222 research outputs found

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio

    Internet of Things Architectures for Enhanced Living Environments

    Get PDF
    Ambient Assisted Living (AAL) is an emerging multidisciplinary research area that aims to create an ecosystem of different types of sensors, computers, mobile devices, wireless networks, and software applications for enhanced living environments and occupational health. There are several challenges in the development and implementation of an effective AAL system, such as system architecture, human-computer interaction, ergonomics, usability, and accessibility. There are also social and ethical challenges, such as acceptance by seniors and the privacy and confidentiality that must be a requirement of AAL devices. It is also essential to ensure that technology does not replace human care and is used as a relevant complement. The Internet of Things (IoT) is a paradigm where objects are connected to the Internet and support sensing capabilities. IoT devices should be ubiquitous, recognize the context, and support intelligence capabilities closely related to AAL. Technological advances allow defining new advanced tools and platforms for real-time health monitoring and decision making in the treatment of various diseases. IoT is a suitable approach to building healthcare systems, and it provides a suitable platform for ubiquitous health services, using, for example, portable sensors to carry data to servers and smartphones for communication. Despite the potential of the IoT paradigm and technologies for healthcare systems, several challenges to be overcome still exist. The direction and impact of IoT in the economy are not clearly defined, and there are barriers to the immediate and ubiquitous adoption of IoT products, services, and solutions. Several sources of pollutants have a high impact on indoor living environments. Consequently, indoor air quality is recognized as a fundamental variable to be controlled for enhanced health and well-being. It is critical to note that typically most people occupy more than 90% of their time inside buildings, and poor indoor air quality negatively affects performance and productivity. Research initiatives are required to address air quality issues to adopt legislation and real-time inspection mechanisms to improve public health, not only to monitor public places, schools, and hospitals but also to increase the rigor of building rules. Therefore, it is necessary to use real-time monitoring systems for correct analysis of indoor air quality to ensure a healthy environment in at least public spaces. In most cases, simple interventions provided by homeowners can produce substantial positive impacts on indoor air quality, such as avoiding indoor smoking and the correct use of natural ventilation. An indoor air quality monitoring system helps the detection and improvement of air quality conditions. Local and distributed assessment of chemical concentrations is significant for safety (e.g., detection of gas leaks and monitoring of pollutants) as well as to control heating, ventilation, and HVAC systems to improve energy efficiency. Real-time indoor air quality monitoring provides reliable data for the correct control of building automation systems and should be assumed as a decision support platform on planning interventions for enhanced living environments. However, the monitoring systems currently available are expensive and only allow the collection of random samples that are not provided with time information. Most solutions on the market only allow data consulting limited to device memory and require procedures for downloading and manipulating data with specific software. In this way, the development of innovative environmental monitoring systems based on ubiquitous technologies that allow real-time analysis becomes essential. This thesis resulted in the design and development of IoT architectures using modular and scalable structures for air quality monitoring based on data collected from cost-effective sensors for enhanced living environments. The proposed architectures address several concepts, including acquisition, processing, storage, analysis, and visualization of data. These systems incorporate an alert management Framework that notifies the user in real-time in poor indoor air quality scenarios. The software Framework supports multiple alert methods, such as push notifications, SMS, and e-mail. The real-time notification system offers several advantages when the goal is to achieve effective changes for enhanced living environments. On the one hand, notification messages promote behavioral changes. These alerts allow the building manager to identify air quality problems and plan interventions to avoid unhealthy air quality scenarios. The proposed architectures incorporate mobile computing technologies such as mobile applications that provide ubiquitous air quality data consulting methods s. Also, the data is stored and can be shared with medical teams to support the diagnosis. The state-of-the-art analysis has resulted in a review article on technologies, applications, challenges, opportunities, open-source IoT platforms, and operating systems. This review was significant to define the IoT-based Framework for indoor air quality supervision. The research leads to the development and design of cost-effective solutions based on open-source technologies that support Wi-Fi communication and incorporate several advantages such as modularity, scalability, and easy installation. The results obtained are auspicious, representing a significant contribution to enhanced living environments and occupational health. Particulate matter (PM) is a complex mixture of solid and liquid particles of organic and inorganic substances suspended in the air. Moreover, it is considered the pollutant that affects more people. The most damaging particles to health are ≤PM10 (diameter 10 microns or less), which can penetrate and lodge deep within the lungs, contributing to the risk of developing cardiovascular and respiratory diseases as well as lung cancer. Taking into account the adverse health effects of PM exposure, an IoT architecture for automatic PM monitoring was proposed. The proposed architecture is a PM real-time monitoring system and a decision-making tool. The solution consists of a hardware prototype for data acquisition and a Web Framework developed in .NET for data consulting. This system is based on open-source and technologies, with several advantages compared to existing systems, such as modularity, scalability, low-cost and easy installation. The data is stored in a database developed in SQL SERVER using .NET Web services. The results show the ability of the system to analyze the indoor air quality in real-time and the potential of the Web Framework for the planning of interventions to ensure safe, healthy, and comfortable conditions. Associations of high concentrations of carbon dioxide (CO2) with low productivity at work and increased health problems are well documented. There is also a clear correlation between high levels of CO2 and high concentrations of pollutants in indoor air. There are sufficient reasons to monitor CO2 and provide real-time notifications to improve occupational health and provide a safe and healthy indoor living environment. Taking into account the significant influence of CO2 for enhanced living environments, a real-time IoT architecture for CO2 monitoring was proposed. CO2 was selected because it is easy to measure and is produced in quantity (by people and combustion equipment). It can be used as an indicator of other pollutants and, therefore, of air quality in general. The solution consists of a hardware prototype for data acquisition environment, a Web software, and a smartphone application for data consulting. The proposed architecture is based on open-source technologies, and the data is stored in a SQL SERVER database. The mobile Framework allows the user not only to consult the latest data collected but also to receive real-time notifications in poor indoor air quality scenarios, and to configure the alerts threshold levels. The results show that the mobile application not only provides easy access to real-time air quality data, but also allows the user to maintain parameter history and provide a history of changes. Consequently, this system allows the user to analyze in a precise and detailed manner the behavior of air quality. Finally, an air quality monitoring solution was implemented, consisting of a hardware prototype that incorporates only the MICS-6814 sensor as the detection unit. This system monitors various air quality parameters such as NH3 (ammonia), CO (carbon monoxide), NO2 (nitrogen dioxide), C3H8 (propane), C4H10 (butane), CH4 (methane), H2 (hydrogen) and C2H5OH (ethanol). The monitoring of the concentrations of these pollutants is essential to provide enhanced living environments. This solution is based on Cloud, and the collected data is sent to the ThingSpeak platform. The proposed Framework combines sensitivity, flexibility, and measurement accuracy in real-time, allowing a significant evolution of current air quality controls. The results show that this system provides easy, intuitive, and fast access to air quality data as well as relevant notifications in poor air quality situations to provide real-time intervention and improve occupational health. These data can be accessed by physicians to support diagnoses and correlate the symptoms and health problems of patients with the environment in which they live. As future work, the results reported in this thesis can be considered as a starting point for the development of a secure system sharing data with health professionals in order to serve as decision support in diagnosis.Ambient Assisted Living (AAL) é uma área de investigação multidisciplinar emergente que visa a construção de um ecossistema de diferentes tipos de sensores, microcontroladores, dispositivos móveis, redes sem fios e aplicações de software para melhorar os ambientes de vida e a saúde ocupacional. Existem muitos desafios no desenvolvimento e na implementação de um sistema AAL, como a arquitetura do sistema, interação humano-computador, ergonomia, usabilidade e acessibilidade. Existem também problemas sociais e éticos, como a aceitação por parte dos utilizadores mais vulneráveis e a privacidade e confidencialidade, que devem ser uma exigência de todos os dispositivos AAL. De facto, também é essencial assegurar que a tecnologia não substitua o cuidado humano e seja usada como um complemento essencial. A Internet das Coisas (IoT) é um paradigma em que os objetos estão conectados à Internet e suportam recursos sensoriais. Tendencialmente, os dispositivos IoT devem ser omnipresentes, reconhecer o contexto e ativar os recursos de inteligência ambiente intimamente relacionados ao AAL. Os avanços tecnológicos permitem definir novas ferramentas avançadas e plataformas para monitorização de saúde em tempo real e tomada de decisão no tratamento de várias doenças. A IoT é uma abordagem adequada para construir sistemas de saúde sendo que oferece uma plataforma para serviços de saúde ubíquos, usando, por exemplo, sensores portáteis para recolha e transmissão de dados e smartphones para comunicação. Apesar do potencial do paradigma e tecnologias IoT para o desenvolvimento de sistemas de saúde, muitos desafios continuam ainda por ser resolvidos. A direção e o impacto das soluções IoT na economia não está claramente definido existindo, portanto, barreiras à adoção imediata de produtos, serviços e soluções de IoT. Os ambientes de vida são caracterizados por diversas fontes de poluentes. Consequentemente, a qualidade do ar interior é reconhecida como uma variável fundamental a ser controlada de forma a melhorar a saúde e o bem-estar. É importante referir que tipicamente a maioria das pessoas ocupam mais de 90% do seu tempo no interior de edifícios e que a má qualidade do ar interior afeta negativamente o desempenho e produtividade. É necessário que as equipas de investigação continuem a abordar os problemas de qualidade do ar visando a adoção de legislação e mecanismos de inspeção que atuem em tempo real para a melhoraria da saúde e qualidade de vida, tanto em locais públicos como escolas e hospitais e residências particulares de forma a aumentar o rigor das regras de construção de edifícios. Para tal, é necessário utilizar mecanismos de monitorização em tempo real de forma a possibilitar a análise correta da qualidade do ambiente interior para garantir ambientes de vida saudáveis. Na maioria dos casos, intervenções simples que podem ser executadas pelos proprietários ou ocupantes da residência podem produzir impactos positivos substanciais na qualidade do ar interior, como evitar fumar em ambientes fechados e o uso correto de ventilação natural. Um sistema de monitorização e avaliação da qualidade do ar interior ajuda na deteção e na melhoria das condições ambiente. A avaliação local e distribuída das concentrações químicas é significativa para a segurança (por exemplo, deteção de fugas de gás e supervisão dos poluentes) bem como para controlar o aquecimento, ventilação, e sistemas de ar condicionado (HVAC) visando a melhoria da eficiência energética. A monitorização em tempo real da qualidade do ar interior fornece dados fiáveis para o correto controlo de sistemas de automação de edifícios e deve ser assumida com uma plataforma de apoio à decisão no que se refere ao planeamento de intervenções para ambientes de vida melhorados. No entanto, os sistemas de monitorização atualmente disponíveis são de alto custo e apenas permitem a recolha de amostras aleatórias que não são providas de informação temporal. A maioria das soluções disponíveis no mercado permite apenas a acesso ao histórico de dados que é limitado à memória do dispositivo e exige procedimentos de download e manipulação de dados com software proprietário. Desta forma, o desenvolvimento de sistemas inovadores de monitorização ambiente baseados em tecnologias ubíquas e computação móvel que permitam a análise em tempo real torna-se essencial. A Tese resultou na definição e no desenvolvimento de arquiteturas para monitorização da qualidade do ar baseadas em IoT. Os métodos propostos são de baixo custo e recorrem a estruturas modulares e escaláveis para proporcionar ambientes de vida melhorados. As arquiteturas propostas abordam vários conceitos, incluindo aquisição, processamento, armazenamento, análise e visualização de dados. Os métodos propostos incorporam Frameworks de gestão de alertas que notificam o utilizador em tempo real e de forma ubíqua quando a qualidade do ar interior é deficiente. A estrutura de software suporta vários métodos de notificação, como notificações remotas para smartphone, SMS (Short Message Service) e email. O método usado para o envio de notificações em tempo real oferece várias vantagens quando o objetivo é alcançar mudanças efetivas para ambientes de vida melhorados. Por um lado, as mensagens de notificação promovem mudanças de comportamento. De facto, estes alertas permitem que o gestor do edifício e os ocupantes reconheçam padrões da qualidade do ar e permitem também um correto planeamento de intervenções de forma evitar situações em que a qualidade do ar é deficiente. Por outro lado, o sistema proposto incorpora tecnologias de computação móvel, como aplicações móveis, que fornecem acesso omnipresente aos dados de qualidade do ar e, consequentemente, fornecem soluções completas para análise de dados. Além disso, os dados são armazenados e podem ser partilhados com equipas médicas para ajudar no diagnóstico. A análise do estado da arte resultou na elaboração de um artigo de revisão sobre as tecnologias, aplicações, desafios, plataformas e sistemas operativos que envolvem a criação de arquiteturas IoT. Esta revisão foi um trabalho fundamental na definição das arquiteturas propostas baseado em IoT para a supervisão da qualidade do ar interior. Esta pesquisa conduz a um desenvolvimento de arquiteturas IoT de baixo custo com base em tecnologias de código aberto que operam como um sistema Wi-Fi e suportam várias vantagens, como modularidade, escalabilidade e facilidade de instalação. Os resultados obtidos são muito promissores, representando uma contribuição significativa para ambientes de vida melhorados e saúde ocupacional. O material particulado (PM) é uma mistura complexa de partículas sólidas e líquidas de substâncias orgânicas e inorgânicas suspensas no ar e é considerado o poluente que afeta mais pessoas. As partículas mais prejudiciais à saúde são as ≤PM10 (diâmetro de 10 micrómetros ou menos), que podem penetrar e fixarem-se dentro dos pulmões, contribuindo para o risco de desenvolver doenças cardiovasculares e respiratórias, bem como de cancro do pulmão. Tendo em consideração os efeitos negativos para a saúde da exposição ao PM foi desenvolvido numa primeira fase uma arquitetura IoT para monitorização automática dos níveis de PM. Esta arquitetura é um sistema que permite monitorização de PM em tempo real e uma ferramenta de apoio à tomada de decisão. A solução é composta por um protótipo de hardware para aquisição de dados e um portal Web desenvolvido em .NET para consulta de dados. Este sistema é baseado em tecnologias de código aberto com várias vantagens em comparação aos sistemas existentes, como modularidade, escalabilidade, baixo custo e fácil instalação. Os dados são armazenados numa base de dados desenvolvida em SQL SERVER e são enviados com recurso a serviços Web. Os resultados mostram a capacidade do sistema de analisar em tempo real a qualidade do ar interior e o potencial da Framework Web para o planeamento de intervenções com o objetivo de garantir condições seguras, saudáveis e confortáveis. Associações de altas concentrações de dióxido de carbono (CO2) com défice de produtividade no trabalho e aumento de problemas de saúde encontram-se bem documentadas. Existe também uma correlação evidente entre altos níveis de CO2 e altas concentrações de poluentes no ar interior. Tendo em conta a influência significativa do CO2 para a construção de ambientes de vida melhorados desenvolveu-se uma solução de monitorização em tempo real de CO2 com base na arquitetura de IoT. A arquitetura proposta permite também o envio de notificações em tempo real para melhorar a saúde ocupacional e proporcionar um ambiente de vida interior seguro e saudável. O CO2 foi selecionado, pois é fácil de medir e é produzido em quantidade (por pessoas e equipamentos de combustão). Assim, pode ser usado como um indicador de outros poluentes e, portanto, da qualidade do ar em geral. O método proposto é composto por um protótipo de hardware para aquisição de dados, um software Web e uma aplicação smartphone para consulta de dados. Esta arquitetura é baseada em tecnologias de código aberto e os dados recolhidos são armazenados numa base de dados SQL SERVER. A Framework móvel permite não só consultar em tempo real os últimos dados recolhidos, receber notificações com o objetivo de avisar o utilizador quando a qualidade do ar está deficiente, mas também para configurar alertas. Os resultados mostram que a Framework móvel fornece não apenas acesso fácil aos dados da qualidade do ar em tempo real, mas também permite ao utilizador manter o histórico de parâmetros. Assim este sistema permite ao utilizador analisar de maneira precisa e detalhada o comportamento da qualidade do ar interior. Por último, é proposta uma arquitetura para monitorização de vários parâmetros da qualidade do ar, como NH3 (amoníaco), CO (monóxido de carbono), NO2 (dióxido de azoto), C3H8 (propano), C4H10 (butano), CH4 (metano), H2 (hidrogénio) e C2H5OH (etanol). Esta arquitetura é composta por um protótipo de hardware que incorpora unicamente o sensor MICS-6814 como unidade de deteção. O controlo das concentrações destes poluentes é extremamente relevante para proporcionar ambientes de vida melhorados. Esta solução tem base na Cloud sendo que os dados recolhidos são enviados para a plataforma ThingSpeak. Esta Framework combina sensibilidade, flexibilidade e precisão de medição em tempo real, permitindo uma evolução significativa dos atuais sistemas de monitorização da qualidade do ar. Os resultados mostram que este sistema fornece acesso fácil, intuitivo e rápido aos dados de qualidade do ar bem como notificações essenciais em situações de qualidade do ar deficiente de forma a planear intervenções em tempo útil e melhorar a saúde ocupacional. Esses dados podem ser acedidos pelos médicos para apoiar diagnósticos e correlacionar os sintomas e problemas de saúde dos pacientes com o ambiente em que estes vivem. Como trabalho futuro, os resultados reportados nesta Tese podem ser considerados um ponto de partida para o desenvolvimento de um sistema seguro para partilha de dados com profissionais de saúde de forma a servir de suporte à decisão no diagnóstico

    NFC-BASED ELECTRONIC DATA CAPTURE SYSTEMS - THE CASE OF A QUALITY OF LIFE QUESTIONNAIRE

    Get PDF
    In this paper, we present a Near Field Communication (NFC)-based electronic data capture prototype for patient self-reported rating scales. Such scales are valuable feedback for medical treatment and care processes. As traditional paper-based questionnaires are time- and cost-consuming and may be affected by low patient compliance, our prototype allows patient monitoring and electronic data acquisition directly from the patient\u27s home. It enables real time representation and analysis of patient data and thus allows direct medical intervention by physicians. In developing the prototype, we followed a design science approach, developed design goals for the special case of patients suffering from impaired motor skills, and tested the prototype in a field study over the course of twelve weeks. We chose NFC, as the interaction paradigm is intuitive and quickly learned, without prior knowledge being necessary. Our results indicate that NFC is almost as simple as to fill out a paper-based questionnaire. During the study patients used the prototype autonomously and with minimal errors. Further, NFC technology was perceived as very intuitive and the information quality of each patient\u27s health status could be improved. Based on the findings we derive recommendations for future research and applications of NFC based electronic data capture systems

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    A Mobile Healthcare Solution for Ambient Assisted Living Environments

    Get PDF
    Elderly people need regular healthcare services and, several times, are dependent of physicians’ personal attendance. This dependence raises several issues to elders, such as, the need to travel and mobility support. Ambient Assisted Living (AAL) and Mobile Health (m-Health) services and applications offer good healthcare solutions that can be used both on indoor and in mobility environments. This dissertation presents an ambient assisted living (AAL) solution for mobile environments. It includes elderly biofeedback monitoring using body sensors for data collection offering support for remote monitoring. The used sensors are attached to the human body (such as the electrocardiogram, blood pressure, and temperature). They collect data providing comfort, mobility, and guaranteeing efficiency and data confidentiality. Periodic collection of patients’ data is important to gather more accurate measurements and to avoid common risky situations, like a physical fall may be considered something natural in life span and it is more dangerous for senior people. One fall can out a life in extreme cases or cause fractures, injuries, but when it is early detected through an accelerometer, for example, it can avoid a tragic outcome. The presented proposal monitors elderly people, storing collected data in a personal computer, tablet, or smartphone through Bluetooth. This application allows an analysis of possible health condition warnings based on the input of supporting charts, and real-time bio-signals monitoring and is able to warn users and the caretakers. These mobile devices are also used to collect data, which allow data storage and its possible consultation in the future. The proposed system is evaluated, demonstrated and validated through a prototype and it is ready for use. The watch Texas ez430-Chronos, which is capable to store information for later analysis and the sensors Shimmer who allow the creation of a personalized application that it is capable of measuring biosignals of the patient in real time is described throughout this dissertation

    The survey on Near Field Communication

    Get PDF
    PubMed ID: 26057043Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.Publisher's Versio

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare

    State of the Art of Audio- and Video-Based Solutions for AAL

    Get PDF
    It is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters. Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals. Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely lifelogging and self-monitoring, remote monitoring of vital signs, emotional state recognition, food intake monitoring, activity and behaviour recognition, activity and personal assistance, gesture recognition, fall detection and prevention, mobility assessment and frailty recognition, and cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed

    Activities of daily living ontology for ubiquitous systems:Development and evaluation

    Get PDF
    Ubiquitous eHealth systems based on sensor technologies are seen as key enablers in the effort to reduce the financial impact of an ageing society. At the heart of such systems sit activity recognition algorithms, which need sensor data to reason over, and a ground truth of adequate quality used for training and validation purposes. The large set up costs of such research projects and their complexity limit rapid developments in this area. Therefore, information sharing and reuse, especially in the context of collected datasets, is key in overcoming these barriers. One approach which facilitates this process by reducing ambiguity is the use of ontologies. This article presents a hierarchical ontology for activities of daily living (ADL), together with two use cases of ground truth acquisition in which this ontology has been successfully utilised. Requirements placed on the ontology by ongoing work are discussed
    corecore