9 research outputs found

    Trajectory and power design for aerial CRNs with colluding eavesdroppers

    Full text link
    Unmanned aerial vehicles (UAVs) can provide wireless access services to terrestrial users without geographical limitations and will become an essential part of the future communication system. However, the openness of wireless channels and the mobility of UAVs make the security of UAV-based communication systems particularly challenging. This work investigates the security of aerial cognitive radio networks (CRNs) with multiple uncertainties colluding eavesdroppers. A cognitive aerial base station transmits messages to cognitive terrestrial users using the spectrum resource of the primary users. All secondary terrestrial users and illegitimate receivers jointly decode the received message. The average secrecy rate of the aerial CRNs is maximized by jointly optimizing the UAV's trajectory and transmission power. An iterative algorithm based on block coordinate descent and successive convex approximation is proposed to solve the non-convex mixed-variable optimization problem. Numerical results verify the effectiveness of our proposed algorithm and show that our scheme improves the secrecy performance of airborne CRNs.Comment: 10 pages, 7 figures.submitted to the IEEE journal for revie

    Physical-Layer Security in Cognitive Radio Networks

    Get PDF
    The fifth-generation (5G) communications and beyond are expected to serve a huge number of devices and services. However, due to the fixed spectrum allocation policies, the need for cognitive radio networks (CRNs) has increased accordingly. CRNs have been proposed as a promising approach to address the problem of under-utilization and scarcity of the spectrum. In CRNs, secondary users (SUs) access the licensed spectrum of the primary users (PUs) using underlay, overlay, or interweave paradigms. SUs can access the spectrum band simultaneously with the PUs in underlay access mode provided that the SUs’ transmission power does not cause interference to the PUs’ communication. In this case, SUs should keep monitoring the interference level that the PU receiver can tolerate and adjust the transmission power accordingly. However, varying the transmission power may lead to some threats to the privacy of the information transfer of CRNs. Therefore, securing data transmission in an underlay CRN is a challenge that should be addressed. Physical-layer security (PLS) has recently emerged as a reliable method to protect the confidentiality of the SUs’ transmission against attacks, especially for the underlay model with no need for sharing security keys. Indeed, PLS has the advantage of safeguarding the data transmission without the necessity of adding enormous additional resources, specifically when there are massively connected devices. Apart from the energy consumed by the various functions carried out by SUs, enhancing security consumes additional energy. Therefore, energy harvesting (EH) is adopted in our work to achieve both; energy efficiency and spectral efficiency. EH is a significant breakthrough for green communication, allowing the network nodes to reap energy from multiple sources to lengthen battery life. The energy from various sources, such as solar, wind, vibration, and radio frequency (RF) signals, can be obtained through the process of EH. This accumulated energy can be stored to be used for various processes, such as improving the users’ privacy and prolonging the energy-constrained devices’ battery life. In this thesis, for the purpose of realistic modelling of signal transmission, we explicitly assume scenarios involving moving vehicles or nodes in networks that are densely surrounded by obstacles. Hence, we begin our investigations by studying the link performance under the impact of cascaded κ−μ fading channels. Moreover, using the approach of PLS, we address the privacy of several three-node wiretap system models, in which there are two legitimate devices communicating under the threat of eavesdroppers. We begin by a three-node wiretap system model operating over cascaded κ − μ fading channels and under worst-case assumptions. Moreover, assuming cascaded κ − μ distributions for all the links, we investigate the impact of these cascade levels, as well as the impact of multiple antennas employed at the eavesdropper on security. Additionally, the PLS is examined for two distinct eavesdropping scenarios: colluding and non-colluding eavesdroppers. Throughout the thesis, PLS is mainly evaluated through the secrecy outage probability (SOP), the probability of non-zero secrecy capacity (Pnzcr ), and the intercept probability (Pint). Considering an underlay CRN operating over cascaded Rayleigh fading channel, with the presence of an eavesdropper, we explore the PLS for SUs in the network. This study is then extended to investigate the PLS of SUs in an underlay single-input-multiple-output (SIMO) CRN over cascaded κ-μ general fading channels with the presence of a multi-antenna eavesdropper. The impact of the constraint over the transmission power of the SU transmitter due to the underlay access mode is investigated. In addition, the effects of multiple antennas and cascade levels over security are well-explored. In the second part of our thesis, we propose an underlay CRN, in which an SU transmitter communicates with an SU destination over cascaded κ-μ channels. The confidentiality of the shared information between SUs is threatened by an eavesdropper. Our major objective is to achieve a secured network, while at the same time improving the energy and spectrum efficiencies with practical modeling for signals’ propagation. Hence, we presume that the SU destination harvests energy from the SU transmitter. The harvested energy is used to produce jamming signals to be transmitted to mislead the eavesdropper. In this scenario, a comparison is made between an energy-harvesting eavesdropper and a non-energy harvesting one. Additionally, we present another scenario in which cooperative jamming is utilized as one of the means to boost security. In this system model, the users are assumed to communicate over cascaded Rayleigh channels. Moreover, two scenarios for the tapping capabilities of the eavesdroppers are presented; colluding and non-colluding eavesdroppers. This study is then extended for the case of non-colluding eavesdroppers, operating over cascaded κ-μ channels. Finally, we investigate the reliability of the SUs and PUs while accessing the licensed bands using the overlay mode, while enhancing the energy efficiency via EH techniques. Hence, we assume that multiple SUs are randomly distributed, in which one of the SUs is selected to harvest energy from the PUs’ messages. Then, utilizing the gathered energy, this SU combines its own messages with the amplified PUs messages and forwards them to the destinations. Furthermore, we develop two optimization problems with the potential of maximizing the secondary users’ rate and the sum rate of both networks

    Artificial-Noise Aided Secure Transmission in Large Scale Spectrum Sharing Networks

    Get PDF
    We investigate beamforming and artificial noise generation at the secondary transmitters to establish secure transmission in large scale spectrum sharing networks, where multiple noncolluding eavesdroppers attempt to intercept the secondary transmission. We develop a comprehensive analytical framework to accurately assess the secrecy performance under the primary users' quality of service constraint. Our aim is to characterize the impact of beamforming and artificial noise generation (BF&AN) on this complex large scale network. We first derive exact expressions for the average secrecy rate and the secrecy outage probability. We then derive an easy-to-evaluate asymptotic average secrecy rate and asymptotic secrecy outage probability when the number of antennas at the secondary transmitter goes to infinity. Our results show that the equal power allocation between the useful signal and artificial noise is not always the best strategy to achieve maximum average secrecy rate in large scale spectrum sharing networks. Another interesting observation is that the advantage of BF&AN over BF on the average secrecy rate is lost when the aggregate interference from the primary and secondary transmitters is strong, such that it overtakes the effect of the generated AN

    New Approaches Using Cognitive Radio in Green Networking

    Get PDF
    The green networks are energy-efficient network architectures and we consider them as the basis of the wireless communication optimizing energy usage. Indeed, future communication technologies are moving in this direction, meaning that they will be less energy-intensive and, in some cases, even energy self-sufficient. Specifically, cognitive radio (CR) networks, cooperative relay networks, and non-orthogonal multiple access (NOMA) techniques have been considered as effective means to facilitate energy harvesting (EH) and a power spectrum allocation for the minimization of total transmit power, hence, making the wireless communication greener. The dissertation consists of three research sections corresponding to the aims. The first aim deals with an radio frequency (RF) wireless energy transfer model for D2D systems. In order to harvest more energy, a multiple-antenna base station and a power beacon are adopted for the D2D transmission network. We derive expressions outage probability in closed-forms. Further, independent simulations are used to validate the exactness of the theoretical expressions. In the second aim, new cooperative system models are proposed and studied. To reach the second aim, the secondary source acts as a relay and employs Amplify and Forward (AF) mode to serve distant NOMA users under a given interference constraint. To provide a detailed examination of the system performance metrics, we derived closed-form formulas for the outage probability and average throughput of the multi-users in the presence of interference constraints. In the last aim of the dissertation, we designed a new system model for a hybrid satellite-terrestrial cognitive network (HSTCN) relying on NOMA interconnecting a satellite and multiple terrestrial nodes. Reliability and security of transmission were studied to minimize the total transmit power. To reach the third aim, we examined the following performance factors: outage probability, hardware impairment, intercept probability, and average throughput. The novel closed-forms expressions of these performance factors are derived. The last but not at least, we simulated the new HSTCN system model. The achieved results figured that the new proposed approaches make it possible to take into account service quality requirements and are applicable in future green networking.Zelené sítě jsou energeticky efektivní síťové architektury a považujeme je za základ bezdrátové komunikace optimalizující spotřebu energie. Tímto směrem se ubírají budoucí komunikační technologie, což znamená, že budou méně energeticky náročné a v některých případech dokonce energeticky soběstačné. Kognitivní rádiové (CR) sítě, kooperativní relay sítě a neortogonální vícenásobné přístupové (NOMA) techniky jsou považovány za účinný prostředek k usnadnění získávání energie (EH) a přidělování výkonového spektra pro minimalizaci celkového vysílacího výkonu, díky čemuž je bezdrátová komunikace zelenější. Disertační práce se skládá ze tří výzkumných částí odpovídajících cílům. První cíl se zabývá modelem bezdrátového přenosu radiofrekvenční (RF) energie pro systémy D2D. Aby bylo možné získat více energie, jsou pro přenosovou D2D síť použity základnové stanice s více anténami a napájecím radiomajákem. Pro navržený model jsou odvozeny pravděpodobnosti výpadků, kdy tyto výrazy jsou v uzavřené formě. Dále jsou k ověření platnosti získaných teoretických výrazů použity nezávislé simulace. Ve druhém cíli jsou navrženy a zkoumány nové modely kooperativního systému. Aby bylo dosaženo druhého cíle, sekundární zdroj funguje jako relay uzel a využívá režim AF (Amplify and Forward), který slouží vzdáleným NOMA uživatelům za specifických interferenčních podmínek. Abychom poskytli podrobné zhodnocení výkonnostních metrik systému, odvodili jsme vztahy v uzavřené formě pro pravděpodobnost výpadků a průměrnou propustnost více uživatelů za přítomnosti interferenčních omezení. V posledním cíli disertační práce jsme navrhli nový systémový model pro hybridní satelitně-terestrickou kognitivní síť (HSTCN) založenou na neortogonálním vícenásobném přístupu (NOMA) propojující satelit a více terestrických uzlů. Zkoumána byla spolehlivost a zabezpečení přenosu s důrazem na minimalizaci celkového vysílacího výkonu. Pro dosažení třetího cíle jsme zkoumali následující výkonnostní faktory: pravděpodobnost výpadku, poškození hardwaru, pravděpodobnost zachycení a průměrnou propustnost. Pro tyto výkonnostní faktory jsou odvozeny v uzavřených formách nové výrazy. V neposlední řadě jsme rovněž simulovali nový systémový HSTCN model. Dosažené výsledky potvrdily, že nově navržené přístupy umožňují zohledňovat požadavky na kvalitu služeb a jsou použitelné v budoucích zelených sítích.440 - Katedra telekomunikační technikyvyhově

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Intercept Probability of Underlay Uplink CRNs with Multi-Eavesdroppers

    Get PDF
    The present contribution investigates the physical layer security in a cognitive radio network (CRN). To this end, we consider an underlay uplink CRN consisting of multiple secondary sources, a single-antenna secondary base station, and multiple eavesdroppers. In addition, we assume that the secondary sources transmit their data sequentially and that a jammer is randomly chosen from the remaining source nodes to send a jamming signal to the eavesdroppers. However, in an uplink underlay CRN, a friendly jammer is not always allowed to use its maximal transmit power as the secondary users are required to continuously adapt their power in order to avoid causing interference to the primary users. As a consequence, enhancing the system security using a jammer with low transmit power in the presence of numerous eavesdroppers turns out to be questionable. In this regard, we derive novel analytic expressions that assist in quantifying the achievable security levels and the corresponding limitations. This leads to the development of useful insights on the impact of network parameters on the performance of the system's security. The offered analytic results are corroborated through Monte Carlo simulation. It is shown, that for a low transmit power of the friendly jammer, the system's security can only be enhanced for a small number of eavesdroppers.acceptedVersionPeer reviewe
    corecore