65 research outputs found

    How do treadmill speed and terrain visibility influence neuromuscular control of guinea fowl locomotion?

    Get PDF
    Locomotor control mechanisms must flexibly adapt to both anticipated and unexpected terrain changes to maintain movement and avoid a fall. Recent studies revealed that ground birds alter movement in advance of overground obstacles, but not treadmill obstacles, suggesting context-dependent shifts in the use of anticipatory control. We hypothesized that differences between overground and treadmill obstacle negotiation relate to differences in visual sensory information, which influence the ability to execute anticipatory manoeuvres. We explored two possible explanations: (1) previous treadmill obstacles may have been visually imperceptible, as they were low contrast to the tread, and (2) treadmill obstacles are visible for a shorter time compared with runway obstacles, limiting time available for visuomotor adjustments. To investigate these factors, we measured electromyographic activity in eight hindlimb muscles of the guinea fowl (Numida meleagris, N=6) during treadmill locomotion at two speeds (0.7 and 1.3 m s−1) and three terrain conditions at each speed: (i) level, (ii) repeated 5 cm low-contrast obstacles (90% contrast, black/white). We hypothesized that anticipatory changes in muscle activity would be higher for (1) high-contrast obstacles and (2) the slower treadmill speed, when obstacle viewing time is longer. We found that treadmill speed significantly influenced obstacle negotiation strategy, but obstacle contrast did not. At the slower speed, we observed earlier and larger anticipatory increases in muscle activity and shifts in kinematic timing. We discuss possible visuomotor explanations for the observed context-dependent use of anticipatory strategies

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    Degraded Synergistic Recruitment of sEMG Oscillations for Cerebral Palsy Infants Crawling

    Get PDF
    Background: Synergistic recruitment of muscular activities is a generally accepted mechanism for motor function control, and motor dysfunction, such as cerebral palsy (CP), destroyed the synergistic electromyography activities of muscle group for limb movement. However, very little is known how motor dysfunction of CP affects the organization of the myoelectric frequency components due to the abnormal motor unit recruiting patterns.Objectives: Exploring whether the myoelectric activity can be represented with synergistic recruitment of surface electromyography (sEMG) frequency components; evaluating the effect of CP motor dysfunction on the synergistic recruitment of sEMG oscillations.Methods: Twelve CP infants and 17 typically developed (TD) infants are recruited for self-paced crawling on hands and knees. sEMG signals have been recorded from bilateral biceps brachii (BB) and triceps brachii (TB) muscles. Multi-scale oscillations are extracted via multivariate empirical mode decomposition (MEMD), and non-negative matrix factorization (NMF) method is employed to obtain synergistic pattern of these sEMG oscillations. The coefficient curve of sEMG oscillation synergies are adopted to quantify the time-varying recruitment of BB and TB myoelectric activity during infants crawling.Results: Three patterns of sEMG oscillation synergies with specific frequency ranges are extracted in BB and TB of CP or TD infants. The contribution of low-frequency oscillation synergy of BB in CP group is significantly less than that in TD group (p < 0.05) during forward swing phase for slow contraction; however, this low-frequency oscillation synergy keep higher level during the backward swing phase crawling. For the myoelectric activities of TB, there is not enough high-frequency oscillation recruitment of sEMG for the fast contraction in propulsive phase of CP infants crawling.Conclusion: Our results reveal that, the myoelectric activities of a muscle can be manifested as sEMG oscillation synergies, and motor dysfunction of CP degrade the synergistic recruitment of sEMG oscillations due to the impaired CNS regulation and destroyed MU/muscle fiber. Our preliminary work suggests that time-varying coefficient curve of sEMG oscillation synergies is a potential index to evaluate the abnormal recruitment of electromyography activities affected by CP disorders

    Non-Invasive Investigation of Human Foot Muscles Function

    Get PDF
    Appropriate functioning of the human foot is fundamental for good quality of life. The intrinsic foot muscles (IFM) are a crucial component of the foot, but their natural behaviour and contribution to good foot health is currently poorly understood. Recording muscle activation from IFM has been attempted with invasive techniques, but these generally only allow assessment of one muscle at a time and are not much used in many clinical populations (e.g. children, patients with peripheral neuropathy or on blood thinning medication). Here a novel application of multi-channel surface electromyography (sEMG) electrodes is presented to non-invasively, record sEMG and quantify activation patterns of IFMs from across the plantar region of the foot. sEMG (13×5 array), kinematics and force plate data were recorded from 30 healthy adult volunteers who completed six postural balance tasks (e.g. bipedal stance, one-foot stance, two-foot tip-toe). Linear (amplitude based) and non-linear (entropy based) methodologies were used to evaluate the physiological features of the sEMG, the patterns of activation, the association with whole body and foot biomechanics and the neuromuscular drive to the IFM. EMG signals features (amplitude and frequency) were shown to be in the physiological ranges reported in the literature (Basmajian and De Luca, 1985), with spatially clustered patterns of high activation corresponding to the Flexor digitorum brevis muscle. IFMs responded differently based on the direction of postural sway, with greater activations associated with sways in the mediolateral direction. Entropy based, non-linear analysis revealed that neuromuscular drive to IFM depends on the balance demand of the postural task, with greater drive evident for more challenging tasks (i.e. standing on tiptoe). Combining non-invasive measures of IFM activation and entropy based assessment of temporal organisation (or structure) of EMG signal variability is therefore revealing of IFM function and will enable a more detailed assessment of IFM function across healthy and clinical populations

    Continuous Proportional Myoelectric Control of an Experimental Powered Lower Limb Prosthesis During Walking Using Residual Muscles.

    Full text link
    Current robotic lower limb prostheses rely on intrinsic sensing and finite state machines to control ankle mechanics during walking. State-based controllers are suitable for stereotypical cyclic locomotor tasks (e.g. walking on level ground) where joint mechanics are well defined at specific gait phases (i.e. states) and state transitions are easily detected. However, state-based controllers are not ideal for non-stereotypical acyclic tasks (e.g. freestyle dancing) where joint mechanics cannot be predefined and transitions are unpredictable. An alternative to state-based control is to utilize the amputee's nervous system for myoelectric control. A robotic lower limb prosthesis that uses continuous proportional myoelectric control would allow the amputee to adapt their ankle mechanics freely. One potential source for myoelectric control is the amputee’s residual muscles. I conducted four studies to examine the feasibility of using residual muscles for continuous myoelectric control during walking. In my first study, I demonstrated that it is possible to record residual electromyography from amputees during walking that are viable for continuous myoelectric control. My results showed that the stride-to-stride variability of residual and intact muscle activation patterns was similar. However, residual muscle activation patterns were significantly different across amputee subjects and significantly different than corresponding muscles in intact subjects. In my second study, I built and tested an experimental powered transtibial prosthesis and demonstrated that an amputee subject was able to walk using continuous proportional myoelectric control to alter prosthetic ankle mechanics. In my third study, I showed that five amputee subjects were able to adapt their residual muscles to walk using continuous proportional myoelectric control. With visual feedback of their control signal, amputees were able to generate higher peak ankle power walking with the experimental powered prosthesis compared to their prescribed prosthesis. In my fourth study, I conducted a user experience study and found that despite challenges with the device user interface, walking with continuous proportional myoelectric control gave amputees a sense of empowerment and embodiment. The results of my studies demonstrated the advantages and disadvantages of using continuous proportional myoelectric control for a powered transtibial prosthesis and suggest how next generation prostheses can build upon these findings.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110412/1/shuangz_1.pd

    Towards electrodeless EMG linear envelope signal recording for myo-activated prostheses control

    Get PDF
    After amputation, the residual muscles of the limb may function in a normal way, enabling the electromyogram (EMG) signals recorded from them to be used to drive a replacement limb. These replacement limbs are called myoelectric prosthesis. The prostheses that use EMG have always been the first choice for both clinicians and engineers. Unfortunately, due to the many drawbacks of EMG (e.g. skin preparation, electromagnetic interferences, high sample rate, etc.); researchers have aspired to find suitable alternatives. One proposes the dry-contact, low-cost sensor based on a force-sensitive resistor (FSR) as a valid alternative which instead of detecting electrical events, detects mechanical events of muscle. FSR sensor is placed on the skin through a hard, circular base to sense the muscle contraction and to acquire the signal. Similarly, to reduce the output drift (resistance) caused by FSR edges (creep) and to maintain the FSR sensitivity over a wide input force range, signal conditioning (Voltage output proportional to force) is implemented. This FSR signal acquired using FSR sensor can be used directly to replace the EMG linear envelope (an important control signal in prosthetics applications). To find the best FSR position(s) to replace a single EMG lead, the simultaneous recording of EMG and FSR output is performed. Three FSRs are placed directly over the EMG electrodes, in the middle of the targeted muscle and then the individual (FSR1, FSR2 and FSR3) and combination of FSR (e.g. FSR1+FSR2, FSR2-FSR3) is evaluated. The experiment is performed on a small sample of five volunteer subjects. The result shows a high correlation (up to 0.94) between FSR output and EMG linear envelope. Consequently, the usage of the best FSR sensor position shows the ability of electrode less FSR-LE to proportionally control the prosthesis (3-D claw). Furthermore, FSR can be used to develop a universal programmable muscle signal sensor that can be suitable to control the myo-activated prosthesis

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    A survey on bio-signal analysis for human-robot interaction

    Get PDF
    The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of each domain's benefits and drawbacks, and finally, a recommendation for a new strategy for robotic systems

    Automatic signal and image-based assessments of spinal cord injury and treatments.

    Get PDF
    Spinal cord injury (SCI) is one of the most common sources of motor disabilities in humans that often deeply impact the quality of life in individuals with severe and chronic SCI. In this dissertation, we have developed advanced engineering tools to address three distinct problems that researchers, clinicians and patients are facing in SCI research. Particularly, we have proposed a fully automated stochastic framework to quantify the effects of SCI on muscle size and adipose tissue distribution in skeletal muscles by volumetric segmentation of 3-D MRI scans in individuals with chronic SCI as well as non-disabled individuals. We also developed a novel framework for robust and automatic activation detection, feature extraction and visualization of the spinal cord epidural stimulation (scES) effects across a high number of scES parameters to build individualized-maps of muscle recruitment patterns of scES. Finally, in the last part of this dissertation, we introduced an EMG time-frequency analysis framework that implements EMG spectral analysis and machine learning tools to characterize EMG patterns resulting in independent or assisted standing enabled by scES, and identify the stimulation parameters that promote muscle activation patterns more effective for standing. The neurotechnological advancements proposed in this dissertation have greatly benefited SCI research by accelerating the efforts to quantify the effects of SCI on muscle size and functionality, expanding the knowledge regarding the neurophysiological mechanisms involved in re-enabling motor function with epidural stimulation and the selection of stimulation parameters and helping the patients with complete paralysis to achieve faster motor recovery

    In vivo oscillations of the soleus muscle can be quantified using b-mode ultrasound imaging during walking and running in humans

    Get PDF
    Impact forces, due to the foot contacting the ground during locomotion, can be considered input signals to the body that must be dissipated to prevent impact-related injuries. One proposed mechanism employed by the body to damp the impact is through vibrations of the skeletal muscles. However, there is yet to be direct in vivo measures of muscle oscillations during locomotion. This study investigated the use of 2D ultrasound imaging to quantify transverse muscle oscillations (deep-superficial displacement of the muscle boundary relative to the skin) in response to impact forces elicited by walking and running at a range of speeds. Increases in vertical impact forces with faster walking and running was consistent with changes in both magnitude and frequency in the measured oscillations of the soleus muscle; one of the main human ankle plantar flexors. Muscle oscillations contained more higher frequency components at fast running (50% signal power in frequencies below ~ 14 Hz) compared with slow walking (50% signal power contained in frequencies below ~ 5 Hz). This study provides a platform for ultrasound imaging to examine muscle oscillation responses to impact forces induced by changes in external interfaces such as shoe material, locomotion type and ground surface properties
    • …
    corecore