
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2016 Bard Undergraduate Senior Projects

Spring 2016

Branching Boogaloo: Botanical Adventures in Multi-Mediated Branching Boogaloo: Botanical Adventures in Multi-Mediated

Morphologies Morphologies

Diana Marie Ruggiero
Bard College, druggiero314@gmail.com

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016

 Part of the Botany Commons, Graphics and Human Computer Interfaces Commons, History of

Science, Technology, and Medicine Commons, Interdisciplinary Arts and Media Commons, Metaphysics

Commons, and the Theory and Algorithms Commons

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Recommended Citation Recommended Citation
Ruggiero, Diana Marie, "Branching Boogaloo: Botanical Adventures in Multi-Mediated Morphologies"
(2016). Senior Projects Spring 2016. 201.
https://digitalcommons.bard.edu/senproj_s2016/201

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2016
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2016?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/500?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/500?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1137?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/533?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/533?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://digitalcommons.bard.edu/senproj_s2016/201?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Branching Boogaloo:
Botanical Adventures in

Multi-Mediated Morphologies

A Senior Project submitted to

The Division of Science, Mathematics, and Computing
of

Bard College

Seeking to satisfy the

Computer Science Major

and the

Experimental Humanities Concentration

Diana Ruggiero

May 2016

iii

Dedication

To Mom and Dad

(and Christina too I guess)

iv

Acknowledgements

First, thank you to my family. I love you!

Second, thank you to:

My project advisor:

Keith O’Hara—Your straight talk and knowledge of useful resources and

approaches was invaluable.

 Faculty in Computer Science:

Sven Anderson and Becky Thomas

Faculty in Experimental Humanities:

Maria Cecire, Ben Coonley, Heidi Knoblauch, Gregory Moynahan, Olga

Touloumi

Faculty in Other Awesome Areas of Knowledge:

Amir Barghi, Daniel Berthold, Rob Cioffi, Matt Deady, Amii Legendre, Tatyana

Myoko von Pritwitz und Gaffron, David Shein, Ruth Zisman, Marina van

Zuylen

Third, thank you to my friends. You are the kindest, smartest, most supportive,

understanding and loving people in the universe and I am so so lucky to have you all in my

life.

Fourth, thank you to my computers for being the absolute best toys and tools a girl could

possibly want.

And finally, thank you to all the plants I took leaves off of. Good thing they grow back!

v

Table of Contents

Dedication ... iii

Acknowledgements ... iv

Abstract .. 1

Project Introduction ... 2

Part I: Looking At Leaves .. 6

Leaf Shape: Ancient Observations and Modern Terminology ... 8

Leaf Function: The Puzzle of Photosynthesis ... 20

Leaf Development: Hormones and Metaphysics ... 31

Patterns of Venation: Vascular Branching and the Unity of Phenomena................................. 38

Intersection ... 51

Past Work in Formalized Morphology... 52

Part II: FormaLeaf ... 80

The Language of L-systems: Grammars of Growth .. 81

Method: Approach, Algorithms, and Tools Used ... 94

Results and Discussion .. 140

Future Work .. 155

Project Conclusion ... 165

Bibliography .. 167

Appendix: Processing Code .. 171

vi

In spring when, tired of restraining themselves, no longer able to hold back, they emit a
flood, a vomit of green, they think they’re breaking into a polyphonic canticle, bursting out
of themselves, reaching out to, embracing, all of nature; in fact they’re merely producing
thousands of copies of the same note, the same word, the same leaf.

-Francis Ponge, Flora and Fauna

1

Abstract

FormaLeaf is a software interface for exploring leaf morphology using parallel string

rewriting grammars called L-systems. Scanned images of dicotyledonous angiosperm

leaves removed from plants around Bard’s campus are displayed on the left and analyzed

using the computer vision library OpenCV. Morphometrical information and terminological

labels are reported in a side-panel. “Slider mode” allows the user to control the structural

template and growth parameters of the generated L-system leaf displayed on the right.

“Vision mode” shows the input and generated leaves as the computer ‘sees’ them. “Search

mode” attempts to automatically produce a formally defined graphical representation of

the input by evaluating the visual similarity of a generated pool of candidate leaves. The

system seeks to derive a possible internal structural configuration for venation based

purely off a visual analysis of external shape. The iterations of the generated L-system

leaves when viewed in succession appear as a hypothetical development sequence.

FormaLeaf was written in Processing.

2

Project Introduction
Motivations and Summary

This is a project about leaf morphology. In Part I, leaves are examined from a

historico-scientific perspective in an attempt to understand them contextually. Next, the

Intersection presents a historical overview of formalized morphology. Part II then first

gives a description of a type of formal grammar called L-systems and then goes into detail

about my own efforts towards building an interactive system which tries its best to

automatically arrive at a plausible L-system representation of a leaf’s internal venation

structure by looking only at its outline shape. The result of these efforts has been a piece of

software I’ve named FormaLeaf. It was written in Processing, a Java-based language which

makes building interactive graphical systems streamlined and fun. FormaLeaf can hence

be run on any computer with Processing (and the two required libraries) installed.

3

The software’s name plays on its ability to both allow the user to explore leaf form

in real-time by manipulating various template leaves using parameter sliders (‘Form a’

Leaf) while also being a nod to what underlies the computer-generated graphic on the

right-hand side—a formal language representation of leaf form (‘Formal’ Leaf). As the

ultimate goal was to obtain automated representation, in addition to the interactive Slider

Mode the program also has a Search Mode. Here computer vision techniques analyze both

the input leaf and a pool of continuously generated candidate leaves in an attempt to find

an L-system leaf with a structural and dimensional configuration which matches the input.

Because of the complexity of this problem, this hardly ever results in a leaf that actually

resembles the one on the left. I consider it a success, however, if the generated leaf’s

schematic “template” (and hence its venation and lobation structure) matches that of the

input leaf. While this automated search was the original aim of the project, it ended up as

one of the least developed/functional pieces of the whole thing.

Why leaves? Put simply, a leaf makes a good microcosm. It’s an interesting piece of

the universe which happens to express many general properties—if you have to narrow

your focus, may as well pick something that smells universal. Reflected in the variable

finalities of its form, the function of its metabolism, and the process of its growth and

branching is one possible image of the whole organic universe. The deeper our

understanding of a leaf, the deeper our understanding of everything! Leaves are life in an

expression not of the ‘animal’, and hence looking at specifics of plant form and functioning

provides an interesting perspective of our own place. As an organ of a larger organism, a

leaf is both part and whole—this makes it convenient to fit inside a scanner.

4

The unique significance of the leaf as a subject of inquiry is echoed by a number of

writers. Biologist and author Steven Vogel writes of the leaf as a “biological everyman, an

ordinary and ubiquitous living thing that provides the subject for an exploration of our

immediate physical world” and selects it as the representative “protagonist” of his book

about the biomechanics of life.1 Numerous plant morphologists (among them Caspar Wolff

and Johann Wolfgang von Goethe) conjectured that every plant organ is just a modified leaf

by virtue of its apparent universality. Agnes Arber, author of the remarkable 1950 Natural

Philosophy of Plant Form even states that “the flowering plant[…]offers innumerable

‘microcosmic’ aspects.”2 For this project, I select the leaf.

Less pertinent but still of note is the ecological importance of leaves. This is not to

suggest a project like this has any actual ecological application. If it does, I don’t know

about it. Regardless, as the means by which most of the solar energy from the sun is

introduced into the ecosystem, leaves are especially integral to the existence of life on

Earth as we know it and thus (I believe) worth everyone’s time to think about. Writes

Vogel:

What’s minimally needed to generate order are three items: (1) a source of energy
and (2) a sink for energy, with the latter at a lower potential (cooler or lower down)
than the source, and (3) some coupling system to draw on this energy flow.

For our earth, the sun provides the source, and the sink is outer space or, in
immediate terms, the cold sky. What’s the coupling system? One system exceeds in
importance by some vast factor all others put together. It’s photosynthesis, as done
by green plants, algae, and some kinds of bacteria. Without photosynthesis (or some
substitute), nothing like the present kind of complex, highly ordered life could exist.
Leaves are really, really important.3

And of course, leaves are just as important as they are beautiful.

1 Vogel, 2.
2 Arber, 1.
3 Vogel, 16.

5

 Some notes on sources: Any images scanned from books or obtained from online

sources have been cited. Unless otherwise stated, the included photographs and images are

my own. Quotations and information are cited in footnotes4 and there is a bibliography at

the end of the project.

 I titled this project “Branching Boogaloo: Botanical Adventures in Multi-Mediated

Morphologies” in part due to my interest in media theory. My hope is that by engaging with

a topic through a number of different disciplinary mediums a more complete

understanding may be possible—if not more complete, then at least multi-faceted. This is

partly what “Experimental Humanities” means to me. It also means allowing myself to take

experimental risks, so if chunks of this project are rough around the edges or seem all over

the place it’s because I’m out of my depth or otherwise ran out of time to make a section

cohesive. But it doesn’t hurt to try—and in any case, I learned a lot.

 Above all else, I hope you enjoy what you choose to read or see of my project!

4 Regarding footnotes, for all of Part I and for the Intersection footnotes with anything other than pure
citational information are printed in green.

6

Part I: Looking At Leaves

Botanical History and Biological Architecture

7

Looking at Leaves
Botanical History and Biological Architecture

 Considering the importance of leaves, it’s remarkable how frequently they are

overlooked. In the Northeast, outside of autumn peak and the subsequent clean-up leaves

tend to blend in to the background of human activity. With the intent of first arriving at a

general understanding of leaves, scientific information has been interleaved with facts and

primary sources pertaining to some particularly interesting historical developments of the

human understanding of leaves. The hope is that technical information which might

otherwise appear boring or dry to some readers becomes enlivened within a human

context. Modern research is also cited when appropriate and points relevant to aspects of

the larger project at hand are described. We address in turn: leaf shape, leaf function, leaf

development, and patterns of venation.

8

Leaf Shape: Ancient Observations and Modern Terminology

This section concerns the shapes of leaves and leaf parts and the names they’ve

been given. Leaf terminology has developed in large part to aid in species identification.

 The designated successor and junior colleague of Aristotle, Theophrastus is often

referred to as the first dedicated botanist1 or else as the “Father of Botany.” His study

Enquiry into Plants describes with precision many aspects of plants, including the

idiosyncrasies of certain species, seasonal behaviors, and the variable forms taken by

different plant parts and organs. Section X of Book I is dedicated to leaves, where

Theophrastus writes:

Leaves differ also in their shapes; some are round, as those of pear, some rather
oblong, as those of the apple[…]2

Theophrastus has here observed the variable form of the lamina—the leaf blade. His

comments extend further:

Again there are various other differences between leaves; some trees are broad-
leaved, as vine fig and plane, some narrow-leaved, as olive pomegranate myrtle.3

Any human with uncompromised eyesight confronted by a leaf notices instantly its basic

geometry, as shape is an exceedingly obvious visual property. It speaks to the clarity of

shape as a property that two thousand-year-old descriptors remain intelligible and

translatable. The words used by Theophrastus to describe different leaf shapes rebound

through later texts and are echoed in modern terminology. The most salient point of these

1 The Intersection begins with a brief reconsideration of the tendency to name Theophrastus as the origin-
point of all botanical science—for this section, though, he gets his due. Also worth mentioning is that a
number of pre-Socratic philosophers are credited by later sources as having theorized about plants (for
example: Empedocles on plant sex, Anaxagoras on gas exchange) though it does not appear that they carried
out any extended study.
2 Theophrastus, I.X.5, 73.
3 Theophrastus, I.X.4, 71.

9

passages is the sheer variety of differences of shape—Theophrastus hardly attempts an

exhaustive catalogue but instead simply points to a handful of examples.

In an effort to manage this variety, botanical texts demonstrate a move over time

from heuristic names based off of resemblances towards quantitatively measured, well-

defined labels. Heuristic labels based off shape resemblances are poetic but tend towards a

potentially unwieldy nomenclature with lots of very specific terms for different forms. For

example, in his 1751 publication Philosophia Botanica, the enormously influential

taxonomist Carl Linnaeus lists 62 separate names for different leaf blade shapes.

Figure 1: Left—Leaf shapes in Linnaeus’ Philosophia Botanica (Tab. II)
Right—Linnaeus’ list of Latin shape terms translated by Hugh Rose.

10

Older terminology (such as that presented by Linneaus above) is organized in such a

way that leaf shape is presented as a whole, with the entire pictured form given its own

name. However, there is little to suggest that these labels are meant to be mutually

exclusive. These weren’t efforts at classifying leaf shapes as much as they were just

establishing collections of words used to talk about them. Later terminology becomes more

precise in its organization concerning the parts of the leaf shape being named. Asa Gray’s

1860 textbook makes a point to characterize the shapes of the general outline, the base,

and the apex of the leaf in three separate sections, applying labels to the forms of different

sections of the leaf. For example, he writes of a base shape: “Hastate, or halberd-shaped,

when such lobes at the base point outwards, giving the leaf the shape of the halberd of the

olden time”4 and of an apex shape: “Retuse, with the rounded summit slightly indented,

forming a very shallow notch.”5 Gray also provides images of just leaf tips and bases alone

in order to explain their forms. By contrast, “hastate” was just one of many other fully

rendered leaves in Linneaus’ collected list (#15, Rose translates it as “Spear-shaped”).

4 Gray, 59.
5 Gray, 60.

11

Figure 2: A few modern laminar shape descriptors.
 (Manual of Leaf Architecture, 23)

One thing the vision system in FormaLeaf does is apply a basic, overall shape label

to the input leaf automatically by taking a precise computational measurement. The terms

in Figure 2 are determined by the location of the widest point on the lamina, using the

terminological method of naming shape through measurement as opposed to heuristics of

resemblance. For example, if the widest part of the leaf falls in the bottom 2/5ths of its

lamina, it is labeled ovate. This term developed analogically (meaning “like an egg”) and

only later was defined quantitatively.

Because computers like specifics, the labeling system of my project uses the

quantitatively well-defined terminology as set forth in the 2009 Manual of Leaf Architecture

published by Cornell University Press, which was itself based off of Hickey’s 1979 update of

von Ettinghausen’s 1861 system. This manual was in part developed to assist in modern

paleobotanical research efforts. Leaves are the most common fossilized remains of ancient

plants,6 so careful labeling systems are important for understanding and organizing the

6 Ellis et. al (2009).

12

fossil record (and thus the evolutionary history) of angiosperms. Large-scale organization

and labeling is generally more efficient when done by some objective criteria. Where Gray

gave an image and description of a “hastate” base shape, the Manual of Leaf Architecture

gives a photograph, a description, and a range of base lobe angles (90˚ -125˚) to which it

could apply.

 A terminological division of a leaf into two main parts is usually done by separating

it into the lamina and the petiole, also called leaf-stalk or stem.

Figure 3: Parts of a leaf. The site of connection between
the petiole and lamina is called the insertion point.

13

The petiole connects the leaf blade to the rest of the plant, and the style of this connection

is yet another place where leaves express different spatial characteristics. As Theophrastus

writes of the variable attachment styles of leaves,

[…]the means by which they are attached may be a leaf-stalk, or they may be
attached directly; and there may be several leaves attached by the same leaf-stalk.7

Leaves attached by a leaf-stalk are today known as petiolate, while those attached directly

(and without a petiole at all) are called sessile. When Theophrastus mentions that “there

may be several leaves attached by the same leaf-stalk,” he’s pointing out the existence of

compound leaves, which have many individual leaflets on one petiole.

Figure 4: Drawings of compound leaves in Linnaeus’ Philosophia Botanica
(Tab. II, 290). The stems which attach the leaflets are petiolules.

Contrary to compound leaves are simple leaves, consisting of just a single laminar area—

like the leaf in Figure 3. Though it is hard to tell once they’ve been removed, I believe most

of the leaves in my sample set to be simple petiolate leaves. It is very likely that some are

actually leaflets from a compound leaf, but in the end it doesn’t make any difference since

7
 Theophrastus, I.X.8, 77.

14

the system seeks to reproduce whatever lamina it’s been presented with—hence it models

what could either be a simple leaf or a compound leaflet. The system pays no regard to the

status of the petiole as it is manually removed from the scanned picture during the image

preparation phase.

 The myriad causes behind the enormous variety of leaf shape is a huge, largely

unsolved puzzle which crosses the boundaries of every scientific discipline. A 2011 review

of possible theories of leaf shape significance by Adrienne Nicotra et. al summarizes as

follows:

The theories about leaf shape are many, and not mutually exclusive:
thermoregulation of leaves especially in arid and hot environments, hydraulic
constraints, patterns of leaf expansion in deciduous species, mechanical constraints,
adaptations to avoid herbivory, adaptations to optimize light interception and, given
that leaves are hypothesized to be developmental homologues of floral organs, and
it has even been suggested that leaf shape reflects the effects of selection on flower
form. Finally, there is the chance that leaf shape variation has little functional or
adaptive significance and instead reflects random variation within the context of
phylogenetic history. However, given the importance of the leaf we believe the latter
option rather unlikely.8

Clearly, there are many factors which affect leaf shape. Everything about the surrounding

environment appears to matter—it becomes especially complicated because leaves of the

same species frequently assume different forms depending on their specific climatic

conditions. Keep in mind also that “leaves are hypothesized to be developmental

homologues of floral organs,” which will come up again in the section about leaf

development.

 Before moving on to leaf function, a shape-based clarification is in order. As far as I

can tell, the leaves under computational examination in this project are all from flowering

plants, or angiosperms. This distinction is in contrast to gymnosperms, which include

8 Nicotra et. al, (2011), 536.

15

conifers and Ginkgo trees (among other plant groups). Both angiosperms and

gymnosperms fall under the category of vascular plants, which are those species which

transport water and nutrients through special conducting tissues—xylem and phloem.

Angiosperms and gymnosperms gain their respective names from their different styles of

reproduction. With gymno meaning “naked” and angio meaning “vessel,” the terms indicate

whether the seed (sperm) of the plant is either exposed and hanging out on the leaves or a

cone or is otherwise enclosed in an ovary which then develops into a fruit. Pictured are

some examples of gymnosperm vs. angiosperm leaves.

16

Figure 5: Left—Gymnosperm leaves. Scale, needle, and the planar Gingko.
Right—Angiosperm leaves.

17

My project’s vision system deals with angiosperms instead of gymnosperms because

of their respective shapes. Conifers tend to have thin needle or scale-like leaves as opposed

to the broad, planar leaves of most angiosperms. A vision system to devise an L-system

representation of conifer leaves would be possible but would require work in a different

direction due to this basic structural difference—at the very least, it would require a

different way of using (if used at all) the polygonal interpretation of the L-systems. Ginkgo

leaves are planar but their unique fan shape is strange for other reasons, as Ginkgo biloba is

one of those peculiar ancient fossil species that still happens to be around. Another reason I

personally focused on angiosperms is that it’s an angiosperm leaf that comes into my mind

when I hear the word “leaf.” It didn’t even occur to me at the outset of my sample collection

that pine needles too may bear the moniker—despite the difference in form they are

scientifically considered to be simple, single-veined leaves because of their function.

Angiosperm leaves are, in comparison to every other leaf-like structure in evolutionary

history, enormously complex in their often reticulate venation patterns. It has been

proposed that this complexity of venation is also linked to the massive varieties of

angiosperm leaf shapes—write Nicotra et. al: “Because of their much greater

transpirational capacities[…]flowering plants have far greater leeway than other plants

regarding the size and shape of their leaves.”9 Perhaps due in part to this metabolic leeway,

angiosperms have had enormous ecological success on planet Earth.

9 Nicotra et. al (2011), 542.

18

Leaves also take on highly modified forms to fulfill specific anatomical roles unique

to certain species—for example, fly traps, bug-catching pitchers, climbing tendrils, spathes,

and spines, among other things. This potential for performing structural and responsive

functions outside of just the nutritive function of photosynthesis points to the leaf’s

developmental versatility as a plant organ.

Figure 6: The spathe of the jack-in-the-pulpit (Arisaema triphyllum)
is a modified leaf which surrounds the spadix.

In conclusion, there are lots of leaf shapes and leaf terminology has become more

precise over time. Aside from being useful for identification purposes, the terminology

surrounding leaf form becomes a lexicon of what is noticed. The move from many heuristic

labels for different leaf shapes towards a more mathematically precise and partitionally

specific system of terminology follows a general scientific trend towards both numeric

exactness and a greater standardization of terms describing smaller and smaller pieces of

whatever is under observation. Terminological systems like the one found in Manual of

19

Leaf Architecture are precise in their measurements in the hopes of increasing

standardization across research and communicability across researchers. Terminology is

also invaluable for helping us to pay conscious attention to pieces and distinctions we

would otherwise ignore. On the flip side, the assumption that everything’s already been

labeled in the best possible way perhaps makes it harder to see what has yet to be named,

and also that an improved conceptual scheme for the relation between existing labels

might exist.

The next section concerns the puzzle of leaf function and the role comparison in

understanding what they do.

20

Leaf Function: The Puzzle of Photosynthesis

 While the varieties of leaf shape are quite apparent to the human observer, their

function is far less immediately obvious. The true biological purpose of the leaf was

unknown even after the basic functions of other plant parts (such as the roots and fruits)

were for the most part understood. Hence early botanists are understandably mistaken

about what leaves are actually doing, although they are generally aware that it has

something to do with water and sunlight. Nicolaus of Damascus, supposed tutor of Antony

and Cleopatra’s children, writes in his 1st century B.C. botanical treatise On Plants10 that

leaves

have no other purpose except the attraction of moisture and to serve as a protective
covering for the fruit from the excessive heat of the sun. At the same time leaves are
not so essential as fruit[…]11

Not quite—but he is onto something. Nicolaus recognized the sun’s role in the upwards

movement of moisture as well as its necessity for plant growth:

When the sun strikes it and causes the moisture therein to move, it heats up the spot
by the movement which arises[…]when the heat of the sun begins to scatter the
particles of water, the sun draws the particles of moisture upwards[…]12

Leaves are the sites of diffusive moisture movement, which give plants, as Nicolaus says, “a

power of attraction which draws the moisture from the earth.”13 Transpiration is the

process by which water moves up from the soil, through the plant, and out into the

atmosphere. The evaporation occurs at the leaves, where the drier air outside the leaf

10

 Commonly misattributed to Aristotle, who was far more a zoologist.
11 On Plants, II.VII 217.
12 On Plants II.VII, pg. 215.
13 On Plants, II.I, 187.

21

causes a diffusion gradient.14 The sun’s heat further hastens evaporation by heating both

the leaf itself and by making the surrounding air less humid.

Understanding Nicolaus’s conception of leaf function requires looking a little closer

at how he saw plants in general—he describes plant growth as the coalescence of moisture

which is then refined by the heat of the sun and the expansion of the surrounding air:

For when the juices are compressed, their nature grows hot and hurries on to the
ripening stage, and so branches will take shape and leaves grow[...]15

The continuation of this process—its “proper end” being the production of fruit—he refers

to as “ripening,” which he also points as the cause of differentiation in animal parts:

A third form of ripening takes place in the animal; for this form of ripening only
occurs through the division of the limbs and the natural differences of one part from
another.16

Hence the developmental process which shapes the plant is seen as akin to what causes

differentiation of animal parts. This is a common theme running through morphological

thought. What is less clear than visual resemblance is whether the function of the parts

they develop are similar as well. Does homologous form imply analogous function?

Nicolaus’s assertion that the leaves serve as a covering for fruit demonstrates an

awareness for how leaves are structured so as to intercept sunlight. Agnes Arber

furthermore suggests that the shade theory was “a natural reaction to the southern

brilliance of the Mediterranean climate.”17 Others suggest that it came out the fact that

Mediterranean plants tend not to have very large leaves. Curiously, while contemporary

research does not suggest that leaves are fulfilling any important protective function for

14 MacAdam, 130.
15 On Plants, II.VIII, 223.
16 On Plants, II.VIII, 221.
17 Arber, 28.

22

fruit, plants do have their own kind of “sunscreen”. For example, the protein receptor (UV-

B resistance 8) initiates a stress response as a protective measure against excessive

radiation, which is especially harmful to genetic information.

Botanists for most of human history understood the sun as providing the heat which

raises the moisture of the plant into its formation. They consistently recognize that the sun

is an integral part of growth and often observe that plants which get less sunlight do not

grow as much. Theophrastus was aware of the heliotropism of leaves when he wrote that

“Most leaves turn towards the sun[…]”18 However, the nutritive importance of the solar

rays was not known and they instead saw all nutrition as coming from the Earth.

Early botany understandably located the nutritive function of plants in the roots,

with Nicolaus of Damascus calling them “the intermediary between the plant and its

food,[…]the source of life.”19 Nicolaus probably got this from Aristotle, who wrote in his On

the Parts of Animals that plant roots are analogous to the animal mouth. Plants were seen

as being inverted life-forms with their heads stuck down in the earth:

[…]they take in their nourishment from below[…] the under parts come in them to
be above, and the upper parts to be below.20

Like much of Aristotle, this stuck around due to his enormous philosophical and scientific

influence. He didn’t write much about plants (he left that up to Theophrastus), but what he

did write was incorrect in its conclusions arrived at through zoomorphic comparison. All

the way in 1682, John Ray wrote that “plant seize and drink all their nutrition through the

roots, just as animals seize and drink all their nutrition with their mouths.”21 Analogies

18 Theophrastus, I.X.2, 69.
19 On Plants, I.IV, 167.
20 Aristotle, Book IV, VII.
21 Ray, 47.

23

between plant and animal anatomy throughout botanical history are enormously common

due in part to a deeply rooted Aristotelianism. Though Aristotle was wrong about plants, it

is important to grasp that puzzling through botanical functioning through conceptual

analogies does not necessarily lead to misunderstanding.

While roots are absorbing water and nutrients (like nitrogen) from the soil, if one

had to point to the main “food” of plants it would be the glucose they synthesize during

photosynthesis. The primary nutritive function of leaves for a long time escaped

botanists—the leaf as an organ is assumed to be of lesser importance throughout the works

of Albertus Magnus in the 13th century and Andrea Cesalpino in the 16th, though these

writers at least make the effort to describe the varieties of leaf shape. The

misunderstanding of the relationship between leaves and the sun persists even into the

18th century, where even Linnaeus maintains that they exist to provide shade.22 Botanist

and historian Julius von Sachs credits the late 18th century plant physiologist and anatomist

Marcello Malpighi as one of the first to suspect that leaves are a primary nutritive organ.

Malpighi arrived at this theory by a comparison of their vascular tissue to the blood of

animals23—that is, that vascular fibers are performing resource delivery of important

nutrients. Vascular branching as a universal phenomenon will come up a few times

throughout this project. Malpighi’s is a situation where understanding of plant function was

furthered through analogical reasoning based off homology of form.

Though Malpighi finally pointed to the leaf as nutritive, understanding the role of

the sun in puzzle was essentially impossible until microscopes, which allowed researchers

to see chlorophyll. Photosynthesis wasn’t understood chemically until C.B van Niel

22 Linnaeus, 66.
23 Von Sachs, 457.

24

formulated the reaction in 1931. It’s important to point out that a huge reason leaf function

took so long to grasp is because all of the clues to what’s going on are so small.

 Hence, leaf functioning became clearer once botanists started looking at plants at

the cellular level. Though Antoine van Leeuwenhoek’s technical advances in microscopy

and Robert Hooke’s discovery and coining of the term “cell” happened in the late 17th

century, it wasn’t until the mid-19th century that the cell was studied as the principle

individual unit of biological life. In particular, Matthias Jakob Schleiden focused his

microscopic cellular studies on plants.

Figure 7: Schleiden’s observations of cells.
(Contributions to Phytogenesis, Plate 1)

Without getting into the chemical details of photosynthesis, recall that it mainly

takes place within the chloroplasts, organelles within the cell which themselves contain

stacks of disk-shaped thylakoids. Chloroplasts are thought to have come from bacterial

micro-organisms which were taken in by eukaryotic cells as an evolutionary adaptation (a

25

process known as endosymbiosis). Credited with making the functional connection between

these organelles and light intensity is Julius von Sachs, whose book “History of Botany

(1530-1860)” was an indispensable resource for Part I of this project. I had been reading

this book for a long time in a search for pioneers of photosynthetic understanding, entirely

unaware that the person I was perhaps looking for had written it.

Analogy at the cellular scale assumes a different form. When I was taught about

plant cells for the first time in 7th grade (I recount this as it appears to be a common way of

conceptualizing it) the whole cell was explained as operating something like a city. The

chloroplasts are in this context acting like solar power plants. The city analogy highlights

the cell’s productive capacity while also making it simpler to conceive of it as a self-

contained unit of life.

Figure 8: Plant cell diagram.
 (MacAdams, Structure & Function of Plants, 2)

 While cell diagrams like the one in Figure 8 are helpful in understanding the kinds

of organelles a microscopic observer can expect to find in a plant cell, it also has the

unfortunate potential to make us think of all cells as looking like a perfect regular pentagon.

26

Katherine Esau writes that parenchyma cells (the cells making up the inside of a leaf) have

an average of 14 faces but are best approximately imagined as being shaped like a rhombic

dodecahedron.24 However, this is just for parenchyma tissue—there lots of different kinds

of cells and they assume different forms depending on their function. This is also perhaps

something the city analogy misses—that is, the shape of the cell really matters for what

part it plays in the larger organism.

The shape of individual cells contributes to their functioning. This is especially

interesting in vascular plants in which the entire structure of the plant is held rigid by

osmotic turgor pressure within the vacuoles. R. O. Knight calls the plant cell an “osmotic

unit.”25 As an example of how turgor pressure (and thus the movement of water)

contributes to cell shape and functioning, we look to a specific type of cell which performs a

unique function entirely based in the adjustment of its internal turgor pressure.

Figure 9: Assorted stomatal imagery.
(1.Knight 2.Vogel 3.Knight 4.Esau)

Consider as an example of osmotic mechanism the guard cells, found in the leaf

epidermis in pairs around a pore. Together, the guard cells and the pores make up the

many stomata, the sites of gas exchange in the leaf. By diffusion, carbon dioxide goes in;

24 Esau, 189.
25 Knight, 24.

27

water vapor and oxygen go out. It is by turgor pressure that the guard cells make the

stomata open and close. Guard cells at full pressure mean an open stoma.26

Concerning gas exchange in plants, botanists knew about it for a while but the

chemical details took longer. Linnaeus reported that leaves “transpire and draw the air.”

Even earlier than this is Nicolaus’s reference that “Anaxagoras maintained that plants do

breathe.”27 Still, plants aren’t breathing the same way animals are—it’s really the opposite,

with carbon dioxide coming in and oxygen and water vapor going out. Who better to grasp

this than the man who himself first discovered oxygen? While Joseph Priestley was wrong

about oxygen’s role in combustion,28 he is rather on point when it comes to plant

respiration. After performing some experiments which involved placing mice within

oxygen-poor (“noxious”) enclosures both with and without growing sprigs of mint, he

discovered that the mice survived much longer when the plant was present. “I presently

had the most indisputable proof of the restoration of putrid air by vegetation,”29 he reports

in his 1774 Experiments and Observations on Different Kinds of Air. He concludes that plant

respiration is a reversal of animal respiration:

This observation led me to conclude, that plants, instead of affecting the air in the
same manner with animal respiration, reverse the effects of breathing, and tend to
keep the atmosphere wholesome, when it is become noxious, in consequence of
animals either living and breathing, or dying and petrifying in it.30

Noticing that the open, common air does not become so noxious through animal respiration

or the burning of candles that candles can no longer be lit, Priestley supposes that

26

 “Stoma” is from the Greek word for mouth—as sites of gas exchange on the principle nutritive organ
stomata surely make better analogical mouths than roots do!
27 On Plants, I.I pg.151.
28 Priestley believed in the long-standing theory that combustible bodies contained ‘phlogiston’ which was
released when they were burned, calling oxygen “dephlogisticated air.” Antoine Lavoisier proved otherwise:
combustion is the addition of oxygen.
29 Priestley, 88.
30 Priestley, 87.

28

“[…]the growing vegetables, with which the surface of the earth is overspread, may,
for any thing that appears to the contrary, be a cause of the purification of the
atmosphere sufficiently adequate to the effect.”31

And of course, plant carbon-fixation does purify the atmosphere. This is one reason why

deforestation is inauspicious as fuck when it comes to keeping a planet healthy. In any case,

the direction of plant respiration was crucial to understand before photosynthesis (which

requires carbon dioxide) could be comprehended.

Information processing comes up with the coordination of stomatal opening and

closing in order to control gas exchange. Peak et. al (2004) presents evidence that leaves

are performing emergent, distributed computational processes to optimize their CO2

uptake (which they need for photosynthesis) while minimizing water loss through

evaporation. They found that the spatial and temporal statistics of stomatal dynamics

closely resemble those of certain types of cellular automata (CA), which are discrete

systems where the subsequent state of each “cell” is determined by its own current state

and those of its local neighbors. In particular, Peak et. al figure that this would solve the

puzzle of the “patchiness” of stomatal dynamics (or the tendency for stomata to become

synchronized over extended patched areas), as this is common in distributed computation.

They write:

In summary, we have demonstrated that the dynamical properties of stomatal
opening and closing on a leaf are essentially identical to those some CA that perform
emergent, distributed computation. Our analyses are only a first step, of course, in
connecting computation and plants[…] Evolution may have found an elegantly
parsimonious computational technique in which input, output, and processing are
all accomplished by using the same hardware.32

31 Priestley, 269.
32 Peak et. al (2004), 921.

29

If true, then leaves are not only incredible solar panels but computers, too! Although,

having just considered many instances in which plant functioning was not what it first

appeared to be, I also wonder whether it is enough for a natural process to bear

resemblance to computational processing to say that something is “performing

computation.” Perhaps CA are just a very good “model” of stomatal dynamics. Is this

another analogy which could help brighten the dark room of such distributed processes

while at the same time placing blinders due to our definitions of computation? It’s

impossible to tell—once you take the premise that “computation” exists outside of

“computers” it seems hard not to arrive at the conclusion that the whole universe is a

computational process.33 It probably all depends on how one’s definition of computation

relates to and conceives of informational representation.

In conclusion, when considering the alien strangeness of photosynthesis due to both

its physical subtlety and the lack of a comparable function in animals, it isn’t at all

surprising that it took a while to figure out what leaves were doing. We mentioned before

that it was partly the influence of Aristotelianism that made animal comparisons so

common in the naming and description of plant parts. Even Theophrastus was aware that

this could pose problems to understanding. Writing of plant veins, he says

Muscles [fibre] and ‘veins’ have no special names in relation to plants, but, because
of the resemblance, borrow the names of the corresponding parts of animals. It may
be however that, not only these things, but the world of plants generally, exhibits
also other differences as compared with animals: for, as we have said, the world of
plants is manifold. 34

33 Argued by digital physicists like Fredkin, Wolfram, Zuse, etc. This position tends to end up with a view of
the universe as being discrete.
34 Theophrastus, I.II.3, 19.

30

Similar to how the names of leaf shapes were based on their resemblances to other forms

found in daily human life (such as spears and eggs), the names of plant anatomical parts are

given for their resemblance to “the corresponding parts of animals.” However,

Theophrastus reminds us that while names tend to arise from homologous forms, this does

not always imply analogous function. He saw a manifold, separate uniqueness to the whole

botanical realm whereas his colleague Aristotle only really wrote of plants as upside-down

animals.

 Still, while certain comparisons to animal form and functioning has caused some

confusion concerning unique botanical functions and hence obscured for a long time the

importance of leaves, comparison also been the primary means by which uncharted

biological territory is first mapped. Theophrastus continues:

However, since it is by the help of the better known that we must pursue the
unknown, and better known are the things which are larger and plainer to our
senses, it is clear that it is right to speak of these things in the way indicated: for
then in dealing with the less known things we shall be making these better known
things our standard, and shall ask how far and in what manner comparison is
possible in each case.35

Theophrastus reminds us that understanding the world from the frame of our own position

is the only way to proceed towards the unknown—we simply must do so carefully, always

questioning if our “comparison is possible in each case.” Here is a lucid call to pair the open

human mind with critical thinking.

35 Theophrastus, I.II.3, 19.

31

Leaf Development: Hormones and Metaphysics

As the 2009 textbook Plant Biology says, “The leaf has a limited potential for

growth—in other words, it is a determinate organ.”36 Francis Ponge writes more poetically:

“Vegetable time resolves into vegetable space, the space plants gradually occupy on a

canvas forever preordained.”37 Whether this determinacy is ultimately eternal or not who

can say—either way, a leaf’s development follows its genetic programming. It is by virtue

of both their environmental conditions and their genotypes that leaves unfold and expand

into the massive variety of shapes we addressed earlier.

Having just come off a discussion of cell function, we look to a crucial developmental

tissue: the meristem, named by the Swiss botanist Karl Wilhelm von Nägeli. Meristems are

the sites of undifferentiated cells and hence the areas of new growth, with the most

important above-ground meristem being the shoot-apical meristem (SAM). Dividing cells

assume their identities early—hence we can imagine the meristem containing “unassigned”

cells which may become any number of different plant organs, including the leaf. Like all

plant organs, leaves begin at the meristem as primordia. Early leaf growth happens through

cell division (primary morphogenesis) which ceases and gives way to growth due to cell

expansion (secondary morphogenesis).38 Subsequent foliar cell division and expansion in

the different axial dimensions (the lateral axis being the width, the proximo-distal axis

being the length) is controlled by complex combinations of activated genes of which we

have smattered understanding. Generally, research in this area proceeds by the isolation of

36 Smith et. al (2009), 335.
37 Ponge, 73.
38 Scarpella et. al (2010), 2.

32

specific genes in specific species. They are revealed as being somehow important when

mutating them changes how the leaf develops. For example, Nicotra et. al write:

The leaf length : width ratio is regulated by polar-dependent cell expansion and cell
proliferation/distribution. Several key genes for its regulation have been identified
from Arabidopsis: ANGUSTIFOLIA (AN) and ROTUNDIFOLIA3 (ROT3) regulate the
shape of cells […] Loss-of function mutations of AN and AN3 result in narrower
leaves[…] a vast array of genes is known to influence leaf area […] As yet, we do not
know whether the above patterns hold in other non-model species.39

In other words, it’s complicated. It is a colossal, enormous abstraction (often made in the

papers of those that use genetic algorithms to evolve L-systems), but the symbols or

parameters of an L-system grammar can be imagined as “genotypical” with the generated

structure as the expressed “phenotype”. Using sliders to mutate the parameters in the

template leaves of this project changes expressed characteristics (such as the length : width

ratio) by controlling the lengths and growth-rates of various structural vein segments.

If you had to give a one-word answer as to what makes leaves develop and grow, it

might be “auxin,” the most crucial plant growth hormone. Auxin is unique among

phytohormones in that rather than diffusing passively throughout the plant it is actively

“pumped” through cells in specific directions, a process known as “polar auxin transport,”

which is especially important for leaf vein formation. One way in which auxin is theorized

to affect cell expansion is by causing a reaction which loosens the structures of the cell-wall

carbohydrates, thereby allowing the cell to enlarge through turgor pressure.40 Other

diffusive phytohormones (such as gibberellic acid) also play a part in regulating

development. As in animals, vascular tissue is crucial for hormone transport.

39 Nicotra et. al (2011), 539.
40 MacAdam, 216.

33

Having briefly addressed the biology of leaf development, we look to its

metaphysics. As it has been conceived by writers, this is a different kind of

“development”—it is more spatial than it is temporal although it assumes temporal

significance with evolutionary theory. Abstracted leaf development as a subject of inquiry

was studied earlier by anatomists like Marcello Malpighi but assumed a unique

metaphysical form with the beginnings of German plant morphology. Johann Wolfgang von

Goethe’s morphological import is demonstrated by him being the one credited with coining

the term “morphology” in the first place.41 Known best for his prolific literary output

(notably Faust, The Sorrows of Young Werther, and Elective Affinities, among other things),

Goethe also wrote a number of scientific treatises on subjects ranging from a theory of light

and color, animal anatomy, weather, and geology. In the spring of 1790 he published the

Metamorphosis of Plants, a book presenting his observations of plants with a focus on

comparing the forms of different plant organs. While certainly his most well-known

botanical work, many of his views on plant morphology are also expressed in letters to

friends, travel journals, and other separate treatises.

The scholarly milieu surrounding Goethe borders on obsessive and his scientific

work and method are controversial. Some scientists and historians disparage his scientific

efforts for being overly Romantic, unempirical, and often factually mistaken. C.W Wardlaw

is especially critical, writing that the study of plant morphogenesis did not really begin

until Schleiden “cast off the fetters of Goethe’s Theory of Metamorphosis.”42 Other

41 Commonly stated but possibly debatable. Goethe published “On Morphology” in 1817—a cursory Google N-
gram search shows the word appearing a bit earlier in both the German and English corpuses; two cases see it
applied to non-living things like coins and volcanoes. Regardless, it was Goethe who opened up the word and
established it as an actual field of study.
42 Wardlaw, 1.

34

scientists and writers of phenomenology are enthusiastic about Goethe’s method, which

holds intuitive perception as being a valid way of engaging with the world objectively. As is

common with such a polarizing issue, the middle-ground is likely the most fertile. We here

focus on those of his ideas derived from his observations of plants which are both shared

by other plant morphologists and which anticipated later botanical discoveries and

approaches.

This brings us to the idea of the leaf as the “universal” plant organ and appendage, a

viewpoint which gained its first significant advancements with Caspar Wolff and Goethe.

While Goethe may have been the first to call what he was investigating “morphology,”

Caspar Wolff preceded him in practice by about 20 years. Wolff and Goethe share a view of

the leaf as the universal organ of the whole plant, with both believing that all plant

organs—the petals, the sepals, the calyx, the corolla—are “modified” leaves. Goethe writes

during a trip to Italy,

While walking in the Public Gardens of Palermo, it came to me in a flash that in the
organ of the plant which we are accustomed to call the leaf lies the true Proteus who
can hide or reveal himself in all vegetal forms. From first to last, the plant is nothing
but leaf, which is so inseparable from the future germ that one cannot think of one
without the other.43

For Goethe, the idea of the leaf as a developmental “Proteus” came out his observations that

as you move up the stem, the organs/appendages resemble the leaf but in expanded and

contracted form. His conception of “leaf” is more of an ideational concept than a literal leaf;

hence it can be a universal unit.

What is meant by modified has to do with an abstract understanding of

metamorphosis. Metamorphosis proceeds as a sequence changing up the plant shoot—it’s

43 Goethe, Italian Journey, 366.

35

not something quite as temporal as the way we now imagine the word “metamorphosis.”

Similar views of plant form come up in the morphologists Arber, Oken, and de Candolle—

this will come up again with the discussion of the template leaf’s design in Part II.

The foliar nature of some plant organs has been supported by genetic discoveries.

Nicotra et. al write:

Recent genetic data identifies several genes that have roles in both leaf and flower
form[…]genetic changes in both leaf length to width ratio and leaf size influence not
only leaf proportions, but also that of the floral organs in Arabidopsis[…] some floral
characters as well as other metabolic pathways may now be closely linked with
regulation of leaf shape and size.44

Hence floral organs are theorized to have evolved from leaves. Despite this, neither Wolff

nor Goethe made the connection that their intuitions could have brought the constancy of

species dogma under fire and thus it wasn’t until Darwin that evolutionary theory was

brought to light. This is largely due to the abstract nature of their approaches; a

physical/temporal justification was not seen as necessary to talk about “changes” and

“transitions” between the forms of separate organs on the same plant.

If the leaf was ignored for too long in botanical science for a belief in the roots as the

primary nutritive organ, Goethe is guilty of entirely ignoring the roots for a focus on the

leaf—or, rather, only the plant organs found above-ground and visibly apparent to casual

observation. Furthermore, his Metamorphosis of Plants looks not at all plants but really only

at dicotyledonous annuals. These enormous exclusions (which have frustrated their share

of botanists) are intimately related to his goal of abstraction. He conceived of an archetypal

plant—the Urpflanze—which he seems to have believed to be an actual plant he could find

in the world until Schiller talked some sense into him. Rudolf Magnus writes that “To

44 Nicotra et al. (2011)

36

Goethe the archetypal plant had now become the scheme or, as he later called it, the type to

which all plant form could be reduced by comparison. It is the structural plan all plants

have in common.”45

In his notion of the Urpflanze, Goethe anticipates what morphology would later

become in the hands of scientific modelers. He writes:

The Primal Plant [Urpflanze] is going to be the strangest creature in the world,
which Nature herself shall envy me. With this model and the key to it, it will be
possible to go for ever inventing plants and know that their existence is logical; that
is to say, if they do not actually exist, they could, for they are not the shadowy
phantoms of vain imagination, but possess an inner necessity and truth. The same
law will be applicable to all other living organisms.46

A generative principle for inventing logical forms? Formal grammars are up to the job. The

Urpflanze can be viewed as a formalized, abstracted model, albeit one with a decidedly

Romantic bent. Peter Antonelli’s 1992 book review (in the SIAM Review) of Prusinkiewicz

and Lindenmayer’s indispensable plant-modeling volume The Algorithmic Beauty of Plants

even goes so far as to say that

200 years ago Goethe evidently had the “rules of syntax” on “universal plant
grammar” which the followers of Lindenmayer and Prusinkiewicz now seek[…]

He then points out that L-systems run into issues because while good at modeling

phenomena like branching, they have a harder time modeling biological nonlinearity.

Antonelli continues:

The chapter on fractals is a step in this direction. Such results bring us one step
closer to what Goethe knew about plant universal grammar but could not tell us
because his method was as much subjective as it was objective.47

45 Magnus, 73.
46 Goethe, Italian Journey, 310.
47 Antonelli, 143.

37

 Interesting stuff, for sure. A history of formalized morphology of a more explicitly

systematic/symbolic nature will be explored in detail in the Intersection—Goethe isn’t

included there as he wasn’t big on mathematics, but he is a clear forerunner of such

abstract, model building morphological approaches.

That C. W. Wardlaw—a botanist in the 1960’s who specialized in plant morphology

and morphogenesis—finds Goethe’s work frustrating and unscientific suggests also that

“morphology” does not necessarily denote the same thing. As always, there are

innumerable ways to approach a topic and an abstracted approach to form is just one—

Caspar Wolff was looking at leaf embryos under a microscope while Goethe was writing

plant poems:

 The plant-child, like unto human kind—
 Sends forth its rising shoot that gathers limb
 To limb, itself repeating, recreating,
 In infinite variety; ‘tis plain
 To see, each leaf elaborates the last—
 Serrated margins, scalloped finger, spikes
 That rested, webbed, within the nether organ—
 At length attaining preordained fulfillment.
 Oft the beholder marvels at the wealth
 Of shape and structure shown in succulent surface—
 The infinite freedom of the growing leaf.
 (From The Metamorphosis of Plants (Poem))

38

Patterns of Venation: Vascular Branching and the Unity of Phenomena

I was first attracted to individual leaves from a structural and infrastructural

perspective. I am especially intrigued by the relationship of the venation patterns to overall

leaf shape. Leaves present to our attention a bounded space spanned by a complex system

of veins which serve the dual purpose of both resource delivery and structural support.

Furthermore, venation patterns exhibit not only divergent branching but networked

reconnection as well. We now take a closer look at different patterns of venation, the

relationship between venation and leaf shape, and some hypotheses as to how they are

formed. Following this, we conclude Part I with the recognition of branching as a common

pattern in the world.

Following the efforts of Andrea Cesalpino in the 16th century to categorize plants by

the characteristics of their fruits and seeds specifically,48 botany as a science (when it

wasn’t absorbed in pharmacological pursuits and the authoring of herbals) largely focused

on classificatory systemization based on comparative anatomy. These systems tended

towards artificial distinctions which had the effect of grouping together species which had

little natural affinity outside of the selected organizational principle. Systematic botany

came to a head with Carl Linnaeus, who from the 1730s through the 1750s devised and

applied a clean artificial classification/naming scheme based entirely off of the number of

sex organs on the plant.49 Linnaeus was aware of the need for discovering groupings based

on natural affinities as well and hence viewed his artificial sexual scheme as a practical tool

for plant description and naming. Before this, however, John Ray in 1682 devised part of

48 Von Sachs, 53.
49 For an entire epic poem about anthropomorphized plant sexuality inspired by the work of Linnaeus, check
out Erasmus Darwin’s (grandfather of Charles) The Loves of the Plants. It’s surprisingly boring considering the
subject matter, but of course it stirred up controversy in the 1790s.

39

his own organizational system along an important classificatory line that turned out to be

more than just an artificial distinction—a particular property on which he focused

indicated an actual evolutionary divergence. Referring to the later enormous success of

Linnaeus’ taxonomy, Ray biographer Charles Raven states that “it could easily be argued

that Ray in fact laid down lines of classification more in accord with genuinely scientific and

evolutionary principles than those of his illustrious successor.”50 This is true to the extent

that Ray recognized the classificatory importance of a property that was partly along

natural lines—but again, Linnaeus was well aware of his sex system’s artifice, and Ray’s

scheme itself was otherwise largely (and knowingly) artificial, being based mostly off of

plant form. His most general division places a given plant into one of four categories: Trees,

bushes, shrubs, and herbs.51 What then was the natural property Ray saw, and what does it

have to do with patterns of venation?

The distinction John Ray drew came from his careful examinations of the early

growth of embryonic leaves—what his contemporary Marcello Malpighi termed

“cotyledons.” In his A New Classification of Plants, Ray writes that

In some kinds of seeds, the seminal plant does not consist of double seed-leaves, a
little root and a bud: but either consists of a stalk alone without leaves, or a leafy
stalk, or a single leaf without a stalk[…]A general distinction of plants is able to be
deduced from this division of seeds, and this disntinction, in my judgment, is the
first and best by far: between those that have a double-leaved or double-lobed
seminal plants, and those which have a seminal plant analogous to the adult plant.52

That is, some plants have double-cotyledons while others have just one. This is the

difference between dicots and monocots, which vary not only in their embryonic structure

but also in their leaf venation. Goethe wrote later that “we may infer that the point where

50 Raven, 200.
51 Ray, 53.
52 Ray, 42.

40

the cotyledons are attached is the first true node of the plant.”53 We might imagine the

cotyledon as the very start of branching.

As always, the modern scientific picture makes the monocot/dicot dichotomy more

complicated. Calling something dicotyledonous is actually a classificatory anachronism and

the phylogenetically correct term for most of them would now be “eudicot,” as not all

dicotyledons have a common ancestor. Monocots, on the other hand, are monophyletic and

thus still referred to as a group. However, we here retain the common term dicot as its

general meaning is essentially clear. When it comes to leaf venation, monocots usually have

parallel venation while dicots usually have a more complex (not to mention variable)

venational pattern.

53 Goethe, Metamorphosis of Plants, 12.

41

Figure 10: Left—Monocot leaves with parallel venation. Top sample cut from tulip.
Right—Dicot leaves with reticulate venation.

42

John Ray’s discovery provides a handy distinction between the parallel venation of

monocots and the more complicated reticulate venation of dicots which holds in the vast

majority of cases—Inamdar et al. (1983) give twelve species within seven different

monocot families with venation more characteristic of dicots. For example, the jack-in-the-

pulpit in Figure 6 is a monocot species with reticulate venation. Other than the exceptional

cases, a reasonable way to deduct something about a plant’s embryo and it’s possibly place

in evolutionary classification is by looking at its vein features. Asa Gray writes:

So that a mere glance at the leaves of the tree or herb enables one to tell what the
structure of the embryo is, and to refer the plant to one or the other of these two
grand classes,—which is a great convenience. For generally when plants differ from
each other in some one important respect, they differ correspondingly in other
respects as well.54

The system of my project models non-parallel

venation as the collected samples are almost all

(based purely on their venation) dicotyledonous.55

Why would parallel venation be helpful

ecologically? Monocots are commonly found close

to the ground—many herbs and grasses, for

example. Parallel venation can serve as a defense

against herbivory because the veins run in the

same direction as that of a hungry animal’s bite.

54 Gray, 56.
55 The bottom left leaf in Figure 10 was perhaps the only parallel-veined leaf I happened to collect—excluding
grass (a monocot), dicot leaves are more common.

Figure 11: Gory mess resulting from
underestimation of yucca plant's

anti-herbivory defenses.

43

The reticulate venation patterns of the dicots appear in many structural varieties.

The most basic division is between leaves with pinnate venation (also ‘feather-veined’) and

those with palmate venation (also ‘digitate,’ ‘radiate’).

Figure 12: Left—Pinnate venation. Right—Palmate venation.

This distinction will become very important later with the different leaf venation

templates. Pinnate venation means the lateral/secondary veins are coming off a single

primary mid-rib. Palmate venation means there are multiple primary veins all radiating

from the base of the leaf. Notice that the veins in both patterns have veins coming off of

them as well, forming a complex network pattern.

44

Because the veins must both support and service all of the laminar area, the scheme

of a leaf’s venation is tied intimately to its shape. In his 1860 textbook, First Lessons in

Botany and Vegetable Physiology American botanist (and friend of Darwin) Asa Gray makes

a number of interesting observations about this relationship. Firstly, he points out that:

Since the general outline of leaves accords with the framework or skeleton, it is
plain that feather-veined [pinnate] leaves will incline to elongated shapes, or at least
will be longer than broad; while in radiate-veined [palmate] leaves more rounded
forms are to be expected[…]Whether we consider the veins of the leaf to be adapted
to the shape of the blade, or the green pulp to be moulded to the framework, is not
very material.

Gray recognizes that external leaf shape is clearly related to the framework of the internal

structure. His observation that pinnate leaves tend to have a greater length:width ratio

when compared to palmate leaves held up in my own observations of my samples—barring

one or two exceptions, palmate leaves had length:width ratios < 1 while the ratios of

pinnate leaves were consistently greater than 1. However, while it may seem like this

criteria should be enough to allow the system to label a leaf one way or the other, it doesn’t

do so simply because there is no guarantee. Instead the system was built to try both and

sees which pattern gets the resulting L-system closer to the input shape.

Here Gray also argues that an understanding of precisely how leaf shape and

venation are related developmentally is not necessary to being able to accurately observe a

structural relationship—whether the veins follow the shape or the shape follows the veins

“is not very material.” He continues:

Either way, the outline of each leaf corresponds with the mode of spreading, the
extent, and the relative length of the veins. Thus, in oblong or elliptical leaves of the
feather-veined sort, the principal veins are nearly equal in length; while in ovate and
heart-shaped leaves, those below the middle are longest; and in leaves which widen
upwards, the veins above the middle are longer than the others.56

56 Gray, 57.

45

Gray here describes how varying vein lengths in different parts of the lamina correspond to

different outline shapes. Goethe writes similarly in The Metamorphosis of Plants:

But further development spreads inexorably from node to node through the leaf: the
central rib lengthens, and the side ribs along it reach more or less to the edges.
These various relationships between the ribs are the principal cause of the manifold
leaf forms.57

 I find these to be especially interesting passages in light of how parametric L-systems can

build the growth rates of different vein segments into their grammars. These venation

parameters in turn affect the final outline shape because the veins serve as a structural

framework for the leaf’s polygonal geometry.

One of the most intriguing sub-phenomena of leaf venation is anastomosis, or when

veins reconnect to form a network. Hence many systems of foliar venation have the

organizational properties of both “trees” and “networks”—trees being hierarchical systems

without reconnecting branches and networks being the systems in which anastomosic

reconnections are common. Typically the lower order, larger, more primary veins will not

exhibit this reconnection while higher order, smaller

veins do, forming an intricate network visible only

when one looks closely.

In most dicotyledonous leaves vein

reconnection only occurs at the higher orders of

venation (that is, smaller veins you must look close to

see), but in some kinds of leaves even the easily

visible 2nd-order (lateral) veins form anastomosic

57

 Goethe, Metamorphosis of Plants, 16.

46

loops. This is known as brochidodromous venation.

That being said, in our discussion of leaf venation we do well to heed the reminder

of botanist P.B. Tomlinson, who writes in “Branching is a Process, Not a Concept” that

Existing terminology tends to be static i.e. concerned with the existing plant body as
an end product, rather than with a concern for the dynamics of the branching
process itself.58

Tomlinson calls for the use of a flexible language. All the labels in the world won’t lead to

understanding unless paired with awareness for developmental process. So what causes

the formation of these branching patterns in leaves?

In the section on leaf development we addressed polar auxin transport—this is an

essential part of vein formation. Many theories about the physics of vein formation point to

elastic tensorial stresses—hence many comparions are made between cracking patterns in

drying mud and leaf venation.59 Leaf vascular tissue comes in two varieties: the

unidirectional xylem (transports water up from the roots), and the bidirectional phloem

(distributes nutrients).

58 Tomlinson (1987), 55.
59 Couder (1999), in Branching in Nature.

47

Left—Regular reticulation pattern in a leaf. (Manual of Leaf Architecture, 87)
Right—Baltimore, aerial. (Bing Maps)

Left—“Electrical treeing,” studied by Georg Lichtenberg. Lightning is a natural
Lichtenberg figure. (Wikimedia Commons)

Right—Lichtenberg writes also in an aphorism of the crystalline and arboresque
growth of “ice ferns on the windowpane.”

48

Cracking patterns form by stress within a tensorial fields. The tensorial stress caused

by an expanding leaf lamina is hypothesized to be one component of the physical

explanation for leaf vein formation. Left—Bark. Right—Cracking mud.

Tivoli Bays demonstrating scaling of branching water patterns. Bottom picture is a

zoomed-in piece of the middle of the top image. (Pictometry)

49

Leaf venation patterns bear a universal significance that extends beyond the

mesophyll in which they are embedded. The preface to the 1999 Branching in Nature, a

collection of scientific papers on various types of branching morphologies, states that the

similarity of these patterns has been scientifically underexplored:

Hence, the idea of a unity behind amazingly different systems has remained latent
for two thousand years. However, if we except the work of Scheuchzer, very little
true progress was made on the scientific issues linked to branching morphogenesis
until very recently. The specialization and segmentation of the scientific fields,
which is one characteristic of modern science, has turned each branching pattern
into a specific scientific object.60

Perhaps the science has had less development61, but it isn’t as though humans haven’t been

noticing this unity. The morphological similarity of branching phenomena has been

poetically expressed not only in the human names for things but also in the keen

observations and metaphors of writers across time. At the conclusion of the first year of his

lifestyle experiment at Walden Pond, Thoreau took notice of the rivulet patterns formed in

sand during the spring thaw:

You find thus in the very sands an anticipation of the vegetable life. No wonder that
the earth expresses itself outwardly in leaves, it so labors with the idea inwardly.
The atoms have already learned this law, and are pregnant by it. The overhanging
leaf sees here its prototype.[…]The whole tree itself is but one leaf, and rivers are
still vaster leaves whose pulp is intervening earth, and towns and cities are the ova
of insects in their axils.62

 In the venation patterns of a leaf we see “something” which permeates the

inorganic, organic, and human universes. If the branching trees and anastomosic networks

of our data structures count too, it extends, perhaps, even into the realm of the

60 Fleury, v.
61 Or it did in 1999, anyway.
62 Thoreau, 547.

50

informational. As the editors of Branching in Nature write, “There exist universal

paradigms.”63 The branching patterns inside my skin resemble those outside my window.

Concluding Remarks

 The close reading of old, “outdated” textbooks and treatises is hardly a waste of

time—when supplemented by contemporary information, tracing the route of knowledge

and discovery gives the modern scientific picture64 a crucial contextual depth otherwise

absent.

Ever-astute, Agnes Arber writes in the preface to The Natural Philosophy of Plant

Form:

I began by thinking of this subject quite simply as a branch of natural science, but I
have come finally to feel that it reaches its fullest reality in the region of natural
philosophy, where it converges upon metaphysics, to which it brings its own,
distinctively visual contribution[…]65

Arber states that the study of plant form brings a “visual contribution” to metaphysics—I

am inclined to agree, though if you asked me for a definition of metaphysics I couldn’t

provide one. As the project moves in towards Part II, the focus shifts from looking at leaf

form to reproducing it graphically. To this end, the Intersection presents a broad historical

overview of some past work done at the intersection of morphology and formalized

representation.

63 Fleury, v.
64 Which, realistically, I’ve barely touched on. But I did kind of try! Hopefully this whole thing is mostly
accurate.
65 Arber, vii.

51

Intersection

52

Past Work in Formalized Morphology

Much work has been done attempting to understand morphology and

morphogenesis through the lens of formal representation. I include under the umbrella

“formal” mathematical, computational, and symbolic. This review is in no way intended to

suggest that the present project is actually building off of any of these landmark works

other than the efforts of Lindenmayer and Prusinkiewicz in applying L-systems to plant

morphology. Rather, I wrote this section because the work done in this area over the

course of history is absurdly interesting—formal morphology seeks, above all,

interpretations of phenomena that are satisfactory to human intuition. A common theme

throughout this review is also the creation of visual models from formal representation. A

more typical “past work” summary comes later in the section, where I discuss the specific

research upon which this project builds most directly.

 A 2012 review of work done at the intersection of plant morphology and symbolic

representation by Przemyslaw Prusinkiewicz and Adam Runions begins by citing a

statement in Theophrastus’ Enquiry into Plants concerning the numbers of petals typically

found on roses. The quotation is offered as representative of “the longest historical link

between observations and a mathematically flavored research problem in developmental

plant biology.”1 While their point certainly has more to do with establishing the early

recognition of common numerical configurations of plant organs rather than affirming

some absolute historical origin of mathematically inspired plant models, my own review of

1 Prusinkiewicz and Runions (2012), 549.

53

similar ground means the opportunity to pick a different starting place simply because it’s

possible to do so (and the Greeks get enough credit already).

Figure 13: Not quite a treatise on formalized morphology, but a fine drawing.
(Science and Civilization in China, 285)

That being said, the ancient Chinese were engaged in scientific inquiry during

roughly the same (broadly considered) time period as the Greeks and similar

morphological observations of plants are found in their writings. While there was not an

authoritative, single-authored, comprehensive botanical tract comparable to the one

produced by Theophrastus, there is no shortage of extant technical investigations of plant

form by the Chinese. Huang Thing-Chien (1090) writes about the tendency of orchids to

have either 1, 5, or 6 flowers while Liu Mêng (1104) describes in his book on

chrysanthemums the possibility of “a doubling of the petals, and a duplication of the

flowers themselves on their peduncles, not to mentions how sometimes a transformation

of flowers into the ‘thousand-petalled’ varieties occurs.” 2 What Battjes et. al (1993) refer to

2 Needham, 418, 413.

54

as “numerical canalization”—a preference for certain numbers of organs—was observed in

plants by the Greeks and Chinese alike. There are also botanical entries in the Erh-Yah (an

ancient encyclopedia/dictionary from the 3rd century BC) describing different kinds of

branching structures.3 Those with any interest whatsoever in Chinese science should look

into Joseph Needham’s incredible Science and Civilization in China—the entirety of Vol. 6.i

deals with botany.

 Moving west and forward to the Renaissance, a notebook page of the notoriously

prolific Leonardo Da Vinci presents a handful of mathematical relationships describing the

branching structures found in trees.

Figure 14: Tree studies by Leonardo Da Vinci, Paris Manuscript M. fol. 78 v , 79 r.
(1490-1500)

3 Needham, 128.

55

Edward MacCurdy’s translation of the left folio reads as follows:4

Every year when the branches of the trees have completed their growth,[…]at each
stage of their ramification you will find the thickness of the said trunk as in ik, gh, ef,
cd, ab. They will all be equal to each other if the tree has not been pollarded;
otherwise the rule will not fail.5

Da Vinci’s treatment of branching morphology is interesting as his method and approach

resemble (as well as ink and paper might) later morphological attempts in that his

observations are supported by the hand-drawn images—the earliest form of graphical

modeling—alongside symbolic association. He is also confident that his posited rule holds

true outside of extenuating circumstance, writing that “the rule will not fail.” He has defined

what he sees as an ideal rule reliably found in nature provided the specimen hasn’t been

pruned. On the next page he gives another rule about branching angles and asserts that it is

true so long as “no accident has marred the specimen.” Does he have confidence in an

absolute, unfailing applicability of his model, or does he recognize it as an abstraction? This

demonstrates a wrestling with the difficulty in modeling natural processes which find their

sources in the countless accidents and unforeseen variables by which they are constituted.

Within those inclined to develop systematic rules to describe the world there might also be

found an aversion to ultimately undeniable teratological realities, as the mere existence of

“abnormalities” point to the system’s insufficient descriptive power.6

 So what is the rule he proposes here? It is his law describing the thickness of tree

branches in relation to their parent branch. He writes it again on another notebook page:

“All the branches of trees at every stage of their height, united together, are equal to the

4 If the characters in the image don’t seem to match the text, keep in mind that (for whatever reason)
Leonardo wrote his notes backwards. The folio on the right side mostly deals with branching angles.
5 Da Vinci, 306.
6 For a discussion of the significance of teratological concerns, see (Arber, 5). There are benefits to not shying
away from abnormal forms and instead using them to better understand typical developmental processes.

56

thickness of their trunk.”7 Essentially, the total cross-sectional area is preserved at every

branching stage. Imagine a tree trunk with a diameter of 3 ft. The cross-sectional area

would be ~7.07 ft. Da Vinci’s rule states that at a point of branching, the cross-sectional

areas of the child branches will add up to that of the parent. Let’s say the two child

branches coming off this trunk are of equal thickness, although they don’t have to be to

satisfy the rule. In this case they would each have a cross-sectional area of around ~3.53 ft.

The diameter of each child branch would thus be around ~2.12 ft. The whole area-

preserving relationship can be put in terms of diameters, with 2.122 + 2.122 ≈ 32.

Da Vinci’s rule can thus be expressed as a power law relating parent and child

diameters:

d02 = d12 + d22

To illustrate what this looks like, we can use a graphical model. Here’s a preview of what a

parametric L-system can do. The following L-system—taken and modified slightly from one

in section 6.3 of Prusinkiewicz et. al (1997)— models a tree whose branch thickness

follows Da Vinci’s bifurcation rule.

7 Da Vinci, 306.

57

Figure 15: Tree with branch thickness following Da Vinci’s bifurcation law.

A description of the parametric L-system mechanism is given in Part II. For now, the

most important symbols here are w and e, with w indicating the stroke weight and e being

the exponential application of the bifurcation rule. The stroke weight is the thickness of the

line and hence stands in for diameter. The two sets of square brackets stand for the left and

right branches respectively—the child branch weight is calculated in the expression

“w*0.5^e.” The 0.5 on both sides makes each child branch of equal weight—if it were, for

example, 0.7 on the left and 0.3 on the right, the left branch of each bifurcation would

always be thicker. The trunk begins with a stroke weight of 60. At the first bifurcation,

because e = 1/2, we get

Da Vinci Tree L-system:
Axiom: A(110,60)
Production: A(s,w) → !(w)F(s)[+(30)A(s*0.62, w*0.5^e)][-(66)A(s*0.73, w*0.5^e)]
Parameters: e = 1/2

58

60 * √𝟎. 𝟓 ≈ 42.42

Each daughter branch at the first ramification hence has a stroke weight of around 42.42.

Just to confirm that the above L-system checks out, we see that

42.422 + 42.422 ≈ 3598.9

602 = 3600

At the next point of branching on each side, 42.42 will be the parent diameter, and so on.

Hopefully this example demonstrates what Leonardo’s rule expresses and how it can be

encoded in a procedural system.

So does Da Vinci’s branching rule manifest in actual trees? In “Twigs, Trees, and the

Dynamics of Carbon in the Landscape” Henry S. Horn describes his results of testing

Leonardo’s rule against the real world. After measuring the branching allometry of five

different species of tree, he finds that

[…] the twigs and smaller branches are generally thicker than Leonardo’s area-
preserving rule predicts. Further interpretations must await more precise
measurements, structured to disentangle the causes of variation at the small end of
the scale. Toward the trunk, however, all species seem to obey Leonardo’s rule,
regardless of the different hydraulic permeabilities of their wood.8

Horn measurements find that it holds for the thicker branches of at least five species and an

assumed extrapolation to certain other species is not unwarranted. Most books and papers

which reference Da Vinci’s bifurcation rule agree that it is a fair abstraction which tends to

match reality—Mandelbrot mentions that it also applies to the widths of rivers9, which is

an assertion found elsewhere in Da Vinci’s notebooks. But what of other branching

structures? In Part I we discussed arterial branching. Do diameters of artery branches

behave like the diameters of tree branches?

8 Horn, 204. In Scaling in Biology.
9 Mandelbrot, 157.

59

 Not quite—while they both bifurcate, arteries aren’t solving exactly the same

problem as are tree bodies so they don’t ramify in the same way. Instead they follow a

bifurcation law with a larger exponent (call it γ) which instead of just preserving the total

cross-sectional area results in a larger total area relative to the parent vessel. This results

in thicker diameters. Concerning the value of this exponent, Schreiner et al. write that

The appropriate choice of γ has been thoroughly discussed in the literature, and the
theoretical arguments as well as experimental measurements indicate that only
values in the range 2 ≤ γ≤ 3 are physiologically reasonable.10

Murray’s cube law—which deals with the flow rate within the blood vessel—puts

the optimal energy preserving value at 3, although as always the real situation is a bit more

complex. Following Murray, we now have

d03 = d13 + d23

Hence, the parameter e in the above L-system becomes 1/3 and the resulting tree looks a

bit different:

10 Schreiner et. al (2000), in Scaling in Biology, 147.

60

Figure 16: Arterial “tree” with branch thickness based off Murray’s
approximations of hydrodynamic optimality.

 Why do arteries—unlike the bodies of trees—have branches whose combined cross-

sectional areas are greater than that of the parent branch? D’Arcy Wentworth Thompson,

the next morphologist in this review, summarizes it nicely:

The increasing surface of the branches soon means increased friction, and a slower
pace of the blood travelling through; and therefore the branches must be more
capacious than at first appears. It becomes a question not of capacity but of
resistance; and in general terms the answer shall be equal in every part of the
system, before and after bifurcation, as a condition of least possible resistance in the
whole system; the total cross-section of the branches, therefore, must be greater
than that of the trunk in proportion to the increased resistance.11

It’s all about conductance—wider tubes mean less pressure loss from resistance.12 Da

Vinci’s tree rule has led to some interesting lines of inquiry but sadly we can’t keep

burrowing down the vessel diameter rabbit hole forever.

11 Thompson, 954.
12 As per the Hagen-Poiseuille law. Also, the Rall model puts the neuronal dendrite diameter exponent at 3/2.

61

Our focus now moves into the 20th century. Texts dealing with morphology written

after 191713 are indebted to D’Arcy Wentworth Thompson’s On Growth and Form, from

which we just read an explanation of arterial diameter. Thompson’s book is astounding in

its scope and comprehensiveness, integrating broad morphological knowledge from many

languages14 and countries into a single two-volume work. In the realm of the botanical, On

Growth and Form has sections on the mechanical efficiency of the heights of trees,

phyllotaxis, and leaf shape. 15 In his section on phyllotaxis (which is below addressed

briefly alongside Alan Turing), Thompson quotes the statement of Nehemiah Grew (plant

anatomist and famous contemporary of Marcello Malpighi) that “from the contemplation of

Plants, men might first be invited to Mathematical Enquirys.”16 Plants are, as they say, a

gateway drug.

13 The expanded second edition was published in 1942—quite a bit later and after the formulation of
quantum theory.
14 Primarily German, French, some Italian, not to mention his frequent citations of older Latin works. He also
doesn’t bother to translate many of the lengthy included quotations, apparently assuming polyglotism of his
readers.
15 Thompson, 28-29, 912-933, and 1041-1047, respectively.
16 Thompson, 912.

62

Figure 17: Assembled examples of mathematical analysis of leaf morphologies.

D'Arcy Wentworth Thompson, On Growth and Form (1952 reprint).

One reason On Growth and Form makes interesting reading is the philosophical

position of its author. Thompson was looking to apply mathematics to biomechanical

explanations of morphological processes, as he thought this was the most precise way to

gain a deep understanding. He writes that “In the morphology of living things the use of

mathematical methods and symbols has made slow progress”17—if the subsequent impact

of this book is any indication, Thompson surely did his part to hasten the application of

mathematical methods to biology. Thompson laid out detailed comparisons of related

forms using deformed Cartesian grids, his own method of morphometrical analysis and a

doorway to a spatial understanding of differences in organic morphology.

 However, Thompson’s overall point-of-view appears mildly inconsistent throughout

the text and thus is difficult to parse. Concerning his motivations, he writes:

17 Thompson, 1028.

63

My sole purpose is to correlate with mathematical statement and physical law
certain of the simpler outward phenomena of organic growth and structure or form,
while all the while regarding the fabric of the organism, ex hypothesi, as a material
and mechanical configuration. This is my purpose here.18

In Thompson’s view, organic forms work by the same mechanical laws as does inanimate

matter and they should hence be understood by the same means. As such, he has been

understood as being an anti-vitalist. It is strange, however, that he at the same time derides

the theory of natural selection as harkening back “to a school of mystical idealism.”19 He

appears to believe that the mechanical realities of mathematical law (or, perhaps, the

mathematical realities of mechanical law) are enough for Form to manifest the way it does.

Despite his scientifically stated “sole purpose” at the very beginning, the Epilogue to the

massive text would suggest that the whole effort was all along in pursuit of beauty:

For the harmony of the world is made manifest in Form and Number, and the heart
and soul and all the poetry of Natural Philosophy are embodied in the concept of
mathematical beauty[…]

Not only the movements of the heavenly host must be determined by
observation and elucidated by mathematics, but whatsoever else can be expressed
by number and defined by natural law. This is the teaching of Plato and Pythagoras,
and the message of Greek wisdom to mankind.20

While there are passages throughout the text where Thompson explicitly distances himself

from such a “dreamy” philosophic position (at one point even chastising an “inexcusable

Pythagorisme” in the face of the Golden Mean21), he in the end embraces Pythagoras.

Returning to the theme of abnormalities brought up with Da Vinci, Thompson’s

treatment is characteristic of many morphologists. He begins a paragraph “Omitting the

“abnormal” cases, such as we have seen to occur in a small percentage of our cones of the

18 Thompson, 14.
19 Thompson, 933.
20 Thompson, 1097.
21 Thompson, 932.

64

spruce[…]”22 and then presents a mathemtical rule which held for all other examples. What

I find most interesting here is that by placing the word abnormal within quotations,

Thompson reveals that he is well aware that exceptional forms which do not follow general

trends are only circumstantially “abnormal.” From the viewpoint of a man like Thompson

there may presumably be some other more broadly considered law which would account

for their existence—but again, abstraction and omission go hand in hand. This is perhaps

why Alan Turing describes his mathematical model of a growing embryo as “a

simplification and an idealization, and consequently a falsification.”23

In 1952, computer science pioneer Alan Turing published “The Chemical Basis of

Morphogenesis”, his well-known paper positing an explanation of biological development

and pattern formation based on the diffusion of hypothetical chemical “morphogens”

through tissue. This became known as the “diffusion-reaction” theory of morphogenesis.

Turing demonstrates how a system which begins with a homogeneous distribution in

equilibrium ends up forming regular heterogeneous patterns following the onset of subtle

instability and presents six possible mathematical outcomes of what he calls morphogen

“wave” patterns. Turing describes that the workings of a particular example found in the

paper—an isolated “ring” of cells—is closest biologically to the tentacles of the fresh-water

organism Hydra and to leaves arranged in a pattern of whorled phyllotaxis.24 He also notes

that these “waves could arise in a tissue of any anatomical form.” Botanist C. W. Wardlaw

22 Thompson, 923.
23 Turing, 519.
24 Turing, 556.

65

compares Turing’s approach to morphogenesis to that of D’arcy Wentworth Thompson’s,

as both men root their models in physico-chemical laws.25

Figure 18: Sunflower florets annotated by Turing alongside
photograph from the same archive folder.

(Turing Digital Archive, AMT/C/25, images 95, 96)

Found within Turing’s drafts and unpublished manuscripts are further

investigations into phyllotaxis, or the spatial arrangement of plant organs on the stem. As

suggested by Turing’s drawing in Figure 18, the spiraled placement of florets on a

sunflower can be analyzed mathematically. The term “phyllotaxis” has come up a number

of times throughout this project and here will be given treatment. Turing follows a long line

of curious investigators of this botanical phenomenon. In 1754 Charles Bonnet and Jean-

Louis Calandrini first named and described phyllotaxis in its different forms. Goethe

brought attention to the ‘spiral tendency’ he saw in all plants; there were later

investigations by Schimper, Hofmeister, and Braun, among others. A.H. Church’s 1901 On

the Relation of Phyllotaxis to Mechanical Laws is particularly notable. Turing’s draft of an

25 Wardlaw, 124.

66

unpublished paper (aptly titled “A Morphogen Theory of Phyllotaxis”26) applies his

morphogen theory towards an understanding of this phenomenon. The morphological

work of Turing presented here was done towards the end of his life, as a tragic early death

cut short what could have been a career of even further influence—hard to believe of an

already gargantuan figure.

Phyllotaxis has excited mathematicians for a long time in part because the geometry

of the most common type of phyllotaxis (spiral phyllotaxis) is related to the Golden Angle

and the Fibonacci sequence. As the primordial elements of a plant demonstrating spiral

phyllotaxis grow, they are each placed at a constant divergence angle (137.5˚, the Golden

Angle) from the one before. Counting the number of clockwise spirals (called parastichies)

and then counting the number of counter-clockwise spirals yields a pair of consecutive

numbers in the Fibonacci sequence. Figuring out why so many plants do this is trickier—

the catch-all answer seems to be “self-organization!”

One of the consequences of the phyllotactic patterns of leaf placement is on the

amount of sunlight available to leaves lower down on the shoot. Nicotra et. al (2011) write:

Computer simulations of mathematically generated shoots to assess the influence of
leaf shape, size, and phyllotactic patterns on the ability to intercept direct solar
radiation show that differences in phyllotaxy significantly influence light
interception[…]

First, notice that computer models are cited as a valid way of testing and measuring the

effects of various biological forms, which is an otherwise difficult independent variable to

manipulate. Second, more points for Da Vinci, who wrote that

26 Collected, edited, and printed in the 2013 Alan Turing: His Work and Impact, ed. Cooper and van Leeuwen
and also available in draft form on the Turing Digital Archive:
http://www.turingarchive.org/viewer/?id=124&title=1

67

[…]leaves are arranged on the plants in such a way that one covers another as little
as possible, but they lie alternately one above the other as is seen with the ivy which
covers the walls. And this alternation serves two ends; that is in order to leave
spaces so that the air and the sun may penetrate between them, and the second
purpose of it is that the drops which fall from the first leaf may fall on the fourth, or
on to the sixth in the case of other trees.27

This goes back to Part I, where the relationship of leaves to water and sunlight was a

consistent question among observers of nature. Like his contemporaries, Da Vinci saw the

sun/leaf relationship as one of drawing moisture and sap upwards (again, the movement of

moisture is quite true, but not the whole story). He sees the gaps allowed by phyllotactic

patterns of leaf arrangement as being there to let through air, sun, and water droplets.

Whatever leaves are really trying to let through, Da Vinci was right to notice that “one

covers another as little as possible.” Nicotra et. al continue:

They also show that comparatively small differences in leaf shape can compensate
for the negative effects of leaf overlap resulting from virtually any phyllotactic
pattern. For example, lobed leaves or pinnifid compound leaves facilitate light
penetration through shoots bearing densely pack leaves.28

Back to leaf shape again! More light for the leaves below is one benefit of lobation. These

computational simulations suggest that leaf shape and leaf arrangement are tied

evolutionarily. Nicotra et. al view phyllotaxy as “a developmental limiting factor that can

drive compensatory changes in morphological features such as shape[…],” which

encourages us to think of leaf shape in the context of the form and arrangement of the

entire plant.

Mathematician René Thom’s book Structural Stability and Morphogenesis: An Outline

of a General Theory of Models was first published in French in 1972. In his development of

“catastrophe theory,” Thom sought a generalized mode of qualitative theorizing of

27 Da Vinci, 302.
28 Nicotra et. al (2011), 543.

68

morphogenesis based off of differential topological analysis, the titular “catastrophe” being

the point at which a phenomenon experiences a sudden discontinuity and change in form.

Thom does not see qualitative as meaning unmathematical—rather, he’s writing about “the

tendency of the mind to give to the shape of a graph some intrinsic value; it is this tendency

that we shall develop here to its ultimate consequences.”29 As a book it’s remarkably

strange and entertaining, full of musings like the following:

We might say, in this sense that geometry is successful magic. I should like to state a
converse: is not all magic, to the extent that it is successful, geometry?30

 Thom also compares his theory to the philosophy of the pre-Socratics, writing that “all the

basic intuitive ideas of morphogenesis can be found in Heraclitus: all that I have done is to

place these in a geometric and dynamic framework[…].”31 If only math textbooks were so

enchanting.

Thom’s theorizing leads him to both the classification of topological singularities

into seven well-defined “elementary catastrophes” as well as to descriptions of what he

calls “generalized catastrophes.” An example of the former would be the “swallow’s tail”

catastrophe (as illustrated by Dalí in Figure 19), the extremities of which he saw as

modeling the blastopore furrow found in embryological development.32 The generalized

catastrophe he applies to phenomena ranging from human sexuality to delirium to the

origin of language.33 For Thom, morphogenesis is not limited to just the bodily forms of

organisms but rather to anything with a formed structure. Hence, morphogenesis is

present in essentially everything. Defending Anaximander and Heraclitus’ uses of

29 Thom, 4.
30 Thom, 11.
31 Thom, 10.
32 Thom, 67.
33 Thom, Chapter 13. From Animal to Man: Thought and Language.

69

anthropological words like ‘conflict’ and ‘injustice’ to describe the appearance of the

physical world, he writes:

“[…]the dynamical situations governing the evolution of natural phenomena are
basically the same as those governing the evolution of man and societies[…]”34

Or, as Heraclitus would say, all is flux.

Figure 19: Salvador Dalí’s final painting, The Swallow’s Tail (1983).

By his own admission, Thom’s scheme of using topology to address morphogenesis

offers little explicit predictive benefit but rather a qualitative geometrical description of

formative processes. His primary focus is on, as the title of the book suggests, the benefit of

models. In comparison to the other mathematical approaches to morphogenesis described

here, not a whole lot appears to have directly come out of Thom’s catastrophe theory. After

much hype in the 1970s it fell out of favor. However, it remains an intriguing and unique

way of conceptualizing sudden changes and his idea of “catastrophe” as a formative tipping

point has become part of the common lexicon.

Benoit Mandelbrot caused a stir in geometrical intuition with his studies in the late

1970’s of irregular, frequently self-similar scaling patterns he placed under the umbrella

34 Thom, 323.

70

term fractals, from the Latin fractus, meaning interrupted, irregular, or broken. These

investigations culminated in the 1982 publication of The Fractal Geometry of Nature.

Calling it “a manifesto and a casebook,”35 Mandelbrot presents precise mathematical

explanations of patterns classical Euclidian geometry deemed “formless”: that is, many of

the shapes we see in the natural world all around us. The book opens with a reminder that

“clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not

smooth, nor does lightning travel in a straight line.”36 Mandelbrot examines non-linear

constructions which had been labeled by mathematicians as “monstrous,” such as Koch

curves, the Peano curve37, and Osgood curves, among others. Likening the latter to vascular

systems, he writes “Lebesgue-Osgood fractal monsters are the very substance of our

flesh!”38 There are numerous methods for generating fractal graphics and L-systems are

one of them.39

35 Mandelbrot, 24.
36 Mandelbrot, 1.
37 A variant of the Peano curve, the Hilbert curve was used by Sapoval et al. (1999) to model optimal
mammalian acinus morphology (“acinus” meaning the gas exchange surface of the lungs, where the alveoli
are), ultimately demonstrating that, as a result of the behavior of diffusion currents, “for good efficiency of the
diffusive transfer of oxygen to blood, the unit transfer system, namely the lung acinus, should not be too
large[…]the lung has to be divided into a large number of small efficient units[…]As the lung is space filling,
the air access to these units has to be a branched geometry.” In Branching in Nature, 225.
38 Mandelbrot, 150.
39 That is, using the looser definition of fractal which considers technically finite curves to be approximations
of infinite fractals.

71

Figure 20: “Plane-filling recursive bronchi,” from Benoit Mandelbrot, The Fractal
Geometry of Nature, Plate 164.

 Mandelbrot was a believer in the power of human vision to make sense of the world.

He thought that the best way to test the validity of a scientific model is to see if it produces

something that looks right to a human subject:

Graphics is wonderful for matching models with reality. When a chance mechanism
agrees with the data from some analytic viewpoint but simulations of the model do
not look at all “real,” the analytic agreement should be suspect.

This is a rather bold statement, as it places a more immediate trust in the instinctual

judgment of the human perceiver than something arrived at through an analytic method. It

would not be every researcher’s first hunch to question the numerically validated model

before their own opinion—although, in the case of a poor simulation result, the first

suspect is probably the programmer. Mandelbrot continues:

A formula can relate to only a small aspect of the relationship between model and
reality, while the eye has enormous powers of integration and discrimination.40

 Sense perception allows for a more comprehensive and all-at-once view of phenomena

than a specific formula on its own. Put another way, “in the theory of fractals ‘to see is to

believe.’”41

40 Mandelbrot, 22.
41 Mandelbrot, 21.

72

A well-known method of fractal generation using “Iterative Function Systems” was

first developed by John E. Hutchinson and later expanded on and popularized by Michael

Barnsley in his book Fractals Everywhere (1988) and its successor Superfractals (2006).

One of the most well-known images to come out of Barnsley’s work with IFSs is the fractal

resembling a black spleenwort fern (often called the “Barnsley fern”) as shown at the top of

Figure 21. The Barnsley fern is appealing aesthetically and also because it makes the self-

similar structure of this particular kind of plant mathematically and visually apparent.

Figure 21: Some plant-like fractals by Michael Barnsley. Top—A Barnsley fern
generated using the randomized Chaos Algorithm (Fractals Everywhere, 92).

Bottom—leaf shaped attractor, right, generated using the Collage Theorem on target
set, left (Superfractals, 329).

As an abstraction, strict self-similarity only captures certain aspects of plant form

and ferns are rather unusual (as far as plants go) to the degree they express it. The basic

IFS mechanism results in constructions that are strictly self-similar, frequently not the case

in organisms. Thus research done with IFSs has resulted in expanded systems which have

relaxed self-similarity requirements, such as recurrent IFSs (RIFS) or language-restricted

73

IFSs (LRIFS). The collage theorem as shown at the bottom of Figure 21 can also be used to

generate attractors that resemble objects that are only approximately self-similar.

The relationship of IFSs to L-systems has been an area of interest for researchers.

Chapter 8 of The Algorithmic Beauty of Plants presents an example of how to proceed from

a certain kind of parametric L-system to an IFS which generates an equivalent fractal

structure—however, the method described here only works if the form to be modeled has

“constant branching angles as well as fixed proportions between the mother and daughter

segments.”42 Further attempts to understand the formal relationship between the two

systems can be found in Prusinkiewicz and Hammel (1994), which considers the more

generalized/relaxed LRIFSs, and Ju et. al (2004), which presents a proof of equivalency

between recursive turtle programs (RTPs—non-bracketed L-systems with one production

rule) and iterated affine transformations (IATs—IFSs with only affine transformations).

While IFSs can produce attractive images of ferns, their application to biological

modeling more generally is complicated. Prusinkiewicz wrote in 1998 that

To date, applications of iterated function systems to the modeling of plants have
been investigated mainly from the computer graphics perspective. Their relevance
to biology is yet to be determined.43

It appears that this is not just because the most basic kind of IFS requires complete self-

similarity but also due to the way the algorithms which generate them proceed. Simcha

Lev-Yadun argues in “Fern leaves and cauliflower curds are not fractals” (2012) that

common modes of understanding organic forms through fractal geometry are biologically

irrelevant and misleading for two reasons. First, the self-similarity of ferns and cauliflower

curds is only superficial and does not scale down very far. Second, these organisms develop

42 Prusinkiewicz and Lindenmayer (1990), 189.
43 Prusinkiewicz (1998), 121.

74

from the “inside out” while common methods of fractal generation do not. However, he

only addresses one kind of fractal generation algorithm44, referencing the randomized

chaos algorithm (see Figure 21) as being entirely unlike the fern’s actual developmental

process. He writes that

Dissecting developmental processes, such as the formation of fern leaves and
cauliflower curds, into stages that are mathematically manageable and
developmentally and structurally correct would make the mathematical procedures
more relevant for biologists. A set of mathematical procedures that reliably describe
the development of fern leaves, cauliflower curds or any other plant organ will not
be just an elegant visual demonstration, but probably an important lesson in
developmental biology. I look forward to seeing it.45

I wonder if he’s heard of L-systems! As will be explained in Part II, L-systems develop

iteration by iteration through their productions—in this sense, they can develop from the

“inside out.” Developmental models which grow larger every step are easy to encode.

Thus it might be argued that the way L-systems interface with spatial development

make them more generally suited to the modeling of biological phenomena than IFSs as

they are currently understood and formulated. If anything, this argument is best supported

by the fact that L-systems have been used extensively for biological modeling while IFSs

generally haven’t. The Algorithmic Beauty of Plants opens by explaining its purpose in

exploring two factors that “organize plant structures and therefore contribute to their

beauty.” These are the “elegance and relative simplicity of developmental algorithms, that is,

the rules which describe plant development in time” and “self-similarity.”46 L-systems can

hence express fractal self-similarity where it appears but are not as strict in their

44 There do exist deterministic generation algorithms for IFSs.
45 Lev-Yadun (2012), 534.
46 Prusinkiewicz and Lindenmayer (1990), 189.

75

mathematical requirements as are most IFSs, and it is also simpler to construct them so

that their iterative “development” resembles something like biological growth.

Whether or not IFSs are especially useful for biological modeling purposes, Barnsley

sees something inherently botanical about them. In Superfractals Barnsley makes the

metaphorical comparison of mathematical code space to the meristem of a plant:

There is a remarkable set, called a code space, which consists of an uncountable
infinity of points and which can be embedded in the tiniest real interval. A code
space can be reorganized in an endless variety of amazing geometrical, topological,
ways, to form sets that look like leaves, ferns, cells, flowers and so on. For this
reason we think of a code space as being somehow protoplasmic, plastic,
impressionable and capable of diverse re-expressions, like the meristem of a
plant[…]This idea is a theme of this chapter and of the whole book.47

The common morphological quest of divining some ultimate Protean unit reappears once

again. For Wolff and Goethe it was the leaf, and in Barnsley’s abstract fractal world, it is a

code space. Weirdly enough, Barnsley isn’t even the only mathematician to make this kind

of comparison—M.A. Peterson writes of the singularities of Laplacian growth as

“mathematical meristems.”48 Barnsley takes the botanical metaphor even further with his

definition of a mathematical set (relating to his intriguing “superIFSs”) he calls a “V-

variable code tree,” made up of precisely defined “limbs”, a “trunk”, and “branches.”49

Finally, Superfractals uses some kind of plant form for nearly every graphical example in

the book. Vegetation is nothing if not iterative.

L-systems came up in the above discussion of development for a good reason: it’s

what they were designed to model from their conception. Aristid Lindenmayer first

introduced L-systems in 1968 with the publication of “Mathematical models for cellular

47 Barnsley (2006), 8.
48 Peterson (1999), 449.
49 Barnsley (2006), 435.

76

interaction in development” in the Journal of Theoretical Biology. Originally intended to

model the development of simplistic multi-cellular organisms, their formal properties and

extensibility make them also very suitable for modelling plant form and growth.

Lindenmayer’s research has been continued most notably by Przemyslaw Prusinkiewicz,

who at the time of writing runs the Biological Modeling and Visualization research group at

the University of Calgary.

Figure 22: From The Algorithmic Beauty of Plants, 123. The L-system framework
given here resembles the parallel venation pattern of a monocot cordate leaf, such as

that of the wild yam (Dioscorea villlosa).

1990—the year following Lindenmayer’s death—saw the publication of The

Algorithmic Beauty of Plants, a compilation of the research, results, and efforts of

Prusinkiewicz and Lindenmayer up to that point. ABOP offers an extensive exposition of L-

systems and explores many dimensions of their possible applications to plant modeling

77

while assuming of the reader no prior familiarity with the subject.50 It is cited extensively

in subsequent literature and offers an excellent example of how years of rigorous

computational research can be effectively organized and presented in an accessible book

format. It was an indispensable resource for this project.

I find The Algorithmic Beauty of Plants intriguing also for its title—before you even

open it the book makes an aesthetic argument. How does thinking of beauty as

“algorithmic” change or enhance our understanding of both aesthetics and computation? Is

all beauty somehow algorithmic or is “algorithmic beauty” just one of many types of

beauty? What would Kant say? I don’t know—I tried to read Critique of Judgment but it

gave me a headache.

 Having sketched one possible historical trajectory of the interdiscipline, we now

look at more recent research relevant to the project at hand.

The single paper upon which my project builds most directly is Rodkaew et al.’s

“Modeling leaf shapes using l-systems and genetic algorithms,” which can be found in the

2002 proceedings of the Plant International Symposium on Plant Growth Modeling,

Simulation, Visualization and their Applications. Bringing together genetic algorithms, L-

systems, and leaf shape, Rodkaew et al. evolved the parameters of a simple skeleton

framework so the resultant shape matched the input leaf’s outline satisfactorily. The

genetic algorithm was performed on a set of tag-functions in order to adjust their

parameters, meaning the evolution was not being done on the L-system symbols

themselves. For papers with genetic algorithms which use the L-system alphabet symbols

instead of their parameters as the genotype, see Jacob (1994) and Ochoa (1998).

50 It is also available for free in full on the internet! URL:
http://algorithmicbotany.org/papers/abop/abop.pdf

78

Figure 23: Results from Rodkaew et. al.

The primary similarity is between the basic aims of these two projects—using

computational search techniques, find a parametric L-system which results in the same

shape as the input leaf, thus in the end getting information about a plausible internal

structure. I am unsure if the resulting L-system of Rodkaew et. al can also show a

reasonable developmental sequence throughout the system iterations, but this was an

additional motivation on my part.

 There are a number of differences between this paper and my project. They do not

use internal definition of geometry while I use a polygonal L-system definition where the

veins serve as a framework for the whole leaf shape. The mutation of their venation

skeleton results in an upwards bending due to how they have structured their productions.

This bend appears to be what their parameters (mostly angle changes) control, not growth

rates. They end up with a result with arcuate venation as the curves bend to approximate

the shape. Their skeleton model is limited to a pinnate unlobed leaf. The fitness function

measures the distance of the outlines of the input leaf and the L-system output. For every

coordinate, it computes (xit – xio)2 where t is the outline of input leaf (target) and o is the

outline of the L-system output. What I don’t understand is how they know there will be the

79

same number of points in each outline or otherwise how a varying number of points is

accounted for. A final difference is that they actually implement a genetic algorithm. Their

search technique actually works.

80

Part II: FormaLeaf

An Interactive System for Generating L-system

Representations of Leaf Shape and Structure

81

The Language of L-systems: Grammars of Growth

In the interest of making it clear what’s under discussion, this section opens with an

explanation of what L-systems are and how they work before delving into further details.

I’ve written the basic explanation with the hope that it might be mostly comprehensible to

those without a background in computer science. These images were generated using the

same L-system implementation which runs in FormaLeaf. Also, the footnotes in the

subsequent sections will not longer be hightlighted green as there isn’t as much citational

information.

The Basics: Anatomy and Mechanism

L-systems are parallel string rewriting systems. The mechanism by which they work

is quite simple. We first consider a purely symbolic/linguistic example sans any graphical

interpretation in order to demonstrate how a string is rewritten in parallel over the course

of a few iterations.

Succinctly, at every step an L-system takes a string (a sequence of characters) and

applies an appropriate replacement rule to every single character before moving on to the

next iteration. These replacement rules are defined in the set of production rules. The

beginning string is called the “axiom.” The axiom serves as the starting point. Consider the

following example:

You decide to play a game wherein each round you replace every character in a sequence according to a
specific rule.
Suppose you had this sequence of characters: ABCD
ABCD is your axiom.

82

Reading the rulebook for this game, you see that:

 A becomes D

 B becomes BB

C becomes AC

While the book lists no rule for D, you see a note that this means the symbol is just replaced with itself.
You play this game for a few rounds:

Round 0: ABCD
Round 1: DBBACD
Round 2: DBBBBDACD
Round 3: DBBBBBBBBDDACD
Round 4: DBBBBBBBBBBBBBBBBDDDACD
Round 5: DBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBDDDDACD

That’s getting be a lot of B’s! Wary of wheat and chessboards, you decide to stop playing.

That’s parallel string rewriting in a nutshell. The “rulebook” in the above example

does not list a rule for D because this is normal for the definition of any L-system’s

productions—the rule that rewrites a character as itself is implied if this character does not

appear on the left-hand-side (LHS) of any production in the set. Using a more typical formal

notation, the above example can be written like so:

ω: ABCD

p1: A → D

p2: B → BB

p3: C → AC

So how do you get from a string of characters to an image? Simply read every

symbol in order and interpret each symbol as a drawing instruction. L-systems generally

use a LOGO-Turtle interpretation, which means that the instructions control the local state

83

of a Turtle moving around the space and drawing things. That is, if a symbol stands for

“Turn right 30˚,” the Turtle will rotate to its right and adjust the way it is facing. Hence, the

only drawing instruction really needed for most images is “Move forward one unit and

draw a line,” as drawing in a new direction is done by placing an angle turn command

before the draw instruction. Implementations also may have a command to move forward

without drawing, which allows for composing images without necessarily connected lines.

Two crucial symbols are the turn commands:

Turn left: +

Turn right: -

Let’s say that F means “Move forward one unit and draw.” A Logo Turtle which

begins facing North when presented with the string F-F-F-F and told to make all its turns

90˚ would draw a box.

Figure 24: LOGO-Turtle interpretation of a string.
(Turtle image from http://small-pets.lovetoknow.com)

84

After a string has been rewritten according to the production rules, the Turtle

interpreter reads and follows the whole thing in sequence. Changing the iteration (number

of rewrites) means the Turtle is interpreting a new command string.

Pictured below is the axiom and first 8 iterations of the Sierpinski triangle as

generated by an L-system. The sequence below is also scaled down each iteration.1 Imagine

that the Turtle begins facing East.

There are two line drawing commands here due to how the L-system is structured.

Both commands do the same thing but in order to have the two unique productions there

are two draw symbols. Sometimes L-systems have symbols with no defined Turtle

interpretation—these symbols are included to give grammatical structure.

1 Were it not scaled down, the triangle would grow to an enormous size (that is, every segment would be as
long as the line at the top-left).

ω: A

p1: A → +B-A-B+

p2: B → -A+B+A-

Interpretation:
A : Go forward one unit while drawing.
B : Go forward one unit while drawing.
+ : Turn Left 60˚
- : Turn right 60˚

85

In the above case, the angle and scaling factor are extraneous to the L-system and

are supplied at the time of graphical generation. The classic Sierpinski triangle is

constructed with a 60˚ turning angle.

Pictured to the right is the same L-system

after 9 iterations constructed instead with a

rotation angle of 55˚. This small change in the angle

has a clear ripple effect throughout the subsequent

iterations, making the final shape noticeably

different from the 60˚ form.

Bracket Notation and Branching:

The basic L-system mechanism described above can be extended with bracketing,

which uses stack operations and is useful for modeling branching structures. When it

encounters a left bracket ([)as it reads the string, the Turtle knows to push its own state

onto a stack (basically write it down and save it for later). The Turtle will then interpret all

the symbols within the brackets. Once it reaches the closing bracket (]), it pops its saved

state off the stack and thus its internal state returns to what it was before it embarked on

its interpretive bracket journey.

This is helpful for modeling branching structures, as the Turtle can

go ahead and draw the first branch of structure and then use its magic

turtle powers to teleport back to the place of bifurcation before drawing

the second one. The figure to the right shows the interpretation of the

string F[+F][-F]. Assume a branching angle of 30˚. The arrows show how

86

the Turtle draws the left branch and returns to the point where first it encountered an

opening square bracket.

After applying the L-system production/rewriting mechanism to bracketed strings,

it is possible to generate branching structures which appear to “grow” over the course of

their iterations. The X symbol has no Turtle interpretation but is there to structure the

strings which are created. F again means move forward one unit while drawing. This L-

system has recursive production rules. It is scaled down slightly each step in order to fit on

the screen, but the growth effect remains.

Figure 25: L-system adapted from The Algorithmic Beauty of Plants, 25.

Keep an eye out for how brackets are used to indicate branching veins during the

discussion of the template leaf L-systems in the Method section. Branching L-systems are

integral to this project!

ω: X

p1: X → F[+X][-X]FX

p2: F → FF

angle: 40˚

87

Also, a slight modification to the above tree L-system gets a really surprising result. I

wonder whether or not it is a coincidence that the little hole towards the bottom vaguely

resembles the Mandelbrot set.

ω: X
p1: X → F[++X][+X][-X][--X]FX
p2: F → FF
angle: 50˚

(line thickness is also heavier here)

88

Parametric L-systems:

 There are many types of L-systems.2 All examples given so far are D0L-systems,

which are the most basic kind. They are deterministic and context-free. The “D” stands for

“deterministic” and the “0” means that the system is completely unaware of a given

character’s context when executing production rules—it never takes into account the

characters on the left or right of the current symbol.

 Another kind are parametric L-systems, used extensively in this project. These

associate numerical parameters with the symbols in the grammar. In a few of the above

examples the Turtle interpretation for a symbol is explained as “Go forward one unit and

draw.” A parametric L-system could have a draw command with a unit parameter. Hence

+F(1)-F(3)+ is a possible parametric string fed to the Turtle. The first draw command

would probably mean “Go forward one unit” while the second would be interpreted as “Go

forward three units.” You could also parameterize angle: +(40)F(1)-(60)F(3)+(90). This

way, angle is not defined outside of the grammar. It also changes between symbols and

thus the angle value here is variable (unlike all examples so far). A full parametric L-system

could look something like this:

 Hence the 3 and the 40 get passed as inputs into the system—the u and a then take

on these values (standing for ‘unit’ and ‘angle’ respectively) in the resulting productions.

2 Two kinds not used in this project are context-sensitive L-systems (one or two-sided, productions only fire
when contextual rule is true) and stochastic L-systems (productions fire probabilistically).

ω: X(3, 40)
p1: X(u, a) → F(u)[+(a)X(u,a)][-(a)X(u,a)]F(u)X
p2: F(u) → F(u)F(u)

89

Parameterizing various parts of a grammar really opens up what can be done with

it. The FormaLeaf interface has multiple parameter sliders which allow the user to

manipulate the values being plugged into the parametric L-system which defines the

generated leaf’s structure and shape.

Internal Geometric Information and Modeling Polygons:

In their original conception, L-systems did not have internal geometric information

pertaining to the angles and directions of the segments and branches (in bracketed cases).

Prior to automation, L-systems were interpreted intuitively by draftspeople who drew by

hand a graphical representation of the axioms and productions. Because the interpretation

was done by humans, there was less need for standardized geometrical information to be

included in the systems themselves. The resultant hand-drawn graphics were thus one

possible interpretation of ambiguous information.

Automated interpretation by a computer requires the elimination of ambiguities.

Geometric rules to make automated interpretation unambiguous were at first global,

external, and not part of the specific system, which resulted in certain structures being

unspecifiable. Alongside the LOGO style graphics interpretation in the late 1980s came

additional alphabetical symbols used to specify angle direction—typically [-,+] are used,

although which one is designated “turn left” and which one “turn right” appears to vary

arbitrarily across implementations.

 Similarly, the geometric information that allows for closed, polygonal structures can

be made internal to the system as well. One of the chief goals of this project (and one way in

which it does something different from previous automated modeling efforts) is that the

geometric shape information of the generated leaf is internal to the generated L-system.

90

Fractals and L-Systems:

 By virtue of their potential to encode self-similarity within their productions, L-

systems are able to generate many classic fractal structures. Some examples are given

below.3 The number of iterations varies by the complexity of the constructions, as some

will crash or freeze the program after exceeding just 4 or 5 iterations while others don’t get

interesting until upwards of 8.

3
 The L-system definitions for the first four examples were found in The Algorithmic Beauty of Plants or on

Wikipedia. These two particular shapes made out of the Cesàro curve (a very simple angle modification of the
Koch curve) I found through experimentation.

ω: F-F-F-F
p: F → F+FF-FF-F-F+F+FF-F-
F+F+FF+FF-F
angle: 90˚ iterations: 2

Quadratic Koch Island

Dragon Curve

ω: FX
p1: X → X+YF+
p2: Y→ -FX-Y
angle: 90˚ iterations: 10

91

Koch Snowflake

ω: F++F++F
p: F → F-F++F-F
angle: 60˚ iterations: 5

Cesàro Curve Pentagon

ω: F-F-F-F-F
p: F → F-F++F-F
angle: 72˚ iterations: 5

Cesàro Curve Star

ω: F--F--F--F--F
p: F → F-F++F-F
angle: 72˚ iterations: 5

Lévy C curve

ω: F
p: F → +F--F+
angle: 45˚ iterations: 12

92

L-systems as a Formal Language:

The absolutely crucial difference between L-systems and normal Chomsky

grammars is that at each step a production rule is applied to every symbol in the string. In

Chomsky grammars only one production is applied at a time. As it says in The Algorithmic

Beauty of Plants, “This difference reflects the biological motivation of L-systems.”4 If the

state of an organism can be said to be ‘updating,’ it is doing so in parallel. As can be seen by

Figure 26, this parallelism affords extra power. A context-free L-system can hence generate

languages that a context-free Chomsky grammar cannot.

Figure 26: Context-free L-systems (0L) and one-sided context-sensitive

L-systems (1L) as they exist in the formal language hierarchy.

4 Prusinkiewicz and Lindenmayer (1990), 3.

93

 “Abnormal” L-systems Gallery:

Sometimes things don’t go as planned.

94

Method: Approach, Algorithms, and Tools Used

This section explains in detail the method of my approach and the workings of the

FormaLeaf system with information concerning tools used given throughout. The

explanation is divided into four phases: Phase One consists of the collection and

preparation of input leaves. Phase Two explains how computer vision techniques were

applied for shape analysis. Phase Three concerns the parametric, polygonal L-System

representation and the idea of “template leaves.” Phase Four describes the details of Search

Mode, including how similarity (fitness) is evaluated. Throughout the following explanation

I will provide some detail as to my implementation, usually in the form of mentioning

which classes take care of what and what functions they use to do it. Unless otherwise

mentioned, the classes are from my code—see the Appendix.1

Some screenshots of the interface taken throughout development in order to explain

certain parts of the program in this report may have unfinalized elements—this generally

accounts for U.I. inconsistencies or strange looking values in the images.

Before explaining the phases in detail, I present a broad and brief system overview,

a description of my overall development strategy, and some comments on why Processing

was an appropriate platform for this project.

1
 Of the code included in the Appendix, all written classes are my own except for the Slider class, which was

copied and modified slightly from an example on Processing.org.

95

System Overview:

The four phases are not sequential but rather feed into each other at different

points. Here is flowchart illustrating how the system as a whole proceeds.

Figure 27: Flowchart illustrating how the Phases
described in the report interact.

As the flowchart shows, the construction of the L-system leaves can be left up to the

computer or done by manual input.

96

Project Development Strategy:

 Actually getting things done is hard. The main project strategy I conceive of as

“interface development.” The idea behind this is that by focusing my coding efforts on

increasing my ability to manually tweak and control what appears on the screen, in the

process I ended up building a platform on which I am able to:

1. Easily produce images with which to explain things in the write-up. This

streamlines the writing process, which is the hardest part. One of a thousand and

one reasons why Processing is awesome.

2. Learn through experimentation how best to try and automate something that

looks either good or reasonable. By being able to view and adjust in real time

and tandem both the graphic results and their associated quantitative

measurements in Slider mode, hypotheses concerning what adjustments to

make to the whole system are easier to come by.

3. Stare at leaves in two different visual modes—the normal way which shows the

leaf image and the L-system, and in Vision mode, which shows what the

computer sees.

Pithily, a fun way to approach leaf development is through software development!

97

Processing as Project Platform:

Processing2 was an excellent choice for my project, as it is at once simple, flexible,

and powerful. Its draw function serves as a built-in redraw cycle, which is necessary for

any interactive system. It makes a number of interface-related requirements very easy,

such as mouse and keyboard input, drawing shapes to certain parts of the screen, and

loading and saving images. Because it was built for making graphical programs, it has well-

designed functions to manipulate visual properties. The developers take pains to make

both the rendered graphics and the code aesthetically pleasing. It’s got a slick IDE (I used

Processing3) and extensive library support. And of course, it’s all based in Java—all the

goodies of the official API are just an import statement away. Although I am not aware of

many attempts to build interface-based research systems like FormaLeaf in Processing

(though they surely exist), I found it to be a platform well-suited to my purposes. This is

also due to my familiarity with the language, as Processing was my first introduction to

programming. Obviously I’m biased, but I think it’s unparalleled as an educational tool.

I began on Processing 2 but switched to the more recent Processing 3 shortly into

my development cycle. The program currently uses the default 2D renderer.3

2
 https://processing.org/

3
 FX2D may have some benefits but I need to do more testing. Using P2D (the 2D OpenGL renderer) results in

egregious graphical issues.

98

Phase One: Collection and Preparation

Step 1: Specimen Collection

 The majority of leaves were collected during the fall semester. Samples were either

taken off of living plants or from the ground. More often than not, leaves were removed

directly from plants because leaves from a living plant were in better condition than fallen

leaves, which had often started decomposing. I thought carefully about each sample before

removing it so as to not cause unnecessary damage to the plants. At least by removing the

leaves during autumn the plants were already preparing metabolically to shed them—

leaves cost lots of resources to produce so I would feel a bit worse removing them in spring

before they’ve even had the opportunity to soak up the summer sunlight! Plants were

thanked for their generosity when I remembered to do so.

Step 2: Scanning

 All leaves were scanned in a Canon® imageRUNNER

3245i4 as color JPEGS at 300x300 DPI. Both sides of each leaf

were scanned for consistency. Prior to working out details of the

project it was undetermined whether or not some sort of visual

line detection would be attempted on the venation patterns

themselves. This would have been easier to do with the

abaxial side (under-side) of most leaves, as the veins are

more distinct in these images. As Theophrastus says, “In most trees the upper surfaces are

greener and smoother, as they have the fibres and veins in the under surfaces, even as the

4
 Also the scanner I used for all book-sourced images in this project.

Figure 28: Canon® imageRUNNER
3245i

99

human hand has its ‘lines’[…].”5 Though line detection was ultimately not used, it is still

nice to have both sides of every sample. Some of these sample images were used as

illustrative examples in Part I.

Step 3: Digital Image Preparation

 All leaf images were rotated, cropped and cleaned up in Adobe

Photoshop CS6 with the help of a Wacom Bamboo Pen tablet. All leaf

images were rotated so the apex is pointing up with the mid-vein as

straight as possible. Cropping was done by eye, attempting to make the

leaf take up nearly the whole resulting image with only a small amount of white space on

the top, bottom, and sides. The closer the crop, the larger the leaf itself appears in the final

Processing display of the results. The images were only cropped, not resized to be

consistent with each other—a smaller leaf means a smaller image.6 Stray marks, smudges,

and most7 artifacts from the scanner were removed with the Brush Tool, as was the petiole

of each leaf.

5
 Theophrastus, I.X.2, 69.

6
 However, leaf images are ultimately scaled down before the contours are found—see discussion of size and

scaling issues in Phase Three.
7
 There are still some subtle gunky shadows left from the scanning on some of these images—this may show

up during printing.

100

Figure 29: Leaf image before and after petiole removal.

Though digitally removing the petiole from the scanned image seems almost

criminal, it simplifies the vision and L-system generation process. The system discerns the

lamina shape, so it would have taken some extra work to get the computer to locate the

petiole so it knows to ignore it for certain measurements. This is certainly not impossible—

in fact, the visual system of the mobile leaf classification application Leafsnap has been

programmed to ignore the petiole by looking for thin protrusions.8 Leafsnap also works on

leaf images at any rotational angle, as a mobile classification application must be as flexible

with input as possible. However, I decided not to build this into my system and instead

chose to manually fix up my input images in order to focus my coding efforts on parts of the

problem more central to my purposes. Another option would have been to not ignore the

petiole but instead analyze it and build it into the resulting L-system. If the petiole was

kept, the resulting L-systems all would have been a little different**(t>=positive num). One

reason I decided against this was due to the inconsistency of the sample quality. Some

petioles were entirely intact because I ripped them off of the shoot right at the node where

they were attached. Others were torn in an arbitrary place. Hence, it isn’t as if a generated

8
 Kumar et. al. (2012), 6.

101

system which matches one of these arbitrarily torn and scanned petioles is really

accurately representing the leaf and its entire petiole length. As a final reason for removal,

the petiole is the connection site to the rest of the plant—yet we choose here to look at the

leaf as an individual entity! Erasing the petiole from the image is like cutting an umbilical

cord: the leaf becomes self-contained, with the omphalic base being the only indication it

was ever the part of something larger.9

 I will also say that while there is an impulse of computer science to automate as

much of a process as possible in order to ‘save time’, there is also a benefit to working with

and looking closely at each sample. This is what manual cleanup and preparation allowed.

Obviously this is only feasible when the sample set is very small, but well-cleaned data

makes a world of difference.

9
 Just kidding, it was for practical reasons.

102

Figure 30: Final sample pool of 70 leaves in no particular order.

103

Phase Two: Morphometrical Analysis with Computer Vision

Phase Two pertains to the analysis of leaf shape done using computer vision

techniques. All of the described measurements are done on both the input leaf image as

well as on the image of every candidate leaf generated by an L-system over the course of

the search process. This part of the system is handled by the ImageProcessor class, which

performs the exact same visual analysis when given an image of a real leaf or an image of a

fake one. As the ImageProcessor discovers aspects of the shape under analysis, it stores this

information in a Leaf object. It is two Leaf objects—one in the form of the subclass

SysLeaf—which are ultimately compared in order to assess shape similarity (fitness). The

morphometrical information is also reported in the panel on the left side of the screen.

Vision Mode allows the user to see illustrative representations of what the computer is

“seeing,” such as contours, convexity defects, bounding boxes, etc. Many of the figures here

in Phase Two were made in Vision Mode.

The tool used for visual analysis was OpenCV, a robust open-source computer vision

library started in the 1990’s by Intel Research and now supported by its own non-profit

foundation. While OpenCV is more commonly used with C++ or Python there are

(thankfully) also Java bindings. In order to both install OpenCV for use with Processing as

well as convert Processing PImages to the OpenCV image matrices I used Greg Borenstein’s

“OpenCV for Processing” library.10

It is important to stress that the computer vision portion of this

project is an application of pre-existing and pre-implemented techniques

to the specific problem leaf shape analysis. The majority of applications of

10

 https://github.com/atduskgreg/opencv-processing

104

computer vision to leaf shape have been for species classification purposes. This is most

commonly done with machine learning algorithms. While I will somtimes attempt to

explain how certain important OpenCV functions are working, my main focus will be on the

details of how I used them.11

Step 1: Finding Contours

 The contour of a shape is essentially its outline.

Finding the contours in the leaf image first requires a binary mask, which is made by

running the OpenCV ImgProc threshold function12 on a grayscale version of the leaf image.

11

 The most difficult part of using OpenCV is dealing with its idiosyncratic data structures. Many lines of code
are dedicated to getting coordinate data in the right form of a list. The functions take and return bizarre
combinations of these many structures. OpenCV is ridiculously useful but also annoyingly unintuitive to
program with.
12

 Technically the code calls Borenstein’s “OpenCV for Processing” thresholding function, which itself just calls
the OpenCV ImgProc function. It could just as well have been done by calling the normal OpenCV functions
directly, but my program arbitrarily thresholds the image before doing matrix operations. Once the matrices
are set up, all image processing is handled by Java OpenCV functions until a final Mat to PImage conversion
(done with Borenstein’s library) is done to display the morphometrically processed information.

105

A threshold value of 220 is used because this value proved sufficient for all the

inputs and the requirements of contour extraction—a more complex adaptive threshold

was not necessary. Pixels which exceed the threshold value are turned white, while all

others are turned black. Following this, OpenCV runs Canny edge detection on the

thresholded image in order to find the contour.

Because OpenCV’s findContours function returns all of the contours in the input

image, the contours which are not the leaf must be ignored. My simple solution to this was

to sort the found contours by area and pick the second largest one, as the entire image’s

outline (going around the image border) was always of greater area than the leaf. Sorting

by area also means small contours from holes in the lamina or scanning artifacts are

ignored—thus the leaf’s contour is isolated successfully. The contour is stored in the

associated Leaf object and can thus be used for later calculations of in the fitness function

which require direct comparison of contours.

106

Step 2: Measuring Lamina Dimensions

 The next step is to take basic dimensional measurements. Because the leaf images

are scaled down before visual processing, these measurements are all in pixels.13 The most

useful tool for this is a bounding box, a rectangle the boundaries of which are determined

by the vertical and horizontal extremities of the leaf contour.

Figure 31: Bounding box shown in red. Using the dimensions of the rectangle, the
system stores and displays the following information about the leaf on the left:

Lamina Length: 771.0
Lamina Width: 435.0
Lamina L:W Ratio: 1.7724138

In this way, lamina length and width are determined using OpenCV’s boundingRect

function and from these the L:W ratio is calculated. It was mentioned in Part I (see the

section on patterns of venation) that the average palmate leaf tends to have a lower L:W

13

 Prior to my decision to have the program scale down the leaf images before contour extraction (the
rationale behind this is explained later), I toyed with the idea of displaying the actual leaves’ measurements in
inches or centimeters—the system would just have to convert from pixels to the chosen unit. The images
were all scanned at 300 DPI, so this wouldn’t have been too hard. However, this measurement would have
been purely for the scientific curiosity of the user, as it is far less useful for L-system comparison purposes. As
the system is now, the exact values of the pixel measurement depend on the size of the window (by default
1280x800).

107

ratio in comparison to the average pinnate leaf. This ratio is thus a valuable metric for

assessing similarity so at the very least the correct venation template is found.

While the bounding box can be used for measuring lamina length and width,

determining leaf area is not done by multiplying these as there is obviously non-leaf space

within the rectangle. Luckily, laminar area is not difficult to determine as OpenCV has a

contour area function (it uses Green’s theorem). Similarly, OpenCV’s arcLength function

was used to get the contour perimeter.

Step 3: Determining Shape Class

As addressed in Part I, parts of modern leaf terminology are defined quantitatively.

One of the first things I wanted the system able to do is apply terminological labels to the

input leaf. A simple label to apply is that of the overall shape—the 2009 Manual of Leaf

Architecture defines some different shape classes by where on the lamina the widest point

falls. The Manual gives five shape classes: Ovate, Elliptic, Obovate, Oblong, and Linear. See

Figure 32 for an image of the first four. I decided not to include the “oblong” label as not

only is determining parallelism a bit more complicated than just finding the widest section

of the leaf, but also because almost none of my leaves were very oblong anyway. Similarly,

none of my collected leaves had a L:W ratio high enough (≥10:1) to be “linear.” However,

the parametric L-system leaves do sometimes reach this value so it might be worth

including at some point.

As it is, the system labels every leaf as being Ovate, Elliptic, or Obovate. The

ImageProcessor’s findShapeClass function finds the “widest fifth” of the leaf and saves it to

the Leaf object. The Leaf object uses this integer to determine the appropriate label and

108

stores it as a String attribute. As for why the Leaf object is the piece of the system actually

applying the label, I did this mostly because I wanted the ImageProcessor object to return

quantitative information. The “widest fifth” also gives more information than does the label

(as it can be any of five possibilities instead of three) so it’s hypothetically useful for this to

be stored in the Leaf object were it used as a more precise fitness metric.

The location of the widest point on the leaf is determined by first finding the points

of the contour that lie on the left and right sides of the bounding box, as these points are

horizontal extremities. For every extremity point on the left and right side, a point lying on

the contour on the exact opposite side of the leaf is also recorded. Following this, the

Euclidean distance between every extremity point and its opposite point is measured. The

pair with the longest distance is selected as the widest area of the leaf. Finding the widest

point is surprising convoluted (in my implementation, anyway).

Figure 32: Left—Ovate: greatest width in bottom 2/5ths
 Center—Elliptic: greatest width in middle 1/5th
 Right—Obovate: greatest width in top 2/5ths

109

The lamina is divided into fifths as the purple lines in Figure 32 show. The program

checks each section for the widest point (either a left or right extremity, all that matters is

the y-coordinate) until it is found, at which point it returns an integer representing which

fifth contains it. 1 designated the top section and 5 designate the bottom. The Leaf object

then determines the label based on this integer as per the criteria described above.

The greatest width line and the left and right points circled in Figure 32 are

displayed in Vision Mode. The code which draws the bounding box and fifth divisions,

however, is commented out as they are less directly informative to the human viewer.

Another improvement to the whole program would be to make Vision Mode more uniquely

interactive—the user could press different keys or click on things in order to toggle which

measurement visualizations appear.

Step 4: Approximating Apex and Base Location

It’s not quite accurate to say that this step finds either the apex or the base because

it’s such a simplistic approximation. However, it is this “base” value of the real leaf image

which is then used to determine the vertical placement of the L-system leaf’s actual base on

the right-hand canvas, so Step 3 will retain its title. This is an obvious area for a more

nuanced analysis in the future—finding the actual location of the apex and base points

(probably by using convexity defects for leaves with indented apices or bases) would make

it easier to apply an apex/base shape label to an input leaf. While this would make the

labeling side of the system more robust and give another qualitative point of comparison

when evaluating similarity, it was not an important priority as it would make L-system

placement only marginally more accurate.

110

Figure 33: The described approach is a decent apex and base approximation for the
three leaves up top but is not so good for the three on the bottom. It works perfectly

on the L-system generated Pinnate template leaf to the right.

 Hence, the rudimentary apex/base location simply divides the bounding box in half

with a vertical line right down the center, saving the top point of the line as the apex and

the bottom point as the base. It thus assumes a perfectly straight mid-rib on a perfectly

symmetrical leaf with an apex and base which lie on the bounding box outline.14 Again, this

is painfully rudimentary but the only thing this measurement is used for in the end is the

vertical placement of the L-system leaf’s base on the right-hand PGraphics canvas. While

this vertical line does not really represent the mid-rib, if the system could find the actual

apex and base points and draw a more accurate connecting line15 it could measure the

angle or distance between the “ideal” mid-rib and the one closer that of the leaf, which

could be a useful metric.

14 This actually means it works perfectly for any L-system generated leaf without a concave base (true of the
Pinnate and Palmate templates).
15 Though this line would be straight it might suggest the presence of a curved mid-rib.

111

 Furthermore, the OpenCV Point object in which the “base” is saved gives the

coordinates within the input image. This doesn’t cause a problem when it comes

repositioning tall/long leaves, as their bases end up at the bottom of the screen anyway.

Very wide leaves, however, end up repositioning the L-system base a little higher than

desirable (but nothing so off as to make it unusable, especially when using the Palmate

template). Fixing this would just require finding the right way to take input image size (and

the base location within it) into account while finding the absolute window location. Doing

the repositioning at least gets the generated leaves for the wide leaves into the center of

screen where they have more space for lobes which droop below the base, so it isn’t a huge

issue.

Figure 34: For wide leaves, the base of the generated leaf does not properly
line up with the bottom of the input leaf.

112

Step 4: Counting Lobes

 Lobe counting is so inaccurate in its present state that the system doesn’t yet report

it in the left-hand information panel (which is actually pretty silly, to be honest). The lobe

“estimate” however does factor into the fitness function, as leaves with more lobes usually

end up with a higher number. I’ll explain how lobe detection is currently working and what

steps can be taken to make it better.

 The OpenCv function convexityDefects finds the points which are concave in

relation to the convex hull of the contour. The blue circles indication that the function

found a defect. As is clear, by default it works much better on actual lobed leaves than it

does on smooth, entire margins. The convex hull for these leaves hugs the contour quite

closely (that is, there are lots of convex points in the hull) so many points are thought to be

concave.

 The step taken to reduce these extra points (those right two leaves should be labeled

as unlobed) is to use a polygon approximation as the contour which is passed to the convex

hull function. By making the actual contour and thus the resulting convex hull blockier, the

number of possible convexity defects to be found is reduced since it checks between convex

113

points. This helps a lot with those leaves with rounded margins, as the image to the right

indicates.

The next step (which the program

does not take) would mean going through

each of the convexity defects and filtering

them based on some kind of measure—

probably distance from the convex hull point

at a certain angle from the point. Hence as it

is it can’t really discern lobed from unlobed leaves, which is really more crucial than the

number of lobes when it comes to evaluating template similarity. Also, it consistently

underreports lobe number for the PinLobed template for some reason.

 Working through OpenCV’s utterly complicated data structures often means looking

for help on the internet, where lots of helpful folks post tutorials, demos, and examples of

their image processing endeavors. I found it interesting that the most common application

of OpenCV’s convexity defect detection functionality is to use it to count the number of

fingers on a hand being held up to a camera. Applying it to leaf lobing is a similar task

morphologically—it is not for nothing that certain leaves are known as “palmate” or

“digitate!” Thoreau writes fittingly:

Is not the hand a spreading palm leaf with its lobes and veins? […] Each rounded
lobe of the vegetable leaf, too, is a thick and now loitering drop, larger or smaller;
the lobes are the fingers of the leaf; and as many lobes as it has, in so many
directions it tends to flow[…]16

16 Thoreau, 548.

114

These online examples are helpful as I try to figure out how best to filter the

convexity defect points to just the important ones (such as trying polygon approximation).

It’s a shame this part of the system doesn’t work as well as it could yet, as I think it is one of

the most useful metrics for assessing the similarity of a template to an input leaf. If lobe

number was accurately discerned and the weighted highly in the comparative fitness

function, the system would be far more likely to reject unfitting templates on the basis of

their lobation. Boxy dimensional measurements really aren’t enough to see structure. At

least leaves with more lobes get labeled with a higher lobe count—hence it does factor in to

the present fitness evaluation in some form.

Figure 35: Fingertip counting with OpenCV17

17

 Top: http://simena86.github.io/blog/2013/08/12/hand-tracking-and-recognition-with-opencv/
 Left: http://stackoverflow.com/questions/18143077/computer-vision-filtering-convex-hulls-and-
 convexity-defects-with-opencv
 Right: http://www.codeproject.com/Articles/782602/Beginners-guide-to-understand-Fingertips-counting

115

Phase Three: Grammatical Leaf Construction

 Phase Three deals with how the L-system leaves which appear on the right-hand

side of the screen are generated. This section deals with how the parametric L-system

grammars were designed to represent leaf structure and shape and also how these

generated leaves were made to appear in window.

 As was mentioned in the section on L-Systems, the geometric information for the

model leaf’s surface polygon construction is built directly into the L-system. This means the

grammar contains specific symbols which designate when in the interpretation a polygon

does the following:

begins: {
ends: }
has a vertex: .

Hence, the drawn shape which appears on the screen changes in tandem with the

structure of the grammar and the values of the parameters because its geometry is an

intrinsic part of the system. The resultant shape is visually analyzed in the exact same

manner as the input leaf image in order to grab morphometric information about the

generated leaves. That is, everything explained in Phase 2 applies to these leaves as well.

 Template leaf grammars are structured in such a way as to build more complex leaf

shapes out of simpler ones. The mid-rib for the Pinnate template is used as one of many

primary veins of the Palmate template while in the Pinlobed template it becomes the

secondary veins. Because simple/entire leaves can be used to model lobes, for convenience

I refer to these overlapping surfaces as “lobelets,” a portmanteau of “lobe” and “leaflet,”

leaflets being the separate laminar areas found on compound leaves. That is, in these

models, the leaf form is so universal that even leaves are made of leaves.

116

These grammars also contain multiple parameters, with complexer leaf shapes

having more. Because the L-systems consist of strings, parsing the parameters requires the

evaluation of mathematical expressions. Java can’t do this on its own so Peter Lager’s

QScript library18 was used for this purpose. The parameter parsing is easily one of the

buggiest parts of the whole system.

There are three leaf templates “officially” built into the system: Pinnate, Palmate,

and PinLobed. That is, while there are some other templates in the code, only these three

are generated during search and without editing the code only these three can be viewed

and manipulated in Slider mode. The Results and Future Work sections will discuss some

other possible templates as a way of demonstrating the process of template creation. Here,

however, we look at the workable templates constructed for three common leaf forms.

Each one has some interesting structural characteristics that give an idea of how L-systems

can be designed to represent different forms.

18

 http://www.lagers.org.uk/qscript/

117

Pinnate Template

The Pinnate template is an unlobed leaf with pinnate venation. Shown below are

some images of leaves on which the template was based alongside some random

candidates generated from the template.

Figure 36: Left—Some unlobed pinnate samples.
Right—Randomly generated candidates from Pinnate template

 Because the leaves on the right are random, some have parameter value

combinations that make them especially small or strangely shaped. Hence, the whole

purpose of the search process is to compare the generated leaves against the input leaf

image and then mutate the candidate leaf pool in hopes of getting closer. As it is, this image

shows some of the different forms that can arise from this template. The biggest

improvement to the Pinnate template would be to modify it to get a greater variety of apex

and base shapes. It has a hard time approximating rounder apices and bases.

118

The Pinnate template was the first one implemented in FormaLeaf. My starting

point for all efforts in leaf grammar construction was the following example from The

Algorithmic Beauty of Plants:

Figure 37: Parametric leaf surface models.
The Algorithmic Beauty of Plants (124).

 This example also had a table of different parameter values to get the six different

leaf forms above. While I retained the structure of this grammar, I modified all of the

parameter ranges and constraints so the kinds of forms I get are quite different.

Furthermore, the leaves in this example are all at 20 iterations, while my Pinnate template

is capped at 14—this actually makes a big difference in both how the parameters affect the

shape as well as the number of lateral veins on the leaf.

 What follows is the L-system and parameter ranges for the Pinnate template, along

with some explanatory notes.

119

ω: {.S(0)}

p1: S(t) → P(t)

p2: P(t) → !(5)G(LP, RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).]

p3: L(t) → !(2)G(LL, RL)L(t-1) iff: t>=BE

p4: G(s,r) → G(s*r, r)

LP: 2.0 – 4.3

RP: 1.0 – 1.25

LL: 1.0 – 1.9

RL: 1.1 – 1.38

BE: 0 – -1

AN: 40 – 80

Parameter ranges.
Putting the first slider at
max will make LP = 4.3

Parameters:
LP: Primary vein length. RP: Primary vein growth rate.
LL: Lateral vein length. RL: Lateral vein growth rate.
BE: Affects basal extension. AN: Vein branch angle.

Median leaf.
Templates start with median
parameter values by default.
Hence, leaf is small before
slider tweaks/search.

Pinnate Template

Vein thickness.

Growth Symbol.
G – Draw a line with length determined by parametric
length multiplied by growth rate.

Right vein, Left vein.

120

Palmate Template

 A better name for this template would make it clear that it is intended to be a

palmate lobed leaf. However, sometimes the parameters end up making something less

lobed and it’s the only working palmate template anyway, so the name sticks.

The main idea behind this template is using the previously developed Pinnate

template as the lobes, which are arranged in a radiated fashion around the base. Since the

lobes are modeled with another leaf model, I refer to these surfaces as “lobelets.” The mid-

ribs of the Pinnate lobelets hence become the multiple primary veins of the Palmate

template. I found that overlapping surface models of entire leaves is the simplest way to

model non-entire laminas (“entire” being the common botanical term for simple unlobed

leaves with smooth margins). The biggest improvement to the Palmate template would be

to parameterize the number of lobes, as right now it puts exactly five on every leaf.

121

Figure 38: Left—Some lobed palmate samples.
Right—Some randomly generated candidates from Palmate template.

The grammar was modified so the bottom two lobes are scaled down. As the

samples suggest, the lower lobes are usually smaller. This was done by adding an extra

production step which only the bottom lobelets must fire. This ‘delays’ their development

relative to the others by a full iteration, which in this case acts as an effective scalar. This

could also probably be parameterized somehow alongside the number of lobes.

122

ω: {.S(0)}

p1: S(t) → [+(ANN)+(ANN)B(t)].[+(ANN)P(t)].[P(t)].

[-(ANN)P(t)].[-(ANN)-(ANN)B(t)]

p2: P(t) → !(5)G(LP, RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).]

p3: B(t) → P(t)

p4: L(t) → !(2)G(LL, RL)L(t-1) iff: t>=BE

p5: G(s,r) → G(s*r, r)

LP: 1.2 – 3

RP: 1.1 – 1.25

LL: 1.1 – 2

RL: 1.0 – 1.5

BE: 0 – -4

AN: 40 – 80

ANN: 40 - 70

Parameters:
LP: Primary vein length. RP: Primary vein growth rate.
LL: Lateral vein length. RL: Lateral vein growth rate.
BE: Affects basal extension. AN: Lateral vein branch angle.
ANN: Primary vein branch angle (Lobelet arrangement angle).

Palmate Template

Center Lobe

Bottom Right Lobe

Top Right Lobe

Extra
Delay
Production

123

I find the Palmate template and its resulting models morphologically interesting for

two reasons. Notice how when the Pinnate surface models overlap each other as Palmate

lobelets, their lateral/second-order veins form crisscrossed patterns. While in the L-system

model these veins are simply overlapping visually, it makes me wonder if it shows

something about how anastomosis could proceed. That is, those sites of intersection could

perhaps vaguely predict how/which secondary veins would connect. A comparison of

Figure 39 to the leaf models above with this in mind is intriguing.

Figure 39: Vein anastomosis of second-order veins of lobed palmate leaf.
(Manual of Leaf Architecture, 54)

 Secondly, the overlapping surface approach leads to an interesting way of thinking

about the form of lobes themselves. Agnes Arber writes,

The analogy between leaf and shoot has been obscured by the technique of leaf
description, which is based on the idea of the leaf as a member with an entire
margin, which may be more or less indented or deeply cut, as if a pair of scissors had
been employed upon it. De Candolle long ago pointed out that this method of
visualizing lamina-form is liable to create a wrong impression[…] On this view, De
Candolle would describe a pinnatifid leaf as showing fusion, for half their length, of

124

the lobes associated with the pinnate lateral veins. He goes so far as to suggest that
this theory may possibly be applied to all leaves, even those that are quite simple
and undivided.19

The method of modeling lobes I use for these templates embodies this perception of the

leaf lamina. Regarding this analogy being “obscured by the technique of leaf description,”

The Manual of Leaf Architecture defines lobes as being extrusions that have a certain

proportional sinus (indentation) depth, with smaller sinuses being indicative of “teeth”

instead of lobes. If you’re just looking at the margin (like the vision system of FormaLeaf)

this is really all you can do to point to lobation. However if you look at the venation, you

can see lobation expressed as fused foliar appendages coming off the mid-rib of the leaf,

here acting like a shoot. Arber continues:

The point that matter to us is that de Candolle saw, even if dimly, that the leaf is a
system comparable with a shoot, but in which the main and lateral veins and their
associated leaf surfaces form a united whole, instead of being separable entities,
such as the main axes and the lateral branches with their individual leaves, which in
the aggregate makeup the shoot.20

One way to imagine a leaf is as a flat tree with a horizontal network weaving a surface

fabric in between its hierarchy. Venation is hence a crucial part of morphological

understanding. In leaves they are internal and structural but are clearly correlated to the

outline shape.

19 Arber, 83-84.
20 Arber, 84.

125

PinLobed Template

 This template is for pinnate lobed leaves and was based off of an oak leaf. The most

successful part of this template is that the number of lobes is parametrized, which is great.

Otherwise I am somewhat disappointed with it as leaf template, as it’s getting close but the

growth pattern of the lateral lobelets are really off—this makes the mutations hardly ever

look like pinnately lobed leaves do. I think has something to do with the structures of the

conditionals, the decrements, and the BE parameter. Oak leaves tend to be obovate, but

more often than not this template makes elliptic leaves since the lobes closest to the base

are always wider. This wouldn’t be such a problem if the search wasn’t frequently matching

this template to unlobed pinnate leaves because they’re so often elliptic!

Figure 40: Left—Samples of pinnately lobed leaves, most oak.
Right—Randomly generated PinLobed leaves.

126

ω: {.S(0)}
p1: S(t) → P(t, LO)

p2: P(t,i) → !(6)G(LP, RP)[-(AN)A(t)]

 [P(t+1),(i-1)][+(AN)A(t)] iff: i>=0

p3: P(t,i) → !(6)G(LP, RP)N(t) iff: i<0

p4: A(t) → !(4)G(LL, RL)[-(ANN)L(t-1).][A(t+1)]

[+(ANN)L(t-1).] iff: t>=BE

p5: L(t)→ !(3) G(LT, RT)L(t-1) iff: t>=BE

p6: N(t) → !(4)[A(t+1)] iff: t>=BE

p7: G(s,r) → G(s*r, r)

LP: 6.0 – 8.0 AN: 35 – 65

RP: 1.1 – 1.26 ANN: 30 – 85

LL: 1.0 – 1.4 LO: 1 - 4

RL: 1.2 – 1.45

LT: 1.0 – 1.4

RT: 1.1 – 1.2

BE: -1 – -4

Parameters:
LP: Primary vein length. RP: Primary vein growth rate.

LL: Lateral vein length. RL: Lateral vein growth rate.
LT:Tertiary vein length RT:Tertiary vein growth rate.
BE: Affects basal extension. AN: Lobe branch angle
ANN: Tertiary vein angle (Veins of the lobelets)
LO: Number of lobe pairs.

PinLobed Template

Draws i lobe pairs

Extension
for tip lobe

Draws
tip lobe

127

However, while this template doesn’t make for very good leaf models, the randomly

generated candidates often look like interesting whole shoots—that is, they look like an

abstract plant stem with multiple appendages. I find this morphologically interesting as it

demonstrates how the leaf form can transition to resemble a whole plant (albeit, a very

abstract flat 2D version). Plants might not be strictly self-similar, but branching structures

do scale and we can see how the form of a leaf can become that of a shoot—or any other

foliar form, really.

I attempted to address this in Part I when I wrote about the “universal leaf” and

transitional forms and what not, but I think it’s clearer with the examples of the PinLobed

template and the Palmate template given above. I really think this is part of the impetus

behind the attempts of so many plant morphologists (Wolff, Goethe, de Candolle, Oken, and

Arber, to name a few) to conceive of some abstract “universal” plant appendage. Arber

128

quotes Oken, who writes “The leaf is a tree of special form, a tree the branches or veins of

which all lie in one plane.”21Arber bases part of her entire morphological approach on

likening the leaf to a partial shoot and we saw above how this leads to a view that sees

lobed leaf laminas as potentially decomposable into smaller foliar units.

 When parameters are taken into account, that’s when we get abstracted

metamorphosis. Contraction, expansion, all of the qualitative “movements” and changes

seen by Goethe as he examined different leaf forms growing up a stem—these can be

thought of as similar to the form transitions caused by parametric manipulation, and that’s

why for so many morphologists the whole idea of metamorphosis doesn’t have to be

conceived temporally/historically. It exists in the possible form space, which is what Search

mode is meant to be exploring. “Transitional” forms exist along a continuum within this

space. That may be the whole idea behind computational search techniques like hill-

climbing.

21 Arber, 87.

129

Grammars on the Screen: Sizing and Placement

Some problem solving went into figuring out how size and scaling factored into the

entire system. I was initially hesitant to scale down the leaf images before analysis as I

figured more spatial detail was preferable, especially for something like the roughness of

the leaf margin (which I never ended up trying to analyze anyway). Ultimately, however, I

decided to scale down the images of the larger input leaves prior to visual analysis as it

made it easier to evaluate shape similarity—smaller contours are simpler to compare with

the generated L-system leaves, which I programmed to always fit within their allotted

space in the window. Most leaf images are made to be 5/12ths of the sketch window, with

especially tall leaves instead scaled down to fit within the vertical boundary. The 5/12ths

portion number was arrived at because the first 1/6 of the horizontal screen space is taken

up by measurement information and control sliders. The remaining 5/6ths of the screen is

split in half between the leaf image and the L-system.

130

Because the input leaves are scaled down prior to finding the contour, the L-system

is hence looking to match the leaf exactly as it is seen on the left side of the screen—bigger

leaves do not actually result in bigger L-systems.22 Furthermore, because window size is

variable and the input image scales to the window (and because the unit length of the lines

and the iteration for each template are held constant), this also means that the program

will theoretically behave somewhat differently on the same input leaf at different window

sizes. The program is optimized for 1280x800 resolution and should be run that way for

the best results. With a bigger window, it takes longer to generate candidates and the

template parameter constraints also must to be adjusted to become as big as the input leaf

picture (which scales automatically). I felt 1200x800 was a good size also because it

seemed strange to have the generated leaves be much bigger than the actual leaves were

when I collected them—as it is, most of the input and generated leaves on the screen look

just bit over the average size of a real leaf.

Figure 41: Sometimes generated leaves greatly exceed the sketch window.

22

 That is, a leaf which is physically bigger than the computer screen will not result in an L-system bigger than
the screen.

131

Special care was taken to get the resultant L-system leaves to fit in the sketch

window. It happens very frequently (my very rough estimate would say at least 60% of the

time) that the generated parameters result in a surface which exceeds the screen. Further

constraint of the ranges of possible parameter values is not a good solution, as it is

particular parameters in combination with each other which causes such behavior. The

chief culprit is usually the growth rate of the main axis in conjunction with a large initial

length. Constraining parameters like these in order to stop generated leaves from going out

of bounds would make other legitimate shapes impossible—a shape which fits in the

window just fine could have, for example, the same growth rate as a shape 100 times

larger. It is rather the interaction between parameters as they influence the behavior of the

whole L-system that determines the final surface.

On the technical end, an-out-of-bounds candidate causes the ImageProcessor object

to not be able to find the leaf contour. One approach I attempted was to make the canvas (a

PGraphics object) on which the Turtle drew the L-system very large with the intention of

later scaling it down for display, but this just made the program laggier without even

solving the problem—when the leaves were too big, they were really too big. Furthermore,

scaling down a PGraphics object isn’t as simple as is scaling an image. This approach was

abandoned alongside the possibility of generating larger L-systems for physically larger

leaves. Instead, the unusable, out-of-bounds leaves are generated but discarded. A second

approach took advantage of how these out-of-bounds leaves would cause a glitch which

would crash the entire program, as the fact that the program could not handle these shapes

made it very easy to detect such exceptions. However, this glitch only occurred on very tall

leaves which were not also out of bounds horizontally—that is, usually on the Pinnate

132

template leaves instead those from the Palmate template. The final approach which worked

nicely ended up being very simple and stupidly obvious. As the Turtle draws each vertex, it

first checks if the vertex coordinates are outside the bounds of the PGraphics canvas. If so,

the Turtle drawGrammar function returns a null PGraphics object. Hence the program will

have the Turtle attempt to draw the generated candidate until a valid, in-bounds one is

created before moving on to the next space in the population pool.23 If, in Slider mode, the

selected template, input leaf (which affects base placement), and parameters make the

resulting leaf out-of-bounds, a message is reported to the screen.

Figure 42: Out-of-bounds message.

23

 At first the system just discarded the invalid candidate and didn’t generate another to replace it—hence if
you asked it make 300 leaves it would spit out way fewer. This was silly.

133

By moving the vertical position of the L-system’s base closer to the input leaf’s base

location, it also makes the search process more likely to end up with the correct template

as less appropriate templates are more likely to be out of bounds—Imagine a long leaf with

its base at the very bottom of the screen and then imagine a palmate leaf whose lobes reach

down below the concave base. Hence, this is a type of “hard” constraint which makes the

candidate pool closer.

An out-of-bounds candidate is also more common the higher the iteration of the L-

system. This is to be expected—the growth rate multiplier is applied more times! Because

the growth of different templates proceeds faster than others in certain dimensions, I

ended up deciding on a maximum appropriate iteration for each template through trial and

error. For example, an average generated palmate leaf will hit the horizontal boundary in

fewer iterations than an average pinnate leaf will due to both less available horizontal

space and a smaller length:width ratio. Hence I determined a reasonable maximum

iteration number for each template.

During search, the generated candidates are all drawn by the Turtle at the maximum

iteration for their template. Hence, “iteration” is not a parameter on which search is

performed. The system (in particular the parameter constraints relative to the default

window size) was instead optimized through manually tweaking to work with the

template’s maximum iteration. The bottom slider, however, is always dedicated to

adjusting the displayed iteration, which means the user can easily control and view the

“development sequence” of the generated leaf.

134

Leaf Color:

 The color of the generated leaf is that of the pixel 15 pixels to the left of the center

pixel of the input leaf image. The 15 pixel buffer was added to avoid the mid-rib, usually a

different shade from the rest of the lamina. The L-system leaf color is displayed with an

alpha value of 185 so that the black venation lines can be seen beneath. While making the

color of the generated leaf closer to the input leaf in this manner is rudimentary and plays

no further part in the process, I find that it increases what I perceive as resemblance by a

surprising amount.

Figure 43: Generated leaf color samples a pixel in the input leaf. The L-system leaves
above were matched to the images manually using parameter sliders.

It also occurs to me that one of the most useful things about having a wide variety of

input leaves is that if I need to generate a bunch of leaf images I have an automatic natural

135

color palette right at my fingertips and don’t have to go screwing around the code picking

and changing RGB values (which because of impatience usually results in extreme colors—

255’s all around). Instead, if I want to make a bunch of red L-system leaves (regardless of

the template or the input leaf shape) I can just navigate in the program to one of the red

input leaves and get a natural looking shade on the L-system leaf automatically. Generating

blue leaves however means changing the code.

136

Phase Four: Searching Parameter Space for an Adequate Model

 Phase Four concerns Search mode and how the system looks for a generated leaf

which resembles the input leaf. It is probably the least developed part of the whole project.

Assessing Fitness

Fitness is currently assessed using a weighted sum of different metrics which were

gathered during Phase 2. They are all normalized to be between 0 and 1, but I think the way

I did the normalization was really arbitrary and probably not the right way to approach it.

As the weights demonstrate, fitness is at maximum 100.

I think this has the constitutive components of a successful fitness function but it needs

better/more important measurements, more careful weighting, and some other way of

normalizing units.

137

Search

This is a little ridiculous. The search was initially the whole point of this project and

I never actually wrote a real one because I was having too much fun playing with leaf

parameters myself. There is however a Search Mode, and it does at least make a

rudimentary attempt to find a matching leaf template.

Here’s pseudo-code for the currently implemented search function:

1. For n in candidate pool size:
a. Pick k random parameter values between 0 and 1 (these become

mapped in the template to their unique parametric constraints).
b. Generates a candidate using these parameters, randomly

selecting one of the three templates.
c. Check if candidate fits in window, if not return to a.
d. Evaluate SysLeaf candidate fitness (compare to Input leaf) and

save to pool
2. Sort pool of valid SysLeaf candidates by fitness (compare each to Input leaf).
3. Display the candidate with best fitness.

Basically Search Mode finds some hills but it doesn’t bother climbing them. As it is, the

higher the candidate pool number the more options it has to pick from. Searching for this

problem is limited because generating each candidate takes about a second, which over the

course of many generations (and with a decent size candidate pool) would make the whole

thing kind of slow.

138

Figure 44: Screenshot from mid-development of
randomly generated candidates.

139

 I will say, however, that despite not being a good local search this function was

extremely useful for this project—it runs when the user presses ‘z’ and it currently saves

pictures of all the valid randomly generated L-system leaves to a folder. The filename is the

fitness value. Hence, rather than automating a local search that will return the best

candidate, it’s a randomized form generation algorithm which spits out a bunch of cool

JPEGs. One of the neater things to come out not bothering to evolve the candidates into

something fitter is that I get a lot of wacky shapes that don’t really look like leaves at all:

Figure 45: The Palmate template sometimes generates
 forms which remind me of radiolaria.

I think it would be neat to extend this random image creation to parametric L-systems

which aren’t designed to look like leaves in the first place. Think of the variety!

140

Results and Discussion

My original goal with this project was that when given a picture of an input leaf, the

system would return a graphically interpreted L-system representation with a matching

shape and venation structure. A few reasons I found this interesting:

1. I was curious if information about the external shape alone was enough

to assume something about the internal venation structure.

2. When it comes to representing specific biological structures, automatic

model generation is less common than manually designed and adjusted

models. Humans are plenty good at idealization—it would be neat to

engineer an idealizing machine.

3. Viewing the iterative developmental sequence would be like having a

visual time portal to a possible past of the leaf. I thought this would make

a cool video effect if combined with footage of leaves.24

4. I found polygonal L-systems geometrically exciting.

5. The problem combines computer-vision, computer-graphics, formal

grammar theory, and Nature.

24

 To this end, another part of Branching Boogaloo was going to be an experimental video of plants using
these and other computational effects. Work in progress.

141

FormaLeaf

The most tangible result of working on this problem has been the entirety of the

platform I built to explore it. I didn’t go into the project looking to make a software

interface; it just sort of happened. Software is ideational and can be an extension of our

perceptive and imaginative faculties.

Building the system from the ground-up (beginning with an implementation of L-

systems) helped me to understand the separate pieces and furthermore allowed me to

customize it to my needs. I ended up with a program I can imagine someone else using, but

realistically almost everything about it emerged around my personal patterns of use.

Interactive systems are exciting to use because the user is part of the system loop.

Interactive systems are even more exciting to develop because the developer gets control

over the nature of the interaction. Being both developer and user at once means you are in

an excellent position to satisfy your own desires. The way I use the system, the malleable

source code is part of the interface. Grammatical definition of leaves is controlled by

writing and modifying L-system code within the Processing IDE while these changes are

understood and manipulated visually in the actual program window.

 While FormaLeaf is not good at matching template leaves to input leaves, it excels in

image generation. Hence, much of the results section will be graphic examples.

142

Search Results:

 Search Mode does not get the right template very often as the fitness function and

search function are inadequate. It seems to work better on Palmate leaves because this

template in general has a different L:W ratio. Otherwise, Pinnate and PinLobed leaves are

easily confused.

Here is an example of incorrent template matching. The dimensions

are somewhat similar, but the lobe structure is way off. At least it

figured out that its got pinnate venation, though.

143

Here are two examples of correct template matching.
Note that the similarity of the top leaf is higher.

144

Figure 3: JPEG generation capabilities are off the charts.

145

146

Hypothetical Developmental Sequences

 Viewing the successive iterations of an L-system leaf makes it look like the leaf is

growing. This report is a static document so it can’t display the effect in motion—I think it

looks coolest as an animated gif. There is little reason to suspect that this necessarily

resembles the actual spatial development over time of a leaf with that final shape, as leaves

can assume different forms at different points in their growth. Designing grammars which

resemble the more complex/earlier development would require work with more attention

paid to early iterative behavior.

Figure 46: Iterative sequence of a Pinnate leaf.

147

 How does the software allow for generating an image like this? Here is a manually

adjusted Slider mode leaf I tweaked to vaguely resemble the input leaf:

I then manually adjust the bottom-most slider to go through the iterations step by step,25

and use the Processing saveFrame function (tied to key input) to save a sequence of

images. After getting the frames, I use Photoshop to put the images together. It would be

very cool and quite easy to automate this frame collection (and also make an oscillating

animate button using the sine function for the displayed iteration), but the frame stitching

25 The iteration slider actually starts at the third or fourth iteration step (depending on max iteration) since
the first few are so tiny.

148

would be a little more involved. Maybe the best way to do it is with another offscreen

PGraphics canvas which draws every iteration side by side and then just saves that image.

Putting the images together gets something like this:

This sort of sequence isn’t entirely dissimilar from what the palmate lobed leaves below

look like as they grow. Compare the younger leaf in the center to the bigger ones—it’s

mostly a matter of scaling (and unfolding).

149

As addressed in Part I, leaves develop through both cell division and cell expansion.

Speaking generally, cell division stops quite early in development and has a lot to do with

determining the shape structure. Cell expansion makes the leaf grow to its adult size—

hence the grammar iterations aren’t a bad growing approximation for this latter phase of

development since they are just applying the various segment growth rate multipliers to a

pre-existing structure.

Of course, when we discussed development, there was also the matter of the second

kind of development—that is, the non-temporal (or less immediately temporal, if we’re

thinking about actual evolving plants) metamorphosis from form to form. You can thus

illustrate a metamorphical sequence using a different slider than the iteration slider, or

even tie two parameters to the same slider and see how the form interacts when you

change them in tandem. This is the sequence from increasing the length of the primary vein

as well as rate of growth of the lateral vein. This isn’t growth in time (like iterations), its

parametric movement from form to form. This is not the determinate execution of the

code/grammar like growth is; rather this is a continuous changing of the code itself.

150

Tulip Tree (Liriodendron):

 One of the more unique samples is from a tulip tree.26 It has what looks like pinnate

venation, a cordate-esque base, and a concave apex. It’s L:W ratio is more typical of a

palmate leaf. Tulip tree leaves usually have four lobes, but this one has six.

The default PinLobed template was based on the pinnate lobation of oak leaves and thus

cannot approximate this leaf. Hence, the search and the parameters sliders won’t ever

really get close to this one. However, two simple structural modification to the grammar

and some futzing with the parameters makes resemblance easy.

 Structural Modifications:

1. In the original PinLobed template, the third production rule adds a final

lobelet to the top of the leaf after the lobe number parameter has been

decremented appropriately. Remove this production entirely.

2. Eliminate the bottom segment—I did this by adding a production which

fires only after the start symbol which has the two lobelet branches but

no segment beforehand. After this, subsequent mid-rib productions make

a segment before branching like usual.

26 Named so because its flowers look like tulips, not because it grows tulips. Tulips don’t grow on trees.

151

This gets us from something like the left side to the one on the right:

Parametrically, it should make 3 pairs of thick, rounded lobelets (i.e, extend their lateral

veins). Some slider constraints in the PinLobed template were modified to do this properly.

After some tweaking in the code and with the parameter sliders:

152

 Obviously this needs some work but it’s certainly getting closer. It’s got a concave

base and apex, although notice that the mid-rib line is not extending all the way to the top

like it is in the actual leaf. In any case, I think this is an interesting case study. First of all, it’s

a very weird leaf. Second, it shows how a new template27 for a leaf form can be manually

created and that it requires editing the actual structure of the grammar. Could this process

be automated as well? Some researchers evolve the symbols (as opposed to parameters) in

the productions of non-parametric L-systems modeling branching structures, but I don’t

know if it’s been done on parametric surface models. It also seems like a difficult problem.

You would probably need to do it modularly—that is, have some premade productions that

get shuffled around randomly.

 As a comparison to another method of modeling tulip tree leaves with L-systems,

here is a rendered leaf image from Peyrat et. al (2008). This paper uses a type of L-system

called a 2Gmap L-system. They write that one of their aims was to model the leaf in such a

way as to have accurate venation patterns, but the tertiary veins are a little funky.

The grammar in these kinds of L-systems (here both parametric and context-sensitive)

builds a 2D map and performs productions on entire geometrical faces instead of segments.

27 The template for making leaves like this is present in my code as “Tulip” but isn’t called in search.

153

Compound Leaves:

 FormaLeaf deals with simple leaves or what could be compound leaflets as input.

However, it is possible to generate images of compound leaves by modifying one of the

parameter constrains to give the lobelets of the Pinnate or Palmate template each their

own petiole. The Pinnate template’s grammatical structure was based on some leaf surface

models in The Algorithmic Beauty of Plants (see Figure 37) which had tiny petiole bits at the

bottom. When I first adapted these grammars for my purposes it was one of the first things

I got rid of. However, once I figured out how to make lobed leaves out of overlapping leaf

surface models, bringing the petioles back made images that resemble compound leaves

with leaflets attached by petiolules.

 The modification is extremely simple: just adjust the parameter constraints so the

BE (basal extension) parameter is a positive number. BE is checked in the conditional and I

find it has unpredictable behavior since I haven’t traced through on paper exactly what the

conditional is checking all the time. A positive BE number makes it so the lamina starts

further up.

154

Randomly Generated Leaves:

155

Future Work

 As the numerous places in Section III which read something like “I could have

done…” or “one possible approach would have been to…” suggest, there are innumerable

ways this system could be improved. Because there are so many different pieces (not to

mention different motivations) which make up FormaLeaf, my time was spent getting each

portion into “adequate” shape so it could all at least come together. Literally every part of

the system could be improved drastically if given focused attention and what I’ve ended up

with by the end of the allotted time for Senior Project is just a start. As alluded to before,

the “result” of this project is not only what the system spits out but also the whole system

itself. I think this is a valid way to perform computer science.

-Lobe Counting:

 I think that having an accurate count for the number of lobes would be one of the

single most useful metrics possible for matching a structural template. Unfortunately my

lobe detection is awful so the number it gets is really just an estimate (it’s at least usually

higher for lobed leaves). But still, what use is it if the system thinks an obviously unlobed

leaf has 2 lobes?

156

-Leaf Margins:

 Many leaves have serrated/jagged margins, with serrated margins more common in

cooler climates. The only place margin type is reflected in FormaLeaf at all is that non-

entire leaves make the lobe detector even more confused. Assessing the margin visually

would probably mean measuring the roughness of the contour. Generating different

margins sounds trickier.

Figure 47: Rose leaf model with marginal notches.
(The Algorithmic Beauty of Plants, 126)

 There is one example in ABOP but the polygonal

encoding here is a little different than my templates. In

the leaf above, each quadrilateral is a separately defined

polygon. Maybe this is worth exploring. Alternatively, I

found that the PinLobed template can be modified to get

the L-system leaf on the right. Perhaps marginal notches

and teeth can be approached with many very small

overlapping lobelets. The apices of the lobelets become

the teeth of the larger leaf.

157

-Brochidodromous Venation:

A few leaves in my sample set have looping on their 2nd-order veins. While I am

unsure how the system could figure out if an input leaf is brochidodromous or not without

doing line detection (since very similar leaf shapes exist with and without 2nd-order

looping), it would still interesting to model such venation using an L-system.

The L-system mechanism as described by Lindenmayer and Prusinkiewicz does not

have the inherent capacity for networked connections among the string elements (unless

there is some way to do this with context-sensitive L-systems, which I haven’t explored yet

at all). A few researchers have approached L-system network modeling with varying

strategies, building indications of connections between symbols into the grammars. Boers

et. al (1995) introduces G2L-Systems, which are graph grammars. Parish(2001) and

Eilertsen (2013) papers describe methods for city road generation with L-systems.

 What also really puzzles me about modeling these is that the current polygonal

surface models in FormaLeaf define polygonal vertices by having the Turtle drop vertices

at the leaf margins. That is, the second-order veins are extending all the way to the margin

(craspedodromous). Looking at the brochidodromous example above, this isn’t happening.

Perhaps vertices must be dropped at the end of tertiary veins coming off the 2nd-order

loops. Tricky!

158

-Higher Order Venation Network:

One of the things I find most fascinating about leaves is the intricate network of

higher-order veins. These networks are often modeled using techniques involving Voronoi

diagrams. I thought about making it so that once the best result leaf was found you could

press a key or button to “Voronoize” it, which would fill in the spaces between the lateral

veins with their own Voronoi diagram. These edges would not be a part of the L-system

(and hence would not follow with the iterations) and would be done purely for visual

effect. Fooling around with Lee Byron’s Mesh library28, this is as far as I got:

Figure 48: Voronoi diagram experiment.

Generating a smaller diagram within a region of the larger diagram was based off

Shirriff (1993). While I don’t know how one would get something like this to work

alongside being able to iterate through development steps (the diagram would have to be

adaptive somehow), I do think it would look interesting to have the spaces between the

lateral veins on a typical L-system leaf filled in in this manner even if only worked on a

28

 http://leebyron.com/mesh/

159

final, static iteration. However, storing the Turtle’s drawn lines in a way useable with

Byron’s library (or otherwise implementing Fortune’s Plane-Sweep Algorithm myself,

which is complicated), figuring out the geometry and boundaries of arbitrary regions, and

getting the system to “cap” its drawings of edges would have taken too much time for

unessential payoff and hence this effort was abandoned. At least Figure 1 gives an idea of

what I was thinking about.

-Arcuate Venation.

 The lateral (and sometimes the primary) veins of many leaves are not straight lines.

This is commonly referred to as arcuate venation. In my sample set, it is most common on

the simplest of the leaves—that is, unlobed “entire” leaves. This actually makes me wonder

if the curved venation is indicative of a simpler branch structure in general.

Processing has a curve function which could be worked into the Turtle implementation. It

would probably work parametrically, with some way to tell the system where to place the

inner points (which define the path of drawn curve) relative to the start points, end points,

and specified amount of curviness.

160

-Non-Symmetrical Leaves:

All my generated leaves are perfectly symmetrical, which

isn’t true of many actual leaves. The leaf to the right has a

branching scheme which the system has no way to approach. It’s

actually rather difficult to make heads-or-tails of this leaf even

by looking at it. Would you say that the midrib is bifurcating

equally or branching to the left and then bending to the right? How come the left side of the

leaf is developing what look like underdeveloped lobes while the right side isn’t? Even

weirder, this leaf is found on the same plant as the two below. This is possibly an instance

of heteroblastic development.

Figure 49: Oakleaf hydrangea (Hydrangea quercifolia).
They grow near the stairs by Kline.

161

-More Labeling:

 The only terminological label that is applied (other than the template type) is that of

the overall shape class. It would be interesting if the system could apply an apex label and a

base label as well and report it in the left-hand information panel. This of course sounds

like a problem more suited to machine learning approaches, but for that you need a lot of

data.

I also wonder whether you could use label information to give the search process

better hints of how to proceed—that is, it could use harder constraints instead of just soft

weights if you could be confident that the applied label was correct. This would make the

search more deductive.

-Fix Console Output:

 The Processing console is useful for debugging, but the console for FormaLeaf is

consistently filled with repeated print statements from the OpenCV for Processing library.

The constructor for the OpenCV object always prints

OpenCV for Processing 0.5.2 by Greg Borenstein http://gregborenstein.com
Using Java OpenCV 2.4.5.0

which means that it goes to the console every time a new OpenCV object is created. In

FormaLeaf this is done in a number of different constantly executing loops, as the

constructor takes the image it will be working on. Though the library has a loadImage

function, my attempts to use this to minimize the calls to the constructor did not behave as

expected. I either need to reorganize some of the code and figure out how to get loadImage

to work as I would like or otherwise recompile the library with the print statement

commented out, which is not the best solution because it complicates the library

dependency situation. In any case, it’s annoying and I’d like to fix it.

162

-More Template Leaves and Better Grammar Design:

 As can be gleaned by some examples explained in the Results section, figuring out

templates for different leaf forms takes some experimentation. In particular, it would be

satisfying to get a cordate template working that looks right29 and actually morphs

properly with the parameters. This may mean figuring out the proper proportional

relationships of different parts of the leaf or otherwise structuring it differently.

Figure 50: Attempts at a cordate leaf template were disappointing. The one on the
right looks good until you touch any of the parameters or change the iteration, at

which point it becomes a lobed leaf.

 Furthermore, the templates which already exist could be designed better. For

example, the Palmate template should be redesigned so it can take the number of lobes as a

parameter like the PinLobed template. The PinLobed lobelets have inaccurate looking

lengths relative to each other—the bottom-most lobes should not be the longest. I would

29 You perhaps recall the image from The Algorithmic Beauty of Plants included in the Intersection of a cordate
L-system. However, this model had parallel venation and further defines the surface model in a different way.

163

also like to see to what extent parameters can be consolidated or tied to each other in order

to minimize the number of required inputs to the more complicated grammars.

-Improved Parameter Parsing:

 Having used an external library for parameter and expression parsing, I didn’t have

as much control over this part of the program and hence running into issues here was

especially frustrating. Problems usually occur when trying to use symbolic elements which

are otherwise defined in the L-system as having interpretative meaning(such as

parentheses or even + and – signs) within parametric expressions for arithmetic purposes.

For whatever reason, the parser crashes if I try to use parentheses to make the order of

operations within an expression clearer. I’m not sure why this happens, but I ran into a few

similar cases where what could be expressed in the L-system was limited because of

language parsing problems.

-Fitness and Search:

 The fitness function is currently a weighted sum of a number of spatial

measurements. This could be improved by taking other more important measurements and

also by tweaking how they are weighted. One spatial analysis technique which might be

handy is found in Thomas S. Ray (1992), “Landmark Eigenshape Analysis: Homologous

Contours: Leaf Shape in Syngonium (Araceae).” Florindo et. al (2010) use a measurement

called Curvature Scale Space and got good results. There’s some code (I didn’t write it) in

the ImageProcessor class which measures the Hausdorff distance between two contours

which seems useful, but it didn’t seem right to use this metric without understanding how

164

it was working. A further option is to use a more nuanced technique for assessing similarity

than just having one fitness value, which would mean modifying the search technique as

well.

Search Mode in its current state doesn’t look very hard. I would like to try a genetic

algorithm, as it worked for Rodkaew et. al (2002) to evolve an L-system skeleton structure.

There’s also the appeal of “evolving” leaves “genetically.” An even more interesting fitness

function wouldn’t try to match the leaf to an input picture but rather try to optimize some

kind of simulated ecological metric.

165

Project Conclusion
Motivations and Summary

The eventual selection of leaf morphology as a senior project topic came out of

personal interests and experiences. I had since sophomore year at Bard found foliage

kaleidoscopically intriguing and had been thinking about the human backgrounding of

trees since the end of junior year. With boredom and free time on my side, I sat down with

a leaf the summer before senior year started. Actually bothering for once to take a closer

look, I drew a picture and wrote a dopey haiku:

In hindsight, this project might be nothing but an earnest attempt to unpack that

haiku, that drawing, that particular leaf I picked from the front lawn grass of a janky

summer sublet in Tivoli—the house was set back from the road so there was lots of green

space out front, catalpa trees dropping their cigars on the sidewalk, in the back a real

shadow jungle set beyond a desiccated swimming pool. Cool air and clear moons. Once we

set the porch on fire by accident.

There was also a purely practical aspect to the choice of the leaf —collecting and

generating spatial information is much easier in two dimensions. Putting a leaf in the

166

library’s flatbed scanner is a lot more feasible than 3D-scanning an entire tree, and

programming L-systems is a lot simpler when there is one fewer dimension to account for

in your code and in your head. While I began my project with the vague intention of

modeling entire trees with L-systems, I did not officially decide to narrow the focus to

leaves until fall break. While I had toyed with this idea earlier, it finally occurred to me that

if I wanted my project to interface with the real world at all, the project should be about

leaves specifically due to the possibility of collecting actual spatial data and using it as

input.

I now have a decent platform and, more importantly, a knowledge base upon which

to conduct further explorations of leaf morphology through computational means.

167

Bibliography

Antonelli, Peter L.: “Review of The Algorithmic Beauty of Plants” SIAM Review, Vol 34, No. 1. 1992.

Arber, Agnes Robertson. The Natural Philosophy of Plant Form. Cambridge: U, 1950. Print.

Aristotle, Trans. William Ogle, On the Parts of Animals. Web.

Barnsley, Michael F. Fractals Everywhere. Boston: Academic, 1988. Print.

Battjes, Johannes, Norbert O. E. Vischer, and Konrad Bachmann. "Capitulum Phyllotaxis and

Numerical Canalization in Microseris Pygmaea (Asteraceae: Lactuceae)." American Journal

of Botany 80.4 (1993): 419. Web.

Brenner, Eric D., Rainer Stahlberg, Stefano Mancuso, Jorge Vivanco, František Baluška, and

Elizabeth Van Volkenburgh. "Plant Neurobiology: An Integrated View of Plant Signaling."

Trends in Plant Science 11.8 (2006): 413-19. Web.

Brown, James H., and Geoffrey B. West, eds. Scaling in Biology. New York: Oxford UP, 2000. Print.

 Horn, Henry S.: Twigs, Trees, and the Dynamics of Carbon in the Landscape, 199-220.

 Schreiner, W.,Karch, R., Neumann, F., Neumann, M.: Constrained Constructive

Optimization of Arterial Tree Models, 145-165.

Da Vinci, Leonardo, and Edward McCurdy. The Notebooks of Leonardo Da Vinci. New York: Reynal &

Hitchcock, 1939. Print.

Ellis, Beth, Douglas C. Daly, Leo J. Hickey, Kirk R. Johnson, John D. Mitchell, Peter Wilf, and Scott L.

Wing. Manual of Leaf Architecture. Ithaca: Cornell UP, 2009. Print.

Esau, Katherine. Plant Anatomy. New York: Wiley, 1965. Print.

Fleury, Vincent, Jean-François Gouyet, and M. Léonetti, eds. Branching in Nature: Dynamics and

Morphogenesis of Branching Structures, from Cell to River Networks: Les Houches School,

October 11-15, 1999. Berlin: Springer, 1999. Print.

 B. Sapoval, M. Filoche and E.R. Weibel. Branched Structures, Acinus Morphology and

Optimal Design of Mammalian Lungs, 225-242.

 Couder, Y.: Patterns with Open Branches or Closed Networks: Growth in Scalar or

Tensorial Fields, 2-20.

 Peterson, M.A. Mathematical Meristems: The Singularities of Laplacian Growth, 445-

450.

168

Florindo, João B., André R. Backes, and Odemir M. Bruno. "Leaves Shape Classification Using

Curvature and Fractal Dimension." Lecture Notes in Computer Science Image and Signal

Processing (2010): 456-62. Web.

Goethe, Johann Wolfgang Von. Italian Journey, 1786-1788. Harmondsworth: Penguin, 1970. Print.

Goethe, Johann Wolfgang Von. The Metamorphosis of Plants. Ed. Gordon L. Miller. Cambridge, MA:

MIT, 2009. Print.

Gray, Asa. First Lessons in Botany and Vegetable Physiology: To Which Is Added a Copious Glossary, or

Dictionary of Botanical Terms. New York: Ivison and Phinney, 1860. Print.

Inamdar, J., Shenoy, K., Rao, N.: “Leaf Architecture of Some Monocotyledons with Reticulate

Venation.” Annals of Botany. 52.5 (1983): 725-735.

Ju, Tao, Scott Schaefer, and Ron Goldman. "Recursive Turtle Programs and Iterated Affine

Transformations." Computers & Graphics 28.6 (2004): 991-1004. Web.

Kumar, Neeraj, Peter N. Belhumeur, Arijit Biswas, David W. Jacobs, W. John Kress, Ida C. Lopez, and

João V. B. Soares. "Leafsnap: A Computer Vision System for Automatic Plant Species

Identification." Computer Vision – ECCV 2012 Lecture Notes in Computer Science (2012): 502-

16. Web.

Lev-Yadun, Simcha. "Fern Leaves and Cauliflower Curds Are Not Fractals." Plant Signaling &

Behavior 7.5 (2012): 533-34. Web.

Linné, Carl Von. Philosophia Botanica. Ed. Casimiro Gómez Ortega and Johann Andreas Murray.

Matriti: P. Marin, 1792. Print.

MacAdam, Jennifer W. Structure and Function of Plants. Ames, IA: Wiley-Blackwell, 2009. Print.

Mandelbrot, Benoit B. The Fractal Geometry of Nature. New York: Freeman, 1983. Print.

Needham, Joseph, and Lu Gwei-Djen. Science and Civilization in China. Vol. 6.i. Cambridge:

Cambridge University Press, 1986. Print.

Nicolaus of Damascus, and Walter Stanley. Hett. On Plants (in Aristotle: Minor Works) London:

Heinemann, 1936. Print.

Nicotra, Adrienne B., Andrea Leigh, C. Kevin Boyce, Cynthia S. Jones, Karl J. Niklas, Dana L. Royer,

and Hirokazu Tsukaya. "The Evolution and Functional Significance of Leaf Shape in the

Angiosperms." Functional Plant Biology Functional Plant Biol. 38.7 (2011): 535. Web.

Ochoa, Gabriela. On genetic algorithms and Lindenmayer systems. Parallel Problem Solving from

Nature V, 353-367. 1998

169

Peak, D., J. D. West, S. M. Messinger, and K. A. Mott. "Evidence for Complex, Collective Dynamics and

Emergent, Distributed Computation in Plants." Proceedings of the National Academy of

Sciences 101.4 (2004): 918-22. Web.

Peyrat, Alexandre, Olivier Terraz, Stephane Merillou, and Eric Galin. "Generating Vast Varieties of

Realistic Leaves with Parametric 2Gmap L-systems." The Visual Computer Visual Comput

24.7-9 (2008): 807-16. Web.

Ponge, Francis. Selected Poems. Trans. C. K. Williams, John Montague, and Margaret Guiton.

Winston-Salem, NC: Wake Forest UP, 1994. Print.

Priestley, Joseph. Experiments and Observations on Different Kinds of Air. With a Continuation of the

Observation on Air. London, 1774. Print.

Prusinkiewicz, Przemyslaw, and Aristid Lindenmayer. The Algorithmic Beauty of Plants. New York:

Springer-Verlag, 1990. Print.

Prusinkiewicz, P,. Hanan, J., Hammel, M., and M. Radomir.: L-systems: from the Theory to Visual

Models of Plants. Plants to Ecosystems. Advances in Computational Life Sciences, CSIRO,

Collingwood, Australia 1997, 1-27.

Prusinkiewicz, Przemyslaw. "Modeling of Spatial Structure and Development of Plants: A Review."

Scientia Horticulturae 74.1-2 (1998): 113-49. Web.

Prusinkiewicz, Przemyslaw, and Adam Runions. "Computational Models of Plant Development and

Form." New Phytologist 193.3 (2012): 549-69. Web.

Ray, John, Stephen A. Nimis, Kathleen Tschantz Unroe, Michael A. Vincent, Mark W. Chase, and

Michael Black. Methodus Plantarum Nova. 2014, Print.

Ray, Thomas S. "Landmark Eigenshape Analysis: Homologous Contours: Leaf Shape in Syngonium

(Araceae)." American Journal of Botany 79.1 (1992): 69. Web.

Raven, Charles E. John Ray, Naturalist; His Life and Works. Cambridge: U, 1950. Print.

Rodkaew, Y., Lurinsap, C., Fujimoto, T., Siripant, S., Chongstitvatana, P., Chiba, N.: Modeling leaf

shapes using l-systems and genetic algorithms. Proceedings of Plant International

Symposium on Plant Growth Modeling, Simulation, Visualization and their Applications, 210-

217. 2002

Rozenberg, Grzegorz, and Arto Salomaa. Lindenmayer Systems: Impacts on Theoretical Computer

Science, Computer Graphics, and Developmental Biology. Berlin: Springer-Verlag, 1992. Print.

von Sachs, Julius. History of Botany (1530-1860). Trans. Henry E. F. Garnsey. Ed. Isaac Bayley

Balfour. Oxford: Clarendon, 1890. Print.

170

Sack, Lawren, Christine Scoffoni, Athena D. Mckown, Kristen Frole, Michael Rawls, J. Christopher

Havran, Huy Tran, and Thusuong Tran. "Developmentally Based Scaling of Leaf Venation

Architecture Explains Global Ecological Patterns." Nature Communications Nat Comms 3

(2012): 837. Web.

Scarpella, Enrico, Michalis Barkoulas, and Miltos Tsiantis. "Control of Leaf and Vein Development by

Auxin." Cold Spring Harbor Perspectives in Biology 2:a001511 (2010): n. pag. Web.

Schleiden, Matthias Jacob. Contributions to Phytogenesis. 1838. Print.

Shirriff, Ken. “Generating fractals from Voronoi diagrams”, Computers and Graphics 17, 2 (1993)

165-167.

Theophrastus. Enquiry into Plants and Minor Works on Odours and Weather Signs. Trans. Arthur

Hort. London: W. Heinemann, 1916. Print.

Thom, René. Structural Stability and Morphogenesis; an Outline of a General Theory of Models.

Reading, MA: W.A. Benjamin, 1975. Print.

Thompson, D'Arcy Wentworth. On Growth and Form. Vol. 1. 1917. Cambridge, 1952. Print.

Thompson, D'Arcy Wentworth. On Growth and Form. Vol. 2. 1917. Cambridge, 1952. Print.

Thoreay, Walden. The Portable Thoreau. Vintage. 1970, Print.

Tomlinson, P. B. "Branching Is a Process, Not a Concept." Taxon 36.1 (1987): 54. Web.

Turing, Alan Mathison. "The Chemical Basis of Morphogenesis." 1952. The Essential Turing: Seminal

Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life "plus" the

Secrets of Enigma. Ed. B. Jack Copeland. Oxford: Oxford University Press, 2013. Print.

Vogel, Steven. The Life of a Leaf. Chicago: University Of Chicago, 2013. Print.

Wardlaw, C. W. Essays on Form in Plants. Manchester: Manchester U.P., 1968. Print.

171

Appendix: Processing Code

FormaLeaf.pde:

/*

FormaLeaf

version 1.0

Diana Ruggiero

05/06/16

*/

import gab.opencv.*;

import org.opencv.imgproc.Imgproc;

import org.opencv.core.*;

import java.lang.*;

import java.util.List;

import java.util.Collections;

import org.qscript.*;

OpenCV opencv;

PImage img, thresh;

Leaf realLeaf;

SysLeaf fakeLeaf;

Turtle turt;

ImageProcessor iProc;

PImage realLeafProcessed;

Slider slide0;

Slider slide1;

Slider slide2;

Slider slide3;

Slider slide4;

Slider slide5;

Slider slide6;

Slider slide7;

Slider slide8;

Slider slide9;

Slider iterSlider;

GrammarGenerator gGen;

Grammar startGram;

PApplet sketchPApplet;

float[] sliderVals = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5,0.5,0.5,0.5};

172

Boolean searchMode;

Boolean visionMode;

Boolean LSinfo;

String displayTemplate;

String[] templateList = new String[3];

int t;

int leafNum;

void setup() {

 size(1280, 800);

 sketchPApplet=this;

 iProc = new ImageProcessor();

 realLeaf = new Leaf(1);

 img = loadImage("01_r.jpg");

 img.resize((width/12)*5, 0);

 println(img.width);

 //used for thresholding, converting from Mat to PImage:

 opencv = new OpenCV(this, img);

 realLeafProcessed = iProc.processImage(opencv, realLeaf);

 realLeafProcessed.resize(0, height);

 slide0 = new Slider(0, height-300, width/6, 10, 1, false);

 slide1 = new Slider(0, height-280, width/6, 10, 1, false);

 slide2 = new Slider(0, height-260, width/6, 10, 1, false);

 slide3 = new Slider(0, height-240, width/6, 10, 1, false);

 slide4 = new Slider(0, height-220, width/6, 10, 1, false);

 slide5 = new Slider(0, height-200, width/6, 10, 1, false);

 slide6 = new Slider(0, height-180, width/6, 10, 1, false);

 slide7 = new Slider(0, height-160, width/6, 10, 1, false);

 slide8 = new Slider(0, height-140, width/6, 10, 1, false);

 slide9 = new Slider(0, height-120, width/6, 10, 1, false);

 iterSlider = new Slider(0, height-30, width/6, 10, 1, true);

 searchMode = false;

 visionMode = false;

 LSinfo = false;

 templateList[0] = "Pinnate";

 templateList[1] = "PinLobed";

 templateList[2] = "Palmate";

 t = 0;

 displayTemplate = templateList[t];

 leafNum = 1;

173

 gGen = new GrammarGenerator(sketchPApplet);

 startGram = gGen.buildGrammar(displayTemplate, sliderVals);

 fakeLeaf = new SysLeaf(realLeaf.getNum(), startGram, displayTemplate);

}

void draw() {

 background(255);

 Slider[] sliderList = {slide0, slide1, slide2, slide3, slide4, slide5,

slide6, slide7, slide8, slide9, iterSlider};

 image(img, width/6, height/2-(img.height/2));

 realLeaf.col = img.get(img.width/2-15, img.height/2);

 strokeWeight(2);

 stroke(0);

 line(width/6, 0, width/6, height);

 fill(0);

 textSize(23);

 textLeading(18);

 text("Morphometric" + "\n" + "Information:", 5, 20);

 line(0, 43, width/6, 43);

 textSize(16);

 text("Input Leaf:", 5, 62);

 line(0, 69, width/6, 69);

 textSize(12);

 text(realLeaf.getInfo(), 5, 84);

 float[] sliderVals = {

 map(sliderList[0].getPos(), 0, width/6, 0, 1),

 map(sliderList[1].getPos(), 0, width/6, 0, 1),

 map(sliderList[2].getPos(), 0, width/6, 0, 1),

 map(sliderList[3].getPos(), 0, width/6, 0, 1),

 map(sliderList[4].getPos(), 0, width/6, 0, 1),

 map(sliderList[5].getPos(), 0, width/6, 0, 1),

 map(sliderList[6].getPos(), 0, width/6, 0, 1),

 map(sliderList[7].getPos(), 0, width/6, 0, 1),

 map(sliderList[8].getPos(), 0, width/6, 0, 1),

 map(sliderList[9].getPos(), 0, width/6, 0, 1)};

 textSize(10);

 if (!searchMode) {

 text("Slider Mode (Press Z to search)", 10, height-5);

 Grammar slideGram = gGen.buildGrammar(displayTemplate, sliderVals);

 fakeLeaf = new SysLeaf(realLeaf.getNum(), slideGram, displayTemplate);

 updateSliders(sliderList);

 }

 if (searchMode) {

174

 text("Search Mode (Press X for Sliders)", 10, height-5);

 }

 if(visionMode){

 fill(0);

 text("Vision Mode is ON (Press C)", 10,height-15);

 }

 else if(!visionMode){

 fill(0);

 text("Vision Mode is OFF (Press C)", 10,height-15);

 }

 iterSlider.display();

 iterSlider.update();

 //the turtle takes the iterations, where it's drawn, the unit length, the

initial angle

 turt = new Turtle(fakeLeaf.gram, int(map(iterSlider.getPos(), 0, width/6,

4, fakeLeaf.maxIt)), 4, width/2, (float)realLeaf.base.y, -PI/2);

 PGraphics canvas = turt.drawGrammar(realLeaf.col);

 if (canvas!= null) {

 image(canvas, width-((width/12)*5), 0);

 PImage fakeLeafImg = canvas.get();

 OpenCV sysLeafCV = new OpenCV(this, fakeLeafImg);

 PImage fakeLeafProcessed = iProc.processImage(sysLeafCV, fakeLeaf);

 if (visionMode) {

 fakeLeafProcessed.resize((width/12)*5, 0);

 image(fakeLeafProcessed, width-(width/12)*5, 0);

 image(realLeafProcessed, width/6, height/2-(img.height/2));

 }

 stroke(0);

 fill(0);

 textSize(12);

 text(fakeLeaf.getInfo(), 5, 310);

 text("Similarity: " + realLeaf.evaluateSimilarity(fakeLeaf), 5, 480);

 } else {

 fill(255, 0, 0);

 textSize(40);

 text("GENERATED LEAF" + "\n" + "OUT OF BOUNDS", width/2+200, height/2-

50);

 textSize(15);

 text("Lower parameters/iterations" + "\n" + "or switch template/input

leaf.", width/2+250, height/2 +50);

 }

175

 stroke(0);

 fill(0);

 textSize(16);

 line(0, 238, width/6, 238);

 text("Generated Leaf:" + "\n", 5, 260);

 line(0, 270, width/6, 270);

 textSize(14);

 text("Template: "+ fakeLeaf.getTemplate(), 5, 290);

 strokeWeight(3);

 line(width-(width/12)*5, 0, width-(width/12)*5, height);

 if(LSinfo==true){

 drawLSInfo(fakeLeaf.gram);}

}

void keyPressed() {

 if (key=='z') {

 searchMode = true;

 SysLeaf bestfakeLeaf = gGen.search(realLeaf, fakeLeaf, 15, 5);

 fakeLeaf = bestfakeLeaf;

 }

 if (key=='x') {

 //turn search lock off,visionMode off, see leaf, allows sliders

 searchMode = false;

 visionMode = false;

 }

 if (key=='c') {

 //visionmode still allows slider use

 visionMode = !visionMode;

 }

 //take screenshot

 if (key=='m'){

 saveFrame("frames/#####.jpg");

 }

 if (key==CODED) {

 if (keyCode == UP) {

 t = t + 1;

 } else if (keyCode == DOWN) {

 t = t - 1;

 }

 t = constrain(t, 0, templateList.length-1);

 println(t);

 displayTemplate = templateList[t];

 }

 if (key==CODED){

 if (keyCode == RIGHT){

 leafNum = leafNum + 1;

 }

176

 else if(keyCode == LEFT){

 leafNum = leafNum - 1;

 }

 }

 //pick samples leaves with numkeys and left and right arrows

 if (key=='1') {

 leafNum = 1;

 } else if (key=='2') {

 leafNum = 2;

 } else if (key=='3') {

 leafNum = 3;

 } else if (key=='4') {

 leafNum = 4;

 } else if (key=='5') {

 leafNum = 10;

 } else if (key=='6') {

 leafNum = 20;

 } else if (key=='7') {

 leafNum = 30;

 } else if (key=='8') {

 leafNum = 40;

 } else if (key=='9') {

 leafNum = 50;

 } else if (key=='0') {

 leafNum = 60;

 }

 //displays Lsystem info

 if(key=='p'){

 LSinfo = !LSinfo;

 }

 leafNum = constrain(leafNum, 1, 70);

 String n = str(leafNum);

 if(leafNum < 10){

 n = "0" + n;

 }

 img = loadImage(n+"_r.jpg");

 realLeaf = new Leaf(leafNum);

 PImage imgCopy = img.get();

 imgCopy.resize((width/12)*5, 0);

 if (imgCopy.height>height) {

 img.resize(0, height);

 opencv = new OpenCV(this, img);

 realLeafProcessed = iProc.processImage(opencv, realLeaf);

 realLeafProcessed.resize(0, (height));

 } else {

 img.resize((width/12)*5, 0);

177

 opencv = new OpenCV(this, img);

 realLeafProcessed = iProc.processImage(opencv, realLeaf);

 realLeafProcessed.resize((width/12)*5, 0);

 }

}

void drawLSInfo(Grammar gram) {

 //Writes lsys to display screen.

 fill(255);

 rect(width/2-15, 80, width/2-50,100);

 fill(0);

 textSize(10);

 text("Axiom: " + gram.axiom, width/2, 100);

 for (int j=0; j<gram.productions.length; j++) {

 String prod = gram.productions[j][0]+" ->" + gram.productions[j][1];

 if (gram.productions[j].length==3) {

 prod = prod+" iff: "+gram.productions[j][2];

 }

 text(prod, width/2, 100+((1+j)*10));

 }

}

void updateSliders(Slider[] slList) {

 for (int i=0; i<slList.length; i++) {

 slList[i].update();

 slList[i].display();

 }

}

Grammar.pde:

class Grammar {

 String axiom;

 String[][] productions;

 Parameters parameters;

 float delta;

 float scaleFactor;

 /*Grammars need at least four arguments:

 (1)The definition of the axiom. The starting String.

 (2)The definition of the productions.

 It is an array made up of arrays which each contain 1 production.

 The first element of each array is the Left-Hand Side (LHS) of the

contained production.

 The second element of each array is the Right-Hand Side (RHS) of the

contained production.

 (3)Delta, the angle value. Give in degrees.

 (4)Scaling Factor. Give 1 to not scale.

 Can give in either decimal (0.5) or fraction with float denom (1/2.0).

 They also take parameter definitions, see second constuctor

 */

178

 Grammar(String ax, String[][] pro, float delt, float scFa) {

 axiom = ax;

 productions = pro;

 delta = delt;

 scaleFactor = scFa;

 String[][] emp = {{}};

 parameters = new Parameters(emp);

 }

 Grammar(String ax, String[][] pro, Parameters par, float delt, float scFa)

{

 axiom = ax;

 productions = pro;

 parameters = par;

 delta = delt;

 scaleFactor = scFa;

 for (int i =0; i<productions.length; i++) {

 String parString = new String(productions[i][1]);

 for (Map.Entry ent : parameters.paramHash.entrySet()) {

 String parString2 = parString.replaceAll((String)ent.getKey(),

(String)ent.getValue());

 parString = parString2;

 }

 productions[i][1] = parString;

 }

 for (int i =0; i<productions.length; i++) {

 if (productions[i].length==3) {

 String condString = new String(productions[i][2]);

 for (Map.Entry ent : parameters.paramHash.entrySet()) {

 String condString2 = condString.replaceAll((String)ent.getKey(),

(String)ent.getValue());

 condString = condString2;

 }

 productions[i][2] = condString;

 }

 }

 }

 Grammar reWrite() {

 StringBuilder stringBuilder = new StringBuilder();

 for (int j = 0; j<axiom.length(); j++) {

 Boolean param = false;

 Boolean ruleApplied = false;

 String word ="";

 //println("value of character:" + " " +

String.valueOf(axiom.charAt(j)));

179

 if (j+1 > axiom.length()-1 || axiom.charAt(j+1)!='(') {

 word = word + axiom.charAt(j);

 } else {

 param = true;

 int k = 0;

 while (axiom.charAt(j+k)!=')') {

 word = word + axiom.charAt(j+k);

 k = k + 1;

 }

 word = word + ')';

 }

 for (int i = 0; i<productions.length; i++) {

 //When symbol is not parametric, simply match symbol to production.

 if (param == false && word.equals(productions[i][0])) {

 stringBuilder.append(productions[i][1]);

 ruleApplied = true;

 break;

 }

 //When symbol *is* parametric, check conditions, and pass variable

 else if (param == true &&

word.charAt(0)==productions[i][0].charAt(0)) {

 String[] wordSym = match(word, "\\((.+?)\\)");

 String[] inputParams = wordSym[1].split(",");

 String[] prodVar = match(productions[i][0], "\\((.+?)\\)");

 String[] productionVariables = prodVar[1].split(",");

 //Check if number of # of parameters match

 if (inputParams.length != productionVariables.length) {

 break;

 }

 Boolean condition = true;

 if (productions[i].length==3) {

 String condExp = new String(productions[i][2]);

 for (int k = 0; k<inputParams.length; k++) {

 String condExp2 = condExp.replaceAll(productionVariables[k],

inputParams[k]);

 condExp = condExp2;

 }

 //construct condition with actual input num

 Result cond = Solver.evaluate(condExp);

 condition = cond.answer.toBoolean();

180

 }

 String passedPro = new String(productions[i][1]);

 for (int k = 0; k<inputParams.length; k++) {

 String repp = passedPro.replaceAll(productionVariables[k],

inputParams[k]);

 passedPro = repp;

 }

 if (condition==true) {

 stringBuilder.append(passedPro);

 ruleApplied = true;

 break;

 }

 }

 }

 if (ruleApplied == false) {

 /*BUG ALERT !!!

 lsystem has loads of extra (0)s at the end,

 but this doesn't affect functionality */

 stringBuilder.append(word);

 }

 }

 String finalString = stringBuilder.toString();

 //println(finalString);

 return new Grammar(finalString, productions, delta, scaleFactor);

 }

 String getStr() {

 return axiom;

 }

 float getAng() {

 return delta;

 }

 float getScaleFactor() {

 return scaleFactor;

 }

}

GrammarGenerator.pde:

import gab.opencv.*;

class GrammarGenerator {

 PApplet sketch;

 OpenCV sysLeafCV;

 ImageProcessor iProc = new ImageProcessor();

 GrammarGenerator(PApplet sk) {

181

 sketch = sk;

 }

 Grammar buildGrammar(String template, float[] paramVals) {

 if (template.equals("Pinnate")) {

 String axiom = "{.S(0)}";

 String [][]productions = {

 {"S(t)", "P(t)"},

 {"P(t)", "!(5)G(LP, RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).]"},

 {"L(t)", "!(2)G(LL, RL)L(t-1)", "t>=BE"},

 {"G(s,r)", "G(s*r, r)"}};

 String [][]paramDefs = {

 {"LP", str(map(paramVals[0], 0, 1, 2, 4.3))},

 {"RP", str(map(paramVals[1], 0, 1, 1, 1.25))},

 {"LL", str(map(paramVals[2], 0, 1, 1, 1.9))},

 {"RL", str(map(paramVals[3], 0, 1, 1.1, 1.38))},

 {"BE", str(map(paramVals[4], 0, 1, 0, -1))},

 {"AN", str(map(paramVals[5], 0, 1, 40, 80))}};

 Parameters parameters = new Parameters(paramDefs);

 Grammar constructedGrammar = new Grammar(axiom, productions,

parameters, 60, 1);

 return constructedGrammar;

 } else if (template.equals("Palmate")) {

 String axiom = "{.S(0)}";

 String [][]productions = {

 {"S(t)", "[+(ANN)+(ANN)B(t)].[+(ANN)P(t)].[P(t)].[-(ANN)P(t)].[-

(ANN)-(ANN)B(t)]"},

 {"P(t)", "!(5)G(LP,RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).]"},

 {"B(t)", "P(t)"},

 {"L(t)", "!(2)G(LL,RL)L(t-1)", "t>=BE"},

 {"G(s,r)", "G(s*r, r)"}};

 String [][]paramDefs = {

 {"LP", str(map(paramVals[0], 0, 1, 1.2, 3))},

 {"RP", str(map(paramVals[1], 0, 1, 1.1, 1.25))},

 {"LL", str(map(paramVals[2], 0, 1, 1.1, 2))},

 {"RL", str(map(paramVals[3], 0, 1, 1, 1.5))},

 {"BE", str(map(paramVals[4], 0, 1, 0, -4))},

 {"AN", str(map(paramVals[5], 0, 1, 40, 80))},

 {"ANN", str(map(paramVals[6], 0 , 1, 40, 70))}};

 Parameters parameters = new Parameters(paramDefs);

 Grammar constructedGrammar = new Grammar(axiom, productions,

parameters, 60, 1);

 return constructedGrammar;

 } else if (template.equals("PinLobed")) {

 String axiom = "{.S(0)}";

 String [][]productions = {

 {"S(t)", "P(t,LO)"},

 {"P(t,i)", "!(6)G(LP,RP)[-(AN)A(t)][P(t+1,i-1)][+(AN)A(t)]", "i>=0"},

 {"P(t,i)","!(6)G(LP,RP)N(t)" ,"i<0"},

 {"A(t)", "!(4)G(LL,RL)[-(ANN)L(t-1).][A(t+1)][+(ANN)L(t-1).]",

"t>=BE"},

 {"L(t)", "!(3)G(LT,RT)L(t-1)", "t>=BE"},

 {"N(t)", "!(4)[A(t+1)]", "t>=BE"},

 {"G(s,r)", "G(s*r, r)"}};

 String [][]paramDefs = {

182

 {"LP", str(map(paramVals[0], 0, 1, 6, 8))},

 {"RP", str(map(paramVals[1], 0, 1, 1.1, 1.26))},

 {"LL", str(map(paramVals[2], 0, 1, 1, 1.4))},

 {"RL", str(map(paramVals[3], 0, 1, 1.2, 1.45))},

 {"LT", str(map(paramVals[4], 0, 1, 1, 1.4))},

 {"RT", str(map(paramVals[5], 0, 1, 1.1, 1.2))},

 {"BE", str(map(paramVals[6], 0, 1, -1, -3))},

 {"AN", str(map(paramVals[7], 0, 1, 35, 60))},

 {"ANN", str(map(paramVals[8], 0, 1, 30, 85))},

 {"LO", str(map(paramVals[9], 0, 1, 1, 4))}};

 Parameters parameters = new Parameters(paramDefs);

 Grammar constructedGrammar = new Grammar(axiom, productions,

parameters, 60, 1);

 return constructedGrammar;

 } else if (template.equals("Tulip")) {

 /*must be tweaked with sliders to resemble tulip tree

 not included in search */

 String axiom = "{.S(0)}";

 String [][]productions = {

 {"S(t)", "Z(t,LO)"},

 {"Z(t,i)", "!(6)[-(AN)A(t)][P(t+1,i-1)][+(AN)A(t)]", "i>=0"},

 {"P(t,i)", "!(6)G(LP,RP)[-(AN)A(t)][P(t+1,i-1)][+(AN)A(t)]", "i>=0"},

 {"A(t)", "!(4)G(LL,RL)[-(ANN)L(t-1).][A(t+1)][+(ANN)L(t-1).]",

"t>=BE"},

 {"L(t)", "!(3)G(LT,RT)L(t-1)", "t>=BE"},

 {"G(s,r)", "G(s*r, r)"}};

 String [][]paramDefs = {

 {"LP", str(map(paramVals[0], 0, 1, 6, 8))},

 {"RP", str(map(paramVals[1], 0, 1, 1.1, 1.26))},

 {"LL", str(map(paramVals[2], 0, 1, 1, 4))},

 {"RL", str(map(paramVals[3], 0, 1, 1, 1.5))},

 {"LT", str(map(paramVals[4], 0, 1, 1, 1.6))},

 {"RT", str(map(paramVals[5], 0, 1, 1.1, 1.5))},

 {"BE", str(map(paramVals[6], 0, 1, -1, -3))},

 {"AN", str(map(paramVals[7], 0, 1, 35, 60))},

 {"ANN", str(map(paramVals[8], 0, 1, 30, 85))},

 {"LO", str(map(paramVals[9], 0, 1, 1, 4))}};

 Parameters parameters = new Parameters(paramDefs);

 Grammar constructedGrammar = new Grammar(axiom, productions,

parameters, 60, 1);

 return constructedGrammar;

 } else if (template.equals("ComPalm")) {

 //compound palmate leaf, not in search

 String axiom = "{.S(0)}";

 String [][]productions = {

 {"S(t)", "[+(ANN)+(ANN)P(t)].[+(ANN)P(t)].[P(t)].[-(ANN)P(t)].[-

(ANN)-(ANN)P(t)]"},

 {"P(t)", "!(5)G(LP,RP)[-(AN)L(t).][P(t+1)][+(AN)L(t).]"},

 {"L(t)", "!(2)G(LL,RL)L(t-1)", "t>=BE"},

 {"G(s,r)", "G(s*r, r)"}};

 String [][]paramDefs = {

 {"LP", str(map(paramVals[0], 0, 1, 1.2, 3))},

 {"RP", str(map(paramVals[1], 0, 1, 1.1, 1.25))},

 {"LL", str(map(paramVals[2], 0, 1, 1.1, 2))},

 {"RL", str(map(paramVals[3], 0, 1, 1, 1.5))},

183

 {"BE", str(map(paramVals[4], 0, 1, 2, -4))},

 {"AN", str(map(paramVals[5], 0, 1, 40, 80))},

 {"ANN", str(map(paramVals[6], 0 , 1, 40, 70))}};

 Parameters parameters = new Parameters(paramDefs);

 Grammar constructedGrammar = new Grammar(axiom, productions,

parameters, 60, 1);

 return constructedGrammar;

 }

 else {

 //Don't think this ever gets run, here just in case

 //old version of palmate temp, dunno what it looks like

 String axiom = "{[++A(0)].[+(AN)A(0)].[A(0)].[-(AN)A(0)].[--A(0)]}";

 String [][]productions = {{"A(t)", "G(LA,RA)[-L(t).][A(t+1)][+L(t).]"},

 {"L(t)", "G(LL,RL)L(t-1)", "t>=-8"},

 {"G(s,r)", "G(s*r, r)"}};

 String [][]paramDefs = {

 {"LA", str(map(paramVals[0], 0, 1, 2, 5))},

 {"RA", str(map(paramVals[1], 0, 1, 1, 1.25))},

 {"LL", str(map(paramVals[2], 0, 1, 1, 1.9))},

 {"RL", str(map(paramVals[3], 0, 1, 1.1, 1.35))},

 {"AN", str(map(paramVals[4], 0, 1, 40, 80))}};

 Parameters parameters = new Parameters(paramDefs);

 Grammar constructedGrammar = new Grammar(axiom, productions,

parameters, 60, 1);

 return constructedGrammar;

 }

 }

 SysLeaf search(Leaf realLeaf, SysLeaf fakeLeaf, int poolSize, int

generations) {

 List<SysLeaf> candList = makeCandidates(realLeaf, fakeLeaf, poolSize);

 //candList is sorted by fitness, so return best individual.

 return candList.get(0);

 }

 List<SysLeaf> makeCandidates(Leaf realLeaf, SysLeaf fakeLeaf, int poolSz) {

 Grammar[] candidateGrams = new Grammar[poolSz];

 List<SysLeaf> candidateLeavesAll = new ArrayList<SysLeaf>();

 float fitness;

 String template = "Pinnate";

 for (int i=0; i<candidateGrams.length; i++) {

 //for serach, hill climbing/sim anneal? Depends on generation?

 //modify template probabilities??

 //mutate top half of candidates

 PGraphics candiCanvas = null;

184

 //keep generating candidate until valid, in-bounds one arrives

 while (null == candiCanvas) {

 float[] paramVals = {random(1), random(1), random(1), random(1),

random(1), random(1), random(1), random(1), random(1), random(1)};

 //need to store venation/template type in sysLeaf...

 float dice = random(1);

 int itMax = 14;

 if (dice<=0.33333) {

 template = "Pinnate";

 candidateGrams[i] = buildGrammar(template, paramVals);

 itMax = 14;

 } else if (dice>0.333333 && dice<0.666666) {

 template = "Palmate";

 candidateGrams[i] = buildGrammar(template, paramVals);

 itMax = 11;

 } else if (dice>=0.666666) {

 template = "PinLobed";

 candidateGrams[i] = buildGrammar(template, paramVals);

 itMax = 12;

 } else {

 itMax = 14;

 template = "Pinnate";

 candidateGrams[i] = buildGrammar(template, paramVals);

 }

 Turtle turty = new Turtle(candidateGrams[i], itMax, 4, width/2,

(float)realLeaf.base.y, -PI/2);

 candiCanvas = turty.drawGrammar(realLeaf.col);

 }

 PImage sysLeafImg = candiCanvas.get();

 image(sysLeafImg, 0, 0);

 OpenCV sysLeafCV = new OpenCV(sketch, sysLeafImg);

 SysLeaf fakeLeafCan = new SysLeaf(realLeaf.getNum(), candidateGrams[i],

template);

 PImage sysLeafProcessed = iProc.processImage(sysLeafCV, fakeLeafCan);

 fitness = realLeaf.evaluateSimilarity(fakeLeafCan);

 fakeLeafCan.setFitness(fitness);

 println(i);

 //saving cadidates! filename is fitness.

 candiCanvas.save("candidates/" +fitness+ ".jpg");

 candidateLeavesAll.add(fakeLeafCan);

 }

 println(candidateLeavesAll.size());

 Collections.sort(candidateLeavesAll);

 return candidateLeavesAll;

 }

}

185

ImageProcessor.pde:

class ImageProcessor {

 Core cvCore;

 Imgproc process;

 Mat thresholdMat;

 Mat holderMat;

 ArrayList<MatOfPoint> contourList;

 Mat hier;

 int contourIndex;

 Mat drawnContoursMat;

 ImageProcessor() {

 process = new Imgproc();

 cvCore = new Core();

 }

 PImage processImage(OpenCV opencv, Leaf leafy) {

 opencv.threshold(220);

 thresh = opencv.getSnapshot();

 contourList = new ArrayList();

 thresholdMat = opencv.getGray();

 drawnContoursMat = opencv.getColor();

 hier = new Mat();

 holderMat = opencv.imitate(drawnContoursMat);

 process.findContours(thresholdMat, contourList, hier, Imgproc.RETR_LIST,

Imgproc.CHAIN_APPROX_SIMPLE);

 //seeking 2nd largest contour (largest contour is outline of picture)

 float[] areas = new float[contourList.size()];

 for (int i=0; i<contourList.size(); i++) {

 //println(process.contourArea(contourList.get(i)));

 areas[i] = (float)process.contourArea(contourList.get(i));

 }

 areas = sort(areas);

 double targetArea;

 try {

 targetArea = (double)areas[areas.length-2];

 }

 catch(IndexOutOfBoundsException e) {

 return null;

 }

 contourIndex = 0;

 for (int j=0; j<contourList.size(); j++) {

 if (targetArea == process.contourArea(contourList.get(j))) {

 contourIndex = j;

 }

186

 }

 cvCore.bitwise_not(holderMat, drawnContoursMat); //inverts contour image

so background is white

 MatOfPoint leafContour = contourList.get(contourIndex);

 leafy.setContour(leafContour);

 //draw leafContour

 process.drawContours(drawnContoursMat, contourList, contourIndex, new

Scalar(0, 200, 100), 15);

 //Calculate bounding box, draw it, save lamina length to leaf.

 Rect boundBox = process.boundingRect(leafContour);

 //cvCore.rectangle(drawnContoursMat, boundBox.tl(), boundBox.br(), new

Scalar(0, 0, 255), 8);

 leafy.setLamLength(boundBox.size().height);

 leafy.setLamWidth(boundBox.size().width);

 //Midline of bounding box.

 Point apex = new Point((boundBox.tl().x+boundBox.br().x)/2,

boundBox.tl().y);

 Point base = new Point((boundBox.tl().x+boundBox.br().x)/2,

boundBox.br().y);

 //cvCore.circle(drawnContoursMat, apex, 6, new Scalar(170, 0, 255), 4);

 //cvCore.circle(drawnContoursMat, base, 6, new Scalar(255, 255, 40), 4);

 //cvCore.line(drawnContoursMat, apex, base, new Scalar(255, 0, 0), 8);

 leafy.setApex(apex);

 leafy.setBase(base);

 findShapeClass(boundBox, leafy);

 /*Convex hull on full contour

 //help from here:

 //http://stackoverflow.com/questions/18143077/computer-vision-filtering-

convex-hulls-and-convexity-defects-with-opencv

 MatOfInt hullIndices1 = new MatOfInt();

 ArrayList<Point> hullPointList1 = new ArrayList();

 process.convexHull(leafContour, hullIndices1);

 for (int j=0; j < hullIndices1.toList().size(); j++) {

 hullPointList1.add(leafContour.toList().get(hullIndices1.toList().get(j)

));

 }

 MatOfPoint hullMatPoint1 = new MatOfPoint();

 hullMatPoint1.fromList(hullPointList1);

 ArrayList<MatOfPoint> hullMatPointList1 = new ArrayList();

 hullMatPointList1.add(hullMatPoint1);

 process.drawContours(drawnContoursMat, hullMatPointList1, 0, new

Scalar(50, 50, 50), 10);

187

 //convexity defects on full contour:

 MatOfInt4 defectMat = new MatOfInt4();

 process.convexityDefects(leafContour, hullIndices1, defectMat);

 List<Integer> defectList = defectMat.toList();

 for (int i=2; i<defectList.size(); i=i+4) {

 int cIndex = defectList.get(i);

 Point[] cPoints = leafContour.toArray();

 cvCore.circle(drawnContoursMat, cPoints[cIndex], 24, new Scalar(255,

255, 40), 4);

 //convexity defect points:

 //println(cPoints[cIndex]);

 }

 */

 //polygon approximation for better lobe estimate.

 MatOfPoint2f contourFloat = new MatOfPoint2f(leafy.contour.toArray());

 MatOfPoint2f polygonApprox = new MatOfPoint2f();

 process.approxPolyDP(contourFloat, polygonApprox, 4, true);

 MatOfPoint approxContour = new MatOfPoint();

 polygonApprox.convertTo(approxContour, CvType.CV_32S);

 ArrayList<MatOfPoint> approxContourList = new ArrayList();

 approxContourList.add(approxContour);

 process.drawContours(drawnContoursMat, approxContourList, 0, new

Scalar(0, 50, 160), 10);

 //Convex hull on polyapprox contour

 MatOfInt hullIndices = new MatOfInt();

 ArrayList<Point> hullPointList = new ArrayList();

 process.convexHull(approxContour, hullIndices);

 for (int j=0; j < hullIndices.toList().size(); j++) {

hullPointList.add(leafContour.toList().get(hullIndices.toList().get(j)));

 }

 MatOfPoint hullMatPoint = new MatOfPoint();

 hullMatPoint.fromList(hullPointList);

 ArrayList<MatOfPoint> hullMatPointList = new ArrayList();

 hullMatPointList.add(hullMatPoint);

 //draw convex hull--but it doesn't really show when using polyapprox

 //process.drawContours(drawnContoursMat, hullMatPointList, 0, new

Scalar(255, 50, 50), 10);

 //convexity defects

 MatOfInt4 defectMat = new MatOfInt4();

188

 //approxpoly freaks out at low iterations why!!!!

 int lobeCount = 0;

 if (hullIndices.rows() >=3) {

 process.convexityDefects(approxContour, hullIndices, defectMat);

 List<Integer> defectList = defectMat.toList();

 for (int i=2; i<defectList.size(); i=i+4) {

 int cIndex = defectList.get(i);

 Point[] cPoints = approxContour.toArray();

 cvCore.circle(drawnContoursMat, cPoints[cIndex], 17, new Scalar(255,

255, 40), 4);

 lobeCount ++;

 //convexity defect points:

 //println(cPoints[cIndex]);

 }

 }

 //get area

 float area = (float)process.contourArea(leafContour);

 //get perimeter

 MatOfPoint2f conFloat = new MatOfPoint2f(leafy.contour.toArray());

 float perimeter = (float)process.arcLength(conFloat, true);

 leafy.setApproxPolyContour(approxContour);

 leafy.setLobeNum(lobeCount);

 leafy.setArea(area);

 leafy.setPerimeter(perimeter);

 /*minEnclosing circle on polygonApprox

 Point circCent = new Point();

 float[] radius = new float[1];

 process.minEnclosingCircle(polygonApprox, circCent, radius);

 cvCore.circle(drawnContoursMat, circCent, (int)radius[0], new Scalar(0,

0, 255), 4);

 */

 //make final image, turn into PImage

 PImage drawnContoursPImage = createImage(drawnContoursMat.width(),

drawnContoursMat.height(), RGB);

 opencv.toPImage(drawnContoursMat, drawnContoursPImage);

 return drawnContoursPImage;

 }

 void findShapeClass(Rect boundBox, Leaf leafy) {

189

 ArrayList<Point> leftMostList = new ArrayList();

 Point leftMost = new Point();

 MatOfPoint2f contourFloat = new MatOfPoint2f(leafy.contour.toArray());

 //find widest point on left

 for (double y = boundBox.tl().y; y<boundBox.br().y; y++) {

 Point leftMostCan = new Point(boundBox.tl().x, y);

 if (process.pointPolygonTest(contourFloat, leftMostCan, true)==0) {

 leftMost = leftMostCan;

 leftMostList.add(leftMost);

 }

 }

 ArrayList<Point> rightMostList = new ArrayList();

 Point rightMost = new Point();

 //find widest point on right

 for (double y2 = boundBox.br().y; y2>boundBox.tl().y; y2=y2-1) {

 Point rightMostCan = new Point(boundBox.br().x, y2);

 if (process.pointPolygonTest(contourFloat, rightMostCan, true)+1==0) {

 rightMost = rightMostCan;

 rightMostList.add(rightMost);

 }

 }

 ArrayList<Point> acrossFromLList = new ArrayList();

 Point acrossFromL = new Point();

 //find points across from extreme Left points

 for (int i = 0; i<leftMostList.size(); i++) {

 for (double x = boundBox.br().x; x>leftMostList.get(i).x; x=x-1) {

 Point acrossFromLCan = new Point(x, leftMostList.get(i).y);

 if (process.pointPolygonTest(contourFloat, acrossFromLCan, true)==0)

{

 acrossFromL = acrossFromLCan;

 acrossFromLList.add(acrossFromL);

 break;

 }

 }

 }

 ArrayList<Point> acrossFromRList = new ArrayList();

 Point acrossFromR = new Point();

 //find points across from extreme Right points

 for (int i = 0; i<rightMostList.size(); i++) {

 for (double x = boundBox.tl().x; x<rightMostList.get(i).x-1; x=x+1) {

 Point acrossFromRCan = new Point(x, rightMostList.get(i).y);

 if (process.pointPolygonTest(contourFloat, acrossFromRCan, true)==0)

{

 acrossFromR = acrossFromRCan;

 acrossFromRList.add(acrossFromR);

 break;

 }

 }

 }

 float[] distListL = new float[leftMostList.size()];

 for (int i = 0; i<leftMostList.size(); i++) {

 try {

190

 distListL[i] = ((float)euclideanDist(leftMostList.get(i),

acrossFromLList.get(i)));

 }

 catch(IndexOutOfBoundsException e) {

 distListL[i] = 0;

 }

 }

 float maxLeftDist =0;

 if(distListL.length>0){

 maxLeftDist = max(distListL);}

 float[] distListR = new float[rightMostList.size()];

 for (int i = 0; i<rightMostList.size(); i++) {

 try{

 distListR[i] = ((float)euclideanDist(rightMostList.get(i),

acrossFromRList.get(i)));

 }

 catch(IndexOutOfBoundsException e){

 distListR[i] = 0;

 }

 }

 float maxRightDist= 0;

 if(distListR.length>0){

 maxRightDist = max(distListR);}

 Point widest = new Point();

 if (maxLeftDist > maxRightDist) {

 int ind = 0;

 for (int i = 0; i<distListL.length; i++) {

 if (distListL[i] == maxLeftDist) {

 ind = i;

 }

 }

 widest = leftMostList.get(ind);

 //cvCore.line(drawnContoursMat, leftMostList.get(ind),

acrossFromLList.get(ind), new Scalar(0, 0, 0), 14);

 //cvCore.circle(drawnContoursMat, acrossFromLList.get(ind), 12, new

Scalar(200, 40, 40), 4);

 //cvCore.circle(drawnContoursMat, leftMostList.get(ind), 12, new

Scalar(40, 40, 40), 4);

 } else {

 int ind = 0;

 for (int i = 0; i<distListR.length; i++) {

 if (distListR[i] == maxRightDist) {

 ind = i;

 }

 }

 widest = rightMostList.get(ind);

 //cvCore.line(drawnContoursMat, rightMostList.get(ind),

acrossFromRList.get(ind), new Scalar(0, 0, 0), 14);

 //cvCore.circle(drawnContoursMat, rightMostList.get(ind), 12, new

Scalar(200, 40, 40), 4);

 //cvCore.circle(drawnContoursMat, acrossFromRList.get(ind), 12, new

Scalar(40, 40, 40), 4);

191

 }

 //Divide into 5ths

 for (int i = 0; i<6; i++) {

 Point left = new Point(boundBox.tl().x, boundBox.tl().y +

(leafy.laminaLength/5.0)*i);

 Point right = new Point(boundBox.br().x, boundBox.tl().y +

(leafy.laminaLength/5.0)*i);

 //draw 5th lines:

 //cvCore.line(drawnContoursMat, left, right, new Scalar(255, 0, 255),

9);

 if (widest.y<boundBox.tl().y+(leafy.laminaLength/5.0)*i &&

leafy.wideFifth==0) {

 leafy.setWideFifth(i);

 }

 }

 }

 double euclideanDist(Point a, Point b) {

 Point euc = new Point(a.x - b.x, a.y - b.y);

 double toSq = euc.x*euc.x + euc.y*euc.y;

 return Math.sqrt(toSq);

 }

 int distance_2(Point[] a, Point[] b) {

 /*hausdorff distance helper

 I DID NOT WRITE THIS

 http://stackoverflow.com/questions/21482534/how-to-use-shape-distance-

and-common-interfaces-to-find-hausdorff-distance-in-op

 */

 int maxDistAB = 0;

 for (int i=0; i<a.length; i++)

 {

 int minB = 1000000;

 for (int j=0; j<b.length; j++)

 {

 int dx = (int)(a[i].x - b[j].x);

 int dy = (int)(a[i].y - b[j].y);

 int tmpDist = dx*dx + dy*dy;

 if (tmpDist < minB)

 {

 minB = tmpDist;

 }

 if (tmpDist == 0)

 {

 break; // can't get better than equal.

 }

 }

 maxDistAB += minB;

 }

 return maxDistAB;

 }

192

 double distance_hausdorff(Point[] a, Point[] b) {

 /*hausdorff distance function

 I DID NOT WRITE THIS

 http://stackoverflow.com/questions/21482534/how-to-use-shape-distance-

and-common-interfaces-to-find-hausdorff-distance-in-op

 */

 int maxDistAB = distance_2(a, b);

 int maxDistBA = distance_2(b, a);

 int maxDist = max(maxDistAB, maxDistBA);

 return Math.sqrt((double)maxDist);

 }

}

Leaf.pde:

class Leaf {

 int number;

 float laminaLength= 0;

 float laminaWidth = 0;

 float lwRatio;

 float lamArea = 0;

 float lamPerimeter = 0;

 int wideFifth = 0;

 int lobeNum = 0;

 MatOfPoint contour;

 MatOfPoint approxPolyContour;

 Point apex;

 Point base;

 Imgproc pro;

 ImageProcessor myPro;

 color col;

 String shapeClass;

 Leaf(int num) {

 number = num;

 col = color(34, 200, 40, 180);

 pro = new Imgproc();

 myPro = new ImageProcessor();

 }

 int getNum() {

 return number;

 }

 void setLamLength(double len) {

 laminaLength = (float)len;

 if (laminaWidth != 0) {

193

 lwRatio = laminaLength/laminaWidth;

 }

 }

 void setLamWidth(double wid) {

 laminaWidth = (float)wid;

 if (laminaLength != 0) {

 lwRatio = laminaLength/laminaWidth;

 }

 }

 void setWideFifth(int fif) {

 wideFifth = fif;

 if (wideFifth==1 || wideFifth==2) {

 shapeClass = "Obovate";

 } else if (wideFifth==3) {

 shapeClass = "Elliptic";

 } else if (wideFifth==4 || wideFifth==5) {

 shapeClass = "Ovate";

 } else {

 shapeClass = "Special?";

 }

 }

 void setContour(MatOfPoint con) {

 contour = con;

 }

 void setApproxPolyContour(MatOfPoint apc){

 approxPolyContour = apc;

 }

 void setShapeClass(String sc) {

 shapeClass = sc;

 }

 void setLobeNum(int ln){

 lobeNum = ln;

 }

 void setApex(Point a){

 apex = a;

 }

 void setBase(Point b){

 base = b;

 }

 void setArea(float a){

 lamArea = a;

 }

 void setPerimeter(float p){

 lamPerimeter = p;

 }

194

 String getInfo() {

 String info = "";

 info = info +

 "Leaf Number: " + number + "\n" +

 "Length: " + laminaLength + "\n" +

 "Width: " + laminaWidth + "\n" +

 "L:W Ratio: "+ lwRatio + "\n" +

 "Area: " + lamArea + "\n" +

 "Perimeter: " + lamPerimeter + "\n" +

 //won't bother displaying until lobes is more accurate

 //"Number of Lobes: " + lobeNum + "\n" +

 "Shape Class: " + shapeClass+ "\n";

 return info;

 }

 float evaluateSimilarity(Leaf other) {

 //this is the fitness function!

 Point[] cPoints = contour.toArray();

 Point[] oPoints;

 try{

 oPoints = other.contour.toArray();}//buggy

 catch(NullPointerException e){

 oPoints = null;

 }

 float lwR = 1-map(abs(lwRatio - other.lwRatio),0,3,0,1);

 float len = 1-map(abs(laminaLength-other.laminaLength), 0, 300, 0, 1);

 float wid = 1-map(abs(laminaWidth-other.laminaWidth), 0, 300, 0, 1);

 float lobe = map(abs(lobeNum-other.lobeNum), 0, 6, 1, 0);

 float sc;

 if(shapeClass.equals(other.shapeClass)){

 sc = 1;

 }

 else{

 sc = 0;

 }

 float fitness = lwR*25 + len*10 +wid*10 + + area*15 +lobe*15 +sc*25;

 /*hausdorff distance, fool with this another time

 float hausdorff;

 if(null!=oPoints){

 hausdorff = 1000/(float)myPro.distance_hausdorff(cPoints, oPoints);

 }

 else

 hausdorff = 0; */

 return fitness;

 }

195

}

Parameters.pde:

import java.util.Map;

class Parameters {

 HashMap<String, String> paramHash = new HashMap<String, String>();

 String[][] paramList;

 Parameters(String[][] pList) {

 paramList = pList;

 if (paramList[0].length!=0) {

 for (int i=0; i<paramList.length; i++) {

 addParam(paramList[i]);

 }

 }

 }

 void addParam(String[] pairToAdd) {

 paramHash.put(pairToAdd[0], pairToAdd[1]);

 }

 String getVal(String keyy) {

 String val = paramHash.get(keyy);

 return val;

 }

}

Slider.pde:

/* Slider class

I did not write this.

Modifed from https://processing.org/examples/scrollbar.html

*/

class Slider {

 int swidth, sheight; // width and height of bar

 float xpos, ypos; // x and y position of bar

 float spos, newspos; // x position of slider

 float sposMin, sposMax; // max and min values of slider

 int loose; // how loose/heavy

 boolean over; // is the mouse over the slider?

 boolean locked;

 float ratio;

 Slider (float xp, float yp, int sw, int sh, int l, Boolean maxStart) {

 swidth = sw;

 sheight = sh;

 int widthtoheight = sw - sh;

 ratio = (float)sw / (float)widthtoheight;

196

 xpos = xp;

 ypos = yp-sheight/2;

 if(!maxStart){

 spos = xpos + swidth/2 - sheight/2;

 }

 else{

 spos = xpos + swidth - sheight;

 }

 newspos = spos;

 sposMin = xpos;

 sposMax = xpos + swidth - sheight;

 loose = l;

 }

 void update() {

 if (overEvent()) {

 over = true;

 } else {

 over = false;

 }

 if (mousePressed && over) {

 locked = true;

 }

 if (!mousePressed) {

 locked = false;

 }

 if (locked) {

 newspos = constrain(mouseX-sheight/2, sposMin, sposMax);

 }

 if (abs(newspos - spos) > 1) {

 spos = spos + (newspos-spos)/loose;

 }

 }

 float constrain(float val, float minv, float maxv) {

 return min(max(val, minv), maxv);

 }

 boolean overEvent() {

 if (mouseX > xpos && mouseX < xpos+swidth &&

 mouseY > ypos && mouseY < ypos+sheight) {

 return true;

 } else {

 return false;

 }

 }

 void display() {

 noStroke();

 fill(204);

 rect(xpos, ypos, swidth, sheight);

 if (over || locked) {

197

 fill(0, 0, 0);

 } else {

 fill(102, 102, 102);

 }

 rect(spos, ypos, sheight, sheight);

 }

 float getPos() {

 // Convert spos to be values between

 // 0 and the total width of the scrollbar

 return spos * ratio;

 }

}

SysLeaf.pde:

class SysLeaf extends Leaf implements Comparable<SysLeaf>{

 Grammar gram;

 float fitness = 0;

 String template;

 int maxIt;

 SysLeaf(int num, Grammar g, String temp){

 super(num);

 gram = g;

 template = temp;

 if(template=="Pinnate"){

 maxIt = 14;

 }

 if(template=="Palmate"){

 maxIt = 11;

 }

 if(template=="PinLobed"){

 maxIt = 12;

 }

 }

 String getLSInfo(){

 return "um";

 }

 void setFitness(float f){

 fitness = f;

 }

 float getFitness(){

 return fitness;

 }

 String getTemplate(){

 return template;

 }

198

 //comparator function in order to sort candidate leaves by fitness

 int compareTo(SysLeaf o){

 float otherFit = ((SysLeaf)o).getFitness();

 if(this.fitness - otherFit > 0){

 return -1;

 }

 else if(this.fitness - otherFit <0){

 return 1;

 }

 else{

 return 0;

 }

 }

}

Turtle.pde:

import java.util.Stack;

/*Turtles need at least three arguments:

 (1)The Grammar to be drawn.

 (2)Number of iterations.

 Setting iterations too high for certain L-Systems

 may cause Processing to crash.

 (3)Unit Length in pixels.

 Second constructor has other inputs too.

 */

class Turtle {

 float len;

 Grammar grammar;

 float x;

 float y;

 float heading;

 TurtleState state;

 Stack<TurtleState> turtleStack;

 PGraphics canvas;

 Turtle(Grammar gram, int iterations, int size) {

 canvas = createGraphics((width/12)*5, height);

 len = float(size);

 grammar = gram;

 x = canvas.width/2;

 y = canvas.height-200;

 heading = -PI/2;

 state = new TurtleState(x, y, heading);

 turtleStack = new Stack<TurtleState>();

199

 turtleStack.push(state);

 for (int i = 0; i<iterations; i++) {

 len = len * grammar.getScaleFactor();

 }

 for (int i = 0; i<iterations; i++) {

 Grammar newGram = grammar.reWrite();

 grammar = newGram;

 }

 }

 //Second constructor with specified location, rotation (radians):

 Turtle(Grammar gram, int iterations, int size, float xin, float yin, float

rotation) {

 canvas = createGraphics((width/12)*5, height);

 len = float(size);

 grammar = gram;

 x = canvas.width/2;

 y = yin;

 heading = rotation;

 state = new TurtleState(x, y, heading);

 turtleStack = new Stack<TurtleState>();

 turtleStack.push(state);

 for (int i = 0; i<iterations; i++) {

 len = len * grammar.getScaleFactor();

 }

 for (int i = 0; i<iterations; i++) {

 Grammar newGram = grammar.reWrite();

 grammar = newGram;

 }

 }

 PGraphics drawGrammar(color col) {

 int thickness = 2;

 PShape shape = null;

 canvas.beginDraw();

 canvas.background(255);

 canvas.strokeWeight(thickness);

 String str = grammar.getStr();

 //useful for debugging:

 //println(str + " ");

 //Turtle Interpretation of Symbols:

 /*The way parameters are read here is kinda clunky + repetitive

200

 and I've just copied and pasted it for every parameterized symbol lol*/

 for (int j = 0; j<str.length(); j++) {

 if (str.charAt(j)=='F') {

 if (str.charAt(j+1)=='(') {

 String parameters = "";

 int k = 2;

 while (str.charAt(j+k)!=')') {

 parameters = parameters + str.charAt(j+k);

 k = k+1;

 }

 float[] parameterList = parseParam(parameters);

 forward(parameterList[0]);

 } else

 forward(1);

 }

 if (str.charAt(j)=='G') {

 if (str.charAt(j+1)=='(') {

 String parameters = "";

 int k = 2;

 while (str.charAt(j+k)!=')') {

 parameters = parameters + str.charAt(j+k);

 k = k+1;

 }

 float[] parameterList = parseParam(parameters);

 forward(parameterList[0]);

 } else

 forward(1);

 }

 if (str.charAt(j) =='!') {

 if (str.charAt(j+1)=='(') {

 String parameters = "";

 int k = 2;

 while (str.charAt(j+k)!=')') {

 parameters = parameters + str.charAt(j+k);

 k = k+1;

 }

 float[] parameterList = parseParam(parameters);

 //println(parameterList[0]);

 canvas.strokeWeight(parameterList[0]);

 } else

 canvas.strokeWeight(thickness-1);

 }

 if (str.charAt(j)=='[') {

 //push

 turtleStack.push(state);

 }

 if (str.charAt(j)==']') {

 //pop

 state = turtleStack.pop();

 }

201

 if (str.charAt(j)=='{') {

 shape = createShape();

 shape.beginShape();

 shape.fill(red(col), green(col), blue(col), 190);

 }

 if (str.charAt(j)=='}') {

 shape.noStroke();

 shape.endShape(CLOSE);

 canvas.noStroke();

 canvas.shape(shape, 0, 0);

 }

 if (str.charAt(j)=='.' && !Character.isDigit(str.charAt(j+1))) {

 if

(state.getX()>=canvas.width||state.getX()<=0||state.getY()>=canvas.height-

1||state.getY()<=0) {

 //println("Throw this leaf away.");

 turtleStack.pop();

 canvas.endDraw();

 return null;

 } else {

 shape.vertex(state.getX(), state.getY());

 }

 //uncomment to mark vertex with ellipse:

 //ellipse(state.getX(),state.getY(),3,3);

 }

 if (str.charAt(j)=='+') {

 //turn left

 float angle;

 if (str.charAt(j+1)=='(') {

 String parameters = "";

 int k = 2;

 while (str.charAt(j+k)!=')') {

 parameters = parameters + str.charAt(j+k);

 k = k+1;

 }

 float[] parameterList = parseParam(parameters);

 angle = parameterList[0];

 } else {

 //println(" state get heading: "+ state.getHeading());

 angle = grammar.getAng();

 }

 heading = state.getHeading() - radians(angle);

 //print(" radians of gramm ang: " + radians(grammar.getAng()));

 //print(" new heading: " + heading);

 x = state.getX();

 y = state.getY();

 state = new TurtleState(x, y, heading);

 }

 if (str.charAt(j)=='-') {

202

 //turn right

 float angle;

 if (str.charAt(j+1)=='(') {

 String parameters = "";

 int k = 2;

 while (str.charAt(j+k)!=')') {

 parameters = parameters + str.charAt(j+k);

 k = k+1;

 }

 float[] parameterList = parseParam(parameters);

 angle = parameterList[0];

 } else {

 angle = grammar.getAng();

 }

 heading = state.getHeading() + radians(angle);

 x = state.getX();

 y = state.getY();

 state = new TurtleState(x, y, heading);

 }

 }

 turtleStack.pop();

 canvas.endDraw();

 return canvas;

 }

 void forward(float sc) {

 float scale = sc;

 canvas.stroke(0, 0, 0);

 //computing turtle movement using heading angle.

 float nx = state.getX() + (scale*len)*cos(state.getHeading());

 float ny = state.getY() + (scale*len)*sin(state.getHeading());

 canvas.line(state.getX(), state.getY(), nx, ny);

 heading = state.getHeading();

 x = nx;

 y = ny;

 state = new TurtleState(x, y, heading);

 }

 float[] parseParam(String parString) {

 //Uses QScript to parse expression strings

 String[] split = parString.split(",");

 float[] paramFloats = new float[split.length];

 for (int i = 0; i<paramFloats.length; i++) {

 Result parsed = Solver.evaluate(split[i]+ " + 0");

 paramFloats[i] = parsed.answer.toFloat();

 }

 return paramFloats;

 }

}

203

TurtleState.pde:

/*The TurtleState class was written because the polygon

 drawing in Processing doesn't allow using translate(), rotate(),

 etc. within "beginShape". All coordinate plane transformations

 had to be kept track of manually instead.

 This class replaces the use of pushMatrix, popMatrix

 for branching purposes.*/

class TurtleState {

 float x;

 float y;

 float heading;

 TurtleState(float xin, float yin, float headin) {

 x = xin;

 y = yin;

 heading = headin;

 }

 float getX() {

 return x;

 }

 float getY() {

 return y;

 }

 float getHeading() {

 return heading;

 }

 String toString() {

 return x +" "+ y + " " + heading;

 }

}

204

Thank you for reading!

	Branching Boogaloo: Botanical Adventures in Multi-Mediated Morphologies
	Recommended Citation

	tmp.1466366466.pdf.nQki9

