454 research outputs found

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    Evaluation of cross-layer reliability mechanisms for satellite digital multimedia broadcast

    Get PDF
    This paper presents a study of some reliability mechanisms which may be put at work in the context of Satellite Digital Multimedia Broadcasting (SDMB) to mobile devices such as handheld phones. These mechanisms include error correcting codes, interleaving at the physical layer, erasure codes at intermediate layers and error concealment on the video decoder. The evaluation is made on a realistic satellite channel and takes into account practical constraints such as the maximum zapping time and the user mobility at several speeds. The evaluation is done by simulating different scenarii with complete protocol stacks. The simulations indicate that, under the assumptions taken here, the scenario using highly compressed video protected by erasure codes at intermediate layers seems to be the best solution on this kind of channel

    An investigation into jamming GSM systems through exploiting weaknesses in the control channel forward error correction scheme

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Masters of Science in Engineering (Electrical), 2017The ability to communicate effectively is of key importance in military scenarios. The ability to interfere with these communications is a useful tool in gaining competitive advantages by disrupting enemy communications and protecting allied troops against threats such as remotely detonated explosives. By reducing the number of corrupt bits required by using customised error patterns, the transmission time required by a jammer can be reduced without sacrificing effectiveness. To this end a MATLAB simulation of the GSM control channel forward error correction scheme is tested against four jamming methodologies and three bit corruption techniques. These methodologies are aimed at minimising the number of transmitted jamming bits required from a jammer to prevent communications on the channel. By using custom error patterns it is possible to target individual components of the forward error correction scheme and bypass others. A ran dom error approach is implemented to test the system against random errors on the channel, a burst error approach is implemented to test the convolutional code against burst errors, and two proposed custom error patterns are implemented aimed at exploiting the Fire code’s error detection method. The burst error pattern approach required the least number of transmitted jamming bits. The system also shows improvements over current control channel jamming techniques in literature.XL201

    Network-coded MIMO-NOMA systems with FEC codes in two-way relay networks

    Get PDF
    This paper assumes two users and a two‐way relay network with the combination of 2×2 multi‐input multi‐output (MIMO) and nonorthogonal multiple access (NOMA). To achieve network reliability without sacrificing network throughput, network‐coded MIMO‐NOMA schemes with convolutional, Reed‐Solomon (RS), and turbo codes are applied. Messages from two users at the relay node are network‐coded and combined in NOMA scheme. Interleaved differential encoding with redundancy (R‐RIDE) scheme is proposed together with MIMO‐NOMA system. Quadrature phase‐shift keying (QPSK) modulation technique is used. Bit error rate (BER) versus signal‐to‐noise ratio (SNR) (dB) and average mutual information (AMI) (bps/Hz) versus SNR (dB) in NOMA and MIMO‐NOMA schemes are evaluated and presented. From the simulated results, the combination of MIMO‐NOMA system with the proposed R‐RIDE‐Turbo network‐coded scheme in two‐way relay networks has better BER and higher AMI performance than conventional coded NOMA system. Furthermore, R‐RIDE‐Turbo scheme in MIMO‐NOMA system outperforms the other coded schemes in both MIMO‐NOMA and NOMA systems

    Error-correction on non-standard communication channels

    Get PDF
    Many communication systems are poorly modelled by the standard channels assumed in the information theory literature, such as the binary symmetric channel or the additive white Gaussian noise channel. Real systems suffer from additional problems including time-varying noise, cross-talk, synchronization errors and latency constraints. In this thesis, low-density parity-check codes and codes related to them are applied to non-standard channels. First, we look at time-varying noise modelled by a Markov channel. A low-density parity-check code decoder is modified to give an improvement of over 1dB. Secondly, novel codes based on low-density parity-check codes are introduced which produce transmissions with Pr(bit = 1) ≠ Pr(bit = 0). These non-linear codes are shown to be good candidates for multi-user channels with crosstalk, such as optical channels. Thirdly, a channel with synchronization errors is modelled by random uncorrelated insertion or deletion events at unknown positions. Marker codes formed from low-density parity-check codewords with regular markers inserted within them are studied. It is shown that a marker code with iterative decoding has performance close to the bounds on the channel capacity, significantly outperforming other known codes. Finally, coding for a system with latency constraints is studied. For example, if a telemetry system involves a slow channel some error correction is often needed quickly whilst the code should be able to correct remaining errors later. A new code is formed from the intersection of a convolutional code with a high rate low-density parity-check code. The convolutional code has good early decoding performance and the high rate low-density parity-check code efficiently cleans up remaining errors after receiving the entire block. Simulations of the block code show a gain of 1.5dB over a standard NASA code

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted
    corecore