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ABSTRACT 

In the medical diagnosis and treatment planning, radiologists and surgeons rely 

heavily on the slices produced by medical imaging scanners. Unfortunately, most of 

these scanners can only produce two dimensional images because the machines that 

can produce three dimensional are very expensive. The two dimensional images from 

these devices are difficult to interpret because they only show cross-sectional views 

of the human structure. Consequently, such circumstances require highly qualified 

doctors to use their expertise in the interpretation of the possible location, size or 

shape of the abnormalities especially for large datasets of enormous amount of slices. 

Previously, the concept of reconstructing two dimensional images to three 

dimensional was introduced. However, such reconstruction model requires high 

performance computation, may either be time-consuming or costly. Furthermore, 

detecting the internal features of human anatomical structure, such as the imaging of 

the blood vessels, is still an open topic in the computer-aided diagnosis of disorders 

and pathologies. This study proposed, designed and implemented a visualization 

framework named SurLens with high performance computing using Compute 

Unified Device Architecture (CUDA), augmenting the widely proven ray casting 

technique in terms of superior qualities of images but with slow speed. Considering 

the rapid development of technology in the medical community, our framework is 

implemented on Microsoft .NET environment for easy interoperability with other 

emerging revolutionary tools. The Visualization System was evaluated with brain 

datasets from the department of Surgery, University of North Carolina, United 

States, containing 109 datasets of MRA, T1-FLASH, T2-Weighted, DTI and         

T1-MPRAGE. Significantly, at a reasonably cheaper cost, SurLens Visualization 

System achieves immediate reconstruction and obvious mappings of the internal 

features of the human brain, reliable enough for instantaneously locate possible 

blockages in the brain blood vessels without any prior segmentation of the datasets.  
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ABSTRAK 

Dalam diagnosis perubatan dan perancangan rawatan, pakar radiologi dan pakar 

bedah bergantung pada hirisan yang dihasilkan oleh pengimbas pengimejan 

perubatan. Malangnya, kini kebanyakan pengimbas hanya boleh menghasilkan imej 

dua dimensi. Mesin yang dapat menghasilkan imej tiga dimensi adalah terlalu mahal. 

Imej dua dimensi yang terhasil ini adalah sukar untuk ditafsir kerana mereka hanya 

menunjukkan pandangan keratan rentas struktur manusia. Oleh itu, keadaan seperti 

ini memerlukan doktor pakar untuk menggunakan pengalaman mereka dalam tafsiran 

lokasi, saiz atau bentuk keabnormalan terutama sekali untuk set data yang besar. 

Sebelum ini, konsep membina semula imej dua dimensi ke tiga dimensi 

diperkenalkan. Walau bagaimanapun, model penyusunan semula itu memerlukan 

pengiraan berprestasi tinggi, sama ada memakan masa atau kos yang tinggi. 

Tambahan pula, mengesan ciri-ciri dalaman struktur anatomi manusia, seperti 

pengimejan saluran darah merupakan topik yang masih hangat dalam diagnosis 

berbantu komputer dan pathologi. Kajian ini mencadangkan, mereka bentuk dan 

melaksanakan rangka kerja visualisasi dinamakan SurLens dengan high performance 

computing menggunakan Compute Unified Device Architecture (CUDA) 

menggunakanplatform Microsoft.NET. Sistem Visualisasi ini telah divalidasi dengan 

menggunakan dataset daripada jabatan Pembedahan, Universiti North Carolina, 

Amerika Syarikat, yang mengandungi 109 dataset dari jenis MRA, T1-FLASH, T2 

Berwajaran, DTI dan T1-MPRAGE. Pada kos yang rendah, SurLens Sistem 

Visualisasi mencapai pembinaan semula serta-merta dan pemetaan jelas ciri-ciri 

dalaman otak manusia dengan kebolehpercayaan yang tinggi utnuk menentukan 

lokasi kemungkinan berlaku sumbatan pada saluran darah otak tanpa perlu 

disegmentasi terlebih dahulu. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background Study 

Throughout the history of humankind, visual imagery is seen as an appropriate way to 

communicate both abstract and concrete ideas to realization. Visualization is a way of 

making a form of mental vision, image or picture of something that is not visible, 

present to the sight or an abstraction, visible to the mind (The Oxford English 

Dictionary, 1989). Visual images are created through visualization, serving as models 

through which future things emerge. Some of the ancient uses of visualization are the 

European cave painting, the introduction of geometry by the ancient Greek and the 

description of locations in form of map.  

           Visualization spans through a wide spectrum of knowledge domain, however, it 

can be broadly categorized into scientific and information. Scientific visualization 

focuses on physical data such as meteorology, human body and earth while information 

visualization focuses on abstract, non-physical data such as financial data, bibliographic 

sources and statistical data (Teyseyre & Campo, 2009).  

           Volume Visualization is a domain within scientific visualization concerned with 

the representation, manipulation, modeling and rendering of volumetric datasets. Such 

volumetric datasets are represented as a 3-D discrete regular grid of volume elements 

(called voxels), stored in a discrete regular volume buffer V(x,y,z) (Kaufman, 1991). 

Medicine, Engineering, Geology and Pharmacology are among those fields that are 

massively benefiting from volumetric datasets. With the evolution of modern 
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technology, volume visualization has been extensively pushed into many applications, 

especially with arose consequence production of enormous data from medical 

community. Such creation of great amount of data has created more challenges and 

difficulties for the extraction of valuable information, analysis and its explanation in an 

intuitive way. Undoubtedly, CPU, as a functional processing device has high clock 

speed, facilitating its competencies for general-purpose tasks, but CPU has no parallel 

processing capabilities (Qin et al., 2012). Consequently, parallel computing is an 

alternative promising platform to accelerate visualization of medical volumetric datasets. 

1.2 Brain Anatomy and Abnormalities 

The relevance of brain in human being cannot be over-emphasized. Whereas, brain does 

not only exist in human being, it exists as well in other mammals. However, human 

brain is about three times larger, with around one hundred billion neurons (Kasthuri & 

Lichtman, 2010). Human brain is the center of nervous system controlling all activities 

of the human body, from self-control, reasoning, planning to vision, with all features 

greatly pronounced, enlarged and developed. Skull houses many brain slices. To 

perceive the complexity of the brain, each of the slices that made up the skull exists in 

certain measured thickness (ranges from 1 - 5mm) with each slice having distances in-

between (ranges from 1 - 5mm) relative to image acquisition device employed. 

           Blood vessels, blood flows and the fluids surrounding the brain may contain 

different types of abnormalities. Vascular abnormalities may occur in the brain 

whenever abnormalities involve arteries or veins. In certain cases, there could be 

blockages in one of the blood vessels in the brain, depriving the brain of its functional 

flow of blood and oxygen. Vascular abnormalities are deadly medical cases that usually 

lead to stroke. Among other life-threatening abnormal conditions in the brain are brain 

lesions, as a result of abnormal tissue area in the brain, brain tumor, hypertension, 

diabetes, walderstrom's macroglobulinemia and penetrating brain injury.  

           Brain tumor is an abnormal growth of tissue in the brain. It may originate within 

the brain itself (primary tumor) or from other part of the body and travels to the brain 
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(secondary or metastatic tumor). While there are about two hundred and twenty (220) 

types of brain tumor classifications, brain tumor ranges from least aggressive, the 

benigns, which are non-cancerous, to the most aggressive, the malignants that are 

cancerous. However, most medical institutions use World Health Organization (WHO) 

standards for their classification. Glioblastomas is a malignant tumor that originates 

from the brain (primary tumor). Patients with Glioblastomas live an average of 12 - 14 

months, although the medical communities hope for its medical long-term transfer into a 

more chronic disease for increase in life span of patients to 10-15 years. However, there 

is unlikely development of such cure within short expected time frame (Bredel, 2009). In 

the diagnosing procedures of most of these brain abnormalities, medical community has 

benefited immensely from the image modalities techniques such as MRI and CT.  

           Magnetic Resonance Images (MRI) sprung up in few decades ago and its 

significance is clearly noticed specifically in its ability to assign distinguishing intensity 

values to different levels of tissue densities. MRI is a non-invasive medical diagnostic 

technique for imaging human interior anatomical structures. MRI machine signal scans    

points-by-points into the patient’s brain anatomical structures, creating a map, which it 

captures in binary codes (1, 0) and stored as 2-D datasets using mathematical function 

called Fourier Transform. MRI technique utilizes strong magnets and pulses of radio 

waves to manipulate the natural magnetic properties in the human body. Considering the 

fact that MRI does not use X-ray techniques unlike CT, there are no known biological 

risks involved when a patient is exposed to MRI scan. Moreover, it produces better 

images of organs, soft tissues and the interior structure of bones than those of other brain 

scanning technologies such as Computed Tomography (CT) and Positron Emission 

Tomography (PET).  

           The conventional MRI techniques include axial, coronal or sagittal orientation of 

T1-weighted, T2-weighted and T*2-weighted. However, a number of specialized MR 

imagery is available for special purposes. Magnetic Resonance Angiography (MRA) is 

primarily designed for imaging blood vessels of the brain, to generate images of the 

arteries for stenosis (abnormal narrowing), occlusion or aneurysms. Diffusion Tensor 

Imaging (DTI) is for determination of magnitude and direction of water; based on the 

principle of diffusion, the movement of water molecules from the region of higher 
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concentration to the region of lower concentration. The T1-Fast Low Angle Shot 

Magnetic Resonance (T1-FLASH) for glioma tumor and lesions, the T1-Magnetization 

Prepared Rapid Gradient Echo (T1-MPRAGE) which is for detecting metastatic brain 

tumors, are other specialized MR techniques employed in medical diagnosis.   

1.3 Motivation 

The physical world around us is in three-dimensional (3-D); yet traditional cameras and 

imaging sensors are only able to acquire and show two-dimensional (2-D) images that 

lack the depth information (Geng, 2011). The 2-D cross-sectional images produced from 

imaging techniques such as CT and MRI scanners are generally difficult to analyze. 

With this, the practice of surgical pathology involving the use of microscope to view 

tissue mounted on glass slides still persist significantly over many decades. In such usual 

cases of handling huge information embedded in each pixel of 2-D images, analyzing to 

deduce the position relationship between focus of infection and three dimensional 

geometry, estimating size and shape of focus of infection (Wu et al., 2010) usually 

require mental visualization of medical professionals based on their experience and 

expertise. This procedure is tedious, time-consuming and prone to error. Figure 1.1 and 

Figure 1.2 illustrate the conventional pathologist’s procedure of analyzing scanned 

images of patients and the visualization-assisted procedures respectively. 

Feature detection and local mapping of internal features are still open topics in  

the computer-aided diagnosis of biological disorders and pathologies. Although volume 

rendering has recorded good ability in depicting internal data features, however, locating 

object boundaries and revealing internal data features of interest are still challenging 

task due to the usual occlusion of features of interest by other volume structures 

(Kirmizibayrak et al., 2011; Gabor, Tornai & Cserey, 2010).  Implicit visibility of tiny 

features, through allocation of transparency based on scalar values and assigning of 

transparency based on localized gradient magnitude for region of interest, are 

challenging issues. The difficulties of setting proper mapping functions to convert 
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original volumetric data to renderable color and opacity values limit the application of 

volume rendering (Guo, Mao & Yuan, 2011). 

 

 

 

 

Figure 1.1: Conventional pathologists’ slides viewing microscope (Jeong et al., 2010) 

 

 

 

 

 

Figure 1.2: Clinical support with visualization 

 

         Medical visualization systems are developed to transform large and complex stacks 

of datasets into effective visual presentations for immediate medical diagnosis and 

therapy procedures. Volume rendering can be implemented to produce quality images, 

however, this technique still has a major outstanding drawback of “timely” generation of 
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such images (Yun & Xing, 2010). These medical scanners usually produce hundreds of 

2-D slices requiring intense algorithm optimization. A computer-assisted brain diagnosis 

system that could effectively serve its purpose must be able to achieve not only fast 

generation of 3-D model of datasets but also the entire streams of datasets’ processing 

within an interactive speed. The promise of computer-based surgical planning is to 

provide better surgical results with fewer procedures, decreased time in the operating 

room, lower risk to the patients (increased precision of technique, decreased infection 

risk), and lower resulting cost (Kumar & Rakesh, 2011).  

         Most of the previously developed medical visualization systems have 

shortcomings in: 

 

1. reconstructing 2-D sequence of human organ, soft tissue and lesions sectional 

images to 3-D model, (Geng, 2011; Wu et al., 2010). 

2. detecting, mapping and isolating abnormalities / tumor for surgery and/or disease 

diagnosis procedure, (Kirmizibayarak et al., 2011; Gabor, et al., 2010; Guo et al., 

2011).    

3. handling mass data within a considerable interactive speed, extensive application 

interoperability and at a low resulting cost (Yun & Xing, 2010; Kumar & 

Rakesh, 2011). 

 

Thus, the main concentration of this study is to reconstruct sequence of 2-D imagery into 

3-D model capable of clearly detecting, mapping and isolating abnormalities / tumor in 

MR imagery within a considerable interactive speed, extensive application 

interoperability and at a low resulting cost for optimum use in medical diagnosis and 

therapy treatment. 
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1.4 Research Questions 

This study aims to solve the following research questions: 

 

1. How to reconstruct 2-D sequence of brain MRI into 3-D model? 

2. How to detect, map and isolate brain abnormalities / tumor for surgery and/or 

disease diagnosis procedures?     

3. How to handle mass volume of volumetric brain MRI datasets within a 

considerable interactive speed, extensive application interoperability and at a low 

resulting cost? 

1.5 Research Objectives 

The objectives for this research are as follows: 

 

1. To propose new approaches for brain volume visualization by introducing  

 a framework for reconstructing sequence of 2-D cross-sectional images to 

3-D model, 

 a feature and edge detection scheme that can allocate transparency based on 

scalar values and assign transparency based on localized gradient magnitude 

for edge detection of region of interest in the data volume, 

 a technique with automatic local feature mapping scheme that can isolate 

abnormalities / tumor and reveal internal features of brain blood vessels,  

  algorithms within the framework that are robust enough to handle mass 

volumetric data within a considerable interactive speed, extensive 

application interoperability and at a lower resulting cost. 

2. To design and implement a visualization system (SurLens) based on the proposed 

approaches. 

3. To compare the volume visualization results of SurLens with existing 

approaches. 
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1.6  Scope of the Research 

This research focuses on the design of SurLens framework and the implementation of 

SurLens volume visualization system. The study is limited to reconstructing and locating 

abnormalities / tumor in Magnetic Resonance (MR) Imagery of the brain in 3-D model.  

Focus is on obtaining quality 3-D images, sufficient enough to reveal detail internal 

information of datasets using the MRI datasets from the department of Surgery, 

University of North Carolina, Chapel Hill, United States. The study concentrates on 

Magnetic Resonance Angiography (MRA) datasets, however, Diffusion Tensor Imaging 

(DTI), T1-Fast Low Angle Shot Magnetic Resonance (T1-FLASH) and                       

T1-Magnetization Prepared Rapid Gradient Echo (T1-MPRAGE) would also be 

considered. The development of the proposed visualization system would be within C# 

programming language environment, built on top of visualization toolkit (VTK) libraries 

and on parallel computing platform, Compute Unified Device Architecture (CUDA). 

1.7 Organization of the thesis 

To disseminate the findings of this research, concise investigation is presented into the 

field of visualization, human brain anatomy and its associated abnormalities.  

             In order to properly draw attention of the readers to some of the fundamentals of 

this research, Chapter 2 commences with general introduction of volume visualization 

and volumetric image datasets. Datasets pre-processing techniques and medical volume 

visualization as a whole is reviewed. Parallel processing procedures, specifically CUDA 

technology and previously proposed software components in this domain are extensively 

reviewed and presented. Strengths and weaknesses of previously proposed frameworks, 

schemes, algorithms and techniques are presented. The chapter describes and compares 

ten (10) recently proposed volume visualization frameworks in their entirety, in 

justification of the newly proposed framework, schemes, algorithms and techniques in 

this study.  
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           Chapter 3 discusses the procedural research methodology, numerical 

computations and data structures used in the development of SurLens visualization 

system. The framework, schemes, algorithms, techniques and data collection for the 

development of SurLens visualization system are presented. Chapter 4 focuses on the 

designs and implementation of the proposed SurLens Visualization system for 

volumetric brain MRI datasets.  

           Evaluation results and discussion in comparison with two (2) notable, previously 

developed visualization systems are presented in Chapter 5 while Chapter 6 concludes 

the research, summarizes the major contributions of the study and presents the future 

works. 
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CHAPTER 2 

VISUALIZATION OF VOLUMETRIC DATASETS 

2.1 Introduction 

Visualization is a phenomenon existing in our day-to-day life. Over a thousand years 

ago, visualization has been used in the data plots, maps and scientific drawings. As far 

back as 1137 A.D, visualization was used to draw the map of China and the very famous 

map of Napoleon’s invasion of Russia in 1812 (Owen, 1993). Visualization could be 

defined as a tool or method for interpreting image data, fed into a computer and for 

generating images from complex multi-dimensional data sets (McCormick, DeFanti & 

Brown, 1987). Informally, visualization engages the human vision and the processing 

power of human mind in the transformation of data or information into visual images 

referred to as pictures. 

           Visualization has received many descriptive terminologies over the years. 

Scientific visualization was first fundamentally used in 1987 (Rosenblum et al., 1994) 

and its seen as a representation of numerical data in a way that extrapolates meaningful 

information to understand or analyze interesting feature the data might hold. Data 

visualization is a more general term that implies treatment of data sources beyond the 

sciences and engineering. This encompasses marketing, business and financial data. 

More often, the term information visualization is becoming more pronounced. It is used 

to describe visualization of abstract information such as hypertext documents on the 
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World Wide Web, directory or file structures on a computer or abstract data structures 

(InfoVis, 1995).  

           Visualization is also seen as a method of extracting meaningful information from 

complex dataset through the use of interactive graphics and imaging (Kaufman, Cohen 

& Yagel, 1993), hence, computer graphics and image processing (or imaging) are tools 

for visualization. Computer graphics is the creation of images using computer, which 

encompasses 2-D paint techniques, drawing or rendering techniques. The output of 

computer graphics is an image. With image processing, we can define techniques to 

transform (rotate, scale, shear), extract, analyze and enhance images. Visualization 

focuses on exploring, transforming, viewing data as image in order to gain 

understanding and insight into the data. Computer graphics is used as a tool to produce 

the output for visualization.  However, this study specifically tread the path of volume 

visualization, which is typically identified with the rendering, modeling, manipulation 

and representation of datasets (Kaufman, 1991; Kaufman, 1996). 

           Volume visualization is an important diagnostic tool in modern medicine. With 

computer imaging techniques such as Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI), internal information of a living patient is captured. The 

information is captured in form of slice-planes or cross-sectional images of patient 

which could be compared to the conventional  photographic X-ray. A slice consists of a 

series of number values representing the attenuation of X-rays (in case of CT) or the 

relaxation of nuclear spin magnetization (MRI) (Krestel, 1990). However, with applied 

and sophisticated mathematical techniques, the slice-planes could be reconstructed and 

gathered into a volume of data.  

          Generally, with the slices, the series of number values are arranged in either a 

matrix pattern or regular array. However, with huge amount of information data in the 

slice, it is not possible to understand the data in its raw form, even with a trained eye. 

This is where the gray scale value comes in.  Computer only understands 0’s and 1’s, 

whereas, human being cannot firmly relates the codes to meaningful information, 

possible solution is to represent the number values in 2-D cross-section that could be 

more useful with human vision system. Hence, such representation requires 

understanding the way medical imaging device scans.  
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           This chapter reviews visualization of volumetric datasets and presents earlier 

frameworks from which medical volume visualization can be facilitated. After outlining 

broad collection of volumetric data acquisition methodologies, varying volume 

rendering techniques are described. The chapter extrapolates image reconstruction 

approaches, direct volume visualization techniques; possible optimization procedures 

specifically parallel processing approaches and their outstanding issues, which crystalize 

the research direction for this study. The weaknesses and strengths of each of the 

previous techniques are discussed. The strengths and weaknesses of ten (10) recently 

proposed volume visualization frameworks in entirety, including their proposed 

schemes, algorithms and techniques, are presented and compared in justification of the  

proposed framework, schemes, algorithms and technique in this study.                       

2.2 Volume Visualization 

Volume visualization is a sub-field of scientific visualization that extracts meaningful 

information from volumetric data using interactive graphics and imaging, and it is 

concerned with volume data representation, modeling, manipulation, and rendering 

(Suter et al., 2011). Volume visualization is an important tool for visualizing and 

analyzing data sets with its extensive application into such areas as biomedicine, 

computational fluid, finite element models, computational chemistry and geophysics. 

Magnetic Resonance (MR) Imagery and Computed Tomography (CT) are both imaging 

techniques benefiting optimally from volume visualization. Such numerical simulations 

and sampling devices create images of the human body for clinical diagnosis while 

volume visualization presents such datasets for viewing and clinical analyzing of the 

anatomical structures. Over recent years, volume visualization is continually evolving as 

visualization approaches, especially with the advent of faster processing devices. One of 

the challenges depriving the usage of volume visualization is the memory system to 

support volume processing (Suter et al., 2011; Ma, Murphy & O’Mathura, 2012). 

           Two-dimensional (2-D) data is represented as X and Y axes. These are mere flat 

structures in horizontal and vertical axes. Any image we have in this form, if turned to 
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its other sides, will become a line. Hence, a 2-D structure has corners or vertices and 

sides in two planes and cannot provide detail information embedded in image data. 

However, the 2-D representation can be re-represented in three-dimension (3-D), using 

mathematical models which has X and Y planes (just as 2-D image) but a Z-axis 

inclusive, this gives the image more features such as rotation. This third axis added faces 

to the 3-D structures, making the data available for real world simulation of the imaged 

object.  

           Since, there is a one-to-one correspondence between the pixel value in the image 

scan and a specific tissue of a patient, the numbers could be assigned a specific gray 

scale value. Displaying the data on the computer screen at this stage will emerge the 

structures in the patient’s data. The emerged structures are as a result of the interaction 

of the human visual system with data spatial organization and the chosen gray-scale 

values. With this approach, its being possible to translate what computer represents as 

series of numbers into the corresponding cross-section of human body; the skin, the 

bone and the tissue. A more useful result could be made available for diagnosis by 

extending the 2-D into 3-D technique. In this case, the image slices are gathered as a 

volume of data. With 3-D technique, we can reveal the entire anatomical structure of a 

living patient without the intervention of surgery.  

           With the inability of the medical image scanners to present human anatomical 

structures in 3-D format, reconstruction procedure is the alternative. Reconstruction is a 

reverse engineering technique of 2-D MR imagery to 3-D. This is achieved in the 

medical diagnosis and disease management using the combination of computer graphics 

and image processing tools, the resulting 3-D data could serve as information for 

opinion making and intervention planning on a living patient without any prior 

mandatory surgical operation. 

2.3 Volumetric Image Datasets  

The first step towards volume visualization is the acquisition of volumetric data. Typical 

set of data samples is represented as V(x,y,z,d), in the case of a three- dimensional data, 
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with d representing the data property at a location determined by x,y,z. To describe value 

at any d continuous location, zero-order (the Nearest Neighbor), first-order (trilinear 

also called piecewise function) and higher-order interpolation are possible options.  The 

region of constant value that surrounds each sample in zero-order interpolation is 

known as a volume cell (commonly interchangeably referred to as voxel (volume 

element) or grid location or sample points) with each voxel being a rectangular cuboid 

having six faces, twelve edges and eight corners (Kaufman, 1996). Dataset is a 

collection of volume elements. However, there is variation in the spatial and intensity 

resolution of images produce by different medical imaging devices. This section 

presents some of the commonly used tools for volume data acquisition.  

          It is important to discuss the topology or geometry in which volumetric data must 

be. Data samples may exist as scalar data, holding such values as temperature, pressure 

and density, or exist as vector (e.g. velocity) or tensor (e.g. Finite Element Methods 

(FEM) modeling). Typically, a volume dataset V is a set of element (Winter, 2002) 

defined as: 

{V },...,2,1),,( nizyxi   

),,( zyx is a point in 3-D space, 
3 

),,( zyx
i

  could be scalar, vector or tensor, which is defined as follows: 

 a scalar function :f
3

;  

 an n-dimensional vector function, :nf  
3
 n , or  

 a k-ranked tensor function, :
k

nf  
3
 ,

k
n  

 

Scalar and vector functions are representation of special cases of tensor functions with 

ranks 0 and 1 respectively. Usually in volume visualization, a total function is given by a 

physical or simulated object and then sampled at discrete points which is stored as 

discrete set of elements resulting in the formation of the defined dataset V. Figure 2.1 is 

the representation of volumetric data in Cartesian grid. 
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Figure 2.1: Volumetric Data in Cartesian Grid 

 

           Speray & Kennon (1990) categorized volume dataset V into structured and 

unstructured based on the topology of the dataset. In line with such categorization, the 

topology of structured data is well defined in each of its three orthogonal planes. This 

category includes cartesian, rectilinear and curvilinear grids. Unstructured grids are 

complex and difficult to use because their structures are not implicitly defined by data 

arrangements. However, rectilinear grids can be defined in computational space and 

classified as being regular or irregular in structure. If the spacing between samples 

along each axis is constant along the three orthogonal axes ),,( zyx , which is mostly the 

case, the dataset V is called isotropic. In certain cases, there might be separation along 

each axis in the dataset sample but different between the axes, the dataset V is referred 

to as anisotropic. Hence, if V is defined on a regular grid, a 3-D array (commonly 

referred to as volume buffer, 3-D raster or cubic frame buffer) is used to store the values 

and V is referred to as array of values ),,( zyxV defined only at grid locations. Figure 2.2 

shows the different data structure grids. 
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Figure 2.2: Data Structure Grids 

2.4 Medical Imaging Modalities 

Volume visualization became feasible with the revolution in image acquisition for 

extensive medical diagnosis and pre-treatment planning.  The medical science that uses 

electromagnetic radiation, ultrasonography or radioactivity for evaluation of body 

tissues in case of injury or disease is referred to as diagnoses medical imaging. 

However, electromagnetic radiation can either be ionizing or non-ionizing.  This section 

gives a brief overview and concepts of some of medical imaging modalities. 

           X-ray is the oldest imaging technique widely used throughout the world. It is an 

ionizing radiation technique discovered by the German physicist in 1895 by Wilhelm 

Conrad Röntgen (Yang, Guang-Zhong & Firmin, 2000). The discovery of Röntgen in 

that century drives the use of electromagnetic radiation in the form of ionizing radiation 

(gamma and X-rays) in an unprecedented speed for diagnostic radiology. The basic 
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principle for using X-ray involves passing of beam of X-rays, produced by an X-ray tube 

to selected parts of the body. There was an attempt to reconstruct images from 

projections as at 1940, this was even planned before the advent of modern computer 

technology. Gabriel Frank achieved this with the plan of describing the basic idea of 

modern tomography including such concepts as sonograms and optical back projection 

(Hsieh, 2002). About 16 years later, Allah M. Cormack furthered the research objectives 

with some experimental works based on reconstructive tomography. 

           

 In 1967, the first CT scanner was developed by Godfrey N. Hounsfield in England at 

the Central Research Laboratory of EMI, Ltd (Hounsfield, 1973). Hounsfield 

investigation on pattern recognition techniques shows that if X-ray is passed through a 

body from different directions, this would result in its’ internal body reconstruction. In 

his trials in 1969, test objects were scanned with isotope source that required a scan time 

of 9 days per image (Kalender, 2006). 

           Research usage of any of the image modalities depends on the intended image 

area to extract. Some could successfully extract certain information called 

“Morphological Information” while others are very useful in extracting “physiological 

or functional information”. X-ray, CT and MRI are typical examples of former while 

PET and SPECT are examples of the later. However, such specific features and 

functionalities justify their usage in medical community. Section 2.4.3 explains specific 

clinical relevancies of these image modalities. 

2.4.1 Computed Tomography 

Computed tomography (CT) is a widely adopted imaging modality with many clinical 

applications from diagnosis to procedure planning (Merck, 2009). Computed 

Tomography is a technique of X-ray photography in which a single plane of a patient is 

scanned from various angles in order to provide a cross-sectional image of the internal 

structure of that plane (Hsieh, 2002). Conventional radiography uses the relative 

 

CT Number = (µ - µwater /µwater - µair) × 1000                                                              (1) 
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distribution of X-ray intensities for its measurement. It involves sending of uniform 

intensity X-ray through a patient from an X-ray source of intensity Io and corresponding 

exiting of the X-ray with intensity I (x, y) from the other side, which then interact with a 

radiography film sheet. The different paths through the material will alternate the X-rays 

by varying amounts, based only on the mass attenuation coefficient (µ), since the 

distance (d) is the same on all point of the radiography film (Shabaneh et al., 2004).  CT 

uses attenuation as the judgments of its measurements as the X-ray is scanned through 

the patients.  

 

 

Figure 2.3: An example of a CT slice, a head scan (Lundström, 2007) 

 

           The patient is scanned using an X-ray source from one side of the plane and the 

detector placed on the opposite side is used to measure the attenuated X-ray, which is 

recorded by computer. After the first scan through the plane, the X-ray source and the 

detector rotate with a particular predefined amount for another translational scan. Hence, 

an X-ray technique involves passing electromagnetic radiation through the body. This is  

usually presented as CT Number, expressed in “Hounsfield Units” or “HU” named after 

Godfrey Hounsfield. A positive CT indicates a tissue is more attenuating than water 

while a negative CT denotes a tissue with lower density than water. 

2.4.2 Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) technique has been one of the primary tools 

employed in medical diagnosis since the first publication of human body image in 1977 

(Damadian, Goldsmith & Minkoff, 1977). MRI imaging technique is completely 
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different from that of Computed Tomography as it uses energy sources as its imaging 

procedure rather than ionizing radiation technique of X-ray. In the early years of 

existence of MRI, it was referred to as Nuclear Magnetic Resonance Imaging (NMRI) 

since it was developed from knowledge gained in the study of nuclear magnetic 

resonance (Amruta, Gole & Karunakar, 2010). The term NMRI is sometimes still in use 

when discussing non-medical devices of the same NMRI principle. However, in medical 

imaging, magnetic resonance tomography (MRT) may sometimes be interchangeably 

used for MRI. The procedure requires the usage of a strong magnetic field for spin 

alignment of hydrogen nuclei (photons) in the body. 

           The spin synchronizes as the radio-frequency (RF) pulse matches the nuclear 

resonance frequency of the photons. As the pulse is removed, different relaxation times 

are measured, that is, the times for the spins to go out-of-sync (Lundström, 2007). The 

density and chemical surroundings of the hydrogen atoms determine the measured value. 

Whilst some vectors will form alignment towards the direction of the main magnetic 

field, a slight majority will align themselves in the slightly lower energy state associated 

with the direction of the main magnetic field (Geoffrey et al., 2008). MRI creates its 

images as a result of the difference between two populations of vectors leading to the 

equilibrium net magnetic vectors. We could therefore say that, with MRI, a body is 

prepared for radio signal transmission on the FM bandwidth. The relative distribution of 

the vectors aligned within or against the main magnetic field is described by Boltzmann 

distribution as in equation (2).            

           The value of k is the Boltzmann constant, T is the temperature measured in kelvin, 

h is the Planck constants, γ is the gyromagnetic ratio of the nucleus in rad/T/s and B is 

the strength of the magnetic field in tesla, ∏ is a constant approximately equal to 

3.14159. The number of spins in the lower energy level and the number of spins in the 

upper energy level are denoted by n↑ and n↓ respectively. 

 

n↑ / n↓= exp (-∆E / kT), with ∆E = hγB/2∏                                                           (2) 
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Figure 2.4: An example of an MRI slice, brain’s Scan  

2.4.3 Clinical Applications / Relevancies 

MRI is the only chemically sensitive in-vivo imaging technique with high-resolution soft 

tissue contrast that allows physicians to peer deep inside the human body, producing 

clinically relevant images of soft tissue lesions and functional parameters of the body 

organs, without the use of invasive procedures or ionizing radiation such as X-rays 

(Cosmus & Parizh, 2011). However, with the knowledge gained in the course of this 

study, some of the clinical applications of CT and MRI, as being proven by researchers, 

solemnly depend on the required medical examination on the patient and in certain 

cases, the image modalities are seen to be complementary to each other in the diagnosis 

procedures. 

           With CT scan, hermiated disc, spinal stenosis, fractures in the spin can be 

detected. It has also proven very useful in cartilage invasion and anatomy of the 

surrounding tissues. MRI has ability to demonstrate and characterize soft tissues hence 

useful in heart, muscles, brain, spinal cord, some head and neck tumors. Consequently, 

CT and MRI are mostly used image modality. In order to benefit optimally from CT and 

MRI, their combinatory techniques were introduced to create more impact features in 

medical imaging such as PET / CT and PET / MRI. Meanwhile, Magnetic Resonance 

Imaging (MRI) is the most recently applied technique, most commonly used in 

radiology to visualize the structure and functions of the body for many reasons among 

which is, it provides detailed images of the body in any plane with higher discrimination 

(Sun, Bhanu & Bhanu, 2009). 
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2.5 Dataset Pre-Processing Techniques 

Pre-processing stage in volume visualization is to enhance the visual appearances of the 

images and the manipulation of the datasets’ structures, to convert them from their 

acquired representation to spatial representation required and appropriate for 

visualization. However, a lot of caution needs to be exercised with image enhancements’ 

procedures as poorly embarked approach may introduce image artefacts or even lead to 

loss of information in the datasets.  

           Segmentation, a key step and a large research area in visualization, is usually 

performed at the pre-processing step of volume visualization. As a matter of fact, 

different organs or tissues of an acquired volumetric data might have the same density or 

intensity hence segmentation stage and not only classification becomes essential. The 

fundamental principle guiding volume visualization is based on the fact that empowering 

the user to see a certain structure, using only classification is not always possible 

(Meißner et al., 2000). Though acquisition methods usually demand different level or 

extent of required segmentation but most methods require semi-automatic approach 

which invariably increases the overall processing time of datasets in volume 

visualization. Studies have shown that segmentation of brain MR is a compulsory, 

difficult and time consuming stage for volume visualization because of variable imaging 

parameters, overlapping intensities, noise, partial voluming, gradients, motion, echoes, 

blurred edges, normal anatomical variations and susceptibility artefacts (Lladó et al., 

2012; Sha & Sutton, 2001). 

           This section reviews previous datasets pre-processing techniques and highlights 

the  significant contribution of SurLens Dataset Pre-processing approach. 

2.5.1 Filtering, Enhancement, Detection & Extraction 

One of the key processes in the pre-processing is the removal of noise from MRI data. 

Some of the techniques used for MRI de-noising include non-linear filtering methods 

(Muhamed et al., 2011; Gupta, Anand & Tyagi, 2012) spectral subtraction (Liu et al., 
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2012), wavelet-based thresholding (Agrawal & Sahu, 2012), anisotropic non-linear 

diffusion filtering (Zhang & Ma, 2010; Perona & Malik, 1990),  Markov Random Field 

(MRF) models (An & An, 1984), wavelet models (Nowak, 1990), non-local means 

modes (NL-means) (Buades, Coll & Morel, 2005), and analytical correction schemes 

(Sijbers, 1998). Despite the fact that there are quite a substantial number of state-of-the-

art methods for de-noising, accurate removal of noise from MRI is still a challenge; as 

all these methods are almost the same in terms of computation cost, de-noising, quality 

of de-noising and boundary preserving, which has retained MRI de-noising as an open 

issue that needs better improved methods (Bandhyopadhyay & Paul, 2012). Hence,     

de-noising methods at this current state of research are not reliable enough to fully 

support pre-processing stage of volume visualization. The main challenge in de-noising 

MRI is to preserve the edges and the details, at the same time to reduce noise in uniform 

regions (Diaz et al., 2011). 

           Edge detection or extraction is an important step in MRI data pre-processing. 

There are three steps in edge detection process (Senthilkumarn & Rajesh, 2008), the 

image filtering, the image enhancement, and the image detection. Image filtering is 

required in pre-processing because the target MRI images might have been corrupted 

through a number of circumstances like impulse noise, Gaussian noise, being common 

situations. More filtering procedures to reduce noise may results in loss of the strength 

of the edges (Senthilkumarn & Rajesh, 2009). Image enhancement emphasizes pixels 

where there is a significance change in local intensity values and is usually performed by 

computing gradient magnitude (Wen, Zhang & Jiang, 2008) while image detection 

usually based on threshoding criterion (Paulinas & Usinskas, 2007). 

           Quite a number of operators are usually used for image filtering, enhancement, 

and detection such as Sobel, Prewitt, Roberts, Laplacian of Gaussian, Zero-cross and 

cunny (usually refers to as Gaussian) operators. Among these set of techniques, Sobel 

operators’ produces best sharpness and clear edges (Ponraj et al., 2011). Though Sobel 

operator has been proven to produce superior qualities compared to other techniques, it 

has also been confirmed inaccurate and sensitive to noise (VenuGopal & Naik, 2011). 

Therefore, since image filtering, enhancement, detection and extraction technique play a 

key role in the development of a reliable medical visualization framework, a better and a 



23 

 

contributing approach must be considered during the pre-processing stage of a volume 

visualization framework in order to improve accuracy and noise sensitivity interference.  

           As one of our contributions to this field, we have therefore designed and 

implemented a new algorithm for image filtering, enhancements, detection and 

extraction, actualized at the graphic execution phase of our framework, which is the 

main entry point of datasets into volume visualization. This is an improved and better 

approach tackling accuracies of image filtering, enhancements, detection and extraction 

by enabling the datasets to be processed at the main entry point of volume visualization 

in order to avoid any unwanted noise sensitivity. We do not observe any shortcoming of 

this design hence it is noted as an improvement over all the previously pre-processing 

approaches.   

2.5.2 Volume Segmentation  

Brain MRI segmentation has been attracting attention for a while considering its 

significance in the medical image analysis and diagnosis. As each of the points in the 

image scan corresponds to a particular point in the human body structure, during 

segmentation process, each point in the scanned image and its correspondence to the 

tissue or organ is identified. A number of segmentation algorithms have been proposed 

in the past. Clustering-based (Kannan & Pandiyarajan, 2009), region-growing (Welinski 

& Fabijanska, 2011; Deng et al., 2010), active contour-based (Tanoori et al., 2011), 

watershed-based (Freitas et al., 2011) and morphological-based segmentation (Li et al., 

2011) have been previously applied to brain MRI volume segmentation. Sethian (1999), 

Ben-Zadok, Riklin-Raviv & Kiryati (2009) and Cremers et al., (2007) have made 

appreciable contribution in the boundary-based segmentation procedures.  

           One of the notable studies in this regard is that of Bezdek, Hall & Clarke (1993). 

Bezdek et al. (1993) made a thorough review on MRI segmentation using pattern 

recognition techniques. The study categorized brain MRI segmentation algorithms into 

supervised methods and unsupervised strategies. Supervised segmentation strategy is 

based on some prior information or knowledge to perform segmentation while 
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unsupervised strategy performs brain MRI segmentation with no prior knowledge or 

information. The supervised methods are listed to include Bayes classifiers with labeled 

maximum likelihood estimators, the k-nearest neighbour rule (kNN) and artificial neural 

networks (ANN) while the unsupervised methods include Bayes classifiers with 

unlabelled maximum likelihood estimators or the fuzzy C-means (FCM) algorithms.  

           Though segmentation is usually performed at the pre-processing stage of volume 

visualization, being a key and a large research area, some studies separated the usual 

pre-processing stages distinctly from segmentation. Clarke et al. (1995) reviewed both 

pre-processing and segmentation methods of soft brain tissue. In the same vein, Styner et 

al. (2008) reviewed semi-automated and automated multiple sclerosis (MS) lesion 

segmentation approaches, analyzing MS lesions, pre-processing steps and segmentation 

approaches. More recently, Lladó et al. (2012) presented a review of brain MRI with the 

goal of helping diagnosis and follow-up of multiple sclerosis lesions in brain MRI.  

           In order to enhance the visual appearance of the brain MRI images, any possible 

artefacts will need to be removed. Removal of the contained artefacts could be done at 

this stage, done partly or delayed until the final entry point of the dataset into volume 

visualization phase, this depends on the design of the volume visualization framework. 

Whichever of the approach being adopted in the framework design, there must be 

adequate provision set aside in case of unexpected introduction of certain level of 

artefacts during the pre-processing phase. 

           Skull stripping is another important pre-processing step since fat, skull, skin and 

other non-brain tissues may cause mis-classifications in some approaches due to the 

intensity similarities with brain structures (Detta & Narayana, 2011). Some of the 

components of the brain require a particular MRI technique for their diagnosis, hence, 

without thorough skull stripping it might be difficult to have the intended structures’ of 

study visible with volume visualization algorithms.  

           In cases where studies need to be carried out on more than one components 

structure of the brain e.g. tissue and fat, alignment of the soft brain images would be 

required. Aligning all the images from different modalities or MR images is known as 

registration (Zitova & Flusser, 2003). The precise steps involve include feature 



171 

 

REFERENCES 

Agrawal, S. & Sahu, R. (2012).Wavelet Based MRI Image Denoising Using 

Thresholding Techniques. International Journal of Science, Engineering and 

Technology Research (IJSETR). Vol. 1, Issue 3, September. 

Ahrens, J., Geveci, B., & Law, C. (2005). The Visualization Handbook, ParaView: 

An End-User Tool for Large Data Visualization. Burlington, MA: Elsevier, 

717. 

Alim, U.R. & Möller, T. (2009). A Fast Fourier Transform with Rectangular Output 

on the BCC and FCC Lattices.Proc. Eighth Int’l Conf. Sampling Theory and 

Applications (SampTA). 

Aliroteh, M. & McInerney, T. (2007). SketchSurfaces: Sketch Line Initialized 

Deformable Surfaces for Efficient and Controllable Interactive 3D Medical 

Image Segmentation, Third International Symposium on Visual Computing 

(ISVC), LNCS 4841, Lack Tahoe, Nevada/California, November 26-28, pp. 

542-553. 

Amruta, A., Gole, A. & Karunakar, Y. (2010). A Systematic  Algorithm for 3-D 

Reconstruction of MRI based Brain Tumorusing Morphological Operations 

and Bicubic Interpolation. 2
nd 

International Conference on Computer 

Technology and Development (KCTD). 

An, S. & An, D. (1984).  Stochastic Relaxation, Gibbs Distributions, and the 

              Bayesian Restoration of Images. IEEE Trans Pattern Anal Mach Intell6: 

721–741.  

Archirapatkave, V., Sumilo, H., See, S.C.W. & Achalakul, T. (2011). GPGPU 

Acceleration Algorithm for Medical Image Reconstruction: Ninth IEEE 

International Symposium on Parallel and Distributed Processing with 

Applications IEEE. 

 

 



172 

 

Baek, S.Y., Sheafor, D.H., Keogan, M.T., DeLong, D.M. & Nelson, R.C. (2001). 

Two-dimensional multiplanar and three-dimensional volume-rendered 

vascular CT in pancreatic carcinoma: interobserveragreement and 

comparison with standard helical techniques. Am J Roentgenol 

176(6):1467–1473. 

Bandhyopadhyay, S.K. & Paul, T.U. (2012). Segmentation of Brain MRI Image A 

Review.  International Journal of Advanced Research in Computer Science 

and Software Engineering. Volume 2, Issue 3, March 2012  ISSN: 2277 

128X. 

Bentoumi, H., Gautron, P. & Bouatouch, K. (2010). GPU-Based Volume Rendering 

for Medical Imagery. International Journal of Electrical, Computer, and 

Systems Engineering 4:1. 

Ben-Zadok, N., Riklin-Raviv, T. & Kiryati, N. (2009). Interactive level set 

segmentation for image-guided therapy. In IEEE Int. Symp. On Biomedical 

Imaging, pages 1079–1082.  

Benzinga News. November 29, 2010. Kitware Offers Free Global Access to 

VolView at RSNA. 

Bezdek, J.C., Hall, L.O. & Clarke, L.P. (1993). Review of MR Image Segmentation 

Techniques using Pattern Recognition, Med. Phys. 20 (4) 1033–1048. 

Birk, M., Guth, A., Zapf, M., Balzer, M., Ruiter, N., Hübner, M. & Becker, J. (2011). 

Acceleration of Image Reconstruction in 3D Ultrasound Computer 

Tomography: An Evaluation of CPU, GPU AND FPGA Computing. IEEE 

Conference on Design and Architectures for Signal and Image Processing 

(DASIP). On page(s): 1 – 8, E-ISBN :  978-1-4577-0619-6, Print ISBN: 

978-1- 4577-0620-2. 

Bredel, M. (2009). Gene Connections Key to Brain Tumor. Journal of the American 

Medical Association.The U.S. National Cancer Institute, Cancer Newsletter. 

July, 20. 

Bremer, P.T., Weber, G.H., Tierny, J., Pascucci, V., Day, M.S. & Bell, J.B. (2011). 

Interactive Exploration and Analysis of Large-Scale Simulations Using 



173 

 

Topology-Based Data Segmentation. IEEE Transactions on Visualization 

And Computer Graphics, Vol. 17, No. 9, pp. 1307- 1324. 

Buades, A., Coll, B. & Morel, J. (2005). A Non-Local Algorithm for Image 

Denoising. IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition, pp 60–65. 

Bullitt, E., Zeng, D.,  Mortamet, B.,  Ghosh, A., Aylward, S.R., Lin, W., Marks, B.L. 

& Smith, K. (2010). The Effects of Healthy Aging on Intracerebral Blood 

Vessels Visualized by Magnetic Resonance Angiography:  Neurobiol Aging 

31(2): 290–300. 

Busking, S. Vilanova, A. & Wijk, J.V. (2007). Particle-Based Non-                 

Photorealistic Volume Visualization,” Visual Computer, vol. 24,                  

No. 5, pp. 335-346, May 2007. 

Cao, Y., Wu, G. & Wang, H. (2011). A Smart Compression Scheme for GPU-

Accelerated Volume Rendering of Time-Varying Data. IEEE International 

Conference on Virtual Reality and Visualization, Page(s): 205 – 210. 

Carlos, D.C. & Ma, kwan-Liu (2009). The occlusion spectrum for volume 

classification and visualization, IEEE Transactions on Visualization and 

Computer Graphics, Vol. 15, No. 6. 

Chen, C. & Yang, J. (2011). Essence of Two-dimensional Principal Component 

Analysis and Its Generalization: Multi-dimensional PCA. Second 

International Conference on Innovations in Bio-inspired Computing and 

Applications.IEEE Computer Society. 

Chen, M., Kaufman, A. & Yagel, R. (2000). Volume Graphics, Springer (Eds.).  

London.  

Chen, Ming-Da., Hsieh, Tung-Ju. & Chang, Yang-Lang. (2011). Volume Data 

Numerical Integration and Differentiation Using CUDA. IEEE 17th   

International Conference on Parallel and Distributed Systems. 

Cheung, M.R. & Krishnan, K. (2012). Using Manual Prostate Contours to                   

Enhance Deformable Registration of Endorectal MRI. Computer Methods 

and Programs in Biomedicine 108, 330-337.     



174 

 

Chiueh, T.-C., Yang, C.-K., He, T., Pfister, H. & Kaufman, A.E. (1997). Integrated 

Volume Compression and Visualization. In Proc. IEEE Visualization, Pages 

329–336. Computer Society Press. 

Chiw, C., Kindlmann, G., Reppy, J., Samuels, L. & Seltzer, N. (2012). Diderot: A 

Parallel DSL for Image Analysis and Visualization. Proceedings of the 33rd 

ACM SIGPLAN conference on Programming Language Design and 

Implementation. ACM New York, NY, USA, pp 111-120. 

Chu, H., Chen, L. & Yong, J. (2010). Feature variation curve guided transfer 

function design for 3D medical image visualization, 3rd International 

Conference on Biomedical Engineering and Informatics. 

Clarke,L.P., Velthuizen, R.P., Camacho, M.A., Heine, J.J., Vaidyanathan,                

M., Hall, L.O., Thatcher, R.W. &Silbiger, M.L. (1995). MRI                 

Segmentation: Methods and Applications, Magn. Reson.Imag. 13 (3)     

343–368. 

Cosmus, C. C & Parizh, M. (2011). Advances in Whole-body MRI Magnets. IEEE 

transactions on applied semiconductivity , Vol. 21, No. 3. 

Courchesne, E., Chisum, H.J., Townsend J, Cowles, A., Covington, J., Egaas, B., 

Harwood, M., Hinds, S. & Gary, A. (2000). Normal Brain Development and 

Aging: Quantitative Analysis at in vivo MR Imaging in Healthy 

Volunteers.Journal of Radiology. Press GA. 216:672–682.              

[PubMed: 10966694]. 

Cox, G., Maximo, A., Bentes, C. & Farias, R. (2009). Irregular grid Raycasting 

implementation on the cell broadband engine, 21st                       

International Symposium on Computer Architecture and High  Performance 

Computing. 

Creasey, H. (2003). Rapoport SI. The aging human brain. Annals of Neurology. 

17:2–10. [PubMed:3885841].          

Cremers, D., Fluck, O., Rousson, M. et al. (2007). A probabilistic level set 

formulation for interactive organ segmentation. Medical Imaging 2007: 

Image Processing, 6512(1):120–129. 



175 

 

Csébfalvi, B. & Domonkos, B. (2009). Frequency-Domain Upsampling on a Body-

Centered Cubic Lattice for Efficient and High-Quality Volume  Rendering. 

Conference on Vision Modeling and Visualization –   VMV, pp. 225-232. 

Csébfalvi, B. & Szirmay-Kalos, L. (2003).Monte Carlo Volume Rendering. Proc. of 

IEEE Visualization, pp.449- 456, 2003. 

Da Silva, L.S., & Scharcanski, J. (2005). A lossless Compression Approach for 

Mammographic Digital Images Based on the Delaunay Triangulation. IEEE 

International Conference on Image Processing, ICIP. pp.11 - 758-61. 

Damadian, R., Goldsmith, M. & Minkoff, L. (1977). NMR in cancer: XVI. Fonar 

image of the live human body”, Physiological Chemistry and Physics, Vol. 

9, pp. 97-100. 

Datta, S. & Narayana, P.A. (2011). Automated Brain Extraction from T2- Weighted 

Magnetic Resonance Images, J. Magn.Reson. 33 (4) 822–  829. 

Deng, W., Xiao, W., Deng, E. & Liu, J. (2010). MRI Brain Tumor Segmentation 

With Region Growing Method Based On The Gradients andVariances 

Along And Inside Of The Boundary Curve. 3rd International Conference on 

Biomedical Engineering and Informatics (BMEI). 

Diaz, I., Boulanger, P., Greiner, R. & Murtha, A. (2011). A Critical Review of the 

Effect of De-noising Algorithms on MRI Brain Tumor Segmentation. 33
rd

 

Annual International Conference of the IEEE EMBS, Boston, 

Massachusetts, USA. 

Dorgham, O.M., Laycock, S.D. & Fisher, M.H. (2012). GPU Accelerated                 

Generation of Digitally Reconstructed Radiographs for 2-D/3-D Image 

Registration. IEEE Transactions on Biomedical Engineering, Vol. 59, No. 9. 

Pp. 2594 – 2603. 

Drebin, R., Carpenter, L., Hanrahan, P. (1988). Volume rendering,                 

Proceedings SIGGRAPH88, pp 65–74. 

Fang, J., Varbanescu, A.L. & Sips, H. (2011). A Comprehensive Performance 

Comparison of CUDA and OpenCL. IEEE International Conference on 

Parallel Processing. 



176 

 

Ferre, M., Cobos, S., Aracil, R. & Sánchez Urán, M.A. (2007). 3D Image 

Visualization and Its Performance in Teleoperation, HCI. International 

Conference, Peking, China. Virtual Reality, Vol.14, LNCS 4563, R.     

Shumaker (Hrg.); Springer, Volume 14, LNCS 4563, pp 669-707. 

Freitas, P., Rittner, L., Appenzeller, S. & Lotufo, R. (2011). Watershed-based 

Segmentation of the Midsagittal Section of the Corpus Callosum in 

Diffusion MRI. 24th Conference on Graphics, Patterns and Images 2011 

24th SIBGRAPI Conference on Graphics, Patterns and Images. Pg 274-280.  

Frigo, M. & Johnson, S. (2005). The Design and Implementation of FFTW3.                 

Proc. of the IEEE, 93(2): 216-231. 

Gabor J. Tornai, G.J. & Cserey, G. (2010). 2D and 3D Level-Set Algorithms on 

CPU. 12th International Workshop on Cellular Nanoscale Network and their 

Applicatins (CNNA). 

Geng, J. (2011). Structured-light 3D surface imaging: a tutorial. Advances in Optics 

and Photonics 3, 128-160. 

Geoffrey S.P., Elizabeth, Charles-Edwards & Christopher, P. (2008). Applications of 

Computed Tomography, Magnetic Resonance Imaging and Magnetic 

Resonance Spectroscopy for Planning External Beam Radiotherapy, Current 

Medical Imaging Reviews, 4, 236-249. 

Ghorpade, J., Parande, J., Kulkarni, M. & Bawaskar, A. (2012). Gpgpu Processing in 

Cuda Architecture. Advanced Computing: An International Journal (ACIJ ), 

Vol.3, No.1. 

Gong, F. & Zhao, X. (2010). Three-Dimensional Reconstruction of Medical Image 

Based on Improved Marching Cubes Algorithm. International Conference 

on Machine Vision and Human-machine Interface. 

GPU Computing and the CUDA architecture (2009). NVIDIA CUDA Architecture 

Introduction & Overview, Version 1.1. 

Gu, S., Wilson, D., Wang, Z., Bigbee, W.L., Siegfried, J., Gur, D. & Pu, J. (2012). 

Identification of Pulmonary Fissures using A Piecewise Plane Ftting 



177 

 

Algorithm. Computerized Medical Imaging and Graphics. Computerized 

Medical Imaging and Graphics 36 560– 571. 

Guo, H., Mao, N. & Yuan, X. (2011). WYSIWYG (What You See is What You Get) 

Volume Visualization. IEEE Transactions on Visualization and Computer  

Graphics, Vol. 17, NO. 12, on page(s): 2106 – 2114, ISSN :  1077-2626. 

Guo, H., Xiao, H. & Yuan, X. (2012). Scalable Multivariate Volume                

Visualization and Analysis Based on Dimension Projection and Parallel 

Coordinates. IEEE Transactions on Visualization and Computer Graphics, 

Vol. 18, No. 9, pp 119-120. 

Guo, H.,  Xiao, H. & Yuan, X. (2011). Multi-Dimensional Transfer Function                  

Design Based on Flexible Dimension Projection Embedded in                  

Parallel Coordinates. Proc. IEEE Pacific Visualization Symp., pp. 19-26. 

Gupta, D., Anand, R.S., & Tyagi, B. (2012). Enhancement of Medical Ultrasound 

Images using Non-Linear Filtering Based on Rational-Dilation Wavelet 

Transform. Proceedings of the World Congress on Engineering and 

Computer Science (WCECS).Vol. I  October 24-26. San Francisco, USA 

Hadwiger, M., Kniss, J., Rezk-Salama, C., Weiskopf, D. & Engel, K. (2006). Real-

time volume graphics, A K Peters Publications. 

He, X. (2009). Reconstruction of 3d microstructure of the rock sample Basing on the 

CT images. Proceedings of the International Conference on Wavelet 

Analysis and Pattern Recognition, Baoding, 12-15 July.  

Hege, H.C., Höllerer, T. & Stalling, D. (1996). Volume Rendering -  Mathematicals 

Models and Algorithmic Aspects. W. Nagel (Hrsg.) 

PartielleDifferentialgleichungen, Numerik und Anwendungen. Konferenzen 

des ForschungszentrumsJülich GmbH, S. 227-255. 

Herlambang, N., Liao, H., Matsumiya, K., Masamune, K. & Takeyoshi, D. (2008). 

Real Time Autostereoscopic Visualization of Registration Generated 4D 

MR Image of Beating Heart, Medical Imaging and Augmented Reality 

(MIAR), 4th International Workshop Tokyo, Japan, August 1-2, pp 349-

358. 



178 

 

Hernell, F., Ljung, F. & Ynnerman, A. (2010). Local ambient occlusion in direct 

volume rendering, IEEE Transactions on Visualization and Computer  

Graphics, Vol. 16, No. 4. 

Hong, L. & Shuhuil, M. (2010). High Precision Hybrid Technique of Surface and 

Volume Rendering. Second International Conference on Computational 

Intelligence and Natural Computing (CINC). 

Hossain, Z., Alim, U.R. & Möller, T. (2011). Toward High-Quality Gradient 

Estimation on Regular Lattices. IEEE Transactions on Visualization and 

Computer Graphics, Vol. 17, No. 4, pp. 426 – 439. 

Hounsfield G.N. (1973). Computerized transverse axial scanning tomography, 

Description of system Br. J. Radiol., 46 1016. 

Hsieh, J. (2002). Computed Tomography Principles, Design, Artifacts, and recent 

Advances, Spie Press. 

Hu, S. & Hou, W. (2011). Denosing 3D Ultrasound images by Non-local                 

Means Accelerated by GPU. IEEE International Conference on                 

Intelligent Computation and Bio-Medical Instrumentation, pp. 43-45. 

Jeong, Won-Ki., Schneider, J., Turney, S.G., Faulkner-Jones, B.E., Meyer, D., 

Westermann, R., Reid, R.C., Lichtman, J. & Pfister, H.  (2010). Interactive 

Histology of Large-Scale Biomedical Image Stacks. IEEE Transactions on 

Visualization and Computer Graphics, Vol. 16, no. 6, November/December. 

Jinzhu, Y., Fangfang, H., Chaolu, F., Dazhe, Z. & Yanfei, W. (2011). An                 

Accelerative Method for Multimodality Medical Image Registration Based 

on CUDA. 4th International Congress on Image and Signal Processing 

(CISP), pp. 1817 – 1821. 

Joemai, R.M.S., Geleijns, J., Veldkamp, W.J.H., De Roos, A. & Kroft, L.J.M. 

(2008). Automated cardiac phase selection with 64-MDCT coronary 

angiography, AJR Am J Roentgenol 191:1690–1697. 

Jovanovic, R. & Lorentz, R.A. (2012). A Combined Image Approach to 

Compression of Volumetric Data using Delaunay Tetrahedralization. 

Conference on Image Processing (IPR), IET. Pp. 1-6.  



179 

 

Kainz, B., Portugaller, R.H, Seider, D., Moche, M.,  Stiegler , P. & Schmalstieg, D. 

(2011). Volume visualization in the clinical practice. Augmented 

Environments for Computer Assisted Interventions (AE-CAI'11). 

Kalender, W.A. (2006). Review: X-ray Computed Tomography, Institute of Physics 

Publishing Phys. Med. Biol. 51, R29–R43. 

Kannan, S.R. & Pandiyarajan, R. (2009). Effective fuzzy c-mean Clustering 

technique for segmentation of T1-T2 brain MRI. IEEE International 

Conference on Advances in Recent Technologies in Communication and 

Computing. Pg. 537-539. 

Kasiri, K., Dehghani, M.J., Kazemi, K., Helfroush, M.S. & Kafshgari, S.                  

(2010). Comparison Evaluation of Three Brain MRI Segmentation Methods 

in Software Tools. IEEE Proceedings of the 17th Iranian Conference of 

Biomedical Engineering (ICBME). 

Kasthuri, N. & Lichtman, J.W. (2010). Neurocartography, 

Neuropsychopharmacology, 35, 342–343; doi:10.1038/npp.2009.138. 

Kaufman, A. (1991). Volume Visualization (Tutorial). IEEE Computer Society 

Press, Los Alamitos, California. 

Kaufman, A. & Mueller, K. (2005). Overview of Volume Rendering, The 

Visualization Handbook, eds. C. Johnson and C. Hansen, Academic Press. 

Kaufman, A.E. (1996).  Volume Visualization. ACM Computing    Survey, 28(1): 

165-167. 

Kaufman, A.E. (2000). Volume visualization: Principles and advances. International 

Spring School on Visualization, Bonn. 

Kim, J. & Jaja, J. (2009). Streaming Model Based Volume Ray Casting    

Implementation for Cell Broadband Engine, Scientific Programming,                

Vol. 17, no. 1-2, pp. 173-184. 

Kirk, D. & Hwu, W.-M. (2010). Programming Massively Parallel Processors: A 

Hands-on Approach. Morgan Kaufmann, 2010. 

Kirk, D.B. & Hwu, W.M.W. (2010). Programming Massively Parallel                

Processors: A Hands on Approach. New York: Elsevier, 2010.  



180 

 

Kirmizibayrak, C., Radeva, N., Mike Wakid, M., Philbeck, J., John Sibert, J. & 

Hahn, J. (2011). Evaluation of Gesture Based Interfaces for Medical 

Volume Visualization Tasks. Proceedings of the 10th International 

Conference on Virtual Reality Continuum and Its Applications in               

Industry Pg. 69-74. ACM New York, NY, USA.  

Kitware News. October 10, 2002.  Kitware Announces ParaView 0.6. 

Koo, J.J., Evans, A.C. & Gross, W.J. (2009). 3-D Brain MRI tissue  classification on 

FPGAs, IEEE Transactions on image processing, vol.18, No.12. 

Krechetova, K., Glaz, A. & Platkajis, A. (2008). 3D Medical Image Visualization 

and Volume Estimation of Pathology Zones, NBC – 14
th

 Nordic-Baltic 

Conference on Biomedical Engineering and Medical Physics, Latvia 

(IFMBE Proceedings) Vol. 20, pp 532-535. 

Krestel, E. (1990). Imaging Systems for Medical Diagnosis. Siemens, Aktienges, 

Munich. Krömer, P., Platoš, J. &Snásel, V. (2011).  Differential Evolution 

for the Linear Ordering Problem Implemented on CUDA. IEEE 

Publications. 

Kumar, N., Nasser, M., Sarker, S.C. (2011). A New Singular Value                  

Decomposition Based Robust Graphical Clustering Technique and Its 

Application in Climatic Data.Journal of Geography and Geology Vol. 3, No. 

1. 

Kumar, T.S. & Rakesh, P.B. (2011).  3D Reconstruction of Facial Structures                  

from 2D images for cosmetic surgery. International Conference on                  

Recent Trends in Information Technology, ICRTIT MIT, Anna                  

University, Chennai. 

Lai, Po-Lun & Yilmaz, A. (2008). Projective reconstruction of building shape from 

silhouette Images acquired from uncalibrated cameras. The International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences. Vol. XXXVII. Part B3b. Beijing. 



181 

 

Law, C.C., Henderson, A. & Ahrens, J. (2001). An Application Architecture for 

Large Data Visualization: A Case Study. IEEE Symposium on Parallel and 

Large-Data Visualization and Graphics. Pp. 125 – 159. 

Lei, G., Dou, Y., Wan, W., Xia, F., Li, R., Ma,  M. & Zou, D. (2012).                  

CPU-GPU hybrid accelerating the Zuker algorithm for RNA Secondary 

Structure Prediction Applications. BMC Genomics,  13 (Suppl 1):S14. 

Li, M., Zheng, X., Wan,X., Luo, H., Zhang, S. & Tan, L. (2011). Segmentation of 

brain tissue based on connected component labeling and mathematic 

morphology. 4th International Conference on Biomedical Engineering and 

Informatics (BMEI). pg 482-485. 

Lindholm, E., Nickolls, J., Oberman, S. & Montrym, J. (2008).  NVIDIA Tesla: A 

Unified Graphics and Computing Architecture. IEEE Micro,   28(2):39–55.  

Lindholm, S., Ljung, P., Lundstrom, C., Persson, A. & Ynnerman, A. (2010).    

Spatial conditioning of transfer functions using local material distributions, 

IEEE Transactions on Visualization and Computer Graphics, Vol. 16, No. 6. 

Ling, F., Yang, L. & Wang, Zhong-Ke (2009). Improvement on Direct                

Volume Rendering, Image and Signal Processing, CISP. 

Ling, T. & Zhi-Yu, Q. (2011). An Improved Fast Ray Casting Volume Rendering 

Algorithm of Medical Image. IEEE 4th International Conference on 

Biomedical Engineering and Informatics (BMEI). 

Liu, B., W¨unsche, B. & Ropinski, T. (2010). Visualization by example – A 

constructive visual component-based interface for direct volume rendering, 

Computer Graphics Theory and Applications, 254-259. 

Liu, H., Yu, X., Wan, W. & Swaminathan, R. (2012). An Improved Spectral 

Subtraction Method. International Conference on Audio, Language and 

Image Processing (ICALIP).16-18 July, Page(s): 790 – 793. 

Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A.,Valls, L., 

Ramió-Torrentà, L. &Rovira, A. (2012). Segmentation of multiple sclerosis 

lesions in brain MRI: A Review of Automated Approaches. Information 

Sciences 186 (2012) 164–185. 



182 

 

Lorensen, W.E. & Cline, H.E. (1987). Marching cubes: A High Resolution 3-D 

Surface Construction Algorithm.Computer Graphics. Volume 21, Number 

4. 

Lundström, C. (2007). Efficient Medical Volume Visualization, Linköping Studies in 

Science and Technology Dissertations, No. 1125. 

Lv, X., Gao, X. & Zou, H. (2008). Interactive curved planar reformation based on 

snake model. Comput Med Imaging Graph 32(8):662–669. 

Ma, J., Murphy, D. & O’Mathuna, C. (2012). Visualizing Uncertainty in Multi-

Resolution Volumetric Data Using Marching Cubes. Proceedings of the 

International Working Conference on Advanced Visual Interfaces, ACM 

New York, NY, USA, pp. 489-496. 

Manke, F. & Wönsche, B. (2008).  A Direct Volume Rendering Framework for the 

Interactive Exploration of Higher-Order and Multifield Data.             

GRAPP – International Conference on Computer Graphics Theory and 

Applications. 

Manke, F. & Wünschev, B. (2009). Texture-Enhanced Direct Volume Rendering. 

GRAPP- International Conference on Computer Graphics Theory and 

Applications. 

Marner, L., Nyengaard, J. R., Tang, Y. & Pakkenberg, B. (2003). Marked loss of 

Myelinated Nerve Fibers in the Human Brain with Age.Journal of 

Comparative Neurology. 462:144–152. [PubMed: 12794739]. 

Martin, J.P., Vickery, R.J., Ziegeler, S. & Angelini, R. (2010). SSH Enabled 

ParaView. DoD High Performance Computing Modernization Program 

Users Group Conference. IEEE. 

Martin, K., Ibánĕz, L., Avila, L., Barré, S. &Kaspersen, J.H. (2005).                  

Integrating Segmentation Methods from the Insight Toolkit into A 

Visualization Application. Medical Image Analysis 9, 579–593. 

Max, N. (1995). Optical Models for Direct Volume Rendering. IEEE                  

Transactions on Visualization and Computer Graphics, Vol.1,                   

99-108. 



183 

 

McCormick, B.H., DeFanti, T.A. & Brown, M.D. (1987). Visualization in      

Scientific Computing, Computer Graphics Vol. 21, No 6, November,      

1987. 

McManus, J.P. & Kinsman, C. (2002).  C# Developer’s Guide to ASP .NET, XML, 

and ADO .NET:  Addison-Wesley, New York. 

Meißner, M., Pfister, H., Westermann, R. & Wittenbrink, C.M. (2000). Volume 

Visualization and Volume Rendering Techniques. The Euro 

GraphicsAssociation. 

Mensmann, J., Ropinski, T. & Hinrichs, K. (2010). An advanced volume raycasting 

technique using GPU stream processing. Computer Graphics Theory and 

Applications, page 190-198. 

Mensmann, J., Ropinski, T. & Hinrichs, K. (2010). An Advanced Volume 

Raycasting Technique using GPU Stream Processing. International                  

Conference of Computer Graphics Theory Appl., 2010, pp. 190–                 

198. 

Merck, D. (2009). Model Guided Rendering for Medical Images, University of North 

Carolina at Chapel Hill. 

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E.                  

(1953). Equation of State Calculations by Fast Computing Machines.Journal 

of Chem.Physics, 21: 1087– 1092. 

Meißner, M., Huang, J., Bartz, D., Mueller, K. & Crawfis, R. (2000). A Practical 

Evaluation of Popular Volume Rendering Algorithms: IEEE/ACM. 

Symposium on Volume Visualization, Salt Lake City, Utah. 

Mohamed, M.A., Abdul-Fattah, A.F.A, Asem, A.S., & El-Bashbishy, A.S. (2011). 

Medical image filtering, fusion and classification Techniques. Egyptian 

Journal of Bronchology.Vol. 5, No 2. Moreland, K. (2008). The ParaView 

Tutorial. Sadia National Laboratories, United States. 

 

 



184 

 

Moreland, K., Ayachit, U., Geveci, B. & Ma, K. –L. (2011). Dax Toolkit: A 

Proposed Framework for Data Analysis and Visualization at Extreme Scale. 

IEEE Symposium on Large Data Analysis and Visualization (LDAV). pp.: 

97 – 104. 

Moulik, S. & Boonn, W. (2011). The Role of GPU Computing in Medical Image 

Analysis and Visualization.Medical Imaging, 2011. Advanced PACS- based 

Imaging informatics and Therapeutic Applications.Proc.of SPIE Vol. 7967, 

79670L. 

Mueller, K., Chen, M. & Kaufman, A. (2001). Volume Graphics’,  (Eds.) Springer. 

London.  

Muigg, P., Hadwiger, M., Doleisch, H., & Gröller, E. (2011). Interactive Volume 

Visualization of General Polyhedral Grids. IEEE Transactions on 

Visualization and Computer Graphics, Vol. 17, no.12. 

Nakajima, H., Hasegawa, K., Nakata, S.  & Tanaka, S. (2009). Volume Visualization 

with Grid-Independent Adaptive Monte Carlo Sampling. Fifth International 

Conference on Intelligent Information Hiding and Multimedia Signal 

Processing. IIH-MSP. Pp. 1301-1304. 

Ng, K. –W., Wong, H.-C., Wong, U.-H.& Pang, W.-M. (2010). Probe-Volume: An 

Exploratory Volume Visualization Framework. 23rd International Congress 

on Image and Signal Processing (CISP).Vol. 5, pp. 2392 – 2395. 

Nickolls,J., Buck, I.,  Garland, M. & Skadron, K. (2008). Scalable Parallel 

Programming with CUDA. ACM Queue, 6(2):40–53. 

Nowak, R.D. (1999). Wavelet-Based Rician Noise Removal for Magnetic Resonance 

Imaging. IEEE Trans Image Process 8(10):1408–1419. 

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G. & Seidel, H.-P. (2003). Multi-                        

Level Partition of Unity Implicits, ACM Transactions on  Graphics, Vol. 22, 

No.2 (2003) pp. 463-470. 

Oiso, M.,   Yasuda, T.,   Ohkura, K. & Matumura, Y. (2011). Accelerating Steady-

State Genetic Algorithms based on CUDA Architecture. Congress on 

Evolutionary Computation (CEC), IEEE. Pp. 687 – 692, New Orleans, LA. 



185 

 

Othman, M.F., Abdulahi, N. & Ahmad Rusli, N.A. (2010). An Overview of MRI 

Brain Classification Using FPGA Implementation, IEEE Symposium on 

Industrial Electronics and Applications. 

Owen, S. (1993). Visualization Education in the USA. Journal of Computers and 

Education.Vol. 8, pp. 339-345, 1993. 

Paulinas, M. & Usinskas, A. (2007). A survey of genetic Algorithms applications for 

image enhancement and segmentation”, Information Technology Control, 

Vol. 36, No. 3, pp. 278-284. 

Pelt, R.V., Vilanova, A. & Wetering, H.V.D. (2010). Illustrative Volume 

Visualization Using GPU-Based Particle Systems. IEEE                      

Transactions on Visualization and Computer Graphics, Vol. 16,                      

Issue: 4, pp. 571-582. 

Peng, Y., Dong, J., Chen, L., Chu, H. & Yong, J. (2011). An Optimal Color Mapping 

Strategy based on Energy Minimization for Time-varying Data. 212th 

International Conference on Computer-Aided Design and Computer 

Graphics (CAD/Graphics), pp. 411- 417.  

Perona, P. & Malik, J. (1990). Scale-space and edge detection using anisotropic 

diffusion, “IEEE Trans. Pattern Anal. Mach. Intell., Vol. 12, No. 7, pp629 – 

639. 

Petrescu, L., Morar, A., Moldoveanu, F. & Asavei, V. (2011). Real Time 

Reconstruction of Volumes from Very Large Datasets Using CUDA.15th 

International Conference on System Theory, Control, and Computing 

(ICSTCC), pp. 1-5. 

Pham, D., Xu, C. & Prince, J. (2000). Current methods in medical image 

segmentation. Annual Review of Biomedical Engineering, vol. 2, pp. 315–

337. 

Ponraj, D.N., Jenifer, M.E., Poongodi, P. & Manoharan, J.S. (2011). A Survey On 

the Preprocessing Techniques of Mammogram for the Detection of Breast 

Cancer. Journal of Emerging Trends in Computing and Information 

Sciences.Vol. 2, No. 12, ISSN 2079-8407. 



186 

 

Porter, T. & Duff, T. (1984). Compositing Digital Images:  Computer Graphics, vol. 

18,   no. 3. 

Praßni, Jörg-Stefan., Ropinski, T. & Hinrichs, K. (2010).  Uncertainty-Aware Guided 

Volume Segmentation. IEEE Transactions on Visualization and  Computer 

Graphics, Vol. 16, no. 6. 

Pu, J., Leader, J.K., Zheng, B., Knollmann, F., Fuhrman, C., Sciurba, F.C., Gur, D. 

(2009). A Computational Geometry Approach to Automated Pulmonary 

Fssure Segmentation in CT Examinations. IEEE Transaction Medical 

Imaging 28(5): pp. 710–9. 

Qin, A.K., Raimondo, F., Fobes, F. & Ong, Y.S. (2012). An Improved CUDA-Based 

Implementation of Differential Evolution on GPU. ACM Genetic and 

Evolutionary Computation Conference. GECCO, Philadelphia, USA. 

Qu, D., Luo, Y. & Tan, W. (2011). An Improved Painting-Based Transfer Function 

Design Approach with CUDA-Acceleration. IEEE International Conference 

on Computer Science and Automation Engineering (CSAE). Pp 372-377. 

Qureshi, M.N.I., Lee, J.-E., & Lee, S.W. (2012). Robust Classification Techniques 

for Connection Pattern Analysis with Adaptive Decision Boundaries Using 

CUDA. IEEE International Conference on Cloud Computing and Social 

Networking (ICCCSN). 

Rodallec, M.H., Marteau, V., Gerber, S., Desmottes, L. & Zins, M. (2008). 

Craniocervical arterial dissection: spectrum of imaging findings and  

differential diagnosis, Radiographics 28:1711– 1728.  

Roos, J.E., Fleischmann, D., Koechl, A., Rakshe T., Straka M., Napoli, A., Kanitsar, 

A., Sramek, M., & Groeller, E. (2007). Multipath curved planar reformation 

of the peripheral arterial tree in CT angiography, Radiology  244:281–290. 

Rosenblum, L., Earnshaw, R.A., Encarnacao, J., Hagen, H. A., Kaufman, S.K., 

Nelson, G., Post, F. & Thalmann, D. (1994). Scientific Visualization: 

Advances and Challenges, Academic Press. 

 



187 

 

Ross, J.C., Estepar, R., Kindlman, G., Dfaz, A., Westin, C.F., Silverman, E.K. 

Washko, G.R. (2010). Automatic Lung Lobe Segmentation using Particles, 

Thin Plate Splines and Maximum A Posteriori Estimation. Med Image 

Comput-Assist Intervent 2010:163–71. 

SabelIa, P. (1988). A Rendering Algorithm for Visualizing 3D Scalar Fields: 

Computer Graphics. Volume 22, Number 4. 

Sakamoto, N. & Koyamada, K. (2005). Particle Generation from User- Specified 

Transfer Function for Point-Based Volume Rendering. IEEE Visualization 

Proceedings Compendium: 125-126. 

Sanftmann, H.,Cipriani, N. & Weiskopf, D. (2011). Distributed Context-Aware 

Visualization. IEEE International Conference on Pervasive Computing and 

Communications Workshops (PERCOM Workshops). Pp. 251 – 256. 

Schroeder, W., Martin, K. & Lorensen, B. (2002). The visualization Toolkit, An 

object-oriented approach to 3D graphics, 3rd Edition, Pearson Education, 

Inc. 

Senthikumaran, N. & Rajesh, R. (2008). A Study of Split and Merge for Region 

Based Image Segmentation. Proceedings of UGC sponsored National 

conference network security (NCNS-08), 2008, pp.57-61. 

Senthilkumarn, N. & Rajesh, R. (2009). Edge Detection Techniques for Image 

Segmentation - A Survey of Soft Computing Approaches. IJRTE, Vol 1, 

No2, 250-254. 

Sethian,  J. A. (1999). Level Set Methods and Fast Marching Methods: Evolving 

Interfaces in Computational Geometry. Fluid Mechanics. Computer Vision, 

and Materials. Cambridge University Press, 2 Edition.  

Sha, D.D. & Sutton, J.P. (2001). Towards automated enhancement, segmentation and 

classification of digital brain images using networks of networks, Inf. Sci. 

138 (1–4) (2001) 45–77. 

 

 



188 

 

Shabaneh, N., Amirpour, S., Stafford, S. & Shirazi. N. (2004). Radiation Health 

Risks and Benefits.Computed Tomography.  

Shen. A. & Luo, L. (2008). Point-Based Digitally Reconstructed Radiograph. Proc. 

Int. Conf. Pattern Recog., 2008, pp. 1–4. 

Shen, H-W., & Johnson, C. (1994). Differential Volume Rendering: A Fast Volume 

Visualization Technique for Flow Animation. Proceedings of the 

Visualization '94 Conference, October 1994, pp. 180-187. 

Shi, X., Li, C., Wang, X. & Li, K. (2009). A Practical Approach of Curved                   

Ray Prestack Kirchhoff Time Migration on GPGPU. Advanced                   

Parallel Processing Technologies 8th International Symposium, pp. 165–

176. 

Shihao, C., Guiqing, H. & Chongyang, H. (2009). Rapid Texture-Based                  

Volume Rendering, International Conference on Environmental Science and 

Information Application Technology. 

Shihao, C., Guiqing, H. & Chongyang, H. (2009). Interactive GPU-based volume 

rendering for medical image, Biomedical Engineering and Informatics, 

BMEI. 

Siddique, M.T. & Zakaria, M.N. (2010). 3D Reconstruction of geometry from 2D 

image using Genetic Algorithm. IEEE International Symposium in 

Information Technology (ITSim), Volume :  1, on page(s): 1 – 5, ISSN :  

2155- 897, Print ISBN: 978-1-4244-6715-0. 

Sijbers, J., Dekker, A.J.D., Audekerke, J.V., Verhoye, M. & Dyck, D.V. (1998) 

Estimation of the noise in magnitude MR images. Magnetic Resonance 

Imaging 16(1):87–90. 

Song, J., Liu, Y., Gewalt, S.L., Cofer, G. & Johnson, G.A. (2009). Least-Square 

NUFFT Methods Applied to 2-D and 3-D Radially Encoded MR Image 

Reconstruction. IEEE Transactions On Biomedical Engineering, Vol. 56, 

No. 4, April 2009.  

Sonka, M. & Fitzpatrick, J.M. (2000). Handbook of Medical Imaging. SPIE.  



189 

 

Speray, D. & Kennon, S. (1990). Volume probes: interactive data exploration on 

arbitrary grids. SIGGRAPH Comput. Graph, 24(5): 5-12. 

Styner, M., Lee, J., Chin, B., Chin, M., Commowick, O., Tran, H., Jewells, V. & 

Warfield, S. (2008). 3D Segmentation in the Clinic: A Grand                   

Challenge II: MS Lesion Segmentation. Grand Challenge Work.: 

Mult.Scler.Lesion Segm. Challenge, pp. 1–8. 

Subhranil Koley, S. & Majumder, A. (2011). Brain MRI Segmentation for Tumor 

Detection using Cohesion based Self Merging Algorithm. IEEE 3rd 

International Conference on Communication Software and                  

Networks (ICCSN). Page(s): 781 – 785. 

Sun,Y., Bhanu, B. & Bhanu, S. (2009). Symmentry Integrated Injury Detection for 

Brain MRI, Image Processing (ICIP), 16th IEEE International, Pages 661 – 

664. 

Suter, S.K.,  Zollikofer, C.P. & Pajarola, R. (2010). Application of Tensor 

Approximation to Multiscale Volume Feature Representations.Proc.Vision, 

Modeling and Visualization, pages 203–210. 

Suter, S.K., Guiti´an, J.A.I., Marton, F., Agus, M., Elsener, A., Zollikofer, C.P.E., 

Gopi, M., Gobbetti, E. & Pajarola, R. (2011). Interactive Multiscale Tensor 

Reconstruction for Multiresolution Volume Visualization. IEEE 

Transactions on Visualization and Computer Graphics, Vol. 17, No. 12. 

Szirmay-Kalos, L., Umenhoffer, T., Tóth, B. & Szécsi, L. (2010). Volumetric 

Ambient Occlusion for Real-Time Rendering and Games. IEEE                

Computer Graphics and Applications, Volume: 30, Issue: 1, Pp. 70-79. 

Tan, S., Yang, J. & Sun, W. (2011). Internet-Based Platform for Power                 

System Simulating and Planning:  Second International Conference on 

Mechanic Automation and Control Engineering (MACE), IEEE. 

Tanoori, B., Azimifar, Z., Shakibafar, A. & Katebi, S. (2011). Computers in Biology 

and Medicine 41 (2011) 619–632. 



190 

 

Tawara, T. & Ono, K. (2010). A Framework for Volume Segmentation and 

Visualization Using Augmented Reality. IEEE Symposium on 3D User 

Interfaces (3DUI). 

Teo, P.C. & Heeger, D.J. (1994). Perceptual image distortion: Proc. 1
st 

    

International Conference on Image Processing, pp. 982-986. 

Teyseyre, A.R. & Campo, M.R. (2009). An Overview of 3D Software     

Visualization. IEEE Transactions on Visualization and Computer     

Graphics, Vol. 15, No. 1. 

The first Information Visualization Symposium (InfoVis) (1995). IEEE Computer 

Society Press, Los Alamitos, CA. 

The Oxford English Dictionary (1989). Oxford Advanced Learner’s    Dictionary of 

Current English, Oxford University Press, Second Edition. 

Tornai, G.J.  & Cserey, G. (2010). 2D and 3D Level-Set Algorithms on GPU:    2010 

12th International Workshop on Cellular Nanoscale Networks and their 

Applications (CNNA), IEEE. 

Tsai, Y.-T.& Shih, Z.-C. (2006). All-Frequency Precomputed Radiance                

Transfer using Spherical Radial Basis Functions and Clustered Tensor 

Approximation. ACM Transactions on Graphics, 25(3):967–976. 

Van, R.E.M, De, H.B., Van, D.V.S., Prokop, M. & Van, G.B. (2009).               

Automatic Segmentation of Pulmonary Segments from Volumetric                

Chest CT Scans. IEEE Trans Med Imaging 2009;28(4):621–30. 

Vawter, C. & Roman, E. (2001).  J2EE vs. Microsoft.NET A comparison of building 

XML-based web services: Prepared for Sun Microsystems, Inc. 

VenuGopal, T. & Naik , P.P.S. (2011). Image Segmentation and Comparative 

Analysis of Edge Detection Algorithms. Int. Journal of Electrical, 

Electronics & Computing Technology, Vol.1 (3).ISSN 2229-3027. 

Vivekanandan, D. & Raj, S.R. (2011). A Feature Extraction Model for                

Assessing the Growth of Lung Cancer in Computer Aided Diagnosis                

IEEE-International Conference on Recent Trends in Information 

Technology,MIT, Anna University, Chennai. 



191 

 

Wakid, M., Kirmizibayrak, C. & Hahn, J.K. (2011). Texture Mapping Volumes 

using GPU-Based Polygon-Assisted Raycasting. IEEE 16th International 

Conference on Computer Games. Page(s): 162 – 166. 

Walter, T., Shattuck, D.W., Baldock, R., Bastin, M.E., Carpenter, A.E., Duce, S., 

Ellenberg, J., Fraser, A., Hamilton, N., Pieper, S., Ragan, M.A., Schneider, 

J.E., Tomancak, P. & Hériché, Jean-Karim (2010). Visualization of image 

data from cells to organisms” S26, Vol.7 No.3s, Nature Methods 

Supplement. 

Wang, L., Zhang, Y. & Feng, J. (2005). On the Euclidean Distance of Images. IEEE 

Transactions On Pattern Analysis and Machine Intelligence, Vol. 27, No. 8. 

Wang, R., Wan, W., Ma, X., Wang, Y. & Zhou, X. (2011). Accelerated Algorithm 

for 3D Intestine Volume Reconstruction Base on VTK.   IEEE International 

Conference on Audio Language and Image Processing (ICALIP), pp: 448 – 

452, Print ISBN: 978-1-4244-5856-1. 

Wang, S.Q., Zhang, J.H. & Yao, Z.X. (2009). Accelerating 3D Fourier Migration on 

Graphics Processing Units. SEG Expanded Abstracts,  pp. 3020–3024. 

Węgliński, T. & Fabijańska, A. (2011). Brain Tumor Segmentation from MRI Data 

Sets using Region Growing Approach. MEMSTECH11, 11-14 May 2011, 

Polyana-Svalyava (Zakarpattya), Ukraine.  

Weiler, M., Westermann, R., Hansen, C., Zimmerman, K. & Ertl., T. (2000). Level-

of-Detail Volume Rendering via 3d Textures. Proceedings of                

Symposium on Volume Visualization, pages 7–13. ACM, SIGGRAPH. 

Wen, X.B., Zhang, H. & Jiang, Z.T. (2008). Multiscale Unsupervised Segmentation 

of SAR Imagery using the Genetic Algorithms. Sensors, Vol.8,        

pp.1704-1711. 

Williams, A., Barrus, S., Morley, R.K. & Shirley, P. (2005). An Efficient and Robust 

Ray-Box Intersection Algorithm. Journal of Graph., GPU Game Tools, Vol. 

10, no. 1, pp. 49–54, 2005. 



192 

 

Williams, D., Grimm, S., Coto, E., Roudsari, A. & Hatzakis, H. (2008). Volumetric 

curved planar reformation for virtual endoscopy.  IEEE Trans Vis Comput 

Graph 14(1):109–119. 

Winter, A.S. (2002). Field-based Modelling and Rendering. University of Wales, 

Swansea. PhD thesis. 

Wong, H.C., Wong, U.H. & Tang, Z.S. (2009). Direct volume rendering by transfer 

function morphine. The 7th International Conference on Information 

Communications and Signal Processing (ICICS), Beijing, China, pp. 1-4. 

Wu, D., Tian, H., Hao, G., Du,  Z. & Sun, L. (2010). Design and  Realization of an 

Interactive Medical Images Three Dimension Visualization System. IEEE 

3rd Internaltional Conference on Biomedical Engineering and Informatics 

(BMEI). 

Wu, Q., Xia, T., Chen, C., Lin, H.-Y.S., Wang, H. & Yu, Y. (2008). Hierarchical 

Tensor Approximation of Multidimensional Visual Data. IEEE Transactions 

on Visualization and Computer Graphics, 14(1):186–199. 

Wu, Y. (2006). Effective, Intuitive and Intelligent Volume Visualization,       

Department of Computer Science, Hong Kong University of Science and 

Technology.  

Xiao, Y., Chen, Z. & Zhang, L. (2009).  Accelerated CT Reconstruction Using  

GPU SIMD Parallel Computing with Bilinear Warping Method: The 1
st
 International 

Conference on Information Science and Engineering (ICISE), IEEE. 

Xie, K., Yu, W., Yu, H., Wu, P., Li, T. & Peng, M. (2011). GPU-based Multi-

Resolution Volume Rendering for Large Seismic Data. IEEE                  

International Conference on Intelligence Science and Information                 

Engineering, pp. 245 - 248. 

Xujia, Q., Sida, Z., Xinhong, C.  & Jun, H. (2009). Research and implementation of 

multi-dimensional transfer fucntion based on boundaries, Biomedical 

Engineering and Informatics. 



193 

 

Yang, Guang-Zhong&Firmin, D.N. (2000). The birth of the first CT scanner. 

Engineering in Medicine and Biology Magazine, IEEE. Volume: 19 ,  

Issue:1 pp: 120 – 125, ISSN :  0739-5175. 

Yang, X., Sechopoulos, I. & Fei, B. (2011). Automatic Tissue Classification for 

High-resolution Breast CT Images Based on Bilateral Filtering. Proceedings 

Vol. 7962. Medical Imaging 2011: Image Processing, ISBN: 

9780819485045. 

Yeo, B.-L., & Liu, B. (1995). Volume rendering of DCT-based compressed 3D 

Scalar Data. IEEE Transactions on Visualization and Computer                  

Graphics, 1(1):29–43. 

Yun, Y. & Xing, Z. (2010). An improved Method for volume rendering. 2nd 

International Symposium on  Information Engineering   and Electronic 

Commerce (IEEC), Issue Date :  23-25 July 2010, On    page(s): 1 – 3. 

Zhang, F. & Ma, L. (2010). MRI Denoising Using the Anisotropic Coupled 

Diffusion Equations. IEEE 3rd International Conference on Biomedical 

Engineering and Informatics (BMEI 2010). 

Zhang, Z. –M., Lu, W., Shi,Y.-Z., Yang, T.-L. & Liang, S.-L. (2012). An                

Improved Volume Rendering Algorithm Based on Voxel Segmentation. 

IEEE International Conference on Computer Science and Automation 

Engineering (CSAE), Vol.1, pp. 372 – 375. 

Zhang, Q., Eagleson, R. & Peters, T.M. (2007). Rapid Voxel Classification    

Methodology for Interactive 3D Medical Images Visualization. The 10th 

International Conference on Medical Image Computing and Computer 

Assisted Intervention (MICCAI,), Brisbane, Australia, pp 86-93. 

Zhang, Q., Eagleson, R. & Peters, T.M. (2010). A Technical Overview with a Focus 

on Medical Applications, Journal of Digital Imaging.  

Zhao, F. & McGinnity, T.M. (2011). A Low-cost Real-time Three-dimensional 

Confocal Fluorescence Endomicroscopy Imaging System.Ist IEEE 

International Conference on Healthcare Informatics, Imaging and Systems 

Biology, pp. 126 – 133. 



194 

 

Zheng, Z., Xu, W. & Mueller, K. (2010). VDVR: Verifiable Visualization of 

Projection-Based Data. IEEE Transactions on Visualization And Computer 

Graphics, Vol. 16, NO. 6, pp. 1515 – 1524. 

Zhou, H.,Tao, Y., Lin,H., Dong, F. & Clapworthy, G. (2011). Shape-Enhanced 

Maximum Intensity Projection. Springer-Verlag Vis Comput 27: 677–               

686. 

Zhu, Y., Ma, X., Zhou, X., Sun,Y., Yang, W., Zhang, S. & Wang, W. (2011).    

Research of Medical Image Reconstruction System based-on MAC 

OS.IEEE Conference on Smart and Sustainable City (ICSSC 2011). IET 

International.pp: 1 – 4, Print ISBN: 978-1-84919-326-9. 

Zitova, B. & Flusser, J. (2003). Image Registration Methods: A Survey.               

Image and Vision Computing 21 (2003),977–1000. 




