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Abstract 

After amputation, the residual muscles of the limb may function in a normal way, enabling the 

electromyogram (EMG) signals recorded from them to be used to drive a replacement limb. These 

replacement limbs are called myoelectric prosthesis. The prostheses that use EMG have always been 

the first choice for both clinicians and engineers. Unfortunately, due to the many drawbacks of EMG 

(e.g. skin preparation, electromagnetic interferences, high sample rate, etc.); researchers have aspired 

to find suitable alternatives. One proposes the dry-contact, low-cost sensor based on a force-sensitive 

resistor (FSR) as a valid alternative which instead of detecting electrical events, detects mechanical 

events of muscle. FSR sensor is placed on the skin through a hard, circular base to sense the muscle 

contraction and to acquire the signal. Similarly, to reduce the output drift (resistance) caused by FSR 

edges (creep) and to maintain the FSR sensitivity over a wide input force range, signal conditioning 

(Voltage output proportional to force) is implemented. This FSR signal acquired using FSR sensor 

can be used directly to replace the EMG linear envelope (an important control signal in prosthetics 

applications). To find the best FSR position(s) to replace a single EMG lead, the simultaneous 

recording of EMG and FSR output is performed. Three FSRs are placed directly over the EMG 

electrodes, in the middle of the targeted muscle and then the individual (FSR1, FSR2 and FSR3) and 

combination of FSR (e.g. FSR1+FSR2, FSR2-FSR3) is evaluated. The experiment is performed on a 

small sample of five volunteer subjects. The result shows a high correlation (up to 0.94) between FSR 

output and EMG linear envelope. Consequently, the usage of the best FSR sensor position shows the 

ability of electrode less FSR-LE to proportionally control the prosthesis (3-D claw). Furthermore, 

FSR can be used to develop a universal programmable muscle signal sensor that can be suitable to 

control the myo-activated prosthesis 

Keywords: Force sensitive resistor (FSR), Surface Electromyography (sEMG), EMG linear 

envelope (EMG-LE) 
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1. Introduction 

 Upper limb amputation is a condition that significantly confines the amputees from 

performing their day to day activities. A myoelectric (EMG) prosthesis, using signals from residual 

stump muscles is aimed at restoring the function of such lost limbs seamlessly. Electromyography 

(EMG) is still the first choice for the measurement of muscular contraction in myo-activated 

prosthesis control, medical applications and engineering fields [1]. Unfortunately, the acquisition and 

use of such myosignals are cumbersome and complicated. There are two different methods of 

obtaining information about muscle activity. They are intramuscular EMG (invasive electrode) and 

surface EMG (non-invasive electrodes) [2] . Surface electromyography (sEMG) is one of the most 

widely used techniques. Obtaining the sEMG signal requires skin preparation and proper placement of 

electrodes. sEMG is very sensitive to electromagnetic interferences. In order to acquire information 

on muscle contraction level, the raw EMG signal requires to be processed. The EMG linear envelope 

(EMG-LE) and RMS value provide a good estimation of muscle employed force [3]. EMG RMS 

requires more computational power and is hardware expensive than EMG-LE. EMG RMS is 

commonly used in medical diagnosis while EMG-LE provides a minimal control signal for the 

prosthesis. EMG-LE is usually computed by rectifying (full wave) and low-pass filtering the raw 

EMG signal. This processing can be performed either in hardware or in software. Once EMG signal is 

acquired, it usually requires heavy computational power to turn it into a user control signal. Its 

conversion to a practical prosthesis solution is still being challenged by various factors particularly 

those related to the fact that each amputee has different mobility, muscle contraction forces, limb 

positional variations, and electrode placements. Thus, a solution that can adapt or otherwise tailor 

itself to each individual is required for maximum utility across amputees. Therefore, modified 

machine learning schemes for pattern recognition have the potential to significantly reduce the factors 

(movement of users and contraction of the muscle) affecting the traditional electromyography  

(EMG)-pattern recognition methods. Although recent developments of intelligent pattern recognition 

techniques could discriminate multiple degrees of freedom with high-level accuracy, their efficiency 

level was less accessible and revealed in real-world (amputee) applications.  

 On another side, since EMG quality is linked to the effectiveness of the electrodes and due to 

the necessary additional process required to extract the control signal from it, researchers are looking 

for alternative sensors to monitor muscle contractions [4]. Recently, an FSR-based sensor was 

proposed for muscle contraction measurement [5]. This sensor measures the mechanical force elicited 

by the muscle during contraction. It does not require any electrical contact with the skin (enhancing 

patients‘ electrical safety) and it is much less sensitive to electromagnetic interferences. The signal 

provided by the FSR sensor does not require any further processing to extract information about 

muscle contraction level and, therefore, it requires a considerably lower sampling frequency [5]. This 

makes it suitable for implementations on systems with less computational power. 
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 This thesis paper mainly presents the challenges for the real-time EMG based pattern 

recognition control for hand prostheses, FSR based sensors to monitor muscle contraction and 

comparison with standard surface electromyography and future research plan for FSR sensor-based 

pattern recognition control together for the real-time usability of prosthesis.  Moreover, the paper is 

organised as follows: Chapter I of this paper explains the mechanism of muscle contraction, 

mechanism of human upper limb and the sensor used on myoelectric prosthesis control. This Chapter 

also explains the main objectives of this research and the research hypothesis. In Chapter II 

background on Real-time EMG based pattern recognition control for hand prostheses, the background 

of FSR in prosthesis and research gap and future implementation are presented. Chapter III describes 

the methodology (FSR sensor design, sensor conditioning, and signal acquisition and data processing) 

carried out and components used in research. Chapter IV discusses the result. Chapter V concludes the 

paper with future directions. 

1.1 General Background 

 The upper limb is a significant part of the human body and partial or complete loss of which 

can have a significant effect on a person's performing activity of daily living (ADL). The human 

upper limb is mainly divided into three sections the hand, forearm, and arm. For the movement of 

each section, coordinate the relation of the nervous system, musculoskeletal systems, and its 

surroundings are mandatory. To perform different activities (daily), coordination of different joints 

(shoulder, elbow, wrist, and finger joint) is essential, including a broad range of motions with several 

degrees of freedom. These coordinated movements are always redundant and can be beneficial to 

perform complex tasks. When it comes to an artificial hand, all such control features of the normal 

hand should extensively match so that the user can perform their daily needs in a modified and 

effective way. The coordinated control of the biological hand is quite complex, making it highly 

difficult to replicate exactly in any prosthetic hand. A typical prosthetic hand involves three main 

connected parts: an input signal acquisition unit, processing, and control unit, and an end effector. 

Almost all high performing artificial hands (or prosthesis) are using surface electromyography signals 

(sEMG or myosignals), nowadays, for controlling their end effectors. Surface electromyography 

records the muscle movements electrically from the surface of muscle cells when they are electrically 

or neurologically activated [6]. The amplitude of sEMG signals ranges from 0 to 10mV (peak to peak) 

/ 0 to 1.5 mV (RMS) with dominant energy in the 20Hz-450Hz band [7]. Moreover, the acquisition of 

the sEMG signal requires proper skin preparation, and EMG electrodes should be placed after 

confirming the target muscles (from which the EMG signal comparable to predefined limb movement 

can be produced). Therefore, with the technological and miniaturization of sensors, dry electrodes that 

work as transducers for muscular inputs have replaced traditional gel EMG electrodes and have 

improved performance [8]. On a usability level, sometimes, muscle fatigue can happen due to the 

positioning of these dry electrodes on a single target muscle [9]. Recently, a modular scheme was 
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developed as a solution which uses the combination of several electrodes and channels for accurate 

quantification [10], [11]. An extension to this is that these electrodes are replaced with transducers, 

like force and resistive sensors, which use only a single channel acquisition method with fewer 

disturbances [12], [13]. 

 In general, myoelectric hands have evolved a lot to overcome the traditional disadvantages of 

acquiring myosignals to satisfy the needs of all levels of amputees. However, the basic control of the 

majority of those myo-activated limbs has followed the same operating principles (muscle 

contractions) for more than half of a century [14], [15]. These devices use two types of technical 

control: pattern recognition (PR) based control and non-pattern recognition-based control [16]. The 

conventional non-pattern recognition method is commonly used and limited to the proportional 

control (on/off control). EMG-PR techniques have been developed to increase the dexterity of 

myoelectric prosthetic devices, and to overcome the limitations of conventional proportional control. 

EMG-PR operates by extracting multiple features from EMG signals rather than entirely relying on 

EMG amplitude [17] (as EMG amplitude is slow, cumbersome, and difficult for users to control their 

residual muscles movement). A well-developed artificial upper limb design comprises of trajectories 

of a limb and their associated movement patterns. To delineate this, a control algorithm requires 

parameters such as kinematics and models of joints [18], motion, and activities range [16]. EMG-

based pattern recognition is working on the hypothesis that EMG patterns contain much information 

on intended movements. Once the EMG patterns are identified for intended movements using pattern 

classification, the prosthesis controller will receive the command to implement the movement. Thus, 

EMG-PR approach may allow users to control their myoelectric prosthesis more effortlessly with a 

broad range of control. 

 The use of artificial hands instead of biological hands with the same degree of dexterity [19] 

and complexity is a challenging task. However, pattern recognition (PR) technology has played an 

important role in controlling myoelectric prosthetic devices for over 20 years [20], [21], [22]. Pattern 

recognition technology provides more natural control, which is easier to learn by user and machine. It 

also provides independent control of multiple DOFs using simultaneous, sequential, or semi-

sequential control, as well as bringing the prosthesis closer to natural arm functions [23]. By applying 

proper PR based methods and signal processing techniques in combination with machine learning 

algorithms, an amputee‘s limb movement can be accurately decoded and used to control a prosthetic 

device [24], [16]. EMG based PR methods involve various approaches, such as pre-processing, 

segmentation of data, feature extraction, feature classification, and post-processing[25].  

 All these approaches related to myoelectric pattern recognition in one way or another can be 

helpful, but these methods still need further real-time evaluations for their validity [11]. Much 

research has been done on the myoelectric prosthesis; nevertheless, some of the areas in the field need 

to be improved: i) control of multiple degrees of freedoms (DOFs) naturally and intuitively, ii) two-

way communication with the brain (peripheral nervous system (PNS)) and iii) fast learning. 
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Moreover, several advanced pattern recognition techniques have been proposed without any real-

world user applications [26], [27]. A large portion of pattern recognition techniques described in the 

literature is still being applied in clinical settings. Besides, the performance of these algorithms is 

affected greatly by several factors, including the positioning of electrodes, the fatigue of the muscle, 

arm position, surface EMG cross-talk, and muscle contraction. This thesis paper is mainly focused on 

state of art EMG electrodes, its drawbacks and the alternative for EMG electrodes to overcome the 

drawbacks of EMG and to improve the myo-activated prosthesis performance level while maintaining 

quantifiable viability. 

1.1.1 Mechanism of Muscle contraction 

 Muscle contraction is one of the important functions of the human body. It is not limited to 

the movement only but also responsible for posture, joint stability, and heat productions. During 

muscle contraction, muscle controlled by the nervous system generates the electrical signals [28] 

which are recorded by electromyogram (EMG). 

 

            A                                                                                          B 

Figure 1 (A)  Showing changes in muscle cells due to transmission of excitation from nerve cell         

(B) Mechanism showing role of tropomyosin and troponin for muscle contraction  [29] 

 Transmission of the excitation from the nerve cells via synapses triggers changes in the 

membrane potential of the skeletal muscle cell membrane. Transverse tubules are cell membranes that 

elongate into the cell like a tube and attach to the intracellular sarcoplasmic reticulum that transit the 

changes into the cells [29] as shown in Figure 1(A).  The release of Ca2+ions due to action potential 
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from the sarcoplasmic reticulum (a network of flattened membrane sacs which around each myofibril 

create a sheath) into myofibril takes place. Ca+ ions then bind to troponin complex which results in a 

change in shape and slight movement of troponin. This slight movement of troponin leads to the slight 

movement of tropomyosin, which sequentially reveals myosin-binding sites through the actin thin 

filament [30]. Moreover, Muscle contraction depends on the connection of tropomyosin and troponin 

with actin fibres as shown in Figure 1(B).   

1.1.2 Definition of Muscle Contraction 

 Within the muscles fibres, there is a tension generating sites, the activation of these sites 

known as Muscle contraction.  Muscle contraction is generally described based on tension and length. 

It is Isometric when muscle tension changes but the muscle length remains the same. Isotonic is 

another condition of muscle contraction which occurs if muscle tension remains the same throughout 

the contraction. Similarly, muscle contraction is eccentric if muscle length is extended, whereas if 

muscle length shortens, the contractions are concentric [31]. 

 The EMG signal obtained during the isotonic condition of muscle contraction is widely used 

to classify clinician applications (neuromuscular diseases, muscle fatigue) and engineering 

applications (control assistive robots, lower limb orthoses) [31].  It is worth emphasising, EMG 

reflects the electrical events of muscle whereas FSR acquires the mechanical events of muscle during 

muscle contraction. Different types of sensors and techniques can be used to measure the mechanical 

muscle contraction. Mechanomyogram [5] record the mechanical vibrations produced by muscles. 

Force gauges [32], accelerometers, piezoelectric contact sensors [33], laser distance sensors [5], 

muscle circumference sensor [2], a resonance-based active–muscle stiffness sensor, ultrasound 

scanners [34] evaluate morphological change in muscle feature, pneumatic sensors [27], LEDs and 

photodiodes (together) measure backscattered light from the muscle tissues [5], measuring the muscle 

belly (radial enlargement) and detecting muscle contractile properties. 

1.1.3 Mechanism of human upper limb 

 The upper limb is divided into three parts: a) the upper arm extends from the shoulder to the 

elbow b) forearm extends from the elbow to the wrist c) and the hand extends from distal to the wrist. 

The upper limb contains a total of 30 bones. Similarly, the muscular system is composed of 

specialised cells called muscle fibres. Muscles, attached to bones or internal organs and blood vessels, 

are responsible for movement and most of them are the result of muscle contraction [35]. 
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Figure 2 Structure of muscle spindles [36] 

 Muscle spindles are stretch receptors found within the belly of the muscles that primarily 

detect changes in the length of the muscle. They convey information processed by the brain as 

proprioception (is the sense of self-movement and body position) to the central nervous system via 

afferent nerve fibres. Muscle spindle responses to change in length play an important role in 

regulating the contraction of muscles. When a muscle stretch, primary type Ia sensory fibres and II 

sensory fibre of the muscle spindle respond to the length change in muscle and transmit this activity to 

the spinal cord in the form of changes in the rate of action potentials. Motor neuron provides the 

motor part of the spindle. These motor neurons activate the muscle fibres within the spindle. 

Activation of the neurons causes a contraction and stiffening of the end part of the muscle spindle 

muscle fibres. The connection between the motor neurons and the muscle fibres is a neuromuscular 

junction to the need for delivering energy in the form of synapses, where the neuron‘s signal, the 

action potential is transduced to the muscle fibre by the neurotransmitter. Those transmitters merged 

to arrive at the acceptor regions of the muscle fibres and then follow the trigger instructions and make 

the focused muscle move. The release of neurotransmitters thus controls the movements of the entire 

musculoskeletal system. The Ia afferent( arriving fibres) signal is transmitted monosynaptically, 

causing a muscle to resist the stretch as well as polysynaptically, causing a muscle to relax [36].  

1.1.4 Myoelectric upper limb prosthesis 

 Myoelectric Prosthesis is an externally powered artificial limb [37] that is controlled with the 

electrical signals generated naturally by the amputee ‗own muscles‘ such as contraction of muscle 

fibres in the body [38]. These could be residual muscles over the stump or especially re-purposed 

muscles that would normally waste away after amputation such as support muscles of the shoulder 

that after amputation not having to sustain the limb weight would naturally waste away. Obviously, 
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the prosthesis does not possess muscle spindles hence the afferent pathway that would convey 

information about position and posture is anyway served.   

1.1.5 Electrodes/sensor 

 Electrodes/sensors are fabricated in the socket prosthetic receive electrical signals from the 

existing muscle of the residual limb. Sensors transfer the information to the control unit which 

translates the data into commands for electric motors and hence assist to move the joints. Just in case 

to control the prosthesis, if muscle signals cannot be used, the switches or pull-push or touchpad is 

used. Some other types of sensor available are explained in brief below:  

1.1.5.1 Surface electrode 

 Surface electrodes (non-invasive) are used to record the muscle activity or function from the 

surface of the muscle on the skin only. More than one surface electrode is needed to record the surface 

EMG, because EMG recordings show the potential differences between two different electrodes. High 

density EMG electrode is also used in analysis of sEMG. This technique uses multiple electrodes to 

measure the electrical activity of muscles in the limited area of skin and to capture temporal and 

spatial information from the EMG activation area. Using high-density electrodes device for 

acquisition can not only overcome the shortcomings of the poor durability of the monopolar electrode 

shifted but also can detect signal information from some small muscles movements [39]. 

1.1.5.2 Implantable electrode 

 IMES used to provide good prosthetic control compare to surface EMG as it picks up 

myoelectric signals from deep muscles which eliminate the problem related to electrode replacement, 

artefacts, and perspiration. The telemetry controller where the sensor is implanted to receive EMG 

signals in this system removes the problem of percutaneous wire. Similarly, the signal from implant to 

arm is connected through external coil [23].  

1.1.5.3 Electro resistive Band (ERB) 

 ERBs are a type of transducer which is composed of a cylindrical conductive rubber band. 

This band (2mm diameter) is made of carbon-impregnated rubber. Its resistivity is about 140-

160 Ω/cm. ERBs length of wire is directly proportional to its resistance. Whenever the length of wire 

increases, its resistance also increases. When a band is in the non-stretched state, the resistance value 

of band is about 300-400 ohms per inch. ERBs band does not require contact with the skin. It is cheap 

and can be modified to any size due to its extension capacity [40]. 

1.2 Objective 

 Limb amputation can cause immense physical and psychological stress for a person. This 

leads to poor quality of life for the amputees. The most common cause of amputation is poor blood 

circulation due to peripheral arterial disease. Other causes are vehicle accidents, serious burn, 
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cancerous tumors, serious infection, neuroma (thickening of nerve tissue) and frostbite. The 

development of myoelectric activated prosthesis has opened up new potentiality for amputees. 

Manufacture of prosthesis limb is not a new practice; as non-functional prostheses were used for 

aesthetic reasons in earlier days. Later on, many prosthetic limbs have been developed with lots of 

improvement in their functions. Today, we can have some highly functional prosthetic limbs that 

using advanced controllers can mimic many of the functions of the lost limb. As an example, 

Bebionic [41] open bionics [42] is one of the most lifelike, functional and easy to use myoelectric 

hands which are commercially available today. However, despite these devices can improve the 

amputees‘ life quality i.e. to returnable to perform simple daily tasks independently. Due to the high 

cost of the myoelectric prosthesis available now it is impossible for many amputees to get access to 

functional prostheses. For the development of Myo-activated prosthesis, EMG is still used as a first 

option for the measurement of muscle contraction. Uses of the electrode to acquire the EMG signal 

lead to the electromagnetic interferences, skin surface preparation, electrodes mismatch and amplifier 

noise, high sample rate. Furthermore, the raw EMG required signal processing to obtain important 

information (EMG-LE) on muscle contraction level. Although the aim of this research is to develop a 

low-cost generalized device suitable for theoretically any limb, the main focus will be on the hand.  It 

is an essential component of the human body, with an un-compelling spectrum of functionality. It is 

also fundamental from social conventions to syntactical communications.  

 Due to so many drawbacks of EMG electrodes, an alternative FSR based sensors has been 

proposed to monitor and measure the muscle contractions. FSR does not require skin preparation, 

minimizes electromagnetic interferences and no signal processing is required. As well as FSR requires 

low sampling frequency and can operate on low computational power. 

 Accordingly, the major objectives of this research are: 

 To show the relation between EMG-LE and FSR output signal. 

 To provide the quantitative results to show EMG-LE is replaceable.   

 To demonstrate FSR can be used in the development of myo-activated prosthesis. 

1.3 Research Hypothesis 

 EMG provides the electrical events of muscle, whereas FSR gives the mechanical results of 

the electrical trigger. Muscle signal sensor limited to electromyogram sensing is cumbersome, flimsy 

and fragile. It should be also stressed that to acquire the EMG linear envelope (minimal control signal 

for the prosthesis) from raw EMG, high sample rate is required as well as some form of signal 

processing. With this thesis, we compare the computational power for a simple prosthesis driven 

simultaneously by the EMG LE (single lead) and the FSR raw signal. To find the most appropriate 

FSR position for the replacement of single EMG lead, three FSR‘s are used. These three FSR‘s are 

placed over the EMG electrodes in the middle of the targeted muscles. The combination of FSR‘s 
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(e.g. FSR1+FSR2, FSR2+FSR3, FSR1-FSR2) and individual FSR (FSR1, FSR2, FSR3) are observed 

and evaluated to find the one which is most correlated with EMG-LE.  

Accordingly, it is hypothesized that: 

 The proposed FSR based sensor reduces electromagnetic interferences, removes the need for 

skin surface preparation and enables sensing of other muscle-related activities such as muscle 

cross-sectional changes and muscle oscillation. 

 Raw FSR can replicate the EMG crucial information without signal processing and at lower 

sample rate. 

 FSR based control can be operated with low computational power. 

 This research can move the state of the art (EMG) closer to a real-time cheaper and less 

cumbersome myo-activated prosthesis. 
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2. Background 

 As mentioned the current state of the art for the control of the myo-activated prosthesis is 

EMG. To control the myoelectric prosthetic hand EMG based control systems can be classified as a 

pattern recognition control system and a non-pattern recognition control system. The non-pattern 

recognition control includes onset analysis, proportional level control, and threshold level control. All 

of those controls are easy to implement in real-time, but are limited to their movements (degrees of 

freedom). Pattern recognition-classification techniques attracted the researcher on controlling artificial 

limbs from early 1960 onwards. In this chapter, one reviews the EMG for real-time myo-activated 

prosthesis and the history of force sensitive resistor in prosthesis which can also be used as an 

alternative to EMG electrodes.  

2.1 Real-time EMG-PR control of myo-activated prosthesis 

 Though the high functionality (multiple DOF) and high accuracy are achieved on testing 

offline and real-time collected data from amputees with pattern recognition control techniques. 

However, when tested for real-time usability by amputees does not give the same level of 

performance and accuracy. In this section, we described the techniques for the pattern recognition 

control in brief and some of the experimental outcomes on the real-time collected data from amputee, 

real-time with embedded packages and real-time using virtual reality environment.  

 Pattern recognition approach consists of segmentation of data, feature extraction, and 

classification of a set of features or patterns for the various mode of myo-activations [43], [44]. Some 

of the existing pattern recognition techniques used for myoelectric controls are shown in Figure 3. 

Feature extraction and windowing are two different parts of the [45] segmentation of data. Several 

studies use a pre-processing stage before the feature extraction to avoid the preliminary level of 

inherent disturbances and electromagnetic interferences. The output of pattern recognition is 

categorized into different classes or labels based on the input feature extracted. The classes define the 

control of the actuator with a specific command. In the next (sub) sections, we explain the detailed 

steps involved in real-time pattern classification of EMG based prosthetic hands. 

2.1.1 Pre Processing of recorded EMG signal  

 Recorded EMG signal is characterized by much interference such as signal acquisition noise, 

electromagnetic disturbances, signal instability, motion artefact due to electrodes and cables. Pre-

processing is the very first step of pattern recognition techniques regarding proper signal analysis and 

minimizing the inherent interferences [48]. It should be noted that ICA and CSP are used as a pre-

processing (filtering) and Dimensionality reduction (after feature extraction).  
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Figure 3 General pattern recognition schemes [16],[46],[47] 

2.1.2 Segmentation of data   

 The result obtained from the pre-processed EMG signal (random nature) is not regarded as a 

useful input in the pattern recognition technique. Thus, to extract the descriptive features, the window 

(segmentation) of the pre-processed data is required. There are mainly two different types of 

windowing techniques proposed: overlapping window and non-overlapping (adjacent) window. In 

overlapped windowing technique, the former window overlaps over the current window with 

increment timeless than the window length itself [16]. The window length should be selected properly 
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in real-time, which could deliver an acceptable delay. Larger window length would provide high 

classification accuracy but delay in the classifier's decision.  

 Segmentation of EMG data (using windowing) helps in estimating the intended motion for the 

myoelectric classifier. It helps in the decision making of intended motion while new data are being 

acquired. Englehart and Hudgins [49] used adjacent, disjoint analysis window length equivalent to 

0.25 * Sample frequency (SF) (256ms for SF of 1000 Hz) for continuous myoelectric 

classification  [50]. They also demonstrated that the data segment length of 0.125*Fs (128ms for SF 

of 1000Hz) or even less as 0.03125* SF (32ms) could be considered, without much reduction in 

accuracy for the continuous segmentation of steady-state signal. As with the advanced real-time 

computation facility and high-speed processors, data processing could take less than 5ms, thereby 

classifying data segment length could vary from 32 to 25ms. In this approach, with the time increment 

less than segment length, the new segment could slide over the current segment. The segment length 

must be higher than the processing period because the mainframe feature set had been calculated and 

must take a choice earlier to the next segment. Thus, normally the denser yet semi-class decisions are 

made through small segment increments that help to improve response time and accuracy [51]. 

2.1.3 Feature Extraction 

 Generally, EMG features are extracted in the form of time-domain (TD), frequency domain 

(FD), and time-frequency domain (TFD). In the TD, the features are extracted from the variations of 

signal amplitude with time [52] as per the muscular conditions. Unlike time features, the frequency 

domain uses the power spectrum density of the myosignals for extraction [53]. Whereas, the 

combined features of time and frequency domain are used for time-frequency extraction (examples 

such as short Fourier transform and wavelets). The studies based on feature extractions proposed 

across TD, FD, and TFD, shows the best results using TD EMG feature. Hudgins [54] proposed the 

four different time-domain features (MAV, WL, ZC, SSC) [55] for feature extraction from EMG, and 

it is most adopted one to date in the field of myoelectric pattern recognition [16]. Willison amplitude 

(WAMP)[56], Autoregressive (AR) model parameters [57], time domain-auto regression (TD-AR) 

feature are also used to extract feature information. In comparison to other feature extraction methods 

such as Fourier transform and Wavelet Transforms(WT), TD-AR features have achieved higher 

classification performance for the detection of hand movements with EMG signals [57]. Lui and 

Huang [58] implemented a 4th order AR model for the EMG feature extraction and showed better 

classification performance. This approach only includes the trained data (EMG pattern classes) and 

rejects all untrained data of classifier. Some of the recently developed features are Wavelet packet 

transform(WPT) based features [16], short-time Fourier transform (STFT) [59] and, EMG synergies 

by matrix factorization analysis [60]. STFT comparing to TD and fractal domain features state EMG 

signals better relationships with different muscles.  
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 Recently, time-dependent power spectral descriptors (TD-PSD) [16] were proposed, which 

consists of feature sets (wavelength ration, sparseness, irregularity factor, and spectral moments (first, 

second and fourth)). TD-PSD with force level training shows more robustness of pattern recognition 

against force variation than most of the other feature extraction methods [61], such as reduced spectral 

moments by Vuskovic and Du (VD-MOM), AR+RMS, TD, wavelet and discrete Fourier transform 

(DFT) [62]. Khushaba [63] proposed a temporal-spatial descriptor (TSDs). EMG features set 

collected from several intact-limbed and amputees are accepted on multiple sparse and high-density 

(HD) for executing multiple degrees of freedom (hand and finger movements). Time-derivative 

moments (TDM) based feature extraction [64] is a novel feature set extraction proposed to enhance 

the performance of EMG-PR in upper limb motion classification. Furthermore, most of the previous 

studies had focused on time-domain features to reduce computational difficulty. In addition, it does 

not require additional levels of data transformation [31]. 

 Usually, after feature extraction, dimensionality reduction (DR) is applied. DR is the process 

of removing the number of arbitrary variables under consideration by locating a group of key 

variables. When the information is liberally dispersed (scattered) due to the EMG classification, there 

may be a problem caused by the large variance of the EMG signal. So, dimensionality reduction 

methods can unite this information more effectively and solve the problem of feature dimension. 

Dimensionality reduction thus helps in saving the computational cost and reduces the level of system 

complexity [65]. ULDA, PCA, OFNDA (Orthogonal fuzzy neighbourhood discriminative approach) 

are common dimensionality reduction (DR) technique used to reduce the feature space.   

2.1.4 Myoelectric classification 

 The next stage, followed by feature extraction, is feature classification. The information 

gathered during feature extraction is fed into the classification stage. A classifier should able to 

classify the pattern efficiently in less time to meet the real-time constraints of the prosthesis. Notably, 

only a few numbers of studies have compared the potentiality of classifiers to meet real-time control.  

 The myosignals pattern classification for explicit movements is more focused on the 

extraction of activities from arm muscles. For amputees, due to amputations, only a few muscles will 

be present in the residual limb to extract the feature of signals. For instance, in the case of 

transhumeral amputation, the availability of forearm muscles is completely unavailable. Most of the 

pattern recognition studies are, therefore, concentrated on trans-radial control. However, several 

studies tried to classify finger movements using multiple features and classifiers, such as multi-layer 

perceptron and neural network. Usually, in EMG-PR, the classifier performs well on trained (actions) 

classification patterns. To improve the robustness of PR systems, an untrained classification pattern is 

also equally important. Furthermore, from the past few years, the detection of untrained actions 

(novelty detection) has also been studied. In order to solve the problem of novelty detection [66], 
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different methods were proposed and studied, such as the ensemble of one-class support vector data 

description (SVDD) [58], and modified boosted random forests [66]. 

 Although various classification methods are available, classification algorithms include two 

main trends: Statistical (LDA and SVM) and Neural (MLP and ANN ) [67]. The conventional PR 

method also depended on KNN and LDA algorithms to categorise arm motions into different pattern 

classes. LDA scheme is one of the most adopted classifiers in the implementation of myoelectric 

control. LDA classifier has shown high classification accuracy, and it is very simple to implement 

[68]. In KNN feasibility and precision check of classifying features have done for diverse time 

windows such as EMG histogram and noise levels [69], [70]. In 2001, instead of concentrating fully 

on the classifier like KNN or LDA, some authors demonstrated that the pattern classification and its 

accuracy are more deeply depend on the selection of features [71], [59]. As the input data is suddenly 

changing myosignal, it has the downside of immediately switching the control from rest to 

contraction. This prohibits changeover of the feature set from one to another in less time and an 

efficient manner. 

 Moreover, it delays the coordination between multiple tasks utilizing large degrees of 

freedom in real-time. As a solution, the wavelet packet-based feature set can classify myoelectric 

activity in real-time where the data streams are continuously exhibiting superior performance. A 

research work then started on the KNN classifier with a genetic algorithm, upon the trans-radial 

muscles having the potential to control a multi-fingered prosthetic hand.  

 Another classification technique mostly used for the EMG signal classification is an artificial 

neural network (ANN). An ANN is easily trainable and has the capability of modelling both linear 

and non-linear data [68]. The SVM classifier, due to its kernel-based characteristics, has gained wide 

application in the field of myoelectric control. SVM is most popular for performing classification as 

well as regression using machine learning tasks. SVM is an advanced statistical learning approach 

providing an accurate and optimal solution in a short time.  

 Although a lot of developments and progress were made in the field of EMG-PR, the 

development of DOF prosthesis that could aid in simultaneous prosthetic controls is still a challenge. 

Based on the literature studies, it indicates that classification accuracy can be increased with 

appropriate use of EMG channel and feature set. 

2.1.5 Post-processing for Upper limb EMG  

 To overcome the limitations of conventional EMG control [16] post-processing has been 

proposed. Furthermore, the post-processing stage is next to the classification level for the removal of 

errors and misclassifications. The control performance of a multifunctional prosthesis in a practical 

and laboratory setting will always show various disparities. To minimize this classification error due 

to unintended actions during the real-time applications, Simon et al. [72] introduced the practice of 

decision-based velocity ramp functions as a post-processing method. This function attenuates the 
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speed of action soon after the classifier decision is altered. Moreover, post-processing approaches give 

a smooth state transition from the current motion class to the changeover state. The greatest advantage 

of this is that it could be combined with the multi-level real-time continuous control. Some of the 

other post-processing techniques are Moving Velocity [50], and the Majority vote [59], [73], [74]. 

The majority vote [75] has also shown improvement in real-time EMG-PR control of hand prosthesis.  

 All advances in pattern recognition schemes with multiple input channels have improved the 

overall classification accuracy for multifunctional control. Pattern recognition methods inherently use 

sequential control, which requires sufficient windows (intervals) to extract useful classification 

features without delay of response time. When the processing window decreases, the performance 

window decreases significantly. Generally, with a normal pattern recognition algorithm, simultaneous 

and proportional control is difficult to achieve. For instance, to grab an object – closing of fingers 

together with pronation, an additional combination of classification features is required. This may 

increase the number of patterns needed to be trained which in turn creates an undesirable increase in 

response time. Moreover, pattern recognition does not provide proportional control, which is critical 

for optimizing the response time. As classifier is a binary decision control, it cannot influence the 

speed or strength of prosthesis that requires an additional proportional component to the control of the 

signal. This will make the system more complex and decrease overall power [76]. 

 To overcome the need for a complex device and to provide proportional and simultaneous 

control, regression is one of the commonly used methods [66]. The regression approach can evaluate 

a number of control signals continuously from the EMG signal directly. For example, if one control 

signal assists wrist rotation then the other control signal evaluates hand opening. Moreover, this 

approach provides more user-friendly and spontaneous control of the prosthesis. Some of the 

regression approach used for the control (movement) of prosthesis are linear and non-linear 

regression [21], ANN [77] and non-negative matrix factorization [60]. The regression method has so 

far presented promising results, permitting direct and spontaneous control to the user and further 

developments are likely to reinforce the robustness of regression approach.   

 Moving from the virtual environment to the real world requires the implementation of 

prosthetic devices. One of the major challenges that influenced the usability of the prosthesis is the 

lack of robust and a portable embedded system to implement the EMG- PR algorithms, other 

challenges include the design of dexterous prosthetic hands, multichannel electrodes placement, 

compensation between power consumption, small size, etc. [78]. Various hardware has been 

implemented to develop prosthetic hands for persons with disabilities. Hardware chips are designed 

for filtering EMG signals and other applications such as grasp detection and human-computer 

interventions to obtain an accurate signal for prosthetic arm control. Furthermore, a virtual 

environment allows the user to practice different controlling gestures that the designated prosthetic 

device supposed to control in real-world [79]. Some of the experimental outcomes on the real-time 
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collected data from amputee, real-time with embedded packages and real-time using virtual reality 

environment are discussing in the following section 2.1.6, section 2.1.7 and section 2.1.8 respectively.  

2.1.6 Real-time collected data from amputee 

 Several research studies on able-bodied and hand amputees have been done to evaluate the 

consequences of arm position variation on EMG-PR classification performance. Offline classification 

accuracy/errors have shown that arm variation affects the classification performance. To reduce such 

effect of arm variation, various classification techniques [80] have been proposed. Similarly, 

classification accuracy identifies the desired movements from several classes of motion. Some of the 

previous research studies had shown that offline classification has not a good correlation with real-

time performance of EMG-PR [80] control of the prosthesis. However, some of the recent 

classification accuracies on the real-time performance of amputee data are explained in this section. 

Nearly all EMG-PR control for real-time collected data from hand amputee followed the same stages 

to operate. The features are extracted from pre-processed EMG data. From the extracted data, the 

feature is usually selected for training and control set. Then the classification technique is applied for 

training classifiers and control set classifiers. The Figure 4 shows the general algorithm of this whole 

system.  

In 2003 Karlik et al. [82] conducted a study on the classification of myoelectric signals for 

precise overall control of multifunction prosthesis using Fuzzy clustering neural network architecture. 

The author also compared the accuracy of multi-layer perceptron (MLP) having a back-propagation 

algorithm and the new fuzzy clustering neural networks (FCCN). The fuzzy clustering involved the 

division of input data into several fuzzy parts that intersect each other and thus defined by 

membership grade [0, 1]. An algorithm was proposed to implement these fuzzy clustering that 

minimizes the cost function. A comparative assessment shows that using FCNN provides more 

reliable results than MLP. The FCNN achieved 98% accuracy with half training time than that of 

MLP. Later in 2005, a promising method by Chan and Englehart [83] added into the row of the 

continuous controllers. The new method followed a hidden Markov model (HMM) as the data 

segment classifier. The HMM classifier was a suitable probabilistic approach for pattern recognition 

at that time due to the resilience to sequential myosignal variations. For a 4-channel six function 

design, HMM has more performance accuracy (94.63%) than MLP with a good level of robustness 

and quick response.  
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     Al-Timemy et al. [57] proposed a process for the classification of finger motions for 

dexterous control of the myoelectric prosthesis. The myosignal was recorded from six traumatic 

below-elbow amputees. TD-AR features were used to extract useful information from the segmented 

EMG window. To find the best match of features reduction (to reduce computational power) and 

classifiers, two different features reduction tools (PCA and orthogonal fuzzy neighbourhood 

discriminative approach (OFNDA)) and classifiers (LDA and SVM) were combined to make four 

different forms. The results show the high accuracy with OFNDA and LDA.  

 Furthermore, the studies show that feature reduction plays an important role than a classifier 

to achieve high accuracy with multi EMG channels. In 2013, Pan et al. proposed a solution for partial 

hand amputees with the functional wrist to predict the finger joint angle using EMG [84]. The 

experiment was performed on two amputees. EMG signal was recorded from eight targeted muscles 

and was sampled at 2000Hz frequency. TD feature sets were fed to the LDA classifier to identify 

seven different static wrist positions. A switching rule, including LDA classifier and fourteen state-

space models, was proposed for continuous decoding of finger joint angles. The average classification 

error rate (CER) was 6.18%, which demonstrates that forearm movements and the continuous 

movement of the finger can be easily classified. Similarly, in 2016 Ganesh et al. proposed the 

combination of ICA and Icasso to minimise the number of EMG sensors and increased robustness of 

myoelectric control [17].   

 Early in 1993, [3] experiment performed on one amputee using Hudgins feature set. These 

features classified using ANN classifier with one EMG channel proved that the EMG signal shows a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 General pattern followed by the EMG-PR for real-time collected data from amputee [81] 
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deterministic structure during the beginning of muscle contraction. Whereas, Riillo et al. [85] 

proposed an optimization methodology of sEMG based hand gesture classification using pre-

processing techniques such as PCA (unsupervised) CSP(supervised). One trans-radial amputee (right-

hand below-elbow amputee) participated in the experiment. TD features were extracted from 

segmented data (using overlapped windows). Similarly, three classifiers (LDA, SVM, and ANN) [85] 

were tested by assessing the average accuracies of each time window. The study shows that the best 

results obtained for the real-time system were using the ANN classifier.  

 Another research work extended the classification control using a support vector machine 

(SVM), obtained high accuracy (92–98%) with less training time [86]. Stango et al. [87] used the 

SVM classification technique, followed by variogram features. The variogram is a measurable degree 

of spatial correlation. The experiment was performed on one trans-radial traumatic amputee. The main 

purpose of this experiment was to analyze the spatial features of HD EMG-PR for myoelectric 

control. Variogram features maintain good classification accuracy without retraining even the EMG 

channel is eliminated during the experiment phase. Hence the study shows spatial proposed improved 

the robustness of EMG-PR. In [88] the effectiveness of using twin SVM (TSVM) in multi-class 

prosthetic control with unbalanced datasets was demonstrated with RMS value (feature).  

 The summary of the comparison of some of the EMG-PR classifiers using real-time amputee 

data is shown in Table 1. All the achieved accuracy was demonstrated only in ideal research settings. 

Among the many classifiers (Figure 3) in myoelectric control, LDA seems to be widely used 

classifiers. Whereas, SVM and KNN due to their kernel trick characteristics and non-parametric 

nature [70] respectively have equally used widely. Though the better performance was achieved with 

many classifiers, high-density surface EMG is impractical to use as a source for real-time control.   
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Table 1 Summary of various individual classifiers and combined classifiers tested on amputee data1 [81] 

Pre-

processing 

Segmentation/

window length 

Feature 

extraction/ DR 

Classification Post-

processing 

Classes/

EMG 

channel 

Accuracy 

N/A 256ms 

overlapping 

32ms 

TD, 6AR, RMS/ 

PCA, ULDA 

KNN, LDA  

[89] 

 

Majority 

vote 

7/57 >97% 

N/A 

200ms length 

with 50ms 

increment 

6AR, RMS, 

IAV, ZC, WL, 

SSC/ OFNDA 

LDA [57] 

 
N/A 12/11 

 

90% 

N/A 

200ms with 

50ms increment 

window 

 

MAV, ZC, WL, 

SSC/ N/A 

LDA [84] N/A 7/7 

 

95.64% 

 

 

ICA 

250ms 

overlapping 

window with 

64ms increment 

 

4AR, RMS, 

MAV, ZC, 

VAR, WL/ 

ULDA 

LDA [17] N/A 12/11 

 

 

>90% 

 

 

CSP 

300ms with 

75ms of delay 

between the 

overlapped 

window 

 

 

M, RMS, WA, 

SSC/ PCA 

 

ANN [85] 

 

N/A 5/6 

92.04%(P

CA) 

93.4%(CS

P) 

 

N/A 

Window set to 

4500 and 

window shift 50 

 

Variogram/ N/A 

 

SVM [87] 

 

N/A 7/48 

 

81.6% 

N/A 

256ms with 

window shift 

32ms 

 

 

WL/ N/A NN [90] N/A 4/6 

An average 

RMS 

error=0.16 

for 4 

patterns 

N/A 
200ms sliding 

window 

RMS, log(rms)/ 

N/A 

Fuzzy c- means 

clustering [91] 
N/A 

4/3 
87.5±13% 

 

N/A 

200ms with an 

increment of 

75ms 

 

RMS, WL, ZC, 

SSC/ N/A 

 

LDA [92] 

 

N/A 

 

6/8 >91% 

1 The table omits the results from able-bodied subjects. 
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2.1.7 Real-time EMG-PR with embedded system 

 An embedded system is customized to perform a specific task and function often with real-

time control. This system is mainly based on microcontrollers or microprocessors. Real-time 

embedded for the EMG-PR for hand prosthesis can be enhanced to reduce cost, size, and increase the 

reliability and performance of the prosthetic device. Almost all of the real-time EMG-PR control 

using embedded systems followed the same stages to operate, as shown in Figure 5. Firstly, the sEMG 

signal is recorded from the subject muscle using electrodes. Then sEMG signal acquisition takes 

place. This signal goes through pre-processing techniques. The features are extracted and selected 

from the pre-processed signal. Once the selected features are classified, the command is sent to the 

embedded controller to control the end effector.  

 

Figure 5 Real-time EMG-PR with embedded system [81] 
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 Wirta et al. [93] first reported the used of embedded myoelectric pattern recognition system in 

1963. The robotic arm was developed, and discriminant analysis was chosen as a classification 

technique. After a few years during 1996, a real-time EMG-PR was proposed with a digital signal 

processing (DSP) (TMS320C31) based system having a modified maximum likelihood distance 

(MMLD) classifier. Four able-bodied and two quadriplegic subjects volunteered and were designated 

with five motions of neck and shoulders. The total response time for EMG discrimination was 0.17s, 

and it achieved a 95% mean discrimination rate [94]. An analog integrated circuit for the wireless 

transmission of physiological signals designed by Yeng et al. [95] focused more on the transmission 

system, not on implementation of the prosthesis. In 1999, an Evolvable Hardware (EHW) chip for 

myoelectric artificial hands was developed to serve as a standard tool for hardware validation [96]. 

 To access the computer for limb disabled through their remaining muscles, a real-time 

assistive device was designed in 2007 with PR of EMG signals [97]. The signals were measured from 

the muscles of the lower arm of the subject during different wrist motions. The obtained signals were 

filtered, and a supervised multi-layer neural network trained by back propagation algorithm was used 

for classification of the user's movement and clicking of a cursor. The drawback of that article was 

that the researcher gave more focus to the qualitative evaluation of performance than presenting the 

control implementation. Similarly, Anbin et al. [98] proposed the novel combination of signals (EMG 

and inertial measurement unit (IMU)) to be used for mouse controller (cursor movements). LDA 

classifies the EMG data into several groups of 128ms time window and 32ms increment window, 

which correspond to the pre-defined computer mouse operations. The results showed an accuracy of 

88%.  

 In 2007, Bitar et al. [67] explained in detail the design of portable Musical Instrument Digital 

Interface (MIDI) using a continuous wavelet transform (CWT) decomposition and SVM. A low-

complexity portable dsPIC33FJ256GP710 embedded system was designed that collects and classifies 

EMG signals. This embedded system is quite inexpensive and consumes less power. The output from 

four-channel was sampled at 1 kHz frequency using the dsPIC‘s on-chip A/D converters. The channel 

window (fixed-length windows of 0.6s with 0.3s overlap) was normalized by its respective power. 

The CWT coefficients were computed for each and every channel separately, and the desired features 

were extracted. Finally, six class classification was performed using the SVM classifier, and the 

decision of the classifier transmits the result as labels in real-time using Bluetooth to a remote 

interface. Moreover, to control a MIDI-enabled device (mechanical prosthetic hand); these labels are 

then converted to MIDI commands. The experiment showed an achieved 91% accuracy. 

 Ke et al [78] present the latest progress on EMG-PR control of a prosthetic hand. EMG signal 

was acquired using an armband with eight-channel electrodes. A powerful embedded system was 

introduced to deal with the decoding algorithm of EMG signals. These real-time surface myoelectric 

signals decoding and EMG training (on board) are incorporated in the embedded system to control a 



22 
 

prosthetic hand of six DOFs. The result shows that its possible of speeding up the movement of PR 

prosthetic arm into a daily application is promising. 

 In 2013 Xiaorong et al. [99] proposed a first real-time EMG-PR self-recovery classification 

using a cumulative sum algorithm (CUSUM) detector. 48 motion artifact was introduced on twelve 

real-time testing trials. CUSUM detector successfully detected the 43 artifacts, which lead to 93.5% of 

the elimination of misclassification caused by motion artifact. Similarly, in 2015 Ann et al. [100] 

compared the non-adaptive (conventional) and adaptive control (real-time) prediction learning. The 

experiment was performed on one trans-humeral prosthesis and three able-bodied subjects. EMG 

signal acquired using eight channels sampled at 1 kHz to classify the eight classes of motion. Subjects 

were asked to wear Bento arm (anthropometric robotic arm), which consists of MTT (AX-18 smart 

robotic arm) incorporated of five DOF. The result shows the adaptive control decreases the total 

switching time and improve myoelectric robotic arm during uninterrupted use by subjects (amputee 

and normally limbed).  

 A few articles show the real-time control of commercially available prostheses for finding the 

user experience with pattern recognition control. Understanding the patient‘s experience can help 

clinicians and patients who choose prosthetic options. The commercially available EMG-PR control 

was interfaced with multiple degrees of freedom DEKA arm [101]. This study provided an extensive 

description of the user experience of operating a DEKA arm using EMG-PR control. The majority of 

the participants preferred the future prospective of EMG-PR as a control measure.  

 Mastinu et al. [102] presented the real-time implementations of PR techniques on dysmelia 

subjects (congenital disorder). The subject was asked to use iLimb-ultra (Touch Bionics, UK) for five 

consecutive days during the experiment. This system is known as the artificial limb controller which 

includes a pattern recognition system. The classification accuracy and motion test of the system were 

compared with different classes on motion (open hand, closed hand, side grip, fine grip, and pointer) 

individually. The real-time pattern recognition accuracy for motion test (subjects were asked to 

perform as directed on-screen) was higher than the classification or execution accuracy.  

 Hargrove et al. [103] demonstrated the outcomes obtained from the commercially available 

prosthetic used by subjects undergone targeted muscle reinnervation (TMR). Subjects wore a 

commercially available prosthesis to perform different household tasks. A comparison of direct 

method and pattern recognition methods in TMR subjects are performed and statistical significance of 

both methods is evaluated. Users performed well with pattern recognition incorporated devices. As 

well as among eight subjects participated, seven preferred pattern recognition control. Some of the 

papers related to the real-time with embedded packages are summarized and shown in Table 2. 
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Table 2 Summary of the real-time controller in an embedded package [81] 

Pre-

processing 

Segmentation/wi

ndow length 

Feature 

extraction 

Classifi- 

cation 

Post-

processing 

Classes/E

MG 

channel 

Sampling 

frequency 

Processor  

N/A N/A N/A MLNN 

[97] 

N/A 6/4 1kHz PCI-6034e 

 

N/A 

600samples(0.58

6sec) 

CWT SVM 

[67]  N/A 

 

5/4 

 

1024Hz 

dsPIC33FJ256GP

710 

N/A 

Overlapped 

analysis window 

160ms with 

20ms increment 

MAV, SSC, 

ZC, WL 

 

LDA 

[99] 
N/A 

 

3/4 

 

1000Hz 

 

M3-

Microcontroller 

N/A 

300ms with 

200ms 

overlap(100ms 

increment) 

MAV, SSC, 

ZC, WL 

 

LDA 

[78] 
N/A 

 

6/8 

 

200K 

samples 

per sec 

 

STM32F4072GT6 

N/A 

100ms with 

50ms increment 

MAV, SSC, 

ZC, WL 

 

LDA 

[102] 

N/A 

 

5/7  

 

1000Hz 

 

M4 

microcontroller 

N/A 

 

 

250ms 

 

Integrate- 

EMG, RSS, 

INVAR 

KFD 

(DR), 

RBFNN 

(classifi-

er) [104] 

Majority 

vote 

 

9/8 

 

200Hz/ 

channel  

 

Arm Cortex – A53 

N/A 

200ms with 175 

overlap 

MRV,  

WVL, ZC, 

SC, 6AR 

 

LDA 

[105] 

N/A 

 

7/12 

 

1000Hz 

Logic PD 

SOMDM 3730 

N/A 

150ms analysis 

window with 

50ms overlap 

MAV, ZC, 

SSC, WL 

LDA 

[106]    N/A 

11/12 1 kHz USB-1616FS 

 

 Among many classifiers (NN and SVM), LDA is one of the most used classifiers for real-time 

embedded. LDA's main advantages are its simplicity of implementation in an embedded processor. 

Although many studies have been done and the embedded system has been implemented to develop 

the prosthetic of a lost limb using EMG-PR control, a major issue of achieving natural and reliable 

control of limb remains unsolved.   
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2.1.8 Real-time using virtual reality  

 To be able to control virtual prosthesis and to become familiar with a real-time prosthesis, 

voluntary muscle contraction control is very important: that is enabled using a visual feedback system. 

The improvement of learning depends on the user and visual feedback system, so the feedback system 

must allow the user to learn new tasks using their muscles [107]. Most of the virtual prosthesis 

followed the same stages to operate. Firstly, the EMG signal acquisition takes place using electrodes 

on the residual muscle of amputees. Then the signal is amplified and filtered to acquire the 

myoelectric signal to be used. The interface between virtual system and acquisition of myoelectric 

signal is created, which consists of isolation, pre-processing of the signal in hardware, personal 

computer (PC) communication, communication between PC and MATLAB, processing in software, 

communication between MATLAB and virtual world [107] (part of MATLAB). The general idea 

followed by most of the virtual prosthesis is shown in Figure 6.  

 

Figure 6 General representation of virtual prosthesis process [81] 

 The continuing examination of real-time control of prostheses using the myoelectric signal 

resulted in a robust scheme pattern recognition [108]. Twelve subject data from four channels were 

used for real-time control. Unlike the traditional methods involving transient control, which requires 

initiation from rest, a continuous stream of class decisions was delivered to the prosthetic device. 

Pattern recognition was performed on sliding time windows with 256ms in duration and with the LDA 

classifier. The continuous decision (intended motion) permitted intricate classifications involving 

multiple joints without disruption. The continuous classifier performs very well with a significant gain 
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in accuracy and response time over a wide range of analysis window lengths if accompanied by 

majority vote post-processing. Moreover, the control scheme required minimal storage capacity. 

  Ann et al. [109] present that the Target achievement control (TAC) test in the virtual 

environment provides a good platform for PR control practice and testing. In TAC test virtual 

prosthesis moved from an inactive position to the target position. In 2015 Martina and Haripriya [110] 

constructed a prototype using sEMG signal to record the data from the brachioradialis muscle of 

forearm to control the movement of PowerPoint slides transmitted in real-time. Furthermore, 

Agamemnon et al. [111] performed an experiment on 20 able-bodied and two amputees to find the 

outcome of two sensors (sEMG and inertial measurement (IM)). Twelve electrodes were used to 

acquire sEMG signal in a sampling frequency of 2 kHz. Feature sets such as MAV, WL, 4AR, logVar 

were extracted using a sliding window of 256ms with 50ms increment. Two sets of the experiment 

(offline and real-time) were performed. Real-time prosthetic hand control based on offline 

observation. Touch Bionics ‘robotic hand‘ has been used for real-time performance. It shows that the 

combination of both IM and sEMG improved the classification performance of a prosthetic hand. As 

well as the use of IM and sEMG reduce number of sensor require to achieve high level of accuracy. 

Yanjuan et al [80] investigated that both offline motion classification accuracy and real-time motion 

completion rate are important to assess the performance of EMG-PR control.    

 Identifying multiple DOF (hand movements) using a few EMG sensors is one of the 

necessities for developing high levels of usability prosthetic hands. Trongmun et al. [112] present a 

signal processing technique that classifies 17 spontaneous classes of motion from EMG signals using 

spectral features and an ANN. Online classification experiments were performed on twelve subjects 

(seven male and five female) to assess the reliability of the proposed method. An overall correct 

classification rate of 83% was achieved, showing the ability to classify 17 movements from 6 EMG 

sensors. Besides, the classification of nine movements could achieve accuracy of up to 92%. EMG 

pattern classification has been widely studied to decode user-determined for intuitive prosthesis 

control.  

 The significant breakthrough was occurred with the introduction of surgical procedure to 

improve the control of hand prosthesis known as Targeted muscle reinnervation (TMR) [113]. The 

real-time and offline performance of EMG-PR with TMR patients was presented using a generic 

electrode grid. Four amputee subjects (two trans-humeral, two shoulder articulation) that undergone 

TMR surgery participated in this study. In a real-time virtual analysis as well as offline classification, 

a generic grid-like electrode performed better than the control site (specific site for electrode 

placement). Although TMR has the potential to provide advanced control of wrist and grasp patterns 

for myoelectric control, the concept has not yet been a success in implementing it to multiple DOFs 

for the prosthesis.  

 For assessing the real-time PR control of TMR based multifunction prostheses, 

Todd et al. [106] show the performance outcome based on motion (selection time, completion time, 
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and completion rate). The experiment was performed on both virtual and real prosthesis. The 

performance was first ascertained by training and testing with a virtual multifunction prosthesis. Later 

on, the experiment was carried on three TMR patients with upper-limb prostheses. The mean 

classification accuracy of 88(±7)% for patients who had undergone TMR surgery and 97(±2)% for 

control participants was achieved. Furthermore, the summary of some studies based on real-time 

using the virtual reality environment is presented in Table 3. 
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Table 3 Summary of real-time analysis with a virtual prosthesis [81] 

Pre-

processing 

Segmentation/windo

w length 

Feature 

extraction 

Classification Post-

processing 

Classes

/EMG 

channel 

Sampling 

frequency 

N/A 256ms ZC, MAV, 

SSC, WL 

LDA [49] Majority 

vote 

4/4 1000Hz 

 

 

N/A 

150ms analysis 

window with 50ms 

window increment 

 

MAV, SSC, 

ZC, WL 

 

LDA [109] 

 

 

N/A 

 

7/6 

 

1 kHz 

N/A 500 sample/sec N/A NN [114]  N/A 8/17 N/A 

N/A 32 sample hamming 

window with 75% 

overlap 

PSDs ANN [112] N/A 17/6 200Hz 

 

 

N/A 

Sequential analysis 

window 150ms with 

a time increment of 

100ms (5oms 

overlapping) 

 

MAV, ZC, 

WL, SSC 

SPC  

CC 

MPC [80] 

 

 

 

Majority 

vote 

 

 

7/16 

 

 

1000Hz 

 

 

N/A 

 

100ms overlapping 

sliding window 

 

MAV 

Error-

correcting 

output codes 

classifier [115]  

 

N/A 

 

13/15  

 

2048 Hz 

N/A 150ms sliding 

window with 100ms 

increment 

MAV, ZC, 

WL, SSC 

LDA [75] Majority 

vote 

7/6 1000Hz 

 

N/A 

128ms increment to 

1024ms 

6AR and 

RMS 

Linear 

regression 

cascade model 

[116] 

 

N/A 

 

3/6 

 

1000Hz 

N/A 
250ms with 50ms 

increment 

6AR, MAV, 

ZC, SSC, 

WL 

LDA [113] N/A 

(9-13-

17-29) / 

(14-15) 

 

1 kHz 

N/A 

200ms sliding 

window 

TD5 -MAV, 

SSC, WL, 

ZC 

EASRC [48] 

N/A 

 

6/8 

1000Hz 
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2.2 History of FSR in prosthesis 

 Force resistive sensor had been in used as a stimulator for the peroneal nerve of stroke 

survivors during the swing phase of gait since the 1960s. Rueterbories et al. [117] had also explored 

the gait events for stroke patients. Mainly gait events are detected by measuring the forced foot exerts 

on the ground. Shahmoradi and Shouraki  [118] presented a gait recognition using FSR on the leg 

(insole near) to classify everyday locomotion modes (walking, stair climbing, standing). 

Adam et al. [119] used FSR to develop a low-cost wearable and wireless system for kinetic 

measurement of gait. A.K. et al. [120] have developed the flexible strap (inner periphery of the strap) 

using FSR for the recognition of five different locomotion modes such as level walk, ramp ascent, 

ramp descent, stair ascent, and stair descent. Park et al. [121] proposed a ground reaction force 

(optoelectronic force sensor) measurement system and compared with FSR to measure Ground 

reaction force (GRF) produced by the user for gait recognition. Sayed et al. [122] presented the 

prosthetic knee movement approach using two FSR on specific anterior and posterior sites of the 

socket‘s wall. FSR showed less variation during different locomotion (sit, stand, stair ascent) states. 

D. Van et al [123] proposed zero moment point (ZMP) based sensory reflex control of a humanoid 

Robot using FSR sensor inside the sole area of support foot. H. Saddati [124] used ZMP to control the 

biped humanoid robot obtained from FSR sensors attached to the sole. However, Amft et al. [125] 

first proposed the use of FSR to acquire the FMG signal. Two FSR were used on the forearm to 

visually determined (FMG) four types of arm movements on a data plot. Tura et al. [126] in 1998 

designed a sensory control system using FSR for an upper limb myoelectric prosthesis. 

Wang et al [127] presented the biomechatronic approach ―development of multi-fingered hand 

prosthesis using FSR‖. The hand developed has a cambered palm and five fingers. The configuration 

of the fingers is shown in Figure 7.  Ten FSR used in the finger gives the 9 grasp pattern and this 

design is considered as small in size, lightweight and looks more like human hands. Luke 

Osborn et al. [128] in 2013 designed and presented the biomimetic grasping control of hand 

prosthesis. To provide the valuable tactile feedback FSR and Barometric sensors were placed on a 

prosthetic hand. Myo-electrically- operated RFID (radio-frequency identification) prosthetic hand 

(MORPH) has been used to control the movement of the prosthesis. RFID tags have been used to 

switch between different controls strategies and have shown a successful result. FSR resistor namely 

Flexiforce (Tekscan, South Boston, USA) was used to monitor 110N of grasping forces. FSR is 

further coated with silicone to enhance the prosthetic hand grasping functionality. It is fixed to the 

index finger of a prosthetic hand using finger cuffs. Experiments such as power grasp, picking up, 

holding, and releasing and slip detection were performed. FSR due to the characteristics of low 

sensitivity responded only to the power grasp experiment performed to grab polyvinyl chloride (PVC) 

pipe. 
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Figure 7 Configuration of fingers with palm [127] 

 Abdul et al. [129] presented a biomechatronics approach to the design and production of low 

cost, good cosmetic appearance, functional and users friendly robotic arm namely Artificial Hand 

Gripper(AHG). These robotic arms consist of shoulder, arm, elbow, forearm, wrist, and hand.  FSR is 

used in five artificial fingers covered by a smart glove, which also makes the AHG capable to 

evaluate the strength of the patient‘s hand grasp. Sadarangani and Menon [130] used FSR to detect the 

forces (steady-state) generated by muscles at the forearm. Three FSR attached to flexible foam band 

designed with Velcro connectors (to secure the sensing forearm) were used on the forearm. The 

distance gap between three FSR was 4.5 cm. These FSR sensors monitor the force from muscles and 

these forces are characterized as grasp or neutral hand. Hsiao et al. [131] designed sleep posture 

recognition for the upper part of the body using FSR sensors (record the pressure distribution). 

Stefanou et al. [132] demonstrated a motion intent recognition in stroke patients using FSR sensors. 

This paper presents two FSR sensors used to detect low activations of muscle in stroke patients with 

no more than 6.45% of input (average nominal strength). After classification (binary) the arm shows 

better performance than hands. Mohd Ali et al. [133] presented a low-cost and accessible robotic 

exoskeleton for arm rehabilitation. Developed exoskeleton with two degrees of freedom consists of 

FSR to measure muscle activities during the rehabilitation process. FSR is attached to the biceps and 

forearms of the subjects to note the muscle excitation during rehabilitation. Shahrul et al. [134] 

considering the hypothesis that among five fingers of a hand, the thumb plays an important role. So to 

help the amputees with thumb loss due to a traumatic accident, investigation on the development of 

more natural controlled prosthetic thumb was performed. The comparison between the EMG signal 

and forces from the tip of thumb was performed. Though there are 9 muscles in thumb the EMG 

signal was acquired from thumb intrinsic muscles namely the Adductor Pollicis, Flexor Pollicis 

Brevis, Abductor Pollicis Brevis, and First Dorsal Interosseous. FSR is used to record the force from 

the thumb tip. Furthermore, (artificial neural network) ANN classifier in the form of Root Mean 
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square was used to capture the relationship between EMG signal and thumb tip force shows effective 

in developing a natural controlled artificial thumb. Nan et al. [135] with the hypothesis that to control 

the prosthetic hand with multiple degrees of freedom, control power of finger motions should be 

extracted from the human body. 32 FSR (Figure 8) was mounted in a prosthetic socket which is 

densely wrapped around the forearm (mostly middle of the forearm) using straps.  These FSR are used 

to extract the pressure distribution to generate large variations of finger motion. 

 

 
Figure 8 FSR placed in a prosthetic socket [135] 

              Razak et al. [136] presented the design and performance of the air splint prosthetic socket 

system (a combination of Air splint system and pressure sensor). FSR pressure sensor was placed 

inside the air splint socket to determine to require size and fitting for the socket used. As well as 

pressure sensor detects the pressure applied between the stump limb and the air splint. Xiao and 

Menon [137] proposed a wearable and low-cost FSR strap to acquire FMG signals from upper limb 

amputees. Eight FSR were placed on the forearm (proximal portion) to capture the main muscle 

activities. Azman et al. [138] presented the FSR sensors to monitor the muscle fatigue by detecting 

the variations of force exerted by the muscle. Chegani and Menon [139] in 2017 had used band 

designed with 16 FSR to acquire force myography signal (FMG) as shown in Figure 9. Acquired 

FMG was used to evaluate the angle between the fingers (index, middle fingers with the thumb) while 

performing three different hand movements (power grasp, tripod, and index-thumb pinch grasp) in 

three different locations (to cover the workspace where no bending of the elbow is required). 

Erina et al. [140] explored the use of FMG using FSR as a potential alternative for sEMG. The real-

time experiment on trans-radial amputees using a commercially available robotic hand and Bebionic 

was performed. Among 11 different grips pattern, 6 primary grips pattern such as, relaxed, open palm, 

power, tripod, finger point, a key which is considered as important for a daily living gave an accuracy 

of more than 70% using FMG.     
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Figure 9 (Left) FSR Band placed on arm. (Right) FSR band  [139] 

Muhammad et al. [141] to solve the problem of obstructive and bulky haptic feedback 

prosthetic devices FSR has been used. To get a better grip FSR was used on index finger and to hold it 

adhesive tape has been used. Daniele et al. [5] presented  FSR as an alternative to sEMG electrode to 

measure muscle contraction. The experiment was performed on five healthy subjects (wore the 

prosthesis) using force signals acquired from FSR to implement a proportional control strategy for a 

prosthetic hand. The subjects were asked to perform a predefined task (grabbing objects, pouring 

water, catching a flying ball) after a short training. All the subjects performed the task successfully 

with FSR. 

 As reported, some previous studies have been done on the use of force-sensitive resistors 

(FSR) to acquire information about muscle activity, finger movements. However, they could only 

provide qualitative results or simple information about on-off muscle activation. These (FMG) 

methodologies though proved to be feasible for monitoring upper-limb amputees, but still, need real-

time implementation.   

2.3 Research gap and future prospects 

 With technological advancement, purely appearing prosthesis has gained more and more 

functionality over the years. Although the prosthesis nowadays provides a lot of movements, 

otherwise known as Degrees of Freedom (DOF) for amputees, there are still some challenges that 

need to be addressed for the real-time EMG based control for hand prosthesis. The real-time usability 

of available multiple DOF prosthesis is impacted by various factors such as intuitiveness of device, 

comfort, appearance, function, durability, and cost. Furthermore, there are some other compounding 

factors as well, which are explained in Table 4. 
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Table 4 Some of the challenges of real-time EMG based control of hand prosthesis [81] 

Challenges  Description 

Comfort The socket that is the part of the upper limb prosthesis may interfere with the elbow (a 

function of the residual joint). If the socket does not fit correctly, the patient may suffer 

from pain, sores, and blisters. Such prosthesis will experience heavy and cumbersome 

[142]. Even some prosthesis with appropriately designed of sockets, face the problems 

with heat, sweating, and chafing.  

Appearance Most of the developed upper-limb prosthesis does not look natural in appearance. Also, 

the user finds the prosthesis uncomfortable to wear. The user is still unable to control 

the multiple degrees of freedom simultaneously and consistently. 

Function Nowadays, upper limb prosthesis performs almost every day activities. However, still, 

it is challenging to obtain opening and closing positions of hand from the residual limb. 

It is because residual muscles often used for hand prosthesis are biceps and triceps, 

which do not convey to the closing and opening of hand [143].    

Durability Many of the upper limb prostheses are heavy and have short battery life. 

Cost Upper limb prosthesis costs around $50,000, which is quite hard to afford by amputees 

from all over the world. 

Technology  Developed prosthetic devices are still lack of intuitiveness and reliability between user 

motion volition and real motion of prosthesis. Similarly, much training needed to 

operate those prosthetic hands. 

Processing 

delay 

The embedded processor used exhibits some delay (around 3 sec), which halt the 

acquisition of EMG for that delay period. 

EMG 

interferences 

The transient changes in EMG often result from external interferences, changes in 

electrode impedance, muscle fatigue, and electrode shift, among others. During 

practical use, this transient change arising from variations (long and short-term) in the 

acquisition environment caused degradation of the clinical vitality of the device and 

limited its users‘ adoption [16].  

Electrode 

displacement 
(shift) 

Electrode displacement occurs each time when users use prosthesis, electrodes slightly 

reconcile in a different position relative to underlying musculature. When the user 
performs some task, due to the loading and positioning of limb, movement of electrode 

occurs. Such an electrode shift can lead to a change in EMG characteristic (recording) 

of limb and thus make it difficult to decode the movements [144].  

Amputee 

movement 

EMG signal from the limb position is mostly recorded when the user is in a static 

position (sitting), but in a real-time scenario, prosthesis users have to use the device in 

a different position (walking, climbing stairs). As the variation in limb position effect 

the classification performance of EMG-PR [145].  

Muscle 

contraction 

forces 

While performing everyday activities, the same limb assists different muscle 

contraction forces across different conditions. Thus, the variation in muscle contraction 

force occurs due to the same targeted limb results in myoelectric signal pattern 

classification inconsistency. Hence it effect the EMG-PR control of prosthesis [44]. 

Limb position 

variation 

Variation in limb position occurs while performing a different action in everyday life. 

For upper-limb amputation, the effects are seen on residual muscle (located in a 

prosthetic socket) from which the EMG signal is collected. Also, various limb position 
leads to the variation in gravitational force which leads to the displacement of target 

muscles. These factors cause variation in EMG signal pattern affecting the EMG-PR 

control of prosthesis performance. 

 

2.3.1 Future prospects-implementation of real-time EMG based control 

 Electroencephalogram (EEG), and Electrocorticogram (ECoG) measures brain signal, and they 

could be used to supersede EMG for prostheses control. ECoG electrodes are invasive as they are 

placed directly inside the head whereas, EEG electrodes are non-invasive as they are positioned 
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on the scalp area [146] where information regarding the targeted body movements are 

measurable [147]. EEG and ECoG currently found application as a brain-machine interface [148] 

and in theory, can control the movement of the prosthesis similar to the EMG. In other words, 

while EMG measures the electric current from muscle and provides the control signal according 

to the action intended by subject [149], brain-machine interface decodes the electrical signal 

generated from the brain and converts them to the control signal for the control of 

prostheses [150] without using muscle as an intermediate [146]. Unfortunately, due to the 

invasiveness (ECoG) and the problem associated with electrodes montage stability (EEG), 

generalized poor signal-to-noise ratio (SNR), the poor spatial resolution of the signals, not to 

mention the discomfort related to the need of having multiple devices over the subject body (i.e. 

head and limbs) these kind of devices, we believe, at present times, may be better suited for 

patients with spinal cord injury where voluntary EMG signals may be not available. It is 

necessary to mention that another issue often related to the use of brain signals to drive external 

devices is the need for extensive training [151] [152] and poor performances of the brain to 

computer interface. 

 The prosthetic control unit should be increased, and appropriate pattern-recognition should be 

used for proper handling of the prosthetic device. 

 The prosthetic device should be developed using low-cost materials, affordable to all amputees. 

 Intuitiveness can be developed by extracting the signals using ultrasound imaging [153], force 

myography (FMG), TMR, and Implantable myoelectric sensor [154]. 

 One possible way to minimize or to eliminate this drawback of EMG interferences is to develop 

an electromagnetic shielding technique [16] and implement the best filtering strategy. 

 Rather than depending on existing proposed training, an intelligent adaptive prosthetic system 

should be developed and implemented. An intelligent EMG-PR system requires to represent a 

data stream accurately in real-time. It shows a possible way to restrict the deficiency in the 

prosthesis market. With such developments, users‘ expectations can be meet and thus increase 

device adoption for everyday use.  

 Feature extraction is known as a core of conventional EMG based Pattern recognition control. To 

achieve the real-time usability of prosthetic, issues related to the feature extraction should be 

addressed.  The deep learning (machine learning method based on ANN) may be one possible 

way to solve the problem of feature extraction [16]. So more research on deep learning in pattern 

recognition-based prosthesis control should be conducted. 

Among the many possible future implementations, one of the solutions to develop 

intuitiveness and overcome the other drawbacks of EMG electrodes is using FSR (force myography). 

The experimental outcomes of comparison of FSR and EMG are explained below in detail. The 

following sections describe the methods and materials and outcomes of the experiment.   
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3. Methods and Materials 

3.1 Methodologies 

 To compare the raw FSR output signal and EMG-LE signal, we have used the raw FSR signal 

(without signal processing) and the raw EMG signal has gone through some signal processing to form 

the EMG-LE. Raw FSR was compared with EMG-LE in aspects (sample rate, computational power) 

to overcome the drawbacks of EMG. The methodology implemented to execute the goals of this 

research has been outlined in Figure 10 and has been described accordingly in the following section. 

 

Figure 10 Methodology 

3.1.1 Sensor Design  

 Force Sensitive Resistor made up of conductive polymer was modified to work as a force 

sensor. From the literature [5] it is quite clear that the bare FSR sensor on the skin does not give 

appropriate results [155]. It is unstable and provides variable outcomes. To solve this problem, the 

FSR 3D case (covering) was designed. The case was designed on Auto-cad and printed using 

Polylactic acid (PLA) as shown in Figure 11. The upper covering of FSR, dome-shaped was designed 

so that the pressure is uniformly distributed on the FSR and Velcro wrap can be placed. The dome-

shaped covering of FSR also gives reliable mechanical coupling within the FSR sensitive area.  The 

lower case was designed to hold the EMG electrode cables, which work as a connector for a 

disposable electrode. As shown in Figure 12 FSR is situated just above the EMG electrode. Since 

three FSR are used, the same case was designed for all of them. All this assembly was held on biceps 

using a Velcro wrap as shown in Figure 12. Furthermore, the sEMG raw signal was acquired from 

FSR case was designed 

FSR sensor conditioning circuit 
was implemented  

 Arduino was used as a control 
unit for prosthetic hand 

 NI DAQ was used  to acquire EMG 
and FSR signal and to process the 

EMG data  

Comparing signal,  sample rate 
and computational power of 

EMG-LE and raw FSR  
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Figure 12 Three FSR‘s placed on biceps to acquire a signal 

Myoware muscle sensor to further process it for EMG-LE whereas FSR raw signal was acquired 

using FSR interlink 402.  

               

                       

Figure 11 FSR case (Top left) Upper case of FSR. (Top right) FSR holder (Bottom) EMG cable holder  
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3.1.2 Sensor conditioning  

 FSR is a form of a polymer (insulating) matrix, which consists of conductive particles. These 

conductive particles remain in the scattered form within the polymer [156]. For a certain time, if a 

constant load is applied to the force-sensitive resistor; mechanical creep arises as a result of the 

rheological characteristics of the polymer. This creep affects electrical resistance and the inter-particle 

separation of FSR [5]. Results of which lead to the output drift of the sensor. Design an appropriate 

sensor conditioning thus help to reduce the output drift of the sensor. 

 
Figure 13 Signal conditioning circuit, provides constant voltage to FSR sensor 

 The circuit in Figure 13 provides a constant voltage of 2.1 V to the FSR sensor. Furthermore, 

a trans-impedance amplifier was used to measure the resistance change in FSR. The constant voltage 

supply is important to reduce the output drift across the FSR and also provide the signal almost 

proportional to the force applied to it. 

 

3.1.3 Signal Acquisition and Data Processing  

 Five healthy subjects were involved in the experiment which consists of two females of 32 

and 33 years old and three males of 32, 39 and 45 years old respectively. The sEMG and FSR signal 

was simultaneously acquired from the subjects while performing different gestures. For this 

experiment water bottle of 900ml, 750ml, 600ml of the volume was used. Each subject involved in the 

experiment was asked to lift the water bottle of different volumes and drop (return to rest). The 

duration of the experiment for performing each volume was set for 25 sec. This exercise of lifting and 

dropping was done five times within the set duration.                                                                                                                                                                     

 The raw sEMG obtained using Myoware, and three FSR sensors output were acquired using 

Arduino and NI USB 6002 DAQ. Arduino was used as a control unit for the signal. The acquired 

signal from both EMG and FSR was first analysed using Arduino. The computed EMG RMS (from 

raw EMG) was processed to obtain EMG-LE using MATLAB. EMG-LE was obtained for each 

sequence of contractions (three). The total of three contractions was manually selected from FSR 

signal and compared it to the EMG-LE signal. Since three FSR were used, single FSR and its 
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combination FSR1, FSR3, FSR1+FSR3, FSR1-FSR3, FSR1-FSR2 were considered for the 

assessment of FSR and EMG-LE. As a whole correlation between FSR and EMG-LE was evaluated 

for 45 contractions. Furthermore, the chart showing the signal acquisition and data processing 

implemented to execute the goals of this research has been outlined in Figure 14 accordingly. 

 

Figure 14 Outline of signal acquisition and data processing 

3.1.4 Sample rate and computational power of FSR and EMG-LE 

 The raw EMG signal requires processing to compute the EMG-LE whereas FSR is used 

without any signal processing. The sample rate and computational power are connected to each other. 

With the high sampling frequency, the execution of the system requires high computational power 

simply because many samples are to be accumulated and processed at once. To show the relationships 

between sample rate and computational power and their effects on FSR and EMG-LE signal is 

explained here in this section. The outline of the process involved in evaluating the sample rate and 

computational power of these signals is shown in Figure 15 assuming for EMG a sample rate of 

10 kHz and due to the frequency content of the FSR [5] being very limited, a more appropriate 

100 Hz as sample rate for the FSR; both signals are assumed to be quantised with a 16-bit depth.  

Collected raw EMG and raw FSR using 
NI DAQ when three different volume of 

water bottle is lifted and rested 

EMG rms was calculated from raw 
EMG and further processed to obtain 

EMG-LE using MATLAB 

 Three different contraction was 
manually chosen from the FSR signal 

Each contraction of FSR signal was 
compared to EMG-LE 

Correlation value and standard 
deviation was calculated using 

MATLAB 
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Figure 16 3-D claw with its designing components (left side) and 3-D claw (right side) 

 

Figure 15 General outline carried out to compare the sample rate and computational power of signals 

3.1.5 Control of prosthetic using raw FSR signal  

 This process was carried out to achieve the main purpose of this study, to provide an 

alternative to EMG-LE for the suitable control of prosthesis. To show that electrode less EMG can 

control the prosthetic following methodologies has been carried out: 

 We have designed 3-D claw (2 fingers prosthetic hand) for the experiment (Figure 16) which 

was powered using one servo motor.  

 The signal to control the claw has been acquired from biceps bacchii using FSR sensor.  

 Arduino was used for signal acquisition and control unit for the whole system.  

 Subject was asked to lift and drop 900ml of water bottle to attain contraction. 

 The control of 3-D prosthetic hand depends upon the intensity of contraction. The working 

principle of this prosthetic hand has been outlined below in Figure 17.  
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Figure 17 Outline of general algorithm to control 3-D claw 

  

          

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

3.2 Component used in projects 

 The design and implementation include a hardware section and a controlling software part. 

The details about each component are presented below. 

3.2.1 Force sensitive resistor (FSR) interlink 402 

 A combination of resistor and sensor forms a force-sensing resistor. It is a special type of 

resistor whose resistance change with force or pressure applied to it. With an increase in pressure 

applied, the resistance of FSR decreased. The FSR is generally made available as a polymer sheet or 

ink which is applied as screen printing. Sensing film contains both the electrically-conducting and 

non-conducting particles. These particles (sub-micrometer) are formulated for reducing the 

temperature dependence and improving mechanical properties with increasing surface durability. The 

FSR is thin in size (less than 0.5 mm) and has good shock resistance. It could be used to measure 

muscular activities by monitoring the muscles. It measures muscle bulge directly. It is inexpensive 

and can be used externally. It requires no or little signal processing [157].  
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Figure 18 Force sensitive resistor [5] 

 

 

 

 

 

   

 

 

3.2.2 Myoware muscle sensor  

 Myoware™ v3 board is the EMG sensor from Advancer Technologies. Myoware can be 

operated with a single voltage supply. EMG electrode embedded within it makes it easy to wear 

[158]. Myoware directly gives the EMG-LE and Raw EMG out. Some more specification of 

Myoware is shown in Table 5. 

 

Figure 19 Myoware muscle sensor[158] 

3.2.3 NI DAQ  

 Data acquisition (DQ) consists of a sensor, DQ hardware, programmable software. It 

measures electrical or physical events such as voltage, current, temperature, and pressure. NI DAQ 

6002 measures, acquire, analyse, present and manage the measurement data [159]. 

Table 5 Specification of EMG module 
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Figure 20 Arduino Uno [160] 

 

Table 6 Specification of DAQ device 

 

 

 

 

 

3.2.4 Arduino Uno 

 Among many control units available in the market, Arduino is one of the cheapest and low 

power consumption microcontroller or a control unit for the control of the prosthesis. Arduino Uno 

consists of all components needed to aid the microcontroller. It just needs a computer to connect 

through its USB cable or power (ac/dc adapter or battery) to get started. Uno does not use the FTDI 

USB-to-serial driver chip. Arduino Uno is a compact, breadboard-friendly, and complete platform 

based on the ATmega328 MCU [160]. It is a portable microcontroller which works with a Mini-B 

type USB cable. It can be simply programmed in respective embedded C or C++ language. It is 

inexpensive and easy to use a controller for the beginners. It is more flexible even for advanced users 

due to its clear programming domain with the extensible hardware and software environment [40].  

                                                                                                        Table 7 Specification of Arduino Uno [160] 

 

3.2.5 Operational Amplifier 277 

 This operational amplifier is the improved version of OP-177 (improved noise, wider output). 

It is also called as a high precision operational amplifier. They operate twice as fast with the quiescent 

current. OPA277 is simple to use, free from phase inversion and overload problems. They maintain 

stable unity gain and provide excellent dynamic behaviour over a wide range of load conditions [161].  
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        Table 8 Features of OpAmp           

Figure 21 Operational Amplifier OPA4277 [161] 

 

     

  

                                   Features 

Ultralow offset voltage 

Ultralow Drift 

High Open-Loop Gain 

High Common-Mode Rejection 

High Power Supply Rejection 

Low Bias Current 

Wide Supply Range 

Low Quiescent Current 

10 µV 

±0.1 µV/°C 

134 dB 

140 dB 

130 dB 

1-nA maximum 

±2 V to ±18 V 

800 µA/amplifier 
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4. Results and Discussion 

4.1 Real-time EMG based pattern recognition control of hand prosthesis 

review  

 The first pattern recognition control scheme was developed in late 1960. By the 1980s, the 

approach was more refined by extracting features using autoregression from a smaller number of 

input channels. This allowed greater accuracy (nearly 86%) but was unable to achieve that in real-

time. At the beginning of the 1990s, pattern recognition and its accuracy were improved further with 

artificial neural networks. Then the methodology was shifted to the analysis of real-time scenarios 

with a continuous shrinkage to permit precision of roughly above 92%. The inclusion of real-life 

constraints and reduction of dynamic error were large discussions after the late 1990s. Since then, 

most of the studies attempt to achieve a perfect natural level control in myo-prosthesis by the 

selection of appropriate classifiers and post-processing techniques. It is obvious that the popularity of 

pattern recognition methods keeps on increasing, and the research studies are evolving into more 

natural control of artificial arms. A sudden increase in pattern recognition control can be visible from 

the year 2000 onwards. Though there are some fluctuations in the level, with the change in computing 

capability of processors, the interest in research on pattern recognition has risen and shown major turn 

since 2010. 

 There are still many challenges to implementing real-time prosthesis, mainly in a wearable 

embedded system. First, a solution scheme involves a re-training PR classifier. Presently, this process 

includes the restructuring of the training feature matrix, the estimation of variables in the pattern 

classifiers, and then forming new organization of the testing feature vectors. It is unknown if the 

embedded system can control all this approach fast enough for each decision. Second, many 

components are incorporated into the EMG-PR algorithm; the interaction between the components 

and the precise time control is critical. 

 At last, it requires a compact combination of all components of the embedded PC. The system 

requires to provide the interfaces needed for the collection of data, sufficient computing power for 

decision making in real-time, effective memory management, and low energy utilization [99]. All of 

the above-mentioned challenges are less explored. 

 Most of the above said articles tried to analyse and use repeated data by setting ideal clinical 

conditions for classification error and accuracy. Moreover, the real-time articles mostly tested their 

results with able-bodied subjects. In real amputee life, some unwanted, unrealistic repeatable 

contractions can be observed from myo-signals during classifier learning. Those considerations were 

the least discussed and identified. When a user is asked to perform several activities under real-life 

conditions such as varying size loads, orientation, and weather, the classification error in the real-life 

scenario is high from their equivalent able-bodied subject. It is also clear that pattern recognition 
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systems have yet to obtain an extensive application for numerous reasons such as 1) the absence of 

good user interface 2) uncertainty in classification accurateness and control, and 3) variations in 

patterns over the period. The previous studies have shown practical achievements for the control of 

ULPs. Together with achievement, the advancement of inaccurate classification and speed from a 

reliable command method is enough to process with less time, less error, and minimum mental effort. 

While many classification schemes have been analysed, generally the feature identification methods 

are stuck to time-domain features and are often paired with LDA classifier.  

 Moreover, none of the pattern recognition systems have been found to be 100% precise. The 

wrong classifications need to be alleviated to make a myoelectric pattern recognition control as a valid 

choice for an amputee. Otherwise, users become frustrated, unsuccessful at completing a task due to 

unintended prosthesis movement. Ultimately, this can lead to the rejection of the device itself. 

4.2 On the sample rate and computational power of FSR and EMG-LE 

 The results were obtained while comparing the size of raw EMG and EMG-LE at 10 kHz 

sampling frequency and FSR at 100 Hz of sampling frequency for a time window of 100 milliseconds 

as shown in Table 9. The table shows the number of samples EMG, EMG-LE and FSR has to store 

and data space they occupy considering the data depth of 16 bits.                                                       

 Table 9 Memory burden comparison per signal 

 

 

 

 

While both types of controllers will incur on a decisional delay generated by the final 

algorithm measuring the samples and deciding which action to take, the use of EMG-LE will incur in 

the linear envelope calculation delay, this delay is estimated with the MATLAB timer on the 

computer. The progressed time obtained while computing EMG-LE from raw EMG is 0.04 seconds 

and the proceeding time required for it to run on the Arduino requires 0.16 seconds, to this delay, as 

mentioned, a further delay is to be added. For the FSR that does not require any signal processing and 

time required for it to run on Arduino need only 0.14 seconds. In summary, the controller using EMG 

linear envelope, when considering a time window for the acquisition of 100 milliseconds can take five 

decisions per second; while the controller using the FSR can take seven decisions per second. 

Similarly, prosthesis controller using EMG-LE has to store 1000 samples whereas one using FSR has 

to store only ten samples. 

Memory    Raw EMG + EMG-LE        FSR  

Samples numbers             1000 +   1000        10 

16 bits   depth            2000   +   2000        20 
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4.3 Comparison of raw FSR and EMG-LE 

 The results were obtained while performing the predefined task (lifting and dropping of a 

different volume water bottle) of different intensity and duration by five healthy subjects. The raw 

EMG signal and FSR output signal was simultaneously recorded. The raw EMG signal was further 

processed to obtain EMG-LE. One of the examples of computed EMG-LE with a raw FSR output 

signal is shown in Figure 22. The contraction from zero to eight seconds is noted.  Two contractions 

shown in the figure shows a good match between EMG-LE and raw FSR signal. 

 

Figure 22 Simultaneous recording of signal EMG-LE and Raw FSR while lifting and resting of water bottle 

  

To measure the quantitative similarity between EMG-LE and FSR signal, the mean 

(  correlation coefficient was computed. Similarly, to measure the amount of dispersion of values 

obtained from correlation standard deviation (SD) is computed. The computed average correlation 

coefficient and standard deviation are mentioned in Table 9. A total of 45 contractions were computed 

separately.  
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Table 10 Computed correlation and standard deviation 

 

Subjects 

 

Sensors and combination 

                    Correlation 

    600ml   750ml 900ml 

Mean value Mean value Mean value 

1 

 

FSR1 

FSR2 

FSR3 

FSR1+FSR2 

FSR2+FSR3 

FSR1+FSR2+FSR3 

0.84±0.03 

0.82±0.09 

0.83±0.04 

0.80±0.08 

0.81±0.08 

0.81±0.07 

0.91±0.02 

0.89±0.03 

0.87±0.03 

0.85±0.08 

0.81±0.09 

0.87±0.03 

0.93±0.03 

0.92±0.03 

0.87±0.08 

0.89±0.04 

0.85±0.04 

0.89±0.05 

2 

 

FSR1 

FSR2 

FSR3 

FSR1+FSR3 

FSR2+FSR3 

FSR1+FSR2+FSR3 

0.92±0.04 

0.87±0.05 

0.80±0.08 

0.89±0.07 

0.81±0.05 

0.80±0.05 

0.81±0.05 

0.87±0.08 

0.88±0.03 

0.81±0.08 

0.81±0.03 

0.85±0.06 

0.90±0.07 

0.85±0.04 

0.91±0.08 

0.86±0.04 

0.85±0.08 

0.84±0.07 

3 FSR1 

FSR2 

FSR3 

FSR1+FSR3 

FSR2+FSR3 

FSR1+FSR2+FSR3 

0.87±0.04 

0.90±0.05 

0.85±0.08 

0.90±0.07 

0.88±0.05 

0.89±0.05 

0.87±0.04 

0.91±0.05 

0.88±0.08 

0.87±0.07 

0.85±0.05 

0.87±0.05 

0.85±0.04 

0.87±0.05 

0.80±0.08 

0.86±0.07 

0.86±0.05 

0.85±0.05 

4 FSR1 

FSR2 

FSR3 

FSR1+FSR3 

FSR2+FSR3 

FSR1+FSR2+FSR3 

0.90±0.04 

0.86±0.05 

0.86±0.08 

0.88±0.07 

0.84±0.05 

0.87±0.05 

0.89±0.04 

0.88±0.05 

0.85±0.08 

0.82±0.07 

0.86±0.05 

0.88±0.05 

0.94±0.03 

0.94±0.03 

0.84±0.08 

0.92±0.07 

0.91±0.05 

0.92±0.05 

5 FSR1 

FSR2 

FSR3 

FSR1+FSR3 

FSR2+FSR3 

FSR1+FSR2+FSR3 

0.81±0.04 

0.81±0.05 

0.82±0.08 

0.84±0.07 

0.85±0.05 

0.83±0.05 

0.83±0.04 

0.83±0.05 

0.85±0.08 

0.83±0.07 

0.85±0.05 

0.83±0.05 

0.89±0.04 

0.87±0.05 

0.86±0.08 

0.88±0.07 

0.83±0.05 

0.82±0.05 
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4.4 Towards the development of a suitable muscle sensor for prosthetic 

control  

 The results obtained using the FSR sensor show that simple prosthesis (3-D printed claw) can 

be controlled using an electrode-less FSR-LE signal. It should be noted, as we found (Table 10 

Comparison of EMG- LE and FSR signal) that individual FSR can give a signal that is comparable to 

EMG-LE. Therefore, we have used one FSR to control the prosthesis.  

Muscle contraction to control the prosthetic hand was achieved performing the task of lifting and 

dropping of 900 ml volume of water bottle. We believed that with different volumes (300 ml, 600 ml) 

we can achieve the proportionality of control. In order to prove this, we are still in the process of 

collecting more data. Although, this experiment shows the control of the limited movement (open and 

close of prosthetic hand), this design can be scaled up to more complicated devices for the 

implementation of multiple movements (degrees of freedom) and development of five fingers hand 

prosthesis.    

 

 

 

 

 

 

 

 

 

 

  



48 
 

5. Conclusion and Future directions 

 The brief introduction to EMG-PR techniques and explores the work done on real-time 

(amputee data, embedded, and virtual environment) myo-activated prosthesis based on pattern 

recognition control over the years are obtained through the literature survey. As well as some of the 

key techniques required for the improvement of existing real-time application of EMG-PR for hand 

prosthesis are presented. Although the perspective of intelligent pattern recognition control methods 

for the multiple degrees of freedom for hand prosthesis has been well investigated, their real-time 

usability is still being challenged by a number of compounding factors. Natural neuromuscular control 

of prosthesis should be proportional and investigate multiple degrees of freedom. However, while 

reviewing the existing literature, we have observed that the majority of real-time prosthesis uses 

EMG, particularly multiple channels targeting multiple residual muscles to generate multiple 

synchronous control signals. The challenges are even greater than a single degree of freedom due to 

the proximity of the muscles/electrodes etc. This should be well investigated in the future for real-

time scenarios. Furthermore, to achieve real-time usability, appropriate design of the prosthetic 

device, virtual training, feature extraction, and classification techniques, should be properly 

investigated and implemented.  

 Electrodeless FSR-LE signal for measurement of muscle contraction has been presented in 

this thesis to overcome the drawbacks of EMG (skin surface preparation for placement of electrode, 

electromagnetic interferences, and high sample rate).  The specific FSR sensor designing (with FSR 

case) and implementation of the FSR sensor conditioning circuit had provided a more constant and 

quantitative analysis of muscle contraction. FSR sensor is simple to use, low in cost and does not 

require any skin preparation for measuring muscle activities. It provides the signal compared to the 

EMG-LE without any signal processing. FSR is not affected by electromagnetic disturbances and is 

strong (robust). Moreover, the FSR sensor has successfully implemented to control the prosthetic 

hand (two fingers claw).  

5.1 Future research Directions 

 During the period of my MPhil study, I have gained knowledge on EMG-based pattern 

recognition (machine learning) control and an alternative sensor to replace EMG that can be used to 

control the myo-activated prosthesis. From the review paper on real-time EMG-based pattern 

recognition control of hand prosthesis challenges and future implementation (peer-reviewed paper), 

the current state of real-time EMG based machine control for the development of myo-activated 

prosthesis and the area that need to be improved has been clearly understood. Henceforth, the 

experiment performed for the comparison of FSR-LE and EMG-LE (published paper) and the result 

obtained using FSR to control the prosthetic hand (open and close gestures) have shown that FSR 

signal can be used to control the myo-activated prosthesis with multiple degrees of freedom and 
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feedback to the user. To carry out further research for my Ph.D. study, I would like to use the concept 

of machine learning approach with FSR sensor together.  Furthermore, to reduce the burden on that 

principal prosthesis controller, EMG can be processed in the FSR sensor together with other forms of 

muscle contraction signals i.e.  Mechanomyogram (MMG).  
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