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Abstract

Physical-Layer Security in Cognitive Radio Networks

Deemah Hail Tashman, Ph.D.

Concordia University, 2022

The fifth-generation (5G) communications and beyond are expected to serve a huge number
of devices and services. However, due to the fixed spectrum allocation policies, the need for cog-
nitive radio networks (CRNs) has increased accordingly. CRNs have been proposed as a promising
approach to address the problem of under-utilization and scarcity of the spectrum. In CRNs, sec-
ondary users (SUs) access the licensed spectrum of the primary users (PUs) using underlay, overlay,
or interweave paradigms. SUs can access the spectrum band simultaneously with the PUs in un-
derlay access mode provided that the SUs’ transmission power does not cause interference to the
PUs’ communication. In this case, SUs should keep monitoring the interference level that the PU
receiver can tolerate and adjust the transmission power accordingly. However, varying the transmis-
sion power may lead to some threats to the privacy of the information transfer of CRNs. Therefore,
securing data transmission in an underlay CRN is a challenge that should be addressed. Physical-
layer security (PLS) has recently emerged as a reliable method to protect the confidentiality of the
SUs’ transmission against attacks, especially for the underlay model with no need for sharing secu-
rity keys. Indeed, PLS has the advantage of safeguarding the data transmission without the necessity
of adding enormous additional resources, specifically when there are massively connected devices.

Apart from the energy consumed by the various functions carried out by SUs, enhancing security
consumes additional energy. Therefore, energy harvesting (EH) is adopted in our work to achieve
both; energy efficiency and spectral efficiency. EH is a significant breakthrough for green com-

munication, allowing the network nodes to reap energy from multiple sources to lengthen battery
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life. The energy from various sources, such as solar, wind, vibration, and radio frequency (RF) sig-
nals, can be obtained through the process of EH. This accumulated energy can be stored to be used
for various processes, such as improving the users’ privacy and prolonging the energy-constrained
devices’ battery life.

In this thesis, for the purpose of realistic modelling of signal transmission, we explicitly assume
scenarios involving moving vehicles or nodes in networks that are densely surrounded by obstacles.
Hence, we begin our investigations by studying the link performance under the impact of cascaded
r—u fading channels. Moreover, using the approach of PLS, we address the privacy of several three-
node wiretap system models, in which there are two legitimate devices communicating under the
threat of eavesdroppers. We begin by a three-node wiretap system model operating over cascaded
k — p fading channels and under worst-case assumptions. Moreover, assuming cascaded Kk — p
distributions for all the links, we investigate the impact of these cascade levels, as well as the impact
of multiple antennas employed at the eavesdropper on security. Additionally, the PLS is examined
for two distinct eavesdropping scenarios: colluding and non-colluding eavesdroppers. Throughout
the thesis, PLS is mainly evaluated through the secrecy outage probability (SOP), the probability
of non-zero secrecy capacity (P/'*¢), and the intercept probability (Pj,:).

Considering an underlay CRN operating over cascaded Rayleigh fading channel, with the pres-
ence of an eavesdropper, we explore the PLS for SUs in the network. This study is then extended
to investigate the PLS of SUs in an underlay single-input-multiple-output (SIMO) CRN over cas-
caded x-u general fading channels with the presence of a multi-antenna eavesdropper. The impact
of the constraint over the transmission power of the SU transmitter due to the underlay access mode
is investigated. In addition, the effects of multiple antennas and cascade levels over security are
well-explored.

In the second part of our thesis, we propose an underlay CRN, in which an SU transmitter com-
municates with an SU destination over cascaded -y channels. The confidentiality of the shared
information between SUs is threatened by an eavesdropper. Our major objective is to achieve a
secured network, while at the same time improving the energy and spectrum efficiencies with prac-
tical modeling for signals’ propagation. Hence, we presume that the SU destination harvests energy

from the SU transmitter. The harvested energy is used to produce jamming signals to be transmitted
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to mislead the eavesdropper. In this scenario, a comparison is made between an energy-harvesting
eavesdropper and a non-energy harvesting one. Additionally, we present another scenario in which
cooperative jamming is utilized as one of the means to boost security. In this system model, the
users are assumed to communicate over cascaded Rayleigh channels. Moreover, two scenarios
for the tapping capabilities of the eavesdroppers are presented; colluding and non-colluding eaves-
droppers. This study is then extended for the case of non-colluding eavesdroppers, operating over
cascaded x-u channels.

Finally, we investigate the reliability of the SUs and PUs while accessing the licensed bands
using the overlay mode, while enhancing the energy efficiency via EH techniques. Hence, we
assume that multiple SUs are randomly distributed, in which one of the SUs is selected to harvest
energy from the PUs’ messages. Then, utilizing the gathered energy, this SU combines its own
messages with the amplified PUs messages and forwards them to the destinations. Furthermore, we
develop two optimization problems with the potential of maximizing the secondary users’ rate and

the sum rate of both networks.
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Chapter 1

Introduction

1.1 Cognitive Radio Networks and Physical-Layer Security

The tremendous growth of the projected number of connections and services expected in 5G
and beyond elevates the challenge of the frequency spectrum scarcity. Cognitive radio networks
(CRNs) have been recognized to be a reputable approach to deal with certain concerns. In the
context of CRNs, two types of users exist; primary users (PUs) and secondary users (SUs). Given
the paradigm used for transmission by SUs, i.e., underlay, overlay, or interweave, the physical layer
of the CRN may be threatened by attacks. For instance, when SUs adopt an underlay paradigm for
communication, a continuous adaptation of the transmit power should occur to keep the interference
caused to the primary network below a certain threshold. This poses a threat to SUs’ secrecy due to
the variations in the conditions of the channel [1]. Moreover, the broadcast nature of CRNs causes
a threat on tapping the shared information.

Among the communication security techniques, physical-layer security (PLS) has emerged as a
reliable method for improving security. This method improves the secrecy without relying on the
encryption or decryption of messages. Moreover, Wyner proposed the three-node wiretap model,
in which two channels should be addressed while examining a system’s PLS; the main channel
and the wiretap channel [2]. The main channel is the one between the transmitter (Tx) and the
legitimate receiver (Rx), while the wiretap channel exists between Tx and the untrusted user, such

as an eavesdropper. Given these definitions, PLS protects the transmissions by improving the main



channel’s conditions or degrading the wiretap channel’s conditions. Motivated by the reliability of
PLS in securing networks, users in CRNs can apply PLS to secure the exchanged messages. On the
other hand, protecting CRNs necessitates certain energy-consuming procedures. This adds another
layer of complexity for the users of CRNs.

Energy harvesting (EH) is a significant breakthrough for green communication, allowing the
network nodes to reap energy from multiple sources to lengthen battery life. The energy from
various sources, such as solar, wind, vibration, and radio frequency (RF) signals, can be obtained
through the process of EH. The process of EH converts the AC signals to DC signals (electricity)
to power the devices. This accumulated energy can be stored to be used for various processes. En-
ergy harvesting provides us with many promising advantages, such as self-sustainable capability,
reduction of carbon emission, truly wireless nodes without requiring battery replacement, and easy
and fast deployment in any toxic, hostile or inaccessible environment. EH was identified as a viable
approach to the energy-constrained devices dilemma. One of the consequences of the information
and the energy content of radio frequency (RF) signals is the simultaneous wireless information and
power transfer (SWIPT) technology [3]. Furthermore, to enable the SWIPT technique effectively,
on the receiving side, the receiver is designed to conduct either power splitting (PS) or time switch-
ing (TS) protocol to extract the energy from the received RF signal. In PS, the receiver partitions
the energy of the RF signal into segments depending on a splitting factor; one portion of the power
is used for energy harvesting, while the remaining is used for information processing [3]. However,
the entire power is utilized in TS protocol and the time is split into two or more slots, one of which
is spent on EH and the rest of its time is used to process the data, i.e., information decoding (ID)
process. EH approach can be utilized to improve the PLS for CRN users, which has been an in-
triguing area of study. Given this, it is more accurate and practical to assume these users moving
or surrounded by obstacles when investigating PLS for CRNs, which cannot be achieved assuming
classical fading channels [4].

Cascaded fading channels have developed as an accurate method for modeling signals’ propa-
gation, especially when devices are moving or when a significant number of obstacles exist between
the transmitter and receiver [5], such as cognitive vehicular networks. Cascaded channels assume

that the received signal is generated by the multiplication of a large number of rays reflected from



the objects [6]. Moreover, cascaded channels are recognized to be effective in modeling various
systems, such as multi-hop relaying systems and mobile-to-mobile/vehicle-to-vehicle (M2M/V2V)

communication systems, to name a few [7].

1.2 Motivation

The primary objectives of this thesis are to:

* Investigate the challenges inherent in the implementation of cognitive radio networks (CRNs);

* Develop novel methodology and strategies for addressing physical-layer security (PLS) chal-
lenges associated with CRN-based vehicles (cognitive vehicular networks (CVNs)) while pre-

serving energy-efficient devices;
* Establish analytical and simulation frameworks for the proposed methodologies.

While designing CRN:gs, it is critical to secure users’ transmissions as CRNs are vulnerable to a
variety of threats, particularly at the physical layer [8]. This is due to several reasons; first, attacks in
CRN may occur during the three stages of the cognition process, namely spectrum sensing, spectrum
analysis, and spectrum decision. Malicious users may attempt to attack the network during one
or more of the three transitions. Second, SUs should distinguish legitimate PUs from malicious
PUs. For instance, a malicious selfish SU attempts to mimic the PUs’ transmissions’ characteristics
when the band is vacant to prohibit the other SUs from using the band. As a result, the secondary
network misses the opportunity to use an availability in the spectrum, which can lead to throughput
degradation. Third, SUs should pay attention to the accuracy of the sensed data as the attacks
sometimes occur from legitimate SUs. In this case, a malicious user attempts to inject false sensed
data into the fusion center (centralized sensing) to prevent it from correctly deciding the status of
the bands. Moreover, threats on CRNs can be initiated from outside the network. In this case, users
within the coverage range of transmission are able to overhear confidential information due to the
broadcasting nature of the transmission. Furthermore, attackers may intend to send harmful signals
(jamming) towards the SU or PU receiver to disturb their communication. Moreover, since SUs

and PUs both reside on the same network, they need to be protected from different types of threats.



All the aforementioned reasons emphasize the importance of securing the physical layer of CRNs
and physical-layer security (PLS) approach is suggested for similar concerns. However, protecting
the SUs’ networks against attacks involves following certain approaches that consume energy, such
as cooperative jamming in addition to the energy-consuming operations that SUs already conduct.
As a result, when securing the SUs’ networks, the energy consumption issue should be taken into
consideration.

Energy harvesting (EH) is a promising approach to prolong the lifetime of energy-constrained
devices. Utilizing EH while attempting to secure the physical layer of CRNs is a challenge that
should be tackled due to its role in saving energy. For instance, the energy can be harvested by
the SU’s transmitter from the PU transmission for the sake of improving the security of the SUs
network for the underlay mode. For overlay CRN, the SUs may harvest energy that can be used to
improve the PUs’ network reliability and security. Moreover, energy can be harvested by the SU’s
receiver from the SU’s transmitter or any other source to prolong its battery life. In addition, EH can
be used to enhance network security by generating jamming signals to mislead the eavesdroppers.
Improving PLS through EH in CRNs would result in a more secured network while achieving high
spectrum and energy efficiencies. However, prior research with similar scenarios has assumed the
nodes operate over classical channels. These channels neglect the fact that the nodes may be moving
or surrounded by objects, resulting in a signals propagation modeling that is inaccurate.

Cascaded fading channels have been lately recognized to model signals’ propagation sufficiently
close to realistic scenarios. The notion of cascaded fading channels implies that the received signal
at the destination is composed of a large number of signals reflected from obstacles blocking the
path between a transmitter and a receiver, especially when these devices are moving or reside in rich
scattering areas [5, 9]. Cognitive vehicular networks and mobile-to-mobile (M2M) communication
have been lately an interesting issue to consider [10] and conventional fading channel models may
not be appropriate for signals’ propagation modeling in these networks. This is because using these
models, it is assumed that the signal travels from the transmitter to