1,208 research outputs found

    Desertscape Simulation

    Get PDF
    International audienceWe present an interactive aeolian simulation to author hot desert scenery. Wind is an important erosion agent in deserts which, despite its importance, has been neglected in computer graphics. Our framework overcomes this and allows generating a variety of sand dunes, including barchans, longitudinal and anchored dunes, and simulates abrasion which erodes bedrock and sculpts complex landforms. Given an input time varying high altitude wind field, we compute the wind field at the surface of the terrain according to the relief, and simulate the transport of sand blown by the wind. The user can interactively model complex desert landscapes, and control their evolution throughout time either by using a varietyof interactive brushes or by prescribing events along a user-defined time-line

    Serious pervasive games

    Get PDF
    Serious Pervasive Games extend themagic circle (Huizinga, 1938) to the players’ context and surrounding environment. The blend of both physical and fictive game worlds provides a push in player engagement and promotes situated learning approaches. Space and time, as well as social context, acquire a more meaningful impact on the gameplay. From pervasive learning towards science communication with location-based games, this article presents research and case studies that exemplify their benefits and related problems. Pervasive learning can be defined as “learning at the speed of need through formal, informal and social learning modalities” (Pontefract, 2013). The first case study—the BEACONING project—aims to contextualize the teaching and learning process, connecting it with problem-based game mechanics within STEM. The main goal of this project is to provide the missing connection between STEM subjects and real-world interactions and applications. The pedagogical foundation is supported on problem-based learning (PBL), in which active learning is in the center, and learners have to work with different tools and resources in order to solve problems (quests). Teachers create, facilitate, and assess pervasive and gamified learning activities (missions). Furthermore, these quests are gamified in order to provide non-linear game plots. In a second case study, we demonstrate and evaluate how natural heritage can benefit from pervasive games. This study is based on a set of location-based games for an existing natural park, which have been developed in order to provide enhanced experiences, as well as additional information about some species that are more difficult to observe or that are seasonal. Throughout the research and development of these projects, we have encountered and identified several problems, of different nature, present in pervasive games.This work was financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-030740 - PTDC/CCICOM/30740/2017. Part of this work has also been supported by the European Union’s Horizon 2020 - The EU Framework Programme for Research and Innovation 2014–2020, under grant agreement No. 687676. We would also acknowledge the research grant from the Operation NORTE-08-5369-FSE-000049 supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Social Fund (ESF), and also the FCT-Austin grant Ref. PD/BD/142893/2018.info:eu-repo/semantics/publishedVersio

    Gazebo Plants: Simulating Plant-Robot Interaction with Cosserat Rods

    Full text link
    Robotic harvesting has the potential to positively impact agricultural productivity, reduce costs, improve food quality, enhance sustainability, and to address labor shortage. In the rapidly advancing field of agricultural robotics, the necessity of training robots in a virtual environment has become essential. Generating training data to automatize the underlying computer vision tasks such as image segmentation, object detection and classification, also heavily relies on such virtual environments as synthetic data is often required to overcome the shortage and lack of variety of real data sets. However, physics engines commonly employed within the robotics community, such as ODE, Simbody, Bullet, and DART, primarily support motion and collision interaction of rigid bodies. This inherent limitation hinders experimentation and progress in handling non-rigid objects such as plants and crops. In this contribution, we present a plugin for the Gazebo simulation platform based on Cosserat rods to model plant motion. It enables the simulation of plants and their interaction with the environment. We demonstrate that, using our plugin, users can conduct harvesting simulations in Gazebo by simulating a robotic arm picking fruits and achieve results comparable to real-world experiments.Comment: Upon request, we are happy to share our GazeboPlants plugin open-source (MPL 2.0

    Interactive authoring of simulation-ready plants

    Full text link

    Interactive Procedural Modelling of Coherent Waterfall Scenes

    Get PDF
    International audienceCombining procedural generation and user control is a fundamental challenge for the interactive design of natural scenery. This is particularly true for modelling complex waterfall scenes where, in addition to taking charge of geometric details, an ideal tool should also provide a user with the freedom to shape the running streams and falls, while automatically maintaining physical plausibility in terms of flow network, embedding into the terrain, and visual aspects of the waterfalls. We present the first solution for the interactive procedural design of coherent waterfall scenes. Our system combines vectorial editing, where the user assembles elements to create a waterfall network over an existing terrain, with a procedural model that parametrizes these elements from hydraulic exchanges; enforces consistency between the terrain and the flow; and generates detailed geometry, animated textures and shaders for the waterfalls and their surroundings. The tool is interactive, yielding visual feedback after each edit

    Realistic reconstruction and rendering of detailed 3D scenarios from multiple data sources

    Get PDF
    During the last years, we have witnessed significant improvements in digital terrain modeling, mainly through photogrammetric techniques based on satellite and aerial photography, as well as laser scanning. These techniques allow the creation of Digital Elevation Models (DEM) and Digital Surface Models (DSM) that can be streamed over the network and explored through virtual globe applications like Google Earth or NASA WorldWind. The resolution of these 3D scenes has improved noticeably in the last years, reaching in some urban areas resolutions up to 1m or less for DEM and buildings, and less than 10 cm per pixel in the associated aerial imagery. However, in rural, forest or mountainous areas, the typical resolution for elevation datasets ranges between 5 and 30 meters, and typical resolution of corresponding aerial photographs ranges between 25 cm to 1 m. This current level of detail is only sufficient for aerial points of view, but as the viewpoint approaches the surface the terrain loses its realistic appearance. One approach to augment the detail on top of currently available datasets is adding synthetic details in a plausible manner, i.e. including elements that match the features perceived in the aerial view. By combining the real dataset with the instancing of models on the terrain and other procedural detail techniques, the effective resolution can potentially become arbitrary. There are several applications that do not need an exact reproduction of the real elements but would greatly benefit from plausibly enhanced terrain models: videogames and entertainment applications, visual impact assessment (e.g. how a new ski resort would look), virtual tourism, simulations, etc. In this thesis we propose new methods and tools to help the reconstruction and synthesis of high-resolution terrain scenes from currently available data sources, in order to achieve realistically looking ground-level views. In particular, we decided to focus on rural scenarios, mountains and forest areas. Our main goal is the combination of plausible synthetic elements and procedural detail with publicly available real data to create detailed 3D scenes from existing locations. Our research has focused on the following contributions: - An efficient pipeline for aerial imagery segmentation - Plausible terrain enhancement from high-resolution examples - Super-resolution of DEM by transferring details from the aerial photograph - Synthesis of arbitrary tree picture variations from a reduced set of photographs - Reconstruction of 3D tree models from a single image - A compact and efficient tree representation for real-time rendering of forest landscapesDurant els darrers anys, hem presenciat avenços significatius en el modelat digital de terrenys, principalment gràcies a tècniques fotogramètriques, basades en fotografia aèria o satèl·lit, i a escàners làser. Aquestes tècniques permeten crear Models Digitals d'Elevacions (DEM) i Models Digitals de Superfícies (DSM) que es poden retransmetre per la xarxa i ser explorats mitjançant aplicacions de globus virtuals com ara Google Earth o NASA WorldWind. La resolució d'aquestes escenes 3D ha millorat considerablement durant els darrers anys, arribant a algunes àrees urbanes a resolucions d'un metre o menys per al DEM i edificis, i fins a menys de 10 cm per píxel a les fotografies aèries associades. No obstant, en entorns rurals, boscos i zones muntanyoses, la resolució típica per a dades d'elevació es troba entre 5 i 30 metres, i per a les corresponents fotografies aèries varia entre 25 cm i 1m. Aquest nivell de detall només és suficient per a punts de vista aeris, però a mesura que ens apropem a la superfície el terreny perd tot el realisme. Una manera d'augmentar el detall dels conjunts de dades actuals és afegint a l'escena detalls sintètics de manera plausible, és a dir, incloure elements que encaixin amb les característiques que es perceben a la vista aèria. Així, combinant les dades reals amb instàncies de models sobre el terreny i altres tècniques de detall procedural, la resolució efectiva del model pot arribar a ser arbitrària. Hi ha diverses aplicacions per a les quals no cal una reproducció exacta dels elements reals, però que es beneficiarien de models de terreny augmentats de manera plausible: videojocs i aplicacions d'entreteniment, avaluació de l'impacte visual (per exemple, com es veuria una nova estació d'esquí), turisme virtual, simulacions, etc. En aquesta tesi, proposem nous mètodes i eines per ajudar a la reconstrucció i síntesi de terrenys en alta resolució partint de conjunts de dades disponibles públicament, per tal d'aconseguir vistes a nivell de terra realistes. En particular, hem decidit centrar-nos en escenes rurals, muntanyes i àrees boscoses. El nostre principal objectiu és la combinació d'elements sintètics plausibles i detall procedural amb dades reals disponibles públicament per tal de generar escenes 3D d'ubicacions existents. La nostra recerca s'ha centrat en les següents contribucions: - Un pipeline eficient per a segmentació d'imatges aèries - Millora plausible de models de terreny a partir d'exemples d’alta resolució - Super-resolució de models d'elevacions transferint-hi detalls de la fotografia aèria - Síntesis d'un nombre arbitrari de variacions d’imatges d’arbres a partir d'un conjunt reduït de fotografies - Reconstrucció de models 3D d'arbres a partir d'una única fotografia - Una representació compacta i eficient d'arbres per a navegació en temps real d'escenesPostprint (published version

    Modeling player experience in Super Mario Bros

    Get PDF
    This paper investigates the relationship between level design parameters of platform games, individual playing characteristics and player experience. The investigated design parameters relate to the placement and sizes of gaps in the level and the existence of direction changes; components of player experience include fun, frustration and challenge. A neural network model that maps between level design parameters, playing behavior characteristics and player reported emotions is trained using evolutionary preference learning and data from 480 platform game sessions. Results show that challenge and frustration can be predicted with a high accuracy (77.77% and 88.66% respectively) via a simple single-neuron model whereas model accuracy for fun (69.18%) suggests the use of more complex non-linear approximators for this emotion. The paper concludes with a discussion on how the obtained models can be utilized to automatically generate game levels which will enhance player experience.peer-reviewe

    The design of 3D cyberspace as user interface: Advantages and limitations

    Get PDF
    Virtual reality propagandists, technologists and the Internet community have long debated the issue of the usability of online three-dimensional (3D) environments. A lot of work was published about the benefits of 3D spaces for human-computer interaction and information visualisation due to their realism (Anders, Kalawsky, Crossley, Davies, McGrath, Rejman-Greene, 1998, Hamit, 1993, Heim, 1992, Aukstakalnis, Blatner, Roth, 1992). This topic also receives continuous industry support including standardisation of Virtual Reality Modeling Language ( VRML, VRML Consortium, 1997) and the more recent Macromedia & Intel alliance to bring web 3D to the mainstream (200 1, Intel Corporation). The actual implementation of this technology is, however, still challenging (McCarthy & Descartes, 1998) and minimal because 3D is too new and waiting for good design to be discovered (Nielsen, 1998). The practical aim of this project is to fulfil the niche by creating a functional 3D interface for the access of two-dimensional (2D) information, such as text, using VRML. The theoretical aim is to contribute to further research into 3D usability by describing and analysing the design process in terms of possibilities, challenges and limitations

    Branching Boogaloo: Botanical Adventures in Multi-Mediated Morphologies

    Get PDF
    FormaLeaf is a software interface for exploring leaf morphology using parallel string rewriting grammars called L-systems. Scanned images of dicotyledonous angiosperm leaves removed from plants around Bard’s campus are displayed on the left and analyzed using the computer vision library OpenCV. Morphometrical information and terminological labels are reported in a side-panel. “Slider mode” allows the user to control the structural template and growth parameters of the generated L-system leaf displayed on the right. “Vision mode” shows the input and generated leaves as the computer ‘sees’ them. “Search mode” attempts to automatically produce a formally defined graphical representation of the input by evaluating the visual similarity of a generated pool of candidate leaves. The system seeks to derive a possible internal structural configuration for venation based purely off a visual analysis of external shape. The iterations of the generated L-system leaves when viewed in succession appear as a hypothetical development sequence. FormaLeaf was written in Processing
    corecore