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In spring when, tired of restraining themselves, no longer able to hold back, they emit a 
flood, a vomit of green, they think they’re breaking into a polyphonic canticle, bursting out 
of themselves, reaching out to, embracing, all of nature; in fact they’re merely producing 
thousands of copies of the same note, the same word, the same leaf. 

-Francis Ponge, Flora and Fauna  
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Abstract 
 

FormaLeaf is a software interface for exploring leaf morphology using parallel string 

rewriting grammars called L-systems. Scanned images of dicotyledonous angiosperm 

leaves removed from plants around Bard’s campus are displayed on the left and analyzed 

using the computer vision library OpenCV. Morphometrical information and terminological 

labels are reported in a side-panel. “Slider mode” allows the user to control the structural 

template and growth parameters of the generated L-system leaf displayed on the right. 

“Vision mode” shows the input and generated leaves as the computer ‘sees’ them.  “Search 

mode” attempts to automatically produce a formally defined graphical representation of 

the input by evaluating the visual similarity of a generated pool of candidate leaves. The 

system seeks to derive a possible internal structural configuration for venation based 

purely off a visual analysis of external shape. The iterations of the generated L-system 

leaves when viewed in succession appear as a hypothetical development sequence. 

FormaLeaf was written in Processing.     
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Project Introduction 
Motivations and Summary

 

This is a project about leaf morphology. In Part I, leaves are examined from a 

historico-scientific perspective in an attempt to understand them contextually. Next, the 

Intersection presents a historical overview of formalized morphology. Part II then first 

gives a description of a type of formal grammar called L-systems and then goes into detail 

about my own efforts towards building an interactive system which tries its best to 

automatically arrive at a plausible L-system representation of a leaf’s internal venation 

structure by looking only at its outline shape. The result of these efforts has been a piece of 

software I’ve named FormaLeaf. It was written in Processing, a Java-based language which 

makes building interactive graphical systems streamlined and fun.  FormaLeaf can hence 

be run on any computer with Processing (and the two required libraries) installed.   



3 
  

 

The software’s name plays on its ability to both allow the user to explore leaf form 

in real-time by manipulating various template leaves using parameter sliders (‘Form a’ 

Leaf) while also being a nod to what underlies the computer-generated graphic on the 

right-hand side—a formal language representation of leaf form (‘Formal’ Leaf). As the 

ultimate goal was to obtain automated representation, in addition to the interactive Slider 

Mode the program also has a Search Mode. Here computer vision techniques analyze both 

the input leaf and a pool of continuously generated candidate leaves in an attempt to find 

an L-system leaf with a structural and dimensional configuration which matches the input. 

Because of the complexity of this problem, this hardly ever results in a leaf that actually 

resembles the one on the left. I consider it a success, however, if the generated leaf’s 

schematic “template” (and hence its venation and lobation structure) matches that of the 

input leaf. While this automated search was the original aim of the project, it ended up as 

one of the least developed/functional pieces of the whole thing.  

Why leaves? Put simply, a leaf makes a good microcosm. It’s an interesting piece of 

the universe which happens to express many general properties—if you have to narrow 

your focus, may as well pick something that smells universal. Reflected in the variable 

finalities of its form, the function of its metabolism, and the process of its growth and 

branching is one possible image of the whole organic universe. The deeper our 

understanding of a leaf, the deeper our understanding of everything! Leaves are life in an 

expression not of the ‘animal’, and hence looking at specifics of plant form and functioning 

provides an interesting perspective of our own place. As an organ of a larger organism, a 

leaf is both part and whole—this makes it convenient to fit inside a scanner. 
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The unique significance of the leaf as a subject of inquiry is echoed by a number of 

writers. Biologist and author Steven Vogel writes of the leaf as a “biological everyman, an 

ordinary and ubiquitous living thing that provides the subject for an exploration of our 

immediate physical world” and selects it as the representative “protagonist” of his book 

about the biomechanics of life.1 Numerous plant morphologists (among them Caspar Wolff 

and Johann Wolfgang von Goethe) conjectured that every plant organ is just a modified leaf 

by virtue of its apparent universality. Agnes Arber, author of the remarkable 1950 Natural 

Philosophy of Plant Form even states that “the flowering plant[…]offers innumerable 

‘microcosmic’ aspects.”2 For this project, I select the leaf.  

Less pertinent but still of note is the ecological importance of leaves. This is not to 

suggest a project like this has any actual ecological application. If it does, I don’t know 

about it. Regardless, as the means by which most of the solar energy from the sun is 

introduced into the ecosystem, leaves are especially integral to the existence of life on 

Earth as we know it and thus (I believe) worth everyone’s time to think about. Writes 

Vogel:  

What’s minimally needed to generate order are three items: (1) a source of energy 
and (2) a sink for energy, with the latter at a lower potential (cooler or lower down) 
than the source, and (3) some coupling system to draw on this energy flow. 

For our earth, the sun provides the source, and the sink is outer space or, in 
immediate terms, the cold sky. What’s the coupling system? One system exceeds in 
importance by some vast factor all others put together. It’s photosynthesis, as done 
by green plants, algae, and some kinds of bacteria. Without photosynthesis (or some 
substitute), nothing like the present kind of complex, highly ordered life could exist. 
Leaves are really, really important.3 
 

And of course, leaves are just as important as they are beautiful. 

                                                           
1 Vogel, 2. 
2 Arber, 1. 
3 Vogel, 16. 
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 Some notes on sources: Any images scanned from books or obtained from online 

sources have been cited. Unless otherwise stated, the included photographs and images are 

my own. Quotations and information are cited in footnotes4 and there is a bibliography at 

the end of the project.   

 I titled this project “Branching Boogaloo: Botanical Adventures in Multi-Mediated 

Morphologies” in part due to my interest in media theory. My hope is that by engaging with 

a topic through a number of different disciplinary mediums a more complete 

understanding may be possible—if not more complete, then at least multi-faceted. This is 

partly what “Experimental Humanities” means to me. It also means allowing myself to take 

experimental risks, so if chunks of this project are rough around the edges or seem all over 

the place it’s because I’m out of my depth or otherwise ran out of time to make a section 

cohesive. But it doesn’t hurt to try—and in any case, I learned a lot. 

 Above all else, I hope you enjoy what you choose to read or see of my project!  

 

 

                                                           
4 Regarding footnotes, for all of Part I and for the Intersection footnotes with anything other than pure 
citational information are printed in green.  
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Part I: Looking At Leaves 
 

Botanical History and Biological Architecture 
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Looking at Leaves 
Botanical History and Biological Architecture 

 

 Considering the importance of leaves, it’s remarkable how frequently they are 

overlooked. In the Northeast, outside of autumn peak and the subsequent clean-up leaves 

tend to blend in to the background of human activity. With the intent of first arriving at a 

general understanding of leaves, scientific information has been interleaved with facts and 

primary sources pertaining to some particularly interesting historical developments of the 

human understanding of leaves. The hope is that technical information which might 

otherwise appear boring or dry to some readers becomes enlivened within a human 

context. Modern research is also cited when appropriate and points relevant to aspects of 

the larger project at hand are described. We address in turn: leaf shape, leaf function, leaf 

development, and patterns of venation. 
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Leaf Shape: Ancient Observations and Modern Terminology  
 

This section concerns the shapes of leaves and leaf parts and the names they’ve 

been given. Leaf terminology has developed in large part to aid in species identification.  

 The designated successor and junior colleague of Aristotle, Theophrastus is often 

referred to as the first dedicated botanist1 or else as the “Father of Botany.” His study 

Enquiry into Plants describes with precision many aspects of plants, including the 

idiosyncrasies of certain species, seasonal behaviors, and the variable forms taken by 

different plant parts and organs. Section X of Book I is dedicated to leaves, where 

Theophrastus writes:  

Leaves differ also in their shapes; some are round, as those of pear, some rather 
oblong, as those of the apple[…]2  
 

Theophrastus has here observed the variable form of the lamina—the leaf blade. His 

comments extend further: 

Again there are various other differences between leaves; some trees are broad-
leaved, as vine fig and plane, some narrow-leaved, as olive pomegranate myrtle.3  
 

Any human with uncompromised eyesight confronted by a leaf notices instantly its basic 

geometry, as shape is an exceedingly obvious visual property. It speaks to the clarity of 

shape as a property that two thousand-year-old descriptors remain intelligible and 

translatable. The words used by Theophrastus to describe different leaf shapes rebound 

through later texts and are echoed in modern terminology. The most salient point of these 

                                                           
1 The Intersection begins with a brief reconsideration of the tendency to name Theophrastus as the origin-
point of all botanical science—for this section, though, he gets his due. Also worth mentioning is that a 
number of pre-Socratic philosophers are credited by later sources as having theorized about plants (for 
example: Empedocles on plant sex, Anaxagoras on gas exchange) though it does not appear that they carried 
out any extended study. 
2 Theophrastus, I.X.5, 73. 
3 Theophrastus, I.X.4, 71. 
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passages is the sheer variety of differences of shape—Theophrastus hardly attempts an 

exhaustive catalogue but instead simply points to a handful of examples. 

In an effort to manage this variety, botanical texts demonstrate a move over time 

from heuristic names based off of resemblances towards quantitatively measured, well-

defined labels. Heuristic labels based off shape resemblances are poetic but tend towards a 

potentially unwieldy nomenclature with lots of very specific terms for different forms. For 

example, in his 1751 publication Philosophia Botanica, the enormously influential 

taxonomist Carl Linnaeus lists 62 separate names for different leaf blade shapes.   

Figure 1: Left—Leaf shapes in Linnaeus’ Philosophia Botanica (Tab. II)  
Right—Linnaeus’ list of Latin shape terms translated by Hugh Rose. 
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Older terminology (such as that presented by Linneaus above) is organized in such a 

way that leaf shape is presented as a whole, with the entire pictured form given its own 

name. However, there is little to suggest that these labels are meant to be mutually 

exclusive. These weren’t efforts at classifying leaf shapes as much as they were just 

establishing collections of words used to talk about them. Later terminology becomes more 

precise in its organization concerning the parts of the leaf shape being named. Asa Gray’s 

1860 textbook makes a point to characterize the shapes of the general outline, the base, 

and the apex of the leaf in three separate sections, applying labels to the forms of different 

sections of the leaf. For example, he writes of a base shape: “Hastate, or halberd-shaped, 

when such lobes at the base point outwards, giving the leaf the shape of the halberd of the 

olden time”4 and of an apex shape: “Retuse, with the rounded summit slightly indented, 

forming a very shallow notch.”5 Gray also provides images of just leaf tips and bases alone 

in order to explain their forms. By contrast, “hastate” was just one of many other fully 

rendered leaves in Linneaus’ collected list (#15, Rose translates it as “Spear-shaped”). 

                                                           
4 Gray, 59. 
5 Gray, 60. 
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Figure 2: A few modern laminar shape descriptors.  
 (Manual of Leaf Architecture, 23) 

One thing the vision system in FormaLeaf does is apply a basic, overall shape label 

to the input leaf automatically by taking a precise computational measurement. The terms 

in Figure 2 are determined by the location of the widest point on the lamina, using the 

terminological method of naming shape through measurement as opposed to heuristics of 

resemblance. For example, if the widest part of the leaf falls in the bottom 2/5ths of its 

lamina, it is labeled ovate. This term developed analogically (meaning “like an egg”) and 

only later was defined quantitatively.  

Because computers like specifics, the labeling system of my project uses the 

quantitatively well-defined terminology as set forth in the 2009 Manual of Leaf Architecture 

published by Cornell University Press, which was itself based off of Hickey’s 1979 update of 

von Ettinghausen’s 1861 system. This manual was in part developed to assist in modern 

paleobotanical research efforts. Leaves are the most common fossilized remains of ancient 

plants,6 so careful labeling systems are important for understanding and organizing the 

                                                           
6 Ellis et. al (2009).  
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fossil record (and thus the evolutionary history) of angiosperms. Large-scale organization 

and labeling is generally more efficient when done by some objective criteria. Where Gray 

gave an image and description of a “hastate” base shape, the Manual of Leaf Architecture 

gives a photograph, a description, and a range of base lobe angles (90˚ -125˚) to which it 

could apply.  

 A terminological division of a leaf into two main parts is usually done by separating 

it into the lamina and the petiole, also called leaf-stalk or stem.  

Figure 3: Parts of a leaf. The site of connection between  
the petiole and lamina is called the insertion point. 
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The petiole connects the leaf blade to the rest of the plant, and the style of this connection 

is yet another place where leaves express different spatial characteristics. As Theophrastus 

writes of the variable attachment styles of leaves, 

[…]the means by which they are attached may be a leaf-stalk, or they may be 
attached directly; and there may be several leaves attached by the same leaf-stalk.7 

Leaves attached by a leaf-stalk are today known as petiolate, while those attached directly 

(and without a petiole at all) are called sessile. When Theophrastus mentions that “there 

may be several leaves attached by the same leaf-stalk,” he’s pointing out the existence of 

compound leaves, which have many individual leaflets on one petiole.   

Figure 4: Drawings of compound leaves in Linnaeus’ Philosophia Botanica               
(Tab. II, 290). The stems which attach the leaflets are petiolules. 

 
Contrary to compound leaves are simple leaves, consisting of just a single laminar area—

like the leaf in Figure 3. Though it is hard to tell once they’ve been removed, I believe most 

of the leaves in my sample set to be simple petiolate leaves. It is very likely that some are 

actually leaflets from a compound leaf, but in the end it doesn’t make any difference since 

                                                           
7
 Theophrastus, I.X.8, 77. 
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the system seeks to reproduce whatever lamina it’s been presented with—hence it models 

what could either be a simple leaf or a compound leaflet. The system pays no regard to the 

status of the petiole as it is manually removed from the scanned picture during the image 

preparation phase. 

 The myriad causes behind the enormous variety of leaf shape is a huge, largely 

unsolved puzzle which crosses the boundaries of every scientific discipline. A 2011 review 

of possible theories of leaf shape significance by Adrienne Nicotra et. al summarizes as 

follows: 

The theories about leaf shape are many, and not mutually exclusive: 
thermoregulation of leaves especially in arid and hot environments, hydraulic 
constraints, patterns of leaf expansion in deciduous species, mechanical constraints, 
adaptations to avoid herbivory, adaptations to optimize light interception and, given 
that leaves are hypothesized to be developmental homologues of floral organs, and 
it has even been suggested that leaf shape reflects the effects of selection on flower 
form. Finally, there is the chance that leaf shape variation has little functional or 
adaptive significance and instead reflects random variation within the context of 
phylogenetic history. However, given the importance of the leaf we believe the latter 
option rather unlikely.8 
 

Clearly, there are many factors which affect leaf shape.  Everything about the surrounding 

environment appears to matter—it becomes especially complicated because leaves of the 

same species frequently assume different forms depending on their specific climatic 

conditions. Keep in mind also that “leaves are hypothesized to be developmental 

homologues of floral organs,” which will come up again in the section about leaf 

development.  

 Before moving on to leaf function, a shape-based clarification is in order. As far as I 

can tell, the leaves under computational examination in this project are all from flowering 

plants, or angiosperms. This distinction is in contrast to gymnosperms, which include 

                                                           
8 Nicotra et. al, (2011), 536. 
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conifers and Ginkgo trees (among other plant groups). Both angiosperms and 

gymnosperms fall under the category of vascular plants, which are those species which 

transport water and nutrients through special conducting tissues—xylem and phloem. 

Angiosperms and gymnosperms gain their respective names from their different styles of 

reproduction. With gymno meaning “naked” and angio meaning “vessel,” the terms indicate 

whether the seed (sperm) of the plant is either exposed and hanging out on the leaves or a 

cone or is otherwise enclosed in an ovary which then develops into a fruit. Pictured are 

some examples of gymnosperm vs. angiosperm leaves.        
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Figure 5: Left—Gymnosperm leaves. Scale, needle, and the planar Gingko.  
Right—Angiosperm leaves. 
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My project’s vision system deals with angiosperms instead of gymnosperms because 

of their respective shapes. Conifers tend to have thin needle or scale-like leaves as opposed 

to the broad, planar leaves of most angiosperms. A vision system to devise an L-system 

representation of conifer leaves would be possible but would require work in a different 

direction due to this basic structural difference—at the very least, it would require a 

different way of using (if used at all) the polygonal interpretation of the L-systems. Ginkgo 

leaves are planar but their unique fan shape is strange for other reasons, as Ginkgo biloba is 

one of those peculiar ancient fossil species that still happens to be around. Another reason I 

personally focused on angiosperms is that it’s an angiosperm leaf that comes into my mind 

when I hear the word “leaf.” It didn’t even occur to me at the outset of my sample collection 

that pine needles too may bear the moniker—despite the difference in form they are 

scientifically considered to be simple, single-veined leaves because of their function. 

Angiosperm leaves are, in comparison to every other leaf-like structure in evolutionary 

history, enormously complex in their often reticulate venation patterns. It has been 

proposed that this complexity of venation is also linked to the massive varieties of 

angiosperm leaf shapes—write Nicotra et. al: “Because of their much greater 

transpirational capacities[…]flowering plants have far greater leeway than other plants 

regarding the size and shape of their leaves.”9 Perhaps due in part to this metabolic leeway, 

angiosperms have had enormous ecological success on planet Earth.  

                                                           
9 Nicotra et. al (2011), 542. 
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Leaves also take on highly modified forms to fulfill specific anatomical roles unique 

to certain species—for example, fly traps, bug-catching pitchers, climbing tendrils, spathes, 

and spines, among other things. This potential for performing structural and responsive 

functions outside of just the nutritive function of photosynthesis points to the leaf’s 

developmental versatility as a plant organ. 

Figure 6: The spathe of the jack-in-the-pulpit (Arisaema triphyllum)  
is a modified leaf which surrounds the spadix. 

In conclusion, there are lots of leaf shapes and leaf terminology has become more 

precise over time. Aside from being useful for identification purposes, the terminology 

surrounding leaf form becomes a lexicon of what is noticed. The move from many heuristic 

labels for different leaf shapes towards a more mathematically precise and partitionally 

specific system of terminology follows a general scientific trend towards both numeric 

exactness and a greater standardization of terms describing smaller and smaller pieces of 

whatever is under observation. Terminological systems like the one found in Manual of 
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Leaf Architecture are precise in their measurements in the hopes of increasing 

standardization across research and communicability across researchers. Terminology is 

also invaluable for helping us to pay conscious attention to pieces and distinctions we 

would otherwise ignore. On the flip side, the assumption that everything’s already been 

labeled in the best possible way perhaps makes it harder to see what has yet to be named, 

and also that an improved conceptual scheme for the relation between existing labels 

might exist.  

The next section concerns the puzzle of leaf function and the role comparison in 

understanding what they do. 
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Leaf Function: The Puzzle of Photosynthesis 
 

 While the varieties of leaf shape are quite apparent to the human observer, their 

function is far less immediately obvious. The true biological purpose of the leaf was 

unknown even after the basic functions of other plant parts (such as the roots and fruits) 

were for the most part understood. Hence early botanists are understandably mistaken 

about what leaves are actually doing, although they are generally aware that it has 

something to do with water and sunlight. Nicolaus of Damascus, supposed tutor of Antony 

and Cleopatra’s children, writes in his 1st century B.C. botanical treatise On Plants10 that 

leaves 

have no other purpose except the attraction of moisture and to serve as a protective 
covering for the fruit from the excessive heat of the sun. At the same time leaves are 
not so essential as fruit[…]11 

 
Not quite—but he is onto something. Nicolaus recognized the sun’s role in the upwards 

movement of moisture as well as its necessity for plant growth: 

When the sun strikes it and causes the moisture therein to move, it heats up the spot 
by the movement which arises[…]when the heat of the sun begins to scatter the 
particles of water, the sun draws the particles of moisture upwards[…]12  
 

Leaves are the sites of diffusive moisture movement, which give plants, as Nicolaus says, “a 

power of attraction which draws the moisture from the earth.”13 Transpiration is the 

process by which water moves up from the soil, through the plant, and out into the 

atmosphere. The evaporation occurs at the leaves, where the drier air outside the leaf 

                                                           
10

 Commonly misattributed to Aristotle, who was far more a zoologist. 
11 On Plants, II.VII  217. 
12 On Plants II.VII, pg. 215. 
13 On Plants, II.I, 187. 
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causes a diffusion gradient.14 The sun’s heat further hastens evaporation by heating both 

the leaf itself and by making the surrounding air less humid.  

Understanding Nicolaus’s conception of leaf function requires looking a little closer 

at how he saw plants in general—he describes plant growth as the coalescence of moisture 

which is then refined by the heat of the sun and the expansion of the surrounding air:   

For when the juices are compressed, their nature grows hot and hurries on to the 
ripening stage, and so branches will take shape and leaves grow[...]15  
 

The continuation of this process—its “proper end” being the production of fruit—he refers 

to as “ripening,” which he also points as the cause of differentiation in animal parts:  

A third form of ripening takes place in the animal; for this form of ripening only 
occurs through the division of the limbs and the natural differences of one part from 
another.16  
 

Hence the developmental process which shapes the plant is seen as akin to what causes 

differentiation of animal parts. This is a common theme running through morphological 

thought. What is less clear than visual resemblance is whether the function of the parts 

they develop are similar as well. Does homologous form imply analogous function?  

Nicolaus’s assertion that the leaves serve as a covering for fruit demonstrates an 

awareness for how leaves are structured so as to intercept sunlight. Agnes Arber 

furthermore suggests that the shade theory was “a natural reaction to the southern 

brilliance of the Mediterranean climate.”17 Others suggest that it came out the fact that 

Mediterranean plants tend not to have very large leaves. Curiously, while contemporary 

research does not suggest that leaves are fulfilling any important protective function for 

                                                           
14 MacAdam, 130. 
15 On Plants, II.VIII, 223. 
16 On Plants, II.VIII, 221. 
17 Arber, 28. 
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fruit, plants do have their own kind of “sunscreen”. For example, the protein receptor (UV-

B resistance 8) initiates a stress response as a protective measure against excessive 

radiation, which is especially harmful to genetic information.  

Botanists for most of human history understood the sun as providing the heat which 

raises the moisture of the plant into its formation. They consistently recognize that the sun 

is an integral part of growth and often observe that plants which get less sunlight do not 

grow as much. Theophrastus was aware of the heliotropism of leaves when he wrote that 

“Most leaves turn towards the sun[…]”18 However, the nutritive importance of the solar 

rays was not known and they instead saw all nutrition as coming from the Earth.  

Early botany understandably located the nutritive function of plants in the roots, 

with Nicolaus of Damascus calling them “the intermediary between the plant and its 

food,[…]the source of life.”19 Nicolaus probably got this from Aristotle, who wrote in his On 

the Parts of Animals that plant roots are analogous to the animal mouth. Plants were seen 

as being inverted life-forms with their heads stuck down in the earth:  

[…]they take in their nourishment from below[…] the under parts come in them to 
be above, and the upper parts to be below.20 
 

Like much of Aristotle, this stuck around due to his enormous philosophical and scientific 

influence. He didn’t write much about plants (he left that up to Theophrastus), but what he 

did write was incorrect in its conclusions arrived at through zoomorphic comparison. All 

the way in 1682, John Ray wrote that “plant seize and drink all their nutrition through the 

roots, just as animals seize and drink all their nutrition with their mouths.”21 Analogies 

                                                           
18 Theophrastus, I.X.2, 69. 
19 On Plants, I.IV, 167. 
20 Aristotle, Book IV, VII.  
21 Ray, 47. 
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between plant and animal anatomy throughout botanical history are enormously common 

due in part to a deeply rooted Aristotelianism. Though Aristotle was wrong about plants, it 

is important to grasp that puzzling through botanical functioning through conceptual 

analogies does not necessarily lead to misunderstanding.   

While roots are absorbing water and nutrients (like nitrogen) from the soil, if one 

had to point to the main “food” of plants it would be the glucose they synthesize during 

photosynthesis. The primary nutritive function of leaves for a long time escaped 

botanists—the leaf as an organ is assumed to be of lesser importance throughout the works 

of Albertus Magnus in the 13th century and Andrea Cesalpino in the 16th, though these 

writers at least make the effort to describe the varieties of leaf shape. The 

misunderstanding of the relationship between leaves and the sun persists even into the 

18th century, where even Linnaeus maintains that they exist to provide shade.22 Botanist 

and historian Julius von Sachs credits the late 18th century plant physiologist and anatomist 

Marcello Malpighi as one of the first to suspect that leaves are a primary nutritive organ. 

Malpighi arrived at this theory by a comparison of their vascular tissue to the blood of 

animals23—that is, that vascular fibers are performing resource delivery of important 

nutrients. Vascular branching as a universal phenomenon will come up a few times 

throughout this project. Malpighi’s is a situation where understanding of plant function was 

furthered through analogical reasoning based off homology of form.  

Though Malpighi finally pointed to the leaf as nutritive, understanding the role of 

the sun in puzzle was essentially impossible until microscopes, which allowed researchers 

to see chlorophyll. Photosynthesis wasn’t understood chemically until C.B van Niel 

                                                           
22 Linnaeus, 66.      
23 Von Sachs, 457. 
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formulated the reaction in 1931. It’s important to point out that a huge reason leaf function 

took so long to grasp is because all of the clues to what’s going on are so small.   

 Hence, leaf functioning became clearer once botanists started looking at plants at 

the cellular level. Though Antoine van Leeuwenhoek’s technical advances in microscopy 

and Robert Hooke’s discovery and coining of the term “cell” happened in the late 17th 

century, it wasn’t until the mid-19th century that the cell was studied as the principle 

individual unit of biological life. In particular, Matthias Jakob Schleiden focused his 

microscopic cellular studies on plants. 

Figure 7: Schleiden’s observations of cells.  
(Contributions to Phytogenesis, Plate 1) 

Without getting into the chemical details of photosynthesis, recall that it mainly 

takes place within the chloroplasts, organelles within the cell which themselves contain 

stacks of disk-shaped thylakoids. Chloroplasts are thought to have come from bacterial 

micro-organisms which were taken in by eukaryotic cells as an evolutionary adaptation (a 
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process known as endosymbiosis). Credited with making the functional connection between 

these organelles and light intensity is Julius von Sachs, whose book “History of Botany 

(1530-1860)” was an indispensable resource for Part I of this project. I had been reading 

this book for a long time in a search for pioneers of photosynthetic understanding, entirely 

unaware that the person I was perhaps looking for had written it.       

Analogy at the cellular scale assumes a different form. When I was taught about 

plant cells for the first time in 7th grade (I recount this as it appears to be a common way of 

conceptualizing it) the whole cell was explained as operating something like a city. The 

chloroplasts are in this context acting like solar power plants. The city analogy highlights 

the cell’s productive capacity while also making it simpler to conceive of it as a self-

contained unit of life.      

Figure 8: Plant cell diagram. 
 (MacAdams, Structure & Function of Plants, 2) 

 While cell diagrams like the one in Figure 8 are helpful in understanding the kinds 

of organelles a microscopic observer can expect to find in a plant cell, it also has the 

unfortunate potential to make us think of all cells as looking like a perfect regular pentagon. 
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Katherine Esau writes that parenchyma cells (the cells making up the inside of a leaf) have 

an average of 14 faces but are best approximately imagined as being shaped like a rhombic 

dodecahedron.24 However, this is just for parenchyma tissue—there lots of different kinds 

of cells and they assume different forms depending on their function. This is also perhaps 

something the city analogy misses—that is, the shape of the cell really matters for what 

part it plays in the larger organism.  

The shape of individual cells contributes to their functioning. This is especially 

interesting in vascular plants in which the entire structure of the plant is held rigid by 

osmotic turgor pressure within the vacuoles. R. O. Knight calls the plant cell an “osmotic 

unit.”25 As an example of how turgor pressure (and thus the movement of water) 

contributes to cell shape and functioning, we look to a specific type of cell which performs a 

unique function entirely based in the adjustment of its internal turgor pressure. 

Figure 9: Assorted stomatal imagery.  
(1.Knight 2.Vogel 3.Knight 4.Esau) 

Consider as an example of osmotic mechanism the guard cells, found in the leaf 

epidermis in pairs around a pore. Together, the guard cells and the pores make up the 

many stomata, the sites of gas exchange in the leaf. By diffusion, carbon dioxide goes in; 

                                                           
24 Esau, 189. 
25 Knight, 24. 
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water vapor and oxygen go out. It is by turgor pressure that the guard cells make the 

stomata open and close. Guard cells at full pressure mean an open stoma.26 

Concerning gas exchange in plants, botanists knew about it for a while but the 

chemical details took longer. Linnaeus reported that leaves “transpire and draw the air.” 

Even earlier than this is Nicolaus’s reference that “Anaxagoras maintained that plants do 

breathe.”27 Still, plants aren’t breathing the same way animals are—it’s really the opposite, 

with carbon dioxide coming in and oxygen and water vapor going out. Who better to grasp 

this than the man who himself first discovered oxygen? While Joseph Priestley was wrong 

about oxygen’s role in combustion,28 he is rather on point when it comes to plant 

respiration. After performing some experiments which involved placing mice within 

oxygen-poor (“noxious”) enclosures both with and without growing sprigs of mint, he 

discovered that the mice survived much longer when the plant was present. “I presently 

had the most indisputable proof of the restoration of putrid air by vegetation,”29 he reports 

in his 1774 Experiments and Observations on Different Kinds of Air. He concludes that plant 

respiration is a reversal of animal respiration:   

This observation led me to conclude, that plants, instead of affecting the air in the 
same manner with animal respiration, reverse the effects of breathing, and tend to 
keep the atmosphere wholesome, when it is become noxious, in consequence of 
animals either living and breathing, or dying and petrifying in it.30     
   

Noticing that the open, common air does not become so noxious through animal respiration 

or the burning of candles that candles can no longer be lit, Priestley supposes that   

                                                           
26

 “Stoma” is from the Greek word for mouth—as sites of gas exchange on the principle nutritive organ 
stomata surely make better analogical mouths than roots do! 
27 On Plants, I.I pg.151. 
28 Priestley believed in the long-standing theory that combustible bodies contained ‘phlogiston’ which was 
released when they were burned, calling oxygen “dephlogisticated air.” Antoine Lavoisier proved otherwise: 
combustion is the addition of oxygen. 
29 Priestley, 88. 
30 Priestley, 87. 
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“[…]the growing vegetables, with which the surface of the earth is overspread, may, 
for any thing that appears to the contrary, be a cause of the purification of the 
atmosphere sufficiently adequate to the effect.”31 
 

And of course, plant carbon-fixation does purify the atmosphere. This is one reason why 

deforestation is inauspicious as fuck when it comes to keeping a planet healthy. In any case, 

the direction of plant respiration was crucial to understand before photosynthesis (which 

requires carbon dioxide) could be comprehended. 

Information processing comes up with the coordination of stomatal opening and 

closing in order to control gas exchange. Peak et. al (2004) presents evidence that leaves 

are performing emergent, distributed computational processes to optimize their CO2 

uptake (which they need for photosynthesis) while minimizing water loss through 

evaporation. They found that the spatial and temporal statistics of stomatal dynamics 

closely resemble those of certain types of cellular automata (CA), which are discrete 

systems where the subsequent state of each “cell” is determined by its own current state 

and those of its local neighbors. In particular, Peak et. al figure that this would solve the 

puzzle of the “patchiness” of stomatal dynamics (or the tendency for stomata to become 

synchronized over extended patched areas), as this is common in distributed computation. 

They write: 

In summary, we have demonstrated that the dynamical properties of stomatal 
opening and closing on a leaf are essentially identical to those some CA that perform 
emergent, distributed computation. Our analyses are only a first step, of course, in 
connecting computation and plants[…] Evolution may have found an elegantly 
parsimonious computational technique in which input, output, and processing are 
all accomplished by using the same hardware.32 

 

                                                           
31 Priestley, 269. 
32 Peak et. al (2004), 921. 
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If true, then leaves are not only incredible solar panels but computers, too! Although, 

having just considered many instances in which plant functioning was not what it first 

appeared to be, I also wonder whether it is enough for a natural process to bear 

resemblance to computational processing to say that something is “performing 

computation.” Perhaps CA are just a very good “model” of stomatal dynamics. Is this 

another analogy which could help brighten the dark room of such distributed processes 

while at the same time placing blinders due to our definitions of computation? It’s 

impossible to tell—once you take the premise that “computation” exists outside of 

“computers” it seems hard not to arrive at the conclusion that the whole universe is a 

computational process.33 It probably all depends on how one’s definition of computation 

relates to and conceives of informational representation. 

In conclusion, when considering the alien strangeness of photosynthesis due to both 

its physical subtlety and the lack of a comparable function in animals, it isn’t at all 

surprising that it took a while to figure out what leaves were doing. We mentioned before 

that it was partly the influence of Aristotelianism that made animal comparisons so 

common in the naming and description of plant parts. Even Theophrastus was aware that 

this could pose problems to understanding. Writing of plant veins, he says  

Muscles [fibre] and ‘veins’ have no special names in relation to plants, but, because 
of the resemblance, borrow the names of the corresponding parts of animals. It may 
be however that, not only these things, but the world of plants generally, exhibits 
also other differences as compared with animals: for, as we have said, the world of 
plants is manifold. 34 
 

                                                           
33 Argued by digital physicists like Fredkin, Wolfram, Zuse, etc. This position tends to end up with a view of 
the universe as being discrete. 
34 Theophrastus, I.II.3, 19. 
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Similar to how the names of leaf shapes were based on their resemblances to other forms 

found in daily human life (such as spears and eggs), the names of plant anatomical parts are 

given for their resemblance to “the corresponding parts of animals.” However, 

Theophrastus reminds us that while names tend to arise from homologous forms, this does 

not always imply analogous function. He saw a manifold, separate uniqueness to the whole 

botanical realm whereas his colleague Aristotle only really wrote of plants as upside-down 

animals.  

 Still, while certain comparisons to animal form and functioning has caused some 

confusion concerning unique botanical functions and hence obscured for a long time the 

importance of leaves, comparison also been the primary means by which uncharted 

biological territory is first mapped. Theophrastus continues: 

However, since it is by the help of the better known that we must pursue the 
unknown, and better known are the things which are larger and plainer to our 
senses, it is clear that it is right to speak of these things in the way indicated: for 
then in dealing with the less known things we shall be making these better known 
things our standard, and shall ask how far and in what manner comparison is 
possible in each case.35 

 
Theophrastus reminds us that understanding the world from the frame of our own position 

is the only way to proceed towards the unknown—we simply must do so carefully, always 

questioning if our “comparison is possible in each case.” Here is a lucid call to pair the open 

human mind with critical thinking.   

 

 

 

 

                                                           
35 Theophrastus, I.II.3, 19. 
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Leaf Development: Hormones and Metaphysics 
 

As the 2009 textbook Plant Biology says, “The leaf has a limited potential for 

growth—in other words, it is a determinate organ.”36 Francis Ponge writes more poetically: 

“Vegetable time resolves into vegetable space, the space plants gradually occupy on a 

canvas forever preordained.”37 Whether this determinacy is ultimately eternal or not who 

can say—either way, a leaf’s development follows its genetic programming.  It is by virtue 

of both their environmental conditions and their genotypes that leaves unfold and expand 

into the massive variety of shapes we addressed earlier.  

Having just come off a discussion of cell function, we look to a crucial developmental 

tissue: the meristem, named by the Swiss botanist Karl Wilhelm von Nägeli. Meristems are 

the sites of undifferentiated cells and hence the areas of new growth, with the most 

important above-ground meristem being the shoot-apical meristem (SAM). Dividing cells 

assume their identities early—hence we can imagine the meristem containing “unassigned” 

cells which may become any number of different plant organs, including the leaf. Like all 

plant organs, leaves begin at the meristem as primordia. Early leaf growth happens through 

cell division (primary morphogenesis) which ceases and gives way to growth due to cell 

expansion (secondary morphogenesis).38 Subsequent foliar cell division and expansion in 

the different axial dimensions (the lateral axis being the width, the proximo-distal axis 

being the length) is controlled by complex combinations of activated genes of which we 

have smattered understanding. Generally, research in this area proceeds by the isolation of 

                                                           
36 Smith et. al (2009), 335. 
37 Ponge, 73. 
38 Scarpella et. al (2010), 2. 



32 
  

 

specific genes in specific species. They are revealed as being somehow important when 

mutating them changes how the leaf develops.  For example, Nicotra et. al  write:  

The leaf length : width ratio is regulated by polar-dependent cell expansion and cell 
proliferation/distribution. Several key genes for its regulation have been identified 
from Arabidopsis: ANGUSTIFOLIA (AN) and ROTUNDIFOLIA3 (ROT3) regulate the 
shape of cells […] Loss-of function mutations of AN and AN3 result in narrower 
leaves[…] a vast array of genes is known to influence leaf area […] As yet, we do not 
know whether the above patterns hold in other non-model species.39  

 
In other words, it’s complicated. It is a colossal, enormous abstraction (often made in the 

papers of those that use genetic algorithms to evolve L-systems), but the symbols or 

parameters of an L-system grammar can be imagined as “genotypical” with the generated 

structure as the expressed “phenotype”. Using sliders to mutate the parameters in the 

template leaves of this project changes expressed characteristics (such as the length : width 

ratio) by controlling the lengths and growth-rates of various structural vein segments.  

If you had to give a one-word answer as to what makes leaves develop and grow, it 

might be “auxin,” the most crucial plant growth hormone. Auxin is unique among 

phytohormones in that rather than diffusing passively throughout the plant it is actively 

“pumped” through cells in specific directions, a process known as “polar auxin transport,” 

which is especially important for leaf vein formation. One way in which auxin is theorized 

to affect cell expansion is by causing a reaction which loosens the structures of the cell-wall 

carbohydrates, thereby allowing the cell to enlarge through turgor pressure.40 Other 

diffusive phytohormones (such as gibberellic acid) also play a part in regulating 

development. As in animals, vascular tissue is crucial for hormone transport.  

                                                           
39 Nicotra et. al (2011), 539. 
40 MacAdam, 216. 



33 
  

 

Having briefly addressed the biology of leaf development, we look to its 

metaphysics. As it has been conceived by writers, this is a different kind of 

“development”—it is more spatial than it is temporal although it assumes temporal 

significance with evolutionary theory. Abstracted leaf development as a subject of inquiry 

was studied earlier by anatomists like Marcello Malpighi but assumed a unique 

metaphysical form with the beginnings of German plant morphology. Johann Wolfgang von 

Goethe’s morphological import is demonstrated by him being the one credited with coining 

the term “morphology” in the first place.41 Known best for his prolific literary output 

(notably Faust, The Sorrows of Young Werther, and Elective Affinities, among other things), 

Goethe also wrote a number of scientific treatises on subjects ranging from a theory of light 

and color, animal anatomy, weather, and geology. In the spring of 1790 he published the 

Metamorphosis of Plants, a book presenting his observations of plants with a focus on 

comparing the forms of different plant organs. While certainly his most well-known 

botanical work, many of his views on plant morphology are also expressed in letters to 

friends, travel journals, and other separate treatises.   

The scholarly milieu surrounding Goethe borders on obsessive and his scientific 

work and method are controversial. Some scientists and historians disparage his scientific 

efforts for being overly Romantic, unempirical, and often factually mistaken. C.W Wardlaw 

is especially critical, writing that the study of plant morphogenesis did not really begin 

until Schleiden “cast off the fetters of Goethe’s Theory of Metamorphosis.”42 Other 

                                                           
41 Commonly stated but possibly debatable. Goethe published “On Morphology” in 1817—a cursory Google N-
gram search shows the word appearing a bit earlier in both the German and English corpuses; two cases see it 
applied to non-living things like coins and volcanoes. Regardless, it was Goethe who opened up the word and 
established it as an actual field of study. 
42 Wardlaw, 1. 



34 
  

 

scientists and writers of phenomenology are enthusiastic about Goethe’s method, which 

holds intuitive perception as being a valid way of engaging with the world objectively. As is 

common with such a polarizing issue, the middle-ground is likely the most fertile. We here 

focus on those of his ideas derived from his observations of plants which are both shared 

by other plant morphologists and which anticipated later botanical discoveries and 

approaches.  

This brings us to the idea of the leaf as the “universal” plant organ and appendage, a 

viewpoint which gained its first significant advancements with Caspar Wolff and Goethe. 

While Goethe may have been the first to call what he was investigating “morphology,” 

Caspar Wolff preceded him in practice by about 20 years. Wolff and Goethe share a view of 

the leaf as the universal organ of the whole plant, with both believing that all plant 

organs—the petals, the sepals, the calyx, the corolla—are “modified” leaves. Goethe writes 

during a trip to Italy, 

While walking in the Public Gardens of Palermo, it came to me in a flash that in the 
organ of the plant which we are accustomed to call the leaf lies the true Proteus who 
can hide or reveal himself in all vegetal forms. From first to last, the plant is nothing 
but leaf, which is so inseparable from the future germ that one cannot think of one 
without the other.43 

 
For Goethe, the idea of the leaf as a developmental “Proteus” came out his observations that 

as you move up the stem, the organs/appendages resemble the leaf but in expanded and 

contracted form. His conception of “leaf” is more of an ideational concept than a literal leaf; 

hence it can be a universal unit.   

What is meant by modified has to do with an abstract understanding of 

metamorphosis. Metamorphosis proceeds as a sequence changing up the plant shoot—it’s 
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not something quite as temporal as the way we now imagine the word “metamorphosis.” 

Similar views of plant form come up in the morphologists Arber, Oken, and de Candolle—

this will come up again with the discussion of the template leaf’s design in Part II.  

The foliar nature of some plant organs has been supported by genetic discoveries. 

Nicotra et. al write: 

Recent genetic data identifies several genes that have roles in both leaf and flower 
form[…]genetic changes in both leaf length to width ratio and leaf size influence not 
only leaf proportions, but also that of the floral organs in Arabidopsis[…] some floral 
characters as well as other metabolic pathways may now be closely linked with 
regulation of leaf shape and size.44 
 

Hence floral organs are theorized to have evolved from leaves. Despite this, neither Wolff 

nor Goethe made the connection that their intuitions could have brought the constancy of 

species dogma under fire and thus it wasn’t until Darwin that evolutionary theory was 

brought to light. This is largely due to the abstract nature of their approaches; a 

physical/temporal justification was not seen as necessary to talk about “changes” and 

“transitions” between the forms of separate organs on the same plant. 

If the leaf was ignored for too long in botanical science for a belief in the roots as the 

primary nutritive organ, Goethe is guilty of entirely ignoring the roots for a focus on the 

leaf—or, rather, only the plant organs found above-ground and visibly apparent to casual 

observation. Furthermore, his Metamorphosis of Plants looks not at all plants but really only 

at dicotyledonous annuals. These enormous exclusions (which have frustrated their share 

of botanists) are intimately related to his goal of abstraction. He conceived of an archetypal 

plant—the Urpflanze—which he seems to have believed to be an actual plant he could find 

in the world until Schiller talked some sense into him.  Rudolf Magnus writes that “To 

                                                           
44 Nicotra et al. (2011) 
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Goethe the archetypal plant had now become the scheme or, as he later called it, the type to 

which all plant form could be reduced by comparison. It is the structural plan all plants 

have in common.”45     

In his notion of the Urpflanze, Goethe anticipates what morphology would later 

become in the hands of scientific modelers. He writes:  

The Primal Plant [Urpflanze] is going to be the strangest creature in the world, 
which Nature herself shall envy me. With this model and the key to it, it will be 
possible to go for ever inventing plants and know that their existence is logical; that 
is to say, if they do not actually exist, they could, for they are not the shadowy 
phantoms of vain imagination, but possess an inner necessity and truth. The same 
law will be applicable to all other living organisms.46 
 

A generative principle for inventing logical forms? Formal grammars are up to the job. The 

Urpflanze can be viewed as a formalized, abstracted model, albeit one with a decidedly 

Romantic bent. Peter Antonelli’s 1992 book review (in the SIAM Review) of Prusinkiewicz 

and Lindenmayer’s indispensable plant-modeling volume The Algorithmic Beauty of Plants 

even goes so far as to say that 

200 years ago Goethe evidently had the “rules of syntax” on “universal plant 
grammar” which the followers of Lindenmayer and Prusinkiewicz now seek[…] 
 

He then points out that L-systems run into issues because while good at modeling 

phenomena like branching, they have a harder time modeling biological nonlinearity. 

Antonelli continues:    

The chapter on fractals is a step in this direction. Such results bring us one step 
closer to what Goethe knew about plant universal grammar but could not tell us 
because his method was as much subjective as it was objective.47 

 

                                                           
45 Magnus, 73. 
46 Goethe, Italian Journey, 310. 
47 Antonelli, 143. 



37 
  

 

 Interesting stuff, for sure. A history of formalized morphology of a more explicitly 

systematic/symbolic nature will be explored in detail in the Intersection—Goethe isn’t 

included there as he wasn’t big on mathematics, but he is a clear forerunner of such 

abstract, model building morphological approaches.  

That C. W. Wardlaw—a botanist in the 1960’s who specialized in plant morphology 

and morphogenesis—finds Goethe’s work frustrating and unscientific suggests also that 

“morphology” does not necessarily denote the same thing. As always, there are 

innumerable ways to approach a topic and an abstracted approach to form is just one—

Caspar Wolff was looking at leaf embryos under a microscope while Goethe was writing 

plant poems:   

 The plant-child, like unto human kind— 
 Sends forth its rising shoot that gathers limb 
 To limb, itself repeating, recreating, 
 In infinite variety; ‘tis plain  
 To see, each leaf elaborates the last— 
 Serrated margins, scalloped finger, spikes 
 That rested, webbed, within the nether organ— 
 At length attaining preordained fulfillment. 
 Oft the beholder marvels at the wealth  
 Of shape and structure shown in succulent surface— 
 The infinite freedom of the growing leaf.  
  (From The Metamorphosis of Plants (Poem)) 
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Patterns of Venation: Vascular Branching and the Unity of Phenomena 
 

I was first attracted to individual leaves from a structural and infrastructural 

perspective. I am especially intrigued by the relationship of the venation patterns to overall 

leaf shape. Leaves present to our attention a bounded space spanned by a complex system 

of veins which serve the dual purpose of both resource delivery and structural support. 

Furthermore, venation patterns exhibit not only divergent branching but networked 

reconnection as well. We now take a closer look at different patterns of venation, the 

relationship between venation and leaf shape, and some hypotheses as to how they are 

formed. Following this, we conclude Part I with the recognition of branching as a common 

pattern in the world. 

Following the efforts of Andrea Cesalpino in the 16th century to categorize plants by 

the characteristics of their fruits and seeds specifically,48 botany as a science (when it 

wasn’t absorbed in pharmacological pursuits and the authoring of herbals) largely focused 

on classificatory systemization based on comparative anatomy. These systems tended 

towards artificial distinctions which had the effect of grouping together species which had 

little natural affinity outside of the selected organizational principle. Systematic botany 

came to a head with Carl Linnaeus, who from the 1730s through the 1750s devised and 

applied a clean artificial classification/naming scheme based entirely off of the number of 

sex organs on the plant.49 Linnaeus was aware of the need for discovering groupings based 

on natural affinities as well and hence viewed his artificial sexual scheme as a practical tool 

for plant description and naming. Before this, however, John Ray in 1682 devised part of 

                                                           
48 Von Sachs, 53. 
49 For an entire epic poem about anthropomorphized plant sexuality inspired by the work of Linnaeus, check 
out Erasmus Darwin’s (grandfather of Charles) The Loves of the Plants. It’s surprisingly boring considering the 
subject matter, but of course it stirred up controversy in the 1790s. 
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his own organizational system along an important classificatory line that turned out to be 

more than just an artificial distinction—a particular property on which he focused 

indicated an actual evolutionary divergence. Referring to the later enormous success of 

Linnaeus’ taxonomy, Ray biographer Charles Raven states that “it could easily be argued 

that Ray in fact laid down lines of classification more in accord with genuinely scientific and 

evolutionary principles than those of his illustrious successor.”50 This is true to the extent 

that Ray recognized the classificatory importance of a property that was partly along 

natural lines—but again, Linnaeus was well aware of his sex system’s artifice, and Ray’s 

scheme itself was otherwise largely (and knowingly) artificial, being based mostly off of 

plant form. His most general division places a given plant into one of four categories: Trees, 

bushes, shrubs, and herbs.51 What then was the natural property Ray saw, and what does it 

have to do with patterns of venation? 

The distinction John Ray drew came from his careful examinations of the early 

growth of embryonic leaves—what his contemporary Marcello Malpighi termed 

“cotyledons.” In his A New Classification of Plants, Ray writes that  

In some kinds of seeds, the seminal plant does not consist of double seed-leaves, a 
little root and a bud: but either consists of a stalk alone without leaves, or a leafy 
stalk, or a single leaf without a stalk[…]A general distinction of plants is able to be 
deduced from this division of seeds, and this disntinction, in my judgment, is the 
first and best by far: between those that have a double-leaved or double-lobed 
seminal plants, and those which have a seminal plant analogous to the adult plant.52 
 

That is, some plants have double-cotyledons while others have just one. This is the 

difference between dicots and monocots, which vary not only in their embryonic structure 

but also in their leaf venation. Goethe wrote later that “we may infer that the point where 

                                                           
50 Raven, 200. 
51 Ray, 53. 
52 Ray, 42. 
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the cotyledons are attached is the first true node of the plant.”53 We might imagine the 

cotyledon as the very start of branching.  

As always, the modern scientific picture makes the monocot/dicot dichotomy more 

complicated. Calling something dicotyledonous is actually a classificatory anachronism and 

the phylogenetically correct term for most of them would now be “eudicot,” as not all 

dicotyledons have a common ancestor. Monocots, on the other hand, are monophyletic and 

thus still referred to as a group. However, we here retain the common term dicot as its 

general meaning is essentially clear. When it comes to leaf venation, monocots usually have 

parallel venation while dicots usually have a more complex (not to mention variable) 

venational pattern. 

                                                           
53 Goethe, Metamorphosis of Plants, 12. 
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Figure 10: Left—Monocot leaves with parallel venation. Top sample cut from tulip.  
Right—Dicot leaves with reticulate venation. 
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John Ray’s discovery provides a handy distinction between the parallel venation of 

monocots and the more complicated reticulate venation of dicots which holds in the vast 

majority of cases—Inamdar et al. (1983) give twelve species within seven different 

monocot families with venation more characteristic of dicots. For example, the jack-in-the-

pulpit in Figure 6 is a monocot species with reticulate venation. Other than the exceptional 

cases, a reasonable way to deduct something about a plant’s embryo and it’s possibly place 

in evolutionary classification is by looking at its vein features. Asa Gray writes:  

So that a mere glance at the leaves of the tree or herb enables one to tell what the 
structure of the embryo is, and to refer the plant to one or the other of these two 
grand classes,—which is a great convenience. For generally when plants differ from 
each other in some one important respect, they differ correspondingly in other 
respects as well.54   

 
 
The system of my project models non-parallel 

venation as the collected samples are almost all 

(based purely on their venation) dicotyledonous.55  

Why would parallel venation be helpful 

ecologically? Monocots are commonly found close 

to the ground—many herbs and grasses, for 

example. Parallel venation can serve as a defense 

against herbivory because the veins run in the 

same direction as that of a hungry animal’s bite. 

 

                                                           
54 Gray, 56. 
55 The bottom left leaf in Figure 10 was perhaps the only parallel-veined leaf I happened to collect—excluding 
grass (a monocot), dicot leaves are more common.  

Figure 11: Gory mess resulting from 
underestimation of yucca plant's  

anti-herbivory defenses. 

 



43 
  

 

The reticulate venation patterns of the dicots appear in many structural varieties. 

The most basic division is between leaves with pinnate venation (also ‘feather-veined’) and 

those with palmate venation (also ‘digitate,’ ‘radiate’).     

Figure 12: Left—Pinnate venation. Right—Palmate venation. 

This distinction will become very important later with the different leaf venation 

templates. Pinnate venation means the lateral/secondary veins are coming off a single 

primary mid-rib. Palmate venation means there are multiple primary veins all radiating 

from the base of the leaf. Notice that the veins in both patterns have veins coming off of 

them as well, forming a complex network pattern. 
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Because the veins must both support and service all of the laminar area, the scheme 

of a leaf’s venation is tied intimately to its shape. In his 1860 textbook, First Lessons in 

Botany and Vegetable Physiology American botanist (and friend of Darwin) Asa Gray makes 

a number of interesting observations about this relationship. Firstly, he points out that: 

Since the general outline of leaves accords with the framework or skeleton, it is 
plain that feather-veined [pinnate] leaves will incline to elongated shapes, or at least 
will be longer than broad; while in radiate-veined [palmate] leaves more rounded 
forms are to be expected[…]Whether we consider the veins of the leaf to be adapted 
to the shape of the blade, or the green pulp to be moulded to the framework, is not 
very material.  

 
Gray recognizes that external leaf shape is clearly related to the framework of the internal 

structure. His observation that pinnate leaves tend to have a greater length:width ratio 

when compared to palmate leaves held up in my own observations of my samples—barring 

one or two exceptions, palmate leaves had length:width ratios < 1 while the ratios of 

pinnate leaves were consistently greater than 1. However, while it may seem like this 

criteria should be enough to allow the system to label a leaf one way or the other, it doesn’t 

do so simply because there is no guarantee. Instead the system was built to try both and 

sees which pattern gets the resulting L-system closer to the input shape.   

Here Gray also argues that an understanding of precisely how leaf shape and 

venation are related developmentally is not necessary to being able to accurately observe a 

structural relationship—whether the veins follow the shape or the shape follows the veins 

“is not very material.” He continues:  

Either way, the outline of each leaf corresponds with the mode of spreading, the 
extent, and the relative length of the veins. Thus, in oblong or elliptical leaves of the 
feather-veined sort, the principal veins are nearly equal in length; while in ovate and 
heart-shaped leaves, those below the middle are longest; and in leaves which widen 
upwards, the veins above the middle are longer than the others.56 

                                                           
56 Gray, 57. 
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Gray here describes how varying vein lengths in different parts of the lamina correspond to 

different outline shapes. Goethe writes similarly in The Metamorphosis of Plants: 

But further development spreads inexorably from node to node through the leaf: the 
central rib lengthens, and the side ribs along it reach more or less to the edges. 
These various relationships between the ribs are the principal cause of the manifold 
leaf forms.57  
 

 I find these to be especially interesting passages in light of how parametric L-systems can 

build the growth rates of different vein segments into their grammars. These venation 

parameters in turn affect the final outline shape because the veins serve as a structural 

framework for the leaf’s polygonal geometry.  

One of the most intriguing sub-phenomena of leaf venation is anastomosis, or when 

veins reconnect to form a network. Hence many systems of foliar venation have the 

organizational properties of both “trees” and “networks”—trees being hierarchical systems 

without reconnecting branches and networks being the systems in which anastomosic 

reconnections are common. Typically the lower order, larger, more primary veins will not 

exhibit this reconnection while higher order, smaller 

veins do, forming an intricate network visible only 

when one looks closely. 

In most dicotyledonous leaves vein 

reconnection only occurs at the higher orders of 

venation (that is, smaller veins you must look close to 

see), but in some kinds of leaves even the easily 

visible 2nd-order (lateral) veins form anastomosic 

                                                           
57

 Goethe, Metamorphosis of Plants, 16. 
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loops.   This is known as brochidodromous venation. 

That being said, in our discussion of leaf venation we do well to heed the reminder 

of botanist P.B. Tomlinson, who writes in “Branching is a Process, Not a Concept” that  

Existing terminology tends to be static i.e. concerned with the existing plant body as 
an end product, rather than with a concern for the dynamics of the branching 
process itself.58 

 
Tomlinson calls for the use of a flexible language. All the labels in the world won’t lead to 

understanding unless paired with awareness for developmental process. So what causes 

the formation of these branching patterns in leaves? 

In the section on leaf development we addressed polar auxin transport—this is an 

essential part of vein formation. Many theories about the physics of vein formation point to 

elastic tensorial stresses—hence many comparions are made between cracking patterns in 

drying mud and leaf venation.59 Leaf vascular tissue comes in two varieties: the 

unidirectional xylem (transports water up from the roots), and the bidirectional phloem 

(distributes nutrients). 

 

  

 

 

 

 

 

 

                                                           
58 Tomlinson (1987), 55. 
59 Couder (1999), in Branching in Nature. 
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Left—Regular reticulation pattern in a leaf. (Manual of Leaf Architecture, 87)   
Right—Baltimore, aerial. (Bing Maps)  

 

 

 

 

 

 

 

 

 

 

Left—“Electrical treeing,” studied by Georg Lichtenberg. Lightning is a natural 
Lichtenberg figure. (Wikimedia Commons) 

Right—Lichtenberg writes also in an aphorism of the crystalline and arboresque 
growth of “ice ferns on the windowpane.”  
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Cracking patterns form by stress within a tensorial fields. The tensorial stress caused 

by an expanding leaf lamina is hypothesized to be one component of the physical 

explanation for leaf vein formation. Left—Bark. Right—Cracking mud. 

Tivoli Bays demonstrating scaling of branching water patterns. Bottom picture is a 

zoomed-in piece of the middle of the top image. (Pictometry) 
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Leaf venation patterns bear a universal significance that extends beyond the 

mesophyll in which they are embedded. The preface to the 1999 Branching in Nature, a 

collection of scientific papers on various types of branching morphologies, states that the 

similarity of these patterns has been scientifically underexplored: 

Hence, the idea of a unity behind amazingly different systems has remained latent 
for two thousand years. However, if we except the work of Scheuchzer, very little 
true progress was made on the scientific issues linked to branching morphogenesis 
until very recently. The specialization and segmentation of the scientific fields, 
which is one characteristic of modern science, has turned each branching pattern 
into a specific scientific object.60  

 
Perhaps the science has had less development61, but it isn’t as though humans haven’t been 

noticing this unity. The morphological similarity of branching phenomena has been 

poetically expressed not only in the human names for things but also in the keen 

observations and metaphors of writers across time. At the conclusion of the first year of his 

lifestyle experiment at Walden Pond, Thoreau took notice of the rivulet patterns formed in 

sand during the spring thaw: 

You find thus in the very sands an anticipation of the vegetable life. No wonder that 
the earth expresses itself outwardly in leaves, it so labors with the idea inwardly. 
The atoms have already learned this law, and are pregnant by it. The overhanging 
leaf sees here its prototype.[…]The whole tree itself is but one leaf, and rivers are 
still vaster leaves whose pulp is intervening earth, and towns and cities are the ova 
of insects in their axils.62  
 

 In the venation patterns of a leaf we see “something” which permeates the 

inorganic, organic, and human universes. If the branching trees and anastomosic networks 

of our data structures count too, it extends, perhaps, even into the realm of the 

                                                           
60 Fleury, v. 
61 Or it did in 1999, anyway. 
62 Thoreau, 547. 
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informational. As the editors of Branching in Nature write, “There exist universal 

paradigms.”63 The branching patterns inside my skin resemble those outside my window.   

 

Concluding Remarks 

 The close reading of old, “outdated” textbooks and treatises is hardly a waste of 

time—when supplemented by contemporary information, tracing the route of knowledge 

and discovery gives the modern scientific picture64 a crucial contextual depth otherwise 

absent.  

Ever-astute, Agnes Arber writes in the preface to The Natural Philosophy of Plant 

Form: 

I began by thinking of this subject quite simply as a branch of natural science, but I 
have come finally to feel that it reaches its fullest reality in the region of natural 
philosophy, where it converges upon metaphysics, to which it brings its own, 
distinctively visual contribution[…]65 
 

Arber states that the study of plant form brings a “visual contribution” to metaphysics—I 

am inclined to agree, though if you asked me for a definition of metaphysics I couldn’t 

provide one. As the project moves in towards Part II, the focus shifts from looking at leaf 

form to reproducing it graphically. To this end, the Intersection presents a broad historical 

overview of some past work done at the intersection of morphology and formalized 

representation.  

 

                                                           
63 Fleury, v. 
64 Which, realistically, I’ve barely touched on. But I did kind of try! Hopefully this whole thing is mostly 
accurate.  
65 Arber, vii. 
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Past Work in Formalized Morphology 
 

Much work has been done attempting to understand morphology and 

morphogenesis through the lens of formal representation. I include under the umbrella 

“formal” mathematical, computational, and symbolic. This review is in no way intended to 

suggest that the present project is actually building off of any of these landmark works 

other than the efforts of Lindenmayer and Prusinkiewicz in applying L-systems to plant 

morphology. Rather, I wrote this section because the work done in this area over the 

course of history is absurdly interesting—formal morphology seeks, above all, 

interpretations of phenomena that are satisfactory to human intuition. A common theme 

throughout this review is also the creation of visual models from formal representation. A 

more typical “past work” summary comes later in the section, where I discuss the specific 

research upon which this project builds most directly. 

 A 2012 review of work done at the intersection of plant morphology and symbolic 

representation by Przemyslaw Prusinkiewicz and Adam Runions begins by citing a 

statement in Theophrastus’ Enquiry into Plants concerning the numbers of petals typically 

found on roses. The quotation is offered as representative of “the longest historical link 

between observations and a mathematically flavored research problem in developmental 

plant biology.”1 While their point certainly has more to do with establishing the early 

recognition of common numerical configurations of plant organs rather than affirming 

some absolute historical origin of mathematically inspired plant models, my own review of 

                                                           
1 Prusinkiewicz and Runions (2012), 549.  
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similar ground means the opportunity to pick a different starting place simply because it’s 

possible to do so (and the Greeks get enough credit already).  

Figure 13: Not quite a treatise on formalized morphology, but a fine drawing.  
(Science and Civilization in China, 285) 

 
That being said, the ancient Chinese were engaged in scientific inquiry during 

roughly the same (broadly considered) time period as the Greeks and similar 

morphological observations of plants are found in their writings. While there was not an 

authoritative, single-authored, comprehensive botanical tract comparable to the one 

produced by Theophrastus, there is no shortage of extant technical investigations of plant 

form by the Chinese. Huang Thing-Chien (1090) writes about the tendency of orchids to 

have either 1, 5, or 6 flowers while Liu Mêng (1104) describes in his book on 

chrysanthemums the possibility of “a doubling of the petals, and a duplication of the 

flowers themselves on their peduncles, not to mentions how sometimes a transformation 

of flowers into the ‘thousand-petalled’ varieties occurs.” 2 What Battjes et. al (1993) refer to 

                                                           
2 Needham, 418, 413. 
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as “numerical canalization”—a preference for certain numbers of organs—was observed in 

plants by the Greeks and Chinese alike. There are also botanical entries in the Erh-Yah (an 

ancient encyclopedia/dictionary from the 3rd century BC) describing different kinds of 

branching structures.3 Those with any interest whatsoever in Chinese science should look 

into Joseph Needham’s incredible Science and Civilization in China—the entirety of Vol. 6.i 

deals with botany.   

 Moving west and forward to the Renaissance, a notebook page of the notoriously 

prolific Leonardo Da Vinci presents a handful of mathematical relationships describing the 

branching structures found in trees.   

 

Figure 14: Tree studies by Leonardo Da Vinci, Paris Manuscript M. fol. 78 v , 79 r. 
(1490-1500) 

 
 

                                                           
3 Needham, 128. 
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Edward MacCurdy’s translation of the left folio reads as follows:4  

Every year when the branches of the trees have completed their growth,[…]at each 
stage of their ramification you will find the thickness of the said trunk as in ik, gh, ef, 
cd, ab. They will all be equal to each other if the tree has not been pollarded; 
otherwise the rule will not fail.5 

 
Da Vinci’s treatment of branching morphology is interesting as his method and approach 

resemble (as well as ink and paper might) later morphological attempts in that his 

observations are supported by the hand-drawn images—the earliest form of graphical 

modeling—alongside symbolic association. He is also confident that his posited rule holds 

true outside of extenuating circumstance, writing that “the rule will not fail.” He has defined 

what he sees as an ideal rule reliably found in nature provided the specimen hasn’t been 

pruned. On the next page he gives another rule about branching angles and asserts that it is 

true so long as “no accident has marred the specimen.” Does he have confidence in an 

absolute, unfailing applicability of his model, or does he recognize it as an abstraction? This 

demonstrates a wrestling with the difficulty in modeling natural processes which find their 

sources in the countless accidents and unforeseen variables by which they are constituted. 

Within those inclined to develop systematic rules to describe the world there might also be 

found an aversion to ultimately undeniable teratological realities, as the mere existence of 

“abnormalities” point to the system’s insufficient descriptive power.6     

 So what is the rule he proposes here? It is his law describing the thickness of tree 

branches in relation to their parent branch. He writes it again on another notebook page: 

“All the branches of trees at every stage of their height, united together, are equal to the 

                                                           
4 If the characters in the image don’t seem to match the text, keep in mind that (for whatever reason) 
Leonardo wrote his notes backwards. The folio on the right side mostly deals with branching angles. 
5 Da Vinci, 306. 
6 For a discussion of the significance of teratological concerns, see (Arber, 5). There are benefits to not shying 
away from abnormal forms and instead using them to better understand typical developmental processes. 
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thickness of their trunk.”7 Essentially, the total cross-sectional area is preserved at every 

branching stage. Imagine a tree trunk with a diameter of 3 ft. The cross-sectional area 

would be ~7.07 ft.  Da Vinci’s rule states that at a point of branching, the cross-sectional 

areas of the child branches will add up to that of the parent. Let’s say the two child 

branches coming off this trunk are of equal thickness, although they don’t have to be to 

satisfy the rule. In this case they would each have a cross-sectional area of around ~3.53 ft. 

The diameter of each child branch would thus be around ~2.12 ft. The whole area-

preserving relationship can be put in terms of diameters, with 2.122 + 2.122 ≈ 32. 

Da Vinci’s rule can thus be expressed as a power law relating parent and child 

diameters:   

d02 = d12 + d22 

To illustrate what this looks like, we can use a graphical model. Here’s a preview of what a 

parametric L-system can do. The following L-system—taken and modified slightly from one 

in section 6.3 of Prusinkiewicz et. al (1997)— models a tree whose branch thickness 

follows Da Vinci’s bifurcation rule. 

 

                                                           
7 Da Vinci, 306. 



57 
  

 

Figure 15: Tree with branch thickness following Da Vinci’s bifurcation law. 

 

 

 

 

A description of the parametric L-system mechanism is given in Part II. For now, the 

most important symbols here are w and e, with w indicating the stroke weight and e being 

the exponential application of the bifurcation rule. The stroke weight is the thickness of the 

line and hence stands in for diameter. The two sets of square brackets stand for the left and 

right branches respectively—the child branch weight is calculated in the expression 

“w*0.5^e.” The 0.5 on both sides makes each child branch of equal weight—if it were, for 

example, 0.7 on the left and 0.3 on the right, the left branch of each bifurcation would 

always be thicker. The trunk begins with a stroke weight of 60. At the first bifurcation, 

because e = 1/2, we get  

Da Vinci Tree L-system: 
Axiom: A(110,60) 
Production: A(s,w) → !(w)F(s)[+(30)A(s*0.62, w*0.5^e)][-(66)A(s*0.73, w*0.5^e)] 
Parameters: e = 1/2  
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60 * √𝟎. 𝟓  ≈  42.42 

Each daughter branch at the first ramification hence has a stroke weight of around 42.42. 

Just to confirm that the above L-system checks out, we see that 

42.422 + 42.422 ≈ 3598.9 

602 = 3600 

At the next point of branching on each side, 42.42 will be the parent diameter, and so on. 

Hopefully this example demonstrates what Leonardo’s rule expresses and how it can be 

encoded in a procedural system. 

So does Da Vinci’s branching rule manifest in actual trees? In “Twigs, Trees, and the 

Dynamics of Carbon in the Landscape” Henry S. Horn describes his results of testing 

Leonardo’s rule against the real world. After measuring the branching allometry of five 

different species of tree, he finds that  

[…] the twigs and smaller branches are generally thicker than Leonardo’s area-
preserving rule predicts. Further interpretations must await more precise 
measurements, structured to disentangle the causes of variation at the small end of 
the scale. Toward the trunk, however, all species seem to obey Leonardo’s rule, 
regardless of the different hydraulic permeabilities of their wood.8 

 
Horn measurements find that it holds for the thicker branches of at least five species and an 

assumed extrapolation to certain other species is not unwarranted. Most books and papers 

which reference Da Vinci’s bifurcation rule agree that it is a fair abstraction which tends to 

match reality—Mandelbrot mentions that it also applies to the widths of rivers9, which is 

an assertion found elsewhere in Da Vinci’s notebooks. But what of other branching 

structures? In Part I we discussed arterial branching. Do diameters of artery branches 

behave like the diameters of tree branches? 

                                                           
8 Horn, 204. In Scaling in Biology. 
9 Mandelbrot, 157. 
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 Not quite—while they both bifurcate, arteries aren’t solving exactly the same 

problem as are tree bodies so they don’t ramify in the same way. Instead they follow a 

bifurcation law with a larger exponent (call it γ) which instead of just preserving the total 

cross-sectional area results in a larger total area relative to the parent vessel. This results 

in thicker diameters. Concerning the value of this exponent, Schreiner et al. write that  

The appropriate choice of γ has been thoroughly discussed in the literature, and the 
theoretical arguments as well as experimental measurements indicate that only 
values in the range 2 ≤ γ≤ 3 are physiologically reasonable.10   
 
Murray’s cube law—which deals with the flow rate within the blood vessel—puts 

the optimal energy preserving value at 3, although as always the real situation is a bit more 

complex. Following Murray, we now have  

d03 = d13 + d23 

Hence, the parameter e in the above L-system becomes 1/3 and the resulting tree looks a 

bit different: 

                                                           
10 Schreiner et. al (2000), in Scaling in Biology, 147. 
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Figure 16: Arterial “tree” with branch thickness based off Murray’s 
approximations of hydrodynamic optimality. 

 Why do arteries—unlike the bodies of trees—have branches whose combined cross-

sectional areas are greater than that of the parent branch? D’Arcy Wentworth Thompson, 

the next morphologist in this review, summarizes it nicely: 

The increasing surface of the branches soon means increased friction, and a slower 
pace of the blood travelling through; and therefore the branches must be more 
capacious than at first appears. It becomes a question not of capacity but of 
resistance; and in general terms the answer shall be equal in every part of the 
system, before and after bifurcation, as a condition of least possible resistance in the 
whole system; the total cross-section of the branches, therefore, must be greater 
than that of the trunk in proportion to the increased resistance.11  

 
It’s all about conductance—wider tubes mean less pressure loss from resistance.12 Da 

Vinci’s tree rule has led to some interesting lines of inquiry but sadly we can’t keep 

burrowing down the vessel diameter rabbit hole forever.  

                                                           
11 Thompson, 954. 
12 As per the Hagen-Poiseuille law. Also, the Rall model puts the neuronal dendrite diameter exponent at 3/2. 
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Our focus now moves into the 20th century. Texts dealing with morphology written 

after 191713 are indebted to D’Arcy Wentworth Thompson’s On Growth and Form, from 

which we just read an explanation of arterial diameter. Thompson’s book is astounding in 

its scope and comprehensiveness, integrating broad morphological knowledge from many 

languages14 and countries into a single two-volume work.  In the realm of the botanical, On 

Growth and Form has sections on the mechanical efficiency of the heights of trees, 

phyllotaxis, and leaf shape. 15 In his section on phyllotaxis (which is below addressed 

briefly alongside Alan Turing), Thompson quotes the statement of Nehemiah Grew (plant 

anatomist and famous contemporary of Marcello Malpighi) that “from the contemplation of 

Plants, men might first be invited to Mathematical Enquirys.”16 Plants are, as they say, a 

gateway drug.     

                                                           
13 The expanded second edition was published in 1942—quite a bit later and after the formulation of 
quantum theory.  
14 Primarily German, French, some Italian, not to mention his frequent citations of older Latin works. He also 
doesn’t bother to translate many of the lengthy included quotations, apparently assuming polyglotism of his 
readers.  
15 Thompson, 28-29, 912-933, and 1041-1047, respectively.  
16 Thompson, 912. 
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Figure 17: Assembled examples of mathematical analysis of leaf morphologies. 

D'Arcy Wentworth Thompson, On Growth and Form (1952 reprint). 
 

One reason On Growth and Form makes interesting reading is the philosophical 

position of its author. Thompson was looking to apply mathematics to biomechanical 

explanations of morphological processes, as he thought this was the most precise way to 

gain a deep understanding. He writes that “In the morphology of living things the use of 

mathematical methods and symbols has made slow progress”17—if the subsequent impact 

of this book is any indication, Thompson surely did his part to hasten the application of 

mathematical methods to biology. Thompson laid out detailed comparisons of related 

forms using deformed Cartesian grids, his own method of morphometrical analysis and a 

doorway to a spatial understanding of differences in organic morphology.  

  However, Thompson’s overall point-of-view appears mildly inconsistent throughout 

the text and thus is difficult to parse. Concerning his motivations, he writes:  

                                                           
17 Thompson, 1028. 
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My sole purpose is to correlate with mathematical statement and physical law 
certain of the simpler outward phenomena of organic growth and structure or form, 
while all the while regarding the fabric of the organism, ex hypothesi, as a material 
and mechanical configuration. This is my purpose here.18  

In Thompson’s view, organic forms work by the same mechanical laws as does inanimate 

matter and they should hence be understood by the same means. As such, he has been 

understood as being an anti-vitalist. It is strange, however, that he at the same time derides 

the theory of natural selection as harkening back “to a school of mystical idealism.”19 He 

appears to believe that the mechanical realities of mathematical law (or, perhaps, the 

mathematical realities of mechanical law) are enough for Form to manifest the way it does. 

Despite his scientifically stated “sole purpose” at the very beginning, the Epilogue to the 

massive text would suggest that the whole effort was all along in pursuit of beauty:  

For the harmony of the world is made manifest in Form and Number, and the heart 
and soul and all the poetry of Natural Philosophy are embodied in the concept of 
mathematical beauty[…] 

Not only the movements of the heavenly host must be determined by 
observation and elucidated by mathematics, but whatsoever else can be expressed 
by number and defined by natural law. This is the teaching of Plato and Pythagoras, 
and the message of Greek wisdom to mankind.20  

 
While there are passages throughout the text where Thompson explicitly distances himself 

from such a “dreamy” philosophic position (at one point even chastising an “inexcusable 

Pythagorisme” in the face of the Golden Mean21), he in the end embraces Pythagoras. 

Returning to the theme of abnormalities brought up with Da Vinci, Thompson’s 

treatment is characteristic of many morphologists. He begins a paragraph “Omitting the 

“abnormal” cases, such as we have seen to occur in a small percentage of our cones of the 

                                                           
18 Thompson, 14. 
19 Thompson, 933. 
20 Thompson, 1097. 
21 Thompson, 932. 
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spruce[…]”22 and then presents a mathemtical rule which held for all other examples. What 

I find most interesting here is that by placing the word abnormal within quotations, 

Thompson reveals that he is well aware that exceptional forms which do not follow general 

trends are only circumstantially “abnormal.” From the viewpoint of a man like Thompson 

there may presumably be some other more broadly considered law which would account 

for their existence—but again, abstraction and omission go hand in hand. This is perhaps 

why Alan Turing describes his mathematical model of a growing embryo as “a 

simplification and an idealization, and consequently a falsification.”23  

In 1952, computer science pioneer Alan Turing published “The Chemical Basis of 

Morphogenesis”, his well-known paper positing an explanation of biological development 

and pattern formation based on the diffusion of hypothetical chemical “morphogens” 

through tissue. This became known as the “diffusion-reaction” theory of morphogenesis. 

Turing demonstrates how a system which begins with a homogeneous distribution in 

equilibrium ends up forming regular heterogeneous patterns following the onset of subtle 

instability and presents six possible mathematical outcomes of what he calls morphogen 

“wave” patterns. Turing describes that the workings of a particular example found in the 

paper—an isolated “ring” of cells—is closest biologically to the tentacles of the fresh-water 

organism Hydra and to leaves arranged in a pattern of whorled phyllotaxis.24 He also notes 

that these “waves could arise in a tissue of any anatomical form.” Botanist C. W. Wardlaw 

                                                           
22 Thompson, 923. 
23 Turing, 519. 
24 Turing, 556. 
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compares Turing’s approach to morphogenesis to that of D’arcy Wentworth Thompson’s, 

as both men root their models in physico-chemical laws.25   

Figure 18: Sunflower florets annotated by Turing alongside 
photograph from the same archive folder. 

(Turing Digital Archive, AMT/C/25, images 95, 96) 

Found within Turing’s drafts and unpublished manuscripts are further 

investigations into phyllotaxis, or the spatial arrangement of plant organs on the stem. As 

suggested by Turing’s drawing in Figure 18, the spiraled placement of florets on a 

sunflower can be analyzed mathematically.  The term “phyllotaxis” has come up a number 

of times throughout this project and here will be given treatment. Turing follows a long line 

of curious investigators of this botanical phenomenon. In 1754 Charles Bonnet and Jean-

Louis Calandrini first named and described phyllotaxis in its different forms. Goethe 

brought attention to the ‘spiral tendency’ he saw in all plants; there were later 

investigations by Schimper, Hofmeister, and Braun, among others. A.H. Church’s 1901 On 

the Relation of Phyllotaxis to Mechanical Laws is particularly notable. Turing’s draft of an 

                                                           
25 Wardlaw, 124. 
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unpublished paper (aptly titled “A Morphogen Theory of Phyllotaxis”26) applies his 

morphogen theory towards an understanding of this phenomenon. The morphological 

work of Turing presented here was done towards the end of his life, as a tragic early death 

cut short what could have been a career of even further influence—hard to believe of an 

already gargantuan figure.    

Phyllotaxis has excited mathematicians for a long time in part because the geometry 

of the most common type of phyllotaxis (spiral phyllotaxis) is related to the Golden Angle 

and the Fibonacci sequence. As the primordial elements of a plant demonstrating spiral 

phyllotaxis grow, they are each placed at a constant divergence angle (137.5˚, the Golden 

Angle) from the one before. Counting the number of clockwise spirals (called parastichies) 

and then counting the number of counter-clockwise spirals yields a pair of consecutive 

numbers in the Fibonacci sequence. Figuring out why so many plants do this is trickier—

the catch-all answer seems to be “self-organization!”  

One of the consequences of the phyllotactic patterns of leaf placement is on the 

amount of sunlight available to leaves lower down on the shoot. Nicotra et. al (2011) write: 

Computer simulations of mathematically generated shoots to assess the influence of 
leaf shape, size, and phyllotactic patterns on the ability to intercept direct solar 
radiation show that differences in phyllotaxy significantly influence light 
interception[…]  
 

First, notice that computer models are cited as a valid way of testing and measuring the 

effects of various biological forms, which is an otherwise difficult independent variable to 

manipulate. Second, more points for Da Vinci, who wrote that  

                                                           
26 Collected, edited, and printed in the 2013 Alan Turing: His Work and Impact, ed. Cooper and van Leeuwen 
and also available in draft form on the Turing Digital Archive: 
http://www.turingarchive.org/viewer/?id=124&title=1 
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[…]leaves are arranged on the plants in such a way that one covers another as little 
as possible, but they lie alternately one above the other as is seen with the ivy which 
covers the walls. And this alternation serves two ends; that is in order to leave 
spaces so that the air and the sun may penetrate between them, and the second 
purpose of it is that the drops which fall from the first leaf may fall on the fourth, or 
on to the sixth in the case of other trees.27  
 

This goes back to Part I, where the relationship of leaves to water and sunlight was a 

consistent question among observers of nature. Like his contemporaries, Da Vinci saw the 

sun/leaf relationship as one of drawing moisture and sap upwards (again, the movement of 

moisture is quite true, but not the whole story). He sees the gaps allowed by phyllotactic 

patterns of leaf arrangement as being there to let through air, sun, and water droplets. 

Whatever leaves are really trying to let through, Da Vinci was right to notice that “one 

covers another as little as possible.” Nicotra et. al continue: 

They also show that comparatively small differences in leaf shape can compensate 
for the negative effects of leaf overlap resulting from virtually any phyllotactic 
pattern. For example, lobed leaves or pinnifid compound leaves facilitate light 
penetration through shoots bearing densely pack leaves.28 

Back to leaf shape again! More light for the leaves below is one benefit of lobation. These 

computational simulations suggest that leaf shape and leaf arrangement are tied 

evolutionarily. Nicotra et. al view phyllotaxy as “a developmental limiting factor that can 

drive compensatory changes in morphological features such as shape[…],” which 

encourages us to think of leaf shape in the context of the form and arrangement of the 

entire plant.   

Mathematician René Thom’s book Structural Stability and Morphogenesis: An Outline 

of a General Theory of Models was first published in French in 1972. In his development of 

“catastrophe theory,” Thom sought a generalized mode of qualitative theorizing of 

                                                           
27 Da Vinci, 302. 
28 Nicotra et. al (2011), 543. 
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morphogenesis based off of differential topological analysis, the titular “catastrophe” being 

the point at which a phenomenon experiences a sudden discontinuity and change in form. 

Thom does not see qualitative as meaning unmathematical—rather, he’s writing about “the 

tendency of the mind to give to the shape of a graph some intrinsic value; it is this tendency 

that we shall develop here to its ultimate consequences.”29 As a book it’s remarkably 

strange and entertaining, full of musings like the following: 

We might say, in this sense that geometry is successful magic. I should like to state a 
converse: is not all magic, to the extent that it is successful, geometry?30   
 

 Thom also compares his theory to the philosophy of the pre-Socratics, writing that “all the 

basic intuitive ideas of morphogenesis can be found in Heraclitus: all that I have done is to 

place these in a geometric and dynamic framework[…].”31 If only math textbooks were so 

enchanting.   

Thom’s theorizing leads him to both the classification of topological singularities 

into seven well-defined “elementary catastrophes” as well as to descriptions of what he 

calls “generalized catastrophes.” An example of the former would be the “swallow’s tail” 

catastrophe (as illustrated by Dalí in Figure 19), the extremities of which he saw as 

modeling the blastopore furrow found in embryological development.32 The generalized 

catastrophe he applies to phenomena ranging from human sexuality to delirium to the 

origin of language.33 For Thom, morphogenesis is not limited to just the bodily forms of 

organisms but rather to anything with a formed structure. Hence, morphogenesis is 

present in essentially everything. Defending Anaximander and Heraclitus’ uses of 

                                                           
29 Thom, 4. 
30 Thom, 11. 
31 Thom, 10. 
32 Thom, 67. 
33 Thom, Chapter 13. From Animal to Man: Thought and Language. 
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anthropological words like ‘conflict’ and ‘injustice’ to describe the appearance of the 

physical world, he writes: 

“[…]the dynamical situations governing the evolution of natural phenomena are 
basically the same as those governing the evolution of man and societies[…]”34 

 
Or, as Heraclitus would say, all is flux. 

Figure 19: Salvador Dalí’s final painting, The Swallow’s Tail (1983).  

By his own admission, Thom’s scheme of using topology to address morphogenesis 

offers little explicit predictive benefit but rather a qualitative geometrical description of 

formative processes. His primary focus is on, as the title of the book suggests, the benefit of 

models. In comparison to the other mathematical approaches to morphogenesis described 

here, not a whole lot appears to have directly come out of Thom’s catastrophe theory. After 

much hype in the 1970s it fell out of favor. However, it remains an intriguing and unique 

way of conceptualizing sudden changes and his idea of “catastrophe” as a formative tipping 

point has become part of the common lexicon. 

Benoit Mandelbrot caused a stir in geometrical intuition with his studies in the late 

1970’s of irregular, frequently self-similar scaling patterns he placed under the umbrella 

                                                           
34 Thom, 323. 
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term fractals, from the Latin fractus, meaning interrupted, irregular, or broken. These 

investigations culminated in the 1982 publication of The Fractal Geometry of Nature. 

Calling it “a manifesto and a casebook,”35 Mandelbrot presents precise mathematical 

explanations of patterns classical Euclidian geometry deemed “formless”: that is, many of 

the shapes we see in the natural world all around us. The book opens with a reminder that 

“clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not 

smooth, nor does lightning travel in a straight line.”36 Mandelbrot examines non-linear 

constructions which had been labeled by mathematicians as “monstrous,” such as Koch 

curves, the Peano curve37, and Osgood curves, among others. Likening the latter to vascular 

systems, he writes “Lebesgue-Osgood fractal monsters are the very substance of our 

flesh!”38 There are numerous methods for generating fractal graphics and L-systems are 

one of them.39 

                                                           
35 Mandelbrot, 24. 
36 Mandelbrot, 1. 
37 A variant of the Peano curve, the Hilbert curve was used by Sapoval et al. (1999) to model optimal 
mammalian acinus morphology (“acinus” meaning the gas exchange surface of the lungs, where the alveoli 
are), ultimately demonstrating that, as a result of the behavior of diffusion currents, “for good efficiency of the 
diffusive transfer of oxygen to blood, the unit transfer system, namely the lung acinus, should not be too 
large[…]the lung has to be divided into a large number of small efficient units[…]As the lung is space filling, 
the air access to these units has to be a branched geometry.” In Branching in Nature, 225.  
38 Mandelbrot, 150.  
39 That is, using the looser definition of fractal which considers technically finite curves to be approximations 
of infinite fractals. 
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Figure 20: “Plane-filling recursive bronchi,” from Benoit Mandelbrot, The Fractal 
Geometry of Nature, Plate 164. 

 Mandelbrot was a believer in the power of human vision to make sense of the world. 

He thought that the best way to test the validity of a scientific model is to see if it produces 

something that looks right to a human subject: 

Graphics is wonderful for matching models with reality. When a chance mechanism 
agrees with the data from some analytic viewpoint but simulations of the model do 
not look at all “real,” the analytic agreement should be suspect.  
 

This is a rather bold statement, as it places a more immediate trust in the instinctual 

judgment of the human perceiver than something arrived at through an analytic method. It 

would not be every researcher’s first hunch to question the numerically validated model 

before their own opinion—although, in the case of a poor simulation result, the first 

suspect is probably the programmer. Mandelbrot continues: 

A formula can relate to only a small aspect of the relationship between model and 
reality, while the eye has enormous powers of integration and discrimination.40 
 

 Sense perception allows for a more comprehensive and all-at-once view of phenomena 

than a specific formula on its own. Put another way, “in the theory of fractals ‘to see is to 

believe.’”41 

                                                           
40 Mandelbrot, 22. 
41 Mandelbrot, 21. 
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A well-known method of fractal generation using “Iterative Function Systems” was 

first developed by John E. Hutchinson and later expanded on and popularized by Michael 

Barnsley in his book Fractals Everywhere (1988) and its successor Superfractals (2006). 

One of the most well-known images to come out of Barnsley’s work with IFSs is the fractal 

resembling a black spleenwort fern (often called the “Barnsley fern”) as shown at the top of 

Figure 21. The Barnsley fern is appealing aesthetically and also because it makes the self-

similar structure of this particular kind of plant mathematically and visually apparent. 

Figure 21: Some plant-like fractals by Michael Barnsley. Top—A Barnsley fern 
generated using the randomized Chaos Algorithm (Fractals Everywhere, 92).  

Bottom—leaf shaped attractor, right, generated using the Collage Theorem on target 
set, left (Superfractals, 329). 

As an abstraction, strict self-similarity only captures certain aspects of plant form 

and ferns are rather unusual (as far as plants go) to the degree they express it. The basic 

IFS mechanism results in constructions that are strictly self-similar, frequently not the case 

in organisms. Thus research done with IFSs has resulted in expanded systems which have 

relaxed self-similarity requirements, such as recurrent IFSs (RIFS) or language-restricted 
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IFSs (LRIFS). The collage theorem as shown at the bottom of Figure 21 can also be used to 

generate attractors that resemble objects that are only approximately self-similar.  

The relationship of IFSs to L-systems has been an area of interest for researchers. 

Chapter 8 of The Algorithmic Beauty of Plants presents an example of how to proceed from 

a certain kind of parametric L-system to an IFS which generates an equivalent fractal 

structure—however, the method described here only works if the form to be modeled has 

“constant branching angles as well as fixed proportions between the mother and daughter 

segments.”42 Further attempts to understand the formal relationship between the two 

systems can be found in Prusinkiewicz and Hammel (1994), which considers the more 

generalized/relaxed LRIFSs, and Ju et. al (2004), which presents a proof of equivalency 

between recursive turtle programs (RTPs—non-bracketed L-systems with one production 

rule) and iterated affine transformations (IATs—IFSs with only affine transformations). 

While IFSs can produce attractive images of ferns, their application to biological 

modeling more generally is complicated. Prusinkiewicz wrote in 1998 that  

To date, applications of iterated function systems to the modeling of plants have 
been investigated mainly from the computer graphics perspective. Their relevance 
to biology is yet to be determined.43  
 

It appears that this is not just because the most basic kind of IFS requires complete self-

similarity but also due to the way the algorithms which generate them proceed.  Simcha 

Lev-Yadun argues in “Fern leaves and cauliflower curds are not fractals” (2012) that 

common modes of understanding organic forms through fractal geometry are biologically 

irrelevant and misleading for two reasons. First, the self-similarity of ferns and cauliflower 

curds is only superficial and does not scale down very far. Second, these organisms develop 

                                                           
42 Prusinkiewicz and Lindenmayer (1990), 189. 
43 Prusinkiewicz (1998), 121. 
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from the “inside out” while common methods of fractal generation do not. However, he 

only addresses one kind of fractal generation algorithm44, referencing the randomized 

chaos algorithm (see Figure 21) as being entirely unlike the fern’s actual developmental 

process. He writes that  

Dissecting developmental processes, such as the formation of fern leaves and 
cauliflower curds, into stages that are mathematically manageable and 
developmentally and structurally correct would make the mathematical procedures 
more relevant for biologists. A set of mathematical procedures that reliably describe 
the development of fern leaves, cauliflower curds or any other plant organ will not 
be just an elegant visual demonstration, but probably an important lesson in 
developmental biology. I look forward to seeing it.45   

 
I wonder if he’s heard of L-systems! As will be explained in Part II, L-systems develop 

iteration by iteration through their productions—in this sense, they can develop from the 

“inside out.” Developmental models which grow larger every step are easy to encode.  

Thus it might be argued that the way L-systems interface with spatial development 

make them more generally suited to the modeling of biological phenomena than IFSs as 

they are currently understood and formulated. If anything, this argument is best supported 

by the fact that L-systems have been used extensively for biological modeling while IFSs 

generally haven’t. The Algorithmic Beauty of Plants opens by explaining its purpose in 

exploring two factors that “organize plant structures and therefore contribute to their 

beauty.” These are the “elegance and relative simplicity of developmental algorithms, that is, 

the rules which describe plant development in time” and “self-similarity.”46 L-systems can 

hence express fractal self-similarity where it appears but are not as strict in their 

                                                           
44 There do exist deterministic generation algorithms for IFSs. 
45 Lev-Yadun (2012), 534. 
46 Prusinkiewicz and Lindenmayer (1990), 189. 
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mathematical requirements as are most IFSs, and it is also simpler to construct them so 

that their iterative “development” resembles something like biological growth.   

Whether or not IFSs are especially useful for biological modeling purposes, Barnsley 

sees something inherently botanical about them. In Superfractals Barnsley makes the 

metaphorical comparison of mathematical code space to the meristem of a plant:  

There is a remarkable set, called a code space, which consists of an uncountable 
infinity of points and which can be embedded in the tiniest real interval. A code 
space can be reorganized in an endless variety of amazing geometrical, topological, 
ways, to form sets that look like leaves, ferns, cells, flowers and so on. For this 
reason we think of a code space as being somehow protoplasmic, plastic, 
impressionable and capable of diverse re-expressions, like the meristem of a 
plant[…]This idea is a theme of this chapter and of the whole book.47   
 

The common morphological quest of divining some ultimate Protean unit reappears once 

again. For Wolff and Goethe it was the leaf, and in Barnsley’s abstract fractal world, it is a 

code space. Weirdly enough, Barnsley isn’t even the only mathematician to make this kind 

of comparison—M.A. Peterson writes of the singularities of Laplacian growth as 

“mathematical meristems.”48 Barnsley takes the botanical metaphor even further with his 

definition of a mathematical set (relating to his intriguing “superIFSs”) he calls a “V-

variable code tree,” made up of precisely defined “limbs”, a “trunk”, and “branches.”49 

Finally, Superfractals uses some kind of plant form for nearly every graphical example in 

the book. Vegetation is nothing if not iterative.      

L-systems came up in the above discussion of development for a good reason: it’s 

what they were designed to model from their conception. Aristid Lindenmayer first 

introduced L-systems in 1968 with the publication of “Mathematical models for cellular 

                                                           
47 Barnsley (2006), 8. 
48 Peterson (1999), 449. 
49 Barnsley (2006), 435. 
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interaction in development” in the Journal of Theoretical Biology. Originally intended to 

model the development of simplistic multi-cellular organisms, their formal properties and 

extensibility make them also very suitable for modelling plant form and growth. 

Lindenmayer’s research has been continued most notably by Przemyslaw Prusinkiewicz, 

who at the time of writing runs the Biological Modeling and Visualization research group at 

the University of Calgary.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: From The Algorithmic Beauty of Plants, 123. The L-system framework 
given here resembles the parallel venation pattern of a monocot cordate leaf, such as 

that of the wild yam (Dioscorea villlosa). 

1990—the year following Lindenmayer’s death—saw the publication of The 

Algorithmic Beauty of Plants, a compilation of the research, results, and efforts of 

Prusinkiewicz and Lindenmayer up to that point. ABOP offers an extensive exposition of L-

systems and explores many dimensions of their possible applications to plant modeling 
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while assuming of the reader no prior familiarity with the subject.50 It is cited extensively 

in subsequent literature and offers an excellent example of how years of rigorous 

computational research can be effectively organized and presented in an accessible book 

format. It was an indispensable resource for this project.  

I find The Algorithmic Beauty of Plants intriguing also for its title—before you even 

open it the book makes an aesthetic argument. How does thinking of beauty as 

“algorithmic” change or enhance our understanding of both aesthetics and computation? Is 

all beauty somehow algorithmic or is “algorithmic beauty” just one of many types of 

beauty? What would Kant say? I don’t know—I tried to read Critique of Judgment but it 

gave me a headache. 

 Having sketched one possible historical trajectory of the interdiscipline, we now 

look at more recent research relevant to the project at hand.    

The single paper upon which my project builds most directly is Rodkaew et al.’s 

“Modeling leaf shapes using l-systems and genetic algorithms,” which can be found in the 

2002 proceedings of the Plant International Symposium on Plant Growth Modeling, 

Simulation, Visualization and their Applications. Bringing together genetic algorithms, L-

systems, and leaf shape, Rodkaew et al. evolved the parameters of a simple skeleton 

framework so the resultant shape matched the input leaf’s outline satisfactorily. The 

genetic algorithm was performed on a set of tag-functions in order to adjust their 

parameters, meaning the evolution was not being done on the L-system symbols 

themselves. For papers with genetic algorithms which use the L-system alphabet symbols 

instead of their parameters as the genotype, see Jacob (1994) and Ochoa (1998).  

                                                           
50 It is also available for free in full on the internet! URL: 
http://algorithmicbotany.org/papers/abop/abop.pdf 



78 
  

 

Figure 23: Results from Rodkaew et. al.  

The primary similarity is between the basic aims of these two projects—using 

computational search techniques, find a parametric L-system which results in the same 

shape as the input leaf, thus in the end getting information about a plausible internal 

structure. I am unsure if the resulting L-system of Rodkaew et. al can also show a 

reasonable developmental sequence throughout the system iterations, but this was an 

additional motivation on my part.  

 There are a number of differences between this paper and my project. They do not 

use internal definition of geometry while I use a polygonal L-system definition where the 

veins serve as a framework for the whole leaf shape. The mutation of their venation 

skeleton results in an upwards bending due to how they have structured their productions. 

This bend appears to be what their parameters (mostly angle changes) control, not growth 

rates. They end up with a result with arcuate venation as the curves bend to approximate 

the shape. Their skeleton model is limited to a pinnate unlobed leaf. The fitness function 

measures the distance of the outlines of the input leaf and the L-system output. For every 

coordinate, it computes (xit – xio)2  where t is the outline of input leaf (target) and o is the 

outline of the L-system output. What I don’t understand is how they know there will be the 
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same number of points in each outline or otherwise how a varying number of points is 

accounted for. A final difference is that they actually implement a genetic algorithm. Their 

search technique actually works. 
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Part II: FormaLeaf 
 

An Interactive System for Generating L-system 

Representations of Leaf Shape and Structure 
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The Language of L-systems: Grammars of Growth 
 

In the interest of making it clear what’s under discussion, this section opens with an 

explanation of what L-systems are and how they work before delving into further details. 

I’ve written the basic explanation with the hope that it might be mostly comprehensible to 

those without a background in computer science. These images were generated using the 

same L-system implementation which runs in FormaLeaf. Also, the footnotes in the 

subsequent sections will not longer be hightlighted green as there isn’t as much citational 

information.    

 

The Basics: Anatomy and Mechanism 

L-systems are parallel string rewriting systems. The mechanism by which they work 

is quite simple. We first consider a purely symbolic/linguistic example sans any graphical 

interpretation in order to demonstrate how a string is rewritten in parallel over the course 

of a few iterations. 

Succinctly, at every step an L-system takes a string (a sequence of characters) and 

applies an appropriate replacement rule to every single character before moving on to the 

next iteration. These replacement rules are defined in the set of production rules. The 

beginning string is called the “axiom.” The axiom serves as the starting point. Consider the 

following example: 

 

You decide to play a game wherein each round you replace every character in a sequence according to a 
specific rule. 
Suppose you had this sequence of characters:  ABCD 
ABCD is your axiom. 
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Reading the rulebook for this game, you see that: 
 
 A becomes D 

 B becomes BB 

C becomes AC 

While the book lists no rule for D, you see a note that this means the symbol is just replaced with itself. 
You play this game for a few rounds: 
 
 
Round 0: ABCD 
Round 1: DBBACD 
Round 2: DBBBBDACD 
Round 3: DBBBBBBBBDDACD 
Round 4: DBBBBBBBBBBBBBBBBDDDACD 
Round 5: DBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBDDDDACD 
 
That’s getting be a lot of B’s! Wary of wheat and chessboards, you decide to stop playing. 

 
That’s parallel string rewriting in a nutshell. The “rulebook” in the above example 

does not list a rule for D because this is normal for the definition of any L-system’s 

productions—the rule that rewrites a character as itself is implied if this character does not 

appear on the left-hand-side (LHS) of any production in the set. Using a more typical formal 

notation, the above example can be written like so: 

ω: ABCD 

p1: A → D 

p2: B → BB 

p3: C → AC 

 

So how do you get from a string of characters to an image? Simply read every 

symbol in order and interpret each symbol as a drawing instruction. L-systems generally 

use a LOGO-Turtle interpretation, which means that the instructions control the local state 
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of a Turtle moving around the space and drawing things. That is, if a symbol stands for 

“Turn right 30˚,” the Turtle will rotate to its right and adjust the way it is facing. Hence, the 

only drawing instruction really needed for most images is “Move forward one unit and 

draw a line,” as drawing in a new direction is done by placing an angle turn command 

before the draw instruction. Implementations also may have a command to move forward 

without drawing, which allows for composing images without necessarily connected lines. 

Two crucial symbols are the turn commands: 

Turn left:  +  

Turn right:     - 
 

Let’s say that F means “Move forward one unit and draw.” A Logo Turtle which 

begins facing North when presented with the string F-F-F-F and told to make all its turns 

90˚ would draw a box. 

Figure 24: LOGO-Turtle interpretation of a string.   
(Turtle image from http://small-pets.lovetoknow.com) 
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After a string has been rewritten according to the production rules, the Turtle 

interpreter reads and follows the whole thing in sequence. Changing the iteration (number 

of rewrites) means the Turtle is interpreting a new command string. 

Pictured below is the axiom and first 8 iterations of the Sierpinski triangle as 

generated by an L-system. The sequence below is also scaled down each iteration.1 Imagine 

that the Turtle begins facing East.  

     

 

 

 

There are two line drawing commands here due to how the L-system is structured. 

Both commands do the same thing but in order to have the two unique productions there 

are two draw symbols. Sometimes L-systems have symbols with no defined Turtle 

interpretation—these symbols are included to give grammatical structure. 

                                                           
1 Were it not scaled down, the triangle would grow to an enormous size (that is, every segment would be as 
long as the line at the top-left). 

ω: A 

p1: A → +B-A-B+  

p2: B → -A+B+A- 

Interpretation:   
A : Go forward one unit while drawing. 
B : Go forward one unit while drawing. 
+ : Turn Left 60˚                          
- : Turn right 60˚ 
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In the above case, the angle and scaling factor are extraneous to the L-system and 

are supplied at the time of graphical generation. The classic Sierpinski triangle is 

constructed with a 60˚ turning angle.  

Pictured to the right is the same L-system 

after 9 iterations constructed instead with a 

rotation angle of 55˚. This small change in the angle 

has a clear ripple effect throughout the subsequent 

iterations, making the final shape noticeably 

different from the 60˚ form. 

 

Bracket Notation and Branching: 

The basic L-system mechanism described above can be extended with bracketing, 

which uses stack operations and is useful for modeling branching structures. When it 

encounters a left bracket ( [  )as it reads the string, the Turtle knows to push its own state 

onto a stack (basically write it down and save it for later). The Turtle will then interpret all 

the symbols within the brackets. Once it reaches the closing bracket (  ] ), it pops its saved 

state off the stack and thus its internal state returns to what it was before it embarked on 

its interpretive bracket journey.  

This is helpful for modeling branching structures, as the Turtle can 

go ahead and draw the first branch of structure and then use its magic 

turtle powers to teleport back to the place of bifurcation before drawing 

the second one. The figure to the right shows the interpretation of the 

string F[+F][-F]. Assume a branching angle of 30˚. The arrows show how 
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the Turtle draws the left branch and returns to the point where first it encountered an 

opening square bracket. 

After applying the L-system production/rewriting mechanism to bracketed strings, 

it is possible to generate branching structures which appear to “grow” over the course of 

their iterations.  The X symbol has no Turtle interpretation but is there to structure the 

strings which are created. F again means move forward one unit while drawing. This L-

system has recursive production rules. It is scaled down slightly each step in order to fit on 

the screen, but the growth effect remains. 

Figure 25: L-system adapted from The Algorithmic Beauty of Plants, 25.  

Keep an eye out for how brackets are used to indicate branching veins during the 

discussion of the template leaf L-systems in the Method section. Branching L-systems are 

integral to this project!  

ω: X 

p1: X → F[+X][-X]FX  

p2: F → FF 

angle: 40˚             
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Also, a slight modification to the above tree L-system gets a really surprising result. I 

wonder whether or not it is a coincidence that the little hole towards the bottom vaguely 

resembles the Mandelbrot set.  

 
ω: X 
p1: X → F[++X][+X][-X][--X]FX  
p2: F → FF 
angle: 50˚  
 
(line thickness is also heavier here)            
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Parametric L-systems: 

 There are many types of L-systems.2 All examples given so far are D0L-systems, 

which are the most basic kind. They are deterministic and context-free. The “D” stands for 

“deterministic” and the “0” means that  the system is completely unaware of a given 

character’s context when executing production rules—it never takes into account the 

characters on the left or right of the current symbol.  

 Another kind are parametric L-systems, used extensively in this project. These 

associate numerical parameters with the symbols in the grammar. In a few of the above 

examples the Turtle interpretation for a symbol is explained as “Go forward one unit and 

draw.” A parametric L-system could have a draw command with a unit parameter. Hence 

+F(1)-F(3)+ is a possible parametric string fed to the Turtle. The first draw command 

would probably mean “Go forward one unit” while the second would be interpreted as “Go 

forward three units.” You could also parameterize angle: +(40)F(1)-(60)F(3)+(90). This 

way, angle is not defined outside of the grammar. It also changes between symbols and 

thus the angle value here is variable (unlike all examples so far). A full parametric L-system 

could look something like this: 

 Hence the 3 and the 40 get passed as inputs into the system—the u and a then take 

on these values (standing for ‘unit’ and ‘angle’ respectively) in the resulting productions. 

                                                           
2 Two kinds not used in this project are context-sensitive L-systems (one or two-sided, productions only fire 
when contextual rule is true) and stochastic L-systems (productions fire probabilistically).  

ω: X(3, 40) 
p1: X(u, a) → F(u)[+(a)X(u,a)][-(a)X(u,a)]F(u)X  
p2: F(u) → F(u)F(u) 
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Parameterizing various parts of a grammar really opens up what can be done with 

it. The FormaLeaf interface has multiple parameter sliders which allow the user to 

manipulate the values being plugged into the parametric L-system which defines the 

generated leaf’s structure and shape. 

Internal Geometric Information and Modeling Polygons:  

In their original conception, L-systems did not have internal geometric information 

pertaining to the angles and directions of the segments and branches (in bracketed cases). 

Prior to automation, L-systems were interpreted intuitively by draftspeople who drew by 

hand a graphical representation of the axioms and productions. Because the interpretation 

was done by humans, there was less need for standardized geometrical information to be 

included in the systems themselves. The resultant hand-drawn graphics were thus one 

possible interpretation of ambiguous information.  

Automated interpretation by a computer requires the elimination of ambiguities. 

Geometric rules to make automated interpretation unambiguous were at first global, 

external, and not part of the specific system, which resulted in certain structures being 

unspecifiable.  Alongside the LOGO style graphics interpretation in the late 1980s  came 

additional alphabetical symbols used to specify angle direction—typically [-,+] are used, 

although which one is designated “turn left” and which one “turn right” appears to vary 

arbitrarily across implementations. 

  Similarly, the geometric information that allows for closed, polygonal structures can 

be made internal to the system as well. One of the chief goals of this project (and one way in 

which it does something different from previous automated modeling efforts) is that the 

geometric shape information of the generated leaf is internal to the generated L-system.  
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Fractals and L-Systems: 

 By virtue of their potential to encode self-similarity within their productions, L-

systems are able to generate many classic fractal structures. Some examples are given 

below.3 The number of iterations varies by the complexity of the constructions, as some 

will crash or freeze the program after exceeding just 4 or 5 iterations while others don’t get 

interesting until upwards of 8. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3
 The L-system definitions for the first four examples were found in The Algorithmic Beauty of Plants or on 

Wikipedia. These two particular shapes made out of the Cesàro curve (a very simple angle modification of the 
Koch curve) I found through experimentation.  

ω: F-F-F-F 
p: F → F+FF-FF-F-F+F+FF-F-
F+F+FF+FF-F 
angle: 90˚            iterations: 2 

 

Quadratic Koch Island 

 

Dragon Curve 

 

ω: FX 
p1: X → X+YF+ 
p2: Y→ -FX-Y 
angle: 90˚            iterations: 10 
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Koch Snowflake 

 

ω: F++F++F 
p: F → F-F++F-F 
angle: 60˚            iterations: 5 

 

Cesàro Curve Pentagon 

ω: F-F-F-F-F 
p: F → F-F++F-F 
angle: 72˚            iterations: 5 

Cesàro Curve Star 

ω: F--F--F--F--F 
p: F → F-F++F-F 
angle: 72˚            iterations: 5 

Lévy C curve 

ω: F 
p: F → +F--F+ 
angle: 45˚            iterations: 12 
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L-systems as a Formal Language: 

The absolutely crucial difference between L-systems and normal Chomsky 

grammars is that at each step a production rule is applied to every symbol in the string. In 

Chomsky grammars only one production is applied at a time. As it says in The Algorithmic 

Beauty of Plants, “This difference reflects the biological motivation of L-systems.”4 If the 

state of an organism can be said to be ‘updating,’ it is doing so in parallel. As can be seen by 

Figure 26, this parallelism affords extra power. A context-free L-system can hence generate 

languages that a context-free Chomsky grammar cannot.  

Figure 26: Context-free L-systems (0L) and one-sided context-sensitive  

L-systems (1L) as they exist in the formal language hierarchy. 

 
 

 

 

 

 

                                                           
4 Prusinkiewicz and Lindenmayer (1990), 3. 



93 
  

 

 “Abnormal” L-systems Gallery: 

Sometimes things don’t go as planned. 
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Method: Approach, Algorithms, and Tools Used 
 

This section explains in detail the method of my approach and the workings of the 

FormaLeaf system with information concerning tools used given throughout. The 

explanation is divided into four phases: Phase One consists of the collection and 

preparation of input leaves. Phase Two explains how computer vision techniques were 

applied for shape analysis. Phase Three concerns the parametric, polygonal L-System 

representation and the idea of “template leaves.” Phase Four describes the details of Search 

Mode, including how similarity (fitness) is evaluated. Throughout the following explanation 

I will provide some detail as to my implementation, usually in the form of mentioning 

which classes take care of what and what functions they use to do it. Unless otherwise 

mentioned, the classes are from my code—see the Appendix.1  

Some screenshots of the interface taken throughout development in order to explain 

certain parts of the program in this report may have unfinalized elements—this generally 

accounts for U.I. inconsistencies or strange looking values in the images.   

Before explaining the phases in detail, I present a broad and brief system overview, 

a description of my overall development strategy, and some comments on why Processing 

was an appropriate platform for this project.     

 

 

 

 

                                                           
1
 Of the code included in the Appendix, all written classes are my own except for the Slider class, which was 

copied and modified slightly from an example on Processing.org. 
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System Overview: 

The four phases are not sequential but rather feed into each other at different 

points. Here is flowchart illustrating how the system as a whole proceeds. 

Figure 27: Flowchart illustrating how the Phases  
described in the report interact. 

 

As the flowchart shows, the construction of the L-system leaves can be left up to the 

computer or done by manual input. 
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Project Development Strategy: 

 Actually getting things done is hard. The main project strategy I conceive of as 

“interface development.” The idea behind this is that by focusing my coding efforts on 

increasing my ability to manually tweak and control what appears on the screen, in the 

process I ended up building a platform on which I am able to: 

1. Easily produce images with which to explain things in the write-up. This 

streamlines the writing process, which is the hardest part. One of a thousand and 

one reasons why Processing is awesome.  

2. Learn through experimentation how best to try and automate something that 

looks either good or reasonable. By being able to view and adjust in real time 

and tandem both the graphic results and their associated quantitative 

measurements in Slider mode, hypotheses concerning what adjustments to 

make to the whole system are easier to come by.   

3. Stare at leaves in two different visual modes—the normal way which shows the 

leaf image and the L-system, and in Vision mode, which shows what the 

computer sees. 

Pithily, a fun way to approach leaf development is through software development! 
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Processing as Project Platform: 

Processing2 was an excellent choice for my project, as it is at once simple, flexible, 

and powerful. Its draw function serves as a built-in redraw cycle, which is necessary for 

any interactive system. It makes a number of interface-related requirements very easy, 

such as mouse and keyboard input, drawing shapes to certain parts of the screen, and 

loading and saving images. Because it was built for making graphical programs, it has well-

designed functions to manipulate visual properties. The developers take pains to make 

both the rendered graphics and the code aesthetically pleasing. It’s got a slick IDE (I used 

Processing3) and extensive library support. And of course, it’s all based in Java—all the 

goodies of the official API are just an import statement away. Although I am not aware of 

many attempts to build interface-based research systems like FormaLeaf in Processing 

(though they surely exist), I found it to be a platform well-suited to my purposes. This is 

also due to my familiarity with the language, as Processing was my first introduction to 

programming. Obviously I’m biased, but I think it’s unparalleled as an educational tool.   

  
I began on Processing 2 but switched to the more recent Processing 3 shortly into 

my development cycle. The program currently uses the default 2D renderer.3  

                                                           
2
 https://processing.org/ 

3
 FX2D may have some benefits but I need to do more testing. Using P2D (the 2D OpenGL renderer) results in 

egregious graphical issues. 
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Phase One: Collection and Preparation  

Step 1: Specimen Collection  

 The majority of leaves were collected during the fall semester. Samples were either 

taken off of living plants or from the ground. More often than not, leaves were removed 

directly from plants because leaves from a living plant were in better condition than fallen 

leaves, which had often started decomposing. I thought carefully about each sample before 

removing it so as to not cause unnecessary damage to the plants. At least by removing the 

leaves during autumn the plants were already preparing metabolically to shed them—

leaves cost lots of resources to produce so I would feel a bit worse removing them in spring 

before they’ve even had the opportunity to soak up the summer sunlight! Plants were 

thanked for their generosity when I remembered to do so. 

 

Step 2: Scanning 

 All leaves were scanned in a Canon® imageRUNNER 

3245i4 as color JPEGS at 300x300 DPI. Both sides of each leaf 

were scanned for consistency. Prior to working out details of the 

project it was undetermined whether or not some sort of visual 

line detection would be attempted on the venation patterns 

themselves. This would have been easier to do with the 

abaxial side (under-side) of most leaves, as the veins are 

more distinct in these images. As Theophrastus says, “In most trees the upper surfaces are 

greener and smoother, as they have the fibres and veins in the under surfaces, even as the 

                                                           
4
 Also the scanner I used for all book-sourced images in this project.  

Figure 28: Canon® imageRUNNER 
3245i 
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human hand has its ‘lines’[…].”5 Though line detection was ultimately not used, it is still 

nice to have both sides of every sample. Some of these sample images were used as 

illustrative examples in Part I.  

 

Step 3: Digital Image Preparation  

 All leaf images were rotated, cropped and cleaned up in Adobe 

Photoshop CS6 with the help of a Wacom Bamboo Pen tablet. All leaf 

images were rotated so the apex is pointing up with the mid-vein as 

straight as possible. Cropping was done by eye, attempting to make the 

leaf take up nearly the whole resulting image with only a small amount of white space on 

the top, bottom, and sides. The closer the crop, the larger the leaf itself appears in the final 

Processing display of the results. The images were only cropped, not resized to be 

consistent with each other—a smaller leaf means a smaller image.6 Stray marks, smudges, 

and most7 artifacts from the scanner were removed with the Brush Tool, as was the petiole 

of each leaf. 

 

 

 

 

 

                                                           
5
 Theophrastus, I.X.2, 69. 

6
 However, leaf images are ultimately scaled down before the contours are found—see discussion of size and 

scaling issues in Phase Three. 
7
 There are still some subtle gunky shadows left from the scanning on some of these images—this may show 

up during printing.  
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Figure 29: Leaf image before and after petiole removal. 

Though digitally removing the petiole from the scanned image seems almost 

criminal, it simplifies the vision and L-system generation process. The system discerns the 

lamina shape, so it would have taken some extra work to get the computer to locate the 

petiole so it knows to ignore it for certain measurements. This is certainly not impossible—

in fact, the visual system of the mobile leaf classification application Leafsnap has been 

programmed to ignore the petiole by looking for thin protrusions.8 Leafsnap also works on 

leaf images at any rotational angle, as a mobile classification application must be as flexible 

with input as possible. However, I decided not to build this into my system and instead 

chose to manually fix up my input images in order to focus my coding efforts on parts of the 

problem more central to my purposes. Another option would have been to not ignore the 

petiole but instead analyze it and build it into the resulting L-system. If the petiole was 

kept, the resulting L-systems all would have been a little different**(t>=positive num). One 

reason I decided against this was due to the inconsistency of the sample quality. Some 

petioles were entirely intact because I ripped them off of the shoot right at the node where 

they were attached. Others were torn in an arbitrary place. Hence, it isn’t as if a generated 

                                                           
8
 Kumar et. al. (2012), 6. 
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system which matches one of these arbitrarily torn and scanned petioles is really 

accurately representing the leaf and its entire petiole length. As a final reason for removal, 

the petiole is the connection site to the rest of the plant—yet we choose here to look at the 

leaf as an individual entity! Erasing the petiole from the image is like cutting an umbilical 

cord: the leaf becomes self-contained, with the omphalic base being the only indication it 

was ever the part of something larger.9     

 I will also say that while there is an impulse of computer science to automate as 

much of a process as possible in order to ‘save time’, there is also a benefit to working with 

and looking closely at each sample. This is what manual cleanup and preparation allowed. 

Obviously this is only feasible when the sample set is very small, but well-cleaned data 

makes a world of difference.  

                                                           
9
 Just kidding, it was for practical reasons. 
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Figure 30: Final sample pool of 70 leaves in no particular order. 
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Phase Two: Morphometrical Analysis with Computer Vision 

Phase Two pertains to the analysis of leaf shape done using computer vision 

techniques. All of the described measurements are done on both the input leaf image as 

well as on the image of every candidate leaf generated by an L-system over the course of 

the search process. This part of the system is handled by the ImageProcessor class, which 

performs the exact same visual analysis when given an image of a real leaf or an image of a 

fake one. As the ImageProcessor discovers aspects of the shape under analysis, it stores this 

information in a Leaf object. It is two Leaf objects—one in the form of the subclass 

SysLeaf—which are ultimately compared in order to assess shape similarity (fitness). The 

morphometrical information is also reported in the panel on the left side of the screen. 

Vision Mode allows the user to see illustrative representations of what the computer is 

“seeing,” such as contours, convexity defects, bounding boxes, etc. Many of the figures here 

in Phase Two were made in Vision Mode. 

The tool used for visual analysis was OpenCV, a robust open-source computer vision 

library started in the 1990’s by Intel Research and now supported by its own non-profit 

foundation. While OpenCV is more commonly used with C++ or Python there are 

(thankfully) also Java bindings. In order to both install OpenCV for use with Processing as 

well as convert Processing PImages to the OpenCV image matrices I used Greg Borenstein’s 

“OpenCV for Processing” library.10  

It is important to stress that the computer vision portion of this 

project is an application of pre-existing and pre-implemented techniques 

to the specific problem leaf shape analysis. The majority of applications of 

                                                           
10

 https://github.com/atduskgreg/opencv-processing 
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computer vision to leaf shape have been for species classification purposes. This is most 

commonly done with machine learning algorithms. While I will somtimes attempt to 

explain how certain important OpenCV functions are working, my main focus will be on the 

details of how I used them.11  

 

Step 1: Finding Contours 

 The contour of a shape is essentially its outline.  

Finding the contours in the leaf image first requires a binary mask, which is made by 

running the OpenCV ImgProc threshold function12 on a grayscale version of the leaf image.   

 

 

 

 

                                                           
11

 The most difficult part of using OpenCV is dealing with its idiosyncratic data structures. Many lines of code 
are dedicated to getting coordinate data in the right form of a list. The functions take and return bizarre 
combinations of these many structures. OpenCV is ridiculously useful but also annoyingly unintuitive to 
program with. 
12

 Technically the code calls Borenstein’s “OpenCV for Processing” thresholding function, which itself just calls 
the OpenCV ImgProc function. It could just as well have been done by calling the normal OpenCV functions 
directly, but my program arbitrarily thresholds the image before doing matrix operations. Once the matrices 
are set up, all image processing is handled by Java OpenCV functions until a final Mat to PImage conversion 
(done with Borenstein’s library) is done to display the morphometrically processed information. 
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A threshold value of 220 is used because this value proved sufficient for all the 

inputs and the requirements of contour extraction—a more complex adaptive threshold 

was not necessary. Pixels which exceed the threshold value are turned white, while all 

others are turned black. Following this, OpenCV runs Canny edge detection on the 

thresholded image in order to find the contour.  

Because OpenCV’s findContours function returns all of the contours in the input 

image, the contours which are not the leaf must be ignored. My simple solution to this was 

to sort the found contours by area and pick the second largest one, as the entire image’s 

outline (going around the image border) was always of greater area than the leaf. Sorting 

by area also means small contours from holes in the lamina or scanning artifacts are 

ignored—thus the leaf’s contour is isolated successfully. The contour is stored in the 

associated Leaf object and can thus be used for later calculations of in the fitness function 

which require direct comparison of contours. 
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Step 2: Measuring Lamina Dimensions 

 The next step is to take basic dimensional measurements.  Because the leaf images 

are scaled down before visual processing, these measurements are all in pixels.13 The most 

useful tool for this is a bounding box, a rectangle the boundaries of which are determined 

by the vertical and horizontal extremities of the leaf contour. 

Figure 31: Bounding box shown in red. Using the dimensions of the rectangle, the 
system stores and displays the following information about the leaf on the left: 

 

Lamina Length: 771.0 
Lamina Width: 435.0 
Lamina L:W Ratio: 1.7724138 

In this way, lamina length and width are determined using OpenCV’s boundingRect 

function and from these the L:W ratio is calculated. It was mentioned in Part I (see the 

section on patterns of venation) that the average palmate leaf tends to have a lower L:W 

                                                           
13

 Prior to my decision to have the program scale down the leaf images before contour extraction (the 
rationale behind this is explained later), I toyed with the idea of displaying the actual leaves’ measurements in 
inches or centimeters—the system would just have to convert from pixels to the chosen unit. The images 
were all scanned at 300 DPI, so this wouldn’t have been too hard. However, this measurement would have 
been purely for the scientific curiosity of the user, as it is far less useful for L-system comparison purposes. As 
the system is now, the exact values of the pixel measurement depend on the size of the window (by default 
1280x800).  
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ratio in comparison to the average pinnate leaf. This ratio is thus a valuable metric for 

assessing similarity so at the very least the correct venation template is found. 

While the bounding box can be used for measuring lamina length and width, 

determining leaf area is not done by multiplying these as there is obviously non-leaf space 

within the rectangle. Luckily, laminar area is not difficult to determine as OpenCV has a 

contour area function (it uses Green’s theorem). Similarly, OpenCV’s arcLength function 

was used to get the contour perimeter. 

 

Step 3: Determining Shape Class 

As addressed in Part I, parts of modern leaf terminology are defined quantitatively. 

One of the first things I wanted the system able to do is apply terminological labels to the 

input leaf. A simple label to apply is that of the overall shape—the 2009 Manual of Leaf 

Architecture defines some different shape classes by where on the lamina the widest point 

falls. The Manual gives five shape classes: Ovate, Elliptic, Obovate, Oblong, and Linear. See 

Figure 32 for an image of the first four. I decided not to include the “oblong” label as not 

only is determining parallelism a bit more complicated than just finding the widest section 

of the leaf, but also because almost none of my leaves were very oblong anyway. Similarly, 

none of my collected leaves had a L:W ratio high enough (≥10:1) to be “linear.” However, 

the parametric L-system leaves do sometimes reach this value so it might be worth 

including at some point. 

As it is, the system labels every leaf as being Ovate, Elliptic, or Obovate. The 

ImageProcessor’s findShapeClass function finds the “widest fifth” of the leaf and saves it to 

the Leaf object. The Leaf object uses this integer to determine the appropriate label and 



108 
  

 

stores it as a String attribute. As for why the Leaf object is the piece of the system actually 

applying the label, I did this mostly because I wanted the ImageProcessor object to return 

quantitative information. The “widest fifth” also gives more information than does the label 

(as it can be any of five possibilities instead of three) so it’s hypothetically useful for this to 

be stored in the Leaf object were it used as a more precise fitness metric. 

The location of the widest point on the leaf is determined by first finding the points 

of the contour that lie on the left and right sides of the bounding box, as these points are 

horizontal extremities. For every extremity point on the left and right side, a point lying on 

the contour on the exact opposite side of the leaf is also recorded. Following this, the 

Euclidean distance between every extremity point and its opposite point is measured. The 

pair with the longest distance is selected as the widest area of the leaf. Finding the widest 

point is surprising convoluted (in my implementation, anyway).   

Figure 32:   Left—Ovate: greatest width in bottom 2/5ths  
               Center—Elliptic: greatest width in middle 1/5th  
               Right—Obovate: greatest width in top 2/5ths  
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The lamina is divided into fifths as the purple lines in Figure 32 show. The program 

checks each section for the widest point (either a left or right extremity, all that matters is 

the y-coordinate) until it is found, at which point it returns an integer representing which 

fifth contains it. 1 designated the top section and 5 designate the bottom. The Leaf object 

then determines the label based on this integer as per the criteria described above. 

The greatest width line and the left and right points circled in Figure 32 are 

displayed in Vision Mode. The code which draws the bounding box and fifth divisions, 

however, is commented out as they are less directly informative to the human viewer. 

Another improvement to the whole program would be to make Vision Mode more uniquely 

interactive—the user could press different keys or click on things in order to toggle which 

measurement visualizations appear.   

 

Step 4: Approximating Apex and Base Location  

It’s not quite accurate to say that this step finds either the apex or the base because 

it’s such a simplistic approximation. However, it is this “base” value of the real leaf image 

which is then used to determine the vertical placement of the L-system leaf’s actual base on 

the right-hand canvas, so Step 3 will retain its title. This is an obvious area for a more 

nuanced analysis in the future—finding the actual location of the apex and base points 

(probably by using convexity defects for leaves with indented apices or bases) would make 

it easier to apply an apex/base shape label to an input leaf. While this would make the 

labeling side of the system more robust and give another qualitative point of comparison 

when evaluating similarity, it was not an important priority as it would make L-system 

placement only marginally more accurate. 
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Figure 33: The described approach is a decent apex and base approximation for the 
three leaves up top but is not so good for the three on the bottom. It works perfectly 

on the L-system generated Pinnate template leaf to the right. 
 

 Hence, the rudimentary apex/base location simply divides the bounding box in half 

with a vertical line right down the center, saving the top point of the line as the apex and 

the bottom point as the base. It thus assumes a perfectly straight mid-rib on a perfectly 

symmetrical leaf with an apex and base which lie on the bounding box outline.14 Again, this 

is painfully rudimentary but the only thing this measurement is used for in the end is the 

vertical placement of the L-system leaf’s base on the right-hand PGraphics canvas. While 

this vertical line does not really represent the mid-rib, if the system could find the actual 

apex and base points and draw a more accurate connecting line15 it could measure the 

angle or distance between the “ideal” mid-rib and the one closer that of the leaf, which 

could be a useful metric. 

                                                           
14 This actually means it works perfectly for any L-system generated leaf without a concave base (true of the 
Pinnate and Palmate templates). 
15 Though this line would be straight it might suggest the presence of a curved mid-rib. 
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 Furthermore, the OpenCV Point object in which the “base” is saved gives the 

coordinates within the input image. This doesn’t cause a problem when it comes 

repositioning tall/long leaves, as their bases end up at the bottom of the screen anyway. 

Very wide leaves, however, end up repositioning the L-system base a little higher than 

desirable (but nothing so off as to make it unusable, especially when using the Palmate 

template). Fixing this would just require finding the right way to take input image size (and 

the base location within it) into account while finding the absolute window location. Doing 

the repositioning at least gets the generated leaves for the wide leaves into the center of 

screen where they have more space for lobes which droop below the base, so it isn’t a huge 

issue.     

Figure 34: For wide leaves, the base of the generated leaf does not properly  
line up with the bottom of the input leaf. 
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Step 4: Counting Lobes 

 Lobe counting is so inaccurate in its present state that the system doesn’t yet report 

it in the left-hand information panel (which is actually pretty silly, to be honest). The lobe 

“estimate” however does factor into the fitness function, as leaves with more lobes usually 

end up with a higher number. I’ll explain how lobe detection is currently working and what 

steps can be taken to make it better. 

   The OpenCv function convexityDefects finds the points which are concave in 

relation to the convex hull of the contour. The blue circles indication that the function 

found a defect. As is clear, by default it works much better on actual lobed leaves than it 

does on smooth, entire margins. The convex hull for these leaves hugs the contour quite 

closely (that is, there are lots of convex points in the hull) so many points are thought to be 

concave. 

 The step taken to reduce these extra points (those right two leaves should be labeled 

as unlobed) is to use a polygon approximation as the contour which is passed to the convex 

hull function. By making the actual contour and thus the resulting convex hull blockier, the 

number of possible convexity defects to be found is reduced since it checks between convex 
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points. This helps a lot with those leaves with rounded margins, as the image to the right 

indicates.  

The next step (which the program 

does not take) would mean going through 

each of the convexity defects and filtering 

them based on some kind of measure—

probably distance from the convex hull point 

at a certain angle from the point. Hence as it 

is it can’t really discern lobed from unlobed leaves, which is really more crucial than the 

number of lobes when it comes to evaluating template similarity. Also, it consistently 

underreports lobe number for the PinLobed template for some reason. 

 Working through OpenCV’s utterly complicated data structures often means looking 

for help on the internet, where lots of helpful folks post tutorials, demos, and examples of 

their image processing endeavors. I found it interesting that the most common application 

of OpenCV’s convexity defect detection functionality is to use it to count the number of 

fingers on a hand being held up to a camera. Applying it to leaf lobing is a similar task 

morphologically—it is not for nothing that certain leaves are known as “palmate” or 

“digitate!” Thoreau writes fittingly:  

Is not the hand a spreading palm leaf with its lobes and veins? […] Each rounded 
lobe of the vegetable leaf, too, is a thick and now loitering drop, larger or smaller; 
the lobes are the fingers of the leaf; and as many lobes as it has, in so many 
directions it tends to flow[…]16 
 

                                                           
16 Thoreau, 548. 
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These online examples are helpful as I try to figure out how best to filter the 

convexity defect points to just the important ones (such as trying polygon approximation). 

It’s a shame this part of the system doesn’t work as well as it could yet, as I think it is one of 

the most useful metrics for assessing the similarity of a template to an input leaf. If lobe 

number was accurately discerned and the weighted highly in the comparative fitness 

function, the system would be far more likely to reject unfitting templates on the basis of 

their lobation. Boxy dimensional measurements really aren’t enough to see structure. At 

least leaves with more lobes get labeled with a higher lobe count—hence it does factor in to 

the present fitness evaluation in some form. 

Figure 35: Fingertip counting with OpenCV17 

 

 

                                                           
17

 Top:    http://simena86.github.io/blog/2013/08/12/hand-tracking-and-recognition-with-opencv/ 
    Left:    http://stackoverflow.com/questions/18143077/computer-vision-filtering-convex-hulls-and-
 convexity-defects-with-opencv 
    Right: http://www.codeproject.com/Articles/782602/Beginners-guide-to-understand-Fingertips-counting 
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Phase Three: Grammatical Leaf Construction   

 Phase Three deals with how the L-system leaves which appear on the right-hand 

side of the screen are generated. This section deals with how the parametric L-system 

grammars were designed to represent leaf structure and shape and also how these 

generated leaves were made to appear in window.   

 As was mentioned in the section on L-Systems, the geometric information for the 

model leaf’s surface polygon construction is built directly into the L-system. This means the 

grammar contains specific symbols which designate when in the interpretation a polygon 

does the following:  

begins:                     {  
ends:                         } 
has a vertex:          . 

 

Hence, the drawn shape which appears on the screen changes in tandem with the 

structure of the grammar and the values of the parameters because its geometry is an 

intrinsic part of the system. The resultant shape is visually analyzed in the exact same 

manner as the input leaf image in order to grab morphometric information about the 

generated leaves. That is, everything explained in Phase 2 applies to these leaves as well. 

 Template leaf grammars are structured in such a way as to build more complex leaf 

shapes out of simpler ones. The mid-rib for the Pinnate template is used as one of many 

primary veins of the Palmate template while in the Pinlobed template it becomes the 

secondary veins. Because simple/entire leaves can be used to model lobes, for convenience 

I refer to these overlapping surfaces as “lobelets,” a portmanteau of “lobe” and “leaflet,” 

leaflets being the separate laminar areas found on compound leaves. That is, in these 

models, the leaf form is so universal that even leaves are made of leaves.   
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These grammars also contain multiple parameters, with complexer leaf shapes 

having more. Because the L-systems consist of strings, parsing the parameters requires the 

evaluation of mathematical expressions. Java can’t do this on its own so Peter Lager’s 

QScript library18 was used for this purpose. The parameter parsing is easily one of the 

buggiest parts of the whole system. 

There are three leaf templates “officially” built into the system: Pinnate, Palmate, 

and PinLobed. That is, while there are some other templates in the code, only these three 

are generated during search and without editing the code only these three can be viewed 

and manipulated in Slider mode. The Results and Future Work sections will discuss some 

other possible templates as a way of demonstrating the process of template creation. Here, 

however, we look at the workable templates constructed for three common leaf forms. 

Each one has some interesting structural characteristics that give an idea of how L-systems 

can be designed to represent different forms.  

 

 

 

 

 

 

 

 

 

                                                           
18

 http://www.lagers.org.uk/qscript/ 
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Pinnate Template 

The Pinnate template is an unlobed leaf with pinnate venation. Shown below are 

some images of leaves on which the template was based alongside some random 

candidates generated from the template.  

Figure 36: Left—Some unlobed pinnate samples.  
Right—Randomly generated candidates from Pinnate template 

 Because the leaves on the right are random, some have parameter value 

combinations that make them especially small or strangely shaped. Hence, the whole 

purpose of the search process is to compare the generated leaves against the input leaf 

image and then mutate the candidate leaf pool in hopes of getting closer. As it is, this image 

shows some of the different forms that can arise from this template. The biggest 

improvement to the Pinnate template would be to modify it to get a greater variety of apex 

and base shapes. It has a hard time approximating rounder apices and bases.   
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The Pinnate template was the first one implemented in FormaLeaf. My starting 

point for all efforts in leaf grammar construction was the following example from The 

Algorithmic Beauty of Plants: 

Figure 37: Parametric leaf surface models.  
The Algorithmic Beauty of Plants (124). 

 This example also had a table of different parameter values to get the six different 

leaf forms above. While I retained the structure of this grammar, I modified all of the 

parameter ranges and constraints so the kinds of forms I get are quite different. 

Furthermore, the leaves in this example are all at 20 iterations, while my Pinnate template 

is capped at 14—this actually makes a big difference in both how the parameters affect the 

shape as well as the number of lateral veins on the leaf. 

 What follows is the L-system and parameter ranges for the Pinnate template, along 

with some explanatory notes. 
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ω: {.S(0)} 

p1: S(t) → P(t) 

p2: P(t) → !(5)G(LP, RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).] 

p3: L(t) → !(2)G(LL, RL)L(t-1)     iff:   t>=BE 

p4: G(s,r) → G(s*r, r)  

LP: 2.0 – 4.3 

RP: 1.0 – 1.25 

LL: 1.0 – 1.9  

RL: 1.1 – 1.38  

BE: 0 – -1  

AN: 40 – 80  

 

 

Parameter ranges.  
Putting the first slider at 
max will make LP = 4.3 

Parameters: 
LP: Primary vein length. RP: Primary vein growth rate. 
LL: Lateral vein length. RL: Lateral vein growth rate. 
BE: Affects basal extension.  AN: Vein branch angle. 

Median leaf.  
Templates start with median 
parameter values by default. 
Hence, leaf is small before 
slider tweaks/search. 

Pinnate Template  
 

Vein thickness. 

 

Growth Symbol. 
G – Draw a line with length determined by parametric 
length multiplied by growth rate. 

 

Right vein, Left vein. 
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Palmate Template 

 A better name for this template would make it clear that it is intended to be a 

palmate lobed leaf. However, sometimes the parameters end up making something less 

lobed and it’s the only working palmate template anyway, so the name sticks.  

The main idea behind this template is using the previously developed Pinnate 

template as the lobes, which are arranged in a radiated fashion around the base. Since the 

lobes are modeled with another leaf model, I refer to these surfaces as “lobelets.” The mid-

ribs of the Pinnate lobelets hence become the multiple primary veins of the Palmate 

template. I found that overlapping surface models of entire leaves is the simplest way to 

model non-entire laminas (“entire” being the common botanical term for simple unlobed 

leaves with smooth margins). The biggest improvement to the Palmate template would be 

to parameterize the number of lobes, as right now it puts exactly five on every leaf.  
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Figure 38: Left—Some lobed palmate samples. 
Right—Some randomly generated candidates from Palmate template. 

 

The grammar was modified so the bottom two lobes are scaled down. As the 

samples suggest, the lower lobes are usually smaller. This was done by adding an extra 

production step which only the bottom lobelets must fire. This ‘delays’ their development 

relative to the others by a full iteration, which in this case acts as an effective scalar. This 

could also probably be parameterized somehow alongside the number of lobes. 
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ω: {.S(0)}  

p1:  S(t) → [+(ANN)+(ANN)B(t)].[+(ANN)P(t)].[P(t)].  

[-(ANN)P(t)].[-(ANN)-(ANN)B(t)] 

p2: P(t) → !(5)G(LP, RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).] 

p3:  B(t)  →    P(t)  

p4: L(t) → !(2)G(LL, RL)L(t-1)     iff:   t>=BE 

p5: G(s,r) → G(s*r, r)  

LP: 1.2 – 3 

RP: 1.1 – 1.25 

LL: 1.1 – 2  

RL: 1.0 – 1.5  

BE: 0 – -4  

AN: 40 – 80 

ANN: 40 - 70 

Parameters: 
LP: Primary vein length. RP: Primary vein growth rate. 
LL: Lateral vein length. RL: Lateral vein growth rate. 
BE: Affects basal extension.  AN: Lateral vein branch angle. 
ANN: Primary vein branch angle (Lobelet arrangement angle). 

Palmate Template  
 

Center Lobe 

 

Bottom Right Lobe 

 
Top Right Lobe 

 

Extra  
Delay 
Production  
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I find the Palmate template and its resulting models morphologically interesting for 

two reasons. Notice how when the Pinnate surface models overlap each other as Palmate 

lobelets, their lateral/second-order veins form crisscrossed patterns. While in the L-system 

model these veins are simply overlapping visually, it makes me wonder if it shows 

something about how anastomosis could proceed. That is, those sites of intersection could 

perhaps vaguely predict how/which secondary veins would connect. A comparison of 

Figure 39 to the leaf models above with this in mind is intriguing.   

Figure 39: Vein anastomosis of second-order veins of lobed palmate leaf.  
(Manual of Leaf Architecture, 54) 

 Secondly, the overlapping surface approach leads to an interesting way of thinking 

about the form of lobes themselves. Agnes Arber writes,  

The analogy between leaf and shoot has been obscured by the technique of leaf 
description, which is based on the idea of the leaf as a member with an entire 
margin, which may be more or less indented or deeply cut, as if a pair of scissors had 
been employed upon it. De Candolle long ago pointed out that this method of 
visualizing lamina-form is liable to create a wrong impression[…] On this view, De 
Candolle would describe a pinnatifid leaf as showing fusion, for half their length, of 
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the lobes associated with the pinnate lateral veins. He goes so far as to suggest that 
this theory may possibly be applied to all leaves, even those that are quite simple 
and undivided.19 

 
The method of modeling lobes I use for these templates embodies this perception of the 

leaf lamina. Regarding this analogy being “obscured by the technique of leaf description,” 

The Manual of Leaf Architecture defines lobes as being extrusions that have a certain 

proportional sinus (indentation) depth, with smaller sinuses being indicative of “teeth” 

instead of lobes. If you’re just looking at the margin (like the vision system of FormaLeaf) 

this is really all you can do to point to lobation. However if you look at the venation, you 

can see lobation expressed as fused foliar appendages coming off the mid-rib of the leaf, 

here acting like a shoot. Arber continues: 

The point that matter to us is that de Candolle saw, even if dimly, that the leaf is a 
system comparable with a shoot, but in which the main and lateral veins and their 
associated leaf surfaces form a united whole, instead of being separable entities, 
such as the main axes and the lateral branches with their individual leaves, which in 
the aggregate makeup the shoot.20 
 

One way to imagine a leaf is as a flat tree with a horizontal network weaving a surface 

fabric in between its hierarchy. Venation is hence a crucial part of morphological 

understanding. In leaves they are internal and structural but are clearly correlated to the 

outline shape. 

 

 

 

                                                           
19 Arber, 83-84. 
20 Arber, 84. 
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PinLobed Template 

 This template is for pinnate lobed leaves and was based off of an oak leaf. The most 

successful part of this template is that the number of lobes is parametrized, which is great. 

Otherwise I am somewhat disappointed with it as leaf template, as it’s getting close but the 

growth pattern of the lateral lobelets are really off—this makes the mutations hardly ever 

look like pinnately lobed leaves do. I think has something to do with the structures of the 

conditionals, the decrements, and the BE parameter. Oak leaves tend to be obovate, but 

more often than not this template makes elliptic leaves since the lobes closest to the base 

are always wider. This wouldn’t be such a problem if the search wasn’t frequently matching 

this template to unlobed pinnate leaves because they’re so often elliptic! 

Figure 40: Left—Samples of pinnately lobed leaves, most oak.  
Right—Randomly generated PinLobed leaves. 
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ω: {.S(0)}  
p1:  S(t) → P(t, LO) 

p2: P(t,i) → !(6)G(LP, RP)[-(AN)A(t)] 

 [P(t+1),(i-1)][+(AN)A(t)]     iff: i>=0 

p3:  P(t,i)  →  !(6)G(LP, RP)N(t)    iff: i<0 

p4: A(t) → !(4)G(LL, RL)[-(ANN)L(t-1).][A(t+1)] 

[+(ANN)L(t-1).]           iff: t>=BE 

p5: L(t)→  !(3) G(LT, RT)L(t-1)        iff: t>=BE 

p6: N(t) → !(4)[A(t+1)]     iff: t>=BE 

p7: G(s,r) → G(s*r, r)  

LP: 6.0 – 8.0   AN: 35 – 65 

RP: 1.1 – 1.26  ANN: 30 – 85 

LL: 1.0 – 1.4   LO: 1 - 4  

RL: 1.2 – 1.45  

LT: 1.0 – 1.4 

RT: 1.1 – 1.2 

BE: -1 – -4    

Parameters: 
LP: Primary vein length. RP: Primary vein growth rate. 

LL: Lateral vein length. RL: Lateral vein growth rate. 
LT:Tertiary vein length RT:Tertiary vein growth rate. 
BE: Affects basal extension.  AN: Lobe branch angle 
ANN: Tertiary vein angle (Veins of the lobelets) 
LO: Number of lobe pairs. 

PinLobed Template  
 

Draws i lobe pairs 

 
Extension 
for tip lobe 

 

Draws  
tip lobe 
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However, while this template doesn’t make for very good leaf models, the randomly 

generated candidates often look like interesting whole shoots—that is, they look like an 

abstract plant stem with multiple appendages. I find this morphologically interesting as it 

demonstrates how the leaf form can transition to resemble a whole plant (albeit, a very 

abstract flat 2D version). Plants might not be strictly self-similar, but branching structures 

do scale and we can see how the form of a leaf can become that of a shoot—or any other 

foliar form, really.  

I attempted to address this in Part I when I wrote about the “universal leaf” and 

transitional forms and what not, but I think it’s clearer with the examples of the PinLobed 

template and the Palmate template given above. I really think this is part of the impetus 

behind the attempts of so many plant morphologists (Wolff, Goethe, de Candolle, Oken, and 

Arber, to name a few) to conceive of some abstract “universal” plant appendage. Arber 
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quotes Oken, who writes “The leaf is a tree of special form, a tree the branches or veins of 

which all lie in one plane.”21Arber bases part of her entire morphological approach on 

likening the leaf to a partial shoot and we saw above how this leads to a view that sees 

lobed leaf laminas as potentially decomposable into smaller foliar units. 

 When parameters are taken into account, that’s when we get abstracted 

metamorphosis. Contraction, expansion, all of the qualitative “movements” and changes 

seen by Goethe as he examined different leaf forms growing up a stem—these can be 

thought of as similar to the form transitions caused by parametric manipulation, and that’s 

why for so many morphologists the whole idea of metamorphosis doesn’t have to be 

conceived temporally/historically. It exists in the possible form space, which is what Search 

mode is meant to be exploring. “Transitional” forms exist along a continuum within this 

space. That may be the whole idea behind computational search techniques like hill-

climbing. 

 

 

 

 

 

 

 

                                                           
21 Arber, 87. 
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Grammars on the Screen: Sizing and Placement 

Some problem solving went into figuring out how size and scaling factored into the 

entire system. I was initially hesitant to scale down the leaf images before analysis as I 

figured more spatial detail was preferable, especially for something like the roughness of 

the leaf margin (which I never ended up trying to analyze anyway). Ultimately, however, I 

decided to scale down the images of the larger input leaves prior to visual analysis as it 

made it easier to evaluate shape similarity—smaller contours are simpler to compare with 

the generated L-system leaves, which I programmed to always fit within their allotted 

space in the window. Most leaf images are made to be 5/12ths of the sketch window, with 

especially tall leaves instead scaled down to fit within the vertical boundary. The 5/12ths 

portion number was arrived at because the first 1/6 of the horizontal screen space is taken 

up by measurement information and control sliders. The remaining 5/6ths of the screen is 

split in half between the leaf image and the L-system.  
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Because the input leaves are scaled down prior to finding the contour, the L-system 

is hence looking to match the leaf exactly as it is seen on the left side of the screen—bigger 

leaves do not actually result in bigger L-systems.22 Furthermore, because window size is 

variable and the input image scales to the window (and because the unit length of the lines 

and the iteration for each template are held constant), this also means that the program 

will theoretically behave somewhat differently on the same input leaf at different window 

sizes. The program is optimized for 1280x800 resolution and should be run that way for 

the best results. With a bigger window, it takes longer to generate candidates and the 

template parameter constraints also must to be adjusted to become as big as the input leaf 

picture (which scales automatically). I felt 1200x800 was a good size also because it 

seemed strange to have the generated leaves be much bigger than the actual leaves were 

when I collected them—as it is, most of the input and generated leaves on the screen look 

just bit over the average size of a real leaf.  

Figure 41: Sometimes generated leaves greatly exceed the sketch window. 

                                                           
22

 That is, a leaf which is physically bigger than the computer screen will not result in an L-system bigger than 
the screen.  
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Special care was taken to get the resultant L-system leaves to fit in the sketch 

window. It happens very frequently (my very rough estimate would say at least 60% of the 

time) that the generated parameters result in a surface which exceeds the screen. Further 

constraint of the ranges of possible parameter values is not a good solution, as it is 

particular parameters in combination with each other which causes such behavior. The 

chief culprit is usually the growth rate of the main axis in conjunction with a large initial 

length. Constraining parameters like these in order to stop generated leaves from going out 

of bounds would make other legitimate shapes impossible—a shape which fits in the 

window just fine could have, for example, the same growth rate as a shape 100 times 

larger. It is rather the interaction between parameters as they influence the behavior of the 

whole L-system that determines the final surface.  

On the technical end, an-out-of-bounds candidate causes the ImageProcessor object 

to not be able to find the leaf contour. One approach I attempted was to make the canvas (a 

PGraphics object) on which the Turtle drew the L-system very large with the intention of 

later scaling it down for display, but this just made the program laggier without even 

solving the problem—when the leaves were too big, they were really too big. Furthermore, 

scaling down a PGraphics object isn’t as simple as is scaling an image. This approach was 

abandoned alongside the possibility of generating larger L-systems for physically larger 

leaves. Instead, the unusable, out-of-bounds leaves are generated but discarded. A second 

approach took advantage of how these out-of-bounds leaves would cause a glitch which 

would crash the entire program, as the fact that the program could not handle these shapes 

made it very easy to detect such exceptions. However, this glitch only occurred on very tall 

leaves which were not also out of bounds horizontally—that is, usually on the Pinnate 
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template leaves instead those from the Palmate template. The final approach which worked 

nicely ended up being very simple and stupidly obvious. As the Turtle draws each vertex, it 

first checks if the vertex coordinates are outside the bounds of the PGraphics canvas. If so, 

the Turtle drawGrammar function returns a null PGraphics object. Hence the program will 

have the Turtle attempt to draw the generated candidate until a valid, in-bounds one is 

created before moving on to the next space in the population pool.23 If, in Slider mode, the 

selected template, input leaf (which affects base placement), and parameters make the 

resulting leaf out-of-bounds, a message is reported to the screen.  

Figure 42: Out-of-bounds message. 

 

                                                           
23

 At first the system just discarded the invalid candidate and didn’t generate another to replace it—hence if 
you asked it make 300 leaves it would spit out way fewer. This was silly. 
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By moving the vertical position of the L-system’s base closer to the input leaf’s base 

location, it also makes the search process more likely to end up with the correct template 

as less appropriate templates are more likely to be out of bounds—Imagine a long leaf with 

its base at the very bottom of the screen and then imagine a palmate leaf whose lobes reach 

down below the concave base. Hence, this is a type of “hard” constraint which makes the 

candidate pool closer. 

An out-of-bounds candidate is also more common the higher the iteration of the L-

system. This is to be expected—the growth rate multiplier is applied more times! Because 

the growth of different templates proceeds faster than others in certain dimensions, I 

ended up deciding on a maximum appropriate iteration for each template through trial and 

error.  For example, an average generated palmate leaf will hit the horizontal boundary in 

fewer iterations than an average pinnate leaf will due to both less available horizontal 

space and a smaller length:width ratio. Hence I determined a reasonable maximum 

iteration number for each template.   

During search, the generated candidates are all drawn by the Turtle at the maximum 

iteration for their template. Hence, “iteration” is not a parameter on which search is 

performed. The system (in particular the parameter constraints relative to the default 

window size) was instead optimized through manually tweaking to work with the 

template’s maximum iteration. The bottom slider, however, is always dedicated to 

adjusting the displayed iteration, which means the user can easily control and view the 

“development sequence” of the generated leaf. 
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Leaf Color: 

 The color of the generated leaf is that of the pixel 15 pixels to the left of the center 

pixel of the input leaf image. The 15 pixel buffer was added to avoid the mid-rib, usually a 

different shade from the rest of the lamina. The L-system leaf color is displayed with an 

alpha value of 185 so that the black venation lines can be seen beneath. While making the 

color of the generated leaf closer to the input leaf in this manner is rudimentary and plays 

no further part in the process, I find that it increases what I perceive as resemblance by a 

surprising amount.  

Figure 43: Generated leaf color samples a pixel in the input leaf. The L-system leaves 
above were matched to the images manually using parameter sliders. 

It also occurs to me that one of the most useful things about having a wide variety of 

input leaves is that if I need to generate a bunch of leaf images I have an automatic natural 
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color palette right at my fingertips and don’t have to go screwing around the code picking 

and changing RGB values (which because of impatience usually results in extreme colors— 

255’s all around). Instead, if I want to make a bunch of red L-system leaves (regardless of 

the template or the input leaf shape) I can just navigate in the program to one of the red 

input leaves and get a natural looking shade on the L-system leaf automatically. Generating 

blue leaves however means changing the code.  
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Phase Four: Searching Parameter Space for an Adequate Model 

 Phase Four concerns Search mode and how the system looks for a generated leaf 

which resembles the input leaf. It is probably the least developed part of the whole project.  

Assessing Fitness  

Fitness is currently assessed using a weighted sum of different metrics which were 

gathered during Phase 2. They are all normalized to be between 0 and 1, but I think the way 

I did the normalization was really arbitrary and probably not the right way to approach it. 

As the weights demonstrate, fitness is at maximum 100.     

 

I think this has the constitutive components of a successful fitness function but it needs 

better/more important measurements, more careful weighting, and some other way of 

normalizing units.   
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Search 

This is a little ridiculous. The search was initially the whole point of this project and 

I never actually wrote a real one because I was having too much fun playing with leaf 

parameters myself. There is however a Search Mode, and it does at least make a 

rudimentary attempt to find a matching leaf template. 

Here’s pseudo-code for the currently implemented search function: 

1. For n in candidate pool size: 
a. Pick k random parameter values between 0 and 1 (these become 

mapped in the template to their unique parametric constraints). 
b. Generates a candidate using these parameters, randomly 

selecting one of the three templates. 
c. Check if candidate fits in window, if not return to a. 
d. Evaluate SysLeaf candidate fitness (compare to Input leaf) and 

save to pool 
2. Sort pool of valid SysLeaf candidates by fitness (compare each to Input leaf). 
3. Display the candidate with best fitness. 

Basically Search Mode finds some hills but it doesn’t bother climbing them. As it is, the 

higher the candidate pool number the more options it has to pick from. Searching for this 

problem is limited because generating each candidate takes about a second, which over the 

course of many generations (and with a decent size candidate pool) would make the whole 

thing kind of slow. 
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Figure 44: Screenshot from mid-development of  
randomly generated candidates. 
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 I will say, however, that despite not being a good local search this function was 

extremely useful for this project—it runs when the user presses ‘z’ and it currently saves 

pictures of all the valid randomly generated L-system leaves to a folder. The filename is the 

fitness value. Hence, rather than automating a local search that will return the best 

candidate, it’s a randomized form generation algorithm which spits out a bunch of cool 

JPEGs. One of the neater things to come out not bothering to evolve the candidates into 

something fitter is that I get a lot of wacky shapes that don’t really look like leaves at all: 

Figure 45: The Palmate template sometimes generates 
 forms which remind me of radiolaria. 

I think it would be neat to extend this random image creation to parametric L-systems  

which aren’t designed to look like leaves in the first place. Think of the variety! 
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Results and Discussion 
 

My original goal with this project was that when given a picture of an input leaf, the 

system would return a graphically interpreted L-system representation with a matching 

shape and venation structure. A few reasons I found this interesting: 

1. I was curious if information about the external shape alone was enough 

to assume something about the internal venation structure. 

2. When it comes to representing specific biological structures, automatic 

model generation is less common than manually designed and adjusted 

models. Humans are plenty good at idealization—it would be neat to 

engineer an idealizing machine. 

3. Viewing the iterative developmental sequence would be like having a 

visual time portal to a possible past of the leaf. I thought this would make 

a cool video effect if combined with footage of leaves.24 

4. I found polygonal L-systems geometrically exciting. 

5. The problem combines computer-vision, computer-graphics, formal 

grammar theory, and Nature. 

 

 

 

                                                           
24

 To this end, another part of Branching Boogaloo was going to be an experimental video of plants using 
these and other computational effects. Work in progress. 
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FormaLeaf 

The most tangible result of working on this problem has been the entirety of the 

platform I built to explore it. I didn’t go into the project looking to make a software 

interface; it just sort of happened. Software is ideational and can be an extension of our 

perceptive and imaginative faculties. 

Building the system from the ground-up (beginning with an implementation of L-

systems) helped me to understand the separate pieces and furthermore allowed me to 

customize it to my needs. I ended up with a program I can imagine someone else using, but 

realistically almost everything about it emerged around my personal patterns of use. 

Interactive systems are exciting to use because the user is part of the system loop. 

Interactive systems are even more exciting to develop because the developer gets control 

over the nature of the interaction. Being both developer and user at once means you are in 

an excellent position to satisfy your own desires. The way I use the system, the malleable 

source code is part of the interface. Grammatical definition of leaves is controlled by 

writing and modifying L-system code within the Processing IDE while these changes are 

understood and manipulated visually in the actual program window.      

 While FormaLeaf is not good at matching template leaves to input leaves, it excels in 

image generation. Hence, much of the results section will be graphic examples.  
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Search Results: 

  Search Mode does not get the right template very often as the fitness function and 

search function are inadequate. It seems to work better on Palmate leaves because this 

template in general has a different L:W ratio. Otherwise, Pinnate and PinLobed leaves are 

easily confused. 

 

 

 

 

 

 

 

 

Here is an example of incorrent template matching. The dimensions 

are somewhat similar, but the lobe structure is way off. At least it 

figured out that its got pinnate venation, though. 
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Here are two examples of correct template matching.  
Note that the similarity of the top leaf is higher. 
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Figure 3: JPEG generation capabilities are off the charts. 
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Hypothetical Developmental Sequences 

 Viewing the successive iterations of an L-system leaf makes it look like the leaf is 

growing.  This report is a static document so it can’t display the effect in motion—I think it 

looks coolest as an animated gif.  There is little reason to suspect that this necessarily 

resembles the actual spatial development over time of a leaf with that final shape, as leaves 

can assume different forms at different points in their growth. Designing grammars which 

resemble the more complex/earlier development would require work with more attention 

paid to early iterative behavior.  

Figure 46: Iterative sequence of a Pinnate leaf. 
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 How does the software allow for generating an image like this? Here is a manually 

adjusted Slider mode leaf I tweaked to vaguely resemble the input leaf: 

 

I then manually adjust the bottom-most slider to go through the iterations step by step,25 

and use the Processing saveFrame function (tied to key input) to save a sequence of 

images. After getting the frames, I use Photoshop to put the images together. It would be 

very cool and quite easy to automate this frame collection (and also make an oscillating 

animate button using the sine function for the displayed iteration), but the frame stitching 

                                                           
25 The iteration slider actually starts at the third or fourth iteration step (depending on max iteration) since 
the first few are so tiny. 
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would be a little more involved. Maybe the best way to do it is with another offscreen 

PGraphics canvas which draws every iteration side by side and then just saves that image. 

Putting the images together gets something like this: 

 

This sort of sequence isn’t entirely dissimilar from what the palmate lobed leaves below 

look like as they grow. Compare the younger leaf in the center to the bigger ones—it’s 

mostly a matter of scaling (and unfolding). 
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As addressed in Part I, leaves develop through both cell division and cell expansion. 

Speaking generally, cell division stops quite early in development and has a lot to do with 

determining the shape structure. Cell expansion makes the leaf grow to its adult size—

hence the grammar iterations aren’t a bad growing approximation for this latter phase of 

development since they are just applying the various segment growth rate multipliers to a 

pre-existing structure. 

Of course, when we discussed development, there was also the matter of the second 

kind of development—that is, the non-temporal (or less immediately temporal, if we’re 

thinking about actual evolving plants) metamorphosis from form to form. You can thus 

illustrate a metamorphical sequence using a different slider than the iteration slider, or 

even tie two parameters to the same slider and see how the form interacts when you 

change them in tandem. This is the sequence from increasing the length of the primary vein 

as well as rate of growth of the lateral vein. This isn’t growth in time (like iterations), its 

parametric movement from form to form. This is not the determinate execution of the 

code/grammar like growth is; rather this is a continuous changing of the code itself.   
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Tulip Tree (Liriodendron): 

 One of the more unique samples is from a tulip tree.26 It has what looks like pinnate 

venation, a cordate-esque base, and a concave apex. It’s L:W ratio is more typical of a 

palmate leaf. Tulip tree leaves usually have four lobes, but this one has six.    

The default PinLobed template was based on the pinnate lobation of oak leaves and thus 

cannot approximate this leaf. Hence, the search and the parameters sliders won’t ever 

really get close to this one. However, two simple structural modification to the grammar 

and some futzing with the parameters makes resemblance easy.  

 Structural Modifications: 

1. In the original PinLobed template, the third production rule adds a final 

lobelet to the top of the leaf after the lobe number parameter has been 

decremented appropriately. Remove this production entirely.  

2. Eliminate the bottom segment—I did this by adding a production which 

fires only after the start symbol which has the two lobelet branches but 

no segment beforehand. After this, subsequent mid-rib productions make 

a segment before branching like usual.   

 

                                                           
26 Named so because its flowers look like tulips, not because it grows tulips. Tulips don’t grow on trees. 
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This gets us from something like the left side to the one on the right: 

Parametrically, it should make 3 pairs of thick, rounded lobelets (i.e, extend their lateral 

veins). Some slider constraints in the PinLobed template were modified to do this properly. 

After some tweaking in the code and with the parameter sliders:  
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 Obviously this needs some work but it’s certainly getting closer. It’s got a concave 

base and apex, although notice that the mid-rib line is not extending all the way to the top 

like it is in the actual leaf. In any case, I think this is an interesting case study. First of all, it’s 

a very weird leaf. Second, it shows how a new template27 for a leaf form can be manually 

created and that it requires editing the actual structure of the grammar. Could this process 

be automated as well? Some researchers evolve the symbols (as opposed to parameters) in 

the productions of non-parametric L-systems modeling branching structures, but I don’t 

know if it’s been done on parametric surface models. It also seems like a difficult problem. 

You would probably need to do it modularly—that is, have some premade productions that 

get shuffled around randomly. 

 As a comparison to another method of modeling tulip tree leaves with L-systems, 

here is a rendered leaf image from Peyrat et. al (2008). This paper uses a type of L-system 

called a 2Gmap L-system. They write that one of their aims was to model the leaf in such a 

way as to have accurate venation patterns, but the tertiary veins are a little funky.   

The grammar in these kinds of L-systems (here both parametric and context-sensitive) 

builds a 2D map and performs productions on entire geometrical faces instead of segments.  

  

                                                           
27 The template for making leaves like this is present in my code as “Tulip” but isn’t called in search. 
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Compound Leaves: 

 FormaLeaf deals with simple leaves or what could be compound leaflets as input. 

However, it is possible to generate images of compound leaves by modifying one of the 

parameter constrains to give the lobelets of the Pinnate or Palmate template each their 

own petiole. The Pinnate template’s grammatical structure was based on some leaf surface 

models in The Algorithmic Beauty of Plants (see Figure 37) which had tiny petiole bits at the 

bottom. When I first adapted these grammars for my purposes it was one of the first things 

I got rid of. However, once I figured out how to make lobed leaves out of overlapping leaf 

surface models, bringing the petioles back made images that resemble compound leaves 

with leaflets attached by petiolules. 

 The modification is extremely simple: just adjust the parameter constraints so the 

BE (basal extension) parameter is a positive number. BE is checked in the conditional and I 

find it has unpredictable behavior since I haven’t traced through on paper exactly what the 

conditional is checking all the time. A positive BE number makes it so the lamina starts 

further up.  
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Randomly Generated Leaves: 
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Future Work  
 

 As the numerous places in Section III which read something like “I could have 

done…” or “one possible approach would have been to…” suggest, there are innumerable 

ways this system could be improved. Because there are so many different pieces (not to 

mention different motivations) which make up FormaLeaf, my time was spent getting each 

portion into “adequate” shape so it could all at least come together. Literally every part of 

the system could be improved drastically if given focused attention and what I’ve ended up 

with by the end of the allotted time for Senior Project is just a start. As alluded to before, 

the “result” of this project is not only what the system spits out but also the whole system 

itself. I think this is a valid way to perform computer science.  

 

-Lobe Counting: 

 I think that having an accurate count for the number of lobes would be one of the 

single most useful metrics possible for matching a structural template. Unfortunately my 

lobe detection is awful so the number it gets is really just an estimate (it’s at least usually 

higher for lobed leaves). But still, what use is it if the system thinks an obviously unlobed 

leaf has 2 lobes?  
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-Leaf Margins: 

 Many leaves have serrated/jagged margins, with serrated margins more common in 

cooler climates. The only place margin type is reflected in FormaLeaf at all is that non-

entire leaves make the lobe detector even more confused. Assessing the margin visually 

would probably mean measuring the roughness of the contour. Generating different 

margins sounds trickier.   

Figure 47: Rose leaf model with marginal notches.  
(The Algorithmic Beauty of Plants, 126) 

 There is one example in ABOP but the polygonal 

encoding here is a little different than my templates. In 

the leaf above, each quadrilateral is a separately defined 

polygon. Maybe this is worth exploring.  Alternatively, I 

found that the PinLobed template can be modified to get 

the L-system leaf on the right. Perhaps marginal notches 

and teeth can be approached with many very small 

overlapping lobelets. The apices of the lobelets become 

the teeth of the larger leaf.  
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-Brochidodromous Venation: 

A few leaves in my sample set have looping on their 2nd-order veins. While I am 

unsure how the system could figure out if an input leaf is brochidodromous or not without 

doing line detection (since very similar leaf shapes exist with and without 2nd-order 

looping), it would still interesting to model such venation using an L-system.  

The L-system mechanism as described by Lindenmayer and Prusinkiewicz does not 

have the inherent capacity for networked connections among the string elements (unless 

there is some way to do this with context-sensitive L-systems, which I haven’t explored yet 

at all). A few researchers have approached L-system network modeling with varying 

strategies, building indications of connections between symbols into the grammars. Boers 

et. al (1995) introduces G2L-Systems, which are graph grammars. Parish(2001) and 

Eilertsen (2013) papers describe methods for city road generation with L-systems. 

 What also really puzzles me about modeling these is that the current polygonal 

surface models in FormaLeaf define polygonal vertices by having the Turtle drop vertices 

at the leaf margins. That is, the second-order veins are extending all the way to the margin 

(craspedodromous). Looking at the brochidodromous example above, this isn’t happening. 

Perhaps vertices must be dropped at the end of tertiary veins coming off the 2nd-order 

loops. Tricky! 
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-Higher Order Venation Network: 

One of the things I find most fascinating about leaves is the intricate network of 

higher-order veins. These networks are often modeled using techniques involving Voronoi 

diagrams. I thought about making it so that once the best result leaf was found you could 

press a key or button to “Voronoize” it, which would fill in the spaces between the lateral 

veins with their own Voronoi diagram. These edges would not be a part of the L-system 

(and hence would not follow with the iterations) and would be done purely for visual 

effect. Fooling around with Lee Byron’s Mesh library28, this is as far as I got:    

Figure 48: Voronoi diagram experiment. 

Generating a smaller diagram within a region of the larger diagram was based off 

Shirriff (1993). While I don’t know how one would get something like this to work 

alongside being able to iterate through development steps (the diagram would have to be 

adaptive somehow), I do think it would look interesting to have the spaces between the 

lateral veins on a typical L-system leaf filled in in this manner even if only worked on a 
                                                           
28

 http://leebyron.com/mesh/ 
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final, static iteration. However, storing the Turtle’s drawn lines in a way useable with 

Byron’s library (or otherwise implementing Fortune’s Plane-Sweep Algorithm myself, 

which is complicated), figuring out the geometry and boundaries of arbitrary regions, and 

getting the system to “cap” its drawings of edges would have taken too much time for 

unessential payoff and hence this effort was abandoned. At least Figure 1 gives an idea of 

what I was thinking about.   

-Arcuate Venation.  

 The lateral (and sometimes the primary) veins of many leaves are not straight lines. 

This is commonly referred to as arcuate venation. In my sample set, it is most common on 

the simplest of the leaves—that is, unlobed “entire” leaves. This actually makes me wonder 

if the curved venation is indicative of a simpler branch structure in general.  

Processing has a curve function which could be worked into the Turtle implementation. It 

would probably work parametrically, with some way to tell the system where to place the 

inner points (which define the path of drawn curve) relative to the start points, end points, 

and specified amount of curviness.   
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-Non-Symmetrical Leaves: 

All my generated leaves are perfectly symmetrical, which 

isn’t true of many actual leaves. The leaf to the right has a 

branching scheme which the system has no way to approach. It’s 

actually rather difficult to make heads-or-tails of this leaf even 

by looking at it. Would you say that the midrib is bifurcating 

equally or branching to the left and then bending to the right? How come the left side of the 

leaf is developing what look like underdeveloped lobes while the right side isn’t? Even 

weirder, this leaf is found on the same plant as the two below. This is possibly an instance 

of heteroblastic development. 

Figure 49: Oakleaf hydrangea (Hydrangea quercifolia).  
They grow near the stairs by Kline. 
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-More Labeling: 

 The only terminological label that is applied (other than the template type) is that of 

the overall shape class. It would be interesting if the system could apply an apex label and a 

base label as well and report it in the left-hand information panel. This of course sounds 

like a problem more suited to machine learning approaches, but for that you need a lot of 

data.  

I also wonder whether you could use label information to give the search process 

better hints of how to proceed—that is, it could use harder constraints instead of just soft 

weights if you could be confident that the applied label was correct. This would make the 

search more deductive. 

-Fix Console Output: 

 The Processing console is useful for debugging, but the console for FormaLeaf is 

consistently filled with repeated print statements from the OpenCV for Processing library. 

The constructor for the OpenCV object always prints  

OpenCV for Processing 0.5.2 by Greg Borenstein http://gregborenstein.com 
Using Java OpenCV 2.4.5.0 

 

which means that it goes to the console every time a new OpenCV object is created. In 

FormaLeaf this is done in a number of different constantly executing loops, as the 

constructor takes the image it will be working on. Though the library has a loadImage 

function, my attempts to use this to minimize the calls to the constructor did not behave as 

expected. I either need to reorganize some of the code and figure out how to get loadImage 

to work as I would like or otherwise recompile the library with the print statement 

commented out, which is not the best solution because it complicates the library 

dependency situation. In any case, it’s annoying and I’d like to fix it. 
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-More Template Leaves and Better Grammar Design: 

 As can be gleaned by some examples explained in the Results section, figuring out 

templates for different leaf forms takes some experimentation. In particular, it would be 

satisfying to get a cordate template working that looks right29 and actually morphs 

properly with the parameters. This may mean figuring out the proper proportional 

relationships of different parts of the leaf or otherwise structuring it differently.  

Figure 50: Attempts at a cordate leaf template were disappointing. The one on the 
right looks good until you touch any of the parameters or change the iteration, at 

which point it becomes a lobed leaf. 

 Furthermore, the templates which already exist could be designed better. For 

example, the Palmate template should be redesigned so it can take the number of lobes as a 

parameter like the PinLobed template. The PinLobed lobelets have inaccurate looking 

lengths relative to each other—the bottom-most lobes should not be the longest. I would 

                                                           
29 You perhaps recall the image from The Algorithmic Beauty of Plants included in the Intersection of a cordate 
L-system. However, this model had parallel venation and further defines the surface model in a different way. 
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also like to see to what extent parameters can be consolidated or tied to each other in order 

to minimize the number of required inputs to the more complicated grammars. 

 

-Improved Parameter Parsing: 

 Having used an external library for parameter and expression parsing, I didn’t have 

as much control over this part of the program and hence running into issues here was 

especially frustrating. Problems usually occur when trying to use symbolic elements which 

are otherwise defined in the L-system as having interpretative meaning(such as 

parentheses or even + and – signs) within parametric expressions for arithmetic purposes. 

For whatever reason, the parser crashes if I try to use parentheses to make the order of 

operations within an expression clearer. I’m not sure why this happens, but I ran into a few 

similar cases where what could be expressed in the L-system was limited because of 

language parsing problems. 

 

-Fitness and Search: 

 The fitness function is currently a weighted sum of a number of spatial 

measurements. This could be improved by taking other more important measurements and 

also by tweaking how they are weighted. One spatial analysis technique which might be 

handy is found in Thomas S. Ray (1992), “Landmark Eigenshape Analysis: Homologous 

Contours: Leaf Shape in Syngonium (Araceae).” Florindo et. al (2010) use a measurement 

called Curvature Scale Space and got good results. There’s some code (I didn’t write it) in 

the ImageProcessor class which measures the Hausdorff distance between two contours 

which seems useful, but it didn’t seem right to use this metric without understanding how 
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it was working. A further option is to use a more nuanced technique for assessing similarity 

than just having one fitness value, which would mean modifying the search technique as 

well.  

Search Mode in its current state doesn’t look very hard. I would like to try a genetic 

algorithm, as it worked for Rodkaew et. al (2002) to evolve an L-system skeleton structure. 

There’s also the appeal of “evolving” leaves “genetically.” An even more interesting fitness 

function wouldn’t try to match the leaf to an input picture but rather try to optimize some 

kind of simulated ecological metric. 
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Project Conclusion 
Motivations and Summary

 

The eventual selection of leaf morphology as a senior project topic came out of 

personal interests and experiences. I had since sophomore year at Bard found foliage 

kaleidoscopically intriguing and had been thinking about the human backgrounding of 

trees since the end of junior year. With boredom and free time on my side, I sat down with 

a leaf the summer before senior year started. Actually bothering for once to take a closer 

look, I drew a picture and wrote a dopey haiku:  

In hindsight, this project might be nothing but an earnest attempt to unpack that 

haiku, that drawing, that particular leaf I picked from the front lawn grass of a janky 

summer sublet in Tivoli—the house was set back from the road so there was lots of green 

space out front, catalpa trees dropping their cigars on the sidewalk, in the back a real 

shadow jungle set beyond a desiccated swimming pool. Cool air and clear moons. Once we 

set the porch on fire by accident.  

There was also a purely practical aspect to the choice of the leaf —collecting and 

generating spatial information is much easier in two dimensions. Putting a leaf in the 
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library’s flatbed scanner is a lot more feasible than 3D-scanning an entire tree, and 

programming L-systems is a lot simpler when there is one fewer dimension to account for 

in your code and in your head. While I began my project with the vague intention of 

modeling entire trees with L-systems, I did not officially decide to narrow the focus to 

leaves until fall break. While I had toyed with this idea earlier, it finally occurred to me that 

if I wanted my project to interface with the real world at all, the project should be about 

leaves specifically due to the possibility of collecting actual spatial data and using it as 

input.  

I now have a decent platform and, more importantly, a knowledge base upon which 

to conduct further explorations of leaf morphology through computational means.  
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Appendix: Processing Code 
 

FormaLeaf.pde: 
 

/* 

 

FormaLeaf  

 

version 1.0 

 

Diana Ruggiero 

 

05/06/16 

 

*/ 

 

import gab.opencv.*; 

import org.opencv.imgproc.Imgproc; 

import org.opencv.core.*; 

import java.lang.*; 

import java.util.List; 

import java.util.Collections; 

import org.qscript.*; 

 

 

OpenCV opencv; 

PImage img, thresh; 

 

Leaf realLeaf; 

SysLeaf fakeLeaf; 

 

Turtle turt; 

 

ImageProcessor iProc; 

PImage realLeafProcessed; 

 

Slider slide0; 

Slider slide1; 

Slider slide2; 

Slider slide3; 

Slider slide4; 

Slider slide5; 

Slider slide6; 

Slider slide7; 

Slider slide8; 

Slider slide9; 

 

Slider iterSlider; 

 

GrammarGenerator gGen; 

Grammar startGram; 

 

PApplet sketchPApplet; 

float[] sliderVals = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5,0.5,0.5,0.5}; 
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Boolean searchMode;  

Boolean visionMode; 

 

Boolean LSinfo; 

 

String  displayTemplate; 

String[] templateList = new String[3]; 

int t; 

int leafNum; 

 

void setup() {   

 

  size(1280, 800);  

  sketchPApplet=this;  

  iProc = new ImageProcessor(); 

 

  realLeaf = new Leaf(1);  

  img = loadImage("01_r.jpg"); 

 

  img.resize((width/12)*5, 0); 

 

  println(img.width); 

  //used for thresholding, converting from Mat to PImage: 

  opencv = new OpenCV(this, img); 

   

  realLeafProcessed =  iProc.processImage(opencv, realLeaf);  

  realLeafProcessed.resize(0, height); 

 

 

  slide0 = new Slider(0, height-300, width/6, 10, 1, false); 

  slide1 = new Slider(0, height-280, width/6, 10, 1, false); 

  slide2 = new Slider(0, height-260, width/6, 10, 1, false); 

  slide3 = new Slider(0, height-240, width/6, 10, 1, false); 

  slide4 = new Slider(0, height-220, width/6, 10, 1, false); 

  slide5 = new Slider(0, height-200, width/6, 10, 1, false); 

  slide6 = new Slider(0, height-180, width/6, 10, 1, false); 

  slide7 = new Slider(0, height-160, width/6, 10, 1, false); 

  slide8 = new Slider(0, height-140, width/6, 10, 1, false); 

  slide9 = new Slider(0, height-120, width/6, 10, 1, false); 

 

  iterSlider = new Slider(0, height-30, width/6, 10, 1, true); 

 

  searchMode = false; 

  visionMode = false; 

 

 

  LSinfo = false; 

 

  templateList[0] = "Pinnate"; 

  templateList[1] = "PinLobed"; 

  templateList[2] = "Palmate"; 

  t = 0; 

  displayTemplate = templateList[t]; 

 

  leafNum = 1; 
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  gGen = new GrammarGenerator(sketchPApplet); 

  startGram = gGen.buildGrammar(displayTemplate, sliderVals); 

 

  fakeLeaf = new SysLeaf(realLeaf.getNum(), startGram, displayTemplate); 

} 

 

 

 

void draw() {   

  background(255); 

  Slider[] sliderList = {slide0, slide1, slide2, slide3, slide4, slide5, 

slide6, slide7, slide8, slide9, iterSlider}; 

 

  image(img, width/6, height/2-(img.height/2)); 

  realLeaf.col = img.get(img.width/2-15, img.height/2); 

 

 

  strokeWeight(2); 

  stroke(0); 

  line(width/6, 0, width/6, height); 

 

 

  fill(0); 

  textSize(23); 

  textLeading(18); 

  text("Morphometric" + "\n" + "Information:", 5, 20); 

  line(0, 43, width/6, 43); 

  textSize(16); 

  text("Input Leaf:",  5, 62); 

  line(0, 69, width/6, 69); 

  textSize(12); 

  text(realLeaf.getInfo(), 5, 84); 

 

 

  float[] sliderVals = { 

    map(sliderList[0].getPos(), 0, width/6, 0, 1),  

    map(sliderList[1].getPos(), 0, width/6, 0, 1),  

    map(sliderList[2].getPos(), 0, width/6, 0, 1),  

    map(sliderList[3].getPos(), 0, width/6, 0, 1),  

    map(sliderList[4].getPos(), 0, width/6, 0, 1),  

    map(sliderList[5].getPos(), 0, width/6, 0, 1),  

    map(sliderList[6].getPos(), 0, width/6, 0, 1),  

    map(sliderList[7].getPos(), 0, width/6, 0, 1),  

    map(sliderList[8].getPos(), 0, width/6, 0, 1),  

    map(sliderList[9].getPos(), 0, width/6, 0, 1)}; 

 

   

  textSize(10); 

   

  if (!searchMode) { 

    text("Slider Mode (Press Z to search)", 10, height-5); 

    Grammar slideGram =  gGen.buildGrammar(displayTemplate, sliderVals);   

    fakeLeaf = new SysLeaf(realLeaf.getNum(), slideGram, displayTemplate); 

    updateSliders(sliderList); 

  } 

 

  if (searchMode) { 
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    text("Search Mode (Press X for Sliders)", 10, height-5); 

  } 

   

  if(visionMode){ 

   fill(0); 

   text("Vision Mode is ON (Press C)", 10,height-15);  

  } 

   

  else if(!visionMode){ 

   fill(0); 

   text("Vision Mode is OFF (Press C)", 10,height-15);  

  } 

 

  iterSlider.display(); 

  iterSlider.update(); 

   

  //the turtle takes the iterations, where it's drawn, the unit length, the 

initial angle 

   

 

  turt = new Turtle(fakeLeaf.gram, int(map(iterSlider.getPos(), 0, width/6, 

4, fakeLeaf.maxIt)), 4, width/2, (float)realLeaf.base.y, -PI/2); 

 

  PGraphics canvas = turt.drawGrammar(realLeaf.col);  

  if (canvas!= null) { 

 

    image(canvas, width-((width/12)*5), 0);  

    PImage fakeLeafImg = canvas.get(); 

 

    OpenCV sysLeafCV = new OpenCV(this, fakeLeafImg); 

    PImage fakeLeafProcessed = iProc.processImage(sysLeafCV, fakeLeaf);  

 

    if (visionMode) { 

      fakeLeafProcessed.resize((width/12)*5, 0); 

      image(fakeLeafProcessed, width-(width/12)*5, 0); 

      image(realLeafProcessed, width/6, height/2-(img.height/2)); 

    } 

 

    stroke(0); 

    fill(0); 

 

    textSize(12); 

    text(fakeLeaf.getInfo(), 5, 310); 

    text("Similarity: " + realLeaf.evaluateSimilarity(fakeLeaf), 5, 480); 

   

 

    

  } else { 

 

    fill(255, 0, 0); 

    textSize(40); 

    text("GENERATED LEAF" + "\n" + "OUT OF BOUNDS", width/2+200, height/2-

50); 

    textSize(15); 

    text("Lower parameters/iterations" + "\n" + "or switch template/input 

leaf.", width/2+250, height/2 +50); 

  } 
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  stroke(0); 

  fill(0); 

  textSize(16); 

  line(0, 238, width/6, 238); 

  text("Generated Leaf:" + "\n", 5, 260); 

  line(0, 270, width/6, 270); 

  textSize(14); 

  text("Template: "+ fakeLeaf.getTemplate(), 5, 290); 

  strokeWeight(3); 

  line(width-(width/12)*5, 0, width-(width/12)*5, height); 

   

  if(LSinfo==true){ 

  drawLSInfo(fakeLeaf.gram);} 

} 

 

 

void keyPressed() { 

  if (key=='z') { 

    searchMode = true; 

    SysLeaf bestfakeLeaf = gGen.search(realLeaf, fakeLeaf, 15, 5); 

    fakeLeaf = bestfakeLeaf; 

  } 

 

  if (key=='x') { 

    //turn search lock off,visionMode off, see leaf, allows sliders 

    searchMode = false; 

    visionMode = false; 

  } 

 

  if (key=='c') { 

    //visionmode still allows slider use 

    visionMode = !visionMode; 

  } 

   

  //take screenshot 

  if (key=='m'){ 

    saveFrame("frames/#####.jpg");  

     

  } 

 

 

  if (key==CODED) { 

    if (keyCode == UP) { 

      t = t + 1; 

    } else if (keyCode == DOWN) { 

      t = t - 1; 

    } 

    t = constrain(t, 0, templateList.length-1); 

    println(t); 

    displayTemplate = templateList[t]; 

  } 

   

  if (key==CODED){ 

   if (keyCode == RIGHT){ 

    leafNum = leafNum + 1;  

   } 
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    else if(keyCode == LEFT){ 

     leafNum = leafNum - 1;  

    } 

     

    

  } 

 

  //pick samples leaves with numkeys and left and right arrows 

  if (key=='1') {   

    leafNum = 1; 

  } else if (key=='2') { 

    leafNum = 2; 

  } else if (key=='3') { 

    leafNum = 3; 

  } else if (key=='4') { 

    leafNum = 4; 

  } else if (key=='5') { 

    leafNum = 10; 

  } else if (key=='6') { 

    leafNum = 20; 

  } else if (key=='7') { 

    leafNum = 30; 

  } else if (key=='8') { 

    leafNum = 40; 

  } else if (key=='9') { 

    leafNum = 50; 

  } else if (key=='0') { 

    leafNum = 60; 

  }  

   

  //displays Lsystem info 

  if(key=='p'){ 

    LSinfo = !LSinfo; 

  } 

 

 leafNum = constrain(leafNum, 1, 70); 

    String n = str(leafNum); 

    if(leafNum < 10){ 

      n = "0" + n; 

    } 

    img = loadImage( n+"_r.jpg"); 

    realLeaf = new Leaf(leafNum); 

     

     

 

  PImage imgCopy = img.get(); 

  imgCopy.resize((width/12)*5, 0); 

 

  if (imgCopy.height>height) {   

    img.resize(0, height); 

    opencv = new OpenCV(this, img);   

    realLeafProcessed =  iProc.processImage(opencv, realLeaf);  

    realLeafProcessed.resize(0, (height)); 

  } else { 

 

    img.resize((width/12)*5, 0); 
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    opencv = new OpenCV(this, img);   

    realLeafProcessed =  iProc.processImage(opencv, realLeaf);  

    realLeafProcessed.resize((width/12)*5, 0); 

  } 

 

} 

 

 

void drawLSInfo(Grammar gram) { 

  //Writes lsys to display screen. 

  fill(255); 

  rect(width/2-15, 80, width/2-50,100); 

  fill(0); 

  textSize(10); 

  text("Axiom:        " + gram.axiom, width/2, 100); 

  for (int j=0; j<gram.productions.length; j++) { 

    String prod = gram.productions[j][0]+" ->" + gram.productions[j][1]; 

    if (gram.productions[j].length==3) { 

      prod = prod+"        iff: "+gram.productions[j][2]; 

    } 

    text(prod, width/2, 100+((1+j)*10)); 

  } 

} 

 

void updateSliders(Slider[] slList) { 

  for (int i=0; i<slList.length; i++) { 

    slList[i].update(); 

    slList[i].display(); 

  } 

} 

 

Grammar.pde: 

class Grammar { 

  String axiom; 

  String[][] productions; 

  Parameters parameters; 

  float delta; 

  float scaleFactor; 

 

 

  /*Grammars need at least four arguments:  

   (1)The definition of the axiom. The starting String. 

   (2)The definition of the productions. 

   It is an array made up of arrays which each contain 1 production. 

   The first element of each array is the Left-Hand Side (LHS) of the 

contained production. 

   The second element of each array is the Right-Hand Side (RHS) of the 

contained production. 

   (3)Delta, the angle value. Give in degrees.  

   (4)Scaling Factor. Give 1 to not scale.  

   Can give in either decimal (0.5) or fraction with float denom (1/2.0). 

    

   They also take parameter definitions, see second constuctor 

   */ 
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  Grammar(String ax, String[][] pro, float delt, float scFa) { 

    axiom =  ax; 

    productions = pro;   

    delta = delt; 

    scaleFactor = scFa; 

 

    String[][] emp = {{}}; 

    parameters = new Parameters(emp); 

  } 

 

 

  Grammar(String ax, String[][] pro, Parameters par, float delt, float scFa) 

{ 

    axiom =  ax; 

    productions = pro;  

    parameters = par; 

    delta = delt; 

    scaleFactor = scFa; 

 

    for (int i =0; i<productions.length; i++) { 

      String parString = new String(productions[i][1]); 

      for (Map.Entry ent : parameters.paramHash.entrySet()) { 

        String parString2 = parString.replaceAll((String)ent.getKey(), 

(String)ent.getValue()); 

        parString = parString2; 

      } 

      productions[i][1] = parString; 

    } 

 

 

    for (int i =0; i<productions.length; i++) { 

      if (productions[i].length==3) { 

        String condString = new String(productions[i][2]); 

        for (Map.Entry ent : parameters.paramHash.entrySet()) { 

          String condString2 = condString.replaceAll((String)ent.getKey(), 

(String)ent.getValue()); 

          condString = condString2; 

        } 

        productions[i][2] = condString; 

      } 

    } 

  } 

 

 

  Grammar reWrite() { 

    StringBuilder stringBuilder = new StringBuilder(); 

    for (int j = 0; j<axiom.length(); j++) {  

      Boolean param = false; 

      Boolean ruleApplied = false; 

      String word =""; 

      //println("value of character:" + " " + 

String.valueOf(axiom.charAt(j))); 
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      if (j+1 > axiom.length()-1 || axiom.charAt(j+1)!='(') { 

        word = word + axiom.charAt(j); 

      } else { 

        param = true; 

        int k = 0; 

        while (axiom.charAt(j+k)!=')') { 

          word = word + axiom.charAt(j+k); 

          k = k + 1; 

        } 

        word = word + ')'; 

      } 

 

 

 

      for (int i = 0; i<productions.length; i++) { 

 

        //When symbol is not parametric, simply match symbol to production. 

        if (param == false && word.equals(productions[i][0])) {   

          stringBuilder.append(productions[i][1]); 

          ruleApplied = true; 

          break; 

        }  

 

 

 

        //When symbol *is* parametric, check conditions, and pass variable 

        else if (param == true && 

word.charAt(0)==productions[i][0].charAt(0)) { 

          String[] wordSym = match(word, "\\((.+?)\\)"); 

          String[] inputParams = wordSym[1].split(","); 

 

 

 

          String[] prodVar = match(productions[i][0], "\\((.+?)\\)"); 

          String[] productionVariables = prodVar[1].split(","); 

 

  

 

          //Check if number of # of parameters match 

          if (inputParams.length != productionVariables.length) { 

            break; 

          } 

 

          Boolean condition = true; 

          if (productions[i].length==3) {  

            String condExp = new String(productions[i][2]);    

 

            for (int k = 0; k<inputParams.length; k++) { 

              String condExp2 = condExp.replaceAll(productionVariables[k], 

inputParams[k]); 

              condExp = condExp2; 

            } 

 

            //construct condition with actual input num 

 

            Result cond = Solver.evaluate(condExp); 

            condition = cond.answer.toBoolean(); 
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          } 

 

          String passedPro = new String(productions[i][1]);  

          for (int k = 0; k<inputParams.length; k++) { 

            String repp = passedPro.replaceAll(productionVariables[k], 

inputParams[k]); 

            passedPro = repp; 

          } 

 

  

          if (condition==true) { 

            stringBuilder.append(passedPro); 

            ruleApplied = true; 

            break; 

          } 

        } 

      } 

 

 

      if (ruleApplied == false) { 

        /*BUG ALERT !!!  

        lsystem has loads of extra (0)s at the end,  

         but this doesn't affect functionality */ 

        stringBuilder.append(word); 

      } 

    } 

    String finalString = stringBuilder.toString();  

    //println(finalString); 

    return new Grammar(finalString, productions, delta, scaleFactor); 

  } 

 

  String getStr() { 

    return axiom; 

  } 

 

  float getAng() { 

    return delta; 

  } 

 

  float getScaleFactor() { 

    return scaleFactor; 

  } 

} 

 

GrammarGenerator.pde: 

import gab.opencv.*; 

 

class GrammarGenerator { 

 

  PApplet sketch; 

  OpenCV sysLeafCV; 

  ImageProcessor iProc = new ImageProcessor(); 

 

  GrammarGenerator(PApplet sk) { 
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    sketch = sk; 

  } 

 

 

  Grammar buildGrammar(String template, float[] paramVals) { 

    if (template.equals("Pinnate")) { 

      String axiom = "{.S(0)}"; 

      String [][]productions = { 

        {"S(t)", "P(t)"},  

        {"P(t)", "!(5)G(LP, RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).]"},  

        {"L(t)", "!(2)G(LL, RL)L(t-1)", "t>=BE"},  

        {"G(s,r)", "G(s*r, r)"}}; 

      String [][]paramDefs = { 

        {"LP", str(map(paramVals[0], 0, 1, 2, 4.3))},  

        {"RP", str(map(paramVals[1], 0, 1, 1, 1.25))},  

        {"LL", str(map(paramVals[2], 0, 1, 1, 1.9))},  

        {"RL", str(map(paramVals[3], 0, 1, 1.1, 1.38))},  

        {"BE", str(map(paramVals[4], 0, 1, 0, -1))},  

        {"AN", str(map(paramVals[5], 0, 1, 40, 80))}};   

      Parameters parameters = new Parameters(paramDefs); 

      Grammar constructedGrammar = new Grammar(axiom, productions, 

parameters, 60, 1);  

      return constructedGrammar; 

    } else if (template.equals("Palmate")) { 

      String axiom = "{.S(0)}"; 

      String [][]productions = { 

        {"S(t)", "[+(ANN)+(ANN)B(t)].[+(ANN)P(t)].[P(t)].[-(ANN)P(t)].[-

(ANN)-(ANN)B(t)]"},  

        {"P(t)", "!(5)G(LP,RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).]"},  

        {"B(t)", "P(t)"}, 

        {"L(t)", "!(2)G(LL,RL)L(t-1)", "t>=BE"},  

        {"G(s,r)", "G(s*r, r)"}}; 

      String [][]paramDefs = { 

        {"LP", str(map(paramVals[0], 0, 1, 1.2, 3))},  

        {"RP", str(map(paramVals[1], 0, 1, 1.1, 1.25))},  

        {"LL", str(map(paramVals[2], 0, 1, 1.1, 2))},  

        {"RL", str(map(paramVals[3], 0, 1, 1, 1.5))},  

        {"BE", str(map(paramVals[4], 0, 1, 0, -4))},  

        {"AN", str(map(paramVals[5], 0, 1, 40, 80))}, 

        {"ANN", str(map(paramVals[6], 0 , 1, 40, 70))}};   

      Parameters parameters = new Parameters(paramDefs); 

      Grammar constructedGrammar = new Grammar(axiom, productions, 

parameters, 60, 1);  

      return constructedGrammar; 

    } else if (template.equals("PinLobed")) { 

      String axiom = "{.S(0)}"; 

      String [][]productions = { 

        {"S(t)", "P(t,LO)"},  

        {"P(t,i)", "!(6)G(LP,RP)[-(AN)A(t)][P(t+1,i-1)][+(AN)A(t)]", "i>=0"},  

        {"P(t,i)","!(6)G(LP,RP)N(t)" ,"i<0"},   

        {"A(t)", "!(4)G(LL,RL)[-(ANN)L(t-1).][A(t+1)][+(ANN)L(t-1).]", 

"t>=BE"},  

        {"L(t)", "!(3)G(LT,RT)L(t-1)", "t>=BE"}, 

        {"N(t)", "!(4)[A(t+1)]", "t>=BE"}, 

        {"G(s,r)", "G(s*r, r)"}}; 

 

      String [][]paramDefs = { 
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        {"LP", str(map(paramVals[0], 0, 1, 6, 8))},  

        {"RP", str(map(paramVals[1], 0, 1, 1.1, 1.26))},  

        {"LL", str(map(paramVals[2], 0, 1, 1, 1.4))},  

        {"RL", str(map(paramVals[3], 0, 1, 1.2, 1.45))},  

        {"LT", str(map(paramVals[4], 0, 1, 1, 1.4))},  

        {"RT", str(map(paramVals[5], 0, 1, 1.1, 1.2))},  

        {"BE", str(map(paramVals[6], 0, 1, -1, -3))},  

        {"AN", str(map(paramVals[7], 0, 1, 35, 60))},  

        {"ANN", str(map(paramVals[8], 0, 1, 30, 85))},  

        {"LO", str(map(paramVals[9], 0, 1, 1, 4))}};  

 

      Parameters parameters = new Parameters(paramDefs); 

      Grammar constructedGrammar = new Grammar(axiom, productions, 

parameters, 60, 1);  

      return constructedGrammar; 

    } else if (template.equals("Tulip")) { 

      /*must be tweaked with sliders to resemble tulip tree 

      not included in search */ 

      String axiom = "{.S(0)}"; 

      String [][]productions = { 

        {"S(t)", "Z(t,LO)"},  

        {"Z(t,i)", "!(6)[-(AN)A(t)][P(t+1,i-1)][+(AN)A(t)]", "i>=0"},  

        {"P(t,i)", "!(6)G(LP,RP)[-(AN)A(t)][P(t+1,i-1)][+(AN)A(t)]", "i>=0"},  

        {"A(t)", "!(4)G(LL,RL)[-(ANN)L(t-1).][A(t+1)][+(ANN)L(t-1).]", 

"t>=BE"},  

        {"L(t)", "!(3)G(LT,RT)L(t-1)", "t>=BE"},  

        {"G(s,r)", "G(s*r, r)"}}; 

 

      String [][]paramDefs = { 

        {"LP", str(map(paramVals[0], 0, 1, 6, 8))},  

        {"RP", str(map(paramVals[1], 0, 1, 1.1, 1.26))},  

        {"LL", str(map(paramVals[2], 0, 1, 1, 4))},  

        {"RL", str(map(paramVals[3], 0, 1, 1, 1.5))},  

        {"LT", str(map(paramVals[4], 0, 1, 1, 1.6))},  

        {"RT", str(map(paramVals[5], 0, 1, 1.1, 1.5))},  

        {"BE", str(map(paramVals[6], 0, 1, -1, -3))},  

        {"AN", str(map(paramVals[7], 0, 1, 35, 60))},  

        {"ANN", str(map(paramVals[8], 0, 1, 30, 85))},  

        {"LO", str(map(paramVals[9], 0, 1, 1, 4))}};  

      Parameters parameters = new Parameters(paramDefs); 

      Grammar constructedGrammar = new Grammar(axiom, productions, 

parameters, 60, 1);  

      return constructedGrammar; 

    } else if (template.equals("ComPalm")) { 

      //compound palmate leaf, not in search 

      String axiom = "{.S(0)}"; 

      String [][]productions = { 

        {"S(t)", "[+(ANN)+(ANN)P(t)].[+(ANN)P(t)].[P(t)].[-(ANN)P(t)].[-

(ANN)-(ANN)P(t)]"},  

        {"P(t)", "!(5)G(LP,RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).]"},  

        {"L(t)", "!(2)G(LL,RL)L(t-1)", "t>=BE"},  

        {"G(s,r)", "G(s*r, r)"}}; 

      String [][]paramDefs = { 

        {"LP", str(map(paramVals[0], 0, 1, 1.2, 3))},  

        {"RP", str(map(paramVals[1], 0, 1, 1.1, 1.25))},  

        {"LL", str(map(paramVals[2], 0, 1, 1.1, 2))},  

        {"RL", str(map(paramVals[3], 0, 1, 1, 1.5))},  
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        {"BE", str(map(paramVals[4], 0, 1, 2, -4))},  

        {"AN", str(map(paramVals[5], 0, 1, 40, 80))}, 

        {"ANN", str(map(paramVals[6], 0 , 1, 40, 70))}}; 

      Parameters parameters = new Parameters(paramDefs); 

      Grammar constructedGrammar = new Grammar(axiom, productions, 

parameters, 60, 1);  

      return constructedGrammar; 

 

    } 

     

   

    else { 

      //Don't think this ever gets run, here just in case 

      //old version of palmate temp, dunno what it looks like 

      String axiom = "{[++A(0)].[+(AN)A(0)].[A(0)].[-(AN)A(0)].[--A(0)]}"; 

      String [][]productions = {{"A(t)", "G(LA,RA)[-L(t).][A(t+1)][+L(t).]"},  

        {"L(t)", "G(LL,RL)L(t-1)", "t>=-8"},  

        {"G(s,r)", "G(s*r, r)"}}; 

      String [][]paramDefs = { 

        {"LA", str(map(paramVals[0], 0, 1, 2, 5))},  

        {"RA", str(map(paramVals[1], 0, 1, 1, 1.25))},  

        {"LL", str(map(paramVals[2], 0, 1, 1, 1.9))},  

        {"RL", str(map(paramVals[3], 0, 1, 1.1, 1.35))},  

        {"AN", str(map(paramVals[4], 0, 1, 40, 80))}};   

      Parameters parameters = new Parameters(paramDefs); 

      Grammar constructedGrammar = new Grammar(axiom, productions, 

parameters, 60, 1);  

      return constructedGrammar; 

    } 

  } 

 

 

  SysLeaf search(Leaf realLeaf, SysLeaf fakeLeaf, int poolSize, int 

generations) { 

 

    List<SysLeaf> candList = makeCandidates(realLeaf, fakeLeaf, poolSize);   

 

    //candList is sorted by fitness, so return best individual. 

    return candList.get(0); 

  } 

 

 

 

 

  List<SysLeaf> makeCandidates(Leaf realLeaf, SysLeaf fakeLeaf, int poolSz) { 

    Grammar[] candidateGrams = new Grammar[poolSz]; 

    List<SysLeaf> candidateLeavesAll = new ArrayList<SysLeaf>(); 

 

 

    float fitness; 

    String template = "Pinnate"; 

 

    for (int i=0; i<candidateGrams.length; i++) { 

      //for serach, hill climbing/sim anneal? Depends on generation? 

      //modify template probabilities?? 

      //mutate top half of candidates 

      PGraphics candiCanvas = null; 
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      //keep generating candidate until valid, in-bounds one arrives 

      while (null == candiCanvas) {   

        float[] paramVals = {random(1), random(1), random(1), random(1), 

random(1), random(1), random(1), random(1), random(1), random(1)}; 

        //need to store venation/template type in sysLeaf... 

        float dice = random(1); 

        int itMax = 14; 

        if (dice<=0.33333) { 

          template = "Pinnate"; 

          candidateGrams[i] = buildGrammar(template, paramVals); 

          itMax = 14; 

        } else if (dice>0.333333 && dice<0.666666) { 

          template = "Palmate"; 

          candidateGrams[i] = buildGrammar(template, paramVals); 

          itMax = 11; 

        } else if (dice>=0.666666) { 

          template = "PinLobed"; 

          candidateGrams[i] = buildGrammar(template, paramVals); 

          itMax = 12; 

        } else { 

          itMax = 14; 

          template = "Pinnate"; 

          candidateGrams[i] = buildGrammar(template, paramVals); 

        } 

 

        Turtle turty = new Turtle(candidateGrams[i], itMax, 4, width/2, 

(float)realLeaf.base.y, -PI/2); 

        candiCanvas = turty.drawGrammar(realLeaf.col); 

      } 

 

 

 

      PImage sysLeafImg = candiCanvas.get(); 

      image(sysLeafImg, 0, 0); 

      OpenCV sysLeafCV = new OpenCV(sketch, sysLeafImg); 

      SysLeaf fakeLeafCan = new SysLeaf(realLeaf.getNum(), candidateGrams[i], 

template); 

      PImage sysLeafProcessed = iProc.processImage(sysLeafCV, fakeLeafCan);  

 

      fitness = realLeaf.evaluateSimilarity(fakeLeafCan);  

      fakeLeafCan.setFitness(fitness); 

      println(i); 

      //saving cadidates! filename is fitness. 

      candiCanvas.save("candidates/" +fitness+ ".jpg"); 

      candidateLeavesAll.add(fakeLeafCan); 

    } 

 

 

    println(candidateLeavesAll.size()); 

    Collections.sort(candidateLeavesAll); 

    return candidateLeavesAll; 

  } 

} 
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ImageProcessor.pde: 

class ImageProcessor { 

  Core cvCore; 

  Imgproc process; 

 

  Mat thresholdMat; 

  Mat holderMat; 

 

  ArrayList<MatOfPoint> contourList; 

  Mat hier; 

  int contourIndex; 

  Mat drawnContoursMat; 

 

  ImageProcessor() { 

    process = new Imgproc(); 

    cvCore = new Core(); 

  } 

 

  PImage processImage(OpenCV opencv, Leaf leafy) { 

 

    opencv.threshold(220);  

    thresh = opencv.getSnapshot(); 

 

    contourList = new ArrayList(); 

    thresholdMat = opencv.getGray(); 

    drawnContoursMat = opencv.getColor(); 

    hier =  new Mat(); 

    holderMat = opencv.imitate(drawnContoursMat); 

 

    process.findContours(thresholdMat, contourList, hier, Imgproc.RETR_LIST, 

Imgproc.CHAIN_APPROX_SIMPLE); 

     

 

    //seeking 2nd largest contour (largest contour is outline of picture) 

    float[] areas = new float[contourList.size()]; 

    for (int i=0; i<contourList.size(); i++) { 

      //println(process.contourArea(contourList.get(i))); 

      areas[i] = (float)process.contourArea(contourList.get(i)); 

    }   

 

    areas = sort(areas); 

    double targetArea; 

    try { 

      targetArea = (double)areas[areas.length-2]; 

    }  

    catch(IndexOutOfBoundsException e) { 

      return null; 

    } 

 

    contourIndex = 0; 

 

    for (int j=0; j<contourList.size(); j++) { 

      if (targetArea == process.contourArea(contourList.get(j))) { 

        contourIndex = j; 

      } 
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    } 

 

    cvCore.bitwise_not(holderMat, drawnContoursMat);  //inverts contour image 

so background is white 

 

    MatOfPoint leafContour = contourList.get(contourIndex); 

 

    leafy.setContour(leafContour); 

 

    //draw leafContour 

    process.drawContours(drawnContoursMat, contourList, contourIndex, new 

Scalar(0, 200, 100), 15); 

 

    //Calculate bounding box, draw it, save lamina length to leaf. 

    Rect boundBox = process.boundingRect(leafContour); 

    //cvCore.rectangle(drawnContoursMat, boundBox.tl(), boundBox.br(), new 

Scalar(0, 0, 255), 8); 

    leafy.setLamLength(boundBox.size().height); 

    leafy.setLamWidth(boundBox.size().width); 

 

    //Midline of bounding box. 

    Point apex = new Point((boundBox.tl().x+boundBox.br().x)/2, 

boundBox.tl().y); 

    Point base = new Point((boundBox.tl().x+boundBox.br().x)/2, 

boundBox.br().y); 

 

    //cvCore.circle(drawnContoursMat, apex, 6, new Scalar(170, 0, 255), 4); 

    //cvCore.circle(drawnContoursMat, base, 6, new Scalar(255, 255, 40), 4); 

    //cvCore.line(drawnContoursMat, apex, base, new Scalar(255, 0, 0), 8); 

 

    leafy.setApex(apex); 

    leafy.setBase(base); 

 

 

 

    findShapeClass(boundBox, leafy); 

 

 

    /*Convex hull on full contour  

     //help from here: 

     //http://stackoverflow.com/questions/18143077/computer-vision-filtering-

convex-hulls-and-convexity-defects-with-opencv 

     MatOfInt hullIndices1 = new MatOfInt(); 

     ArrayList<Point> hullPointList1 = new ArrayList(); 

     process.convexHull(leafContour, hullIndices1); 

     for (int j=0; j < hullIndices1.toList().size(); j++) { 

     hullPointList1.add(leafContour.toList().get(hullIndices1.toList().get(j)

)); 

     } 

     MatOfPoint hullMatPoint1 = new MatOfPoint(); 

     hullMatPoint1.fromList(hullPointList1); 

     ArrayList<MatOfPoint> hullMatPointList1 = new ArrayList(); 

     hullMatPointList1.add(hullMatPoint1); 

     process.drawContours(drawnContoursMat, hullMatPointList1, 0, new 

Scalar(50, 50, 50), 10); 
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    //convexity defects on full contour: 

     MatOfInt4 defectMat = new MatOfInt4(); 

     process.convexityDefects(leafContour, hullIndices1, defectMat); 

     List<Integer> defectList = defectMat.toList(); 

      

     for (int i=2; i<defectList.size(); i=i+4) { 

     int cIndex = defectList.get(i); 

     Point[] cPoints = leafContour.toArray(); 

     cvCore.circle(drawnContoursMat, cPoints[cIndex], 24, new Scalar(255, 

255, 40), 4); 

     //convexity defect points: 

     //println(cPoints[cIndex]);  

     } 

     */ 

      

 

 

    //polygon approximation for better lobe estimate. 

    MatOfPoint2f contourFloat = new MatOfPoint2f(leafy.contour.toArray()); 

    MatOfPoint2f polygonApprox = new MatOfPoint2f(); 

 

     

    process.approxPolyDP(contourFloat, polygonApprox, 4, true); 

 

 

 

 

    MatOfPoint approxContour = new MatOfPoint();  

    polygonApprox.convertTo(approxContour, CvType.CV_32S); 

 

    ArrayList<MatOfPoint> approxContourList = new ArrayList(); 

    approxContourList.add(approxContour); 

 

    process.drawContours(drawnContoursMat, approxContourList, 0, new 

Scalar(0, 50, 160), 10); 

 

 

    //Convex hull on polyapprox contour  

    MatOfInt hullIndices = new MatOfInt(); 

    ArrayList<Point> hullPointList = new ArrayList(); 

    process.convexHull(approxContour, hullIndices); 

    for (int j=0; j < hullIndices.toList().size(); j++) { 

      

hullPointList.add(leafContour.toList().get(hullIndices.toList().get(j))); 

    } 

    MatOfPoint hullMatPoint = new MatOfPoint(); 

    hullMatPoint.fromList(hullPointList); 

    ArrayList<MatOfPoint> hullMatPointList = new ArrayList(); 

    hullMatPointList.add(hullMatPoint); 

    //draw convex hull--but it doesn't really show when using polyapprox 

    //process.drawContours(drawnContoursMat, hullMatPointList, 0, new 

Scalar(255, 50, 50), 10); 

 

 

    //convexity defects 

    MatOfInt4 defectMat = new MatOfInt4(); 
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    //approxpoly freaks out at low iterations why!!!! 

 

 

 

    int lobeCount = 0; 

 

 

    if (hullIndices.rows() >=3) { 

      process.convexityDefects(approxContour, hullIndices, defectMat); 

 

 

      List<Integer> defectList = defectMat.toList(); 

 

      for (int i=2; i<defectList.size(); i=i+4) { 

        int cIndex = defectList.get(i); 

        Point[] cPoints = approxContour.toArray(); 

        cvCore.circle(drawnContoursMat, cPoints[cIndex], 17, new Scalar(255, 

255, 40), 4); 

        lobeCount ++; 

        //convexity defect points: 

        //println(cPoints[cIndex]); 

      } 

    } 

 

 

    //get area 

    float area = (float)process.contourArea(leafContour); 

 

    //get perimeter 

    MatOfPoint2f conFloat = new MatOfPoint2f(leafy.contour.toArray()); 

    float perimeter = (float)process.arcLength(conFloat, true); 

 

    leafy.setApproxPolyContour(approxContour); 

    leafy.setLobeNum(lobeCount); 

    leafy.setArea(area); 

    leafy.setPerimeter(perimeter); 

 

    /*minEnclosing circle on polygonApprox 

     Point circCent = new Point(); 

     float[] radius = new float[1]; 

     process.minEnclosingCircle(polygonApprox, circCent, radius); 

     cvCore.circle(drawnContoursMat, circCent, (int)radius[0], new Scalar(0, 

0, 255), 4); 

     */ 

 

 

    //make final image, turn into PImage 

    PImage drawnContoursPImage = createImage(drawnContoursMat.width(), 

drawnContoursMat.height(), RGB); 

    opencv.toPImage(drawnContoursMat, drawnContoursPImage); 

    return drawnContoursPImage; 

  } 

 

 

 

  void findShapeClass(Rect boundBox, Leaf leafy) { 
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    ArrayList<Point> leftMostList = new ArrayList(); 

    Point leftMost = new Point(); 

    MatOfPoint2f contourFloat = new MatOfPoint2f(leafy.contour.toArray()); 

    //find widest point on left 

    for (double y = boundBox.tl().y; y<boundBox.br().y; y++) { 

      Point leftMostCan = new Point(boundBox.tl().x, y); 

      if (process.pointPolygonTest(contourFloat, leftMostCan, true)==0) { 

        leftMost = leftMostCan; 

        leftMostList.add(leftMost); 

      } 

    } 

 

    ArrayList<Point> rightMostList = new ArrayList(); 

    Point rightMost = new Point(); 

    //find widest point on right 

    for (double y2 = boundBox.br().y; y2>boundBox.tl().y; y2=y2-1) { 

      Point rightMostCan = new Point(boundBox.br().x, y2); 

      if (process.pointPolygonTest(contourFloat, rightMostCan, true)+1==0) { 

        rightMost = rightMostCan; 

        rightMostList.add(rightMost); 

      } 

    } 

 

    ArrayList<Point> acrossFromLList = new ArrayList(); 

    Point acrossFromL = new Point(); 

    //find points across from extreme Left points 

    for (int i = 0; i<leftMostList.size(); i++) { 

      for (double x = boundBox.br().x; x>leftMostList.get(i).x; x=x-1) { 

        Point acrossFromLCan = new Point(x, leftMostList.get(i).y); 

        if (process.pointPolygonTest(contourFloat, acrossFromLCan, true)==0) 

{ 

          acrossFromL = acrossFromLCan; 

          acrossFromLList.add(acrossFromL); 

          break; 

        } 

      } 

    } 

 

    ArrayList<Point> acrossFromRList = new ArrayList(); 

    Point acrossFromR = new Point(); 

    //find points across from extreme Right points 

    for (int i = 0; i<rightMostList.size(); i++) { 

      for (double x = boundBox.tl().x; x<rightMostList.get(i).x-1; x=x+1) { 

        Point acrossFromRCan = new Point(x, rightMostList.get(i).y); 

        if (process.pointPolygonTest(contourFloat, acrossFromRCan, true)==0) 

{ 

          acrossFromR = acrossFromRCan;   

          acrossFromRList.add(acrossFromR); 

          break; 

        } 

      } 

    } 

 

    float[] distListL = new float[leftMostList.size()]; 

    for (int i = 0; i<leftMostList.size(); i++) { 

      try { 
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        distListL[i] = ((float)euclideanDist(leftMostList.get(i), 

acrossFromLList.get(i))); 

      } 

      catch(IndexOutOfBoundsException e) { 

        distListL[i] = 0; 

      } 

    } 

    float maxLeftDist =0; 

    if(distListL.length>0){ 

    maxLeftDist = max(distListL);} 

 

 

    float[] distListR = new float[rightMostList.size()]; 

    for (int i = 0; i<rightMostList.size(); i++) { 

      try{ 

      distListR[i] = ((float)euclideanDist(rightMostList.get(i), 

acrossFromRList.get(i))); 

      } 

      catch(IndexOutOfBoundsException e){ 

       distListR[i] = 0;  

      } 

  } 

    float maxRightDist= 0; 

    if(distListR.length>0){ 

    maxRightDist = max(distListR);} 

 

 

    Point widest = new Point(); 

    if (maxLeftDist > maxRightDist) { 

      int ind = 0; 

      for (int i = 0; i<distListL.length; i++) { 

        if (distListL[i] == maxLeftDist) { 

          ind = i; 

        } 

      }   

      widest = leftMostList.get(ind);    

      //cvCore.line(drawnContoursMat, leftMostList.get(ind), 

acrossFromLList.get(ind), new Scalar(0, 0, 0), 14); 

      //cvCore.circle(drawnContoursMat, acrossFromLList.get(ind), 12, new 

Scalar(200, 40, 40), 4); 

      //cvCore.circle(drawnContoursMat, leftMostList.get(ind), 12, new 

Scalar(40, 40, 40), 4); 

    } else { 

 

      int ind = 0; 

      for (int i = 0; i<distListR.length; i++) { 

        if (distListR[i] == maxRightDist) { 

          ind = i; 

        } 

      }   

      widest = rightMostList.get(ind); 

      //cvCore.line(drawnContoursMat, rightMostList.get(ind), 

acrossFromRList.get(ind), new Scalar(0, 0, 0), 14); 

      //cvCore.circle(drawnContoursMat, rightMostList.get(ind), 12, new 

Scalar(200, 40, 40), 4); 

      //cvCore.circle(drawnContoursMat, acrossFromRList.get(ind), 12, new 

Scalar(40, 40, 40), 4); 
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    } 

 

 

    //Divide into 5ths  

    for (int i = 0; i<6; i++) { 

      Point left = new Point(boundBox.tl().x, boundBox.tl().y + 

(leafy.laminaLength/5.0)*i);  

      Point right = new Point(boundBox.br().x, boundBox.tl().y + 

(leafy.laminaLength/5.0)*i); 

      //draw 5th lines: 

      //cvCore.line(drawnContoursMat, left, right, new Scalar(255, 0, 255), 

9); 

      if (widest.y<boundBox.tl().y+(leafy.laminaLength/5.0)*i && 

leafy.wideFifth==0) { 

        leafy.setWideFifth(i); 

      } 

    } 

  } 

 

 

 

  double euclideanDist(Point a, Point b) { 

    Point euc = new Point(a.x - b.x, a.y - b.y); 

    double toSq = euc.x*euc.x + euc.y*euc.y; 

    return Math.sqrt(toSq); 

  } 

 

  int distance_2(Point[] a, Point[] b ) { 

    /*hausdorff distance helper  

    I DID NOT WRITE THIS 

    http://stackoverflow.com/questions/21482534/how-to-use-shape-distance-

and-common-interfaces-to-find-hausdorff-distance-in-op 

    */ 

    int maxDistAB = 0; 

    for (int i=0; i<a.length; i++) 

    { 

      int minB = 1000000; 

      for (int j=0; j<b.length; j++) 

      { 

        int dx = (int)(a[i].x - b[j].x);      

        int dy = (int)(a[i].y - b[j].y);      

        int tmpDist = dx*dx + dy*dy; 

 

        if (tmpDist < minB) 

        { 

          minB = tmpDist; 

        } 

        if ( tmpDist == 0 ) 

        { 

          break; // can't get better than equal. 

        } 

      } 

      maxDistAB += minB; 

    } 

    return maxDistAB; 

  } 
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  double distance_hausdorff(Point[] a, Point[] b ) { 

     /*hausdorff distance function 

    I DID NOT WRITE THIS 

    http://stackoverflow.com/questions/21482534/how-to-use-shape-distance-

and-common-interfaces-to-find-hausdorff-distance-in-op 

    */ 

    int maxDistAB = distance_2( a, b ); 

    int maxDistBA = distance_2( b, a );    

    int maxDist = max(maxDistAB, maxDistBA); 

 

    return Math.sqrt((double)maxDist); 

  } 

} 

 

Leaf.pde: 

class Leaf { 

 

  int number; 

  float laminaLength= 0; 

  float laminaWidth = 0; 

  float lwRatio; 

  float lamArea = 0; 

  float lamPerimeter = 0; 

  int wideFifth = 0; 

  int lobeNum = 0; 

  MatOfPoint contour; 

  MatOfPoint approxPolyContour; 

 

 

  Point apex; 

  Point base; 

 

  Imgproc pro; 

  ImageProcessor myPro; 

 

 

  color col; 

 

  String shapeClass; 

 

  Leaf(int num) { 

    number = num; 

    col = color(34, 200, 40, 180); 

 

    pro = new Imgproc(); 

    myPro = new ImageProcessor(); 

  } 

 

  int getNum() { 

    return number; 

  } 

 

  void setLamLength(double len) { 

    laminaLength = (float)len; 

    if (laminaWidth != 0) { 
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      lwRatio = laminaLength/laminaWidth; 

    } 

  } 

 

 

  void setLamWidth(double wid) { 

    laminaWidth = (float)wid;  

    if (laminaLength != 0) { 

      lwRatio = laminaLength/laminaWidth; 

    } 

  } 

 

  void setWideFifth(int fif) { 

    wideFifth = fif; 

    if (wideFifth==1 || wideFifth==2) { 

      shapeClass = "Obovate"; 

    } else if (wideFifth==3) { 

      shapeClass = "Elliptic"; 

    } else if (wideFifth==4 || wideFifth==5) { 

      shapeClass = "Ovate"; 

    } else { 

      shapeClass = "Special?"; 

    } 

  } 

 

  void setContour(MatOfPoint con) { 

    contour = con; 

  } 

 

  void setApproxPolyContour(MatOfPoint apc){ 

    approxPolyContour = apc; 

  } 

 

  void setShapeClass(String sc) { 

    shapeClass = sc; 

  } 

   

  void setLobeNum(int ln){ 

   lobeNum = ln;  

  } 

   

  void setApex(Point a){ 

   apex = a;  

  } 

   

  void setBase(Point b){ 

   base = b;  

  } 

   

  void setArea(float a){ 

   lamArea = a;  

  } 

   

  void setPerimeter(float p){ 

   lamPerimeter = p;  

  } 
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  String getInfo() { 

    String info = ""; 

    info = info +  

      "Leaf Number: " + number + "\n" + 

      "Length: " + laminaLength + "\n" + 

      "Width: " + laminaWidth + "\n" + 

      "L:W Ratio: "+ lwRatio + "\n" +  

      "Area: " + lamArea + "\n" + 

      "Perimeter: " + lamPerimeter + "\n" + 

      //won't bother displaying until lobes is more accurate  

      //"Number of Lobes: " + lobeNum + "\n" +   

      "Shape Class: " + shapeClass+ "\n"; 

    return info; 

  } 

 

 

 

  float evaluateSimilarity(Leaf other) { 

    //this is the fitness function! 

 

    Point[] cPoints = contour.toArray(); 

    Point[] oPoints; 

    try{ 

    oPoints = other.contour.toArray();}//buggy 

    catch(NullPointerException e){ 

    oPoints = null; 

    } 

     

     

    float lwR = 1-map(abs(lwRatio - other.lwRatio),0,3,0,1);   

    float len = 1-map(abs(laminaLength-other.laminaLength), 0, 300, 0, 1); 

    float wid = 1-map(abs(laminaWidth-other.laminaWidth), 0, 300, 0, 1); 

    float lobe = map(abs(lobeNum-other.lobeNum), 0, 6, 1, 0);  

      

    float sc;   

    if(shapeClass.equals(other.shapeClass)){ 

      sc = 1; 

    } 

    else{ 

     sc = 0;  

    } 

       

    float fitness = lwR*25 + len*10 +wid*10 + + area*15 +lobe*15 +sc*25;     

 

    

    /*hausdorff distance, fool with this another time 

    float hausdorff; 

    if(null!=oPoints){ 

    hausdorff = 1000/(float)myPro.distance_hausdorff(cPoints, oPoints); 

    } 

    else 

    hausdorff = 0;  */ 

 

    return fitness; 

  } 
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} 

 

Parameters.pde: 

import java.util.Map; 

 

class Parameters { 

 

  HashMap<String, String> paramHash = new HashMap<String, String>();  

  String[][] paramList; 

 

  Parameters(String[][] pList) { 

    paramList = pList;    

 

    if (paramList[0].length!=0) { 

      for (int i=0; i<paramList.length; i++) { 

        addParam(paramList[i]); 

      } 

    } 

  } 

 

  void addParam(String[] pairToAdd) { 

    paramHash.put(pairToAdd[0], pairToAdd[1]); 

  } 

 

  String getVal(String keyy) { 

    String val = paramHash.get(keyy); 

    return val; 

  } 

} 

 

Slider.pde: 

/* Slider class  

I did not write this. 

Modifed from https://processing.org/examples/scrollbar.html 

*/ 

 

class Slider { 

  int swidth, sheight;    // width and height of bar 

  float xpos, ypos;       // x and y position of bar 

  float spos, newspos;    // x position of slider 

  float sposMin, sposMax; // max and min values of slider 

  int loose;              // how loose/heavy 

  boolean over;           // is the mouse over the slider? 

  boolean locked; 

  float ratio; 

 

  Slider (float xp, float yp, int sw, int sh, int l, Boolean maxStart) { 

    swidth = sw; 

    sheight = sh; 

    int widthtoheight = sw - sh; 

    ratio = (float)sw / (float)widthtoheight; 
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    xpos = xp; 

    ypos = yp-sheight/2; 

     

    if(!maxStart){ 

    spos = xpos + swidth/2 - sheight/2; 

  } 

     

    else{ 

    spos = xpos + swidth - sheight; 

    } 

      

    newspos = spos; 

    sposMin = xpos; 

    sposMax = xpos + swidth - sheight; 

    loose = l; 

  } 

   

  

 

  void update() { 

    if (overEvent()) { 

      over = true; 

    } else { 

      over = false; 

    } 

    if (mousePressed && over) { 

      locked = true; 

    } 

    if (!mousePressed) { 

      locked = false; 

    } 

    if (locked) { 

      newspos = constrain(mouseX-sheight/2, sposMin, sposMax); 

    } 

    if (abs(newspos - spos) > 1) { 

      spos = spos + (newspos-spos)/loose; 

    } 

  } 

 

  float constrain(float val, float minv, float maxv) { 

    return min(max(val, minv), maxv); 

  } 

 

  boolean overEvent() { 

    if (mouseX > xpos && mouseX < xpos+swidth && 

       mouseY > ypos && mouseY < ypos+sheight) { 

      return true; 

    } else { 

      return false; 

    } 

  } 

 

  void display() { 

    noStroke(); 

    fill(204); 

    rect(xpos, ypos, swidth, sheight); 

    if (over || locked) { 
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      fill(0, 0, 0); 

    } else { 

      fill(102, 102, 102); 

    } 

    rect(spos, ypos, sheight, sheight); 

  } 

 

  float getPos() { 

    // Convert spos to be values between 

    // 0 and the total width of the scrollbar 

    return spos * ratio; 

  } 

 

} 

 

SysLeaf.pde: 

class SysLeaf extends Leaf implements Comparable<SysLeaf>{ 

   

  Grammar gram; 

  float fitness = 0; 

  String template; 

  int maxIt; 

     

  SysLeaf(int num, Grammar g, String temp){ 

   super(num);  

   gram = g; 

   template = temp; 

   if(template=="Pinnate"){ 

    maxIt = 14;  

   } 

   if(template=="Palmate"){ 

    maxIt = 11;  

   } 

   if(template=="PinLobed"){ 

    maxIt = 12;  

   } 

  }  

     

  String getLSInfo(){ 

    return "um";    

  } 

   

  void setFitness(float f){ 

   fitness = f; 

  } 

   

  float getFitness(){ 

   return fitness;  

  } 

   

  String getTemplate(){ 

   return template;     

  } 
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  //comparator function in order to sort candidate leaves by fitness 

  int compareTo(SysLeaf o){ 

    float otherFit = ((SysLeaf)o).getFitness(); 

    if(this.fitness - otherFit > 0){ 

     return -1;  

    } 

    else if(this.fitness - otherFit <0){ 

     return 1;  

    } 

    else{ 

     return 0;  

    } 

     

  } 

} 

 

Turtle.pde: 

import java.util.Stack;  

 

/*Turtles need at least three arguments:  

 (1)The Grammar to be drawn. 

 (2)Number of iterations.  

 Setting iterations too high for certain L-Systems 

 may cause Processing to crash. 

 (3)Unit Length in pixels. 

  

 Second constructor has other inputs too. 

 */ 

 

class Turtle {  

  float len; 

  Grammar grammar; 

  float x; 

  float y; 

  float heading; 

  TurtleState state; 

  Stack<TurtleState> turtleStack; 

 

  PGraphics canvas; 

 

  Turtle(Grammar gram, int iterations, int size) { 

 

    canvas = createGraphics((width/12)*5, height); 

    len = float(size); 

    grammar = gram; 

    x = canvas.width/2; 

    y = canvas.height-200; 

    heading = -PI/2; 

 

 

 

    state = new TurtleState(x, y, heading); 

    turtleStack = new Stack<TurtleState>(); 
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    turtleStack.push(state); 

 

    for (int i = 0; i<iterations; i++) { 

      len = len * grammar.getScaleFactor(); 

    }  

 

 

    for (int i = 0; i<iterations; i++) { 

      Grammar newGram = grammar.reWrite(); 

      grammar = newGram; 

    } 

  }   

 

 

  //Second constructor with specified location, rotation (radians): 

  Turtle(Grammar gram, int iterations, int size, float xin, float yin, float 

rotation) { 

 

    canvas = createGraphics((width/12)*5, height); 

    len = float(size); 

    grammar = gram; 

    x = canvas.width/2; 

    y = yin; 

    heading = rotation; 

 

 

    state = new TurtleState(x, y, heading); 

    turtleStack = new Stack<TurtleState>(); 

    turtleStack.push(state); 

 

    for (int i = 0; i<iterations; i++) { 

      len = len * grammar.getScaleFactor(); 

    }  

 

 

    for (int i = 0; i<iterations; i++) { 

      Grammar newGram = grammar.reWrite(); 

      grammar = newGram; 

    } 

  }  

 

  PGraphics drawGrammar(color col) { 

 

    int thickness = 2; 

    PShape shape = null; 

 

    canvas.beginDraw(); 

    canvas.background(255); 

    canvas.strokeWeight(thickness); 

 

 

    String str = grammar.getStr(); 

    //useful for debugging: 

    //println(str + " " ); 

 

    //Turtle Interpretation of Symbols:  

    /*The way parameters are read here is kinda clunky + repetitive 
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     and I've just copied and pasted it for every parameterized symbol lol*/ 

    for (int j = 0; j<str.length(); j++) { 

 

      if (str.charAt(j)=='F') { 

        if (str.charAt(j+1)=='(') {   

          String parameters = ""; 

          int k = 2; 

          while (str.charAt(j+k)!=')') { 

            parameters = parameters + str.charAt(j+k); 

            k = k+1; 

          } 

          float[] parameterList = parseParam(parameters); 

 

          forward(parameterList[0]); 

        } else 

          forward(1); 

      } 

 

      if (str.charAt(j)=='G') { 

        if (str.charAt(j+1)=='(') { 

          String parameters = ""; 

          int k = 2; 

          while (str.charAt(j+k)!=')') { 

            parameters = parameters + str.charAt(j+k); 

            k = k+1; 

          } 

          float[] parameterList = parseParam(parameters); 

          forward(parameterList[0]); 

        } else 

          forward(1); 

      } 

 

      if (str.charAt(j) =='!') { 

        if (str.charAt(j+1)=='(') { 

          String parameters = ""; 

          int k = 2; 

          while (str.charAt(j+k)!=')') { 

            parameters = parameters + str.charAt(j+k); 

            k = k+1; 

          } 

          float[] parameterList = parseParam(parameters); 

          //println(parameterList[0]); 

          canvas.strokeWeight(parameterList[0]); 

        } else 

          canvas.strokeWeight(thickness-1); 

      } 

 

      if (str.charAt(j)=='[') { 

        //push 

        turtleStack.push(state); 

      } 

 

      if (str.charAt(j)==']') { 

        //pop 

        state = turtleStack.pop(); 

      } 
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      if (str.charAt(j)=='{') { 

        shape = createShape();       

        shape.beginShape(); 

        shape.fill(red(col), green(col), blue(col), 190); 

      } 

 

 

      if (str.charAt(j)=='}') { 

        shape.noStroke(); 

        shape.endShape(CLOSE); 

        canvas.noStroke(); 

        canvas.shape(shape, 0, 0); 

      } 

 

      if (str.charAt(j)=='.' && !Character.isDigit(str.charAt(j+1))) {  

        if 

(state.getX()>=canvas.width||state.getX()<=0||state.getY()>=canvas.height-

1||state.getY()<=0) { 

          //println("Throw this leaf away.");  

          turtleStack.pop(); 

          canvas.endDraw(); 

          return null; 

        } else { 

          shape.vertex(state.getX(), state.getY()); 

        } 

        //uncomment to mark vertex with ellipse: 

        //ellipse(state.getX(),state.getY(),3,3); 

      } 

 

      if (str.charAt(j)=='+') { 

        //turn left 

        float angle; 

 

        if (str.charAt(j+1)=='(') { 

          String parameters = ""; 

          int k = 2; 

          while (str.charAt(j+k)!=')') { 

            parameters = parameters + str.charAt(j+k); 

            k = k+1; 

          } 

          float[] parameterList = parseParam(parameters); 

          angle = parameterList[0]; 

        } else { 

          //println(" state get heading: "+ state.getHeading());         

          angle = grammar.getAng(); 

        } 

 

        heading = state.getHeading() - radians(angle); 

        //print(" radians of gramm ang: " + radians(grammar.getAng())); 

        //print(" new heading: " + heading); 

        x = state.getX(); 

        y = state.getY(); 

        state = new TurtleState(x, y, heading); 

      } 

 

      if (str.charAt(j)=='-') { 
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        //turn right  

        float angle; 

        if (str.charAt(j+1)=='(') { 

          String parameters = ""; 

          int k = 2; 

          while (str.charAt(j+k)!=')') { 

            parameters = parameters + str.charAt(j+k); 

            k = k+1; 

          } 

          float[] parameterList = parseParam(parameters); 

 

          angle = parameterList[0]; 

        } else { 

 

          angle = grammar.getAng(); 

        } 

 

        heading = state.getHeading() + radians(angle); 

        x = state.getX(); 

        y = state.getY(); 

        state = new TurtleState(x, y, heading); 

      } 

    } 

 

    turtleStack.pop(); 

    canvas.endDraw(); 

    return canvas; 

  } 

 

  void forward(float sc) { 

    float scale = sc; 

    canvas.stroke(0, 0, 0); 

 

    //computing turtle movement using heading angle. 

    float nx = state.getX() + (scale*len)*cos(state.getHeading()); 

    float ny = state.getY() + (scale*len)*sin(state.getHeading()); 

    canvas.line(state.getX(), state.getY(), nx, ny); 

    heading = state.getHeading(); 

    x = nx; 

    y = ny; 

    state = new TurtleState(x, y, heading); 

  } 

 

  float[] parseParam(String parString) { 

    //Uses QScript to parse expression strings 

    String[] split = parString.split(","); 

    float[] paramFloats = new float[split.length]; 

    for (int i = 0; i<paramFloats.length; i++) { 

      Result parsed = Solver.evaluate(split[i]+ " + 0"); 

      paramFloats[i] = parsed.answer.toFloat(); 

    } 

    return paramFloats; 

  } 

} 
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TurtleState.pde: 

/*The TurtleState class was written because the polygon 

 drawing in Processing doesn't allow using translate(), rotate(), 

 etc. within "beginShape". All coordinate plane transformations 

 had to be kept track of manually instead.  

 This class replaces the use of pushMatrix, popMatrix 

 for branching purposes.*/ 

 

class TurtleState { 

 

  float x; 

  float y; 

  float heading; 

 

  TurtleState(float xin, float yin, float headin) { 

    x = xin; 

    y = yin; 

    heading = headin; 

  } 

 

  float getX() { 

    return x; 

  } 

 

  float getY() { 

    return y; 

  } 

 

  float getHeading() { 

    return heading; 

  } 

 

  String toString() { 

    return x +" "+ y + " " + heading; 

  } 

} 
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Thank you for reading! 
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