

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowl-

edged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily the be

attributed to the NRF.

AN INVESTIGATION INTO JAMMING GSM SYSTEMS
THROUGH EXPLOITING WEAKNESSES IN THE

CONTROL CHANNEL FORWARD ERROR
CORRECTION SCHEME.

A dissertation submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for

the degree of Masters of Science in Engineering (Electrical).

Gareth Timm - Student No. 481195

Research Supervisor: Prof. Jaco Versfeld

Johannesburg, 2017

ii

Declaration

I declare that this dissertation is my own, unaided work, except where otherwise acknowl-

edged. It is being submitted for the degree of Master of Science in Electrical Engineering

to the University of the Witwatersrand, Johannesburg, South Africa. It has not been

submitted before for any degree or examination at any other university.

Candidate Signature: ..

Name: ..

Date: (Day)...............(Month)...............(Year).........................

iii

Abstract

The ability to communicate effectively is of key importance in military scenarios. The

ability to interfere with these communications is a useful tool in gaining competitive

advantages by disrupting enemy communications and protecting allied troops against

threats such as remotely detonated explosives. By reducing the number of corrupt bits

required by using customised error patterns, the transmission time required by a jammer

can be reduced without sacrificing effectiveness. To this end a MATLAB simulation of

the GSM control channel forward error correction scheme is tested against four jamming

methodologies and three bit corruption techniques. These methodologies are aimed at

minimising the number of transmitted jamming bits required from a jammer to prevent

communications on the channel. By using custom error patterns it is possible to target

individual components of the forward error correction scheme and bypass others. A ran-

dom error approach is implemented to test the system against random errors on the

channel, a burst error approach is implemented to test the convolutional code against

burst errors, and two proposed custom error patterns are implemented aimed at exploiting

the Fire code’s error detection method. The burst error pattern approach required the

least number of transmitted jamming bits. The system also shows improvements over

current control channel jamming techniques in literature.

iv

Acknowledgements

This dissertation is dedicated to my mother who has

shown me never ending love and support during the

completion of my studies.

v

Table of Contents

Declaration .. ii

Abstract ... iii

Acknowledgements ... iv

Table of Contents .. v

List of Figures .. viii

List of Tables ... ix

List of Abbreviations ... x

List of Symbols ... xi

 Introduction ... 1

 Background .. 1

 Problem Identification ... 2

 Important Definitions and Assumptions ... 3

 Scope and Research Objectives .. 3

 Dissertation Organization .. 4

 Literature Review (Chapter 2) .. 4

 Research Methodology (Chapter 3) ... 5

 Results from Individual Jamming Methodologies (Chapter 4) ... 5

 Conclusion (Chapter 5) ... 5

 Literature Review ... 6

 The Global System for Mobile Communication ... 6

 GSM Frequency Structure .. 6

 GSM Frame Structure ... 7

 GSM Logical Channels .. 7

 GSM Downlink Structure .. 8

 GSM Time Diversity and Forward Error Correction Techniques ... 10

 Fire Code ... 11

 Convolutional Code ... 13

 Interleaving ... 14

vi

 Signal Jammers .. 17

 Current Signal Jammer Implementations ... 17

 Advanced Signal Jammer Implementations .. 18

 Intelligent Signal Jamming .. 19

 Signal Jammer Synchronisation with the GSM System .. 20

 Related Research ... 20

 Conclusion .. 23

 Research Methodology .. 24

 Investigative Approach .. 24

 Experimental Setup ... 24

 Convolutional Encoder and Decoder ... 25

 Fire Encoder and Decoder ... 26

 Jamming System ... 27

 Jamming Methodologies ... 30

 Bit Corruption Techniques .. 30

 Example of an Error Pattern Propagating Through the Proposed Jamming System..... 32

 Random Error Locations ... 34

 Errors in Bursts ... 35

 Proposed Signal Jammer Implementation (Single Decoding Error). 36

 Proposed Signal Jammer Implementation (Generator Polynomial) 37

 Conclusion .. 38

 Results from Individual Jamming Methodologies .. 39

 Random Error Locations .. 39

 Inverting Bits .. 40

 Writing 1s .. 41

 Writing 0s .. 42

 Errors in Bursts ... 43

 Inverting Bits ... 44

 Writing 1s .. 46

 Writing 0s .. 47

 Proposed Signal Jammer Implementations .. 48

 Single Decoding Error ... 48

 Generator Polynomial ... 50

vii

 Evaluation and Comparison of All Jamming Methodologies ... 55

 Inverting Bits .. 57

 Writing 1s .. 58

 Writing 0s .. 58

 Comparison of Jamming Strategies Against Previous Research Done. 58

 Conclusion .. 60

 Research Summary... 60

 Achievements ... 60

 Conclusion .. 61

 Recommendations for Possible Future Work ... 61

References ... 62

viii

List of Figures

Figure 2.1: GSM Non-Combined Configuration Downlink Channel Structure. .. 9

Figure 2.2: GSM CCCH Data Flow Process Diagram .. 11

Figure 2.3: GSM Convolutional Code Block Diagram. ... 14

Figure 2.4: Interleaving and reordering process for each GSM CCCH timeslot. .. 16

Figure 3.1: Simulated system data flow diagram .. 25

Figure 3.2: ½ Rate convolutional encoder block diagram with constraint length 5. 26

Figure 3.3: Fire code systematic encoding structure. .. 27

Figure 3.4: Random and burst error jamming system data flow diagram. ... 28

Figure 3.5: Proposed jamming system data flow diagram. ... 30

Figure 3.6: Bit modification diagram when inverting bits. ... 31

Figure 3.7: Bit modification diagram when writing 1s. ... 31

Figure 3.8: Bit modification diagram when writing 0s. ... 31

Figure 4.1: Message error rate vs bits inverted. .. 40

Figure 4.2: Message error rate vs 1s introduced. ... 41

Figure 4.3: Probability of detection vs 0s written. .. 42

Figure 4.4: Message erasure rate vs 0s written. .. 43

Figure 4.5: Message error rate vs burst error location for error length 4. ... 44

Figure 4.6: Message error rate vs burst error location for error length 5. ... 45

Figure 4.7: Message error rate vs burst length (1s). ... 47

Figure 4.8: Message error rate vs burst length (0s) .. 48

Figure 4.9: Jamming bits required vs error sequence number. .. 50

Figure 4.10: Number of bits in error vs last error location. .. 52

Figure 4.11: Positioning of 6 error bits in Paging message. .. 53

Figure 4.12: Positioning of 18 error bits in Paging Message ... 54

ix

List of Tables

Table 2.1: Immediate Assignment Message Breakdown .. 9

Table 4.1: The number of corrupt bits in each Immediate Assignment information element per error

location (6 errors) .. 54

Table 4.2: The number of corrupt bits in each Immediate Assignment information element per error

location (18 errors) .. 55

Table 4.3: Minimum number of jamming bits required for all jamming methodologies and bit corruption

techniques. ... 56

x

List of Abbreviations

AGC Automatic Gain Control

AGCH Access Granted Channel

ARFCN Absolute Radio Frequency Channel Number

BCH Broadcast Channel

BSIC Base Station Identity Code

CCCH Common Control Channels

CRC Cyclic Redundancy Check

DCCH Dedicated Control Channel

FACCH Fast Associated Control Channel

FCCH Frequency Correction Channel

FEC Forward Error Correction

GSM

Global System for Mobile Communication

IED Improvised Explosive Device

MER Message Error Rate

MS Mobile Subscriber

NCH Notification Channel

OSI Open Systems Interconnection

PCH Paging Channel

RACH Random Access Channel

RFN Reduced TDMA Frame Number

SACCH Slow Associated Control Channel

SACCH Standalone Associated Control Channel

SCH Synchronisation Channel

SDCCH Standalone Dedicated Control Channel

SMS Short Message Service

SNR Signal to Noise Ratio

TCH Traffic Channel

TDMA Time Division Multiple Access

xi

List of Symbols

Symbol Units Description

et(x) - Error message to be introduced.

ei(x) - Error message before interleaving.

ec(x) - Error message before convolutional
encoding.

ct(x) - Error free message being transmitted.

cr(x) - Received corrupted message.

mr(x) - Received message after decoding.

Chapter 1

1

Introduction

 Background

Cellular phones and the Global System for Mobile Communication (GSM) network is

used globally as one of the main means of communication. The GSM network remains as

the dominant technology in 2016 with the number of connections surpassing 7.7 billion

[1]. With the abundant use of this technology it is not surprising that it finds uses in a

wide variety of applications such as remote monitoring devices, tracking devices, and most

commonly in mobile phones. Signal jammers are used to prevent these systems from being

able to function correctly.

Signal jamming is where a custom (or random) signal is broadcast with the intent of

interfering with another wireless communication channel, effectively making communica-

tion on that channel impossible. This is usually done by transmitting a more powerful

random signal with the same carrier frequency to ‘drown’ out the original signal and make

it unreadable. A major concern for all personnel in places of war is the Improvised

Explosive Device (IED), which is a home-made explosive often triggered remotely using

a radio detonator such as a mobile phone. The radio controlled IED can be monitored

from far away and when the target is in range of the explosive, an SMS or call is made

to the mobile detonator which causes the device to detonate [2]. Signal jammers reduce

this risk by eliminating the possibility of communication on certain frequencies such that

these calls or SMS’s cannot be delivered to the mobile detonator.

In the most basic jamming approach this jamming signal is constantly transmitted on

the channel at a high power, this is termed an ‘always on’ jammer [3]. The downfall to

this approach is the requirements for a constant jamming signal to be transmitted as it

creates a constant interference presence on the channel and requires a constant power

source. This constant presence makes the jammer more easily detectable, and provides a

large sample collection for direction finding methods to be used to locate the device. For

example, if the army is using signal jammers to block remote explosives, it would be

detrimental for the enemy to be able to locate and disable the jammer. If the duration

Chapter 1

2

for which the signal is transmitting can be reduced, the detectability and traceability of

the device is also reduced resulting in a safer environment for those using the device [4].

It is seen that the usage of signal jammers can be a great benefit in protecting users,

a downfall to these signal jammers is in situations where they also block legitimate or

crucial communications such as calls to emergency services. This has led to the usage of

these devices by the public being made illegal in most countries [5]. They are still widely

used in many military situations to protect troops and gain communication advantages

over adversaries. The large power requirements from these jammers to achieve successful

jamming is not practical when they are used in situations without access to a constant

power source. Therefore if the devices are used in locations which are not easily accessible

such as spread around an enemy battlefield, then they are required to be independently

powered [6]. This leads to the need for energy efficient signal jammers to be developed to

ensure the duration for which they can be used is sufficient when there is no constant

power supply available.

 Problem Identification

Due to signal jammers being used in places of war such as on a battlefield, it is not

always possible for these jammers to have access to constant power sources, which results

in them having to use limited power sources such as battery packs. Due to the high energy

requirements of signal transmission [7] which increases with the range of jamming re-

quired, the lifetime of these systems is limited by their available power supply. Thus the

need for energy efficient signal jamming systems exists to extend the duration for which

these systems can operate, the first approach to achieving this is reducing the required

transmission time from the jammer.

A reduction in the overall required transmission time of the jamming system can be

achieved through a reduction in the number of bits requiring transmission to destroy the

original message. By reducing the number of bits requiring transmission, and hence the

required jamming time, this allows for a reduction in the energy requirements of the

jammer and for the system to be less detectable due to reduced presence on the channel.

This leads us to the following research question:

Chapter 1

3

Research Question: “How can we exploit the control channel forward error correction

scheme of the GSM system in order to minimize the number of jamming bits required to

prevent communications on the channel?”

To be able to answer this research question, it is important that we define some key

terminology to be used throughout the remainder of this research.

 Important Definitions and Assumptions

Communication failure: The inability for any device on the network to initiate or receive

any further calls or SMS’s, this does not extend to disrupting

any existing active connections.

Message error rate: The ratio of the number of incorrect messages received (decoding

errors) over the total number of messages received.

Communication: This is limited to calls and SMS’s and does not extend to data transmis-

sion on the GSM network.

Jamming bits: The number of transmitted bits required by the jamming system.

Assumptions: This research focusses on the data link layer, and as such to be able to

make a fair comparison on the bit level, we assume a very high Signal to

Noise Ratio (SNR) on the channel for the original signal. By assuming

high SNR, the effects of channel interference such as AWGN and multi-

path fading can be ignored, and the focus of the investigation can be

placed on the individual jamming patterns. We also assume that the re-

quired time for a jammer to corrupt a bit is the same duration as one

GSM bit.

 Scope and Research Objectives

This research aims to undertake an in-depth study of the GSM network protocol and

the forward error correction (FEC) schemes in use, and through its understanding verify

the feasibility of improved control channel jamming methodologies aimed at exploiting

weaknesses in these error correction schemes. From this a set of improved jamming strat-

egies is developed in attempt to minimise the overall transmission time required to effec-

tively prevent successful communication on the channel. In this research “communication”

Chapter 1

4

is limited to only calls and SMS’s and does not apply to data connections. This is to be

done by using an “intelligent” control channel jamming methodology (one which focusses

on the data link layer of the OSI model) using the MATLAB simulation software to

simulate the GSM Common Control Channel (CCCH) and the jamming system. This

GSM system is then tested against a variety of jamming techniques (discussed in Section

3.2) focussed specifically on the GSM CCCH forward error correction scheme, instead of

the whole signal as in other jamming methodologies (discussed in Section 2.3). The results

obtained are to be contrasted amongst each other and compared with recent research

done up until the time of writing this document.

To be able to answer the research question it is important that we define a specific

parameter according to which all the jamming methodologies are compared. In this re-

search the jamming methodologies are compared according to the total number of bits

required to be jammed (corrupted) to cause communication failure on the channel. Com-

munication failure is defined in this research as when no further calls or SMS’s can be

successfully executed, and does not attempt to interrupt existing connections. The anal-

ysis is done on a bit level, and as such it is straight forward to calculate the transmission

time required from the jammer. The transmission time is calculated as the number of bits

which are jammed multiplied by the transmission time per bit. This can be done as

follows:

𝑡𝑡𝑟𝑎𝑛𝑠 = 𝑛𝑏𝑖𝑡𝑠 ∗
15

26⁄

156.25
 ms (1)

The transmission time per bit is calculated as the transmission time for one timeslot

(15/26 = 0.577ms) divided by the number of bits per timeslot (156.25 bits) [8].

 Dissertation Organization

This section provides insight into the layout and content present in this dissertation.

The chapter layout is shown below, with a brief overview of each chapter given.

 Literature Review (Chapter 2)

Chapter 2 contains an in-depth literature review section which is dedicated to exploring

all the relevant details of the GSM system critical to the success of this research, as well

as providing insight into the common jamming methodologies being used today. Similar

Chapter 1

5

research done prior to this work which is relevant to this research is also discussed out-

lining the methods, contributions, and results obtained. The chapter begins by discussing

the necessary components of the GSM system such as the frame structure, channel struc-

ture, and connection setup information for the system, as well as the forward error cor-

rection and time diversity techniques being used. The chapter then outlines the four

common jamming techniques used in practice today, and explores similar research papers

attempting to improve on these jamming techniques for various different wireless com-

munication protocols, outlining the achievements made in each.

 Research Methodology (Chapter 3)

Chapter 3 contains an in-depth explanation of the various jamming methodologies

tested during the completion of this research. The chapter begins by discussing the soft-

ware requirements used in the testing procedures, as well as the three different bit cor-

ruption techniques used for testing the jamming methodologies. Each of these jamming

methodologies are discussed in detail with reasons for choices given, the chapter concludes

by suggesting two proposed jamming methodologies which attempt to improve on current

jamming techniques.

 Results from Individual Jamming Methodologies (Chapter 4)

Chapter 4 presents the results obtained during the testing procedures outlined in Chap-

ter 3. These results are first analysed individually highlighting key points in each, then

at the end of the chapter each of the jamming methodologies are compared, first with one

another then with recent results from literature.

 Conclusion (Chapter 5)

Chapter 5 is the final chapter. In this chapter the research is summarised, followed by

a discussion on the achievements made. A short conclusion based on the results obtained

is then presented and the chapter concludes by suggesting possible future directions in

which this research can proceed.

Chapter 2

6

Literature Review

To complete this research there are two main systems which are implemented. The first

of these systems is the simulation of the GSM CCCH forward error correction scheme,

including both sender and receiver side implementations. The second is the jamming sys-

tem used to test the various jamming methodologies tested against the simulated GSM

system. The proposed jamming solutions rely on exploiting the connection-oriented prop-

erty of the GSM system, as well as exploiting weaknesses in the forward error correction

schemes in use. To allow the reader to gain a proper understanding of how this is achieved,

each of the relevant components of the system are discussed below.

 The Global System for Mobile Communication

The Global System for Mobile Communication (GSM) standards were first finalised in

1989 with the first GSM call made in Finland in 1991, from here the number of GSM

connections grew massively to surpass three billion by 2008, reaching 7.7 billion in 2016

[9] [1].

 GSM Frequency Structure

The GSM system is comprised of an uplink and downlink channel each with a band-

width of 25MHz and separated by a 20MHz band gap. These 25MHz bands are frequency

divided into 200kHz channels resulting in 124 carrier pairs [8]. Each of these 200kHz

carriers are then time divided into eight time slots allowing for a total of eight users to

be connected at each frequency. Each time slot duration is 0.577ms and carries 156.25

bits, this results in a bit rate of 270.833kbps [8]. The Absolute Radio Frequency Channel

Number (ARFCN) is a number used to denote the frequency pair in use by the mobile.

The primary GSM-900 band (P-GSM 900), which is the focus of this study, has 124

ARFCN’s (1-124), this leads to uplink frequencies of 890+0.2(ARFCN) MHz, and down-

link frequencies of 935+0.2(ARFCN) MHz [10]. The specifications allow for an extended

GSM-900 band (E-GSM 900) which operates in the frequency ranges of 880-915MHz for

the uplink and 925-960MHz for the downlink [10].

Chapter 2

7

 GSM Frame Structure

 To provide the GSM system with the ability to schedule and coordinate the effective

communication of various types of information that need to be transmitted between the

Mobile Subscriber (MS) and the base station, various channels and frame structures are

defined.

The largest GSM frame structure is a hyperframe which lasts for 3 hours 28 minutes

and 53.76 seconds, this extended duration is chosen to assist with the security of the

network [11] [12]. One hyperframe is composed of 2048 superframes each lasting 6.12

seconds and each superframe is then divided into 1326 frames consisting of either 26

control multi-frames, or 51 traffic multi-frames, these are created to allow for easy sched-

uling and synchronisation [12].

Traffic Multi-frame: The traffic multi-frame is a 26-frame multi-frame, this multi-frame

has a duration of 120ms in total over the 26 transmission bursts. Of these 26 frames, 24

are dedicated to traffic alone, one is dedicated to the SACCH (discussed in Section 2.1.3)

and one is left empty, 51 of these multi-frames exist per superframe [12].

Control Multi-frame: The control multi-frame is a 51-frame multi-frame, this multi-

frame has a duration of 235.4ms in total over the 51 transmission bursts. The control

multi-frame is of interest in this investigation as it is what controls the connection of

mobile devices to the system, 26 of these multi-frames exist per superframe [12].

 GSM Logical Channels

The multi-frames discussed above are then further divided into logical channels. Two

categories of GSM logical channels exist, the first being traffic channels (TCH) and the

second being signalling/control channels (hereafter referred to as control channels) [11].

Traffic Channels: The traffic channels are used for the transfer of speech or data traffic

over the air. The GSM specifications describe two general categories of traffic channels,

the first is a full rate traffic channel (TCH/F) and the second is a half rate traffic channel

(TCH/H). These full rate and half rate channels can both be used either for speech or for

data traffic [13].

Control Channels: The control channels are used by the network to transfer important

information such as signalling or synchronisation messages to assists the mobile in utiliz-

ing the network effectively [11].

Chapter 2

8

The control channels can be broken up further into three main categories, namely:

Broadcast Channels (BCH), Dedicated Control Channels (DCCH) and Common Control

Channels (CCCH) [14].

Broadcast Channels: The broadcast channels are responsible for supplying control

channel parameters, and assisting in frequency correction and time synchronisation of the

mobile device. Three broadcast channels exist, namely the Frequency Correction Channel

(FCCH), the Synchronisation Channel (SCH) and the Broadcast Control Channel

(BCCH) [11] [13].

Dedicated Control Channels: The dedicated control channels are used for more specific

signalling to individual mobile devices for events such as call setup, authentication, con-

trol information (during calls), signal strength and handover messages [15]. Three dedi-

cated control channels exist, namely the Standalone Dedicated Control Channel

(SDCCH), the Slow Associated Control Channel (SACCH) and the Fast Associated Con-

trol Channel (FACCH) [13].

Common Control Channels: The GSM Common Control Channels can again be broken

down into sub channels. On the uplink there is the Random Access Channel (RACH),

and on the downlink there is the Paging Channel (PCH), Access Grant Channel (AGCH)

and Notification Channel (NCH) [13]. The RACH is used by the MS on the uplink for

functions such as requesting allocation of a channel for call setup, the PCH is used to

page the MS for notifications such as an incoming call, the AGCH is used to notify the

MS that the channel request has been granted/denied, and contains information used for

further connection setup, and the NCH is used for group calls [13]. Due to the downlink

signal (being received) at the MS (the receiver) being much weaker than the uplink signal

(being transmitted), these downlink channels are of primary interest [16].

 GSM Downlink Structure

The GSM downlink structure for the GSM Non-Combined channel configuration is

shown in Figure 2.1 for timeslot 0, each letter denotes a channel which is broadcast

periodically at timeslot 0 [13].

Chapter 2

9

F S B×4 C×4 F S C×4 C×4 F S C×4 C×4 F S C×4 C×4 F S C×4 C×4 I

Figure 2.1: GSM Non-Combined Configuration Downlink Channel Structure.

Where:

F = Frequency Correction Channel (FCCH),

S = Synchronisation channel (SCH),

B = Broadcast Control Channel (BCCH),

C = Common Control Channel (CCCH),

I = Idle Time.

It can be seen that the CCCH is grouped together in groups of four, this is because the

CCCH bursts are encoded and interleaved over four separate GSM bursts. The AGCH

notifies the mobile device of an accepted/rejected channel request through the use of an

Immediate Assignment message which contains a unique Request Reference information

element to identify which mobile device the message is for [17]. Without this message and

the unique reference number, the mobile device will be unable to identify the assignment

is for it and thus is unable to proceed with communication. The structure for the GSM

Immediate Assignment message is shown in Table 2.1.

Table 2.1: Immediate Assignment Message Breakdown

Information Element Length (bytes)

L2 Pseudo Length 1

RR management Protocol Discriminator ½

Skip Indicator ½

Immediate Assignment Message Type 1

Page Mode ½

Dedicated mode or TBF ½

Channel Description 3

Packet Channel Description 3

Request Reference 3

Timing Advance 1

Mobile Allocation 1-9

Starting Time 3

IA Rest Octetes 0-11

The FCCH does not carry any information, but is instead a burst of all zero values to

assist the MS in synchronising its frequency. Due to its all zero values this burst should

be easily detectable and is used to indicate the start of the 51-Frame multi-frame. Since

Chapter 2

10

only one frame is sent per time slot, and the time for one frame is known to be 0.577ms,

the exact times where the FCCH and hence the CCCH frames are received can be calcu-

lated.

The SCH similarly is used to assist in synchronisation of the mobile, but the SCH is

used for frame synchronisation, it carries the Base Station Identity Code (BSIC) and

Reduced TDMA Frame Number (RFN) [13].

The FCCH and SCH are the primary methods of frequency and time synchronisation

when a mobile phone is searching for a network. The jamming of these synchronisation

channels blocks a mobile from accessing the network [18]. The CCCH is used for connec-

tion-oriented operations such as call setup and SMS’s, so jamming this part of the signal

prevents the MS from receiving important setup parameters required to make or receive

calls or SMS’s.

 GSM Time Diversity and Forward Error Correction Techniques

Due to GSM being a wireless communication standard, and the physical communica-

tion medium for it being air, it is prone to many forms of interference and channel losses

being introduced on the physical channel. Such errors are introduced due to multiple

different effects such as Doppler shifts, fading, shadowing and interference [19]. To ac-

count for this, time diversity techniques are implemented which help combat the effects

of the unpredictable wireless channel.

The GSM system has multiple levels of protection to ensure the data reaches the in-

tended recipient error free. The first of these systems is the use of a special form of block

codes called cyclic codes, and a specific type of cyclic code that is constructed systemati-

cally [20] called Fire code which is known for its ability to correct single burst errors. This

is not however what the code is used for in the GSM system, as this code is also good at

error detection. In the GSM system the code is used exclusively for error detection and

not for error correction [17] [21]. In addition to this, GSM also implements a code primar-

ily for the use of correcting errors during transmission, this code is called convolutional

code and is implemented as the next step after the Fire code [17]. Due to convolutional

code being primarily used for the correction of small errors which are far apart, and errors

occurring over wireless communications usually being in the form of burst errors, GSM

also implements a time diversity technique known as interleaving, to ensure that if burst

Chapter 2

11

errors occur, they are spread out after the reversal of the interleaving process [17]. The

block diagram for the GSM CCCH data flow process can be seen in Figure 2.2.

Figure 2.2: GSM CCCH Data Flow Process Diagram.

 Fire Code

The first step and the outer code for the GSM system is a special case of cyclic burst

error correcting codes called Fire codes. This code is chosen due to its strong error detec-

tion capabilities and its ease of implementation for detecting errors. Fire codes are guar-

anteed to detect burst errors which are much longer than their maximum error correction

capabilities which makes them the ideal code for error detection on the GSM system [17].

The Fire encoder uses the systematic encoding procedure for cyclic codes, which ac-

cording to [22] is summarised as follows:

Due to Fire code being a specific class of cyclic code, the same encoding procedure is

followed as that for cyclic codes. To encode the message with the generator polynomial

of the Fire code, first the message is shifted to allow space for the parity bits

 𝑢(𝑥) = 𝑚(𝑥)×(𝑥𝑛−𝑘), (2)

where

 𝑑𝑒𝑔(𝑔(𝑥)) = 𝑛 − 𝑘, (3)

then divide the resulting 𝑢(𝑥) by the generator polynomial of the Fire code, storing the

remainder as 𝑑(𝑥), where 𝑑(𝑥) are the parity bits. The desired encoded message is then

achieved by subtracting this remainder from 𝑢(𝑥),

 𝑐(𝑥) = 𝑢(𝑥) – 𝑑(𝑥). (4)

Chapter 2

12

Due to the initial shift, there is no overlap and the parity bits and the message bits remain

separate after this subtraction.

The Fire code error detection capabilities can be summarised according to [23] as follows:

Given a Fire code defined by

 𝑔(𝑥) = (𝑥𝑐 + 1)𝑝(𝑥), (5)

where 𝑝(𝑥) is irreducible, of degree 𝑚 and the two factors are relatively prime. This code

will be able to detect any single burst error with length less than 𝑐 + 𝑚, or it will be

able to detect any pair of burst errors, as long as the shorter burst has a length less than

or equal to 𝑚, and the length of the bursts combined is no greater than 𝑐 + 1 bits. In the

GSM system 𝑚 is equal to 17, and 𝑐 is equal to 23.

Therefore the GSM code is capable of detecting single bursts less than 40 bits in length,

and any two bursts with a combined length less than 24 bits. Given that the combined

length of the bursts is limited to 24 bits, this sets the maximum length of the shorter

burst at 11 bits.

When the length of the error bursts exceeds these limitations the code is usually still

able to detect errors, although not with 100% probability as there exists a case where if

the received error is a multiple of the generator polynomial used to create the code, then

the decoder will be unable to detect this error. This can be seen through the following

decoding process which is summarised as follows:

The decoding process is very simple if error correction is not implemented and again

involves division by the generator polynomial. Given the received vector as

 𝑟(𝑥) = 𝑐(𝑥) + 𝑒(𝑥), (6)

and since we know 𝑐(𝑥) is a multiple of 𝑔(𝑥), then dividing 𝑟(𝑥) by 𝑔(𝑥) will result in a

remainder (called the syndrome) of zero if and only if 𝑒(𝑥) is either zero or a multiple of

𝑔(𝑥). Therefore, if the length of the error burst is less than that of 𝑔(𝑥) the remainder

will return zero only if there is no error in the code. An addition to this case is when the

Chapter 2

13

received codeword 𝑟(𝑥) is all zero’s, as this will also result in a remainder of zero when

dividing 𝑟(𝑥) by 𝑔(𝑥).

Therefore, introducing an error which is equal to, or a multiple of the generator poly-

nomial should prevent this code from being able to detect the errors.

 Convolutional Code

According to [17] the GSM system comprises of both an outer and an inner code, for

both error detection as well as error correction. The convolutional code is the inner code

in the GSM system and is the only error correction step before the interleaving process.

Before the convolutional encoding process can begin, the 224 input data bits need to be

padded with four zero bits at the end as a reset for the convolutional encoder (zero

termination). This convolutional code is a half rate code which is defined by the following

two generator polynomials [24]:

 𝐺0(𝑑) = 𝑑4 + 𝑑3 + 1, and (7)

 𝐺1(𝑑) = 𝑑4 + 𝑑3 + 𝑑 + 1. (8)

A convolutional code also has a memory component, which tells it how many of the

previous symbols (in this case bits) to combine with the current result. This memory

component is equal to the maximum constraint length, which for the majority of GSM

channels is four [17]. The 228 bits after encoding results in a block of 456 convolutionally

encoded bits which are defined by the following two equations [24]:

 𝑐(2𝑘) = 𝑢(𝑘) + 𝑢(𝑘 − 3) + 𝑢(𝑘 − 4), and (9)

 𝑐(2𝑘 + 1) = 𝑢(𝑘) + 𝑢(𝑘 − 1) + 𝑢(𝑘 − 3) + 𝑢(𝑘 − 4), for 𝑘 = 0,1, … ,227, (10)

 𝑢(𝑘) = 0 for 𝑘 < 0. (11)

Chapter 2

14

The block diagram for this process is shown in Figure 2.3.

Figure 2.3: GSM Convolutional Code Block Diagram.

 Interleaving

Interleaving, also known as bit interleaving is a process in which a message to be

transmitted is first spread out over time before transmission by separating and reordering

the bits from a message before transmission, and then re-organising the messages into

their original form at the receiving end. The interleaving process is done to reduce the

amount of damage burst errors cause to transmitted messages, so that error correcting

codes such as the convolutional code used in the GSM system has a higher chance of

being able to correct the errors. This is due to convolutional code being good at correcting

errors as long as they are small and spaced far enough apart.

There are two different types of interleaving in use in the GSM system each having its

own benefits. The first type of interleaving to be discussed is rectangular interleaving.

The rectangular interleaving process requires that the sender waits until a full block of

456 bits is ready to be sent, it then reads the data out in a different predefined order,

dividing the data up into four sections (this is known as the interleaving depth) of 114

bits. The data is again divided into 8 sub blocks by placing the even numbered bits in

the first half of each CCCH timeslot (bit 0-57), and the odd numbered bits in the second

Chapter 2

15

half of each CCCH timeslot, this is known as burst mapping. The result of the interleav-

ing and bit organisation into 8 sub blocks is shown in Figure 2.4. This type of interleaving

is used for the control channels in the GSM system, the bits are reordered according to

the following formula [24]:

 𝑖(𝐵, 𝑗) = 𝑐(𝑛, 𝑘) for 𝑘 = 0,1, … ,455, and (12)

 𝑛 = 0,1, … , 𝑁, 𝑁 + 1, …,

 where 𝐵 = 𝐵0 + 4𝑛 + 𝑘 𝑚𝑜𝑑 4, and (13)

 𝑗 = 2((49𝑘)𝑚𝑜𝑑 57) + (
𝑘 𝑚𝑜𝑑 8

4
). (14)

The second type of interleaving in use in the GSM system is known as diagonal inter-

leaving, in this interleaving process the data for one block is divided again into sub blocks,

but unlike in rectangular interleaving, the blocks of 456 bits are not kept within that

block, but now each block is merged with the block before and after it. Diagonal inter-

leaving is used mostly for speech channels [17]. Due to the CCCH using rectangular in-

terleaving, diagonal interleaving is not discussed in further detail.

Chapter 2

16

Figure 2.4: Interleaving and reordering process for each GSM CCCH timeslot.

Bits 0-56 Bits 57-113 Bits 0-56 Bits 57-113 Bits 0-56 Bits 57-113 Bits 0-56 Bits 57-113

0 228 57 285 114 342 171 399

64 292 121 349 178 406 235 7

128 356 185 413 242 14 299 71

192 420 249 21 306 78 363 135

256 28 313 85 370 142 427 199

320 92 377 149 434 206 35 263

384 156 441 213 42 270 99 327

448 220 49 277 106 334 163 391

56 284 113 341 170 398 227 455

120 348 177 405 234 6 291 63

184 412 241 13 298 70 355 127

248 20 305 77 362 134 419 191

312 84 369 141 426 198 27 255

376 148 433 205 34 262 91 319

440 212 41 269 98 326 155 383

48 276 105 333 162 390 219 447

112 340 169 397 226 454 283 55

176 404 233 5 290 62 347 119

240 12 297 69 354 126 411 183

304 76 361 133 418 190 19 247

368 140 425 197 26 254 83 311

432 204 33 261 90 318 147 375

40 268 97 325 154 382 211 439

104 332 161 389 218 446 275 47

168 396 225 453 282 54 339 111

232 4 289 61 346 118 403 175

296 68 353 125 410 182 11 239

360 132 417 189 18 246 75 303

424 196 25 253 82 310 139 367

32 260 89 317 146 374 203 431

96 324 153 381 210 438 267 39

160 388 217 445 274 46 331 103

224 452 281 53 338 110 395 167

288 60 345 117 402 174 3 231

352 124 409 181 10 238 67 295

416 188 17 245 74 302 131 359

24 252 81 309 138 366 195 423

88 316 145 373 202 430 259 31

152 380 209 437 266 38 323 95

216 444 273 45 330 102 387 159

280 52 337 109 394 166 451 223

344 116 401 173 2 230 59 287

408 180 9 237 66 294 123 351

16 244 73 301 130 358 187 415

80 308 137 365 194 422 251 23

144 372 201 429 258 30 315 87

208 436 265 37 322 94 379 151

272 44 329 101 386 158 443 215

336 108 393 165 450 222 51 279

400 172 1 229 58 286 115 343

8 236 65 293 122 350 179 407

72 300 129 357 186 414 243 15

136 364 193 421 250 22 307 79

200 428 257 29 314 86 371 143

264 36 321 93 378 150 435 207

328 100 385 157 442 214 43 271

392 164 449 221 50 278 107 335

CCCH Block 1 CCCH Block 2 CCCH Block 3 CCCH Block 4

Chapter 2

17

 Signal Jammers

A signal jammer is a device used to disrupt, partially or completely, the effective radio

communication between one or many entities on a communication channel. In wireless

communication this is done by transmitting a disruptive signal on the same frequency as

that being used for communication, effectively drowning out the original messages and

causing a decoding failure on the receiving end [25]. The disruptive signal is usually gen-

erated from a random noise source and should be transmitted at a high enough power to

prevent original signal from being decoded correctly.

 Current Signal Jammer Implementations

Due to signal jamming being a widespread topic of interest, there have been many

different forms of jamming attack models discovered, reviewed and tested. According to

[3], [26] and [27] there are four common effective categories of jammers that currently

exist, these are: Constant Jammers, Deceptive Jammers, Random Jammers and Reactive

Jammers. These are discussed below with the advantages and disadvantages of each

method given.

Constant Jammers: Constant jammers are the most basic form of signal jammers that

exist, they work on an always on basis which means that they are always broadcasting

regardless of the state of the channel they are attempting to jam. When broadcasting

they transmit random noise on the channel. This causes one of two effects on the channel

depending on the nature of the system being jammed, either the system will continue to

transmit and have its signal drowned out by that of the interfering signal, or if it’s a

channel sensing system relying on threshold signal strengths to determine channel avail-

ability, it will continuously see the channel as being busy and never find a chance to

transmit.

Deceptive Jammers: Deceptive jammers work similarly to constant jammers, although

they have a subtle yet definitive difference. They also work on an always on basis, but

instead of transmitting random noise, they transmit legitimate packets, which tricks the

network into thinking legitimate communications are taking place on the channel making

it difficult for legitimate communications to take place (because the channel always ap-

pears busy). This makes it harder to detect that a jamming attack is being executed, but

still requires large amounts of energy due to its always on status.

Chapter 2

18

Random Jammers: Random jamming is a more energy efficient method of jamming,

although it is not always as effective as constant jammers. In the random jammer meth-

odology, the signal jammer alternates between periods of transmitting jamming signals

and sleeping (where no jamming signal is transmitted). The transmission times and sleep

times are chosen during jammer setup and through this the jammer can be made more

energy efficient by reducing jamming time. The downfall to this method of jamming is

that the jammer is not aware of the channel usage and thus may sleep during times where

jamming is required, or may transmit a jamming signal when the channel is quiet and

there is no legitimate signal to be jammed.

Reactive Jammers: In the three jamming strategies mentioned above there exists a

common property which requires the jammers to be transmitting for the majority if not

all of the time. This property is that the above jammers do not take into account the

communication patterns occurring on the channel, and while effective, these jammers are

also very inefficient when it comes to energy consumption [28]. Another approach to

jamming exists in which the jammer is aware of the channel it is trying to jam, in this

jamming methodology the jammer first listens to the channel on which communications

are to take place, and then upon detection of a legitimate communication on the channel,

the jammer starts to transmit a jamming waveform. This method of jamming is known

as reactive jamming as the jammer only transmits in reaction to detecting communication

on the channel. This system can however still use a lot of energy in situations where there

is almost constant legitimate communication on the channel.

 Advanced Signal Jammer Implementations

From information theory it can be seen that for a packet encoded with Forward Error

Correction (FEC) to be decoded correctly, it does not require for the entire packet to be

received correctly, a limit exists as to how much of the packet can be corrupt before the

original packet can no longer be recovered. From the perspective of signal jamming it can

be said that the entire packet does not need to be jammed to stop it from being success-

fully decoded at the receiver. Having knowledge of the error correction schemes in use

allows for this property to be exploited such that the jamming signal can be active for a

lesser time and thus have an overall lower power consumption.

Having knowledge and a good understanding of the protocols in use in a communication

system is another advantage when attempting to optimise jamming strategies. The reason

Chapter 2

19

for this is that often in a communication system a substantial part of the information

being transferred is overhead to set up and maintain the connection, this includes param-

eters such as timing, number of users and transmission power levels [29]. As a result,

only a part of this information is actually used for active communication with other users.

A GSM mobile network is a good example of this, as when a call, SMS or data transfer

is not taking place, the system is just providing connection parameters keeping the mobile

phone connected to the network, and keeping both the network and phone up to date

with important information such as the available operator towers and the current location

of the mobile (for call routing) [29]. From this it can be seen that if the goal is to prevent

phone calls from being made or received, an always-on jammer is unnecessarily energy

heavy, and even through the use of reactive jamming methods the jammer will still be

jamming a lot of unnecessary packets which also leads to increased power requirements

and an easier to detect jammer. It is by making the jamming system intelligent and

protocol aware, that one can target only those packets involved in the connection setup

procedure and thus eliminate unnecessary jamming transmissions and hence reduce re-

quired transmission times while maintaining successful jamming.

 Intelligent Signal Jamming

In Section 2.3.1 it is seen that signal jammers can be implemented in a variety of ways

depending on the requirements of the system. To be effective on a communication channel

where there is a lot of traffic, all four jamming methodologies discussed above share the

common property of having large energy requirements due to lengthy jammer transmis-

sion times. A proposed solution to this is making the signal jammer intelligent by making

it aware of the protocol being used by the communication system. In [27] it is proposed

that by taking into account the error correction capabilities of protocol being used, it is

possible to make the jammer more efficient by only interfering with the minimum required

portion of the packet to cause decoding failure and hence cause the packet to be discarded

at the receiving end.

Intelligent signal jamming is a newer jamming strategy aimed at improving on the

overall energy efficiency and decreasing the detectability of current jamming systems. It

takes the concept of a protocol aware jammer to the next step by targeting specific control

packets and crucial timings, an example of this can be seen in [6] for 802.11b Networks.

For this research we propose an intelligent jamming strategy which takes advantage of

the connection-oriented property of the GSM protocol by attempting to only target the

Chapter 2

20

crucial packets required for connection setup, and thus prevent communications by only

jamming a fraction of the packets being transmitted. Another property that this provides

is that the jamming signal becomes harder to detect due to its intermittent nature [4].

 Signal Jammer Synchronisation with the GSM System

For a signal jammer to be able to utilise the intelligent and advanced jamming strate-

gies discussed above, it is of utmost importance that the jammer is able to synchronise

its system with the original system being jammed. This will ensure that the jammer is

able to transmit at the specific time required to interfere with the original message effec-

tively. The synchronisation procedure is briefly discussed below for completeness, but its

implementation is beyond the scope of this research.

Frequency Synchronisation: The first step in the synchronisation process is finding the

correct frequencies on which the jammer needs to transmit. In order for the jamming

system to synchronise in frequency with the GSM systems original transmitter, the jam-

mer will first need to find the beacon frequencies in use by the system, these are frequen-

cies on which the system continuously transmits the Control Multi-frame (discussed in

Section 2.1.2). Once the jammer is aware of the beacon frequencies in use by the original

transmitter it can move on to time synchronisation.

Time Synchronisation: The next step in the synchronisation process is finding the cor-

rect times on these frequencies to transmit the jamming signal. The time synchronisation

process is discussed considering only a single frequency, the time synchronisation process

can be repeated for each additional frequency found. The GSM system is divided into 8

timeslots, the first of these timeslots, denoted “timeslot 0” is usually used for the Control

Multi-frame, with the other seven timeslots being used to transmit traffic information.

The jammer is able to find timeslot 0 by searching for the FCCH (discussed in Section

2.1.4) and calculate the position of the relevant channel to jam based on the known GSM

transmission durations and equation (1). The transmitter would then have to calculate

the required transmission time based on distances from the original transmitter and the

original receiver.

 Related Research

In this section similar works are discussed which were the inspiration for this research.

Research involving the energy efficiency of jamming systems has been investigated in the

Chapter 2

21

past for a variety of different signal protocols. A variety of different methods have been

used to achieve these energy efficient systems.

In [30] Nguyen et al. proposed an energy efficient reactive jamming system for WiFi

(802.11g) and mobile WiMAX (802.16e) networks. The reactive jammer was designed

with the choice of different detection techniques such as high or low energy detection (to

indicate the start of transmission) as well as a cross correlation function to correlate with

known packet preambles (to ensure that it is legitimate packets being detected). Once a

legitimate packet is detected, the transmission chain is initialised, and a jamming wave-

form is transmitted. Three types of jamming waveforms are configured on the system, the

first being a pseudorandom white Gaussian noise signal at 25MHz, the second being a

repetitive replay of previously received samples, and the third being a chosen waveform

which can be streamed from the host machine. The reactive jamming system was imple-

mented on the FPGA on a USRP N210 to allow for a fast system response time, and

interfaced with a GNU Radio Companion application on the host machine. With 0.1ms

jamming duration on each detected packet, no packets were correctly received at the

receiver when the Signal to Noise Ratio (SNR) dropped below 15.94dB. For a jamming

duration of 0.01ms on each packet, no packets were correctly received after the SNR

dropped below 2.79dB at the receiver. The system was tested using a network bandwidth

measurement tool called iperf.

In [31] Acharya et al. also investigated energy efficient jamming methods for WiFi

networks and the focus of the investigation was on the 802.11b wireless network standard.

Various different jamming approaches are investigated and tested on a network simula-

tion software package called OPNET 10.0. There are three main categories of jamming

methodologies which are investigated: 1) Trivial Jamming, which is what is referred to in

this paper as Constant Jamming, wherein the jammer is always transmitting an interfer-

ing waveform. 2) Simple Periodic Jamming, which is referred to in this paper as Random

Jamming, in which the jammer transmits periodically for a predefined period of time, and

then stays quiet for a predefined period of time. 3) Intelligent Jamming, in which the

jammer is made protocol aware, and focusses on jamming specific control or data packets

to effectively stop network throughput. These three jamming methodologies are compared

according to their energy usage and the results are as follows: it is shown that for Constant

Jamming all communications are blocked although this is at a high energy cost. For

Periodic Jamming it is shown that as long as the period between successive jamming

Chapter 2

22

pulses is small enough, it can block all communication with an improved energy efficiency

of three to four times more than Constant Jamming, if the silence period is too long, some

packets may slip through without being corrupted. For Intelligent Jamming it is shown

that energy efficiency improves by a factor of up to five times, while the system is capable

of blocking all communication on the channel.

In [4] Wilhelm et al. investigate the ZigBee 802.15.4 wireless protocol’s resilience

against reactive jamming techniques. The jamming methodology focusses on attacking

the physical layer. The hardware used for this research was a USRP2 using the on-board

FPGA and two MICAz motes. Various causes of loss on the physical layer are analysed

and the theoretical influences of jamming each part is discussed, these include symbol

misdetection in which the Cyclic Redundancy Check (CRC) check fails from jamming

individual symbols, failed timing caused from interfering with preambles, frame synchro-

nisation from corrupting packet length fields, and corrupting the Automatic Gain Control

(AGC) to create clipping or cause very low transmit power. All of these cause the receiver

to be unable to detect packets correctly. Three different jamming waveforms are investi-

gated, these are Wideband Noise, Narrowband Noise and legitimate packets with varying

loads. The effectiveness of wideband noise is limited in this experiment due to the limited

transmission power of the USRP2. Single tone jamming proved the most effective as the

narrowband power caused the AGC to adjust quickly thus causing packet loss, another

cause is the jamming signal is detected as a second carrier frequency resulting in the phase

correlation process failing. Jamming with modulated signals did not perform as well as

the previous two waveforms, requiring the jammer gain to be three to four dB higher

before the throughput was reduced to zero. In this research they managed to get a reaction

time as little as 20μs.

In [18] Petrecca et al. similar control channel jamming is done to that in this research.

In the paper the effectiveness of jamming the Broadcast Control Channel (BCCH), the

Frequency Correction Channel (FCCH) and the Synchronisation Channel (SCH) is tested.

The simulations are done using a PHY layer simulator developed in MATLAB. All of

these jamming strategies are targeted against the mobile device’s synchronisation ability

with the base station, due to this all jamming strategies require an initial 5.296s burst to

cause coarse synchronisation on the channel, and after this the individual control channel

jamming begins. The FCCH jamming procedure blocked all communications requiring a

Chapter 2

23

SNR not greater than 6dB at the receiver, for the SCH jamming the effective jamming is

achieved with a SNR no greater than -9dB at the receiver. The BCCH jamming procedure

blocked all communications requiring a SNR not greater than -6dB.

 Conclusion

In this chapter the relevant literature required to complete this research is provided,

aiding the reader in properly understanding the work presented. In Section 2.1 the GSM

system is introduced and explained, in Section 2.2 the GSM channel coding schemes are

presented, focussing on the CCCH. In Section 2.3 various basic jammer implementations

are explored, discussions into what improvements have been made to these implementa-

tions, and recent similar works are discussed. In Section 3.1 the investigative approach

to this research is provided, with Section 3.2 giving details on each of the jamming meth-

odologies investigated.

Chapter 3

24

Research Methodology

This chapter describes in detail the methodology undertaken to complete the research,

each of the jamming procedures tested is discussed individually with the implementation

details of each provided.

 Investigative Approach

In this research we set out to answer the research question:

“How can we exploit the control channel forward error correction scheme of the GSM

system in order to minimize the number of jamming bits required to prevent communi-

cations on the channel?”

To answer this question, a simulated testing environment is created in which the pro-

posed jamming methodologies are tested. Each of the key components involved in the

simulation of this GSM control channel testing environment is presented in this section.

 Experimental Setup

To implement both the GSM CCCH forward error correction scheme and the different

jamming methodologies, the MATLAB simulation software is used on a Windows desktop

environment. In the simulations the forward error correction and time diversity techniques

present in the GSM system common control channel (CCCH) are implemented.

Due to this investigation being done on a bit level, the burst mapping procedure (see

Figure 2.2) is excluded from the simulation as it will have no effect on the outcome of the

research.

The final simulated system setup is shown in Figure 3.1.

Chapter 3

25

Figure 3.1: Simulated system data flow diagram

 Convolutional Encoder and Decoder

The convolutional code used in the GSM CCCH system is a ½ rate code with con-

straint length five. This code requires 228 input bits and results in 456 convolutionally

encoded bits at the output of the encoder, each made up of a combination of the current

input bit and up to four previous input bits. To implement the convolutional encoder in

MATLAB, the inbuilt convolutional encoder from the Communications System toolbox

is used [32]. The convolutional encoder takes in the 228 bits from the Fire encoder and

convolutionally encodes them according to the following two generator polynomials [24]:

 𝐺0(𝑑) = 𝑑4 + 𝑑3 + 1, (15)

 𝐺1(𝑑) = 𝑑4 + 𝑑3 + 𝑑 + 1. (16)

This process is illustrated in Figure 3.2.

Chapter 3

26

Figure 3.2: ½ Rate convolutional encoder block diagram with constraint length 5.

The decoder used is a Viterbi decoder which is also part of the Communications System

toolbox in MATLAB, it is configured with a traceback length of 25, soft decoding, zero

termination, and the same trellis structure as used for encoding. These parameters are

chosen in accordance with those used in the GSM CCCH to ensure the decoder perfor-

mance matches that of the real system.

 Fire Encoder and Decoder

The outer code used in the GSM forward error correction scheme is Fire code, this

code is used primarily for the purpose of error detection in the GSM system, and as such

allows the system to detect when there are errors which were not corrected by the con-

volutional decoding process. In the GSM system this Fire code is used for most of the

signalling channels and it is constructed from the following generator polynomial:

 𝐺(𝑥) = (𝑥23 + 1)(𝑥17 + 𝑥3 + 1). (17)

The Fire encoding and decoding procedures are outlined in Section 2.2.1.

 To implement the Fire encoder and decoder in MATLAB, no existing Communica-

tions System toolbox functions were available and as such the Fire encoder and decoder

were implemented manually. The encoder works by taking 184 data bits (one block) and

adding 40 parity bits to create a total of 224 encoded bits. This is done in a systematic

Chapter 3

27

manner which results in the data and the parity bits being separate parts of the encoded

message. In the GSM system this is done in such a way that the parity bits are first

followed by the data bits, resulting in 224 encoded bits being in the form of [parity:data]

as shown in Figure 3.3.

Figure 3.3: Fire code systematic encoding structure.

 Jamming System

To test the GSM CCCH forward error correction scheme, four jamming strategies are

implemented. These strategies are aimed at improving on current jamming methodologies

by combining the works done in [27] and [18]. In [18] Petracca et al. attempted to improve

on existing GSM jamming strategies by targeting only crucial synchronisation and control

data. In [27] Hussain et al. proposed that by taking into account the error correction

capabilities on a channel, the required jamming duration can be reduced while still causing

decoding failure at the receiver. In the GSM system, the CCCH is responsible for trans-

mitting the crucial setup information required for completing connection oriented pro-

cesses such as calls and SMS’s amd it's forward error correction scheme uses the convo-

lutional and Fire code discussed above.

Due to these methodologies targeting only the CCCH, and not the synchronisation

data, the mobile device should remain connected to the network with no signs of it being

jammed until the user attempts to make a call or SMS. However this is not the aim of

this research and is mentioned for the interest of the reader.

Each of these jamming strategies is focussed on exploiting different parts of the GSM

CCCH forward error correction scheme, the GSM system is tested as a complete system

as in practice. The jamming system is modified to accommodate this by processing each

of the jamming patterns before transmission. This allows for a more accurate representa-

tion of a real life jammer, and for a fair comparison to be made between each of the

jamming strategies as they are all tested against the same system. To achieve this, each

error pattern requires a different level of processing before being introduced onto the

channel, this is discussed individually for each method. Each of the jamming strategies

tested is briefly discussed below showing block diagrams of the systems implemented.

40 Parity Bits 184 Data Bits

Chapter 3

28

The first jamming strategy implemented is a random jamming approach, in which the

CCCH FEC scheme is tested with reference to the number of bits that are jammed in a

packet, irrespective of the location of these jammed bits. This is the most basic jamming

approach tested, exploiting only that the FEC scheme has error correction limits (dis-

cussed in Section 2.3.2). In this experiment the errors are introduced after the interleaving

process as they would be on the air, and as such requires no additional processing before

transmission.

Figure 3.4: Random and burst error jamming system data flow diagram.

The second jamming strategy implemented is a burst error approach, which is aimed

at targeting the weak error correction capability of the convolutional code when dealing

with lengthy error bursts. To ensure these bursts reach the convolutional code in complete

bursts as intended, the desired burst pattern is first interleaved with the same interleaving

Chapter 3

29

procedure as that used in the GSM system. This ensures the correct bits are corrupted

on the air, and results in the original jamming pattern being recovered after the deinter-

leaving procedure.

The block diagram for the jamming system implemented to test the random error and

burst error jamming techniques is shown in Figure 3.4.

The following two methodologies are designed with bit patterns targeted against the

Fire code error detection procedure. For these error patterns to reach the Fire decoder

unmodified, the error patterns are passed through the same convolutional encoder and

interleaver used in the GSM CCCH FEC scheme before being transmitted by the jammer.

Due to convolutional code being a linear block code it shares the linear property of block

codes in which the linear combination of any two valid codewords results in a third valid

codeword [20]. Therefore if we encode our error pattern with the same convolutional

encoder as that used in the GSM system, when we combine it with the transmitted mes-

sage by means of the XOR procedure, the resulting message at the receiver will also be a

valid codeword. Due to this, and the interleaver ensuring the correct bits are corrupt, the

convolutional decoder does not detect or attempt to correct these errors, and they are

decoded back to their original form before reaching the Fire decoder.

The third jamming strategy is designed with the following knowledge (discussed in

Section 2.2.1) of the GSM Fire decoder in mind: Firstly, the GSM Fire code is a strong

error detection code, capable of detecting all single burst errors under 40 bits in length.

The second is that the GSM Fire code is used only for error detection, and if an error is

detected by the Fire decoder at the receiver, the packet is discarded. This experiment is

aimed at finding an error pattern in the Fire code, which when convolutionally encoded,

minimises the number of bits requiring corruption by the jammer.

The fourth jamming strategy implemented is a custom jamming pattern aimed at tar-

geting a weakness in the Fire code error detection procedure. Due to the Fire code error

detection procedure involving a division by the generator polynomial used to define that

Fire code, if we create an error pattern in the transmitted message which mimics the

action of the original message being XOR’d with the generator polynomial (after decod-

ing), the fire code error detection procedure should be unable to detect this as an error in

the message (the reason for this is discussed in Section 2.2.1). This experiment is aimed

at minimising the number of jamming bits required to cease communication, but sacrifices

Chapter 3

30

the extent to which the number of jamming bits required is reduced, to provide the added

benefit of the receiver not detecting the presence of the errors.

The proposed jamming system data flow diagram for the third and fourth jamming

methodologies is shown in Figure 3.5.

Figure 3.5: Proposed jamming system data flow diagram.

 Jamming Methodologies

There are three different bit corruption approaches considered when testing the jam-

ming methodologies discussed below. Not all bit corruption approaches worked for all

jamming methodologies, but these are discussed individually. In this section a numerical

‘1’ or ‘0’ is used when referring to a binary bit value.

 Bit Corruption Techniques

Inverting Bits: Due to the nature of GMSK modulation, it is possible to replace specific

bits in the air with other ones by simply transmitting the desired bit at a higher power

and at the same time as the original undesired bit is transmitted. To be able to invert

the bits on the air however, a device is required which has a very fast processing speed

which can detect the original bit being transmitted and transmit the opposite (binary

inverse) bit in time for the existing bit to be overwritten. To simulate the bit inversion

in software, the error locations are marked with 1s in an otherwise zero array, and the

binary XOR function is used to introduce the errors into the message. The bit modifica-

tion diagram for this method can be seen in Figure 3.6.

Chapter 3

31

Figure 3.6: Bit modification diagram when inverting bits.

Writing 1s: For this part of the testing procedure, the error patterns are introduced by

replacing specific bits at specific locations with 1s. This type of jamming is realisable with

much cheaper hardware as it does not require the same level of processing speeds as

inverting the bits would require. This is due to the fact that it does not need to know

what the original bit is to overwrite it with a 1. To simulate replacing bits with 1s in

software, the error locations are marked with 1s in an otherwise zero array, and the binary

OR function is used to introduce the errors into the message. The bit modification dia-

gram for this method can be seen in Figure 3.7.

Figure 3.7: Bit modification diagram when writing 1s.

Writing 0s: Due to the fact that the information which is sent over the air in GSM is

a combination of modulated binary bits, the alternative to the low cost jamming method

of replacing bits with 1s is replacing bits with 0s. Again, because this doesn’t require that

the jammer knows what the original bit being transmitted is, it is able to overwrite the

bits with 0s without the use of expensive processing hardware. To simulate replacing bits

with 0s in software, the error locations are marked with 0s (with all other bits being 1),

and the binary AND function is used to introduce the errors into the message. The bit

modification diagram for this method can be seen in Figure 3.8.

Figure 3.8: Bit modification diagram when writing 0s.

Chapter 3

32

The above error corruption techniques are used when testing the four jamming meth-

odologies mentioned in Section 3.1.4. An in-depth discussion on their implementations is

provided in Section 3.2.3.

To assist the reader in understanding each of the jamming implementations to follow,

an example of a bit error propagating through the proposed system (shown in Figure 3.5)

is provided in Section 3.2.2. The proposed system is chosen for this example as it involves

all possible steps for the other jamming methodologies. In the sections to follow, the terms

“transmitted” is used to refer to the original legitimate message being transmitted and the

term “introduced” is used to represent one of the error messages being applied to the

original message through one of the bit corruption techniques above to result in the re-

ceived corrupted message. This process can be described as follows:

 𝑐𝑟(𝑥) = 𝑐𝑡(𝑥)+_ 𝑒𝑡(𝑥), (18)

where +_ represents the addition through one of the bit corruption techniques, 𝑐𝑟(𝑥) is

the received corrupted message, 𝑐𝑡(𝑥) represents the error free message before transmis-

sion on the channel and 𝑒𝑡(𝑥) represents the final error message to be introduced. The

received message 𝑐𝑟(𝑥) is then decoded as it would be on the GSM system (see Figure

3.1) resulting in the 184 bit message 𝑚𝑟(𝑥) at the receiver.

 Example of an Error Pattern Propagating Through the Proposed Jam-
ming System

Step 1: Creating the desired jamming pattern. This depends on the required effect at

the receiver, for the purpose of this example we will consider only one bit placed at bit

position one in the error message. The maximum length of this jamming pattern is equal

to the data length of 184 bits.

Step 2: The shifting of the message is only required for the fourth jamming strategy in

which the errors introduces are not detected, to ensure the errors occur at the desired bit

locations. The errors will pass through the convolutional and Fire decoder undetected,

and the location of the errors in the error message will corrupt those same bit locations

in the received message after the decoding process. This shift is achieved by prepending

Chapter 3

33

0s to the error message. When choosing a desired error location, it is important to re-

member that the Fire encoder results in 224 systematically encoded bits of which the first

40 are parity bits.

Step 3: Pad with 0s to reach a total of 228 bits, the last four 0s serve as a terminating

sequence for the convolutional encoder. The error pattern at this step of the process is

the required input for the convolutional encoder and is denoted as 𝑒𝑐(𝑥).

Step 4: The 228 bit 𝑒𝑐(𝑥) is fed into the convolutional encoder, the output of this is a

456 bit error pattern. The error pattern at this step of the process is the required input

for the interleaving process and is denoted as 𝑒𝑖(𝑥). Let it be noted that this is the point

in the process where the burst error jamming approach starts, as such the desired 456 bit

𝑒𝑖(𝑥) is created here and is not taken through any of the previous encoding steps for this

method.

Step 5: The 456 bits 𝑒𝑖(𝑥) is the second last step before the errors are introduced onto

the channel. To ensure the correct bits are corrupted on the air, 𝑒𝑖(𝑥) is fed through the

same interleaving process as that used in the GSM CCCH. The output of this step is a

456 bit interleaved error pattern. The error pattern at this step of the encoding process

is the final message before being introduced or “transmitted” on the channel and is denoted

as 𝑒𝑡(𝑥).

Step 6: The introduction of 𝑒𝑡(𝑥) on the channel involves one of the three bit-corrup-

tion techniques being applied to the original encoded message 𝑐𝑡(𝑥), resulting in the cor-

rupted message 𝑐𝑟(𝑥) at the receiver. Let it be noted that this is the point in the process

where the random error jamming approach starts, and as such the 456 bit 𝑒𝑡(𝑥) is created

here and is not taken through any of the previous encoding steps.

The above steps (or a subset of which) are used to process the error patterns for each

jamming methodology before being introduced. Each of the jamming methodology imple-

mentations are described in detail below using the same symbols as above to denote the

error messages at each stage of the process.

Chapter 3

34

 Random Error Locations

For this experiment, the errors are introduced after the interleaving process to simulate

random errors occurring on the channel. Due to the way in which this is done after the

Fire encoding step, there is no guarantee that the output from the convolutional decoder

won’t have errors in the parity check section of the Fire codeword. Each experiment runs

for error counts of one up until 456 errors are introduced, and a total of 10000 random

data streams are tested for each error count. The averages over the 10000 different data

streams are then taken as the final results for that error count.

Inverting Bits: For this implementation, a program was created in which the error

array 𝑒𝑡(𝑥) is originally filled with zero values, and then for each iteration, going from

one up to the maximum number of errors (456), errors are introduced at random locations

by placing 1s in 𝑒𝑡(𝑥) where the error is to be introduced into 𝑐𝑡(𝑥). For each iteration it

is enforced that the number of errors introduced is equal to the iteration number, for

example if a location is chosen that already includes an error, a new random location is

chosen until another error can be introduced. This error pattern, 𝑒𝑡(𝑥), is then XOR’d

with the message, 𝑐𝑡(𝑥), simulating the bit corruption on the air, and resulting in the

received error message 𝑐𝑟(𝑥).

Writing 1s: For this implementation the goal is to test the effectiveness of introducing

1s at random locations in the original transmitted message 𝑐𝑡(𝑥). To introduce 1s into

𝑐𝑡(𝑥), the same procedure is followed as that for inverting bits but instead of inverting

each bit by means of the XOR command, 1s are introduced by using the logical OR

command to OR the message 𝑐𝑡(𝑥) with the interleaved error message 𝑒𝑡(𝑥). Again this

is repeated for 10000 iterations for each error count, again from one up until 456 errors.

It is notable that the number of errors in the received message 𝑐𝑟(𝑥) is not equal to the

number of 1s in the introduced error message 𝑒𝑡(𝑥) as some 1s are written where a 1

already exists in 𝑐𝑡(𝑥).

Writing 0s: For this implementation, a similar procedure is followed as with the writing

1s simulation, but because we are writing 0s at specific locations, the error array 𝑒𝑡(𝑥) is

initially filled with 1s, and then 0s are placed at random locations where errors are to be

introduced, also starting with one and increasing up till 456. This is done in this way

Chapter 3

35

because when introducing 0s the AND operator is used, so all the 1s keep the existing

bits the same, while all the 0s write 0s at those locations. It is notable that in this imple-

mentation the same situation occurs as that in the writing 1s simulation where the num-

ber of corrupt bits in 𝑐𝑟(𝑥) is no longer equal to the number of 0s written by 𝑒𝑡(𝑥),

because we are writing specific bits now (0s), there is a probability that the position where

the 0 is written is in a position where a 0 already exists and thus no change is made to

the transmitted message 𝑐𝑡(𝑥). As this is a binary bit stream generated with random

values, this probability is approximately 50% for each zero introduced that it does not

corrupt a bit.

 Errors in Bursts

In this simulation the convolutional decoder is tested against burst errors. The burst

errors are introduced before the interleaving process to ensure they return to a burst after

being deinterleaved by the receiver. The errors are introduced in multiple burst sizes,

starting with a burst size of one and increasing until a burst size of 40 (depending on the

simulation). The experiment is repeated for each burst size with the location of each burst

being varied on each iteration, the bursts start at bit zero, and are shifted through each

possible location in 𝑒𝑖(𝑥) by increasing the bit number on which the burst starts by one.

Inverting Bits: For this implementation the errors are introduced in a burst fashion.

For this simulation in which the bits are inverted on the air, it follows the same procedure

as before in which the error array 𝑒𝑖(𝑥) is marked with consecutive 1s (depending on

burst size) in the desired locations then 𝑒𝑖(𝑥) is interleaved resulting in the error message

𝑒𝑡(𝑥) with errors in the appropriate locations where they are to be introduced into 𝑐𝑡(𝑥),

in this case where the bits are to be inverted. The errors are introduced into the trans-

mitted message by means of the logical XOR operation. This test is completed for a

variety of different burst lengths ranging from one up to seven and averaged over a total

of 10000 different random data streams per burst location for each burst length. The

burst length is chosen once per simulation. Only burst lengths one through to seven are

included as these were found to span the entire range of possible outcomes, increasing the

burst length beyond this point does not yield a different result.

Writing 1s: In this implementation the error patterns are introduced through the writ-

ing 1s bit corruption technique which means the error patterns arriving at the receiver

Chapter 3

36

are affected by the data in the original message. The procedure follows a similar procedure

as the inverting bits corruption technique in which the error array 𝑒𝑖(𝑥) is marked with

consecutive 1s (depending on burst size) in the desired location, this is then interleaved

resulting in the error message 𝑒𝑡(𝑥) with errors in the appropriate locations where they

are to be introduced into the transmitted message. The range of burst lengths tested for

this implementation is far greater than the inverting bits corruption technique, as the

transition between the decoder being able to correct all errors, and being unable to correct

any errors is much more gradual. Due to this the range of burst lengths tested is from

burst length one to burst length 40 and averaged over 10000 random data streams per

burst location for each burst length.

Writing 0s: In this implementation the errors are introduced using the writing 0s bit

corruption technique and thus cannot ensure a consistent error pattern is received. To

write 0s on the channel, the error array 𝑒𝑖(𝑥) is filled with ones, and then marked with

consecutive 0s depending on the location of the burst. To ensure the burst is reconstructed

by the deinterleaving process it is important that it is first interleaved with the GSM

CCCH interleaving procedure before being introduced onto the channel. The simulation

is run from a burst length of one to a burst length of 40, averaging the results over 10000

iterations per burst location for each burst length.

 Proposed Signal Jammer Implementation (Single Decoding Error).

For this test the goal is to find the error pattern 𝑒𝑐(𝑥) which produces the least number

of bits after the convolutional encoding process. Due to the GSM Fire decoder being able

to detect any single burst errors with a length less than 40 bits, any burst error shorter

than this remaining after the convolutional decoding process will be detected, and thus

the packet discarded. The convolutional encoding is the last process that adds redundancy

before transmission and as such the number of bits in the convolutionally encoded error

message 𝑒𝑖(𝑥) is equal to the number of jamming bits required.

Inverting Bits: For this methodology to take advantage of the linear property of the

convolutional code, allowing the error to propagate through the convolutional decoder

undetected at the receiver, it is required that the encoded error message 𝑒𝑖(𝑥) is inter-

leaved using the simulated GSM interleaver resulting in 𝑒𝑡(𝑥) and then introduced onto

the channel by means of the XOR procedure. The other two bit corruption techniques

Chapter 3

37

cannot provide a consistent error pattern at the receiver and as such are not explored for

this methodology. To create the desired error message, the error array 𝑒𝑐(𝑥) is first filled

with 0s, the convolutional encoder has a memory length of five, and as such, any errors

spaced more than five bits apart (errors with more than five consecutive bit positions

between them) will not overlap and will always result in an increase in convolutionally

encoded bits. Taking this into account this test is done by testing all possible combina-

tions of five error bits in 𝑒𝑐(𝑥), starting from ‘00000’ up until ‘11111’. This provides 32

(25) possible error combinations. These are introduced at all possible jamming locations

starting from bit one up until 220. Each error pattern is tested at each location in the

transmitted message. Due to the Fire decoder error detection procedure discarding a

packet if errors are detected, this strategy aims at minimising the number of jamming

bits required while ensuring an error is detected and the packet is discarded. The results

are averaged over the 220 different error locations for each error pattern.

 Proposed Signal Jammer Implementation (Generator Polynomial)

For this test the generator polynomial of the Fire code is used as the error pattern:

 𝑔(𝑥) = (𝑥23 + 1)(𝑥17 + 𝑥3 + 1) = (𝑥40 + 𝑥26 + 𝑥23 + 𝑥17 + 𝑥3 + 1). (19)

Before convolutionally encoding the error pattern it is first shifted right by 40 bits,

this is due to the Fire encoding being systematic, and so this shift moves the errors out

of the parity bits and into the message bits (see Figure 3.3). Once the error pattern is

shifted, it is then padded with 0s resulting in the 228 bit error message 𝑒𝑐(𝑥) as required

by the convolutional encoder. The 228 bit error pattern is then fed into the convolutional

encoder, resulting in a 456 bit encoded error pattern 𝑒𝑖(𝑥). This error pattern when con-

volutionally decoded results in the generator polynomial and thus should not be detected

by the Fire decoder as a decoding error. This error message is then interleaved and XOR’d

with the original encoded message 𝑐𝑡(𝑥), resulting in a 456 bit message with errors. It is

notable that due to the nature of the convolutional encoder and decoder, the error pattern

is message independent, and the convolutionally encoded 228 bit generator polynomial

results in the same 456 bit error pattern 𝑒𝑡(𝑥) each time. This is what allows us to sepa-

rate the jamming system from the GSM system until the last step before transmission

𝑐𝑡(𝑥) by replicating the GSM encoding and interleaving systems.

Chapter 3

38

The process is repeated to test the effects of introducing multiple successive instances

of this error pattern when creating 𝑒𝑐(𝑥). This is done by initially introducing just one

instance as described above, then on each iteration adding an additional generator poly-

nomial shifted right one bit from the previous iteration.

This method is the most custom tailored of the jamming techniques as it takes into

account the underlying control channel packet structure being jammed. In Section 2.1.3

it is discussed that for a mobile to make or receive calls it makes a channel request to the

network and then waits for an Immediate Assignment message in response, assigning the

mobile a dedicated channel. The Immediate Assignment message is identified by the mo-

bile through a Request Reference parameter in the Immediate Assignment message. The

goal of this jamming methodology is again to minimise the number of jamming bits re-

quired, although it provides the added benefit of remaining undetectable by the Fire

decoder and thus not being discarded by the receiver. This is done whilst still corrupting

the right bits to ensure communications cannot be made or received. To achieve this the

generator polynomial is again used to hide the presence of errors from the receiver.

 Conclusion

In this chapter the methodology used to complete this research and answer the research

question is provided. The overall system setup is seen in Figure 3.1 which is followed by

a short discussion on the implementation of each jamming methodology to be compared.

Chapter 4 presents the results of each of these tested methodologies separately, followed

by a comparison between all three systems, and a comparison with recent relevant re-

search.

Chapter 4

39

Results from Individual Jamming Methodologies

The following chapter describes the results from the jamming methodologies discussed

in Chapter 3. Each of the jamming methodologies is individually analysed, and then

compared according to the number of jamming bits each requires to cause communication

failure on the channel.

Communication failure, as defined in Section 1.2, is the inability for any further calls

or SMS’s to be made on the channel. In this research this is achieved in two ways, the

first is by ensuring that an error is detected at the receiver and thus the entire message

is discarded. The second is by corrupting connection critical information within the mes-

sage required by the MS for connection setup.

 Random Error Locations

This experiment is implemented to test the limits of the CCCH forward error correction

scheme against random errors on the channel. To consider this jamming methodology a

success, 100% of the messages received should be detected as corrupt and as such dis-

carded by the Fire decoder, i.e. no message should be received and correctly decoded at

the receiver. To present this the number of jamming bits introduced (during transmission)

vs the message error rate (MER) is graphed for each simulation. The MER is defined in

this research as the number of incorrect messages (after decoding) received, divided by

the total number of messages sent.

In this experiment, a varying number of errors are introduced at random locations in

the transmitted message 𝑐𝑡(𝑥). The number of errors introduced is increased by one on

each iteration up until the full message size of 456 bits is reached. The results for each

error count is averaged over 10000 iterations to ensure consistent results. The results are

analysed and discussed below.

Chapter 4

40

 Inverting Bits

Each 1 placed in the error message 𝑒𝑡(𝑥) ensures a bit is corrupted due to the XOR

operation. The MER vs the number of bits inverted can be seen in Figure 4.1.

Figure 4.1: Message error rate vs bits inverted.

When looking at Figure 4.1 it can be seen that the MER remains at 0 for the range of

errors introduced from one up until five (5/456 = 1.10% of the transmitted message

corrupted), this is where the initial limits of the code’s error correction capabilities are

reached. It then begins on a gradual incline during which only some of the received mes-

sages can be corrected, whereas the others are discarded by the receiver. This continues

until the MER reaches 1 at the point where the number of bits corrupted is at 53 (53/456

= 11.62% of the transmitted message corrupted). Due to the random nature of this jam-

ming approach, not all messages are successfully jammed, successful jamming is consid-

ered as when a MER of 1 is reached and remains consistent at this point for the rest of

the simulation. To achieve this, 53 bits are required to be corrupt in the jamming channel,

irrespective of their locations to result in 100% MER and effectively prevent communica-

tions on the channel. It can be noted for Figure 4.1 that the full simulation continues

until the point where the full 456 bits are introduced on the channel, this is not shown

here however as the MER remains stable at 1 for the remainder of the bits inverted. This

methodology achieves successful jamming requiring a total of 53 jamming bits to be in-

troduced on the channel.

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 …

M
es

sa
ge

 E
rr

o
r

R
at

e

Bits Inverted

Chapter 4

41

 Writing 1s

Due to the transmitted message being of a binary nature, there is a chance that a 1 is

introduced at a location where a 1 already exists, and thus the number of errors at the

receiver is not always equal to the number of 1s introduced. The MER vs the number of

1s introduced can be seen in Figure 4.2.

Figure 4.2: Message error rate vs 1s introduced.

Unlike in the previous test, the number of bits corrupted in the transmitted message

𝑐𝑡(𝑥) does not increase by one on each iteration when the number of errors written by

the error message 𝑒𝑡(𝑥) is increased by one. This is due to some of the 1s being introduced

where there are already 1s present. Due to the data being a random binary stream, this

occurs on average for 50% of the bits written. In this simulation it can be seen that the

initial number of bits written before message corruption is higher than that of the bit

inversion technique simulated above, leaving a MER of 0 until the number of 1s written

is equal to seven. From this point, as the number of errors introduced increases so does

the MER, until it plateaus at a MER of 1 at the point where 124 1s are written and an

average of 61.92 bits have been corrupt (62/456 = 13.60% of the transmitted message

corrupted). It is again notable that this simulation was run until the full 456 1s were

introduced, but the MER remained at 1 for the rest of the simulation and as such is not

shown. Successful jamming is achieved at the point where 124 1s are written, resulting in

62 bits being corrupt on the air. This is more than double the number of jamming bits

required by the inverting bits method.

0

0.2

0.4

0.6

0.8

1

1.2

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1 …

M
es

sa
ge

 E
rr

o
r

R
at

e

Ones Introduced

Chapter 4

42

 Writing 0s

Introducing 0s into binary data means that the position being written with a 0 may

already be a 0 and thus no change is made, again this has on average a 50% probability

for random binary data. While running this simulation an interesting trend in the number

of errors reported by the Fire code’s error detection mechanism was noticed. To show this

the probability of an error being detected by the Fire decoder vs the number of 0s written

is shown in Figure 4.3.

Figure 4.3: Probability of detection vs 0s written.

This simulation produced interesting results, once the probability of detection reached

its maximum of 1, it did not remain like this for the rest of the experiment as expected,

instead it dropped back down to zero before the end of the simulation. This is due to the

fact that the Fire decoder error detection method does not detect that there is an error

in the message if both the parity and message parts of the received codeword are all 0s

(as shown in Section 2.2.1). This is an interesting result, but would require for the entire

transmitted message to be overwritten with 0s, which requires all 456 bits to be corrupted,

and as such is not a viable solution.

The MER vs the number of 0s written is shown in Figure 4.4.

0

0.2

0.4

0.6

0.8

1

1.2

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

P
ro

b
ab

ili
ty

 o
f

D
et

ec
ti

o
n

Zeros Written

Chapter 4

43

Figure 4.4: Message erasure rate vs 0s written.

It can be seen that a similar trend is followed as that for the previous simulations in

this category in which the MER remains at 0 initially until the number of 0s written

reaches a specific value, in this case eight, and then continues on a smooth (but not linear)

incline until it reaches a MER of 1 when the number of 0s written is 122, at this point

the number of errors introduced is 60.94 (61/456 = 13.38% of the transmitted message

corrupted). Successful jamming in this writing zeroes simulation is achieved at the point

where 122 0s are written, resulting in 61 bits on average being corrupt on the air.

Each of the error corruption techniques is tested and it is found that the bit inversion

technique requires the least number of bits (53) to be written over the original message,

requiring less than half of that of the writing 0s (122 bits written) and writing 1s (124

bits written) approaches.

 Errors in Bursts

The simulation is run for varying burst lengths ranging from a minimum of one up

until a maximum of 40 (depending on bit corruption technique in use). For each iteration

the errors are introduced into 10000 random binary streams and the results averaged, so

as to provide accurate and consistent results. For each burst length the positioning of

the error burst is shifted across the entire transmitted message, starting at the first bit in

the random data stream and progressing through till the last bit it can without going

past the end of the message.

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

M
es

sa
ge

 E
rr

o
r

R
at

e

Zeros Written

Chapter 4

44

 Inverting Bits

This error corruption technique ensures an error occurs for each bit introduced. When

introducing errors in bursts, this approach can ensure that every bit in the burst is cor-

rupted. The two noteworthy burst error lengths achieving the best results in this simula-

tion are burst length four and burst length five. The MER vs the burst error location (the

location of the first bit in the burst error) for error lengths four and five are shown in

Figure 4.5 and Figure 4.6 respectively.

Figure 4.5: Message error rate vs burst error location for error length 4.

The reason for the choice of burst error lengths four and five is that combined they

cover the entire transition between the decoder being able to correctly decode all of the

received messages, and the decoder being unable to correctly decode any of the received

messages. In Figure 4.5 the results for burst error length four are shown, this is the first

point in which the decoder starts being unable to correctly decode all received messages.

An interesting result occurs from this burst error length due to the convolutional encoder

using two different generator polynomials to encode the data on even and odd bit num-

bers. This results in even and odd bit numbers each being encoded and decoded with a

different bit combination (see Figure 2.3). Depending on the bit combination of each

encoded bit a different outcome from the code’s error correcting capability is achieved

depending on whether the burst error occurs starting on an even or an odd bit number.

When looking at Figure 4.5 the following can be said: When the burst errors first bit is

positioned on an even bit number the decoder is able to correct all the received messages

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 …

M
es

sa
ge

 E
rr

o
r

R
at

e

Burst Error Location

Chapter 4

45

without errors irrespective of the message being sent. When the burst error occurs on an

odd bit number the decoder is unable to decode any of the received messages again with-

out influence from the data in the message being sent. An exception to this occurs for

burst error locations one through to five where the decoder is always able to correctly

decode all received messages. Therefore any error pattern which results in a burst error

of length four after the deinterleaving process is capable of effectively jamming the chan-

nel as long as the resulting burst is positioned on any odd bit number greater than five.

Therefore this method requires a total of four bits to be transmitted to cease communi-

cation on the channel.

The next burst error length discussed is burst error length five. In Figure 4.6 the MER

vs the burst error location is graphed for error length five.

Figure 4.6: Message error rate vs burst error location for error length 5.

When analysing Figure 4.6, its apparent that it follows a similar trend to that of Figure

4.5 in which the MER displays an alternating behaviour up until the burst error location

reaches bit five, then a consistent behaviour till the end. For burst error length five the

trend in the MER for starting positions one up until five are consistent with the results

found in the previous simulation for burst error length four in which burst errors starting

on the even bit numbers are decoded correctly whilst burst errors starting on odd bit

numbers are decoded incorrectly. In this simulation the MER alternated between zero

and one for even and odd burst starting locations from one up until five, then remained

stable at one for the remainder of the error locations from bit six until bit 456. For the

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 …

M
es

sa
ge

 E
rr

o
r

R
at

e

Burst Error Location

Message Error Rate vs Burst Error Location (Error Length 5)

Chapter 4

46

burst error of length five, successful jamming is achieved by ensuring the starting bit

position of the error burst is greater than five, or lies on any of the even bit numbers in

the received message after the deinterleaving process. When comparing this to a burst

length of four, the longer error burst provides more possible jamming patterns, while the

shorter error burst requires less jamming bits at the cost of having a smaller variety of

possible jamming patterns.

By using a burst error of length four its possible to effectively ensure that no messages

are decoded correctly at the receiver if the four jamming bits are correctly positioned so

that the first bit of the resulting error burst lies on an odd bit position greater than bit

five in the transmitted message.

 Writing 1s

This error corruption technique no longer ensures that an error occurs at each location

where a jamming bit is transmitted. Due to this technique writing 1s irrespective of the

original bit being transmitted, there is no guarantee that a 1 won’t be written where there

is already a 1 present in the message. This means that even though the jamming patterns

transmitted are still full bursts the resulting error pattern in the received message cannot

be guaranteed. The experiment is run for increasing burst error lengths until an MER of

1 is consistently achieved at the receiver.

Due to the inconsistent nature of the effects of this bit corruption technique, the num-

ber of jamming bits required is much higher than that of the bit inversion technique with

a much slower transition between the initial MER of 0 and 1 resulting in almost constant

MER per burst length. To effectively show this transition the results are averaged for

each burst length and the MER vs the burst length for the writing 1s bit corruption

technique is shown in Figure 4.7.

Chapter 4

47

Figure 4.7: Message error rate vs burst length (1s).

When comparing these results to the ones obtained when using bit inversion as the bit

corruption technique, it is immediately obvious that the results are highly influenced by

the data being transmitted on the channel. This can be seen in Figure 4.7 where the slope

of the MER increases in a nonlinear fashion, as the number of bits being transmitted

(burst length) is increased, the number of messages arriving correctly at the receiver

decreases. This slope has a steep incline, and then levels off tending very slowly towards

an MER of 1, eventually reaching a consistent MER of 1 at a burst length of 37. Even

though the burst length required before a consistent MER is reached is much higher than

that of the bit inversion corruption technique, it is notable that the MER has already

reached 0.99 at a burst length of 21. Therefore successful jamming is achieved at a burst

length of 37 bits.

 Writing 0s

As with the writing 1s bit corruption technique for burst errors, the writing 0s bit

corruption technique is again unable to ensure a consistent error pattern is achieved in

the received message. As a result of this, a similar trend occurs where the transition

between an MER of 0 and 1 happens gradually over many error burst lengths, without

any significant variation per burst. To account for this the results are averaged per burst

length and the average MER vs the burst length is shown in Figure 4.8.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

M
es

sa
ge

 E
rr

o
r

R
at

e

Burst Length

Chapter 4

48

Figure 4.8: Message error rate vs burst length (0s)

When analysing the results shown in Figure 4.8 it is seen that the curve is almost

identical to that shown in Figure 4.7 where the bits being written are 1s. The MER for

this simulation again reached an MER of 0.99 at a burst length of 21 bits, and reached a

stable MER of 1 at a burst length of 37 bits. Therefore this jamming methodology requires

a total of 37 jamming bits to be introduced to cause communication failure on the channel.

 Proposed Signal Jammer Implementations

The two proposed signal jammer designs below both take advantage of the linear prop-

erty of the convolutional code which is used in the GSM CCCH system. This property

allows for error patterns to be created capable of bypassing the Viterbi decoder without

the errors being detected or corrected by the decoder (discussed in Section 3.1.4). The

advantage to this is that error patterns can be created which target weaknesses in the

Fire code error detection procedure, as this is where the errors will first be detected. Due

to the strict requirements of these error patterns arriving in the correct form at the re-

ceiver, only the bit inversion bit corruption technique is applicable for these simulations

as it can ensure a consistent error pattern is achieved in the received message.

 Single Decoding Error

The single decoding error proposed jamming approach is one which takes advantage of

the way in which the GSM system handles errors in the received message. The name of

this experiment was chosen as such as the initial goal was to try reducing the required

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

M
es

sa
ge

 E
rr

o
r

R
at

e

Burst Length

Chapter 4

49

jamming bits to only one bit. The first step in error control is the Viterbi decoder which

checks for and attempts to correct errors in the received message, the second step is the

Fire decoder which then checks for any remaining errors present in the received message,

if any remaining error is found, instead of attempting to correct the errors like the Viterbi

decoder does, the message is discarded by the Fire decoder which then returns a decoding

failure. This approach aims to minimise the number of jamming bits required by creating

error patterns which pass through the Viterbi decoder undetected, but are then detected

at the next step by the Fire decoder causing the message to be discarded. By doing this

and using the bit inversion corruption technique, the jamming system is no longer required

to beat the error correction capabilities of the GSM convolutional code, but is instead

only required to use error patterns which are valid codewords of the convolutional code,

so that these errors traverse through the Viterbi decoder undetected but cause decoding

failure at the Fire decoder. To ensure the error patterns introduced are valid codewords

after interleaving, the error patterns are passed through the replica GSM convolutional

encoder and interleaver and the resulting bits are then introduced onto the channel. The

resulting number of bits after convolutional encoding is equal to the number of jamming

bits required. To test all possible combinations of five bits (the reason for the choice of

five bits is discussed in Section 3.2.5), the error pattern for each iteration is set equal to

the binary representation of that iteration number with the most significant bit first,

starting at sequence number zero and progressing through to sequence number 31. For

example: error sequence number five has the error pattern ‘00101’. The number of jam-

ming bits required (after encoding the error sequence) vs the error sequence number is

shown in Figure 4.9.

Chapter 4

50

Figure 4.9: Jamming bits required vs error sequence number.

Due to the error pattern bypassing the convolutional decoder undetected and then

being detected by the Fire decoder, the location of the error is no longer a concern and

the error is detected irrespective of its location. To test this the errors were shifted through

all possible locations and the results averaged. A line is drawn through the error sequence

numbers which minimize the number of jamming bits required. The minimum number of

jamming bits required to ensure at least one error is present at the Fire decoder is seven

bits. There are multiple error sequence numbers on which this occurs, and any one of

which can be chosen to produce this result, irrespective of the location of the error in the

message.

Therefore to effectively cease communication on the channel, this jamming approach

requires a minimum of seven jamming bits to be transmitted on the channel.

 Generator Polynomial

In all the jamming strategies above the jammer relies on the Fire decoder at the re-

ceiver detecting an error and then discarding the message. In this jamming strategy we

propose an alternative method of exploiting the GSM Fire decoder, one which again ex-

ploits the linear property of this code. When looking at the above example we can see

that it is possible to hide the presence of errors from the Viterbi decoder by using a valid

codeword from the GSM convolutional code as an error pattern. In this approach we

take the same idea and extend it further to include the Fire decoder, by providing an

error pattern which is both a valid convolutional codeword, and when decoded results in

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Ja
m

m
in

g
B

it
s

R
eq

u
ir

ed

Error Sequence Number

Jamming Bits Required vs Error Sequence Number

Jamming Bits

Min Value

Chapter 4

51

a valid Fire codeword (in this case the generator polynomial used in the construction of

the Fire code), the presence of these errors can be hidden completely from the receiver.

If the presence of these errors is hidden from the receiver however, the received message

will not be discarded by the Fire decoder and as such it is of crucial importance that the

errors are introduced in locations which contain information critical to the user’s ability

to successfully communicate on the channel.

This experiment tests the effects of using the generator polynomial in the creation of

the error pattern and what effect introducing multiple of these error patterns would have

on the original message. The simulation starts with only one generator polynomial written

in 𝑒𝑐(𝑥) aligned with its first bit to be written at bit location 41, and then on each itera-

tion writes an additional generator polynomial at the next sequential bit location, so in

the second iteration two generator polynomials will be written aligned with their first bits

at location 41 and 42 in 𝑒𝑐(𝑥). The initial shift to bit location 41 is to move the errors

out of the parity section and into the data section of the received message (see Figure

3.3). On each iteration the number of sequential generator polynomials written is equal

to the iteration number. An alternate method of introducing the polynomials is also

tested in which one generator polynomial has a fixed location and the other is shifted

through the message, combining them in this fashion always results in an increased num-

ber of required jamming bits and as such the results are not discussed. The error patterns

are created before the convolutional encoding and interleaving stage, and as such the

error locations refer to the location of the first bit of the generator polynomial written in

𝑒𝑐(𝑥). In Figure 4.10 the last error location on the horizontal axis refers to the location

of the last generator polynomial written, e.g. a last error location of 43 means that gen-

erator polynomials are written starting at bit numbers 41,42 and 43 in 𝑒𝑐(𝑥).

Chapter 4

52

Figure 4.10: Number of bits in error vs last error location.

In Figure 4.10 it is seen that by introducing multiple generator polynomial error pat-

terns the number of undetected errors introduced can be increased, however this comes

at an increased cost, as the number of jamming bits required generally increases with it.

An exception to this occurs however at the point where three consecutive generator pol-

ynomials are used as the error pattern, at this point the number of jamming bits required

returns back to its initial value of 30, but the number of undetected errors introduced

does the opposite and increases from its initial value of six bits to 18 bits. This means

that triple the amount of bit errors can be introduced without requiring an increased

number of jamming bits to be transmitted. This is higher than the previous results but

provides the advantage of not being detected by the receivers forward error correction.

Therefore this jamming strategy requires a minimum of 30 bits to be written to ensure

the errors introduced are not detected by the receiver, depending on the combination of

these 30 bits they result in a total of either six or 18 corrupt bits in the received message.

The receiver is unable to detect these errors and will not discard the received message, it

is due to this that the location of the introduced errors is of crucial importance to the

success of this jamming strategy.

0

10

20

30

40

50

60

70

4
1

4
7

5
3

5
9

6
5

7
1

7
7

8
3

8
9

9
5

1
0

1

1
0

7

1
1

3

1
1

9

1
2

5

1
3

1

1
3

7

1
4

3

1
4

9

1
5

5

1
6

1

1
6

7

1
7

3

1
7

9

N
u

m
b

er
 o

f
B

it
s

in
 E

rr
o

r

Last Error Location

flipped bits

undetected errors

Chapter 4

53

To this end the following strategy is explored: From the results above it can be seen

that it is possible to insert errors in such a way that the receiver is unable to detect the

presence of these errors. It can also be seen that the minimum number of jamming bits

required to avoid detection is 30, which can result in either six or 18 undetectable errors

after the decoding process. These six errors are not sequential but are spread over a total

of 41 bits (43 bits for 18 errors), they are however consistent and thus can be placed at

specific locations depending on the required error locations. As discussed in Section 2.1.3

the Request Reference Information Element is a 3 byte long field (occupying bit numbers

80-103) that is responsible for identifying the Immediate Assignment message to the mo-

bile subscriber, without this the mobile device has no way of identifying that it is the

intended recipient of the Immediate Assignment message, and thus does not know to

continue with the connection setup. The field before it which is also 3 bytes long occupies

bit numbers 56-79 and contains the Packet Channel Description. The Packet Channel

Description is also required for successful connection setup, and contains information such

as: on which channel the connection setup will continue, the type of channel, and whether

frequency hopping is in use. Due to the errors created by the generator polynomial being

spread over a span of 41 bits it is chosen that the errors are spread between the Request

Reference and Packet Channel Description Information Elements. The possible error po-

sitions for the six and 18 error jamming approaches are shown in Figure 4.11 and Figure

4.12, with a summary of the damage done in each position shown in Table 4.1 and Table

4.2 respectively.

Figure 4.11: Positioning of 6 error bits in Paging message.

When using only a single generator polynomial for the error, there are eight possible

locations it can be placed between bit 56 and bit 103. Each error position results in

different parts of the message being corrupt to different extents, the breakdown of which

is shown in Table 4.1.

Bit Number 56 61 64 67 68 70 80 88 93 99

Position #1 X X X X X X

Position #2 X X X X X X

Position #3 X X X X X X

Position #4 X X X X X X

Position #5 X X X X X X

Position #6 X X X X X X

Position #7 X X X X X X

Position #8 X X X X X X

103

Chapter 4

54

Table 4.1: The number of corrupt bits in each Immediate Assignment information ele-
ment per error location (6 errors)

 Corrupt Bits per Error Location (bits)

Key Description #1 #2 #3 #4 #5 #6 #7 #8

 Channel Type 2 2 1 1 1 0 0 0

 Timeslot 0 0 1 1 1 1 1 1

 Training Sequence 0 0 0 0 0 1 1 1

 Hopping Channel 0 0 0 0 0 0 0 0

 Spare/MAIO 0 0 0 0 0 0 0 0

 ARFCN’s/HSN 2 1 1 1 1 1 1 1

 Random Access Information 1 2 2 2 2 2 1 1

 T1’ 0 0 0 0 0 0 1 1

 T3 1 1 1 0 0 0 0 0

 T2 0 0 0 1 1 1 1 1

When analysing the above jamming pattern locations the goal is to ensure that errors

are introduced in locations ensuring critical connection setup information is corrupt by

the jammer. Due to the number of required jamming bits being a constant, only the

locations of the resulting error positions can be varied, with all of the possible positions

above corrupting bits in the Random Access Information any one will result in successful

jamming. As this approach is directed towards minimising required jamming bits with

reduced detectability the location of the jamming pattern is chosen in such a way as to

alter values which are least likely to leave their acceptable ranges (incorrect but valid),

thus limiting the possible number of invalid values detected by the receiver. Jamming

strategy #6 is chosen as the best location to achieve this goal as it maximises damage in

Random Access Information, and doesn’t affect channel type.

The results when using three consecutive generator polynomials as an error pattern are

shown in Figure 4.12, and the number of corrupt bits per information element is shown

in Table 4.2.

Figure 4.12: Positioning of 18 error bits in Paging Message

Bit Number 56 61 64 67 68 70 80 88 93 99

Position #1 X X X X X X X X X X X X X X X X X X

Position #2 X X X X X X X X X X X X X X X X X X

Position #3 X X X X X X X X X X X X X X X X X X

Position #4 X X X X X X X X X X X X X X X X X X

Position #5 X X X X X X X X X X X X X X X X X X

Position #6 X X X X X X X X X X X X X X X X X X

103

Chapter 4

55

Table 4.2: The number of corrupt bits in each Immediate Assignment information ele-
ment per error location (18 errors)

 Corrupt Bits per Error Location (bits)

Key Description #1 #2 #3 #4 #5 #6

 Channel Type 5 4 3 2 1 0

 Timeslot 1 2 3 3 3 3

 Training Sequence 0 0 0 1 2 3

 Hopping Channel 0 0 0 0 0 0

 Spare/MAIO 0 0 0 0 0 0

 ARFCN’s/HSN 4 3 3 3 3 2

 Random Access Information 5 6 6 6 5 5

 T1’ 0 0 0 0 1 2

 T3 3 2 1 0 0 0

 T2 0 1 2 3 3 3

For the simulation with 18 corrupt bits, each of the different possible error positions

still ensures the Random Access Information is corrupt, and as such the choice of any of

the above locations results in successful jamming. Therefore this jamming system can be

designed for either introducing six or 18 undetectable errors after decoding, and requires

30 jamming bits to be transmitted on the channel.

This jamming approach is capable of effectively ceasing communication on the channel

requiring a total of 30 jamming bits to be transmitted.

 Evaluation and Comparison of All Jamming Methodologies

Up to this point this chapter has explored each of the jamming methodologies simula-

tion results individually and provided a discussion on each methodology’s performance

such as where each system reaches its effective jamming capability. In each of the tests

the goal is to minimize the number of jamming bits required, in this section the results

from all jamming strategies are contrasted providing a side by side comparison of the

minimum number of jamming bits required for each.

Note, the following analysis is made with respect to CCCH jamming only, the CCCH

packets take up 36 of the total 51 packets (36/51 = 70.59%) to be transmitted on timeslot

0 (see Figure 2.1), and thus common control channel jamming already offers an improve-

ment of 29.41% over conventional always on methods (when considering only timeslot 0).

Due to this investigation focussing on CCCH jamming, instead of using always on jam-

ming as a baseline of comparison, the baseline used for comparison is an always on version

Chapter 4

56

of a CCCH jammer which we denote CCCHA jamming and define as a jammer which

transmits for all 456 information bits in every group of CCCH bursts. The comparison

below is done with respect to a 456 bit CCCH message.

The minimum number of jamming bits required is shown for each of the jamming

methodologies and bit corruption techniques in Table 4.3.

Table 4.3: Minimum number of jamming bits required for all jamming methodologies
and bit corruption techniques.

Jamming Methodology
Bit Corruption

Technique

Jamming Bits
Required

(bits)

Improvement over
CCCHA jamming

(%)

Random Error Locations

Inverting Bits 53 88.38

Writing Ones 124 72.81

Writing Zeros 122 73.25

Errors in Bursts

Inverting Bits 4 99.12

Writing Ones 37 91.89

Writing Zeros 37 91.89

Single Decoding Error Inverting Bits 7 98.46

Generator Polynomial Inverting Bits 30 93.42

Minimum bits Inverting Bits 4 99.12

Maximum bits Inverting Bits 124 72.81

When comparing the above results it is immediately apparent that the use of different

bit corruption techniques significantly impacts the number of jamming bits required to

cease communication on the channel. It is also apparent that by taking the parameters

of the GSM CCCH into consideration when designing a jamming scheme, the number of

required jamming bits can be greatly reduced. The inverting bits corruption technique

significantly outperforms the other two bit corruption techniques as it can ensure the

location of the errors in the received messages are consistent. To do this the inverting bits

corruption technique requires significantly more advanced and expensive hardware,

whereas the two other bit corruption techniques can be implemented on basic and inex-

Chapter 4

57

pensive equipment, as they do not have the same strict processing requirements. There-

fore, for a fair comparison to be made between the jamming systems, the results are

grouped and compared according to the bit corruption technique in use.

 Inverting Bits

The inverting bits corruption technique is used in all four of the jamming methodolo-

gies tested as it is the only bit corruption technique capable of ensuring that each bit

introduced results in an error at that location in the received message, and therefore being

able to ensure a consistent error pattern at the receiver. The first methodology to be

discussed is the random error locations methodology in which a predefined number of

jamming bits are written at random locations in the transmitted message. This is the

most basic jamming approach implemented where the only knowledge the jammer has of

the system is the positions of the GSM CCCH packets. This methodology requires the

highest number of jamming bits to cease communication, but still shows an improvement

of 88% over an always on CCCHA jammer. The second methodology to be discussed is

the burst error jamming approach, which takes into account both the positions of the

GSM CCCH packets as well as the interleaving procedure in use. By designing error

patterns which are known to result in bursts after the deinterleaving process it allows for

the number of jamming bits required to be reduced from the 53 bits required in the

random approach, to only four (properly positioned) bits using the burst error approach

(which is 7.55% of the jamming bits required in the random jamming approach). This

shows that by increasing the knowledge of the protocol in use we can significantly reduce

the number of jamming bits required to achieve successful jamming. The next methodol-

ogy to be discussed is the proposed single decoding error approach, in which the system

takes into account the error correction encoding procedures used on the channel. By

designing the error pattern to bypass the convolutional decoder undetected targeting the

Fire code, the minimum number of jamming bits required can be reduced to only seven

bits (13.21% of the bits required by the random jamming approach). The last jamming

methodology to be discussed is the proposed generator polynomial approach in which we

attempt to minimise the number of jamming bits required to cease communication on the

channel, while hiding the presence of the errors at the receiver. This is provided as an

alternate solution to minimizing the number of jamming bits required as it reduces the

chances of the jammer being detected by creating jamming patterns which do not cause

constant decoding errors at the receiver. In this jamming approach we are able to effective

Chapter 4

58

cease communication requiring only 30 bits to be transmitted (56.6% of the bits required

for random jamming approach).

Both the burst error and single decoding error tests produced significant reductions

over CCCHA jamming in the number of transmitted jamming bits required with the burst

error approach requiring a minimum of four jamming bits to effectively cease communi-

cation on the channel. This is an improvement of 99.12% over CCCHA jamming.

 Writing 1s

The second bit corruption technique tested involves replacing the bits on the air with

1s irrespective of the original bit being transmitted. This is provided as a more viable

economical solution as it can be achieved without the need for expensive hardware. When

using this bit corruption technique to jam the channel the random error location jamming

approach again requires the highest number of transmitted jamming bits requiring 124 1s

to be written. The burst error jamming approach is able to improve on this providing

effective jamming requiring only 37 jamming bits to be introduced. This is only 29% of

the required bits for random jamming, and a 91.89% improvement over CCCHA jamming.

In a real life situation, depending on how strict the requirements of the jamming system

are, this approach reached 99% MER requiring only 21 jamming bits to be introduced.

 Writing 0s

The third bit corruption technique tested is a variation of the writing 1s bit corruption

technique in which the errors introduced are introduced by replacing the original bit with

a 0. The results are very similar to those achieved with the writing 1s approach with the

two results converging as the number of iterations over which the results are average is

increased. When averaging 10000 iterations the random error location jamming approach

achieved successful jamming while writing 0s requiring 122 jamming bits to be introduced,

this is two bits less than what is required for the writing 1s approach. For the burst error

approach the error introduced were less random and as such the number of jamming bits

required converged to a stable 37 bits for both the writing 0s and writing 1s bit corruption

techniques.

 Comparison of Jamming Strategies Against Previous Research Done.

In this research various different jamming strategies are discussed, this chapter covers

all the tests that are done for this research on intelligent CCCH jamming strategies which

take into account the forward error correction scheme in use, this section compares the

Chapter 4

59

results obtained above to research done prior to this point on intelligent signal jamming.

The first paragraph outlines the results found in literature, whereas the second provides

the comparison with this research.

The results achieved in this paper are compared to a similar paper by Petracca et al.

in [18], in which three jamming procedures are tested also focussed on the attacking the

GSM control channel. The work focusses on jamming the synchronisation control chan-

nels, let it be noted that the initial jamming time of 5.296s is left out intentionally, this

is so a fair comparison can be made between the two systems, as this a representation of

the continuous usage requirements. The three procedures investigated are FCCH jam-

ming, SCH jamming, and BCCH jamming. Due to this paper focussing on SNR in the

presence of AWGN noise, the required jamming times for comparison are calculated as-

suming a jammer which always transmits for the full duration of each of those channels.

The FCCH jamming procedure blocked all communications requiring 2.89ms jamming

time per 51 frame multi-frame (235.4ms), the same as that for the SCH jamming. BCCH

jamming only required 2.31ms per 51 frame multi-frame. As BCCH jamming requires the

shortest jamming time it will be used as the basis of comparison.

Using (1) the time required for each of the jamming methodologies tested in this paper

can be calculated. Due to the testing being done on a bit level, this is only done so a

comparison can be made. The minimized number of jamming bits required for the bit

inversion technique is four bits per CCCH group, which requires a transmission time of

0.13ms (5.63% of the time required for BCCH jamming) per 51 frame multi-frame. In the

writing 1s approach, the minimized number of jamming bits required is 37 bits (same as

that for the writing 0s approach), which requires a transmission time of 1.23ms (53.25%

of the time required for BCCH jamming) per 51 frame multi-frame.

This system does have limitations however and is unable to block calls that have al-

ready been connected, so as with in this paper it can be achieved with an additional initial

constant jamming duration of 5.296s.

Chapter 5

60

Conclusion

 Research Summary

In this research the following question is asked: “How can we exploit the control channel

forward error correction scheme of the GSM system to minimize the number of jamming

bits required to prevent communications on the channel?”. In this dissertation the research

undertaken to answering this question is discussed. An in depth literature review is done

into the commonly used jamming methodologies, as well as what research has been done

thus far to improve on these methodologies. This is followed by an investigation into the

GSM protocol, providing insight into important operations occurring in the data link

layer for control channels, including the time diversity and error control coding tech-

niques. The research methodology followed is outlined in Chapter 3 which describes in

detail each of the jamming methodologies which were tested in the research as well as the

software used for the simulations. The results of these simulations are presented in Chap-

ter 4, where the results from each jamming methodology is first individually analysed,

and then compared and contrasted against each of the other jamming strategies and

finally against previous work done in the same field of research.

 Achievements

In attempt to minimise the number of jamming bits required to prevent communica-

tions by exploiting the GSM control channel forward error correction scheme, four jam-

ming methodologies are presented. The first methodology presented in which errors are

introduced at random locations in the message is the most trivial jamming approach, as

it tests the control channel FEC scheme without the use of custom error patterns. Each

proceeding methodology aims to expand on this by attempting to exploit different com-

ponents of the forward error correction scheme, this is done by using custom error pat-

terns. Three bit corruption techniques are also tested which involves 1) inverting of bits

on the air, 2) the writing of 1s and 3) the writing of 0s, the bit inversion technique

significantly outperforms the other two techniques as it can ensure consistent error pat-

terns at the receiver. By exploiting different components of the control channel FEC

Chapter 5

61

scheme each of the jamming methodologies is capable of significantly reducing the number

of jamming bits required to prevent communication. The methodology for which the

number of jamming bits required is effectively minimised is the second jamming method-

ology in which the error patterns result in burst errors after decoding at the receiver, this

jamming methodology requires only four jamming bits to be transmitted per CCCH block

of 456 information bits, an improvement of 99.12% over an always on CCCH approach.

The other methodologies tested also provided significant improvements over an always

on jammer and all methodologies showed improvements over another recent control chan-

nel jamming strategy proposed in [18].

 Conclusion

In this research we propose and explore four different jamming methodologies which

exploit different parts of the control channel forward error correction scheme in use by

the GSM system. In each case this is done in attempt to minimize the number of jamming

bits required to prevent communications on the channel. Each methodology explored is

capable of significantly reducing the number of jamming bits required, with the “errors in

bursts” jamming approach effectively minimizing the number of jamming bits required to

only four bits per 456 bit CCCH message.

 Recommendations for Possible Future Work

For future works recommendations include research into more efficient methods of

jamming current calls, without requiring the initial 5.296s constant jamming time to end

current connections. Research can also be done into methods of making the jammer more

specialised by targeting specific information elements, so it can target specific users, or

allow specific numbers to be called such as emergency services.

62

References

[1] D. Chambers, “Mobile Network Statistics for 2016,” ThinkSmallCell, 18 02 2016.

[Online]. Available: https://www.thinksmallcell.com/Opinion/mobile-network-

statistics-for-2016.html. [Accessed 15 01 2017].

[2] C. Miller, “Cell Phone Bombs,” Cgynus Law Enforcement Group, 13 12 2006. [Online].

Available: http://www.officer.com/article/10250461/cell-phone-bombs. [Accessed

30 08 2015].

[3] A. Hussain and A. Saqib, “Protocol Aware Shot-Noise based Radio Frequency Jamming

Method in 802.11 Networks,” in Wireless and Optical Communications Networks

(WOCN), Paris, 2011.

[4] M. Wilhelm, I. Martinovic, J. B. Schmitt and V. Lenders, “Short Paper: Reactive

Jamming in Wireless Networks How Realistic is the Threat?,” in WiSec’11, Hamburg,

Germany., 2011.

[5] D. Schneider, “The silence of the cellphones,” Spectrum IEEE, vol. 46, no. 4, p. 14, 2009.

[6] D. Thuente and M. Acharya, “Intelligent Jamming in Wireless Networks with

Applications to 802.11b and Other Networks,” in MILCOM, Washington D.C., 2006.

[7] J. A. S. G. Z. Anthony D. Wood, “DEEJAM: Defeating Energy-Efficient Jamming in IEEE

802.15.4-based Wireless Networks,” Department of Computer Science, University of

Virginia.

[8] A. Brand and H. Aghvami, “Multiple Access Protocols for Mobile Communications,” in

GPRS, UMTS and Beyond, England, John Wiley & Sons, Ltd, 2002, pp. 107,108.

63

[9] G. Association, “Bried History of GSM & the GSMA,” GSM Association, [Online].

Available: http://www.gsma.com/aboutus/history. [Accessed 26 08 2015].

[10] E. T. S. I. “GSM Technical Specification 05.05,” ETSI, 1996.

[11] Shri, “GSM: Physical & logical Channels,” Learn Telecom, 01 08 2011. [Online].

Available: http://learntelecom.com/gsm-physical-logical-channels/. [Accessed 24

08 2015].

[12] I. Poole, “GSM Frame Structure,” Radio Electronics, [Online]. Available:

http://www.radio-electronics.com/info/cellulartelecomms/gsm_technical/frames-

structure-super-hyper.php. [Accessed 25 04 2015].

[13] E. T. S. I. “GSM Technical Specification 05.02,” ETSI, 1996.

[14] Ericsson, “Channel Concept,” 21 06 2013. [Online]. Available:

http://www.slideshare.net/TempusTelcosys/02-channel-concept. [Accessed 24 04

2015].

[15] “Dedicated Control Channel (DCCH) in GSM,” TELETOPIX.ORG, 14 06 2012. [Online].

Available: http://www.teletopix.org/gsm/dedicated-control-channel-dcch-in-gsm/.

[Accessed 25 08 2015].

[16] D. Adamy, “EW 101,” in A First Course in Electronic Warfare, Massachusetts, Artech

House, Inc, 2001, p. 177.

[17] J. Eberspächer, H.-J. Vögel, C. Bettstetter and C. Hartmann, “GSM - Architecture,

Protocols and Services,” in 3rd Edition, John Wiley & Sons Ltd, 2009, pp. 102-110.

[18] M. Petracca, M. Vari, F. Vatalaro and G. Lubello, “Performance Evaluation of GSM

Robustness Against Smart Jamming Attacks,” in 5th International Symposium on

Communications, Control and Signal Processing, ISCCSP, Rome, 2012.

64

[19] E. Biglieri, in Coding for Wireless Channels, United States of America, Springer

Science+Business Media, Inc, 2005, p. 11.

[20] S. Lin and D. J. Costello, “Error Control Coding,” in Second Edition, India, Pearson

Education, 2010, pp. 292,1107,1108.

[21] J. L. Burbank, J. Andrusenko, J. S. Everett and W. T. Kasch, “Wireless Networking:

Understanding Internetworking Challenges,” Piscataway, IEEE Press, 20.

[22] P. Ostergard, “Systematic Cyclic Codes,” [Online]. Available:

http://www.comlab.hut.fi/studies/3410/slides_08_6_4.pdf. [Accessed 06 09 2015].

[23] P. T. Komiske, “Error Detection and Correction Codes,” APL Technical Digest, p. 11, 12

1965.

[24] E. T. S. I. “GSM Technical Specification 05.03,” ETSI, 1996.

[25] J. S. Berg, in Broadcasting on the Short Waves, 1945 to Today, North Carolina,

McFarland & Company, Inc, 2008, p. 44.

[26] W. Xu, W. Trappe, Y. Zhang and T. Wood, “The Feasibility of Launching and Detecting

Jamming Attacks in Wireless Networks,” in The ACM International Symposium on

Mobile Ad Hoc Networking and Computing, Illinois, 2005.

[27] A. Hussain, N. A. Saqib, U. Qamar, M. Zia and H. Mahmood, “Protocol-Aware Radio

Frequency Jamming inWi-Fi and Commercial Wireless Networks,” JOURNAL OF

COMMUNICATIONS AND NETWORKS, vol. 16, no. 4, pp. 397-406, 2014.

[28] W. Xu, W. Trappe and Y. Zhang, “Jamming Sensor Networks: Attack and Defense

Strategies,” IEEE Network, vol. 20, no. 3, pp. 41-47, 2006.

[29] R. Stuhlfauth, “GSM and GPRS System Information,” ROHDE&SCHWARZ, Munich.

65

[30] D. Nguyen, C. Sahin, B. Shishkin, N. Kandasamy and K. R. Dandekar, “A real-time and

protocol-aware reactive jamming framework built on software-defined radios,” In

Proceedings of the 2014 ACM workshop on Software radio implementation forum (SRIF

'14), pp. 15-22, 2014.

[31] M. Acharya, T. Sharma, D. Thuente and D. Sizemore, “Intelligent Jamming in 802.11b

Wireless Networks,” in OPNETWORK 2004, August 2004.

[32] MathWorks, “Communications System Toolbox,” [Online]. Available:

https://www.mathworks.com/products/communications.html. [Accessed 5 12

2016].

[33] “Government uses jammers often - expert,” Independant Online, 21 02 2015. [Online].

Available: http://www.iol.co.za/news/politics/government-uses-jammers-often-

expert-1.1821728#.VeWnQa0-4wE. [Accessed 01 09 2015].

[34] W. Xu, W. Trappe, Y. Zhang and R. University, “Jamming sensor networks: attack and

defense strategies,” Network, IEEE, vol. 20, no. 3, pp. 41-47, 2006.

[35] W. Shen, P. Ning, X. He and H. Dai, “Ally Friendly Jamming: How to Jam Your Enemy

and Maintain Your Own Wireless Connectivity at the Same Time,” North Carolina.

[36] C. F. C. “CONSUMER ALERT: Using or Importing Jammers is Illegal,” 06 03 2012.

[Online]. Available: https://apps.fcc.gov/edocs_public/attachmatch/DA-12-

347A1.pdf. [Accessed 30 08 2015].

[37] “Communication Systems Operator,” Defence Careers, [Online]. Available:

http://www.defencecareers.mil.nz/army/jobs/communication-systems-operator.

[Accessed 21 07 2015].

