8 research outputs found

    MFA-DVR: Direct Volume Rendering of MFA Models

    Get PDF
    3D volume rendering is widely used to reveal insightful intrinsic patterns of volumetric datasets across many domains. However, the complex structures and varying scales of volumetric data can make efficiently generating high-quality volume rendering results a challenging task. Multivariate functional approximation (MFA) is a new data model that addresses some of the critical challenges: high-order evaluation of both value and derivative anywhere in the spatial domain, compact representation for large-scale volumetric data, and uniform representation of both structured and unstructured data. In this paper, we present MFA-DVR, the first direct volume rendering pipeline utilizing the MFA model, for both structured and unstructured volumetric datasets. We demonstrate improved rendering quality using MFA-DVR on both synthetic and real datasets through a comparative study. We show that MFA-DVR not only generates more faithful volume rendering than using local filters but also performs faster on high-order interpolations on structured and unstructured datasets. MFA-DVR is implemented in the existing volume rendering pipeline of the Visualization Toolkit (VTK) to be accessible by the scientific visualization community

    QuadStack: An Efficient Representation and Direct Rendering of Layered Datasets

    Get PDF
    We introduce QuadStack, a novel algorithm for volumetric data compression and direct rendering. Our algorithm exploits the data redundancy often found in layered datasets which are common in science and engineering fields such as geology, biology, mechanical engineering, medicine, etc. QuadStack first compresses the volumetric data into vertical stacks which are then compressed into a quadtree that identifies and represents the layered structures at the internal nodes. The associated data (color, material, density, etc.) and shape of these layer structures are decoupled and encoded independently, leading to high compression rates (4× to 54× of the original voxel model memory footprint in our experiments). We also introduce an algorithm for value retrieving from the QuadStack representation and we show that the access has logarithmic complexity. Because of the fast access, QuadStack is suitable for efficient data representation and direct rendering. We show that our GPU implementation performs comparably in speed with the state-of-the-art algorithms (18-79 MRays/s in our implementation), while maintaining a significantly smaller memory footprint

    Natural ventilation design attributes application effect on, indoor natural ventilation performance of a double storey, single unit residential building

    Get PDF
    In establishing a good indoor thermal condition, air movement is one of the important parameter to be considered to provide indoor fresh air for occupants. Due to the public awareness on environment impact, people has been increasingly attentive to passive design in achieving good condition of indoor building ventilation. Throughout case studies, significant building attributes were found giving effect on building indoor natural ventilation performance. The studies were categorized under vernacular houses, contemporary houses with vernacular element and contemporary houses. The indoor air movement of every each spaces in the houses were compared with the outdoor air movement surrounding the houses to indicate the space’s indoor natural ventilation performance. Analysis found the wind catcher element appears to be the most significant attribute to contribute most to indoor natural ventilation. Wide opening was also found to be significant especially those with louvers. Whereas it is also interesting to find indoor layout design is also significantly giving impact on the performance. The finding indicates that a good indoor natural ventilation is not only dictated by having proper openings at proper location of a building, but also on how the incoming air movement is managed throughout the interior spaces by proper layout. Understanding on the air pressure distribution caused by indoor windward and leeward side is important in directing the air flow to desired spaces in producing an overall good indoor natural ventilation performance

    Erzeugung von 3D-Netzmodellen in der Produktentwicklung durch Deformation initialer 3D-Netzmodelle

    Get PDF
    Mit 3D-Netzmodellen werden Objekte der materiellen Welt oder unserer Vorstellung computergestützt abgebildet. In digitalen Produktentwicklungsprozessen werden mit ihnen sowohl die Objektgestalt als auch anwendungsspezifische Informationen von Objekten und von Prozessen definiert. Mit flächenhaften Netzen (z. B. Dreiecksnetze) wird die Oberfläche von Objekten in diskreter Form repräsentiert, mit volumenhaften Netzen (z. B. Tetraedernetze) zusätzlich das Objektinnere. 3D-Netzmodelle werden bei der Erzeugung und der Manipulation, der Analyse und der Validierung, in fertigungsvorbereitenden Prozessen sowie zur Präsentation digitaler 3D-Objekte angewandt

    Efficient Light and Sound Propagation in Refractive Media with Analytic Ray Curve Tracer

    Get PDF
    Refractive media is ubiquitous in the natural world, and light and sound propagation in refractive media leads to characteristic visual and acoustic phenomena. Those phenomena are critical for engineering applications to simulate with high accuracy requirements, and they can add to the perceived realism and sense of immersion for training and entertainment applications. Existing methods can be roughly divided into two categories with regard to their handling of propagation in refractive media; first category of methods makes simplifying assumption about the media or entirely excludes the consideration of refraction in order to achieve efficient propagation, while the second category of methods accommodates refraction but remains computationally expensive. In this dissertation, we present algorithms that achieve efficient and scalable propagation simulation of light and sound in refractive media, handling fully general media and scene configurations. Our approaches are based on ray tracing, which traditionally assumes homogeneous media and rectilinear rays. We replace the rectilinear rays with analytic ray curves as tracing primitives, which represent closed-form trajectory solutions based on assumptions of a locally constant media gradient. For general media profiles, the media can be spatially decomposed into explicit or implicit cells, within which the media gradient can be assumed constant, leading to an analytic ray path within that cell. Ray traversal of the media can therefore proceed in segments of ray curves. The first source of speedup comes from the fact that for smooth media, a locally constant media gradient assumption tends to stay valid for a larger area than the assumption of a locally constant media property. The second source of speedup is the constant-cost intersection computation of the analytic ray curves with planar surfaces. The third source of speedup comes from making the size of each cell and therefore each ray curve segment adaptive to the magnitude of media gradient. Interactions with boundary surfaces in the scene can be efficiently handled within this framework in two alternative approaches. For static scenes, boundary surfaces can be embedded into the explicit mesh of tetrahedral cells, and the mesh can be traversed and the embedded surfaces intersected with by the analytic ray curve in a unified manner. For dynamic scenes, implicit cells are used for media traversal, and boundary surface intersections can be handled separately by constructing hierarchical acceleration structures adapted from rectilinear ray tracer. The efficient handling of boundary surfaces is the fourth source of speedup of our propagation path computation. We demonstrate over two orders-of-magnitude performance improvement of our analytic ray tracing algorithms over prior methods for refractive light and sound propagation. We additionally present a complete sound-propagation simulation solution that matches the path computation efficiency achieved by the ray curve tracer. We develop efficient pressure computation algorithm based on analytic evaluations and combine our algorithm with the Gaussian beam for fast acoustic field computation. We validate the accuracy of the simulation results on published benchmarks, and we show the application of our algorithms on complex and general three-dimensional outdoor scenes. Our algorithms enable simulation scenarios that are simply not feasible with existing methods, and they have the potential of being extended and complementing other propagation methods for capability beyond handling refractive media.Doctor of Philosoph

    Interactive Volume Visualization of General Polyhedral Grids

    No full text
    corecore