observed a distinct change in the Ip-V relationship consistent with a voltage 

dependence of extracellular K+ binding.  These results are in contrast to the earlier 

results obtained in cardiac myocytes by Nakao and Gadsby 27. 

Peluffo and Berlin performed step changes in membrane potential in the presence of 

extracellular K+ or the K+ congener TI+ at concentrations below the levels that 

induced maximal steady state current 39.  They concluded that a small electrogenic 

step existed in the K+ arm of the pump cycle and it was attributed to extracellular K+ 

binding 39,40.  These results supported the earlier findings of Rakowski et al in 

Xenopus oocytes. 

Hormonal regulation of the Na+, K+ ATPase. 

  

Hormonal control of the Na+, K+ ATPase is an essential element in understanding the 

role and function of the pump in vivo and under pathophysiological conditions.  A 

large variety of studies have established a clear role for hormonal regulation. 

However, the effect on both long term and short term pump activity and their 

interplay in vivo remains incompletely understood 41. 

Corticosteroids, catecholamines and peptide hormones are some of the major 

hormonal regulators of the Na+, K+ ATPase 42-48.  Most of these hormones are 

reported to activate different protein kinases, phospholipases and phosphatases 

which in turn have been associated with the activation or inhibition of the Na+, K+ 

ATPase in a variety of different tissues and species (reviewed in Therien and 

Blostein, 2000) 41.  Recently reports have coupled the activation of these 

kinases/phospholipases and phosphatases to changes in the levels of 

glutathionylation of the β1 subunit in cardiac myocytes and in turn changes to the 

pump activity ( For summary see figure 1.9) 49. 
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Figure 1.9.  Schematic demonstrating redox regulation of Na
+
, K

+
 ATPase within the 

caveolae—the flask-shaped invaginations of plasma membrane that facilitate the 

spatiotemporal organization of the signaling complexes.  Taken from Figtree et al.  

Oxidative regulation of the Na
+
-K

+
 pump in the cardiovascular system.  Free Radic Biol 

Med. 2012 Dec 15;53(12):2263-8.  The scheme represents the complex interplay of 

receptor coupled signaling currently reported.  Activation of NADPH Oxidase by 

protein kinase C (PKC) can be derived from Ang II receptor type 1 activation or B1 

adrenergic receptor activation via cAMP and protein kinase A (PKA).  NADPH 

production of superoxide (O2
●-

) can cause inhibition of the Na
+
, K

+
 ATPase via 

glutathionylation of the β1 subunit.  O2
●- 

can also uncouple eNOS and exacerbate the 

effect by preventing cGMP pathway inhibition of cAMP.  eNOS activation by β3 

adrenergic receptor (B3R) and Natriuretic Peptide receptor C (NPR-C) can cause 

increases in pump activity by reducing NADPH Oxidase activity through inhibition of 

cAMP.  The green lines show the pathways reported that cause stimulation of the Na
+
, 

K
+
 ATPase via phosphorylation of the FXYD1 subunit. 
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Glutathionylation and the Na+, K+ ATPase. 

 

Thiols are a class of organic sulphur derivatives that have been apportioned a variety 

of functions in biology.  In biological systems sulphur derivatives are formed in two 

main groups, large complex proteins containing thiol groups and small simpler 

molecules such as the tripeptide glutathione.  The reactive properties of these thiols 

play an important part in redox sensitive biochemical processes.  Coupled with the 

reversibility of these reactions, mediated by the thiol-disulphide oxidoreductase 

superfamily, makes modifications of thiols good candidates for signal transduction. 

Modifications of protein sulphur groups and the cysteinyl residues on proteins can 

modulate/regulate the function of many important proteins.  The following table from 

Hill and Bhatnagar shows a sample of proteins from cardiovascular tissue that show 

significant changes in function when exposed to redox sensitive changes in their 

level of glutathionylation 50. 
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Table 1.10.  Glutathiolated proteins in cardiovascular tissues.  Taken from Hill & 

Bhatnagar.  Protein S-glutathiolation: Redox-sensitive regulation of protein function.  J 

Mol Cell Cardiol. 2012 Mar;52(3):559-67. 

 

As seen in the above table the Na+, K+ ATPase is susceptible to glutathionylation of 

the β1 subunit at cysteine 46 in the transmembrane section.  This was confirmed in a 

set of mutational studies were the α1 and β1 subunits were co-expressed in Xenopus 

oocytes and cysteine 46 was mutated to a tryptophan residue.  In these experiments 

it was shown that peroxynitrite induced glutathionylation of the β1 subunit inhibited 

pump turnover and that when the β1 subunit was expressed with the mutated 

cysteine residue at position 46, exposure to peroxynitrite did not change pump 

activity 51. 
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Confirmation that glutathionylation of the β1 subunit occurrs in a cellular system 

would confer it physiological relevance and it was shown that glutathionylation of the 

β1 subunit occurred in cardiac myocytes of rabbits.  Glutathionylation of the β1 

subunit has been shown to be regulated by several different receptor-coupled 

neurohormonal signals and that pump activity and levels of β1 subunit 

glutathionylation are inversly corrolated 52.  

A subsequent study described the poise dependence of the susceptibility of the β1 

subunit to glutathionylation.  Differentiating between an E2 and E1 state using 

different compositions of solutions to suspend the ATPase in preferential 

conformational poises indicated that the E1 poise is highly susceptible to 

glutathionylation while the E2 poise is resistant to increases in peroxynitrite-induced 

glutathionylation of the β1 subunit 53. 

Na+ Subsarcolemmal space and the Na+, K+ ATPase. 

 

The concept of origin for the Na+ subsarcolemmal space were instigated by 

experiments performed to understand the involvement of the Na+/Ca2+ exchanger in 

Ca2+-induced Ca2+-release form the sarcoplasmic reticulum and whether voltage-

dependent Na+ channels modulated this interaction.  LeBlanc and Hume studied the 

effect Na+ channel conductance during the action potential of isolated guinea pig 

myocytes have on the Ca2+ transient.  TTX, a specific Na+ channel blocker, 

significantly reduced the Ca2+ transient as measured by the Ca2+ indicator Indo-1 54.  

They surmised that as TTX didn’t change the action potential plateau or duration that 

a TTX-dependent reduction in Ca2+ transient observed was not due to changes in 

Ca2+ entry through the Ca2+ channels.  To understand where this influx of Ca2+ 

originated from they used the Ca2+ channel blocker Nisoldipine.  They activated the 



33 

 

voltage-sensitive Na+ channels with voltage clamp pulses from -80 mV to -40 mV 

and described that a fast inward current that was associated with a Ca2+ transient 

was abolished by the application of TTX.  They determined that the source of the 

Ca2+ transient was from the SR and they finally concluded that the Na+ induced Ca2+-

release from the SR was dependent on extracellular Ca2+ and that the extracellular 

Ca2+ did not flow through sarcolemmal Ca2+ channels, thus implicating the Na+/Ca2+ 

exchanger.  They believed that the opening of the voltage-dependent Na+ channels 

induced a localised increase in the Na+ concentration around the Na+/Ca2+ 

exchanger which induced the reverse mode of Na+/Ca2+ exchanger.  This was taken 

to account for the increase in the intracellular Ca2+ concentration and Ca2+-induced 

release of Ca2+ from the SR. 

An editorial by Lederer et al commenting on Leblanc and Hume’s results, explicitly 

proposed the possible existence of a subsarcolemmal space with restricted diffusion 

for Na+ as an explanation for the results reported 55.  To adequately explain the 

results presented by LeBlanc and Hume they discussed the fact that the activation of 

the Na+ current cannot achieve a high enough concentration of Na+ in the 

intracellular bulk phase to activate the reverse mode of the Na+/Ca2+ exchanger 56.  

The only probable explanation was that the Na+ that travels through the channels 

enters a restricted diffusion space under the subsarcolemma and that this causes 

localised increases in the concentration of Na+ that would activate the reverse mode 

of the Na+/Ca2+ exchanger and subsequently cause enough Ca2+ entry to induce 

Ca2+ release from the SR.  Since no real physical evidence existed at the time the 

phrase “fuzzy space” was coined to describe the area of restricted Na+ diffusion 55. 

A transient current in experiments using Rb+ to activate the Na+, K+ ATPase had 

been reported in previous work on voltage clamped Purkinje fibres. The transient 
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current was associated with changes in the bulk cytosol Na+ concentration 57. 

Essentially these experiments were performed under conditions that could not 

control the intracellular cation concentrations.  This problem could theoretically be 

overcome with whole-cell patch clamping.  However experiments performed by 

Bielen et al reported that in whole-cell patch clamped single cardiac Purkinje cells or 

ventricular myocytes, re-activation of the Na+, K+ ATPase by extracellular K+ also 

caused a transient current similar to the type previously reported under conditions 

where control of the bulk phase Na+ concentration was not possible.  This was 

unexpected since the whole-cell patch clamp technique was thought to control 

intracellular ionic concentrations and hence eliminate a transient pump current that 

was thought to be due to electrogenic pumping of Na+ that had accumulated during 

pump inhibition in K+-free extracellular solutions.  The K+-induced transient current 

was attributed to two different possible causes, a poor control of the bulk cytosol Na+ 

concentration by the patch pipette when the Na+, K+ ATPase had been inhibited or 

an uncontrolled accumulation of Na+ in a diffusion-restricted subsarcolemmal space 

that occurred when the Na+, K+ ATPase was inhibited 58.  

Carmeliet attempted to consolidate the available observations and reviewed the 

potential existence of the Na+ subsarcolemmal space.  He put forward three different 

types of evidence for the existence Na+ subsarcolemmal space, which include the 

Na+, K+ ATPase K+-induced transients, the Na+-activated K+ channels that can be 

activated with low cytoplasmic Na+ concentrations and the Na+/Ca2+ exchanger 

derived Ca2+-induced Ca2+ release reported by LeBlanc and Hume.  Based on the 

data published by Bielen et al there are two explanations offered for the Na+, K+ 

ATPase K+-induced transients, firstly that the transient is due to the accumulation of 

Na+ in the subsarcolemmal space when the pump is deprived of extracellular K+ or 
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that there is a build up of bulk phase Na+ concentration in the cell through a 

diffusion-restricted interface with the patch pipette.  Carmeliet deduced that it is not 

the accumulation of Na+ by a suboptimal pipette/cell interface by describing a 

transient seen at very high Na+ concentrations as a personal communication from 

Bielen and Verdonck.  Therefore, Carmeliet believed there is no other explanation of 

the K+-induced transients other than the existence of a subsarcolemmal space that 

restricts Na+ diffusion relative to the bulk cytosol and that this space cannot be  

controlled by the patch pipette when the Na+, K+ ATPase is inactivated by K+-free 

extracellular solutions 59. 

Several efforts at describing the K+-induced transient and how the inhibition of the 

Na+, K+ ATPase affected the function of the Na+/Ca2+ exchanger in cardiac myocytes 

were made.  Fujioka et al described that the Na+, K+ ATPase K+-activated transients 

occurred with both 20 mM Na+ and 100 mM Na+ patch pipette solutions with Su et al 

producing similar results with a more comprehensive study of pipette Na+ 

concentrations and its effect on the transient currents 60,61.  Fujioka et al reported 

that the reversal potential of the NCX hardly changed when the Na+, K+ ATPase was 

activated with extracellular K+.  This therefore contradicts the idea that the Na+, K+ 

ATPase can cause Na+ depletion of the Na+ subsarcolemmal space and 

subsequently cause the K+-induced transients 60.  It’s difficult to interpret the results 

presented by Fujioka et al as Cs+ was included in the standard K+-free external 

solution and Cs+ is a known activator of the Na+, K+ ATPase 62,63. Both Bielen et al 

and Su et al report the K+-induced transients persist in Na+-free extracellular 

solutions.  However upon closer examination both display significant methodological 

issues as ascertained from close examination of their experimental solutions.  The 

problem with Su et al and Bielen et al was that NaCl was replaced with Tris.HCl or 
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Choline chloride, in the case of Su et al no other base is mentioned in the methods 

to buffer the extracellular solution other than NaOH and Bielen et al used LiOH to 

buffer their Na+-free extracellular solution.  Li+ can act as a K+ conger causing 

activation of the Na+, K+ ATPase 31.  Experiments performed using these methods 

would introduce artefacts that make the results difficult to interpret. 

Several reports have attempted to determine the diffusion coefficients for Na+ in the 

restricted space.  Despa et al reported that in experiments that were designed to 

measure intracellular diffusion rates, they exposed part of a myocyte to extracellular 

K+ to activate the Na+, K+ ATPase and with SBFI measured a change in the 

intracellular Na+ concentrations.  With this method they were able to approximate a 

diffusion rate of Na+ at 100-200 times slower than what is expected in water using a 

one dimensional diffusion model.  They hypothesised that Na+ might be taken up by 

the mitochondria or that the tortuosity of the cytosol may cause inhibition of free Na+ 

diffusion through the cell 64.  Earlier Despa and Bers had attempted to determine the 

diffusion rate constants for Na+ in the subsarcolemmal space using the whole-cell 

patch clamping method.  They replicated transiently enhanced K+-activated Na+, K+ 

ATPase currents previously shown by others at low pipette Na+ concentrations.  

However, interestingly they showed that with a pipette solution containing 100 mM 

Na+ they a transient peak pump current was abolished.  Their explanation for this 

was that they had achieved a high enough concentration of Na+ to overcome the 

restricted diffusion in the subsarcolemmal space and achieve saturation of 

intracellular Na+ activation of the Na+, K+ ATPase.  With such saturation Na+, K+ 

ATPase induced depletion of local Na+ is not expected to be reflected in a transient 

peak current.  These results were in contrast to the results reported by Su et al who 
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performed similar experiments and found that the transient persisted with high 

intracellular Na+ 61.   

Despa and Bers estimated from their radial diffusion model that the width of the 

“fuzzy space” was between 100 nm and 500 nm.  This is much larger than that 

suggested by Lederer et al and would be impossible to reconcile with the necessary 

space that is required for the subsarcolemmal Na+ concentration to cause the 

reverse mode in the Na+/Ca2+ exchanger and subsequent Ca2+-induced Ca2+ release 

by the SR.  They also calculated that the diffusion coefficient required to adequately 

explain their results was 103 to 104 time lower then seen in the bulk cytosol and one 

to two orders of magnitude greater than what they observed in their experiments 

using SBFI two-photon fluorescent measurements 64.  Both reports describe 

potentially significant alterations to free Na+ diffusion within cell.  However there is 

very little direct evidence as to how this could occur. 

Attempts to visually ascertain the structure of the Na+ subsarcolemmal space 

through electron probe methods have yielded contradictory results.  Wendt-Gallitelli 

et al showed through electron probe microanalysis that a subsarcolemmal gradient 

existed just below the cell membrane. They describe significant gradients in cells 

that were excited with paired voltage-clamp pulses and believed that the Na+ 

gradient was coupled to constant electrical activity that is physiological for a cardiac 

myocyte.  However, they found little evidence of a Na+ gradient when the cell was at 

rest.  Silvermann et al, using a similar method known as electron probe X-ray 

microanalysis, reported a gradient in cells at rest and that the gradient did not 

change during diastole and systole, at odds with what was reported by Wendt-

Gallitelli et al 65.  Interestingly Wendt-Gallitelli et al observed a Na+ gradient but they 

also observed microheterogeneity with patches of high, 60-80 mM Na+ and low, 0-15 
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mM Na+ concentrations together.  They attributed this to microdomains containing a 

mixture of different ion channels and pumps in the membrane 66.  This idea of 

micropatches of high and low Na+ concentrations together was recently discussed by 

Aronsen et al as potential hotspots/coldspots of Na+ near the subsarcolemma as 

opposed to a large area of restricted Na+ diffusion 67. This conclusion of short-lived 

hotspots/coldspots occurring was supported by a recent study that reported Na+ 

diffusion within the cell as being much faster than previously recognised 68. 
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Scope of Thesis. 

 

A large amount of work has been published in the study of the Na+, K+ ATPase using 

two substantially different methods; isolated Na+, K+ ATPase-enriched membrane 

fragments, predominantly of the pig kidney and whole-cell patch clamping of cardiac 

myocytes.  The studies on membrane fragments have been used to determine the 

kinetics of the pumping cycle.  However, the extent to which this can be reconciled 

with kinetic properties of in situ pumps in cardiac myocytes is very poorly 

understood. 

Typically, there is a disconnect between studies on membrane fragments and intact 

cells and the present study attempts to reconcile the work on isolated enzyme 

preparation from pig kidney and whole-cell patch clamping from cardiac myocytes 

and Xenopus Oocytes.  The main aims of the study are: 

1. With the large amount of data that has been gathered on the partial reactions 

of the kidney enzyme, we will attempt to reconstruct the kinetics of its entire 

reaction cycle in a mathematical model and make predictions from the kidney-

based model to experimental results obtained on the Na+, K+ ATPase in heart 

muscle cells via the whole-cell patch clamp technique (Chapter 3). 

2. We will investigate the effect of the Na+ allosteric site on Na+, K+ ATPase 

activity in cardiac myocytes. In particular we aim to determine from which side 

of the protein the ions are acting using this cellular system and subsequently 

alter the kinetic model previously described to incorporate the allosteric site 

effect (Chapter 4). 
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3. We will examine the K+-activated transient currents and the potential role that 

poise dependent glutathionylation may play in the widely reported peak 

transient K+-activated pump currents that conventionally is attributed to a 

subsarcolemmal space with restricted Na+ diffusion.  We will incorporate 

results from these studies on glutathionylation into the kinetic model and 

compare this model to the experimental results (Chapter 5). 
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CHAPTER TWO 
 

METHODS 

 

Animals and Housing. 

 

Male New Zealand white rabbits were used in all the experiments and weighed 

between 2.5 and 3.5 kgs when euthanased.  Rabbits were sourced from two 

suppliers Merungora Rabbits suppliers.  The rabbits were housed in the Kearns 

Animal Facility at the Kolling Institute of Medical Research, Royal North Shore 

Hospital.  Rabbits were housed in individual cages and the environment was 

maintained at 22 degrees with a 12 hour light and dark cycle.  Water and 

commercially sourced rabbit chow were offered ad libitum.  All animals euthanased 

for the experimental protocols outlined below were approved by the local 

(RNSH/University of Technology Sydney) Animal Care and Ethics Committee. 

Isolation of Cardiac Myocytes. 

 

The method used for isolation was adapted from Haddad et al 69.  The rabbits were 

anaesthetised with 50mg/kg ketamine (Parnell Laboratories (Aust) PTY.Ltd.) and 

20mg/kg xylazine (Troy Laboratories, PTY, Ltd, NSW, AU) intramuscularly.  Heparin 

(1000U) was given intravenously via a marginal vein in the ear using a 23 G butterfly 

needle.  Once deep anaesthesia was achieved, a left lateral intercostal incision at 

the level of the fifth intercostal space was made.  This incision was extended using 

scissors across the midline and superiorly along the right ribs.  The heart was 

exposed, freed from its attachments and the aorta transected rapidly. 
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The excised heart was rinsed three times in ice-cold (2-4 °C) Krebs solution 

containing (in mM): 130 NaCl, 2.8 KCl, 25.0 NaHCO3, 1.2 KH2PO4, 1.2 MgSO4, 10 

glucose, 19.9 Taurine.  The solution was preoxygenated using carbogen (95% O2 - 

5% CO2) for one hour to achieve a pH of 7.4 at 35°C.  Once free from any remaining 

blood and debris, the heart was attached to a Langendorff perfusion apparatus 

(Laboratory Supply Sydney, Australia) by securing the aorta to a glass cannula with 

a silk suture.  The cannula tip was positioned 3-4 mm above the aortic valve to 

ensure adequate perfusion of the coronary arteries.  The heart was perfused with 

cold Krebs solution for 6 minutes by attaching an intravenous infusion set to the side 

arm of the Langendorff perfusion apparatus.  After 6mins, the perfusion solution was 

switched to a warm Krebs solution (35°C).  It was warmed using a thermostatically 

controlled water bath (Julabo, Seelbach,Germany ) and kept at a constant 

temperature using the recirculation circuit of heated distilled water surrounding the 

perfusion column.  Perfusion of the warm Krebs solution was achieved using a rate 

adjustable peristaltic infusion pump (Cole-Palmer Instrument Co, Chicago, USA).  A 

glass water jacket, also heated by the recirculation circuit was placed around the 

heart.   

The suspended heart was perfused with warm Krebs solution for 6 minutes, and 

subsequently with a warmed Krebs solution containing ≈ 217 U/ml of type II 

collagenase (Worthington Biochemical Corp, Freehold, NJ, USA) and ≈ 874 U/ml of 

hyaluronidase (Worthington Biochemical Corp, Freehold, NJ, USA).  (The ratio of 

collagenase to hyaluronidase depended on the season as rabbit hearts contain more 

collagen in the winter 70.The heart was perfused with the enzyme containing solution 

from 8-14 minutes.  The enzymatic digestion of the heart was judged complete when 

it became enlarged and appeared glassy and translucent.  It was cut down from the 
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apparatus using an incision separating the atria from the ventricles; only the 

ventricles were used in the subsequent experiments. 

The ventricles were placed in a beaker containing a small amount (20 mls) of 

enzyme containing Krebs and coarsely shredded using scissors.  The cell 

suspension was then strained through a plastic mesh (500 μM pores) to eliminate 

debris.  The filtrate was transferred to test tubes, which were centrifuged for 1 minute 

45 seconds at 350 rpm in a Krebs solution.  The supernatant was then aspirated and 

the pellet was re-suspended in Krebs solution.  This solution was centrifuged again 

using the same speed and time period as before.  The resulting supernatant was 

then aspirated and the pellet re-suspended in a solution containing equal volumes of 

Ca2+ containing Krebs and non Ca2+ containing Krebs.  This solution was centrifuged 

again for 1 minute and 45 seconds at 350 rpm.  The resultant pellet formed was then 

stored in a solution of Ca2+ Krebs solution at room temperature until experimentation.  

Myocytes isolated were used for experimentation on the day of isolation only. 

Detection of poise dependent Glutathionylation in purified pig kidney Na+, K+ 

ATPase. 

 

The purified pig kidney enzyme was a generous gift from Prof. Flemming Cornelius, 

Department of Biomedicine, Aarhus University, Denmark. To induce the desired 

conformational states we incubated the enzyme in previously described metal 

fluoride solutions 71. To stabilise the enzyme in an E2P-like state it was incubated in 

5 mM NaF, 100 µM BeSO4 and 30 mM Histidine and for a Na+ occluded-like state 

the composition was 5 mM NaF, 200 uM AlCl3, 1 mM ADP and 30 mM Histidine.  

The enzyme was incubated at room temperature for 15 min to complete the 

transitions to metal fluoride stabilised poises.  Glutathionylation was induced using 
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hydrogen peroxide at a nominal concentration of 0.5% and incubated at room 

temperature for 5 min.  The samples were placed on ice and Laemmli buffer was 

added before the samples were incubated at 95° C for 5 mins. 

Following SDS-PAGE, membranes were immunoblotted with an antibody for the β1 

Na+, K+ ATPase subunit (Millipore Bioscience) and an Anti-glutathione antibody 

(Virogen Corporation).  Western blots were quantified by densitometry using a Las-

4000 image reader and Multi Gauge 3.1 software (Fuji Photo Film Co., Ltd.).  

Exposure times were adjusted to ensure that the variation in signal intensity was in 

the linear dynamic range. 

The Whole Cell Patch Clamping Technique. 

 

The patch clamp technique allows the study of the electrophysiological properties of 

a cell or membrane.  It allows control of both the intracellular and extracellular 

environment as well as control of the membrane potential Vm and measurement of 

membrane currents.  A wide tipped glass pipette is placed on the surface of the cell 

membrane to form a seal with it.  Gentle suction is then applied to rupture the 

membrane and allow perfusion of the intracellular compartment of the cell with the 

contents of the pipette.  The pipette contains an Ag/AgCl electrode which acts as an 

interface between the pipette solution and the electronic circuitry.  See figure 2.1. 
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Figure 11.  The whole-cell patch-clamp technique. 

 

A wide-tipped (~5 m) pipette is gently placed onto the surface membrane of a 

single ventricular myocyte.  Gentle suction is then applied to the back of the pipette 

until the membrane under its tip is ruptured.  This allows the patch pipette solution to 

perfuse the intracellular compartment and hence control of intracellular Na+, K+ 

ATPase ligand concentrations and membrane voltage.  The technique also allows 

the measurement of membrane currents, including the electrogenic Na+, K+ ATPase 

current generated by pumps in the membrane. 
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Figure 12.2.  Cardiac myocyte as seen under high magnification using an inverted phase 

contrast microscope. 

 

Tissue bath and experimental set up. 

 

A 350 μL tissue bath  was secured to the stage of an inverted phase contrast 

microscope (Nikon TE200, Nikon Corp, Tokyo, Japan), allowing direct visualisation 

of the isolated cardiac myocytes (see Figure 2.2. for an example).  Two single in-line 

solution heater (Warner Instruments, Hamden, Connecticut, USA) with a dual 

temperature controller (Warner Instruments, Hamden, Connecticut, USA) maintained 

the temperature of the superfusate solutions before they entered the tissue bath.  

Temperatures were monitored using a telethermometer (Yellow Springs Instruments 

Co Inc, Yellow Springs, 0hio, USA). 

The tissue bath was gravity fed; all superfusates were administered using 

intravenous infusion sets.  Solutions were drained from the tissue bath, under 

continuous suction.  The depth of the tissue bath was maintained at a constant level 

by the use of a Perspex cap bridge, which separated the tissue bath from a second 

reservoir.  Rapid exchange of superfusate solutions were performed with fast-step 

perfusion equipment (Warner Instruments, Hamden, Connecticut, USA).  The time 
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taken to exchange solutions over the complete membrane surface of the cardiac 

myocyte is restricted by the T-tubule system.  All of the equipment was placed on a 

vibration isolation table (Technical Manufacturing Corp, MA, USA) located inside a 

Faraday cage.  The bath solution was grounded via an Ag/AgCl electrode placed 

downstream in the tissue bath.  Prior to experimentation, the ground electrode and 

tip of the filled patch pipette were lowered in to the tissue bath and the potential 

offset was reset to zero.  All metallic equipment was grounded to a point within the 

Faraday cage to reduce electrical interference and noise. 

Patch clamp equipment. 

 

Wide tipped glass pipettes were prepared from unfilamented thin walled borosilicate 

glass tubing (Harvard apparatus, Kent, UK).  Pipettes were pulled to a tip diameter of 

4-5 μM using a Sutter P-87 puller (Sutter Instruments Co, Foster City, CA, USA) and 

fire polished using a Narishige microforge (Narishige Scientific Instrument Lab, 

Tokyo, Japan) to ensure a smooth tip.  Patch pipettes were used within 8 hours of 

construction to ensure dust particles did not adhere to the glass and prevent seal 

formation between the pipette and the cell membrane.  The pipettes were stored in a 

sealed electrode container (World Precision Instruments, Florida, USA) to prevent 

access of dust particles. 

Patch pipettes were back filled with pipette solution, that was filtered using a 0.2 µm 

syringe filter (Pall Corporation, Ann Arbor, MI, USA) to minimize particle adhesion of 

the pipette tip, using suction before being placed in an electrode holder connected to 

a manipulator-mounted headstage (Axon Instruments, Foster City, California, USA).  

The headstage was connected to an Axoclamp 2B amplifier (Axon Instruments, 

Foster City, California, USA).  The tip of the patch pipette was placed on the surface 
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of a cardiac myocyte using a Narishige Hydraulic Micromanipulator (Narishige Co. 

Ltd, Tokyo, Japan).  An offset of 2-4 mV was typically observed due to the 

development of a liquid potential.  Any offset larger than 4 mV, were corrected so as 

not to interfere with subsequent measurements. 

Gentle suction was applied to the membrane directly under the membrane tip using 

the sidearm of the pipette holder.  The cell was then lifted off the floor of the tissue 

bath.  A 20 mV, 40 ms depolarising square wave pulse was passed from the voltage 

clamp amplifier through the pipette at an interval of 1500 ms.  The process of seal 

formation was monitored by observing the current elicited during the plateau of the 

sealing pulse.  Once a seal had formed, a small amount of suction was occasionally 

applied to rupture the membrane.  Rupture of the membrane allowed low resistance 

access to the interior of the cell through the pipette tip and perfusion of the 

intracellular compartment with the contents of the patch pipette.  This state is termed 

“whole cell configuration”.  A video microscopy camera (CCD-72S series, Dage-MTI 

Inc, Michigan City, IN, USA) and video monitor (Matsushita Electric Industrial Co Ltd, 

Osaka, Japan) connected to the microscope allowed continuous visual monitoring of 

the cell during the experiments. 

Whole Cell Patch Clamping Experimental Solutions. 

 

The myocytes suspended in the tissue bath were initially superfused with modified 

Tyrodes solution containing (in mM/L) 140 NaCl, 7 KCl, 2.16 CaCl2, 10 glucose, 1.0 

MgCl2, and 10 N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES).  The 

solution was titrated to a pH of 7.4 at 25 °C with NaOH.  After the whole cell 

configuration was established and membrane capacitance measured, the 

superfusates was switched to a modified Tyrodes solution similar to the one 
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described above except that it was nominally Ca2+ free and contained 0.2 mM CdCl2.  

Cd2+ was included to block Ca2+ channel conductance and inhibit Na+-Ca2+ exchange 

current27.  The solution also contained 2 mM BaCl2  to inhibit conductance through 

K+ channels 72.  The composition of the pipette solution and the extracellular 

solutions were essentially designed to block any ‘non-pump’ currents leaving the 

Na+, K+ ATPase current as the dominant remaining current.  A Tyrodes solution free 

of potassium was used to halt and hence identify pump activity.  

In some experiments the superfusate used was Na+ free.  The Na+-free modified 

Tyrodes superfusate contained (in mM/L) 140 NMG (D(-)-methylglucamine), 10 

glucose, 10 HEPES, 1 MgCl2, 0.2 CdCl2, 2 BaCl2, and 7 KCl.    This solution is highly 

alkaline with a pH of ~10.4.  It was titrated to a pH of 7.4 at 25 °C with concentrated 

HCl. 

Whole Cell Patch Clamping Pipette filling solutions. 

 

The pipettes were backed filled using suction with a solution containing (in mM) 20 

Na+ glutamate, 1 KH2PO4, 5 HEPES, 2 Mg-ATP, 5 ethyleneglycolol-bis-(β-

aminoethlyether)N,N,N’,N-tetraacetic acid (EGTA), 70 K+-glutamate and 70 TMA-Cl.  

The solution was titrated to pH of 7.2 at 22°C with KOH.  This was the standard 

pipette solution unless otherwise stated.  Alterations in the Na+ concentration in 

pipette solutions was compensated for by alterations of the concentration of TMA-Cl 

to maintain constant the osmolality.  Pipette solutions were filtered through a 0.2 μM 

syringe filter (Pall Corporation, Ann Arbor, MI, USA).  When filled with solutions, 

patch pipettes had resistances of 0.8-1.1 MΩ.     
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Measurement of membrane capacitance and access resistance. 

 

Membrane capacitance (Cm) of the cell was estimated after whole cell configuration 

was established, using the membrane test mode of pClamp 10 software.  All currents 

measured were normalised using cell membrane capacitance and hence cell size as 

the Cm is indicative of the cell surface area.  The membrane test mode also allowed 

estimation of the access resistance (Ra) which reflects the quality of access between 

the patch pipette and the intracellular compartment.  The experiment was 

abandoned if Ra at 24oC was greater than ~4.5 mΩ. 

Measurement of Ip and Exponential Decay. 

 

When the Ra was documented to be acceptable myocytes were voltage clamped at 

a test potential known to inactivate voltage sensitive Na+ channels 73.  The test 

potential was -40 mV unless indicated otherwise.  A trace of the holding current (Ih– 

the current required to hold the membrane potential at the test potential) was 

recorded using Axotape version 10 software.  Once Ih was stable the superfusates 

were switched to Ca2+ free and K+ free, Cd2+ and Ba2+ containing Tyrodes solution to 

inhibit Na+-Ca2+ exchange and K+ channel conductance 72 and the Na+-K+ pump.  

This causes a reduction in the outward current of the cell and a new steady state 

level is reached.  This new level had to stabilise for a predetermined length of time 

(approximately 1 min unless otherwise stated) prior to the superfusates being 

switched to a Ca2+-free, Cd2+ and Ba2+ containing solution with 7 mM KCl.  This 

protocol generates a transient pump current (Ip) generated by the Na+, K+ ATPase 

that is identified by the outward shift in membrane current induced by K+. Ip was 

identified at a holding potential of -40 mV as the difference between stable plateaus 

of holding current before and after Na+, K+ ATPase activation with 7 mol/L KCl at 
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least 5 min (unless otherwise stated) after establishing the whole-cell configuration.  

Sampling rate for all recordings was 20 Hz (1 sample every 50 ms). 

Mathematical Model. 

 

Computer simulations of the steady-state pump current observed experimentally via 

the whole-cell patch clamp technique were performed using the commercially 

available program Berkeley Madonna 8.0 and the variable step-size Rosenbrock 

integration method for stiff systems of differential equations. The simulations yielded 

the time course of the concentration of each enzyme intermediate involved and the 

outward current, i.e. the number of elementary charges transported per pump 

molecule per second. For the purposes of simulations of the steady-state current, 

each enzyme intermediate was normalized to a unitary concentration and the 

enzyme was assumed arbitrarily to initially be totally in the E1 state only. Each 

simulation was then carried out until the distribution between the different enzyme 

states no longer changed and the outward current reached a constant value. 

A comprehensive explanation of the rate constants used can be found in the 

Appendix of chapter 3.  This includes the equations used to calculate each of the 

enzyme intermediates and the where each rate constant was derived with the 

appropriate reference.  In the chapters 4 and 5 only the altered equations are given 

in their appendix and calculations of the effect of the allosteric site and rate 

constants for glutathionylation are documented. 
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Data acquisition, analysis and storage. 

 

Recording of membrane current, holding potential, passing of current and voltage 

steps were performed using continuous single electrode voltage- clamp mode of an 

Axoclamp 2B amplifier via DigiData 1200 series interface (Axon Instruments, Foster 

City, CA, USA).  Voltage clamp pulses and stimulus protocols were applied using the 

pClamp 10 software run on an Dell PC computer.  Continuous recording of Vm and Ih 

were made using a multichannel computerised data acquisition system (Axoscope 

Version 10, Axon Instruments, Foster City, CA, USA).  Analyses of steady-state and 

transient currents were performed in Clampfit 10.2 and data was collated in Microsoft 

Office Excel 2007. 
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Chemicals and reagents. 

 

Product Source Location 

Adenosine 5- triphosphate 

magnesium salt 

Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Antibody to the α1 subunit 

of Na+ K+ ATPase 

Millipore Bioscience Billerica, Maryland, USA 

Antibody to the β1 subunit 

of Na+ K+ ATPase 

Millipore Bioscience Billerica, Maryland, USA 

Barium chloride BDH Australia 

Bovine Cu,Zn superoxide 

dismutase 

Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Cadmium chloride  Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Calcium chloride dehydrate Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Ethyleneglycolol-bis-(β-

aminoethlyether)N,N,N’,N-

tetraacetic acid (EGTA) 

Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Gentamicin Pfizer Brooklyn, New York, USA 

Glucose anhydrous BDH Australia 

N-2-Hydroxyethylpiprazine-

N-2-ethenesulphonic acid 

(HEPES) 

Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Hydrochloric acid (HCl) Merck Biosciences Darmstedt, Germany 

Hydrogen Peroxide Merck Biosciences Darmstedt, Germany 

Magnesium chloride 

hexahydrate (MgCl2.6H20) 

Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Magnesium sulphate 

(MgSO4) 

Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Monosodium glutamate Sigma-Aldrich Chemical St Louis, Missouri, USA 
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Co. 

D(-)-methylglucamin (NMG) Merck Biosciences Darmstedt, Germany 

Ouabain  Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Potassium chloride Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Potassium dihydrogen 

orthophosphate (KH2PO4) 

BDH Australia 

Potassium hydroxide 

(KOH) 

Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Potassium L-glutamate Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Sodium Chloride Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Sodium dihydrogen 

orthophosphate 

monohydrate 

(NaH2PO4.H2O) 

BDH Australia 

Sodium dodecyl sulfate 

(SDS) 

Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Sodium hydrogen 

carbonate (NaHCO3) 

Merck Darmstedt, Germany 

Sodium hydroxide (NaOH) Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Taurine Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 

Tetramethylammonium 

chloride (TMA.Cl) 

Fluka Chemicals Switzerland 

Tris.HCl Sigma-Aldrich Chemical 

Co. 

St Louis, Missouri, USA 
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CHAPTER THREE 

 

INTRODUCTION 

 

The mechanism of the complete reaction cycle of the Na+, K+ ATPase is generally 

described by the Albers-Post formalism. A simplified version of this cycle is shown in 

figure 3.1. Much information has been gathered on the kinetics of the partial 

reactions of this cycle. However, this information has been gained from the study of 

a small number of purified enzyme systems. The reason for this is that, in 

comparison to ion channels, individual ion pumps such as the Na+, K+ ATPase 

produce a relatively low ion flux across the membrane. Therefore, the measurement 

of ion pump activity, in particular of partial reactions, has been limited to tissues in 

which the Na+, K+ ATPase naturally occurs at a very high level of expression. By far 

the most commonly studied source of Na+, K+ ATPase has been mammalian kidney, 

for which Peter Jørgensen developed a purification procedure in the 1970s 74,75. A 

large amount of valuable information has been gained on the transport modes of the 

Na+, K+ ATPase from ion flux measurements carried out using red blood cells or 

resealed red cell ghosts 76,77. However, as pointed out by Kaplan 78, the low 

expression level of the enzyme in human red blood cells (about 250 copies per cell) 

limits the scope for partial reaction kinetic studies in this system.  

In a less complicated world kinetic and thermodynamic data obtained from the study 

of the Na+, K+ ATPase in one animal species or one tissue would be valid for all 

other species and tissues. Unfortunately, this seems not to be the case. Recently it 

has been shown that the Na+, K+ ATPase from pig kidney is significantly more 

thermally stable than that derived from shark rectal gland 79 and that the two 
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enzymes display significant differences in their kinetics, i.e., different rate-

determining steps 80. This is in spite of these two enzymes having very similar amino 

acid sequences and three dimensional structures 81-83. The amino acid sequences of 

the α-subunits of both enzymes show 87% identity. In the case of the smaller β- and 

γ-subunits the sequence identities are 66% and 23%, respectively 79. Via 

experiments in which both enzymes were independently reconstituted into synthetic 

lipid vesicles, Hansen et al 79 recently showed that that the bulk properties of the lipid 

membrane are not responsible for the difference in thermal stability of the pig and 

shark enzymes and they suggested that it may be due to relatively few differences in 

the enzyme’s overall sequence.   

In this paper we compare the Na+, K+ ATPase of mammalian heart and kidney. For 

the related enzyme, the sarcoplasmic reticulum Ca2+ ATPase, it has already been 

established that the kinetics of this enzyme are significantly different between 

skeletal muscle and heart muscle 84. In skeletal muscle ion pumping is stimulated by 

ATP binding to an allosteric site on a phosphorylated form of the enzyme, whereas in 

cardiac muscle ATP accelerates ion pumping by binding to a non-phosphorylated 

form of the enzyme. If such major differences occur in the Ca2+ ATPase mechanism 

between different tissues, the Na+, K+ ATPase may also display significant 

differences. Therien and Blostein 85 reported in 1999 that the Na+, K+ ATPase of 

heart tissue possesses a somewhat higher degree of K+/Na+ antagonism at its 

cytoplasmic face in comparison to the Na+, K+ ATPase of kidney, i.e., K+ more 

effectively competes with Na+ for binding to the E1 state in the heart. However, this 

may not be the only difference. Gadsby and Nakao 86 also reported that the 

maximum turnover rate of the Na+, K+ ATPase in heart muscle cells is only about half 

that of Na+, K+ ATPase from kidney at a similar temperature. Significant kinetic 
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differences also exist between the Na+, K+ ATPase of kidney and that of red blood 

cells. For example, at 0 ºC the Na+, K+ ATPase phosphoenzyme of red blood cells is 

insensitive to the addition of K+ ions and is rapidly dephosphorylated by ADP, 

whereas at higher temperatures it is dephosphorylated by both K+ and ADP 87,88. 

This difference in behaviour at different temperatures is not observed in the kidney 

enzyme 89-91. 

Because of the large amount of data that has been gathered on the partial reactions 

of the kidney enzyme, it is now possible to reconstruct the kinetics of its entire 

reaction cycle and make predictions on its steady state behaviour under different 

experimental conditions. In this chapter we present a mathematical model which 

allows this and we compare the predictions of the kidney-based model to 

experimental results obtained on the Na+, K+ ATPase in heart muscle cells via the 

whole-cell patch clamp technique. For this comparison we have concentrated on two 

well-established observations made on heart muscle cells. These are the significant 

inhibition of pump current by inside-negative membrane potentials 86 and the 

significant inhibition of pump current by high concentrations of extracellular Na+ (up 

to 150 mM) observed at negative holding potentials 27. This comparison indicates 

that there could well be significant differences in the kinetic behaviour of heart and 

kidney Na+, K+ ATPase, in particular with respect to their voltage dependence. These 

differences are most likely due to the different levels of expression of isoforms of the 

Na+, K+ ATPase’s major catalytic α-subunit. Whereas in the kidney enzyme the α1 

isoform constitutes >99% of the expression of the α-subunit 92, in cardiac myocytes 

results from Gao et al 93 indicate that the α1 subunit is expressed to 82%, with 18% 

of the α-subunits being expressed as the α2 isoform.   
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METHODS 

 

Pump current simulations. 

 

Computer simulations of the steady-state pump current observed experimentally via 

the whole-cell patch clamp technique yielded the time course of the concentration of 

each enzyme intermediate involved and the outward current, i.e. the number of 

elementary charges transported per pump molecule per second.  

In simulations of transient kinetic data, prior to simulating the time course of the 

current transients caused by any sudden change in the experimental conditions (e.g. 

Na+ concentration or membrane voltage), the initial steady-state distribution of the 

enzyme between the E1, E1P(Na+)3, E2P and E2(K+)2 states was calculated by 

performing a simulation, as described in the previous paragraph,  in which the 

enzyme was assumed to be initially totally in the E1 state. The simulation was 

carried out until the distribution between the various enzyme states no longer 

changed. This distribution was then used as a starting condition for the simulation of 

concentration jump or voltage jump experiments.  

RESULTS 

 

Kinetic model. 

 

Under experimental conditions in which inorganic phosphate and ADP are absent 

the complex Albers-Post cycle describing the Na+, K+ ATPase’s partial reactions can 

be reduced to the simpler 4-state model shown in figure 3.1. E1P(Na+)3 and E2(K+)2 

represent here occluded states of the protein, i.e. states in which the respective ions 

are enclosed within the protein and have no direct access to either the cytoplasm or 
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the extracellular fluid. In contrast, E1 and E2P represent states in which the ion 

binding sites have access to the cytoplasm and the extracellular fluid, respectively. In 

the case of the occluded states, E1P(Na+)3 and E2(K+)2, no exchange of the 

occluded ions with either the cytoplasm or the extracellular fluid is possible. 

However, in the case of the non-occluded states, we assume that rapid exchange of 

Na+ and K+ between the binding sites and either the cytoplasm or the extracellular 

fluid can occur. Thus, in the case of the E2P state we assume that there is a rapid 

exchange of Na+ ions and K+ ions between the extracellular fluid and two of the ion 

transport binding sites. It has been well established that the stoichiometry of the Na+, 

K+ ATPase is 3Na+/2K+/ATP. Therefore, one of the ion binding sites is considered to 

be completely specific for Na+, whereas Na+ or K+ can both bind with differing 

affinities to the other two. Therefore, ion binding to E2P can be treated as a series of 

coupled equilibria, as shown in figure 3.2. An analogous scheme can be drawn for 

the E1 state. 
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Figure 13.1.  Simplified representation of the Albers-Post scheme describing the Na
+
,K

+
-

ATPase catalytic cycle. Step 1: Binding of 3 Na
+
 ions from the cytoplasm, 

phosphorylation by ATP and occlusion of Na
+
 within the protein. Step 2: 

Conformational change of the phosphorylated protein releasing the Na
+
 ions to the 

extracellular medium. Step 3: Binding of 2 K
+
 ions from the extracellular medium, 

occlusion of K
+
 within the protein and dephosphorylation. Step 4: Conformational 

change of the unphosphorylated protein releasing K
+
 ions to the cytoplasm. 
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Figure 3.2.  Scheme describing the coupled equilibria of Na
+
 and K

+
 binding to the E2P 

conformation of the enzyme. The model assumes competition between Na
+
 and K

+
 at 

two of the transport sites with dissociation constants KN and KK, respectively, and one 

specific Na
+
 transport site with a dissociation constant KN1. 
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In the 4-state model of figure 3.1, we, therefore, only show explicitly the major rate-

determining steps of the enzyme cycle. In our computer model (see Appendix), 

furthermore, we only include differential rate equations for the E1, E1P(Na+)3, E2 and 

E2(K+)2 states, because we consider ion binding to E1 and E2P to be very rapid, 

such that the binding reactions to these two states relax instantaneously on the time-

scale of the four rate-determining steps, i.e. ion binding reactions are treated as 

equilibria. The four reactions whose kinetics are explicitly included in the model in 

sequence starting from E1 are then: 

1) Phosphorylation of the enzyme by ATP and simultaneous occlusion of 3 Na+ 

ions within the protein, 

2) Conformational change of phosphorylated enzyme involving a de-occlusion of 

Na+ and opening of the binding sites to the extracellular fluid (and its reverse 

reaction), 

3) Occlusion of 2 K+ ions within the phosphorylated enzyme, stimulating a 

dephosphorylation of the protein, and 

4) Conformational change of unphosphorylated enzyme involving a de-occlusion 

of K+ and opening of the binding sites to the cytoplasm (and its reverse 

reaction). 

Oka et al 94 used a similar 4-state model, also assuming rapid equilibria for ion and 

ATP binding, to model the steady-state activity of cardiac Na+, K+ ATPase. However, 

the mathematical procedure used here to determine the steady-state activity is very 

different from that used by Oka et al 94, who calculated the pump current analytically 

by applying the King-Altman method 95, in which the steady-state turnover of the 

enzyme is directly calculated from the observed rate constants of all the reaction 

steps. Here we have used a numerical procedure (see Materials and Methods), 



63 

 

which also allows the kinetics of transient changes in steady-state pump current to 

be simulated.      

In the model we consider that each of the four rate-determining reactions only 

reaches its maximum observable rate constant when the reactant state is fully 

saturated by the appropriate substrates. For example, the maximum rate constant for 

phosphorylation, k1, is only achieved when the enzyme is fully saturated with 3 Na+ 

ions and ATP. Although it doesn’t explicitly appear in figure 3.1, the model assumes 

that high affinity binding of ATP to E1 is required to stimulate the reactions E1 → 

E1P(Na+)3 and E1 → E2(K+)2. Low affinity binding of ATP to the E2 state is also 

assumed to stimulate the reaction E2(K+)2 → E1. As in the case of Na+ and K+ 

binding, ATP binding is also treated in the model as a rapid equilibrium. 

This simple kinetic model excludes a number of partial reactions which 

experimentally are known to occur. Thus, the model doesn’t take into account ADP-

stimulated dephosphorylation of E1P(Na+)3, Pi-stimulated phosphorylation of E2, 

dephosphorylation of E2P in the absence of occluded K+ and conformational 

changes of unphosphorylated enzyme in the absence of bound ATP. However, 

under conditions of physiological levels of Na+, K+ and ATP in the cytoplasm and the 

absence of any added inorganic phosphate or ADP, these reactions are either 

effectively suppressed or their rate constants are negligible in comparison to those of 

the four major reactions shown in figure 3.1. Therefore, we consider that the extra 

complexity that the model would gain by including these reactions is not at this stage 

warranted. 

In addition to differential rate equations for the each of the four major enzyme states, 

to complete the model we have included differential rate equations to describe the 
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transient current across the membrane. Because the enzyme pumps three Na+ out 

of the cell in exchange for two K+ ions in, there is a net transport of one positive 

charge out.  In our model we assume that ion binding reactions are rapid equilibria. 

Therefore, when the enzyme is actively pumping both Na+ and K+, the release of two 

Na+ ions to the extracellular fluid would immediately be neutralised by the uptake of 

two K+ ions. Similarly, in the cytoplasm, when two K+ ions are released, this is 

immediately neutralised by the uptake of two Na+ ions. Therefore, the rate of change 

of the outward current at any point in time can be described by the rate of release of 

one Na+ ion from the E2P state, which is given by the rate of conversion of 

E1P(Na+)3 to E2P minus the rate of the backward reaction (see Appendix, eq. 15). 

This is an important difference to the kinetic model which our group has published 

previously 29, which only allows steady-state currents to be estimated from the 

steady-state rate of phosphate production. 

A final important point regarding the construction of the model is the incorporation of 

voltage dependence. In patch clamp measurements it’s possible to accurately 

control the transmembrane voltage. This has a significant influence on the kinetics of 

charge-transporting (electrogenic) partial reactions of the enzyme. Therefore, this 

also needs to be included in the model. This can be done by multiplying the rate or 

equilibrium constants of all the electrogenic reactions by Boltzmann factors, i.e. 

exp(aFVm/RT) (see Appendix, eqs. 9-14). Here F is the Faraday constant, Vm is the 

total transmembrane potential difference, R is the ideal gas constant and T is the 

absolute temperature. a is termed a dielectric coefficient and is the fraction of the 

total membrane potential difference influencing the electrogenic reaction concerned. 

It is sometimes approximated as the fractional distance across the membrane that 

an ion is transported during an electrogenic reaction 96,97. Because there is a net 
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transport of one positive charge due to ion pumping, if one proceeds around the Na+, 

K+ ATPase cycle in the normal forward direction the dielectric coefficients of all the 

electrogenic reactions must add up to +1. The values of the dielectric coefficients we 

have used in our model are based on values estimated in the group of Rakowski 

from voltage jump studies 24,98,99. Values of all the rate and equilibrium constants 

used in the simulations as well as the values of the dielectric coefficients are given in 

Table 1 of the Appendix to this chapter. All of the rate and equilibrium constants 

have been derived from measurements on mammalian kidney Na+, K+ ATPase. 

Simulations of the expected kinetic behaviour of kidney Na+, K+ ATPase. 

 

Simulations of the expected dependence of the pump current, Ip, per pump molecule 

on the extracellular Na+ concentration and the total transmembrane potential 

difference, Vm, based on the Albers-Post model and the kinetic parameters given in 

Table 1 for mammalian kidney enzyme are shown in figure 3.3. For comparison, 

experimental results of Nakao and Gadsby 27 for the dependence of Ip for heart 

muscle Na+, K+ ATPase on both the extracellular Na+ and Vm have also been 

reproduced. The experimental results indicate that for heart muscle Na+, K+ ATPase 

there is a significant positive slope in the I-Vm curve at negative membrane 

potentials, which becomes more pronounced as the extracellular Na+ concentration 

increases, i.e., at large negative membrane potentials Ip increases with increasing 

Vm. The effect saturates as one moves to positive membrane potentials, at which Ip 

becomes virtually voltage-independent. 
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Figure 3.3.  Dependence of the Na
+
,K

+
-ATPase current-voltage relationship (I-Vm 

curve) on the extracellular Na
+
 concentration. Each symbol corresponds to the following 

Na
+
 concentrations: 1.5 mM (○), 50 mM (●), 100 mM (□) and 150 mM (■). The solid 

lines between the points have simply been drawn to aid the eye of the reader. 

Upper curve: Experimental results for guinea pig heart ventricular myocytes, obtained 

via the whole-cell patch clamp technique, reproduced from Figure 3 of Nakao and 

Gadsby 
27

. The pump current, Ip, of each curve has been normalized to the value 

obtained at a holding potential of + 40 mV. The experimental conditions were [Na
+
]cyt = 

50 mM, [K
+
]cyt = 0 mM, [K

+
]ext = 5.4 mM, [ATP]cyt = 10 mM, T = 36ºC. 

Lower curve: Computer simulations of the expected I-Vm curve for mammalian kidney 

Na
+
,K

+
-ATPase pump current based on the kinetic and equilibrium parameters given in 

Table 3.1 and the Albers-Post scheme described by Figs. 3.1 and 3.2. The ion 

concentrations, ATP concentration and temperature used for the simulations were the 

same as for the upper curve. 
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In comparison, the predicted behaviour of kidney Na+,K+-ATPase is different in some 

respects. At negative holding potentials there is still a positive slope of the I-Vm curve 

and the magnitude of the slope is still more pronounced at high extracellular Na+ 

concentrations, but the magnitude of the drop in pump current on going from 1.5 to 

150 mM extracellular Na+ is significantly less. For example, at 150 mM extracellular 

Na+ and -120 mV, the normalized Ip has dropped to approximately 0.6, whereas for 

the heart enzyme Ip drops experimentally to around 0.2. The other difference 

between the experimental heart results and the simulated kidney results is that the 

kidney results predict a slight negative slope in the I-Vm curve at positive potentials, 

which is independent of the extracellular Na+ concentration, in contrast to an 

apparent saturation in the pump current at positive potentials in the case of the heart 

results. If all of the experimental parameters used in the simulations are correct, this 

result indicates that heart and kidney Na+, K+ ATPases must have some slightly 

different kinetic or equilibrium parameters, at least with respect to one of the partial 

reactions which determines the overall pump turnover, i.e. a rate-determining steps, 

the steps leading into rate-determining steps or the degree of charge displacement 

associated with these steps transport charge.      
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Voltage-jump transient simulation. 

 

To demonstrate the applicability of the model in reproducing the results of transient 

kinetic experiments, we have carried out simulations in which the membrane voltage 

is rapidly changed from -120 mV to 0 mV. This corresponds to the experimental 

procedure used by Gadsby et al 100 on the Na+, K+ ATPase in squid giant axons. 

However, voltage-jump experiments of this type have been reported on the Na+, K+ 

ATPase within cardiac myocytes and Xenopus oocytes in addition to squid giant 

axons 24,98-100. 

A voltage-jump simulation using the kinetic and equilibrium parameters given in 

Table 1 is shown in figure 3.4 (upper panel). In accord with the experimental 

conditions used by Gadsby et al (2012), the ion and ATP concentrations used were 

[Na+]o = 25 mM. [Na+]i = 80 mM, [K+]o = [K+]i = 0 mM and [ATP] = 5 mM. In the 

absence of any intracellular ADP or extracellular K+, the enzyme can be assumed, 

both before and after the voltage-jump, to be distributed totally between the 

E1P(Na+)3 state and the E2P states (including occupation by zero, one or two Na+ 

ions). Prior to the voltage jump from -120 to 0 mV, the simulation indicates that 56% 

of the enzyme should be in the E1P(Na+)3 state and 44% should be in E2P states. 

After the voltage-jump the final distribution at the end of the voltage transient 

becomes 0.2% in the E1P(Na+)3 state and 99.8% in E2P states. This significant 

redistribution of the enzyme from E1P(Na+)3 to E2P is accompanied by the release 

of Na+ from the specific Na+ ion binding site. Therefore, the voltage-jump is 

associated with a rapid rise in the outward current transient as the Na+ ions are 

released to the extracellular fluid and a slower decay back to zero current because 

movement of the enzyme around its catalytic cycle past the E2P state in the absence 
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of extracellular K+ is inhibited (Figure 3.4, upper panel). The decay back to zero 

current is exponential, with a relaxation time of 4 ms. This value is controlled 

predominantly by the reciprocal of the rate constant for the E1P(Na+)3 → E2P 

transition at 0 mV of 225 s-1 (see Table 3.1). This simulated result is in good 

agreement with the slowest current transient observed by Gadsby et al 100 with a 

time constant of 1-10 ms, which they also attributed to the release of occluded Na+ 

from the enzyme as a consequence of the E1P(Na+)3 → E2P transition. Gadsby et al 

100 also observed two faster, but smaller amplitude, transients, which they attributed 

to the release from E2P of the two Na+ ions bound to the nonspecific sites, i.e. 

E2PNa+
2 → E2PNa+ + Na+ and E2PNa+ → E2P + Na+. These two transients had 

time constants of 0.2-0.5 ms and ≤ 28 μs. These two faster transients are not 

reproduced by the simulations. The reason for this is that the model assumes that 

ion binding to and release from the E2P state are rapid equilibria on the timescale of 

the four reactions explicitly included in the model (Figures 3.1 and 3.2). To reproduce 

these smaller rapid transients the model would have to be extended to explicitly 

include the kinetics of ion binding. Thus, the model as it stands is applicable to the 

simulation of transients from the millisecond time range and beyond, but cannot be 

applied to simulations into the submillisecond range. The ability of the model to 

reproduce current transients arises because of its basis on the numerical integration 

of differential rate equations. This is a significant advantage of this approach over a 

fully analytical one, such as that used in the model of Oka et al 94, which can only be 

used to calculate steady-state currents. 
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Figure 3.4.  Simulation of a voltage-jump transient. The initial conditions were [Na
+
]cyt 

= 80 mM, [Na
+
]ext = 25 mM, [K

+
]cyt = [K

+
]ext = 0 mM, [ATP]cyt = 5 mM, Vm = -120 mV, T 

= 22ºC, as in experiments of Gadsby et al 
100

. At time = 0, the membrane voltage was 

jumped to 0 mV. The current transient is attributed to the voltage-dependent release of 

Na
+
 from the E2P state, which is rate-limited by the E1P(Na

+
)3 → E2PNa

+
3 transition. 
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The lower panel of figure 3.4 presents the results of calculations of the expected 

observed rate constant, kobs, (i.e. the reciprocal of the time constant) of the decaying 

phase of the voltage-jump transient and its dependence on both the final 

transmembrane voltage and the extracellular Na+ concentration. Using the values 

given in for the kidney enzyme in Table 1 the value of kobs can be calculated directly 

from the equation: 

 

obs 2 2 (3 )  ok k k f Na   (1) 

 

where f(3Nao) is the fraction of enzyme in the E2P state with 3 Na+ ions bound. k2 

and k-2 are the voltage-dependent forward and backward rate constants of the 

E1P(Na+)3 → E2P transition (see eqs. A10 and A11 in the Appendix). The simulated 

results show a significant increase in kobs as the extracellular Na+ concentration 

increases and as the membrane potential becomes more negative. Both of these 

effects can be explained by an increase in occupation of sites on E2P by Na+ ions, 

which increases the value of the term f(3Nao) in eq. 1 and hence causes kobs to 

increase. At positive membrane potentials there is a smaller increase in kobs with 

increasing membrane potential. This effect can be explained by the relatively small 

voltage dependence of k2 (see eq. A10). Qualitatively similar behaviour to that 

shown in figure 3.4 has been experimentally observed by Holmgren et al 24 in 

measurements on the Na+,K+-ATPase of squid giant axons. The only noteworthy 

difference between our calculations and the experimental results of Holmgren et al 24 

is the range of kobs values. The measurements showed a saturating value of ~1,400 

s-1 at negative potentials and a minimum value of ~100 s-1, whereas the calculations 

indicate a saturating value of ~900 s-1 at negative potentials and a minimum value of 
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~200 s-1. These differences must be due to different magnitudes of the rate 

constants k2,V=0 and k-2,V=0 for the kidney and squid enzymes. 

 

Na+, K+ ATPase regulation. 

   

Because the Na+, K+ ATPase plays such a crucial role in animal physiology, it must 

adapt to changing cellular conditions and physiological stimuli 41, and, therefore, its 

activity must be regulated. In principle, membrane proteins can be regulated by 

changes in the level of their expression, changes in delivery and incorporation into 

the membrane or by post-translational modifications to their structure that changes 

the activity of the protein itself. Such modifications are termed acute mechanisms of 

regulation because they are fast-acting in comparison to changes in expression 

level. Both phosphorylation and glutathionylation have been suggested as possible 

acute regulatory mechanisms. Recently, Massey et al 101 reported that in the kidney 

a differential regulatory phosphorylation of the Na+, K+ ATPase occurred depending 

on the enzyme’s conformational state. Liu et al 102 found in the heart that the β-

subunit of the Na+, K+ ATPase undergoes glutathionylation, also depending on the 

pump’s conformational state. These results suggest that any shift in the enzyme’s 

distribution between different conformational states could influence its propensity 

towards regulatory post-translational modification. A physiological mechanism 

whereby the enzyme’s conformational distribution could be shifted is via an increase 

in the cytoplasmic Na+ concentration. This would occur transiently in nerve and 

muscle cells at the onset of an action potential as a normal part of their physiological 

activity. Sustained increases in the cytoplasmic Na+ concentration level are observed 

in red blood cells in certain hereditary blood conditions, i.e., spherocytosis and 
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elliptocytosis,  in which the plasma membrane has a higher than normal ion 

permeability. The cytoplasmic Na+ level influences the enzyme’s conformational 

distribution because it is not saturating under normal physiological conditions for 

most cells and the phosphorylation of the enzyme by ATP, which is dependent on 

cytoplasmic Na+ binding, is a major rate-determining step of the enzyme’s pump 

cycle 29. The kinetic model presented here allows the time course and magnitude of 

any shifts in the enzyme’s conformational equilibrium to be calculated. To 

demonstrate this we have simulated the time courses of the population of enzyme in 

the states E1, E2, E1P and E2P following a sudden jump in the cytoplasmic Na+ 

concentration from a normal physiological level of 15 mM to a concentration of 150 

mM (Figure 3.5). 
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Figure 3.5.  Simulations of the time courses of the relative populations of the Na
+
, K

+
 

ATPase in the conformational states E1, E2, E1P and E2P following a jump in the 

cytoplasmic Na
+
 concentration from 15 to 150 mM. All other conditions were held 

constant: [Na
+
]ext = 140 mM, [K

+
]cyt = 120 mM, [K

+
]ext = 4 mM, [ATP]cyt = 3 mM, Vm = -

80 mV, T = 24ºC. The simulations were based upon the kinetic and equilibrium 

parameters given in Table 3.1. 
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Overall the simulations predict that an increase in the cytoplasmic Na+ concentration 

should be accompanied by increases in the populations of phosphorylated states 

(E1P and E2P) at the expense of the population of unphosphorylated states 

(particularly E2). The E1 state shows an initial transient increase in its population, 

due to the shift in the E1/E2 distribution in favour of the Na+-selective E1 state, which 

is followed by a drop in its population. At the initial cytoplasmic Na+ concentration of 

15 mM, the enzyme is almost entirely in unphosphorylated states (76% in E2 and 

19% in E1). The reason for this is that at this concentration the slowest steps of the 

pump cycle are the transition E2(K+)2 → E1 + 2K+ and the phosphorylation step 

E1(Na+)3 + ATP → E1P(Na+)3 + ADP. Hence the enzyme accumulates in the states 

leading into the major rate-determining steps, E1(Na+)3 and E2(K+)2. However, after 

jumping the cytoplasmic Na+ concentration to 150 mM, the effective rate constant for 

the phosphorylation reaction dramatically increases because of the increase in level 

of saturation of the ion binding sites on E1 by cytoplasmic Na+. With the 

phosphorylation reaction no longer contributing so strongly to rate-determination of 

the cycle, there is a significant increase in the level of enzyme in the phosphorylated 

states, i.e., 31% in E1P and 14% in E2P (from 0.4% and 0.2% initially). 

Within a living cell any increase in the cytoplasmic Na+ concentration would be 

overlaid also by a consequent change in the membrane voltage, which would also 

cause a shift in the enzyme’s conformational distribution (as demonstrated by the 

simulations in figure 3.4). This hasn’t been taken into account in the simulations 

shown in figure 3.5. The simulations of figure 3.4 and 3.5 nevertheless demonstrate 

that the model is capable of predicting conformational distribution changes due to 

both voltage and concentration jumps, which could potentially be used to rationalise 

changes in conformationally-dependent regulatory modifications to the pump.               



76 

 

DISCUSSION 

 

The Na+, K+ ATPase is an electrogenic ion pump, i.e. it carries out a net transport of 

charge across the plasma membrane. This is due to its stoichiometry under normal 

physiological conditions of 3Na+ ions transported out of the cell and 2K+ transported 

into the cell during each turnover. Because the Na+, K+ ATPase transports net 

charge across the membrane its activity must in principle be dependent on the 

electrical membrane potential. However, whether or not a voltage dependence of its 

activity is apparent over physiologically relevant membrane potentials (i.e. approx. -

80 to +60 mV in the case of the heart) depends on how strongly the charge 

transporting steps influence the overall turnover of the enzyme. A significant voltage 

dependence of the enzyme’s steady-state activity will only be apparent when either 

the charge-transporting steps themselves are rate-determining steps of the cycle or 

the charge-transporting steps influence the population of an enzyme intermediate 

which is a reactant leading into a rate-determining step. 

The simulations presented in figure 3.3, based on kinetic and equilibrium parameters 

derived from mammalian kidney enzyme, indicate that for the kidney Na+, K+ ATPase 

a lower degree of voltage dependence would be expected across the membrane 

potential range 0 to -120 mV than that observed experimentally for heart muscle Na+, 

K+ ATPase 27,86 (see figure 3.3). This suggests some differences in the kinetic or 

equilibrium parameters of the heart and kidney enzymes. 

Simulations showing a very different result were, however, recently reported by Oka  

et al 94. These authors also carried out simulations based on kidney data, but they 

found a strong voltage dependence and extracellular Na+ concentration dependence 

identical to that measured in heart cells 27,86. The decisive difference between the 
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simulations of Oka et al 94 and those presented here lies in the values of the rate 

constants used. The major charge-transporting step of the Na+, K+ ATPase is widely 

accepted to be the release of the first Na+ to the extracellular medium, which is rate-

limited by the E1P → E2P transition 24,98 100,103. Increasingly negative membrane 

potentials would cause Na+ from the extracellular medium to rebind to the E2P state, 

driving the enzyme back towards the E1P(Na+)3 state. Whether this effect has a 

major influence on the overall turnover depends on the forward and backward rate 

constants of the E1P → E2P reaction. In their model Oka et al 94 chose values of 80 

s-1 and 8 s-1 at 37ºC (or 31 s-1 and 3.1 s-1 at 20ºC) for the forward and backward rate 

constants, respectively. This makes the E1P → E2P reaction the slowest forward 

reaction of their entire kinetic model, i.e. the major rate-determining step of their 

cycle. If the charge-transporting step of the cycle is simultaneously the major rate-

determining step of the cycle it is to be expected that under these conditions 

significant voltage dependence would be predicted. 

There is, however, a large body of experimental evidence that the E1P → E2P 

transition is not a major rate-determining step of the kidney enzyme 104-108. All of 

these studies indicate a rate constant for the E1P → E2P transition of 200 s-1 or 

greater at 24ºC. Also for heart muscle Na+, K+ ATPase, the E1P → E2P transition 

has been shown to be a fast reaction. Lu et al 109 estimated a rate constant for the 

heart enzyme in the range 300 to 900 s-1. Based on their data, Gadsby and Nakao 86 

also came to the conclusion that the major voltage-sensitive step of the heart Na+, K+ 

ATPase isn’t rate-limiting, but rather that the voltage-sensitive step controls the 

concentration of the enzyme intermediate entering the rate-limiting step. Therefore, it 

would appear that the good agreement in voltage dependence and extracellular Na+ 

dependence between the simulations of Oka et al  94 and the measurements of 
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Gadsby and Nakao 86 is simply fortuitous, because the simulations were based on an 

artificially low rate parameter. In the Discussion to their paper, Oka et al 94 in fact 

state that the rate constants they used may require revision. 

For mammalian kidney Na+, K+ ATPase it is widely agreed that under saturating 

conditions of all substrates and no membrane potential the major rate-determining 

step is the E2 → E1 transition (see figure 3.1) and its associated release of K+ to the 

cytoplasm 110-113. Experiments on solid supported membranes have shown that this 

reaction doesn’t involve any significant charge transport 114. This being the case, one 

would not expect any major voltage dependence of the activity of mammalian kidney 

Na+, K+ ATPase when no electrical potential is applied across the membrane (i.e. at 

Vm = 0), which were the conditions under which the rate constant for the E2 → E1 

transition were made 110-113. This is what the simulations in figure 3.3 show. The 

experimental measurements on the heart enzyme (Figure 3.3) also show no 

significant voltage dependence (i.e. approximately a zero slope of the I-Vm curve) 

around 0 mV. This would be consistent with the E2 → E1 transition also being the 

major rate-determining step of the heart enzyme around 0 mV.  

However, both the experimental heart enzyme results and, to a lesser degree, the 

simulations of kidney enzyme show a significant dependence of the pump current on 

the extracellular Na+ concentration (Figure 3.3). If the observed extracellular Na+ 

concentration dependence isn’t due to a rate-limiting E1P → E2P transition or to any 

other rate-limiting charge-transporting step, then Gadsby and Nakao 86 must be 

correct that a reaction directly following the charge-transporting step must become 

rate-limiting at negative potentials. The reaction immediately following the release of 

Na+ from the E2P state is the occlusion of K+ from the extracellular medium. As far 

as we are aware, no direct measurements on the rate constant of this reaction for 
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the heart enzyme have been made. For the pig kidney enzyme the reaction is fast 

when the E2P state is completely saturated with K+, with a rate constant of around 

340 s-1 at 24ºC 80. However, this reaction could contribute significantly to rate-

limitation at negative potentials because a negative potential would promote 

electrogenic Na+ binding to the E2P state and shift the E1P/E2P distribution back 

towards the E1P(Na+)3 state. The consequent depletion in population of the E2PK+
2 

state would decrease the effective rate constant of K+ occlusion by E2P, leading to 

possible decrease in the pump turnover. 

Whether this effect does in fact cause a decrease in turnover depends on the rate 

constants of the individual reaction steps. For the kidney enzyme, using the 

parameters given in Table 3.1, the simulations shown in figure 3.3 indicate that it 

does. The simulations carried out at 150 mM extracellular Na+ and -120 mV yield a 

degree of occupation of the E2P state by 2 K+ ions of 0.093. This is in comparison to 

a value of 0.634 at 1.5 mM Na+ and -120 mV. Thus, the higher Na+ causes a 

dramatic decrease in the occupation of the E2P state by 2 K+ ions. Taking into 

account the voltage of -120 mV via eq. 14, one can then calculate an apparent rate 

constant for K+ occlusion by the E2P state. Thus, multiplying the value of k3 at zero 

membrane potential of 342 s-1 by 0.093 and the Boltzmann factor shows that the 

apparent rate constant reduces to a value of 169 s-1. This is not far above the 

slowest rate constant in the cycle, i.e. that for the E2 → E1 transition of 90 s-1 (k4). 

Thus, the voltage-induced drop in occupation of E2P by K+ would be expected to 

make K+ occlusion by E2P a significant contributor to rate determination at negative 

potentials. In contrast, at 1.5 mM extracellular Na+ and -120 mV, if one does the 

same calculation one arrives at an apparent rate constant for K+ occlusion by E2P of 

1151 s-1. This is so far above the rate constant for the E2 → E1 transition that one 
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wouldn’t expect any significant contribution of K+ occlusion by E2P to rate limitation 

of the overall pump turnover. This accounts for the very low dependence of the pump 

current on voltage at low extracellular Na+ concentrations.        

A possible explanation for the differences between the heart enzyme behaviour and 

that predicted by the simulations for the kidney enzyme is that they are composed of 

different isoforms of the enzyme. In the kidney the major catalytic subunit of the 

enzyme is present predominantly as the α1 isoform 92, whereas in heart muscle both 

the α1 and α2 isoforms are present 93,115. Horisberger and Kharoubi-Hess 116 did in 

fact find that when the α1 subunit is expressed together with the β1 subunit in 

Xenopus oocytes it displays a smaller voltage dependence at negative potentials 

than the α2 subunit when expressed with β1. They did not co-express any FXYD 

proteins together with the α- and β-subunits. In agreement with the results of 

Horisberger and Kharoubi-Hess 116, Apell and Bersch 117 found very little voltage 

dependence of the activity of the α1β1 form of the enzyme over the membrane 

potential range -100 – 0 mV when they reconstituted it from rabbit kidney into 

synthetic lipid vesicles. Thus, it seems to be the case that the difference in the I-Vm 

behaviour of the heart and kidney most likely arises from intrinsic structural 

differences in the α-subunit and different degrees of expression of the α-isoforms 

between heart and kidney tissue. Horisberger and Kharoubi-Hess 116 also found that 

the α2 isoform of the enzyme had a slightly lower apparent affinity for K+ ions than 

the α1 isoform. This is further supported by the results of Segall et al 118, who 

reported that the α2 isoform favours more strongly the Na+-stabilized E1 state over 

the K+-stabilized E2 state. Via kinetic studies on α-subunit chimeras they attributed 

this difference primarily to sequence differences in the N-terminal third of the α-

subunit. A difference in Na+/K+ ion selectivity could be the underlying physical reason 
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for the increased voltage dependence of the heart enzyme. A lower affinity of the 

E2P state for K+ ions means that Na+ can more effectively compete for occupation of 

the nonspecific ion sites on E2P, even at less negative potentials. This helps to drive 

the enzyme back towards the E1P(Na+)3 state and simultaneously reduces the 

degree of occupation of E2P by 2 K+ ions. The consequence of this is a reduced 

effective rate constant for K+ occlusion by E2P and hence a reduced overall turnover 

of the enzyme. Apart from a decrease in K+ affinity, an increase in Na+ affinity to E2P 

and an increase in the rate constant for the backward rate constant, E2PNa+
3 → 

E1P(Na+)3 are also possible mechanisms by which the voltage dependence of the 

enzyme could be increased. Quenched-flow results from Segall et al 118 indicate that 

there is unlikely to be any difference in the rate constant of the forward reaction 

E1P(Na+)3 → E2P(Na+)3 for the heart and kidney enzymes. 

The good agreement between the predictions of the model and the experimental 

behaviour of the α1β1 enzyme gives one confidence that the model could be used to 

investigate the kinetics of regulation of the kidney enzyme, as described in the 

Results section, and, with minor modifications, also the kinetics of regulation of the 

heart enzyme. In the case of the heart enzyme, however, it would be important to 

bear in mind that the kinetic and equilibrium parameters used in the modelling would 

be apparent values, because, as described earlier, the expressed enzyme in that 

tissue consists of a mixed population of α-subunit isoforms 93,115.  

 Finally, it is interesting to consider the significance of the results shown in 

figure 3.3 within the physiological context of heart and kidney function. A typical 

extracellular Na+ concentration of a heart muscle cell is 150 mM and a typical resting 

potential is approximately -80 mV. However, prior to each contraction the membrane 

potential increases to +60 mV (the action potential) due to the influx of Na+ through 
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voltage-sensitive Na+ channels. According to the results of Nakao and Gadsby 27, 

shown in the upper panel of figure 3.3, at the physiological extracellular Na+ 

concentration of 150 mM this increase in membrane potential should alone cause a 

roughly 100% increase in the pump turnover. This would be advantageous for the 

cell, because it would make it easier for the Na+, K+ ATPase to pump out the excess 

Na+ ions which had just entered via the Na+ channels during the extended plateau-

phase of the cardiac action potential and, thus, to re-establish resting conditions prior 

to the next action potential. This voltage-dependent increase in Na+, K+ ATPase 

activity would further enhance the stimulation of the enzyme already expected by the 

increase in intracellular Na+ concentration, which under physiological conditions is 

not at a saturating level. A lower activity of the heart Na+, K+ ATPase under resting 

conditions of -80 mV also has the advantage of conserving ATP when high ion 

pumping rates are not essential. In the case of kidney cells, however, there are no 

changes in membrane potential associated with their activity. The membrane 

potential is always approximately -80 mV. Thus, there is no advantage for a kidney 

cell in possessing a voltage-dependent Na+, K+ ATPase. Thus, a kidney cell should 

not suffer at all by possessing a lower voltage dependence of its Na+, K+ ATPase. 

Thus, the experimental and predicted results of heart and kidney Na+, K+ ATPase 

shown in figure 3.3 seem to make sense in terms of the physiological function of 

these two types of cells.           
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APPENDIX 

 

Simulation of the steady-state pump current.  

 

Based on the four-state Albers-Post model of the Na+, K+ ATPase enzymatic cycle 

shown in figure 3.1, the differential rate equations describing the changes in 

concentrations of all the enzyme intermediates are: 

 

1 1 4 2 4 1

[ 1]
(3 ) ( )[ 1] ( )[ 2] (2 ) ( )[ 1]i E E i E

d E
k f Na f ATP E k f ATP E k f K f ATP E

dt
     (A1) 

 

2 1 1 2

[ 1 ]
[ 1 ] (3 ) ( )[ 1] (3 )[ 2 ]i E o

d E P
k E P k f Na f ATP E k f Na E P

dt
       (A2) 

 

3 2 2

[ 2 ]
(2 )[ 2 ] (3 )[ 2 ] [ 1 ]o o

d E P
k f K E P k f Na E P k E P

dt
        (A3) 

 

4 2 3 4 1

[ 2]
( )[ 2] (2 )[ 2 ] (2 ) ( )[ 1]E o i E

d E
k f ATP E k f K E P k f K f ATP E

dt
      (A4) 

 

In these equations the term f(3Nai) represents the fraction of enzyme in the E1 state 

occupied by 3 Na+ ions. Similarly f(ATPE1) represents the fraction of enzyme in the 

E1 state occupied by ATP. The significance of these f-terms can be easily 

understood if we take the phosphorylation reaction as an example. The maximum 

rate constant for phosphorylation, k1, is only achieved when the E1 state of the 

enzyme is completely saturated by 3Na+ ions and one ATP molecule. Thus the 

observed rate constant, k1
obs, for the reaction is given by k1 multiplied by the 

probability that E1 has 3 bound Na+ ions (= f(3Nai)) and by the probability that E1 
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has a bound ATP molecule (=f(ATPE1)). This simple mathematical formulation of the 

rates will break down at very low cytoplasmic Na+ and ATP concentrations, when 

second-order binding of the substrates to the enzyme becomes slower than the 

following first-order phosphorylation and occlusion of Na+. However, under normal 

physiological conditions the assumption of rapid binding equilibria, on which 

equations (A1) - (A4) and the 4-state scheme shown in figure 3.1 are based, can be 

considered a good approximation. 

Also appearing in equations (A1) – (A4) are the fraction of enzyme in the E2 state 

with ATP bound, f(ATPE2), the fraction of enzyme in the E2P state with 3 Na+ ions 

bound, f(3Nao), the fraction of enzyme in the E2P state with 2 K+ ions bound, f(2Ko) 

and the fraction of enzyme in the E1 state with 2 K+ ions bound, f(2Ki). In a similar 

way to that described for the phosphorylation reaction, these fractions or probabilities 

modify the observed rate constant for each relevant reaction step, as shown in eqs. 

(A1) – (A4). Since in our model we consider all of the substrate binding reactions to 

be equilibria, the f-terms are determined solely by the substrate concentrations and 

the relevant equilibrium (or dissociation) constants of each substrate. Thus, 

 

      1 1 1( ) ([ ]/ ) /(1 [ ]/ )E A Af ATP ATP K ATP K     (A5) 

 

2 2 2( ) ([ ]/ ) /(1 [ ]/ )E A Af ATP ATP K ATP K     (A6) 

 

In contrast to ATP binding, the expressions for the f-terms describing Na+ and K+ 

binding are much more complex because here one must consider competition 

between 2 Na+ ions and 2 K+ ions for the same binding sites, as shown in figure 3.3. 

The relevant expression for Na+ binding to E2P is: 
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An analogous expression to eq. (A7) can be written for f(3Nai), in which all of the 

superscript and subscript o’s are replaced by i’s, to indicate binding to E1 from the 

intracellular fluid (cytoplasm) rather than the outer medium (extracellular fluid). The 

relevant expression for K+ binding to E2P is: 
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 (A8) 

 

An analogous expression to eq. (A7) can also be written for f(2Ki), in which all the 

superscript and subscript o’s are replaced by i’s, to indicate binding to E1 from the 

cytoplasm. 

Our use of the fraction of enzyme in the E2P state with 3 Na+ ions bound, f(3Nao), as 

a measure of the probability of the reverse reaction E2P → E1P(Na+)3 occurring is 

based on the assumption that this transition can only occur after three Na+ ions have 

bound to the E2P state. Experimental data indicating that this is indeed the case has 

recently been achieved via voltage-jump measurements on the Na+, K+ ATPase of 

giant squid axons (25).  
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The effects of transmembrane electrical potential difference V (defined as electrical 

potential in minus electrical potential out) are taken into account in the model by the 

following Boltzmann expressions: 

 

1 1, 0 exp( 0.25 / )i i

N N VK K FV RT     (A9) 

 

2 2, 0 exp( 0.1 / )Vk k FV RT      (A10) 

 

2 2, 0 exp( 0.1 / )Vk k FV RT       (A11) 

 

1 1, 0 exp(0.65 / )o o

N N VK K FV RT    (A12) 

 

, 0 exp(0.37 / )i i

N N VK K FV RT    (A13) 

 

3 3, 0 exp( 0.37 / ) Vk k FV RT    (A14) 

 

F, R and T represent here the Faraday constant, the universal gas constant and the 

absolute temperature, respectively. The numerical factors preceding F in each 

expression are the relevant dielectric coefficients for each reaction, as given in Table 

3.1. 

Based on the model, the differential rate equation for the transient outward current 

due to the Na+, K+ ATPase, Ip, is given by: 
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2 2[ 1 ] (3 )[ 2 ]
p

o

dI
k E P k f Na E P

dt
       (A15) 

 

 

The outward current at any point in time can be determined by numerically 

integrating the coupled series of differential rate equations (A1)-(A4) and (A15). For 

the purposes of this paper, the simulations were carried out until Ip no longer 

changed. This was then taken as its steady-state value. 
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Table 3.1.  Values of the rate constants, equilibrium constants and dielectric coefficients 

of the four-state model used for the simulations shown in Figure 3.3. 

 

Parameter Reaction*     Value            Reference 

 

k1  E1   E1P(Na+)3    200 s-1  100 

k2,V=0  E1P(Na+)3 → E2P    225 s-1  103 

k-2,V=0  E2P → E1P(Na+)3    401 s-1  103 

k3,V=0  E2P → E2(K+)2    342 s-1  74 

k4
max  E2(K+)2 → E1    90 s-1   107 

k4
min  E2(K+)2 → E1    11 s-1   108 

k-4  E1 → E2(K+)2    550 s-1  114119 

KN1
i
,V=0

 E1Na+
3 ↔ E1Na+

2 + Na+   1.8 mM  100 

KN
i  microscopic dissociation constant  8 mM   100 

  for the first 2 Na+ ions from E1 
  
KN1

o
,V=0 E2PNa+

3 ↔ E2PNa+
2 + Na+  100 mM  98 

KN
o
,V=0  microscopic dissociation constant  400 mM   103 

  for the last 2 Na+ ions from E2P 

KK
i  microscopic dissociation constant  10 mM  79 

  for 2 K+ ions from E1 

KK
o  microscopic dissociation constant  1.33 mM  101 

  for 2K+ from E2P 
 

KA1  E1ATP ↔ E1 + ATP   8 M   100 

KA2  E2(K+)2ATP ↔ E2(K+)2 + ATP  71 M   100 

a(KN1
i)  E1Na+

3 ↔ E1Na+
2 + Na+   -0.25   115120 

a(k2)  E1P(Na+)3 → E2P    +0.1   98 

a(k-2)  E2P → E1P(Na+)3    -0.1   98 
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a(KN1
o) E2PNa+

3 ↔ E2PNa+
2 + Na+  +0.65   93, 97, 98 

a(KN
o)  dissociation of the last 2 Na+ ions  +0.37*  

  from E2P 

a(k3)  E2P → E2(K+)2    -0.37   114 

 

 

* This value was chosen to balance the dielectric coefficient of -0.37 determined by 

Rakowski et al 38 for extracellular K+ binding and yield on overall transfer of one 

positive charge into the extracellular medium. 
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CHAPTER FOUR 

 

INTRODUCTION 

 

Within the Albers-Post formalism, Na+ ions bind from the cytoplasm to the E1 

conformation of the enzyme and, following phosphorylation by ATP and 

conformational relaxation of the E1P(Na+)3 state, are released to the extracellular 

medium from the E2P conformation. K+ ions then bind from the extracellular medium 

to the E2P conformation, stimulate dephosphorylation, and are transported to the 

cytoplasm (Figure 3.1). In the E1P(Na+)3 state the Na+ ions are enclosed within the 

protein and have no direct access to either the cytoplasm or the extracellular fluid, 

whereas in the E2P state the transport sites are open to the extracellular fluid. 

In the simple scheme outlined in figure 3.1 one would expect cytoplasmic Na+ ions, 

by promoting phosphorylation, to stimulate pump activity. Extracellular Na+, on the 

other hand, would be expected to inhibit the release of Na+ to the extracellular 

medium, drive the enzyme from the E2P conformation back towards the E1P(Na+)3 

conformation and compete with K+ for binding to the E2P state. Because K+ 

promotes dephosphorylation of the enzyme much more effectively than Na+, any 

decrease in the occupation of the sites on E2P by K+ would slow down the 

dephosphorylation step of the cycle. Thus, based on the simple version of the 

Albers-Post cycle shown in figure 3.1 one would predict that extracellular Na+ ions 

should inhibit turnover. However, in earlier work on purified Na+, K+ ATPase in native 

membrane fragments we discovered 113 a stimulation of the enzyme’s rate-

determining E2 → E1 transition by Na+ which could not be explained by this scheme. 
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The Na+-induced stimulation of the E2 → E1 transition could only be explained by 

Na+ binding to the E2 state prior to the enzyme undergoing the transition to the E1 

state. On the basis of steady-state activity studies of the effect of the Na+ 

concentration on vanadate inhibition, Sachs 121 concluded that cytoplasmic Na+ 

doesn’t bind to the transport sites of the protein prior to the release of K+. In the 

E2(K+)2 state the K+ ions are occluded within the protein, with no access of the 

transport sites to the cytoplasm. Therefore, the Na+ ions which stimulate the E2 → 

E1 transition cannot be the same ones which bind in exchange for K+ on the 

cytoplasmic face of the protein once the enzyme has already undergone its transition 

to the E1 state. 

While it appeared likely that the acceleration of the E2 → E1 transition was due to 

Na+ acting from the extracellular face of the protein no definite conclusion could be 

reached regarding the side of action because the experiments were conducted using 

open membrane fragments with simultaneous access of Na+ to both faces of the 

protein. Nevertheless, based on kinetic measurements on Na+, K+ ATPase 

reconstituted into lipid vesicles, a number of authors have supported the presence of 

a Na+ allosteric site with access from the extracellular medium 122-124. The site 

appears, however, to be not very specific for Na+, with many buffer cations also 

exhibiting a Na+-like action in stabilising the E1 conformation relative to the E2 

conformation 112,124-132. 

The purpose of this study was to investigate the effect of the Na+ allosteric site on 

Na+, K+ ATPase activity in cardiac myocytes. In particular we aimed to determine 

from which side of the protein the ions are acting in this cellular system. 

Furthermore, now that 3D-crystal structural information on the Na+, K+ ATPase is 
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available 81-83,133-135, it is possible to consider where the Na+ allosteric site within the 

protein might be.        

METHODS 

 

Measurement of electrogenic Na+, K+ ATPase current (Ip). 

 

We measured currents (arising from the 3: 2 Na+:K+ exchange ratio) in single 

myocytes using the whole-cell patch clamp technique. The composition of the patch 

pipette solutions perfusing the intracellular compartment were designed to take into 

account features of Na+, K+ ATPase kinetics. The solution included 20 mM Na+, a 

concentration higher than physiological intracellular levels, to obtain a substantial K+ 

activated current at 24 °C. Wide-tipped patch pipettes (4-5 μm) were filled with 

solutions containing (in mM): HEPES 5; MgATP 2; ethylene glycol-bis(β-aminoethyl 

ether)-N,N,N’,N’-tetraacetic acid (EGTA) 5; potassium glutamate 70, sodium 

glutamate 20 and tetramethylammonium chloride (TMA-Cl) 70. They were titrated to 

a pH of 7.2 at 24 °C with KOH. In some experiments Na+ and K+ concentrations were 

varied in the pipette solution and the concentration of TMA-Cl was adjusted 

accordingly to maintain a constant osmolality. 

While we were establishing the whole-cell configuration myocytes were superfused 

with solution containing (in mM): NaCl 140; KCl 5.6; CaCl2 2.16; MgCl2 1; glucose 

10; NaH2PO4 0.44; HEPES 10. It was titrated to a pH of 7.4 at 24 °C with NaOH. 

Two to three minutes after the whole cell configuration was established we switched 

to a superfusate that was designed to minimize non-pump membrane currents by 

blocking current arising from transmembrane K+ and Ca2+ gradients. It was nominally 

Ca2+, K+-free and contained 0.2 mM CdCl2 and 2 mM BaCl2. Unless otherwise 
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indicated, the solution contained 7 mM KCl. The K+-dependent shift in holding 

current was used to identify Ip. Control experiments using Na+ free patch pipette 

solutions to eliminate pump currents indicated that there were no residual K+-induced 

membrane currents at the holding potential of -40 mV used. We measured Ip using 

Na+ concentrations in the superfusate ranging from 0 to 140 mM. We included N-

methyl-D-glucamine to compensate for changes in the Na+ concentration and hence 

maintain the osmolality of the extracellular solution. In experiments performed to 

measure the I-Vm relationship Ip was identified as the shift in holding current induced 

by Na+, K+ ATPase blockade with 200 μM ouabain. Holding currents were recorded 

during voltage steps of 5 s duration in 20-mV increments to test potentials from −100 

to +40 mV. Recordings were averaged from three applications of the voltage-clamp 

protocol and the holding current was taken as the mean value of currents sampled 

with an electronic cursor. 

All experiments were performed at a temperature of 24 °C, maintained with Warner 

Instruments automatic temperature controllers and in-line heaters. TMA-Cl and N-

methyl-D-glucamine were purum grade and were obtained from Fluka Chemicals 

(Switzerland). All other chemicals used in solutions were analytical grade and were 

obtained from BDH (Australia).  

We used Axoclamp 2A and 2B voltage clamp amplifiers, supported by pClamp 

version 7 and Axotape version 2 (Axon Instruments, CA, USA) to record currents. 

Currents were identified as the difference between holding currents with and without 

7 mM extracellular K+, sampled at 20 Hz before and after Na+, K+ ATPase activation.  
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Statistical analysis. 

 

The experimental results are expressed as the means ± S.E. Student's t tests for 

unpaired data were used for the comparison of the mean levels of Ip. Wilcoxon 

ranked sum test was used to compare the means of the I-Vm curves.    

Pump current simulations. 

 

Computer simulations yielded the time course of the concentration of each enzyme 

intermediate involved, the outward current and the amount of charge transported. 

For the purposes of the simulations, each enzyme intermediate was normalized to a 

unitary concentration and the enzyme was assumed arbitrarily to be initially in the E1 

state.  Each simulation was then carried out until the distribution between the 

different enzyme states no longer changed and the outward current reached a 

constant value. 

RESULTS 

 

Steady-state pump current measured via the whole-cell patch clamp 

technique. 

 

Typical whole-cell current recordings are shown in figure 4.1. The steady-state Ip 

produced by the Na+, K+ ATPase in voltage-clamped myocytes as a function of the 

extracellular Na+ concentration is shown in Figure 3. There is an increase in Ip with 

increasing extracellular Na+ concentration over the range 0 – 50 mM. With an 

increase in the Na+ concentration of the pipette solution above 80 mM there was no 

significant difference in Ip at 0 vs 50 mM extracellular Na+ (Ip = 0.87 ±0.1 pA/pF, n = 

6, vs Ip = 0.92 ±0.12 pA/pF, n = 6, P = 0.76).  We also performed experiments in 

which we maintained the Na+ concentration in pipette solutions at 20 mM but 
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eliminated K+, replaced with TMA-Cl. With elimination of K+ in the pipette solution 

there was no significant difference in Ip at 0 vs. 50 mM extracellular Na+ (Ip = 1.12 

±0.12 pA/pF, n = 5, vs. Ip = 1.28 ±0.09 pA/pF, n = 5, P = 0.31). 
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Figure 4.1.  Whole-cell current recordings. K
+
-sensitive membrane currents recorded in 

extracellular solutions that were Na
+
 free or contained 50 or 140 mM Na

+
. Pipette 

solutions included 20 mM Na
+
 and 80 mM K

+
.  The membrane capacitance (Cm) is 

included for each recording for comparison. The arrow in each recording indicates the 

point at which the cardiomyocyte was exposed to K
+
 free superfusate. Prior to this point 

the superfusate included 7 mM K
+
. 
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Since the K+-sensitive current that identifies Ip here can be affected by competition 

between K+ and Na+ to pump binding sites we performed additional experiments 

using a high extracellular K+ concentration of 15 mM. Experiments using this K+ 

concentration were performed using Na+ concentrations of 50 or 140 mM. Since the 

extracellular transport sites are expected to be completely saturated by K+ at an 

extracellular K+ concentration of 7 mM in the absence of extracellular Na+, additional 

experiments at 15 mM extracellular K+ were not performed in the Na+-free 

superfusates. Mean Ip for experiments using 15 mM K+ have been included in figure 

4.2. The K+-dependent increase between currents recorded at 0 and 50 mM 

extracellular Na+ was significant also when 15 mM K+ was used at the higher Na+ 

concentration and the decrease in Ip that occurred when the extracellular Na+ 

concentration was increased further to 140 mM appeared qualitatively similar to the 

decrease that occurred when 7 mM K+ was used in the superfusate. 
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Figure 4.2.  Dependence of the Na
+
,K

+
-pump current of cardiac myocytes (Ip) 

normalized to the membrane capacitance, on the extracellular Na
+
 concentration. 

Pipette solutions included 20 mM Na
+
 and 80 mM K

+
. Extracellular solutions included 7 

(closed symbols) or 15 mM K
+
 (the latter at 50 and 140 mM extracellular Na

+
 only). 

Other experimental conditions were: [ATP] = 2 mM, V = -40 mV, T = 24ºC, pH 7.2. 

 

We examined if the difference in Ip recorded in Na+-free extracellular solutions and 

solutions containing 50 mM Na+ arise from a voltage dependent step in the pump 

cycle. Myocytes were voltage clamped using Na+ and K+ concentrations of 20 and 80 

mM, respectively, in the patch pipette solutions. The extracellular K+ concentration 

was 7 mM. To eliminate any contamination of the small Na+, K+ ATPase currents that 

might arise from voltage-dependent inwardly rectifying K+-activated K+ channels 

despite use of 2 mM Ba2+ in the superfusate we used 200 µM ouabain to inhibit the 

Na+, K+ ATPase. Ouabain in this concentration causes near complete pump 

blockade in rabbit cardiac myocytes 136. Holding currents were recorded before and 

after exposure to ouabain 137. An example of holding currents used to derive the 

voltage dependence of pump currents is shown in figure 4.3A. Results of all 

experiments in Na+-free solutions and solutions containing 50 mM Na+ are 
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summarized in figure 4.3B. The currents recorded in solutions containing 50 mM Na+ 

were significantly larger than currents in Na+-free solutions (P < 0.01). To examine if 

there was a difference in voltage dependence at 0 and 50 mM extracellular Na+ we 

normalized currents at the different holding potentials to the current recorded at 0 

mV (Figure 4.3C). The normalized data did not support the hypothesis that the 

difference in Ip between 0 and 50 mM extracellular Na+ is voltage dependent (P = 

0.21). 

The increase in the enzyme’s pump activity with 20 mM Na+ in the patch pipette 

solution with an increase in the extracellular Na+ concentration is not predicted by 

the simple Albers-Post scheme shown in Figure 3.1, in which only transport sites for 

Na+ and K+ are considered. Based on this scheme the only effect one would expect 

is an inhibition by extracellular Na+. Extracellular Na+ is expected to compete with 

extracellular K+ ions at the transport sites on the E2P conformation.  

The coupled equilibria describing the competition between extracellular Na+ and K+ 

ions for the transport sites on the E2P state of the enzyme can be found in Figure 

3.2 of Chapter 3. This scheme incorporates the generally accepted hypothesis of two 

transport sites, which can be occupied with different affinities by Na+ and K+, plus a 

single site which is specific for Na+. To demonstrate the expected dependence of Ip 

on the extracellular Na+ concentration based on this scheme, we have performed 

calculations described in the following section, with the mathematical details given in 

the Appendix of this Chapter.  
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Figure 4.3.  Voltage dependence of the Na
+
,K

+
-pump current at 0 and 50 mM 

extracellular Na
+
. A. Examples of holding currents before (black trace) or after (grey 

trace) exposure of a myocyte to 200 μM ouabain. Pipette solutions included 20 mM Na
+
 

and 80 mM K
+
. The holding potential was stepped from -40 to -100 mV at the beginning 

of the traces and then in 20 mV increments to +40 mV at the end of the traces before 

returning to -40 mV. Ip at each potential was identified as the difference in current 

recorded before and after exposure to ouabain. B. Voltage dependence of mean Ip at 

either 50 mM (■) or 0 mM extracellular Na
+
 (♦). Currents recorded at 0 mM 

extracellular Na
+
 were significantly larger than currents at 0 mM Na

+
 (Wilcoxon’s 
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replicate rank test). C. Mean Ip normalized to Ip recorded at 0 mV. Voltage dependence 

of the normalized currents was not statistically significant (P = 0.21, Wilcoxon’s 

replicate rank test). 
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Modelling of heart Na+, K+ ATPase transported charge-voltage behaviour. 

 

Under experimental conditions which are not too far removed from physiological 

conditions the complex Albers-Post cycle describing the Na+, K+ ATPase’s partial 

reactions can be reduced to the simpler 4-state model shown in figure 3.1. We have 

used this simple model to describe current-voltage behaviour of the Na+, K+ ATPase 

previously 137. The mathematical detail of the model and the assumptions on which it 

is based are described in detail there. Here we describe only the essential points of 

the model. E1P(Na+)3 and E2(K+)2 represent here occluded states of the protein. In 

contrast, E1 and E2P represent states in which the ion binding sites have access to 

the cytoplasm and the extracellular fluid, respectively.  In the case of the non-

occluded states, we assume that rapid exchange of Na+ and K+ between the binding 

sites and either the cytoplasm or the extracellular fluid can occur. Thus, in the case 

of the E2P state we assume that there is a rapid exchange of Na+ ions and K+ ions 

between the extracellular fluid and two of the ion transport binding sites. The 

stoichiometry of the Na+, K+ ATPase is 3Na+/2K+/ATP. One of the ion binding sites is 

considered to be specific for Na+, whereas Na+ or K+ can both bind with differing 

affinities to the other two. Thus, we treat ion binding to E2P as a series of coupled 

equilibria, as shown in Figure 3.2 of Chapter 3. An analogous scheme can be drawn 

for the E1 state. Only the kinetics of the four major rate-determining reactions shown 

in Figure 3.1 is explicitly considered.  We consider that each of the four rate-

determining reactions only reaches its maximum observable rate when the reactant 

state is fully saturated by the appropriate substrates. 

Because the enzyme pumps three Na+ ions in exchange for two K+ ions in, there is a 

net transport of one positive charge out of cells.  Thus, the overall steady-state 
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turnover of the enzyme equals the outward flux of ions, and can be easily converted 

to an outward current. The voltage dependence of the charge-translocating reaction 

steps is taken into account by Boltzmann terms, as previously described in Chapter 

3. The numerical simulation procedure outlined in Chapter 3 allows the time 

dependence of any changes in pump current to be calculated following rapid 

perturbations, e.g. due to a voltage jump, as well as the steady-state. 

If one only wishes to calculate the steady-state pump currents, the differential rate 

equations describing the rate of change of each enzyme intermediate (shown in the 

Appendix of this Chapter) are all equal to zero. Therefore, in principle, if one makes 

use of the mass conservation law that the total concentration of the enzyme 

intermediates is constant, the coupled series of differential equations reduces to a 

series of simultaneous equations which can be solved analytically to obtain a single 

equation that allows the pump current to be calculated under varying experimental 

conditions. However, because of the complex reaction mechanism, the resultant 

equation for the pump current is unwieldy, and we only present the mathematics for 

the numerical solution here. Whether one uses a numerical procedure or the 

analytical solution to the simultaneous equations, the results of the calculations are 

identical. An advantage of the numerical procedure is that by integration of the time-

dependent pump current, the amount of charge transported by the Na+, K+ ATPase 

can be calculated. We will use this feature of the numerical model to compare with 

experimental voltage-jump data.  

The kinetic and equilibrium parameters used for modelling of the outward sodium 

pump current, Ip, in Chapter 3 were derived from measurements on purified 

mammalian kidney enzyme. Significant differences existed between the 

experimentally observed current-voltage behaviour of heart muscle Na+, K+ ATPase 
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in intact cardiac myocytes and the predicted behaviour of kidney Na+, K+ ATPase. In 

particular, the kidney enzyme displayed significantly lower voltage dependence of 

the pump current at a physiologically relevant extracellular Na+ concentration of 150 

mM. 

The comparison between the heart and kidney enzymes demonstrates that, if one 

wishes to simulate the behaviour of heart Na+, K+ ATPase, modifications to the rate 

or equilibrium parameters used in the model must be made. The steep positive slope 

in the Ip-Vm curve of the heart enzyme over the membrane voltage range -120 to 0 

mV has its origin in Na+ competition for transport sites on the E2P state. To 

determine more reliable values for the equilibrium dissociation constants of 

describing the interaction of Na+ with the E2P state, we have compared the results of 

simulations of the total charge transported by the Na+, K+ ATPase following a voltage 

jump with experimental results obtained by Peluffo 138 using rat cardiac myocytes. 

Because the experiments were performed in the absence of extracellular K+, the 

comparison allows us to estimate the Na+ dissociation constants without any 

competition from K+.  Peluffo’s experimental data is reproduced in figure 4.4 together 

with the simulations based on our kinetic model. Good agreement between the 

experimental data and the simulations was achieved. To obtain this agreement it 

was necessary to significantly reduce the Na+ dissociation constants of the E2P state 

relative to the values previously determined for the kidney enzyme. The microscopic 

dissociation constant for interaction of Na+ with the two nonspecific sites at a 

membrane potential of 0 mV, KNo, was reduced from 400 mM (kidney) to 180 mM 

(heart). Similarly, the dissociation constant for interaction of Na+ with the specific Na+ 

site, KN1o, was reduced from 100 mM (kidney) to 40 mM (heart). 
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A direct quantitative comparison of the actual amounts of charge transported 

experimentally and that calculated from the model is not possible, because the total 

charge transported depends on the number of Na+, K+ ATPase molecules expressed 

per cell, which depends on the size of the cell. To account for varying cell sizes 

Peluffo 138 divided the measured current by the capacitance of each cell, which 

should be proportional to the cell surface area. Thus, his measured current in units of 

femto-Coulombs per pico-Farad should be proportional to the current per pump 

molecule, which is the quantity we calculate in our simulations. 

To judge the agreement between the experimental data and the simulated results it 

is important to look at the plateaus in charge transported after voltage jumps to very 

high positive or very low negative potentials. If the magnitudes of these plateaus are 

equal, at the extracellular Na+ concentration corresponding to this situation the 

enzyme is half-saturated by Na+, i.e., the number of bound Na+ ions capable of being 

released on shifting to inside-positive potentials equals the number of available 

binding sites and hence the number of free Na+ ions capable of binding on shifting to 

inside-negative potentials. Although only three different extracellular Na+ 

concentrations were measured by Peluffo 138, the results indicate that the half-

saturating Na+ concentration is in the range 72.5 – 145 mM, probably closer to the 

72.5 mM than 145 mM. 
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Figure 4.4.  Dependence of the Na
+
,K

+
-ATPase transported charge-voltage relationship 

(ΔQ-V curve) on the extracellular Na
+
 concentration after voltage jumps from the 

membrane voltage Vm to -40 mV. Each symbol corresponds to the following Na
+
 

concentrations: 36.3 mM (▼), 72.5 mM (○) and 145 mM (●). The solid lines between the 

points have been drawn to aid the eye. 

Upper curve: Experimental results for rat heart myocytes, obtained via the voltage 

clamp technique, reproduced from Figure 3C of Peluffo 
138

. The transported charge, 

ΔQ, has been divided by the capacitance of each cell to correct for variations in cell size. 

The experimental conditions were cytoplasmic [Na
+
] = 120 mM, cytoplasmic [K

+
] = 

extracellular [K
+
] = 0 mM, cytoplasmic [ATP] = 15 mM, T = 23ºC. 
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Lower curve: Computer simulations of the ΔQ-V curve for mammalian heart Na
+
, K

+
 

ATPase current based on the Albers-Post scheme described by Figs. 3.1 and 3.3 and the 

kinetic and equilibrium parameters given in Table 3.1 of Chapter 3, except that a 

microscopic dissociation constant of Na
+
 for the nonspecific transport  sites on E2P state 

of 180 mM and a dissociation constant of Na
+
 to the specific site on E2P of 40 mM have 

been used. The ion concentrations, ATP concentration and temperature used for the 

simulations were the same as for the upper curve. 
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Modelling of heart Na+,K+ ATPase current-voltage behaviour. 

 

We extended the modelling to competition between Na+ and K+ for the transport sites 

and thus estimate the E2P microscopic dissociation constant for K+ of the heart 

enzyme. For this purpose we compare with the experimental steady-state pump 

current data for heart Na+, K+ ATPase reported by Nakao and Gadsby 27. We 

showed previously in Chapter 3  that it was not possible to adequately reproduce the 

current-voltage (I-Vm) behaviour reported by Nakao and Gadsby 27 if we used 

equilibrium dissociation constants for the E2P state derived from measurements on 

kidney enzyme. We changed the values of KNo and KN1o from 400 mM and 100 mM 

derived from the kidney enzyme to 180 mM and 40 mM, the values derived from the 

comparison with Peluffo’s data in the previous section, and have then varied the 

value of KKo (the microscopic dissociation constant of K+ with the E2P state at a 

membrane potential of 0 mV) until we obtained the best reproduction of experimental 

behaviour. 

Nakao and Gadsby’s experimental data together with the results of the simulations 

showing the closest agreement with their data are shown in figure 4.5. To achieve 

this agreement we increased the value of KKo slightly from 1.33 mM (kidney value) to 

1.8 mM. The higher value of KKo together with the lower values of KNo and KN1o 

relative to the values obtained using enzyme derived from mammalian kidney, 

indicates that Na+ competes with K+ much more strongly for binding to the E2P state 

in the heart enzyme than the kidney enzyme. Because binding/release of Na+ to the 

specific site on E2P is the major charge-transporting step of the Na+, K+ ATPase 

pump cycle, the stronger competition from Na+ ions explains the much greater 
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voltage dependence of the heart enzyme’s steady-state turnover than that predicted 

for the kidney enzyme. 
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Figure 4.5.  Dependence of the Na
+
, K

+
 ATPase current-voltage relationship (I-Vm 

curve) on the extracellular Na
+
 concentration. Symbols correspond to the Na

+
 

concentrations of 1.5 mM (○), 50 mM (●), 100 mM (□) and 150 mM (■). The solid lines 

between the points have been drawn to aid the eye. 

Upper curve: Experimental results for guinea pig heart ventricular myocytes, obtained 

via the whole-cell patch clamp technique, reproduced from Figure 3 of Nakao and 

Gadsby 
27

. The pump current, Ip, of each curve has been normalized to the value at a 

holding potential of + 40 mV. The experimental conditions were cytoplasmic [Na
+
] = 50 

mM, cytoplasmic [K
+
] = 0 mM, extracellular [K

+
] = 5.4 mM, cytoplasmic [ATP] = 10 

mM, T = 36ºC. 
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Lower curve: Simulations of the I-V curve for mammalian heart Na
+
,K

+
-ATPase pump 

current based on  the Albers-Post scheme described by Figs. 1 and 3 and the kinetic and 

equilibrium parameters given in Table 1 of Chapter 3, except that a microscopic 

dissociation constant of K
+
 for the E2P state of 6.2 mM has been used and the dielectric 

coefficients of binding of both Na
+
 and K

+
 to this state have been reduced to 0.1. The ion 

concentrations, ATP concentration and temperature used for the simulations were the 

same as for the upper curve. 

Modelling of the extracellular Na+ concentration dependence of Ip. 

  

Now that we have a kinetic model based on the Albers-Post scheme capable of 

reproducing data from the literature on the transported charge- and current-voltage 

behaviour of heart Na+, K+ ATPase, we can test whether this model explains the 

experimentally observed dependence of Ip on the extracellular Na+ concentration 

shown in figure 4.2. Calculations of the expected dependence of the pump current, 

Ip, per pump molecule on the extracellular Na+ concentration based on the Albers-

Post model are shown in figure 4.6 (dotted line). Based on the values of the 

dissociation constants for extracellular K+ and Na+ interaction with the transport sites 

derived from the data of Peluffo 138 and Nakao and Gadsby 27 in the previous two 

sections, it is apparent that the Albers-Post model only predicts a monotonic 

decrease in steady-state activity of around 2 – 3 % between 0 and 150 mM Na+ if 

one only considers interaction of extracellular Na+ with the enzyme’s transport sites. 

This is not in agreement with the experimental results (Figure 4.1), which show an 

increase in activity between 0 and 50 mM. For these calculations we have used a 

value of the rate constant, k4, of the E2(K+)2 → E1 transition of 18 s-1. This value is 

based on the finding of Humphrey et al 113 on purified enzyme that Na+ ions cause a 

roughly 5-fold increase in the rate constant of this reaction and the finding of Lüpfert 
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et al 112 that at physiological levels of Na+, Mg2+ and ATP the reaction occurs with a 

rate constant of around 90 s-1.   

To account for the increase in pump current experimentally observed we have 

expanded the Albers-Post model to incorporate extracellular Na+ binding to an 

allosteric site and an associated acceleration of the E2 → E1 conformational 

transition, as indicated by kinetic experiments on purified enzyme 113. The extensions 

and changes to the mathematics necessary for these calculations are described in 

the Appendix of this chapter. Based on the kinetic results on purified enzyme 113 we 

have used a dissociation constant for the interaction of Na+ with the allosteric site, 

Kallo, of 31 mM. The results of the simulations, utilizing the values of KKo = 1.8 mM, 

KNo = 180 mM, and KN1o = 40 mM derived from the simulations of Peluffo’s 138 and 

Nakao and Gadsby’s 27 data, are shown in figure 4.6 (dashed line). The model 

predicts a roughly hyperbolic increase in the pump current over the 0 – 50 mM 

extracellular Na+ concentration range. At Na+ concentrations above 100 mM there is 

a very gradual drop in pump current, i.e., qualitatively in agreement with the 

experimental observations (Figure 4.2). Therefore, the experimental results are 

consistent with the existence of an allosteric activating Na+ site with access from the 

extracellular medium. The drop in Ip at high extracellular Na+ concentrations is, 

however, much more pronounced than that predicted by the model (Figure 4.6). 

However, if the values of KNo and KN1o are decreased to 68 mM and 15 mM, 

respectively, a significant drop in Ip is observed over the Na+ concentration range 50 

– 150 mM, i.e., in much closer agreement with the experimentally observed 

behaviour (Figure 4.2). Therefore, it appears likely that competition from Na+ for 

binding to the extracellular transport sites on the E2P state of the enzyme is much 
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stronger in the rabbit cardiac myocytes used in our study in comparison to the 

guinea pig myocytes used by Nakao and Gadsby 27. 
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Figure 4.6.  Simulations of expected dependence of Na
+
, K

+
 ATPase current, Ip, per 

pump molecule on the extracellular Na
+
 concentration based on the Albers-Post model 

(dotted line, KKo = 1.8 mM, KNo = 180 mM, and KN1o = 40 mM) and an expanded Albers-

Post model incorporating extracellular allosteric Na
+
 binding (dashed line, KKo = 1.8, KNo 

= 180 mM, and KN1o = 40 mM). The solid line also represents a simulation based on the 

same model incorporating allosteric Na
+
 binding, but with reduced dissociation 

constants for extracellular Na
+
 interaction with the transport sites (KKo = 1.8 mM, KNo = 

68 mM, and KN1o = 15 mM). The experimental conditions used for the simulations were 

identical to those of the actual experiments (see legend for Figure 4.2). 
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DISCUSSION 

 

Much information regarding the molecular mechanism of Na+, K+ ATPase has been 

gained by studies of the purified protein, either in the form of enzyme-containing 

membrane fragments or reconstituted into synthetic lipid vesicles. However, the goal 

of any mechanistic work on the Na+, K+ ATPase must be to understand how the 

enzyme works in a living cell, and it is crucial that any discoveries made on purified 

Na+, K+ ATPase be reconciled with studies on the enzyme in situ in intact cells. Apart 

from this fundamental point, experiments on cells have the additional advantage over 

studies of Na+, K+ ATPase-containing membrane fragments that the cytoplasm and 

the extracellular medium are separated by the plasma membrane, allowing the side 

of action of the enzyme’s substrates to be identified. Synthetic vesicles are sided 

preparations, but, in the case of small unilamellar vesicles generally used for 

reconstitution, their internal volume is much less than that of cells and it is impossible 

with vesicles to reproduce the natural membrane composition of a living cell. 

Therefore, the relevance of results obtained on the Na+, K+ ATPase using lipid 

vesicles for the enzyme in a cell always needs to be examined.  

Because the Na+, K+ ATPase pumps Na+ ions from the cytoplasm into the 

extracellular fluid, increased concentrations of extracellular Na+ must inhibit its 

pumping activity, a simple example of product inhibition. However, studies on 

purified enzyme has suggested that extracellular Na+ can also stimulate ion pumping 

by acting at an allosteric site 112,113,122-127,129-132,139. Our results on whole cells confirm 

that prediction. This increase cannot be explained by Na+ acting on transport sites 

alone and implicates the existence of a separate allosteric Na+ site. 
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A logical question to ask, however, would be why no evidence for an extracellular 

allosteric Na+ site was apparent in the results reported by Nakao and Gadsby 27, 

reproduced in figure 4.5. A likely explanation is that they used a higher Na+ 

concentration of 50 mM in their patch pipette in comparison to 20 mM in the 

experiments shown in figure 4.2. In our study on increasing the cytoplasmic Na+ 

concentration or eliminating the cytoplasmic K+ concentration there was no longer a 

statistically significant increase in Ip with increasing extracellular Na+ concentrations 

from 0 to 50 mM, which we attribute to extracellular allosteric Na+ binding.  

If the increase in Ip due to extracellular Na+ is caused by an increase in the flux 

through the E2(K+)2 → E1 transition, as measurements on purified enzyme suggest 

113, then the disappearance of the effect of extracellular allosteric Na+ site at high 

cytoplasmic Na+ concentrations or low cytoplasmic K+ concentrations implies a 

decrease in the contribution of the E2(K+)2 → E1 transition to rate-determination of 

the entire pump cycle. Thus, the E2(K+)2 → E1 transition must already be so fast that 

any increase in its rate has negligible effect on the enzyme’s turnover. To 

understand how this might come about one should consider what effects an increase 

in the cytoplasmic Na+ concentration or a decrease in the cytoplasmic K+ 

concentration could have on the individual partial reactions of the enzyme. 

An increase in the cytoplasmic Na+ concentration would accelerate the 

phosphorylation reaction, E1 → E1P, but this would tend to increase the contribution 

of the E2(K+)2 → E1 transition towards overall rate determination of the pump cycle 

and hence one would expect an enhanced effect of extracellular Na+ on Ip rather 

than the decreased effect experimentally observed. However, an increase in the 

cytoplasmic Na+ concentration would also increase the degree of competition of Na+ 

over K+ for binding to the transport sites on E1. This would decrease the rate of the 
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backward reaction E1K+
2 → E2(K+)2 and, thus, increase the net flux in the forward 

direction E2(K+)2 → E1. 

A decrease in the cytoplasmic K+ concentration would be expected to have the same 

effect as an increase in the cytoplasmic Na+ concentration. The result of this would 

be a decrease in the contribution of the E2 → E1 transition to overall rate 

determination and a reduction in the allosteric effect of extracellular Na+. The 

experimental results that the allosteric effect of extracellular Na+ diminishes either on 

increasing the cytoplasmic Na+ level or decreasing the cytoplasmic K+ level indicates 

that for the heart enzyme the decrease in the rate of the backward reaction E1K+
2 → 

E2(K+)2 must dominate over the increase in rate of the E1 → E1P reaction by 

cytoplasmic Na+. It is in fact likely that in the experiments performed by Nakao and 

Gadsby 27 there would have been very little competition to Na+ binding to the E1 

state, because they replaced K+ with Cs+ ions which compete with Na+ with an 

approx. ten-fold higher K1/2 than K+ 140 Although not quantitatively the same, it is also 

worth mentioning that the theoretical model predicts the decrease in the allosteric 

effect of extracellular Na+ at increasing intracellular Na+ concentrations or decreasing 

intracellular K+ concentrations. At an intracellular Na+ concentration of 20 mM, the 

model predicts an increase in the relative value of Ip between 0 and 50 mM 

extracellular Na+ of 172%. If the intracellular Na+ concentration is increased to 80 

mM, the model predicts that the increase in Ip over the same extracellular Na+ 

concentration range should drop to 126%. If the intracellular K+ concentration is 

decreased to zero, the model predicts that the increase in Ip over the same 

extracellular Na+ concentration should drop to 93%.    

From a consideration of recently published crystal structures of the Na+, K+ ATPase 

81-83,133-135, we have identified a possible site of allosteric Na+ binding. Based on the 
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sequence numbering of the shark enzyme (pdb 2ZXE), it seems that the Na+ ion 

could possibly bind to the sequence of acidic amino acid residues Glu122, Asp123, 

Glu124 and Asp128. These residues are located in a cleft between the α- and β-

subunits of the protein which has access from the extracellular medium. That this 

cleft has functional importance for the protein is evidenced by the fact that it is also 

occupied by the specific Na+, K+ ATPase inhibitor ouabain 83,133. It is worthwhile 

pointing out that, based on X-ray crystallographic data, Ekberg et al 141 recently 

identified Asp92 and Asp95 as being involved in cation binding on the extracellular 

face of the plasma membrane H+ ATPase, another P-type ATPase closely related to 

the Na+, K+ ATPase. These amino acid residues are in homologous positions to 

those which we suggest may be involved in extracellular allosteric Na+ binding in the 

Na+, K+ ATPase. Based on the effects of mutations on the kinetics of partial 

reactions, amino acid residues in homologous positions have also been implicated 

142 in extracellular ion binding in the sarcoplasmic reticulum Ca2+ ATPase. 

Ip over the 0 – 50 mM extracellular Na+ concentration range was only weakly voltage 

dependent and not significantly different between 0 and 50 mM Na+ (Figure 4.3). 

This is consistent with the expectation that the major voltage-dependent step of 

extracellular Na+ rebinding to E2P is not rate-limiting under the conditions of these 

experiments nor is K+ occlusion by E2P, whose observed rate is dependent on the 

degree of occupation of the transport sites on E2P by K+. At intracellular Na+ and K+ 

concentrations of 20 and 80 mM, the forward E2(K+)2  → E1K+
2 and backward E1K+

2 

→ E2(K+)2 are major reactions determining the overall forward reaction rate and 

hence Ip. The absence of significant voltage dependence also indicates that binding 

of Na+ to the extracellular allosteric site we invoke is not voltage dependent, i.e. the 

allosteric site is not buried within the transmembrane domains of the protein. 
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Finally, it is interesting to speculate if allosteric Na+ binding has a role in regulation of 

cell Na+. At a normal physiological extracellular Na+ concentration of ~140 mM the 

Na+ allosteric site should be nearly fully occupied and hence unlikely to have a 

regulatory role. It might simply be an evolutionary adaptation of the enzyme to 

optimize its activity under normal physiological conditions in the presence of a 

relatively high concentration of extracellular Na+ and to compensate for any inhibition 

which would arise from extracellular binding to the ion transport sites. However, the 

allosteric site might also have a role under pathophysiological conditions of low 

extracellular Na+. Extracellular concentrations as low as ~100 mM can be 

encountered in severe hyponatremia in humans. Due to an associated decrease in 

inward passive Na+ leak this decreases the intracellular Na+ concentration 143. The 

decrease in intracellular concentration arising from decreased leak would be 

amplified if the low extracellular Na+ increases the occupation of the transport sites 

on E2P by K+ and hence increases forward Na+, K+ ATPase rate. At an extracellular 

Na+ concentration of 100 mM and above the contribution of K+ occlusion by E2P to 

overall rate determination is expected to be enhanced in cardiac myocytes 136. The 

allosteric site is expected to reduce such an acceleration of pump rate in 

hyponatremic states (Figure 4.6) and may therefore serve in a the tight control of 

intracellular Na+ to optimize cell function. 
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APPENDIX 

 

Calculation of the steady-state pump current. 

 

Simple Albers-Post model. 

  

Extracellular Na+ can have two possible effects on the ion pumping activity of the 

Na+, K+ ATPase: 

1) By (re-)binding to the transport sites on the E2P state, Na+ can inhibit pump 

activity, 

2) By binding to an allosteric site, Na+ can stimulate the E2 → E1 transition and 

increase pump activity. 

Because these two effects involve widely separated reactions of the Albers-Post 

cycle, the only quantitative way to consider the influences they would both have on 

the overall steady-state pump current is to carry out calculations of the entire pump 

cycle. 

Based on the four-state Albers-Post model of the Na+, K+ ATPase enzymatic cycle 

shown in figure 3.1, the differential rate equations describing the changes in 

concentrations of all the enzyme intermediates are: 

 

1 1 4 2 4 1

[ 1]
(3 ) ( )[ 1] ( )[ 2] (2 ) ( )[ 1]i E E i E

d E
k f Na f ATP E k f ATP E k f K f ATP E

dt
     (1) 

 

2 1 1 2

[ 1 ]
[ 1 ] (3 ) ( )[ 1] (3 )[ 2 ]i E o

d E P
k E P k f Na f ATP E k f Na E P

dt
       (2) 
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3 2 2

[ 2 ]
(2 )[ 2 ] (3 )[ 2 ] [ 1 ]o o

d E P
k f K E P k f Na E P k E P

dt
        (3) 

 

4 2 3 4 1

[ 2]
( )[ 2] (2 )[ 2 ] (2 ) ( )[ 1]E o i E

d E
k f ATP E k f K E P k f K f ATP E

dt
      (4) 

 

In these equations the term f(3Nai) represents the fraction of enzyme in the E1 state 

occupied by 3 Na+ ions, which is determined by the current cytoplasmic Na+ and K+ 

concentrations and the binding affinities of the ion sites. Similarly f(ATPE1) 

represents the fraction of enzyme in the E1 state occupied by ATP. The significance 

of these f-terms can be easily understood if we take the phosphorylation reaction as 

an example. The maximum rate constant for phosphorylation, k1, is only achieved 

when the E1 state of the enzyme is completely saturated by 3Na+ ions and one ATP 

molecule. Thus the observed rate constant, k1
obs, for the reaction is given by k1 

multiplied by the probability that E1 has 3 bound Na+ ions (= f(3Nai)) and by the 

probability that E1 has a bound ATP molecule (=f(ATPE1)). This simple mathematical 

formulation of the rates will break down at very low cytoplasmic Na+ and ATP 

concentrations, when second-order binding of the substrates to the enzyme 

becomes slower than the following first-order phosphorylation and occlusion of Na+. 

However, under normal physiological conditions the assumption of rapid binding 

equilibria, on which equations (1) - (4) and the 4-state scheme shown in figure 3.1 

are based, can be considered a good approximation. 
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Also appearing in equations (1) – (4) are the fraction of enzyme in the E2 state with 

ATP bound, f(ATPE2), the fraction of enzyme in the E2P state with 3 Na+ ions bound, 

f(3Nao), the fraction of enzyme in the E2P state with 2 K+ ions bound, f(2Ko) and the 

fraction of enzyme in the E1 state with 2 K+ ions bound, f(2Ki). In a similar way to 

that described for the phosphorylation reaction, these fractions or probabilities 

modify the observed rate constant for each relevant reaction step, as shown in eqs. 

(1) – (4). Since in our model we consider all of the substrate binding reactions to be 

equilibria, the f-terms are determined solely by the substrate concentrations and the 

relevant equilibrium (or dissociation) constants of each substrate. Equations for all of 

the f-terms are given in the Appendix of Chapter 3. 

Based on the model, the transient outward current due to the Na+, K+ ATPase at any 

moment in time, Ip(t), is given by: 

 

  2 2[ 1 ] (3 )[ 2 ]p oI t k E P k f Na E P      (5) 

 

Thus, eqs. (1) – (4) and (5) represent a coupled series of equations which can be 

solved numerically to derive the value of Ip(t) at any combination of ion and ATP 

concentrations. 

Once a steady-state has been reached, Ip(t) represents the flux through the reaction 

E1P → E2P, in which Na+ ions are released to the external medium, and is hence 

equal to the turnover of the enzyme. The amount of charge transported by the Na+, 

K+ ATPase across the membrane can also be calculated by integrating Ip(t) with 

respect to time.   
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Expanded Albers-Post model including extracellular allosteric Na+ binding. 

 

To take into account the effect of extracellular allosteric Na+ binding on the steady-

state pump current requires some relatively small modifications to the basic model. 

Because experimental evidence on purified enzyme indicates 113 that extracellular 

Na+ accelerates the E2(K+)2 → E1 conformational transition, the differential rate 

equations describing the change in concentrations of the E1 and E2 states, i.e. eqs. 

(1) and (4), need to be changed. The modified equations are: 

 

min max min

1 1 4 2 4 4 2

4 1

[ 1]
(3 ) ( )[ 1] ( ( ) ( ) ( ) ( ))[ 2]
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      (6) 
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           (7) 

 

In these two equations k4
max represents the maximum value of the rate constant for 

the E2(K+)2 → E1 transition when the extracellular Na+ allosteric site is fully occupied 

by Na+ and simultaneously the low affinity ATP site on E2 is fully occupied by ATP. 

Similarly, k4
min represents the minimum value of the rate constant for the same 

transition when the extracellular Na+ allosteric site is completely free of Na+ but the 



121 

 

low affinity ATP site on E2 is still fully occupied by ATP. The term f(Nao
allo) in eqs. (6) 

and (7) represents the fraction of Na+ allosteric sites occupied by Na+. It is given by: 

 

( ) ([ ] / ) /(1 [ ] / )allo

o o allo o allof Na Na K Na K     (8) 

 

Kallo is here the dissociation constant of the extracellular allosteric Na+ site. 
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CHAPTER FIVE 

 

INTRODUCTION 

 

With the whole-cell patch clamp technique 35,  extensively used to study functional 

properties of the pump in cardiac myocytes Ip is identified as the difference in 

membrane current recorded with and without blockade of the pump by exposure of 

myocytes to a cardiac glycoside or to K+-free extracellular solutions. Many studies 

have reported that when voltage clamped cardiac myocytes are re-exposed to K+ 

after a period of pump inhibition in K+-free solutions, a rapid increase in Ip is recorded 

followed by a decrease to a new steady state level. The transient peak current is 

attributed to the outward pumping of Na+ that accumulated in a diffusion-restricted 

space near the inner membrane leaflet while the pump was inhibited 59. A sub-

sarcolemmal space with restricted diffusion for Na+ has important cardiac 

physiological, pathophysiological and therapeutic implications  67,144,145 and restricted 

Na+ diffusion has become included in mathematical models of the cardiac action 

potentials 146,147, for example used to predict effects of drugs in the setting of disease 

process and for screening for efficacy and potential adverse effects 148,149.  

While restricted diffusion of Na+ in a sub-sarcolemmal space in principle might 

provide an explanation for the K+-activated transient peak current in cardiac 

myocytes after exposure to K+-free solutions, the diffusion rate for Na+ near the 

membrane relative to the bulk phase of the cytosol would have to be dramatically 

reduced relative to diffusion in the bulk phase of the cytosol to account for 

accumulation of Na+ 150. Physical barriers to account for such restricted diffusion 

have not been identified. We have examined if K+-induced Na+, K+ ATPase activity 

initially might be enhanced because glutathionylation of the pump’s β1 subunit 



123 

 

decreases during the period in K+-free extracellular solutions. Glutathionylation of the 

β1 subunit is causally related to inhibition of activity 151 and susceptibility to 

glutathionylation depends on the pumps conformational poise during the catalytic 

cycle 102.  The poise must depend on the transmembrane gradients of Na+, K+ 

ATPase ligands and we hypothesized that there is a decrease in glutathionylation 

during exposure to K+-free extracellular solutions. This would cause Na+, K+ ATPase 

activity to be enhanced with initial K+-induced reactivation. According to this scheme 

a subsequent decline in activity would then be due to re-glutathionylation to a new 

steady state level during turnover. 

METHODS 

 

Measurement of electrogenic Na+, K+ ATPase current (Ip) in myocytes. 

 

We measured Ip in single myocytes using the whole-cell patch clamp technique. In 

most experiments wide-tipped patch pipettes (4-5 μm) were filled with solutions 

containing (in mmol/L): HEPES 5; MgATP 2; ethylene glycol-bis(β-aminoethyl ether)-

N,N,N’,N’-tetraacetic acid (EGTA) 5; potassium glutamate 70, sodium glutamate 20 

and tetramethylammonium chloride (TMA-Cl) 70. They were titrated to a pH of 7.2 at 

25 °C with KOH. In experiments that varied the pipette concentrations of Na+ or K+ 

we adjusted the concentration of TMA-Cl to maintain constant osmolality. Human 

recombinant glutaredoxin 1 (Grx1, 10 μg/mL), and superoxide dismutase (SOD, 200 

IU/ml) or apocynin (100 μmol/L) were included in pipette solutions when indicated.  

While we established the whole-cell configuration myocytes were superfused with 

solution containing (in mmol/L): NaCl 140; KCl 5.6; CaCl2 2.16; MgCl2 1; glucose 10; 

NaH2PO4 0.44; HEPES 10. It was titrated to a pH of 7.4 at 25 °C with NaOH. Two to 

three minutes after the whole cell configuration was established we switched to a 
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superfusate designed to minimize non-pump membrane currents. It was nominally 

Ca2+-free and contained 0.2 mmol/L CdCl2 and 2 mmol/L BaCl2. Na+-K+ pump 

currents were blocked by exposing voltage clamped myocytes to K+-free 

extracellular solutions and re-activated by exposure to solutions containing 7 mmol/L 

K+.  

In some experiments we varied the extracellular concentration of Na+ with osmolality 

maintained by the addition of N-methyl-D-glutamine chloride (NMG.Cl). TMA.Cl and 

NMG were purum grade and were obtained from Fluke Chemicals (Switzerland). All 

other chemicals used in solutions were analytical grade and were obtained from 

BDH (Australia). Ouabain, Grx1, SOD and Apocynin were obtained from Sigma 

Chemical Co., (St Louis, MO).   

We used Axoclamp 2A and 2B voltage clamp amplifiers, supported by pClamp 

version 10 and Axotape version 2 (Axon Instruments, CA, USA) to record membrane 

currents. Currents were sampled at 20 Hz before and after Na+, K+ ATPase inhibition 

and activation in K+-free and K+-containing extracellular solutions. Clampfit was used 

to analyse current traces. Unless indicated, we used a holding potential of -40 mV to 

inactivate voltage-sensitive Na+ channels. A rapid solution switcher (Warner 

Instruments) assured changes in the extracellular K+ concentration were complete 

within 1 ms. However, due to diffusion delay in the t-tubular system 152 uniform 

activation of all Na+, K+ ATPase in rabbit cardiac myocytes cannot be expected in 

less than ~100 ms 153. Experiments were performed near room temperature at 24 oC 

to minimize artefacts from changes in temperature with solution switches 153. 
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Trypsin cleavage of Na+, K+ ATPase and glutathionylation of its β1 Subunit. 

  

Na+, K+ ATPase-enriched membrane fragments from the outer medulla of pig kidney 

were prepared according to the method of Jørgensen using SDS extraction followed 

by differential centrifugation 154. The specific activity was ~1800 µmol∙ mg–1 ∙h–1 at 37 

oC. Na+, K+ ATPase was stabilized in two different conformational states as 

described by the nomenclature of the Albers-Post scheme. The E2-P ground state 

and a state analogous to the E1~P∙ADP·3Na+ like state were stabilized in solutions 

that included beryllium fluoride and aluminium fluoride with ADP, respectively, as 

described 71. We induced oxidative stress by exposing the membrane fragments to 

hydrogen peroxide (H2O2) in a concentration of 0.5 % Vol/Vol. This concentration is 

only nominal because of the short half-life of the compound. Controlled trypsin 

proteolysis of Na+, K+ ATPase stabilized in the two conformations and detection of 

glutathionylation of the β1 Na+, K+ ATPase subunit with the GSH antibody technique 

were performed as described previously 102. The Na+, K+ ATPase preparation 

contains GSH at a level that gives clear signals for detection of glutathionylation and 

GSH was not added when we measured glutathionylation. However, we did add 0.5 

mmol/L GSH to enhance detection of glutathionylation-dependent differences in 

trypsin digest patterns. 

Data Analysis. 

 

Data are expressed as mean ± S.E.  Statistical comparisons were made with a 

Student’s t test or 1 way ANOVA as appropriate.  P < 0.05 was considered to be 

statistically significant.  Curve fittings of the transient current traces were performed 

with Clampfit 10.2. 
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Pump current simulations. 

 

Computer simulations of the experimental steady-state pump current were 

performed using the commercially available program Berkeley Madonna 8.0 and the 

variable step-size Rosenbrock integration method for stiff systems of differential 

equations. The simulations yielded the time course of the concentration of each 

enzyme intermediate involved, the outward current and the amount of charge 

transported. For the purposes of the simulations, each enzyme intermediate was 

normalized to a unitary concentration. To simulate the K+ activated transient currents 

the model was run for 1 minute in the absence of extracellular K+ and the distribution 

of enzyme intermediates obtained from this was subsequently used for the K+ 

activation experiments.  The K+ activation simulation was then carried out for 1 

minute to replicate the experimental protocol.  The protocol for the membrane 

voltage stimulations followed the protocol used in the experimental procedures to 

obtain the distribution of the enzyme intermediates. 

 

RESULTS 

 

K+-induced Na+, K+ ATPase membrane currents. 

 

The decline of the peak Ip on re-exposure of voltage clamped cardiac myocyte to K+ 

after exposure to K+-free extracellular solutions is reported to be a composite of fast 

and slow phases, with no detectable decline in the intracellular Na+ concentration 

([Na+
i]) during the fast phase but with a parallel decline of Ip and [Na+

i] in the slow 

phase. This is compatible with an early Na+ concentration gradient between Na+-K+ 

pump sites and the bulk phase where [Na+
i] is measured, as reviewed 67. We voltage 
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clamped myocytes using patch pipette solutions that included 20 mmol/L Na+ and 70 

mmol/L K+. When we re-exposed a myocyte to K+ after exposure to K+-free 

extracellular solutions we could reproduce fast and slow components that could be 

fitted by a biexponential function (Figure 5.1A). However, when we increased the 

size of the patch pipette to facilitate diffusion of Na+ between its filling solution and 

the cytosol the time course of Ip on re-exposure to K+ was well fitted by a single 

exponential function (Figure 5.1B).  Such pipettes were used in all subsequent 

experiments we report. 

The amplitude of the transient increase in Ip increased with duration of the pre-

conditioning exposure to K+-free solution but saturated beyond 30 s (data not 

shown). The duration of exposure to K+-free solutions in experiments we report is ≥ 

30 s unless indicated otherwise.  

Persistence of large K+-induced Na+, K+ ATPase current transients when myocytes 

are voltage clamped using Na+-free patch pipette filling solutions has been utilised to 

support the existence of a diffusion-restricted sub-sarcolemmal space 59. When using 

Na+ free patch pipette filling solutions, we did not detect any K+-induced shift in 

holding current (Figure 5.1C) indicating that there was no Na+ in the cytosolic 

compartment, including in a sub-sarcolemmal space, that could support detectable 

Na+, K+ ATPase activity. To independently ascertain that the K+-induced currents are 

due to activation of an electrogenic Na+, K+ ATPase current we exposed myocytes to 

ouabain. Ouabain eliminated K+-induced membrane currents. Holding currents 

recorded during periods in K+-free solutions were similar to currents recorded after 

the full effect of ouabain was achieved (Figure 5.1D) indicating that K+-sensitive and 

ouabain-sensitive currents are similar.  
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Figure 5.1.  K
+
-induced activation of the Na

+
, K

+
 ATPase current. A. Membrane 

currents of a voltage clamped myocyte exposed to K
+
-free superfusate for 60 s before re-

exposure to K
+
. The superfusate included 140 mmol/L Na

+
 while patch pipette solutions 

included 20 mmol/l Na
+
 and 70 mmol/L K

+
. Cm indicates membrane capacitance, 

reflecting cell size. The series resistance after establishing the whole-cell configuration 

was 7.1 MΩ. A single exponential function (+) gave a poor fit to the decay of a transient 

peak pump current while the decay was well fitted by a double exponential function (x) 

with time constants of 4.5 s and 61 s for fast and slow phases. B. K
+
-induced activation 

of the Na
+
-K

+
 pump current using wide-tipped patch pipettes. The series resistance was 

4.7 MΩ. A single exponential function gave a good fit to the decay of a transient peak 

pump current. C. Effect of K
+
 in the superfusate when the patch pipette solution was 

Na
+
-free. No K

+
-dependent current was detected in tracing shown or in two other 

experiments. D. Sensitivity of K
+
-induced membrane currents to ouabain. Patch pipette 

solution included 20 mmol/l Na
+
 and 70 mmol/L K

+
. The myocyte was exposed to 50 

nmol/L ouabain as indicated. 
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Dependence of Na+, K+ ATPase transients on [Na+
i] and [K+

i]. 

   

Elimination of the K+-induced transient peak Ip by an increase of the Na+ 

concentration of patch pipette solutions has been taken to indicate that a 

concentration gradient between the bulk phase of the cytosol and the binding sites 

for Na+ to the pump accounts for the transient currents recorded at lower 

concentrations 150. However, the transient currents persisted when we increased the 

Na+ concentration to 80 mmol/L while maintaining the K+ concentration at 70 mmol/L 

(Figure 5.2A). Experiments performed using Na+ concentrations of 20 or 80 mmol/L 

in patch pipette solutions while maintaining the K+ concentration constant at 70 

mmol/L are summarised in Figure 5.2B. 

Since K+ in patch pipette solutions reduces Ip 
137, consistent with competition of K+ 

for binding of Na+ at intracellular sites 134, elimination of K+ in the solution should 

increase Ip and hence amplify depletion of Na+ on reactivation of the Na+, K+ 

ATPase. We reduced the Na+ concentration in pipette solutions to 10 mmol/L to 

facilitate detection of a transient peak Ip arising from a difference between the Na+ 

concentration in the bulk phase of the cytosol and in a diffusion-restricted sub-

sarcolemmal space. The solutions contained 70 mmol/L K+ or they were K+-free. 

There was no transient peak Ip when pipette solutions were K+-free (Figure 5.2C). A 

transient peak Ip was recorded when pipettes contained K+ as for experiments 

performed using 20 or 80 mmol/L Na+ in pipette solutions. The time course of Ip in 

experiments with K+-containing or K+-free patch pipette solutions are summarized in 

Figure 5.2D. 
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Figure 5.2.  Dependence of Na
+
, K

+
 ATPase current transients on concentration of Na

+
 

and K
+
 in patch pipette solutions. A. K

+
-induced Na

+
-K

+
 pump currents using patch 

pipette solution including 80 mmol/L Na
+
 and 70 mmol/L K

+
. B. Comparison of average 

K
+
-induced Na

+
-K

+
 pump currents. The concentration of Na

+
 and K

+
 (mmol/L) in patch 

pipette solutions and the number of experiments are indicated. C. K
+
-induced Na

+
-K

+
 

pump current using a K
+
-free patch pipette solution. The solution included 10 mmol/L 

Na
+
. D. Comparison of average K

+
-induced Na

+
-K

+
 pump currents recorded using patch 

pipette solutions that were K
+
-free or included 70 mmol/L K

+
. 
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Dependence of Na+, K+ ATPase current transients on extracellular Na+. 

 

The transient peak Ip on K+-induced reactivation is reported to persist in Na+-free 

extracellular solutions 61,155.  In principle, this might be explained by an increase in 

the Na+ concentration in a diffusion-restricted sub-sarcolemmal space during pump 

inhibition relative to what the concentration is during turnover. This would enhance 

activity when relative excess Na+ is cleared on activation. We attempted to 

reproduce these results. Pipette solutions included 20 mmol/L Na+ and 70 mmol/L 

K+. In contrast to the initial transient peak of Ip recorded in Na+-containing solutions, 

Ip recovered gradually from an initially low value with re-exposure to K+ (Figure 

5.3A). We also performed experiments in which the extracellular Na+ concentration 

was 10 or 75 mmol/L. The time course of Ip on K+-induced reactivation of the pump 

in these experiments and experiments performed using Na+-free extracellular 

solutions are summarized in Figure 5.3B. A summary of experiments performed 

using solutions containing 140 mmol/L Na+ is also included. Ip integrated over the 

first 5 s after K+ induced reactivation of the Na+, K+ ATPase increased significantly 

with an increase in the extracellular Na+ concentration (Figure 5.3C). In contrast to 

elimination of the transient peak Ip by use of K+-free patch pipette solutions when 

external solution contained 140 mmol/L Na+, using K+-free pipette solutions did not 

alter the initially low value of Ip followed by a gradual recovery of K+-induced 

activation of the Na+-K+ pump in Na+-free external solutions (Figure 5.3D and 5.3E). 
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Figure 5.3.  Dependence of K

+
-induced Na

+
, K

+
 ATPase current transients on 

extracellular Na
+
. A. Na

+
, K

+
 ATPase current in Na

+
-free superfusate. The patch pipette 

solution included 20 mmol/L Na
+
 and 70 mmol/L K

+
. B. Average K

+
-induced Na

+
, K

+
 

ATPase currents with Na
+ 

concentrations in superfusate (Nao) of 0 – 140 mmol/L. 

Number of experiments (N) for each Nao is indicated. C. Na
+
, K

+
 ATPase current 

integrated over the first 5 s after re-exposure to K
+
 normalised to the mean charge at a 

Nao of 140 mmol/L. The charge transported increased with an increase in Nao * 

indicates a significant difference (P < 0.05). D. Na
+
, K

+
 ATPase current using K

+
-free 

patch pipette solution and a Na
+
-free superfusate. The patterns of K

+
-induced activation 

of pump current were similar in two additional experiments. E. Average Na
+
, K

+
 

ATPase current using K
+
-free patch pipette solution and a Na

+
-free superfusate. 
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Dependence of Na+, K+ ATPase current transients on membrane voltage. 

 

The different transmembrane concentration gradients for Na+ and K+ used in the 

voltage clamp experiments must impose different conformational states of the Na+-

K+ pump. In the terminology of the Albers-Post scheme, all pump molecules assume 

the E2-P conformation in Na+-free, K+-free extracellular solutions but due to the 

backward E2-P + 3Na+ → E1~P[Na+]3 reaction (reaction (3) in Figure 5.4) a balance 

between E2-P and E1~P[Na+]3 species will exist in K+-free, Na+-containing solutions. 

Voltage dependence of the reaction 36 will shift the balance towards E2-P at positive 

potentials and towards the occluded E1~P[Na+]3 state at negative potentials. We 

examined if transient K+-induced pump currents depend on membrane voltage 

during the preceding exposure to a K+-free, Na+-containing solution. 
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Figure 5.4.  Albers-Post scheme for catalytic cycle of Na
+
, K

+
 ATPase. When 3 

cytoplasmic Na
+ 

ions (Na
+

i) have bound to the E1 conformation (1) the cytoplasmic 

access gate is closed and locked when the α subunit is phosphorylated (2), causing 

occlusion of Na
+
 ([Na

+
]3) within the molecule. A gate opens to the outside, and Na

+
 is 

released (3) when its binding affinity decreases with the E1P→E2-P change. 

Extracellular K
+
 is bound (K

+
o) (4) and the gate is closed and locked with 

dephosphorylation causing occlusion of K
+
 within the molecule (6). De-occlusion (7) is 

facilitated by allosteric binding of ATP and K
+
 is released to the cytoplasm (8) when its 

binding affinity decreases with the E2ATP → E1ATP change. In a voltage clamped 

internally perfused myocyte, the E2-P state accumulates in K
+
-free, Na

+
-free 

superfusate. In K
+
-free, Na

+
 containing superfusates a balance between E2-P and 

E1~P[Na
+

3] states depends on the extracellular Na
+
 concentration and membrane 

voltage. 
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We voltage clamped myocytes at +10, -40 or -90 mV during exposure to K+-free 

solutions. The Na+ concentration in extracellular solutions was 75 mmol/L. Since Ip is 

voltage dependent and since there is a path in the pump molecule in K+-free 

extracellular solutions for a leak current that depends on membrane voltage and 

extracellular Na+ 135 we switched the holding potential to -40 mV for 1 sec before re-

exposing myocytes to K+ for the other two pre-conditioning membrane voltages. 

Modelling of the Na+, K+ ATPase cycle in Chapter 3 indicated that the conformational 

poise of pumps after 1 s at -40 mV is identical regardless of pre-conditioning 

membrane voltages. The whole-cell configuration could only be consistently 

maintained throughout the protocol when the duration of repeated exposure to K+-

free solution at the different voltages was reduced to 10 s. The experimental protocol 

and corresponding membrane currents are shown in Figure 5.5A.  We used two 

indices to compare K+-induced currents: a derived estimate of the initial current and 

an integral of the current recorded the first 5 s after re-exposure to K+. The relatively 

short duration of exposure to K+-free solutions at different pre-conditioning 

membrane voltages and a shared holding potential of -40 mV for 1 s before re-

exposure to K+ is expected to reduce the measured effect of membrane voltage. 

Despite this, both indices for pump activity were significantly larger for pre-

conditioning membrane voltages of -90 mV than for +10 mV (Figure 5.5B). 
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Figure 5.5.  Dependence of K
+
-induced Na

+
, K

+
 ATPase current on membrane voltage. 

A. Experimental protocol and K
+
-induced Na

+
, K

+
 ATPase currents in myocyte exposed 

to K
+
-free superfusate for 10 s at preconditioning holding potentials of -90 mV, -40 mV 

and +10 mV. A shared holding potential of -40 mV was used for 1 s (arrows) before re-

exposure to K
+
. The intersection of regression lines fitted to the fast upstroke and 

subsequent slower change in pump current with re-exposure to K
+
 (shown for the pre-

conditioning holding potential of +10 mV only) was used as an index of Na
+
, K

+
 

ATPases that were not glutathionylated and available for early K
+
-induced activation. 

B. Summary of derived estimate of the initial pump current and the integral of the 

current recorded the first 5 s after re-exposure to K
+
 in 5 experiments. Data is 

normalized to the indices with a pre-conditioning holding potential of +10 mV. * 

indicates significant difference. 
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Effect of conformational poise and glutathionylation of the β1 subunit on 

ATPase current transients. 

 

The dependence of K+-induced Na+, K+ ATPase current transients on 

transmembrane electrochemical gradients for Na+ and K+ we report here cannot be 

accounted for by accumulation and depletion of Na+ in a diffusion-restricted sub-

sarcolemmal space. However, the β1 Na+, K+ ATPase subunit is susceptible to 

glutathionylation in some conformational states and resistant in others 102. Since 

glutathionylation is reversible and causally related to pump inhibition 151 we 

hypothesized that conformation-dependent glutathionylation and de-glutathionylation 

accounts for the patterns of Ip recorded on K+-induced Na+, K+ ATPase activation. 

Susceptibility of the E2-P- and resistance of the E1~P[Na+]3 conformation to 

glutathionylation might account for the dependence of pump current transients on 

extracellular Na+ and membrane voltage (Figure 5.3 and 5.5). Susceptibility of the β1 

subunit to glutathionylation in these conformations has not been determined. We 

exposed Na+, K+ ATPase in pig kidney membrane fragments stabilised with BeFx 

and AlFx/ADP 71 to the chemical oxidant H2O2
 to induce glutathionylation 102. BeFx 

produces an E2-P like state while AlFx/ADP induces a stable analogue of the 

transition state (E1~P·ADP·3Na+) preceding E1~P[Na+]3 in which the cytoplasmic 

gate is at least partly closed 134. As for Na+, K+ ATPase in other conformational 

states 102, a signal for glutathionylation was detected at baseline. Exposure to H2O2 

increased glutathionylation of the β1 subunit of Na+, K+ ATPase stabilized in the E2-P 

but not in the E1~P∙ADP·3Na+ like state (Figure 5.6A).   

We examined if the difference susceptibility of the β1 subunit of Na+-K+ ATPase 

stabilized  in the E2-P and E1~P∙ADP·3Na+ like states to glutathionylation is 

consistent with any difference in structure as it can be identified by the trypsin 
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digestion pattern (Figure 5.6B). The band for the α subunit was weaker for Na+, K+ 

ATPase stabilized in the E2-P- than the E1~P∙ADP·3Na+ like states i.e. more 

susceptible to trypsin digestion in E2-P. A single weak band of a cleavage product 

migrating at 50 kDa for the E1~P∙ADP·3Na+ like state remained detectable when 

Na+, K+ ATPase had been pre-exposed to ONOO-.  Sequencing indicated it was from 

β subunits. In the E2-P like state two stronger bands of cleavage products from α 

and β subunits also migrated at 50 kDa. Their sensitivities to trypsin digestion were 

markedly increased when Na+, K+ ATPase had been pre-exposed to ONOO- 

suggesting glutathionylation can change structure even when Na+, K+ ATPase is 

stabilized with BeFx. 
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Figure 5.6.  Conformational poise, glutathionylation of the β1 subunit and trypsin digest 

pattern of Na
+
, K

+
 ATPase. A. glutathionylation of the β1 subunit of Na

+
, K

+
 ATPase 

stabilized in E2-P (BeF) and E1~P∙ADP·3Na
+ 

like (AlF) conformations. B. Trypsin 

digest of Na
+
, K

+
 ATPase stabilized in E2-P ground state (labelled E2P) and 

E1~P∙ADP·3Na
+
 (labelled E1P) conformations. Lanes 1 and 2 are controls without 

trypsin addition in the absence (c) and presence (c+) of ONOO
-
. Subsequent 8 lanes are 

5 and 10 min trypsin digests of BeF stabilized E2-P ground state and AlF/ADP 

stabilized E1~P∙ADP·3Na
+
 like state in the absence and presence of ONOO

-
. The last 

lane shows molecular weight standards. The two bands around 50 kDa indicated by 

arrows were identified by sequencing to contain  (upper band) and  plus  (lower 

band). 
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When extracellular solutions contain Na+ a switch to K+-free solution should shift the 

E2-P + 3Na+ ↔ E1~P[Na+]3 reaction to the right 156 while Na+ and Mg.ATP in patch 

pipette solutions promotes the forward E1ATP + 3Na+ → E1~P[Na+]3 reaction, 

causing E1~P[Na+]3 to accumulate.   This alone will produce a large initial current 

due to the rapid release of bound Na+ ions to the extracellular medium on exposure 

to extracellular K+. However, based on the kinetics of the enzyme’s partial reactions 

this transient current would be expected to decay in less than one second 23, in 

contrast to the transients shown in Figures 5.1 and 5.2 which decay into a steady 

state over tens of seconds. For this reason we consider changes in the 

glutathionylation state of the protein as the origin of these long-lived transients.  

Resistance of E1~P∙ADP·3Na+
 to glutathionylation suggests a relatively large 

proportion of pumps are free of glutathionylation-induced inhibition allowing for an 

initially high level of Ip on re-exposure to K+. The subsequent decline of Ip might then 

be due to re-glutathionylation of susceptible conformational states during pump 

turnover. We included Grx1 (10 μg/mL), in patch pipette solutions to selectively 

eliminate glutathionylation-induced Na+, K+ ATPase inhibition 151. The pipette 

solutions included 20 mmol/L Na+ and 70 mmol/L K+. Grx1 markedly reduced the 

decline of Ip following K+-induced reactivation of the Na+, K+ ATPase (Figure 5.7A). 

The time course of Ip in experiments with Grx1 containing- or control patch pipette 

solutions are summarized in Figure 5.7B.  The pump current integrated over the first 

10 s after re-exposure to K+ was significantly increased by addition of Grx1 to the 

pipette solution (Control 9.376 ± 0.69 pC/pF vs Grx1 14.023 ± 1.59 pC/pF; P < 0.05).  

Since Grx1 reverses glutathionylation of sulfhydryl residues in proteins with exclusive 

selectivity 157 this strongly supports the hypothesis that an increase in 

glutathionylation causes the decline of the transient peak Ip. 
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With the E2-P state susceptible to glutathionylation, a shift of the E2-P + 3Na+ ↔ 

E1~P[Na+]3 reaction to the left (Figure 5.4) in Na+-free, K+-free extracellular solutions 

will leave pumps susceptible to glutathionylation-induced inhibition, possibly 

accounting for the initially low value of Ip on re-exposure to K+ in Na+-free 

extracellular solutions. However, an initially low value of Ip on re-exposure to K+ was 

also recorded when we included Grx1 in the patch pipette solution (Figure 5.7C). We 

examined if reducing oxidative stress and hence also the forward rate of 

glutathionylation affects the pattern of the initial Ip on reactivation of the Na+, K+ 

ATPase. Since NADPH oxidases are initiators and integrators of synthesis of 

reactive oxygen species via cross-talk with other cellular sources we included the 

NADPH oxidase inhibitor apocynin in patch pipette solutions 158. We also included 

SOD in the solution to scavenge O2
·-. The combination of apocynin and SOD 

markedly increased the initial Ip on re-exposure to K+ (Figure 5.7D) consistent with a 

role for an oxidative modification, including glutathionylation causing the early 

inhibition of Ip. Experiments performed in Na+-free extracellular solutions with and 

without Grx1 or apocynin and SOD are summarized in Figure 5.7E. The charge 

integrated over the first 10 s after re-exposure to K+ was significantly increased by 

the combination of apocynin and SOD (Control 4.436 ± 0.51 pC/pF vs SOD + APO 

7.381 ± 0.34 pC/pF; P < 0.05). 
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Figure 5.7.  Oxidative stress and K
+
-induced Na

+
, K

+
 ATPase current transients. Patch 

pipette solutions included 20 mmol/L Na
+
, 70 mmol/L K

+
. A. Effect of Grx1 on decay of 

transient peak Na
+
, K

+
 ATPase current. The superfusate included 140 mmol/L Na

+
 and 

the pipette solution included Grx1 as indicated. B. Average K
+
-induced Na

+
, K

+
 ATPase 

currents in Na
+
 containing superfusate, with and without Grx1 in pipette solutions. The 

pump current integrated over the first 10 s after re-exposure to K
+
 was significantly 

increased by Grx1. C. K
+
-induced Na

+
, K

+
 ATPase current recorded in Na

+
-free 

superfusate with Grx1 in the pipette solution. D. K
+
-induced Na

+
, K

+
 ATPase current 

recorded in Na
+
-free superfusate with SOD and apocynin in the pipette solution.  E. 

Average K
+
-induced Na

+
, K

+
 ATPase currents with Grx1 or apocynin and superoxide 

dismutase (SOD) in patch pipette solutions. There was no significant effect of Grx1 on 

pump currents integrated over the first 10 s after re-exposure to K
+
 while the 

combination of SOD and apocynin significantly increased the integrated currents. 
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Modelling of K+ activated Transient Currents by Incorporating 

Glutathionylation. 

 

The kinetic model from chapter 4, based on the Albers-Post scheme, is capable of 

reproducing data from the literature and thus we can test whether this model 

explains the experimentally observed K+ activated transient curves reported in this 

chapter. As observed in figure 5.8A the current model does not reproduce the 

transient curve observed with 140 mM Na+ in the extracellular solution.  We propose 

the addition of glutathionylation at the E1 poise as predicted by Liu et al and 

glutathionylation at the E2P poise as predicted by the susceptibility of the β1 subunit 

when the Na+, K+ ATPase enriched membrane fragments are incubated in BeF- and 

exposed to hydrogen peroxide.  The extensions and alterations to the equations 

necessary for the calculation of enzyme intermediates are described in the Appendix 

of this chapter.  The choice of glutathionylation rate constants was determined by 

how well they replicated the K+ activated transient observed with 140 mM Na+ in the 

extracellular solutions.  The rate constants settled upon are within the range 

observed in the literature 159.  Once glutathionylation was included in the model 

simulations of the K+ activated transient curves were possible with the dependence 

of extracellular Na+ on the shape of the curve also replicated (Figure 5.8B). When we 

abolish K+ from the patch pipette the transient current is not qualitatively altered and 

does fit the experimental data.  This suggests that the reglutathionylation may be 

associated with K+-dependent inhibition at the intracellular part of the pump cycle.  

Since the E1 poise in the mathematical model is a lumped parameter the model 

does not take into account which E1 species is likely to be glutathionylated. i.e. 

glutathionylation occurs at all E1 species and the model predicts that the transient 
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peak current and its subsequent decay curve should persist when the intracellular 

compartment is K+-free (figure 5.8C), at odds with the experimental data. 
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Figure 5.8.  Modeling of the K
+
-induced Na

+
, K

+
 ATPase current transients. A. 

Simulation of the K+ activated transient current without the incorporation of 

glutathionylation at E1 and E2P. B. Simulation of the K+ activated transient current 

with glutathionylation incorporated at all E1 species and E2P.  The incorporation of 

glutathionylation at the non occluded sites replicates the Na+ dependence observed in 

the experimental results.  C. Simulation of the K+ activated transient current with 

extracellular Na+ (140 mM) and K+ free intracellular solution.  A transient current is 

still apparent, at odds with the experimental results shown in Figure 5.2. 
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The difference in the charged produced when the membrane voltage was 

manipulated (Figure 5.5) cannot be reconciled with the Na+ subsarcolemmal space 

theory.  As such, if we accept that susceptibility to glutathionylation of the E2P poise 

is partly responsible for the pattern in K+ activated transients, that depends on Na+, 

the balance in enzyme intermediates through alterations to the membrane voltage 

would change the proportion of pumps that are found in the E2P poise and thus 

susceptible to glutathionylation.  Since the model has membrane voltage 

incorporated in its parameters we can predict this effect that arises from membrane 

voltage as seen in Table 5.1.  When there is no glutathionylation at E2P the pump 

re-equilibrates to the balance at -40 mV within the one second before K+-induced 

activation.  Since the enzyme intermediates are equal then no difference in charge 

moved is observed.  However, when E2P is susceptible to glutathionylation the 

model predicts that a small but significant change in the E2PG enzyme intermediate 

occurs after alteration of the membrane voltage.  Since glutathionylation is the 

slowest step in the cycle it then cannot re-equilibrate after the change to -40 mV and 

produces a significant difference in the charged moved (10 mV protocol 28.7093 fC 

vs -90 mV protocol 32.1206 fC) replicating the experimental data qualitatively. 
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Table 5.1. 

Initially 7 sec 1 sec

mV -40 10 -40

E1 0 0 0

E1P 0.21902 0.05423 0.21902

E2P 0.78099 0.94577 0.78099

E2K2 0 0 0

Initially 7 sec 1 sec

mV -40 -90 -40

E1 0 0 0

E1P 0.21902 0.66496 0.21902

E2P 0.78099 0.33504 0.78099

E2K2 0 0 0

Initially 7 sec 1 sec

mV -40 10 -40

E1 0 0 0

E1P 0.28098 0.0778 0.26207

E2P 0.35951 0.51654 0.33532

E2PG 0.35951 0.40566 0.40262

E2K2 0 0 0

Initially 7 sec 1 sec

mV -40 -90 -40

E1 0 0 0

E1P 0.28098 0.48752 0.2992

E2P 0.35951 0.19742 0.38282

E2PG 0.35951 0.31508 0.318

E2K2 0 0 0

Without Glutathionylation

With Glutathionylation
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DISCUSSION 

 

The cytosolic Na+ concentration is determined by the balance between Na+ influx 

and Na+, K+ ATPase-mediated efflux 160, and when Na+, K+ ATPase activity is 

blocked in K+-free extracellular solutions Na+ accumulates intracellularly unless 

blocking of pump-mediated efflux is compensated for by diffusion into the patch 

pipette solution. If accumulation does occur Ip is enhanced beyond steady state on 

re-exposure to K+ until excess Na+ is pumped out. Two components of the time 

course of decline of Ip after K+-induced re-activation of the Na+, K+ ATPase have 

been reported 150,161 as we also found (Figure 5.1A). The slow phase is readily 

explained by clearing of excess Na+ in the bulk phase of the cytosolic compartment  

67,150 and was eliminated when we used wide-tipped patch pipettes to facilitate 

diffusion between pipette and the intracellular compartment. 

Persistence of a transient peak of Ip when we used wide-tipped patch pipettes could 

be due to accumulation of Na+ in a diffusion-restricted space near the cytosol-

membrane interface 67,150. However, with such accumulation the increase in the 

concentration of Na+ in patch pipettes to a level nearly saturating Na+ binding to the 

Na+, K+ ATPase should have reduced or eliminated the transient peak of Ip 
59 and 

conversely, when patch pipette solutions were Na+- or K+-free a transient peak 

should still have been detectable.  Since a Na+, K+ ATPase current, identified as a 

ouabain-sensitive current, can be detected with Na+ in a concentration as low as 0.1 

mmol/L in patch pipette solutions 137  Na+ at most would have accumulated to a very 

low level in intracellular compartments including in any diffusion-restricted sub-

sarcolemmal space. 
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Physical intracellular barriers to diffusion of Na+ have not been reported and Despa 

and Bers 150 examined if an apparent restriction of diffusion might be mimicked by 

binding of Na+ near the cytosol/membrane interface. They found only a modest 

degree of such binding. It has also been suggested that crowding of macromolecules 

near the inner membrane leaflet might restrict diffusion of Na+ 67. Our study indicates 

that macromolecular crowding or binding of Na+ in a sub-sarcolemmal space does 

not occur to the extent that local restriction to the movement of Na+ causes a 

transient K+-induced peak of Ip. We cannot rule out brief local accumulation of Na+ 

near the opening of Na+ channels with the high rate of influx through the channel 

during the upstroke of the cardiac action potential but such accumulation should 

dissipate rapidly 162 and be unlikely to persist throughout the cardiac cycle. This 

implies some concepts important for cardiac physiology, pathophysiology and 

therapeutics must be revised. 

Studies on voltage clamped cardiac myocytes indicate that Na+, K+ ATPase 

activation alters Na+, Ca2+ exchange currents, 3,60,61,163,164 and on the basis of K+-

induced transient Na+, K+ ATPase current local depletion of Na+ has been implicated 

in a Na+, K+ ATPase/Na+, Ca2+ exchange interaction with implications for excitation-

contraction coupling as reviewed 67. Restricted movement of Na+ is also expected to 

be a determinant of the cardiac action potential configuration because membrane 

currents generated by the Na+, K+ ATPase and the Na+, Ca2+ exchanger contribute 

to the repolarisation phase and the net current depends on whether the Na+, K+ 

ATPase and the Na+, Ca2+ exchanger sense the same Na+ concentration 149.  

A diffusion-restricted sub-sarcolemmal space would enhance the effect of increased 

Na+ influx via non-inactivating Na+ channels and Na+, H+ exchange to cause Na+, 

Ca2+ exchange-dependent Ca2+ overload and injury during myocardial ischemia and 
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reperfusion. This suggests restricted Na+ diffusion would make pharmacological 

inhibition of Na+ influx particularly effective in reducing cardiac myocyte Ca2+ 

overload and its adverse consequences 144. Restricted sub-sarcolemmal diffusion of 

Na+ is also critical for the concept that the α2 isoform of the Na+, K+ ATPase 

predominantly controls the Na+ concentration in a sub-sarcolemmal space with 

particular importance for control of Na+, Ca2+ exchange and excitation-contraction 

coupling while the α1 isoform controls the Na+ concentration in the bulk phase 165. 

This concept has important pathophysiological implications for the change in 

expression of the isoforms with heart failure 163 and it suggests that α isoform-

specific cardiac glycosides might be useful 166. 

Since a diffusion-restricted sub-sarcolemmal space could not account for patterns of 

K+-induced membrane currents in voltage clamp experiments we examined if they 

could be attributed to glutathionylation and de-glutathionylation. According to the 

Albers-Post scheme (Figure 5.4) the abundance of E1~P[Na+]3 species should 

increase when turnover is arrested in K+-free, Na+-containing extracellular solutions 

and the analogue E1~P∙ADP·3Na+ was resistant to glutathionylation.  During 

turnover the E1ATP + 3Na+ → E1ATPNa+
3 reaction is rate limiting when pipette 

solutions contain K+ because K+ competes for binding of Na+ to E1ATP 134, causing 

E1ATP to accumulate. Since E1ATP is susceptible to glutathionylation 102 while 

E1~P[Na+]3 is resistant a decrease in glutathionylation in K+-free solutions followed 

by an  increase with reactivation might account for the initial peak Ip and its 

subsequent decline that depends on inclusion of K+ in pipette solutions. The 

inhibition of the decline of Ip by Grx1 supported this scheme. 

The time course of K+-induced Na+, K+ ATPase activation in Na+-free extracellular 

solutions is also compatible with glutathionylation that depends on conformational 
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state. In K+-free, Na+-free solutions E2-P will be the only prevalent species because 

the E1~P[Na+]3 → E2-P + 3Na+ reaction is driven to the right. Glutathionylation that 

develops in such solutions will initially inhibit Ip on re-exposure to K+. Since turnover 

is stopped, the prevalence of E2-P will be independent of intracellular K+ and, as 

expected from this, the time course of Ip on Na+, K+ ATPase activation was 

independent of K+ in pipette solutions when extracellular solutions were Na+-free. 

Modelling of the data allows us to test the hypothesis that glutathionylation is 

involved in the K+ activated transients.  The peak transient is replicated once 

glutathionylation is incorporated in the E2P and E1 enzyme intermediates with the 

extracellular Na+ dependence of the curves also being replicated (Figure 5.8B). 

Membrane voltage experiments confirm that there is a dependence of the transient 

curve upon the balance of the enzyme intermediates under Na+/Na+ exchange 

conditions.  The necessity of glutathionylation at the E2P poise within the model to 

replicate the reported changes in the transient current strongly supports the 

existence of glutathionylation at E2P (Table 5.1).  As such we can conclude that 

glutathionylation proffers an alternative to the hypothesis of the Na+ diffusion 

restricted space being the origin of the transient currents observed in whole patch 

clamped cardiac myocytes.   

We consider that prevalence of conformational states susceptible or not susceptible 

to glutathionylation in K+-free and K+-containing extracellular solutions relative to the 

prevalence of susceptible species during pump turnover determine whether an initial 

Ip on K+-induced Na+, K+ ATPase activation is higher or lower than Ip in the 

subsequent steady state. This principle is illustrated by the effect the extracellular 

Na+ concentration is expected to have on the E2-P + 3Na+ ↔ E1~P[Na+]3 balance 
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which in turn is reflected by the dependence of the pattern of K+-induced activation of 

Ip on extracellular Na+ (Figure 5.3). 

Resistance to glutathionylation in the E1~P[Na+]3 state is expected from the three-

dimensional structure of the Na+, K+ ATPase molecule in a E1~P∙ADP∙3Na+ state 

since the reactive cysteine residue of the β1 Na+, K+ ATPase subunit is in the lipid 

phase of the transmembrane segment 134,135. This is also the case for the E2∙Pi∙2K+ 

structure 82. However it seems that the -subunit is significantly closer to 

transmembrane segment 10 of the α subunit in the E1~P∙ADP∙3Na+ structure than in 

the E2∙Pi∙2K+ structure 82,134. This may add protection against 1 subunit 

glutathionylation. The crystal structure for the E2-P ground state is not known but the 

difference in trypsin digest patterns of the β1 subunit of Na+, K+ ATPase in E2-P and 

E1~P∙ADP·3Na+ like states stabilized by BeFx and AlFx/ADP indicate that a structural 

difference exists that might account for access of GSH to the reactive cysteine 

residue in   E2-P.   

A difference in the trypsin digest pattern between the E2-P like state we report here 

and E1~P∙ADP∙3Na+ like species 102 may reflect a structural difference between in 

situ sarcolemmal Na+, K+ ATPases that accounts for access of the ~11 kDa Grx1 to 

reverse glutathionylation and counteract a decline in Ip after a transient peak on 

pump activation when extracellular solutions contained Na+ (Figure 5.7B) but not 

access to prevent glutathionylation and pump inhibition to develop in K+-free, Na+-

free solutions (Figure 5.7D). Consistent with this, access of Grx1 to target proteins 

may be conformation-dependent 157 as is co-immunoprecipitation of exogenous Grx1 

with the β1 subunit in Na+, K+ ATPase 102. The molecular differences that accounts 

for this may not be major since molecular dynamics simulations suggest that 
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deformation of the inner membrane leaflet can change access to the reactive residue 

in the β1 Na+, K+ ATPase subunit 167. 

A K+-induced transient peak Na+, K+ ATPase current in cardiac myocytes does not 

reflect cellular architecture at the membrane-cytosol interface as believed previously 

but can be accounted for by conformational states of the Na+, K+ ATPase molecule 

itself. With modifications of long-established experimental protocols used to study 

K+-induced reactivation of the Na+, K+ ATPase the effect of oxidative modifications 

on selected partial reactions of the pump’s catalytic cycle can be studied in intact 

cardiac myocytes and effects on function resolved with high resolution of its time-

dependence. This is likely to be useful for studying the role of the Na+, K+ ATPase in 

cardiac myocyte physiology, pathophysiology and pharmacology. 
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APPENDIX 

 

Expanded Albers-Post model including glutathionylation at E1 and E2P. 

 

To take into account the effect of glutathionylation at E1 and E2P on the transient 

and steady-state pump currents requires some relatively small modifications to the 

model incorporating the Na+ allosteric site. Because experimental evidence on 

purified enzyme indicates that the non occluded states are susceptible to 

glutathionylation, the differential rate equations describing the change in 

concentrations of the E1 and E2P states need to be changed. The modified 

equations are: 

  

= – k1 f(3Nai)f(ATPE1)[E1]+(k4
minf(ATPE2)+(k4

max-k4
min) f(ATPE2) f(Nao

allo))[E2]

– k-4 f(2ki) f(ATPE1)[E1]+kDG1[E1G] – kG1[E1]

d[E1]

dt
 

       

= – k3 f(2Ko) [E2P] –k-2  f(3Nao) [E2P] + k2 [E1P] + kDG2[E2PG]-kG2[E2P]
d[E2P]

dt
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In these two equations the rate constants for glutathionylation are given as: 

 

Parameter Reaction     Value*             

 

kG1  E1   E1G     0.06 s-1    

kDG1  E1G → E1     0.028 s-1    

kG2  E2P → E2PG    0.044 s-1    

kDG2  E2PG → E2P    0.044 s-1    

* These values were chosen because they attained the simulations closest to the K+ 

activated transient experimental data reported in this chapter. 
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CHAPTER SIX 

 

CONCLUSIONS 

 

Data presented in this thesis has produced the first published mathematical model of 

the Na+, K+ ATPase with the ability to simulate the kinetics of transient currents 

activated by extracellular K+.  The model describes significant differences between 

the kidney and heart enzyme populations that can be attributed to the variation in 

tissue specific expression of the Na+, K+ ATPase subunits.  The addition of the Na+ 

allosteric site effect from data obtained from whole cell patch clamped rabbit cardiac 

myocytes and Na+, K+ ATPase membrane enriched fragments shows the importance 

of understanding the effect of cation concentrations on the rate constants of the 

partial reactions.  Experimental conditions such as the lowering of intracellular K+ 

concentrations or the replacement of intracellular K+ with a congener such as Cs+ 

may give a larger pump current signal but will also mask the effect of the Na+ 

allosteric sites ability to accelerate E2 to E1 conversion by reducing the effect of the 

reverse E1 to E2 conversion as reported in Chapter 4.   

Incorporation of glutathionylation to the model to reproduce the K+ activated 

transients, previously associated with a Na+ restricted diffusion space, is a 

fundamental step towards predicting the effects on the Na+, K+ ATPase of changes 

in the redox balance of the cell.  Hill and Bhatnagar review compilation of a list of 

cardiovascular proteins that are significantly altered with posttranslational 

modification of glutathionylation 50 offers an interesting perspective yet to be 

explored in cardiovascular pathologies.  Chronic diseases have long been 

associated with significant changes in cellular redox balance 168-172 and now we are 
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beginning to understand how these changes in redox balance are affecting the 

molecular biology of the cell and its constituents. 

The Na+ subsarcolemmal space and its association with the Na+, K+ ATPase began 

with Bielen et al and their inability to abolish the K+ activated transient current with 

control of the intracellular ionic concentrations via whole cell patch clamping 58.  

Considering no hypothesis existed to explain such a counterintuitive observation the 

Na+ subsarcolemmal space became lead hypothesis for this phenomenon 59.  

Subsequently this has spawned almost 25 years of study, trying to understand and 

define the space itself 64,66,162 along with how this space may impact on the 

relationship between the Na+, K+ ATPase and the Na+, Ca2+ exchanger 3,60,61,164,173.  

The reporting of poise dependent glutathionylation of the β1 subunit 102 offered the 

opportunity of re-evaluating the K+ activated transient.  Clearly the K+ activated 

transient would occur if placing the ATPase in a Na+/Na+ exchange mode conferred 

some protection to the β1 subunit as long as the proportion of glutathionylation 

dropped below that observed under the conditions of steady state turnover.  

Interestingly we observed an extracellular Na+ dependence to the K+ activated 

transient that has never been reported in the literature.  As described in the 

Introduction the reported uses of both Tris.HCl and Choline Chloride as substitutes 

for extracellular Na+ had significant methodological problems associated with their 

use.  As such we hypothesised the potential for a poise dependent susceptibility to 

glutathionylation of the β1 subunit in the phosphoenzyme intermediates of the Na+, 

K+ ATPase.  This was supported by the metal fluoride stabilised enzyme exposure to 

oxidant stress and the observation recorded from the experimental membrane 

voltage protocol.  The final significant piece of evidence that these transients cannot 

be associated with a Na+ diffusion restricted space is the fact that when K+-free 
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patch pipettes are used the transient is abolished considering that the relatively low 

concentration of Na+ should have accentuated the Na+ restricted diffusion space 

effect.  This alternate explanation of the K+ activated transients presents two 

significant new ideas that may alter the direction of research in the Na+, K+ ATPase.  

Firstly, the lack of evidence to support a significantly large Na+ restricted diffusion 

space beneath the sarcolemma means that 25 years of research requires re-

interpretation from a very different perspective.  Secondly, the status of β1 

glutathionylation is firmly positioned as a significant form of posttranslational pump 

regulation as there is currently a lack of any competing explanation for the transient 

currents. 

Novel Findings. 

 

The following finds have not previously been described: 

1. The first publication of a mathematical model of the Na+, K+ ATPase based on 

the partial reaction rate constants of the kidney enzyme with the ability to 

simulate transient changes in the steady-state pump current. 

2. The first reported observation of the Na+ allosteric site in whole cell voltage 

clamped cardiac myocytes as predicted by experiments in Na+, K+ ATPase-

enriched isolated membrane fragments from pig kidney. 

3. The existence of the Na+ subsarcolemmal space as supported by K+ activated 

transient currents from the Na+, K+ ATPase is impossible to reconcile with our 

data and as such places doubt upon the existence of this space. 
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4. Poise dependent glutathionylation is now an alternative explanation for the K+-

activated transient currents and the poise dependent glutathionylation of the 

phosphoenzyme intermediate. 

5. Considering that glutathionylation is slower than any other kinetic rate 

constant within the pump cycle and is predicted to be heavily prevalent by the 

model during steady-state strongly supports its role as a regulator of pump 

activity. 

6. For the first time a mathematical model of the Na+, K+ ATPase has been 

incorporated with a posttranslational modification associated with receptor 

coupled signalling. 

Future Directions. 

 

1. The four state model shows significant differences between the kidney 

enzyme and the heart enzyme. A preparation of the heart enzyme of enough 

purity can be obtained to measure the specific rate constants and ion 

dissociation constants to determine if this difference really exists. 

2. The mathematical model, with the Na+ allosteric site and glutathionylation 

incorporated, simulates the results reported in Chapter 5 qualitatively well.  

The simulation of a transient current when intracellular K+ is abolished in the 

model signifies that improvements need to be made which may require using 

an extended model to target specific enzyme intermediates. 

3. In every crystal structure model recently published of the Na+, K+ ATPase the 

susceptible cysteine of the β1 subunit is found within the predicted membrane.  

As such the ability of a charged compound to reach the cysteine is 
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theoretically impossible.  We need to come to an understanding of how a 

charged glutathione molecule can reach the cysteine 46 residue of the β1 

subunit and whether access is associated with membrane deformations or 

significant structural changes of the protein.   

4. Under our conditions no effect of adding Glutaredoxin is observed on the peak 

transient current which is dependent on the level of E2P glutathionylation, but 

it seems to reduce re-glutathionylation at the E1 enzyme intermediate.  This 

offers the possibility for an access issue for Glutaredoxin to the  cysteine 46 

residue of the β1 subunit that hasn’t been observed previously in the literature 

and may only surface under conditions were the ATPase is in situ. 
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