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Abstract—The present contribution investigates the physical
layer security in a cognitive radio network (CRN). To this end,
we consider an underlay uplink CRN consisting of multiple
secondary sources, a single-antenna secondary base station,
and multiple eavesdroppers. In addition, we assume that the
secondary sources transmit their data sequentially and that a
jammer is randomly chosen from the remaining source nodes
to send a jamming signal to the eavesdroppers. However, in an
uplink underlay CRN, a friendly jammer is not always allowed
to use its maximal transmit power as the secondary users are
required to continuously adapt their power in order to avoid
causing interference to the primary users. As a consequence,
enhancing the system security using a jammer with low transmit
power in the presence of numerous eavesdroppers turns out
to be questionable. In this regard, we derive novel analytic
expressions that assist in quantifying the achievable security levels
and the corresponding limitations. This leads to the development
of useful insights on the impact of network parameters on
the performance of the system’s security. The offered analytic
results are corroborated through Monte Carlo simulation. It is
shown, that for a low transmit power of the friendly jammer,
the system’s security can only be enhanced for a small number
of eavesdroppers.

I. INTRODUCTION

The proliferation of mobile users brought a tremendous de-
mand for the radio spectrum leading to the currently witnessed
spectrum scarcity problem. To solve this issue, cognitive radio
networks (CRNs) have been proposed as an efficient solution
to increase the currently underutilized spectrum resources. In
these networks, licensed primary users (PUs) and unlicensed
secondary users (SUs) share the same spectrum under the
assumption that the SUs signals do not cause interference to
the PUs. Consequently, the SUs have to continuously adapt
their transmission power in order to avoid causing interference
to the PUs. For this reason, the physical layer security under
such constraint becomes rather challenging.

The physical layer security of multi-antenna non-
cooperative CRNs has been considered in [1]- [4]. In [1], [2],
the authors derived closed-form and asymptotic expressions

of the secrecy outage probability (SOP) of CRNs subject
to Nakagami-m fading channels, whereas Rayleigh fading
conditions were considered in [3], [4]. In [1], the authors
assumed that all nodes were equipped with multiple antennas
and that the source adopts the transmit antenna selection (TAS)
method, while the receivers use the selection combining (SC)
technique. In [1]- [4], the authors considered that only the
destination and eavesdroppers are multiple antennas nodes
performing SC diversity. Particularly in [4], the presence of
two eavesdroppers equipped with multiple-antennas, where the
first one is assumed to intercept the communication of SUs,
whereas the second one intercepts the one of PUs.

It is recalled that cooperative relay communication systems
have been studied in [5]- [9], in which the SOP has been
investigated as a performance metric for Nakagami-m fading
channels [5], [6] as well as Rayleigh fading channels [7]- [9].
In [5], [7], the authors derived the SOP by considering the
existence of only one multi-antenna relay, whereas in [6], [7],
[8], [9] the authors assumed the existence of multiple relays
and derived closed-form as well as asymptotic expressions for
the SOP by considering different relay selection policies. In
[9], the authors derived the intercept probability as a useful
performance metric.

In the same context, the physical layer security of a CRN
considering a friendly jammer transmitter was investigated
in [10], [11]. Specifically, direct communication between
multiple source-destination pairs were studied in [10]. In
[11], a cooperative transmission through multiple relays was
analyzed where one relay is selected to forward the data to
its destination and another one is selected to send a jamming
signal to disrupt the eavesdropper. The corresponding SOP
was derived by investigating different selection policies of the
jammer. However, the power adaptation of the SUs was not
been considered despite its paramount importance since the
SUs are required to avoid interfering with PUs.

Motivated by the aforementioned observations, in this paper



we investigate the physical layer security of an uplink CRN
consisting of multiple sources and multiple eavesdroppers. In
this context, it is assumed that only one SU is communicating
with a single-antenna secondary base station (SBS) under the
condition of not causing any interference to the primary net-
work. Moreover, a friendly jammer is randomly chosen among
the remaining SUs to disrupt the eavesdroppers. Under the
power adaptation constraint of the SUs, the present work aims
at investigating the impact of the friendly jammer transmit
power as well as the number of eavesdroppers on the overall
system’s security. Specifically, the main contributions of this
paper can be summarized as follows:

• By considering the power adaptation constraint of SUs,
a closed-form expression for the intercept probability
(IP) is derived for two scenarios: (i) presence and (ii)
absence of a friendly jammer transmitter. These exact
analytic results constitute the basis for the derivation of
simpler, more tractable, and more insightful asymptotic
expression.

• We develop useful insights into the secrecy performance
of the considered communication system. Specifically, we
conclude that for a high number of eavesdroppers and a
low transmit power of the friendly jammer, the security
performance of the system becomes the same for both
scenarios.

The remained of this paper is organized as follows: In
Section II, we present the system and channel model whereas
the closed-form expression for the IP is derived in Section
III. In Section IV, we provide and discuss the numerical and
simulation results. Finally, Section V concludes this work and
discusses related future work.

II. SYSTEM AND CHANNEL MODELS

We consider an uplink CRN, illustrated in Fig.1, composed
by multiple SUs (Si)i≤N , multiple eavesdroppers (Ek)k≤M ,
one single-antenna secondary base station (Bs), one PU
transmitter (PUTx), and one primary base station (PBS)
(BP ). Multi-user scheduling is considered such that, at the
time instant t, only one source (Sc) is selected according to
the round-robbing scheduling algorithm for data transmission.
Additionally, a jammer among the N−1 remaining sources is
selected by the current transmitter to send an artificial noise
(AN) that is added to the kth eavesdropper’s signal. Indeed,
the AN is considered as a signal designed in the null space of
the legitimate channel i.e., Sc − D, and is transmitted to in-
terfere with the eavesdroppers without affecting the legitimate
destination. We also consider that the AN is generated from
a pseudo-random sequence. This sequence is known to the
legitimate receiver while it is unknown to the eavesdroppers.
Consequently, the destination is able to cancel out the AN
while the eavesdroppers is not.

For the sake of simplicity but without loss of generality,
we denote the channel power gains by gq = |hq|2 and their
corresponding coefficients are λq , where q = {SiBS , SiEk,
SiBP }. As the fading amplitudes for all links are Rayleigh
distributed, it follows that the channel gains are exponentially

distributed. Moreover, under the power adaptation policy, the
instantaneous signal-to-noise ratio (SNR) of the main channel
Sc −D and the wiretap link Sc − Ek are given by

γ(c)m = min

(
γ

Sc
,
γP
g
ScP

)
gScR, (1)

and

γ(c,ϵJ)ek
=

min

(
γ

Sc
,
γP
gScP

)
gScEk

ϵmin

(
γ

SJ
,
γP
g
SJP

)
gSJEk

+ 1

, (2)

respectively, where

ϵ =

{
0 : without jammer
1 : with jammer , (3)

and γSc
= PmaxSc

/N0, γSJ
= PmaxSJ

/N0, γP = PI/N0, with
PmaxSc

and PmaxSJ
denoting the maximal transmit power of

Sc and SJ , respectively. Also, PI accounts for the maximum
tolerated interference power at PURx, and N0 is the variance
of the additive white Gaussian noise, assumed the same at
each receiver.

It is worth mentioning that when PI increases, the source
nodes are able to use their maximal transmission power
resulting in increasing the signal-to-noise (SNR) at D, which
leads the enhancement of the system’s security.
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Fig. 1: System setup.

III. INTERCEPT PROBABILITY

In this section, the intercept probability analysis of an
underlay uplink CRN is presented by considering the presence
and absence of a friendly jammer. In addition, the IP of the
considered CRN in the presence of a friendly jammer can be
expressed as

Pint =
1

N(N − 1)

N∑
c=1

N∑
J=1
J ̸=c

P
(c,J)
int , (4)



while the IP in the absence of a friendly jammer is given by

Pint =
1

N

N∑
c=1

P
(c)
int . (5)

For the considered system, the IP can be defined as the
probability that at least one of the wiretap links capacities is
above the legitimate one, namely

P
(c,J)
int = 1−

M∏
k=1

Pr
(
C

(c, k,ϵJ)
S > 0

)
, (6)

and C
(c, k,ϵJ)
S denotes the secrecy capacity of the cth source

when Ek is intercepting the channel, namely

C
(c, k,ϵJ)
S = log2

(
1 + γ(c)m

)
− log2

(
1 + γ(c,ϵJ)ek

)
. (7)

Remark 1. It is worth mentioning that by considering iden-
tical parameters, the IPs given in (4) and (5) become P (c,J)

int

and P (c)
int , respectively for any user c.

A. Closed-form intercept probability

According to (4), in order to derive the IP of the considered
system, we first have to determine the expression of P (c,J)

int .

Theorem 1. The IPs of cth source in presence and absence
of a friendly jammer are given by

P
(c,J)
int = 1−

M∏
k=1



1− λScD

×



e−φJ

ϖ
(c)
k

− χ
(k,J)
c

×


M(k,J)

c

× [e−φJ − 1]

+eθ
(k,J)
c −φJ

×∆
(k,J)
c






, (8)

and

P
(c)
int = 1−

M∏
k=1

[
λScEk

λScEk
+ λScD

]
, (9)

respectively, where φJ = λSJP γP /γSJ
, ϖ(c)

k = λScEk
+

λScD, ε(k,J)c = λSJEk
/λScEk

, χ(k,J)
c = ε

(k,J)
c /γSJ

, θ(k,J)c =

ϖ
(c)
k χ

(k,J)
c , ∆(k,J)

c =
(
A

(c,k,J)
1 /φJ −A

(c,k,J)
0

)
, A

(c,k,J)
v =(

φJ/θ
(k,J)
c

)v+1

Ω
(k,J)
c , v ∈ {0, 1},

Ω(k,J)
c = G2,2

2,2

(
φJ/θ

(k,J)
c

∣∣∣∣ (0, 0), (−v, θ(k,J)c );−
(0, 0), (0, 0);−

)
,

M(k,J)
c = G2,1

1,2

(
θ(k,J)c

∣∣∣∣ 0;−
0, 0;−

)
,

and Gm,np,q

(
z

∣∣∣∣ (ai)i≤p
(bk)k≤q

)
denotes the Meijer-G’s function

[12, Eq. (9.301)], while Gm,np,q

(
z

∣∣∣∣ (ai, αi)i≤p
(bk, βk)k≤q

)
accounts

for the upper incomplete Meijer-G’s function [14, Eq. (1.1.1)].
Proof: In the following, two cases are distinguished,

namely the presence and absence of a friendly jammer.

• Case 1: Presence of a jammer
The IP corresponding to the links Sc−D and Sc−Ek can

be expressed as

Pr
(
C

(c, k,J)
S ≤ 0

)
=

∫ ∞

0

FgScD
(z) f

W
(k,J)
c

(z) dz, (10)

where W (k,J)
c =gScEk

/
(
Y

(k)
J + 1

)
,

Y
(k)
J = min

(
γ

SJ
,
γP
gSJP

)
gSJEk

, (11)

and fX and FX denote the probability density function (PDF)
and the cumulative density function (CDF) of the distribution
X , respectively.

On the other hand, the CDF of W (k,J)
c is given by

F
W

(k,J)
c

(ξ) =

∫ ∞

0

FgScEk
(ξ (z + 1)) f

Y
(k)
J

(z) dz, (12)

where the CDF of Y (k)
J is expressed as

F
Y

(k)
J

(ϑ) = Pr

(
γ

SJ
gSJEk

≤ ϑ,γ
SJ

≤ γP
g
SJP

)
︸ ︷︷ ︸

I(k,J)
1

+Pr

(
gSJEk

g
SJP

≤ ϑ

γP
,γ

SJ
>

γP
g
SJP

)
︸ ︷︷ ︸

I(k,J)
2

. (13)

The first term I(k,J)
1 can be rewritten as

I(k,J)
1 = FgSJEk

(
ϑ

γSJ

)
Fg

SJP

(
γP
γSJ

)
, (14)

while the second term I(k,J)
2 can be re-expressed as

I(k,J)
2 =

∫ ∞

γP
γSJ

fgSJP
(y)FgSJEk

(
ϑ

γP
y

)
dxdy

= e−φJ − e
−φJ

(
ϑϱ

(J)
k +1

)
ϑϱ

(J)
k +1

, (15)

with ϱ(J)k = λSJEk
/λSJP γP . By replacing (14) and (15) into

(13), we obtain the CDF of Y (k)
J as

F
Y

(k)
J

(ϑ) = 1− e−φJϱ
(J)
k ϑ

(
1− e−φJ

)
− e

−φJ

(
ϑϱ

(J)
k +1

)
ϱ
(J)
k ϑ+1

.

(16)
Based on the above and by integrating by parts and substi-

tuting (16) into (12), it follows that

F
W

(k,J)
c

(ξ) = 1− ξ

∫ ∞

0

fgScEk
(ξ (z + 1))F

Y
(k)
J

(z) dz

= 1− Ξ
(c)
k (ξ)

[
1
ξ +

e−φJ−1

µ
(k,J)
c

−λScEk
e−φJΘ

(k,J)
c (z)

]
,

(17)



where Ξ
(c)
k (ξ) = ξe

−ξλ
ScEk , Θ

(k,J)
c (z) =

∫∞
0

e−β
(k,J)
c z

ϱ
(J)
k z+1

dz,

β
(k,J)
c = λ

ScEk
µ
(k,J)
c , and µ(k,J)

c =
φJϱ

(J)
k

λ
ScEk

+ξ.

Next, using Eqs. (07.34.03.0456.01) (07.34.21.0088.01) of
[13], the term Θ

(k,J)
c is given by

Θ(k,J)
c =

1

ϱ
(J)
k

G1,3
3,2

(
ϱ
(J)
k

β
(k,J)
c

∣∣∣∣ 0, 1, 1;−
1; 0

)
(18)

=
1

ϱ
(J)
k

G2,1
1,2

(
β
(k,J)
c

ϱ
(J)
k

∣∣∣∣ 0;−
0, 0;−

)
.

Now, substituting (18) into (17) yields

F
W

(k,J)
c

(ξ) = 1− e−λScEk
ξ
[
1 + Υ(k,J)

c (ξ)
]
, (19)

where

Υ(k,J)
c (ξ) =

ξ (e−φJ − 1)

χ
(k,J)
c + ξ

− ξλScEk

ϱ
(J)
k

e−φJ (20)

×G2,1
1,2

(
φJ +

φJ

χ
(k,J)
c

ξ

∣∣∣∣ 0;−
0, 0;−

)
.

By using the integration by parts and incorporating (19) into
(10), we obtain

Pr
(
C

(c, k,J)
S ≤ 0

)
= 1−

∫ ∞

0

f gScD
(z)F

W
(k,J)
c

(z) dz,

= λScD

[
1

ϖ
(c)
k

+ I(c,k,J)
3

]
. (21)

The term I(c,k,J)
3 =

∫∞
0
e−ϖ

(c)
k zΥ

(k,J)
c (z) dz can be rewritten

using (20) as

I(c,k,J)
3 =

(
e−φJ − 1

)
Φ

(c,k,J)
1 − λScEk

ϱ
(J)
k

e−φJΦ
(c,k,J)
2 , (22)

with

Φ
(c,k,J)
1 =

∫ ∞

0

ze−ϖ
(c)
k z

χ
(k,J)
c + z

dz (23)

=
1

ϖ
(c)
k

− χ(k,J)
c G2,1

1,2

(
θ(k,J)c

∣∣∣∣ 0;−
0, 0;−

)
,

and

Φ
(c,k,J)
2 =

∫ ∞

0

z

eϖ
(c)
k z

G2,1
1,2

(
φJ +

φJ

χ
(k,J)
c

z

∣∣∣∣ 0;−
0, 0;−

)
dz

=

(
χ
(k,J)
c

)2
φJ

eθ
(k,J)
c

[
A

(c,k,J)
1

φJ
−A

(c,k,J)
0

]
, (24)

where the two functions
(
A

(c,k,J)
v

)
v=0,1

are defined by

A(c,k,J)
v =

∫ ∞

φJ

yve
− θ

(k,J)
c
φJ

y
G2,1

1,2

(
y

∣∣∣∣ 0;−
0, 0;−

)
dy(25)

=
1

2πj

∫
C

Γ2 (s) Γ (1− s) Γ
(
ςv, θ

(k,J)
c

)
(ηk)

s−v−1 ds,

where ηk = φJ/θ
(k,J)
c , ςv = v+1−s, Γ (·, ·) denotes the upper

incomplete Gamma function [12, Eq. (8.350.2)], j =
√
−1,

C represents a complex contour of integration ensuring the
convergence of the Mellin-Barnes integral, and Γ(·) denotes
the Euler Gamma function [12, Eq. (8.310.1)].

Finally, by substituting (25) into (24) alongside inserting
(23) and (24) into (22), and using (6), yields (8).

• Case 2: Absence of jammer
Under this assumption, it immediately follows that

Pr
(
C

(c, k)
S ≤ 0

)
=

∫ ∞

0

FgScD
(z)fgScEk

(z) dz

= 1− λScEk

λScEk
+ λScD

. (26)

Substituting (26) into (6), we get the expression of IP given
in (9), which concludes the proof of Theorem 1.

B. Asymptotic intercept probability

It can be noticed from (8) that the closed-form expres-
sion of the IP depends on the average SNRs γP and γSJ

.
Consequently, the asymptotic expression for the IP can be
derived for high SNR regime by considering either γP → ∞
or γSJ

→ ∞. Analogously to [6], we assume that γP is
proportional to γSJ

i.e., σ = γP /γSJ
.

Proposition 1. The asymptotic expression for the IP of the
considered communication system subject to flat Rayleigh
fading channels can be expressed as

P
(c,J)
int ∼ 1−

M∏
k=1

[
1− λScD

(
1 +

e−φJ

φJ

)
ε
(k,J)
c

γSJ

log
(
γSJ

)]
.

(27)

Proof: In order to derive the asymptotic expression for
the IP, the residues theorem is used to approximate the Meijer
G-function.

First, by using the Maclaurin series and performing some
algebraic manipulations, the term Φ2 in (24) can be approxi-
mated for high values of γSJ

as

Φ
(c,k,J)
2 ∼ 1

2πj

∫ ∞

0

ze−ϖ
(c)
k z

∫
C

Γ2 (s) Γ (1− s)

×

(
φJz

χ
(k,J)
c

)−s(
1− χ

(k,J)
c

z
s

)
dsdz

∼ 1(
ϖ

(c)
k

)2Υ1 (υ)−
χ
(k,J)
c

ϖ
(c)
k

Υ2 (υ) , (28)

where Υ1 (υ) = G2,2
2,2

(
υ

∣∣∣∣ 1, 1;−
1, 2;−

)
, Υ2 (υ)

= G2,2
2,2

(
υ

∣∣∣∣ 0, 1;−
1, 1;−

)
, and υ = χ

(k,J)
c ϖ

(c)
k /φJ .

The terms Υ1 (υ) and Υ2 (υ) given in (28) can be written in
terms of complex integral as

Υ1 (υ) =
1

2πj

∫
C1

Γ (1 + s) Γ (2 + s) Γ2 (−s) υ−sds, (29)



and

Υ2 (υ) =
1

2πj

∫
C2

Γ2 (1 + s) Γ (1− s) Γ (−s) υ−sds. (30)

By considering the left half planes of both C1 and C2, it can
be noticed that (29) has simple pole at −1 and admits poles of
second order at −l− 2, l ∈ N, while (30) has poles of second
order at −l − 1, l ∈ N.
By making use of [14, Theorem 1.5], (29) is given by

Υ1 (υ) = lim
s→−1

(s+ 1)Γ (1 + s) Γ (2 + s) Γ2 (−s) υ−s

+
∞∑
l=0

lim
s→−(l+2)

∂G1 (s, υ)

∂s
, (31)

where

G1 (s, υ) = (s+ l + 2)
2
Γ2 (1 + s) (s+ 1)Γ2 (−s) υ−s.

(32)
It is evident that, the first term in (31) is equal to υ , while
the partial derivative of G1 (s, υ) with respect to s is given by

∂G1 (s, υ)

∂s
= (s+ l + 2)

2
(s+ 1)Γ2 (1 + s) Γ2 (−s) υ−s

×

[
− log (υ) + 2[1+(s+l+2)ψ(1+s)]

s+l+2

+1−2(s+1)ψ(−s)
s+1

]
, (33)

where ψ (.) stands for Polygamma function [13, Eq.
(06.14.02.0001.01)].

The limit of ∂G1(s,υ)
∂s can be expressed using [13, Eq.

(06.14.06.0026.01)] as follows

lim
s→−(l+2)

∂G1 (s, υ)

∂s
= υl+2 [(l + 1) log (υ) + 1] . (34)

By substituting (34) into (31), we get

Υ1 (υ) = v +
∞∑
l=0

υl+2 [(l + 1) log (υ) + 1] . (35)

In the same manner to Υ1 (υ) , the term Υ2 (υ) can be written
using the residues theorem as

Υ2 (υ) =

∞∑
l=0

(l + 1) υl+1 [ψ (1 + l)− ψ (2 + l)− log (υ)] .

(36)
Using [13, Eq. (06.14.03.0001.01)], the term Υ2 (υ) can be
simplified as

Υ2 (υ) =
∞∑
l=0

− (l + 1) υl+1

[
1

l + 1
+ log (υ)

]
. (37)

On the other hand, the Meijer G function given in (23) can
be written in term of complex integral as

G2,1
1,2

(
κ

∣∣∣∣ 0;−
0, 0;−

)
=

1

2πj

∫
C
Γ2 (s) Γ (1− s)κ−sds, (38)

with κ = θ
(k,J)
c .

It can be noticed that the above integrand function has poles
of second order at −l, l ∈ N. Hence, by using the residues
theorem, (38) can be expressed as

G2,1
1,2

(
κ

∣∣∣∣ 0;−
0, 0;−

)
=

∞∑
l=0

lim
s→−l

∂G2 (s, κ)

∂s
, (39)

with
G2 (s, κ) = (s+ l)

2
Γ2 (s) Γ (1− s)κ−s. (40)

The partial derivative of G2 (s, υ) with respect to s is given
by

∂G2 (s, κ)

∂s
= (s+ l) Γ2 (s) Γ (1− s)κ−s (41)

×

 − (s+ l) log (κ)
+2 [1 + (s+ l)ψ (s)]
− (s+ l)ψ (1− s)

 .
By making use of [13, Eq. (06.14.06.0026.01)], the limit of
(41) can be expressed as

lim
s→−l

∂G2 (s, κ)

∂s
=
κl

l!
[ψ (1 + l)− log (κ)] . (42)

Now, replacing (42) into (39), yields

G2,1
1,2

(
κ

∣∣∣∣ 0;−
0, 0;−

)
=

∞∑
l=0

κl

l!
[ψ (1 + l)− log (κ)] . (43)

Now, by substituting (35) and (36) into (28) and replacing
(28) and ( 43) into (21) and by considering only the first and
second terms of the infinite sum, we get

Pr
(
C

(c, k,J)
S ≤ 0

)
∼ λScD

[
1 +

e−φJ

φJ

]
ε
(k,J)
c

γSJ

log
(
γSJ

)
.

(44)
Finally, by replacing (44) into (6) we get the asymptotic
expression for P (c,J)

int given in (27).

IV. RESULTS AND DISCUSSION

In this section, the derived IP expression is validated
through corresponding Monte-Carlo simulation by generating
106 exponentially distributed random values. The considered
simulation parameters are given in Table. 1. We clearly see
from the obtained figures that the analytical results perfectly
match the simulation results.

TABLE I: Simulation parameters.

Parameter λq M γ̄P (dB)
value 0.5 4 10

Fig. 2 shows the IP as a function of γP for various values
of M , respectively. Obviously, the greater γP , the smaller the
IP. According to (1), when γP increases, the SNR of the
main link increases as well. This leads to the improvement
of the main link capacity and consequently the system’s
secrecy capacity enhances, which ensure secure transmission.
Additionally, according to (6), as M increases, the IP increases
as well as.
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Fig. 2: Intercept probability vs γP for γSJ
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Fig. 4 depicts the IP as a function of the number of
eavesdroppers M for various values of γSJ

by considering
the case of the presence and absence of a friendly jammer.
As one can see, as the number of eavesdroppers increases the
probability of intercepting communication increases as well.
Moreover, it can be also noticed that when γSJ

is significantly
small i.e., γSJ

≤ −2 dB and M ≥ 10, the friendly jammer
does not contribute to improving the security of the system.
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Fig. 3: Intercept probability vs the number of eavesdroppers
for γP = 25dB.

Fig. 5 depicts the IP versus γSJ
and the number of eaves-

droppers M . It is clearly seen that a better security is achieved
for a small number of eavesdroppers and high transmission
power of the friendly jammer. However, for a high number
of eavesdroppers, the presence of a friendly jammer with low
power does not have any significant impact on the system’s
security as the intercept probability tends to be high.

V. CONCLUSION

In this paper, the impact of the transmit power of the
friendly jammer in the presence of multiple eavesdroppers
on the security performance of an uplink underlay cognitive
radio has been investigated. Specifically, closed-form and
asymptotic expressions of the intercept probability have been
derived by considering multiple sources, multiple eavesdrop-
pers, equipped by a single antenna. Two scenarios have been
considered: (i) presence or (ii) absence of a friendly jammer.
The obtained results show that the system has a good secrecy
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IP

Fig. 4: Intercept probability vs the number of eavesdroppers
and γSJ

.

performance in the presence of a friendly jammer and that
security is enhanced for high values of the jammer’s transmit
power.
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