753 research outputs found

    A Comprehensive Review of DC-DC Converters for EV Applications

    Get PDF
    DC-DC converters in Electric vehicles (EVs) have the role of interfacing power sources to the DC-link and the DC-link to the required voltage levels for usage of different systems in EVs like DC drive, electric traction, entertainment, safety and etc. Improvement of gain and performance in these converters has a huge impact on the overall performance and future of EVs. So, different configurations have been suggested by many researches. In this paper, bidirectional DC-DC converters (BDCs) are divided into four categories as isolated-soft, isolated-hard, non-isolated-soft and non-isolated-hard depending on the isolation and type of switching. Moreover, the control strategies, comparative factors, selection for a specific application and recent trends are reviewed completely. As a matter of fact, over than 200 papers have been categorized and considered to help the researchers who work on BDCs for EV application

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    Design Approaches to Enhance Power Density in Power Converters for Traction Applications

    Get PDF
    This dissertation presents a design strategy to increase the power density for automotive Power Conversion Units (PCUs) consisting of DC-DC and DC-AC stages. The strategy significantly improves the volumetric power density, as evident by a proposed PCU constructed and tested having 55.6 kW/L, representing an 11.2 % improvement on the Department of Energy’s 2025 goal of 50 kW/L for the same power electronics architecture. The dissertation begins with a custom magnetic design procedure, based on optimization of a predetermined C-core geometrical relationship and custom Litz wire. It accounts for electrical and thermal tradeoffs to produce a magnetic structure to best accomplish volume and thermal constraints. This work is coupled with a control strategy for the DC-DC converter whereby a variable-frequency Discontinuous Conduction Mode (DCM) control is used to further reduce the required values of the passive components, to provide an increase in power density and a large improvement of low-power-level efficiency, experimentally demonstrated at full power through an 80 kW Interleaved Boost Converter. Integration of this enhanced DC-DC stage to the DC-AC stage requires a DC-Link capacitor, which hinders achieving power density targets. Increasing the switching frequency is an established method of reducing the size of passives. However, it is the RMS current sizing requirements that diminishes any gains achieved by raising the switching frequency. A synchronous carrier phase shift-based control algorithm, that aligns the output current of the boost stage with the input current of an inverter, is proposed to reduce the RMS current in the DC-Link capacitor by up to 25% and an average 20% smaller capacitor volume. Lastly, a new electrothermal platform based on paralleled discrete devices is presented for a 50 kW traction inverter. Embedded capacitors within the vacant volume of the hybrid material thermal management structure enables higher power density (155 kW/L) and significantly reduces cost

    Design Approaches to Enhance Power Density in Power Converters for Traction Applications

    Get PDF
    This dissertation presents a design strategy to increase the power density for automotive Power Conversion Units (PCUs) consisting of DC-DC and DC-AC stages. The strategy significantly improves the volumetric power density, as evident by a proposed PCU constructed and tested having 55.6 kW/L, representing an 11.2 % improvement on the Department of Energy’s 2025 goal of 50 kW/L for the same power electronics architecture. The dissertation begins with a custom magnetic design procedure, based on optimization of a predetermined C-core geometrical relationship and custom Litz wire. It accounts for electrical and thermal tradeoffs to produce a magnetic structure to best accomplish volume and thermal constraints. This work is coupled with a control strategy for the DC-DC converter whereby a variable-frequency Discontinuous Conduction Mode (DCM) control is used to further reduce the required values of the passive components, to provide an increase in power density and a large improvement of low-power-level efficiency, experimentally demonstrated at full power through an 80 kW Interleaved Boost Converter. Integration of this enhanced DC-DC stage to the DC-AC stage requires a DC-Link capacitor, which hinders achieving power density targets. Increasing the switching frequency is an established method of reducing the size of passives. However, it is the RMS current sizing requirements that diminishes any gains achieved by raising the switching frequency. A synchronous carrier phase shift-based control algorithm, that aligns the output current of the boost stage with the input current of an inverter, is proposed to reduce the RMS current in the DC-Link capacitor by up to 25% and an average 20% smaller capacitor volume. Lastly, a new electrothermal platform based on paralleled discrete devices is presented for a 50 kW traction inverter. Embedded capacitors within the vacant volume of the hybrid material thermal management structure enables higher power density (155 kW/L) and significantly reduces cost

    High Power Current Sensorless Bidirectional 16-Phase Interleaved DC-DC Converter for Hybrid Vehicle Application

    Get PDF
    A new 16-phase interleaved bidirectional dc/dc converter is developed featuring smaller input/output filters, faster dynamic response and lower device stress than conventional designs, for hybrid vehicle applications. The converter is connected between the ultracapacitor (UC) pack and the battery pack in a multisource energy storage system of a hybrid vehicle. Typically, multiphase interleaved converters require a current control loop in each phase to avoid imbalanced current between phases. This increases system cost and control complexity. In this paper, in order to minimize imbalance currents and remove the current control loop in each phase, the converter is designed to operate in discontinuous conduction mode (DCM). The high current ripple associated with DCM operation is then alleviated by interleaving. The design, construction, and testing of an experimental hardware prototype is presented, with the test results included. Finally, a novel soft switch topology for DCM operation is proposed for future research, to achieve zero-voltage switching (ZVS), or zero-current switching (ZCS) in all transitions

    Convertisseurs à bobine variable pour applications de transport durables

    Get PDF
    Abstract: Power electronics converters are key components and enable efficient conversion and management of electrical energy in a wide range of applications. For vehicular use, there is an inevitable need to improve their performance and reducing their size. This is particularly important in case of powertrain DC-DC converters as they are required to have improved performance while respecting the specifications, characteristics and stringent space limitations. These objectives define research targets and a particular progress is essential in the field of passive components, semiconductor devices, converter topologies and control. At the current state of technologies, the passive components particularly the power inductors are dominant components which affect the overall volume, cost and performance of power electronic converters. Considering the aforementioned critical aspects, this thesis proposes a variable inductor (VI) concept in order to reduce the weight and size power inductors which are traditionally bulky and have fairly limited operating range. By modulating the permeability of the magnetic material, this concept enhances the current handling capability of power inductors, controls the current ripples, reduces the magnetic and switching losses, as well as the stresses applied to switching devices. Furthermore, it enables the use of smaller cores which leads to the reduction of mass and volume allowing improvements in the converter operation and its overall performance. However, to integrate it into powertrain DC-DC converters, it is fundamental, to question the design of the component itself, the selection of suitable magnetic core materials, and the control of current in the auxiliary winding and saturation management of magnetic cores. This thesis systematically addresses these different research challenges. A particular attention is paid to the experimental study of a VI prototype to demonstrate the concept on a small-scale in order to explore its viability. Subsequently a detailed characterization was developed using finite element analysis to determine the intrinsic functionality of the passive component. Furthermore, this thesis proposed an RMS current based VI design to reduce oversizing of power inductors for electric vehicles application. In this methodology, the selection of a suitable magnetic core material is a crucial step to assure smaller and efficient converters. Hence, this thesis proposes a simplified approach based on weighted property method (WPM) for an appropriate selection of magnetic core in accordance to the needs of the user. Furthermore, to validate the integration of this concept in DC-DC converter topology used in the powertrain of electrified vehicles, an affine parameterization method is used to design the control parameters and a simple management strategy is proposed to enable dynamic control of the VI. The converter control and the proposed strategy are evaluated through simulations of a complete powertrain of a three-wheel recreational vehicle. The small-scale experimental and simulations, and full-scale simulations have demonstrated an interesting capacity of the VI for improving the performance of DC-DC converters for electrified vehicles and manage the saturation of the magnetic core while reducing the size and weight of magnetic components.Les convertisseurs d’électroniques de puissance sont des composants clés de la conversion et gestion efficace de l’énergie électrique dans une large gamme d’applications. Pour des utilisations véhiculaires, il est inévitablement nécessaire d’améliorer leurs performances et de réduire leur taille. Ceci est particulièrement important dans le cas des convertisseurs à courant continu (CC) de la chaine de traction où des performances améliorées en réponse à une large gamme de variations de charge sont recherchées tout en respectant les spécificités, caractéristiques et limitation d’espace nécessaires aux véhicules électrifiés. Ces objectifs définissent une cible de recherche et en particulier des progrès sont essentiels dans le domaine des composants passifs, des dispositifs semi-conducteurs, des topologies des convertisseurs et leurs commandes pour généraliser l’utilisation de véhicules électriques. Les composants passifs, en particulier les inductances de puissance, sont des composants dominants qui affectent le volume global, le coût et les performances de ces convertisseurs d’électroniques de puissance. Compte tenu de ces aspects, cette thèse propose un concept de bobine variable afin de réduire le poids et la taille des inductances de puissance qui sont traditionnellement encombrantes et ont une gamme de fonctionnement assez limitée. En modulant la perméabilité du matériau magnétique, ce concept améliore la capacité de gestion du courant des bobines de puissance, contrôle les ondulations du courant et réduit les pertes magnétiques et par commutation, bien comme les contraintes appliquées aux dispositifs de commutation. En outre, il permet l’utilisation de noyaux plus petits, ce qui entraîne une réduction de masse et de volume, en permettant une amélioration du fonctionnement du convertisseur et de ses performances globales. Cependant, pour l’intégrer aux convertisseurs CC-CC utilisés dans la chaine de traction, il est fondamental de se questionner sur la conception du composant lui-même, la sélection du matériau magnétique, la commande du courant de l’enroulement auxiliaire et la gestion de la saturation du noyau magnétique. Cette thèse aborde de manière systématique ces différents défis de recherche. Une attention particulière est accordée à l’étude expérimentale d’un prototype de bobine variable pour faire la preuve de concept à petite échelle afin d’explorer sa viabilité. Par la suite, une large caractérisation par éléments finis a été développée pour déterminer le fonctionnement intrinsèque de ce composant passif. De plus, cette thèse propose une méthode systématique de design de bobine variable basée sur le courant RMS pour réduire le surdimensionnement traditionnellement associer aux inductances de puissance pour des applications véhiculaires. Dans cette méthodologie, la sélection appropriée du matériau pour le noyau magnétique est une étape cruciale pour garantir des convertisseurs plus petits et efficaces, donc une démarche de sélection simplifiée basée sur la méthode des propriétés pondérées pour le choix de noyau magnétique approprié au besoin de l’application a été mis au point. De plus, pour valider l’intégration de ce concept dans une topologie de convertisseur CC-CC traditionnellement utilisée dans la chaine de traction des véhicules électrifiés, une méthode de synthèse affine a été utilisée pour définir les paramètres des contrôleurs de courant et une stratégie de gestion de la saturation du noyau a été proposée pour permettre le contrôle dynamique de la bobine variable. La commande du convertisseur et la stratégie ont été évaluées par simulation d’une chaine de traction complète d’un véhicule récréatif réel. Les résultats expérimentaux à petite échelle et simulations à pleine échelle ont démontrés des capacités intéressantes de cette bobine variable pour l’amélioration des performances des convertisseurs CC-CC, ayant la capacité de gestion de la saturation du noyau magnétique tout en réduisant la taille et le poids de ces composants passifs, dans le but de son utilisation dans la chaine de traction des véhicules électrifiés

    Special Issue “Advanced DC-DC Power Converters and Switching Converters”

    Get PDF
    Nowadays, power electronics is an enabling technology in the energy conversion development scenario [...

    A New Combined Boost Converter with Improved Voltage Gain as a Battery-Powered Front-End Interface for Automotive Audio Amplifiers

    Get PDF
    High boost DC/DC voltage conversion is always indispensable in a power electronic interface of certain battery-powered electrical equipment. However, a conventional boost converter works for a wide duty cycle for such high voltage gain, which increases power consumption and has low reliability problems. In order to solve this issue, a new battery-powered combined boost converter with an interleaved structure consisting of two phases used in automotive audio amplifier is presented. The first phase uses a conventional boost converter; the second phase employs the inverted type. With this architecture, a higher boost voltage gain is able to be achieved. A derivation of the operating principles of the converter, analyses of its topology, as well as a closed-loop control designs are performed in this study. Furthermore, simulations and experiments are also performed using input voltage of 12 V for a 120Wcircuit. A reasonable duty cycle is selected to reach output voltage of 60 V, which corresponds to static voltage gain of five. The converter achieves a maximum measured conversion efficiency of 98.7% and the full load efficiency of 89.1%
    corecore