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Abstract  
 

Appropriate functioning of the human foot is fundamental for good quality of life. The 

intrinsic foot muscles (IFM) are a crucial component of the foot, but their natural 

behaviour and contribution to good foot health is currently poorly understood. 

Recording muscle activation from IFM has been attempted with invasive techniques, but 

these generally only allow assessment of one muscle at a time and are not much used 

in many clinical populations (e.g. children, patients with peripheral neuropathy or on 

blood thinning medication). Here a novel application of multi-channel surface 

electromyography (sEMG) electrodes is presented to non-invasively, record sEMG and 

quantify activation patterns of IFMs from across the plantar region of the foot.   

sEMG (13×5 array), kinematics and force plate data were recorded from 30 healthy adult 

volunteers who completed six postural balance tasks (e.g. bipedal stance, one-foot 

stance, two-foot tip-toe). Linear (amplitude based) and non-linear (entropy based) 

methodologies were used to evaluate the physiological features of the sEMG, the 

patterns of activation, the association with whole body and foot biomechanics and the 

neuromuscular drive to the IFM.  

EMG signals features (amplitude and frequency) were shown to be in the physiological 

ranges reported in the literature (Basmajian and De Luca, 1985), with spatially clustered 

patterns of high activation corresponding to the Flexor digitorum brevis muscle. IFMs 

responded differently based on the direction of postural sway, with greater activations 

associated with sways in the mediolateral direction. Entropy based, non-linear analysis 

revealed that neuromuscular drive to IFM depends on the balance demand of the 

postural task, with greater drive evident for more challenging tasks (i.e. standing on tip-

toe). Combining non-invasive measures of IFM activation and entropy based assessment 

of temporal organisation (or structure) of EMG signal variability is therefore revealing of 

IFM function and will enable a more detailed assessment of IFM function across healthy 

and clinical populations. 
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1. Introduction 
 

The human foot is critical for a wide range of activities of daily living. However, there 

are many pathologies that have direct clinical implications for foot function, influencing 

factors such as balance and mobility, which can have a major impact on a person’s 

quality of life (Rodriguez-Sanz et al, 2018).  Issues associated with foot health can be 

structural (e.g. hallux valgus, pes cavus) and/or functional (hallux limitus and hallux 

rigidus) and can be associated with also ageing and a range of common chronic diseases, 

including diabetes mellitus where peripheral neuropathy and foot ulcerations are 

common.  It is estimated to cost the NHS £14 billion pounds a year to treat diabetes and 

its complications, with the cost of treating complications representing the much higher 

proportion of the cost (Executive 2009-2010). In addition, care is required for many with 

conditions such as arthritis, children growing with conditions such as cerebral palsy and 

recreational and professional sports people who sustain foot injury, although care costs 

for these conditions are not well documented.   Taken together, diagnosis and treatment 

of pathologies affecting the foot place significant clinical and economic demands to UK 

healthcare providers. Understanding the features of good foot health and 

characteristics that underpin appropriate function is therefore important in a range of 

health-related fields. In order to appreciate the contribution of intrinsic foot muscles to 

foot health it is required to study their behaviour in vivo. At the moment only limited 

information can be extracted from a restricted population of people. This thesis 

therefore lays the foundation from which wider investigation of foot function may be 

conducted and therefore in the future enable the relationship between function and 

health be probed. 
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The anatomy of the foot is complex, with different segments and layers of tissue 

interacting to provide an anatomically confined yet flexible structure that facilitates 

motion (Kelly et al., 2014; Bates et al., 2013; McKeon et al., 2014). In the plantar aspect 

of the foot there are four layers of intrinsic foot muscles arranged in a narrow 

compartment (McKeon et al., 2014), and their anatomical positioning provides 

challenges to quantifying features of anatomy and activation during weight bearing 

tasks.  A few studies have investigated intrinsic foot muscle properties and have shown 

the importance of this group of muscles in supporting the arch and the foot during 

stance and postural tasks. However, these studies have focused on a single or small 

selection of muscles and tend to use invasive intramuscular electromyographic (EMG) 

techniques (Reeser et al, 1983; Kelly et al., 2012; Kelly et al, 2014;Fiolkowski et al 2003). 

Whilst providing useful insight, these approaches cannot be applied to all populations 

(e.g. diabetes patients, young children), where insertion of a needle is undesirable or 

could be contraindicated. Moreover, by recording from single channels, information 

about interactions between or within regions of the intrinsic foot muscles cannot be 

probed, although such information is required for wider aspects of foot function to be 

evaluated in healthy and pathological populations. 

Recent advances in technology have led to the development of multi-channel electrode 

grids that allow the processing of myoelectric signals as topographical maps quantifying 

both spatial and temporal features of signals (Rojas-Martínez et al., 2013; Holtermann 

et al., 2009) across a region.  However, to date, there have been no attempts to 

investigate the features of intrinsic foot muscle activation using these non-invasive 

approaches. In addition, while amplitude based measures of myoelectric signals provide 

insights into the level of engagement of these muscles, these methodologies fail to 

investigate the neuromuscular mechanisms underpinning motor control. Changes in the 
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complexity of motor patterns have recently been related to changes in motor strategies 

and muscle firing patterns (Rathleff et al., 2011). However, fluctuations and short-term 

variations within a biological signal have recently been reconsidered not as noise or 

disturbances, but as a way of assessing important aspects of motor control (Svendsen 

and Madeleine, 2010). One way to quantify these fluctuations is to use non-linear 

analyses such as entropy measures. To date however, there is no evidence that these 

approaches have been used to provide insights into control strategies underpinning 

healthy or pathology affected intrinsic foot muscle activation patterns. 

The overarching aim of the work presented in this thesis was to investigate the potential 

value of non-invasively evaluating intrinsic foot muscle behaviour using multi-channel 

surface electrode arrays The objectives were therefore to: i) investigate the feasibility 

of recording reliable surface EMGs with a grid of electrodes on the plantar aspect of the 

foot and investigate patterns of amplitude and signal structure distribution (Chapter 4); 

ii) investigate the association between the medial arch and intrinsic foot muscles 

activation patterns (Chapter 5) and iii) investigate the neuromuscular drive properties 

of intrinsic foot muscles using non-linear entropy based approaches (Chapter 6).  
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2.  Literature review 
 

 

2.1. The origin of the human foot 
 

The human foot has evolved from one similar to that of African apes, where it assisted 

in both arboreal and terrestrial locomotion, to a structure that reflects a shift to 

locomotor habits dominated by bipedalism (McKeon et al., 2014). The key events 

marking the evolution from African ape-like to human bipedality includes enlargement 

of the calcaneal tuberosity, stabilization of the calcaneocuboid and talo-navicular joints, 

formation of hallux and formation of a medial longitudinal arch (Figure 2.1) (Crompton, 

Vereecke et al. 2008). 

 

 

Figure 2-1 Representation of ape-like foot (a, based on (Harcourt-Smith and Aiello, 2004)) and 
human foot (b, based on (Kelly et al., 2012)). The calcaneus (orange shading) changed shape 
between the ape-like and human foot, together with the formation of the hallux (blue 
shading), both providing more support and stability.  
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Humans are the only living primates characterized by a permanently arched foot (Reeser 

et al., 1983) and have shorter phalanges than primates, which may be the result of 

reduced prehensile use of the toes (Soysa et al., 2012)  

The modern foot is a multi-joint structure and, together with the lower limb, forms the 

ankle joint complex, a fundamental connection for the interaction of the lower limb and 

ground during locomotion (Leardini et al., 2007).  The structure of the human foot has 

been functionally adapted to improve postural stability and weight-bearing capacity for 

upright posture and locomotion (Crompton et al., 2008) and to absorb energy of impact 

and transmit propulsive forces from the rest of the body to the ground (Fiolkowski et 

al., 2003). It adapts to movement, during walking, by changing from a compliant, shock-

absorbing, supinated structure before heel-strike to a rigid lever at toe-off (Crompton 

et al.,2008, McKeon et al., 2014).   The complexity of the foot structure makes it 

challenging to investigate the full functional significance of the associated musculature, 

which is currently still poorly understood.  

To fully understand foot function, we need to understand skeletal muscle structure and 

function and how to best study it. 

 

The following sections will therefore detail aspects of skeletal muscle structure and 

current state-of-the-art approaches for the study of in vivo activation dynamics. Then a 

review in more detail of the anatomy of the human foot, including current literature 

relating to the study of foot properties during locomotor and postural tasks will be 

provided. 
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2.2. Skeletal muscle anatomy   

 

Muscles are defined as the active elements of the musculoskeletal system, whereas 

tendons are the passive elements connecting muscles to the skeleton. Tendons are 

primarily made of collagen fibres, bundled together in a parallel direction along the axis 

of the tendon. This arrangement produces a structure that is stiff and high in tensile 

strength, but lacking in resistance to compression or shear.  On the other hand, muscles 

are able to actively contract, generating forces to move the skeleton and control 

movement.  

Skeletal muscles are composed of a highly organised hierarchical structure, with the 

basic unit being the sarcomere. Each sarcomere is made up by parallel bands of thin 

filaments alternated with thick filaments along the fibre direction. The thick filament 

is a group of myosin proteins with tails (pointing at the centre of the sarcomere) and 

the head (pointing in the opposite direction) (Figure 2.2). The main component of the 

thin filament is a globular protein called actin, organised in chains twisted into a helix 

configuration. The structure is stiffened by the protein tropomyosin, with troponin 

proteins complexes attached along the actin filament. The Z-lines define the borders 

of one sarcomere, whereas the M-line defines the centre (Figure 2.2). In addition, the 

myosin is attached to the Z-line through a protein called titin, which is believed to act 

as a spring and maintain the equilibrium between the two halves of the sarcomere 

during contraction (Herzog et al., 2015). 
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Figure 2-2 A myofibril with multiple sarcomeres. Each sarcomere is composed of actin and 
myosin, but also the Titin, which functions as a molecular spring which is responsible for the 
passive elasticity of muscle. On the bottom of the figure an electron microscope image of a single 
Sarcomere, where the Z-lines look like black bands defining the borders of the structure. 
Extracted from (Germann and Stanfield 2003). Magnification level not available. 

 

Many sarcomeres together form a myofibril and many myofibrils compose a muscle 

fibre (Figure 2.3). Muscle fibre have different properties (in terms of contraction, 

speed, force,..) and these categories can be classified by oxidative/glycolytic enzyme 

levels (fast fatiguing vs. fatigue-resistant); mechanical twitch characteristics (fast vs 

slow twitch) and myosin heavy change composition (Type I slow twitch fibres, IIA fast 

oxidative fibres, IIB fast glycolytic fibres in humans) (Schiaffino and Reggiani, 2011) 

and these different properties enable skeletal muscles to meet the mechanical 

demands of the wide range of movement task completed across everyday life.  

 

Muscle fibres are part of a more composite unit called the Motor Unit (MU), which 

consists of a motor neuron, its axon and all the muscle fibres innervated by the axonal 
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branches (Sherrington, 1925). A single motor unit may occupy a relatively large portion 

of a cross section of a muscle, called the motor unit territory (Figure 2.2), but can also 

be spatially localised (Vieira et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 A motor unit is connected from the spinal cord to muscle fibres and transmits the 
signal generated at the spinal level through the muscle. The motor unit territory is represented 
with the dotted region on the fibres. Figures extracted from (McGinnis, 2013) 

 

The motor neuron is a cell in the Central Nervous System made up of a nucleus in the 

spinal cord and the axon innervating a group of muscle fibres with synaptic 

connections (Figure 2.3.). At the level of the spinal cord an excitatory impulse is driven 

to sensory and motor afferents and then to the muscle fibres. The area where the 

terminal branches reach the muscle fibres is called the Innervation Zone (IZ) (Merletti 

and Parker, 2004). When the electrical impulse from the motor neuron reaches the 

muscle fibres, acetylcholine diffuses across the synaptic cleft and increases the 

permeability of the postsynaptic terminal to Sodium (Na+) (Figure 2.4). When the 

electrical impulse spreads along the fibres, calcium ions (Ca2+) are released from the 
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sarcoplasmic reticulum into the sarcomere. The calcium attaches to troponin protein, 

which causes troponin structure to modify and make available an active binding site 

on the actin filament. This allows the myosin head to attach to the actin filament and 

form the so called Cross-Bridge (Huxley, 1957). This is possible as a consequence of 

the hydrolyzation of ATP bound to the myosin head, which releases the energy 

necessary to move the head and the actin filament toward the centre of the 

sarcomere. During a contraction, the interaction between actin and myosin is cyclic, 

requiring a continuous ATP supply with the amount of Ca2+ released in part 

determining the number of cross-bridges formed (Huxley, 1957). 

 

 

Figure 2-4 A myofibril with multiple sarcomeres. Each sarcomere is composed of actin and 
myosin, but also the Titin, which functions as a molecular spring which is responsible for the 
passive elasticity of muscle. Titin is also related to the maintenance of attached cross-bridges 
beyond the position initially calculated. On the bottom of the figure a microscope image of a 
single Sarcomere, where the Z-lines look like black bands defining the borders of the structure. 
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During voluntary contractions a defined pattern of motor unit recruitment is followed 

as the tension in the muscle increases (Henneman and Olson, 1965). The first motor 

units recruited are the small motor units, with a lower firing rate. These motor units 

have the least number of muscle fibres and a larger percentage of slow-twitch fibres 

(type I). As greater tension is produced, larger motor units with more fast-twitch 

fibres (type II) are recruited. At maximal tension, all the motor units have been 

recruited, and the firing rate is high. This recruitment strategy is called ‘the size 

principle’ (Henneman and Olson, 1965).  In addition, smaller motor units have smaller 

diameter nerve axons, which result in slower action potential conduction velocities 

along them (Merletti and Parker, 2004). The size principle therefore predicts that, 

based on both contractile properties and nerve action potential conduction 

velocities, faster motor units will be recruited after slower motor units have been 

activated and will be the first motor units to be de-recruited. In the study of motor 

unit recruitment and activation patterns a key phenomenon is the voltage-dependent 

behaviour of the membrane permeability to Sodium (Na+), Potassium (K-) and 

Calcium (Ca+) ions. The dynamics of sodium and potassium conductance produces a 

transient membrane voltage, which is referred to as an Action Potential (Merletti and 

Parker, 2004). The action potential changes the permeability of the surrounding ion 

channels, creating a chain reaction of depolarization and repolarization along the 

fibre that propagates the action potential and creates trains of travelling action 

potentials (Pandy, 2000).  These potentials can be recorded using electromyography 

(EMG) techniques, which are described in detail in the next section. 

Motor unit recruitment patterns are still of great interest as some studies have 

suggested that it is not always respected. A review article (Hodson-Tole and Wakeling, 

2009) highlighted that many factors (such as mechanics, sensory feedback, and 
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central control) could potentially affect the way motor units are recruited. During 

natural movements the motor unit recruitment patterns vary (not always holding to the 

size principle) and it is suggested that motor unit recruitment is likely related to the 

mechanical function of the muscles. It is therefore required to understand how 

recruitment is controlled during different movement tasks. For instance, when 

populations of motor units are studied, by analysing myoelectric signals, the presence 

of functional task groups of motor units within the muscle is likely to result in the 

identification of differential activation of motor units, therefore it does not necessarily 

indicate the following of the predicted motor unit recruitment pattern dictated by the 

size principle. Understanding this is therefore fundamental to investigate properties of 

muscle functions in specific body compartment and during different motor tasks. 

 

2.3. Electromyography (EMG) 
 

2.3.1. What is the EMG signal? 
 

The summation of single fibre action potentials from an individual motor unit is called 

the Motor Unit Action Potential (MUAP). For each motor unit, it is possible to observe 

a series of MUAPs, the temporal summation of which is called the Motor Unit Action 

Potential Train (MUAPT). The electromyographic signal, or EMG, is the algebraic 

summation of MUAPT for different active motor units (Figure 2.5). 
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Figure 2-5 Schematic representation of EMG signal generation (based on Stashuk, 1999) . From 
the nucleus of the motorneuron in the spinal cord, electrical impulses are sent through the nerve 
axons (Nerve Impulse Trains). They reach the muscle fibres of the Motor Unit. The response of 
each motor unit can be modelled with a transfer function [hi(t)] which is then convoluted with 
the Nerve Impulse Train to generate the MUAPT. The summation of MUAPT of different Motor 
Unit creates EMG signal. 

 

 

The EMG signal is often referred to as an interference signal, as it is not a periodic signal 

with a defined shape such as the ECG signal. EMG represents the motor unit action 

potentials from the active motor units (Lindstrom and Magnusson 1977) during a 

contraction. By applying a detecting electrode in the proximity of the activated motor 

units, it is possible to record the EMG signal. The signal contains information on the 

timing and amplitude of motor unit activation and its frequency component is 

determined by the shape and conduction velocity of the motor unit action potentials. 

The recording, decoding and extraction of information from an EMG signal is 

fundamental to understanding how the signal reflects mechanisms underpinning muscle 

contraction and the resulting skeletal motion.
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2.3.2. Recording Electromyographic Signals 
 

EMG can be detected via the use of intramuscular or surface electrodes placed at a 

distance from the sources (Merletti and Parker, 2004). The tissues separating the 

sources and the recording electrodes acts as a so-called volume conductor. The volume 

conductor properties largely determine the features of the detected signals, in terms of 

frequency content and of distance beyond which the signal can no longer be detected, 

as it acts as a spatial filter between the source and the detection electrode. 

Intramuscular recordings involve the insertion of a needle/fine wire electrode through 

the skin and into the targeted muscles, often with the help of an ultrasound scanner.  

The effect of tissues between electrodes and muscle fibres is therefore relatively small 

due to the closeness of the recording electrodes to the sources.  Intramuscular 

electromyography is therefore well suited for the detection of changes in motor unit 

size and internal structure, so the objective of using intramuscular techniques is typically 

to study physiology and pathology at the level of individual motor units (Adrian and 

Bronk, 1929).  

Surface recordings involve recording the superficial representation of the action 

potential from a portion of muscle, by a single or multi-channel electrode placed onto 

the skin surface. In this case, the volume conductor constitutes an important low-pass 

filtering effect on the EMG signal, which is therefore attenuated by the tissue in between 

(Basmajian and De Luca, 1985). Surface electrodes are usually better suited for studies 

in which information is required about the gross aspects of behaviour, such as temporal 

pattern of activity or fatigue (Bonato et al., 2001) of the muscle as a whole or across 

muscle groups. Historically, surface EMG was recorded with a one-channel system, 
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which allows the investigation of a limited muscle portion particularly in muscles with 

pennate fascicle architecture (Vieira et al., 2015). With advances in technology surface 

EMGs can now be recorded with multi-channel electrode arrays, comprising up to 64 

channels (Masuda and Sadoyama, 1987).   

While the standard single-channel bipolar recording provides a one-dimensional signal, 

a two-dimensional grid of electrodes performs a sampling of the muscular electrical 

activity over a large surface area. The recorded signal has two spatial and one temporal 

dimension. The characteristics of the multi-channel interference pattern can be 

associated with the level of muscle activation using topographical EMG representations 

(Figure 2.6), i.e. maps of electric potential (Kleine et al., 2007).  

 

Figure 2-6 Example of temporal and spatial distribution of EMG signal amplitude for a 
representative participant and trial (medial/lateral sway). Each coloured dot represents a 
selected time point (or epoch) with a spatial ditribution of signal amplitude. Yellow regions 
represent high amplitude values, whereas blue regions represent low amplitude values. 
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2.3.3.    Analysis of EMG signal 
 

EMG feature extraction is the first step to understand the information provided by the 

signal on muscle function. There are a wide number of analysis methods applicable to 

EMG, but they can be divided in three main categories: time domain, frequency domain 

or time-frequency domain.  Since EMG is a non-stationary signal with both time and 

frequency domain, the use of a methodology providing simultaneous information of 

time and frequency feature is the most suitable. One of these methodologies, which has 

been widely applied to EMG, is the Wavelet Transform. Some studies have indicated 

that different locomotor demand have an effect on the EMG signal at specific times and 

frequencies (Wakeling et al., 2002), therefore being able to simultaneously decipher 

time and frequency feature is essential to provide a full description of EMG information 

(Wakeling et al., 2002). 

2.3.3.1. Wavelet analysis of EMG signal  
 

Standard methodology to process surface EMG signal are based on analysis of amplitude 

parameters (Root Mean Square, Average Rectified values,…) and frequency content, 

usually performed with Fourier Transform. This tool requires the application of a 

window to the EMG signal, where the signal can be considered stationary (Wigner-Ville 

principle). However, by applying a window, information within the EMG signal with 

different time resolution, can potentially be lost. Time resolution is fundamental and has 

to be of the order of the physiological responses of the muscles. Von Tscharner (2000) 

proposed an EMG specific wavelet transform that allows the decomposition of the signal 

into short bursts of oscillations, with an appropriate time resolution with regard force 

production. Each burst of oscillations is defined by a specific frequency distribution 
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representing the underlying process (von Tscharner 2000). Each wavelet is a small wave 

defined in both time and frequency with an integral of zero. For each wavelet a central 

frequency is defined as: 

𝑓𝑐(𝑘) =
(𝑘+𝑐1)𝑐2

𝑐3
                    (2.1) 

Where c1, c2, c3 are scaling factors and k is the number identifying each wavelet. The 

time resolution is defined by c3, whereas c2 defines the degree of overlap between 

wavelets, but the three scaling factors need to be selected based on the time resolution 

required and on the response time of a muscle activation process. For each wavelet 

analysis application, a bank of k wavelet is defined based on the sampling frequency of 

the EMG signal, with centre frequency calculated with Equation (2.1), with these fc 

occurring at the amplitude maximum of the wavelet in the time domain. Wavelets are 

then convoluted with the EMG signal, which is similar to bandpass filtering the EMG 

signal with the same frequency characteristic of each wavelet. It is then possible to 

calculate the intensity spectrum of the EMG signal and an instantaneous frequency. 

To obtain the EMG intensity, the power within the signal at each wavelet domain is 

calculated at each time point from the magnitude. The EMG intensities computed using 

this wavelet analysis represent the power within the EMG signal for any given time and 

frequency band. EMG power spectrum is calculated from the square of the Fourier-

transformed EMG signal (Lindstrom et al., 1970). In contrast, root-mean-square analysis 

of EMG signal computes the amplitude, and not the power, of the EMG signal as a 

function of time. The square of such a root-mean-square value is comparable with half 

the intensity obtained from this wavelet analysis. The total intensity of the signal can 

then be calculated at a given time by summing the intensities over the k number of 
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wavelets selected. Moreover, a mean frequency fm can be calculated as the mean of the 

instantaneous frequency. It is comparable to the mean frequency generally used in EMG 

studies, but with the advantage that it can be calculated at each time point as: 

fm =
∑ fck (k)ij;k

∑ ij;kk
             (2.2) 

where ij;k  is the intensity calculated at each time point j and wavelet domain k.  

Wavelet analysis has been used for investigation of motor unit recruitment patterns 

(Hodson-Tole and Wakeling 2007, Lee et al., 2011, Hodson-Tole et al., 2012) and the 

characteristics (time and level of activation) in different motor unit’s recruitment 

patterns (Lee et al., 2011) as it provides a suitable analysis tool to gain increasing insights 

into the patterns of motor unit recruitment during locomotion. Moreover, being based 

on specific time resolution it can be applied to study muscle activation patterns with 

standardised protocols facilitating more robust comparison of results across different 

data sets. 

2.3.3.2. Topographical mapping of surface EMG 

 

The use of high-density surface EMG allows investigation of the spatial distribution of 

electric potentials over the skin surface during muscle contraction (Farina et al, 2008).  

By placing a two-dimensional electrode array a topographical representation of the 

electrical activity over the skin plane can be made (Farina et al., 2008) and the 

characteristics of this multi-channel pattern can be associated with the level of muscle 

activation (Merletti et al., 2008). The use of maps of electric potentials have enabled 

investigation of spatial information in studies on upper trapezius (Falla and Farina, 

2008), upper and forearm muscles (Rojas-Martínez et al., 2012, Gallina and Botter, 
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2013), erector spinae (Tucker et al., 2009) and intrinsic hand muscles (Yang et al., 2011). 

Investigation of EMG amplitude distribution over the upper trapezius has shown the 

inhomogeneous distributions (Holtermann et al., 2005), that might reflect either the 

motor unit recruitment pattern heterogeneity or the distribution of motor units within 

the muscle. 

One way of characterising the spatial information of the topographical maps is the 

calculation of an EMG amplitude-based centre of gravity (Farina et al., 2008). This 

analysis provides information on how the maximum EMG intensity shifts during muscle 

contraction and, provides potential insights into motor unit recruitment patterns (while 

the centroid shifts, more motor unit are recruited). Farina et al (2008) showed that the 

centroid of the EMG amplitude map moved in the cranial direction during submaximal 

contraction in the upper trapezius and this event seemed to be correlated with 

additional recruitment of new motor units in the cranial portion of the muscle (Falla and 

Farina, 2008). 

In the intrinsic hand muscles, EMG maps showed that in one muscle, Flexor digitorum 

superficialis, the spatial activation depended and varied with each finger’s force 

production and specific task (Yang et al., 2011). Martinez et al (2012) used 2-dimensional 

arrays to investigate the areas where EMG amplitude is maximal in the forearm and 

upper arm and to analyse patterns in the activation maps associating them with four 

movement directions at the elbow joint and with different strengths of the same 

movements. This allowed the extraction of features depending on the spatial 

distribution of motor unit action potentials and on the load-sharing between muscles, 

in order to have a better differentiation between tasks and effort levels. Results showed 

that the use of multi-channel information was able to discern between tasks and effort 
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levels and therefore might potentially be useful in application where identification of 

movement intention is needed. 

 

2.3.3.3.     Non-linear analysis techniques 

 

Linear analysis or scale-based measures provide important information on the 

magnitude of a time series but ignore the temporal structure of it. With these measures 

interpretation of temporal changes due to adjustments of the neuromuscular control 

strategy are difficult to quantify (Baltich et al., 2014). Application of non-linear analysis 

to physiological signals, such as ECG, EMG, is a valuable tool to understand underlying 

mechanisms (hidden information from time series) (Richman and Moorman, 2000). As 

previous studies have indicated, variability is not random like noise, but reveals a degree 

of order that can be attributed to the operation of an adaptive control system (Slifkin 

and Newell, 1999). Variability within a biological data set is, therefore, not defined only 

by standard deviation, but through examination of the temporal pattern of variability in 

the movement data (Yentes et al., 2013; Svendsen and Madeleine, 2010). 

Such non-linear analyses are based on entropy measures that are considered to provide 

a method of quantifying the complexity of a signal produced by a system (Richman and 

Moorman, 2000). The analysis of the variability and the short-term fluctuations within a 

signal can therefore be used to quantify the underlying control process (Harris and 

Wolpert, 1998).  

Entropy measures are considered particularly suitable for biological signals (Rathleff et 

al., 2011), as entropy addresses the randomness and regularity of a system (Pincus, 

1991) and it is a measure of the rate of information creation (Zhang et al., 2016). Entropy 
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quantifies the predictability of the signal investigated with higher values indicating a 

more complex structure and lower predictability of the time series (Richman and 

Moorman, 2000). There are a few entropy-based analyses, which have been applied to 

biological dataset and they are described in the following sections. 

2.3.3.3.1. Shannon Entropy  

Shannon entropy provides an indication of the structure of a signal, where a higher value 

suggests a random signal. Lower values indicate less randomness in the time series and 

a greater regularity within the signal. 

Shannon entropy is defined as: 

∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔𝑎𝑝(𝑥𝑖)
𝑛
𝑖=1    a>1, (Eq 2.1) 

Where xi is the parameter to be examined (e.g. signal amplitude) and p(xi) is the 

probability. The algorithm is applied for each data point (i). Shannon Entropy does not 

check for similarity within adjacent data point but is a global measure of the whole time 

series or specific epochs of it. Modified versions of Shannon Entropy have been applied 

to surface EMG data (Farina et al., 2008). This method for estimation of the entropy of 

a system represented by a time series is not, however, well suited to analysis of the short 

and noisy data sets encountered in cardiovascular and other biological studies (Richman 

and Moorman, 2000). To investigate the temporal fluctuations, a measure providing an 

indication of the variability of the dataset could potentially provide insights into the 

motor control.  

 



 
 

37 
 

2.3.3.3.2. Approximate Entropy and Sample Entropy 

 

Two entropy-based measures, which provide information about the temporal variability 

of a time series, are Sample entropy (SampEn) (Richman and Moorman, 2000) and 

Approximate entropy (ApEn) (Pincus, 1991). ApEn was first defined and is applicable to 

noisy and medium-sized datasets. It determines the conditional probability of similarity 

between a chosen data segment and the next set of segments of the same duration 

(Pincus, 1991). An increase in probability generates a lower value of ApEn, meaning less 

irregularity of the data.  

ApEn is calculated as: 

𝐴𝑝𝐸𝑛(𝑚, 𝑟) =
∑ log (𝐶𝑖

𝑚(𝑟))𝑁−𝑚+1
𝑖=1

𝑁−𝑚+1
 - 

∑ log (𝐶𝑖
𝑚+1(𝑟))𝑁−𝑚+1

𝑖=1

𝑁−𝑚+1
, 

Where C(r) represents the number of data points where the absolute distance with the 

adjacent data point is less than a selected tolerance, r.  

ApEn is defined as the difference of the natural logarithm of the sequence C, which 

counts for the similarity of respectively two sequences, of length m points, and two 

sequences when an additional data point (m+1). If no similarity is found, C will result in 

0 and therefore ApEn will be undefined. For this reason, in order to provide at least one 

match, self-matches are accounted in ApEn, which therefore bias the result towards 

regularity. 

Sample entropy is defined in a similar way, as the negative natural logarithm of the 

conditional probability that two sequences, of length m points, remain similar when an 

additional data point is introduced; however self- matches are not included in 

calculating the probability. This means that each data point is not checked for similarity 
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with itself, which would bias the result towards effected results (e.g. towards regularity) 

(Richman and Moorman, 2000; Donker et al., 2008; Ramdani et al., 2009; Rathleff et al., 

2011, Yentes et al., 2013). Lower values of SampEn indicates more self-similarity in the 

time series (Richman and Moorman, 2000) and a greater regularity of the data set. In 

terms of physiological meaning, lower values of SampEn suggest a more predictable 

time series and potentially a more stable state of the motor control 

SampEn is defined by three parameters N, m and r, which respectively indicate the 

length of the data set (N), the length of the sequence to be checked for similarity (m) 

and the tolerance (r). Given N data points, x(1),…x(N),, the first step is to create vectors 

of m consecutive x values (xm(1),…….,xm(N-m+1). Then the distance between two vectors 

is defined as the absolute maximum difference between their scalar components. For 

each vector, each time this distance is less or equal to the tolerance r it is counted into 

the variable B, defined as: 

𝐵𝑖
𝑚(𝑟) =

1

𝑁−𝑚−1
𝐵𝑖             (2.3) 

𝐵𝑚(𝑟) =
1

𝑁−𝑚
∑ 𝐵𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1                (2.4) 

The dimension of the array is then increased to m+1 and each time the vector is similar 

to another one within the same tolerance, is counted into the variable A, defined as: 

𝐴𝑖
𝑚(𝑟) =

1

𝑁−𝑚−1
𝐴𝑖            (2.5) 

𝐴𝑚(𝑟) =
1

𝑁−𝑚
∑ 𝐴𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1                (2.6) 

Am (r) and Bm (r) are the probabilities that two sequences will match for respectively m+1 

and m points and these matches will be accounted for if they are lower than a tolerance, 

r, which therefore indicates the dependency of A and B to r. 
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Sample Entropy is then defined as:  

SampEn(m,r,N)=−𝑙𝑛
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
          (2.7) 

In comparison to ApEn, SampEn calculates the negative logarithm of a probability 

associated with the time series as a whole. ApEn calculates probabilities in a template-

wise way, which  

The selection of m and r could change the result of the estimate; therefore, it is 

fundamental to select these parameters accurately, based on the data series to be 

investigated. Accuracy and confidence of entropy increase as the number of lengths m 

matches increases and this can be done by selecting short templates (small m) and wide 

tolerance (large r). However, selecting a too small r, will lead to a poor conditional 

estimate and a too large r could lead to a too detailed system and sample entropy 

tending to zero. Also, to avoid significant noise contribution, r should be selected to be 

bigger than the noise level. 

SampEn is therefore able to provide information about the variability over time of a long 

and noisy data series, which Shannon Entropy is not able to, and also it is not affected 

by self-matches, which would influence the final result. 

Moreover, SampEn has recently been applied to EMG signal data to distinguish between 

physiological EMG and spurious noise (Zhang et al., 2016), to distinguish between 

different levels of chronic stroke spasticity (Roerdink et al., 2006) and to CoP in cerebral 

palsy patients (Donker et al., 2008).  Changes in the complexity of motor patterns may 

be related to changes in motor strategies and may thus reveal the effects of adaptations 

and pathologies (Rathleff et al., 2011). 
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SampEn analyses has also been applied to surface EMG signal collected from multi-

channel system of electrodes, to investigate complexity in force and muscle activity in 

diabetic patients (Suda et al., 2017). Diabetic peripheral neuropathy (DPN) generates 

structural and functional neuromuscular alterations, which may influence motor control 

and one of its components, motor variability. Therefore, by investigating the complexity 

of the neuromuscular system of DPN patients, it was possible to evaluate the amount 

and structure of variability of sEMG patterns and force data collected during isometric 

contractions.  Results showed an increase in the amount of force variability (i.e. force 

signal becoming more random) corresponded to a decrease in the structure of force 

variability and EMG structure. Lower structure of force variability in DPN underlined the 

effect of the disease on motor control during isometric contractions and motor 

variability seemed to be affected more in moderate rather than severe subjects, 

suggesting that when the disease is still unstable at a moderate degree, the effects on 

motor control variability are most apparent. However, the averaging of both amplitude 

and SampEn values across a multi-channel grid, might have hindered spatial 

information, which could be informative of differences between DPN participants 

patterns and healthy participants.  

SampEn is therefore a valuable tool to investigate the level of regularity of a time series 

and seems to be able to distinguish between a healthy state versus a pathological one 

(Suda et al, 2017) and between healthy patterns of motor unit firing patterns (Rathleff 

et al., 2011).  
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2.3.3.3.3. Entropy Halflife (EnHL) 

 

However, SampEn’s metric is based on probability, therefore this approach does not 

allow direct comparison between studies or participants.  Therefore, a novel non-linear 

time-based method was recently developed by Zandiyeh and von Tscharner (Zandiyeh 

and von Tscharner, 2013) that allows for the quantification of the SampEn of a time 

series at different time scales providing a time-based measure of the persistence of 

structure within a signal. The output variable, called Entropic half-life (EnHL), indicates 

the time scale over which two points in the signal remain related to one another by 

resampling the signal and identifying the time scale at which transition from SampEn 

values reflecting order to those reflecting randomness occur (Baltich et al., 2014; 

Hodson-Tole and Wakeling, 2017).  

This methodology is based on a reshape scale method, which reorganises the time series 

over multiple scales (number of data points) to determine the time scale over which 

subsequent data points remain affiliated to one another) (Figure 2.7).  

 

Figure 2-7 Representation of the scaling methodology applied to an example array of data. From 
the original series, during the first iteration, comparison is made between data points separated 
by one data points. On the second iter, similarity is chechked between data points seprataed by 
two data points (Figure based on Federolf et al, 2015).  
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The process started at the first element of the signal forming a first block of data and 

then repeating the procedure starting at the second, third, and following points until all 

points of the signal were organised in blocks (Figure 2.7). For each time interval, SampEn 

of the reshuffled block of data is calculated. The reshaped signal is then reshuffled to 

prevent the reordering of the elements, occurring at large scales (Enders et al., 2015). 

This reshaping increases the duration of the sequences that the entropy algorithm uses 

to evaluate whether the system is in a similar state, by unchanging its statistics (standard 

deviation) (Baltich et al., 2014; Enders et al., 2015; Federolf et al., 2015).  Therefore, 

increasing the reshape scale will result in an increasingly larger time interval (τ) between 

adjacent points in the reshaped time series.  

SampEn values are then plotted against the corresponding time interval and normalised 

to its maximum. This normalisation allows to identify the time point when SampEn 

reaches its 50%. Finally, the EnHL is defined as the scale at which the normalized SampEn 

equals 0.5 (Federolf et al., 2015, Enders et al., 2015, Baltich et al., 2014), or reaches the 

50% of maximum entropy (Zandiyeh and von Tscharner, 2013) and transitions from 

being regular to more irregular. 

To verify the presence of physiological significance in the reshuffled signal, the original 

signal is Fourier transformed and the phase randomized, so that a surrogate signal is 

obtained when an inverse Fourier transform is applied. The surrogate signal maintains 

the same power spectrum and autocorrelation as the original signal, but the structure 

encoded in the phase has disappeared. The EnHL from a surrogate signal should be 
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lower than EnHL from physiological signals, as the structure in the phase has been 

completely removed and therefore it should transition to random at shorter EnHL. 

This novel methodology is still at an early stage of application to the investigation of 

neuromuscular system behaviour. It has been applied to CoP trajectories recorded 

during different postural balance tasks and to surface EMG during cycling (in humans) 

(Enders et al., 2015) and treadmill locomotion (in rats) (Hodson-Tole and Wakeling, 

2017). Quantifying EnHL in myoelectric signals, recorded across multiple muscles during 

cycling exercise in humans, has revealed increased persistence in signal structure in 

response to increased cycling load (10-12 ms for 150 W cycling load, 15-22 ms for 300 

W cycling load) (Enders et al., 2015). These results were suggested to indicate more 

structured and orderly motor unit firing patterns occurred at higher effort levels (Enders 

et al., 2015). As far as the recent literature goes, no studies investigated the EnHL of 

intrinsic foot muscles during postural tasks nor to EMGs recorded using multi-channel 

electrode arrays. Such work would enable a baseline of EnHL values to be established 

for the intrinsic foot muscles and would also provide information about spatial 

distribution of neuromuscular drive patterns across the plantar region of the foot. The 

following section therefore reviews current knowledge pertaining to foot anatomy and 

foot muscle function. 

 

2.4. Human foot anatomy and function 
 

2.4.1. Human foot anatomy (skeletal) 
 

The foot is composed of 26 individual bones and, with the long bones of the lower limb, 

contains 33 joints. It can be described in three sections: i) rearfoot; ii) mid-foot and iii) 



 
 

44 
 

forefoot. The rearfoot forms the heel and the ankle, with the calcaneus being the largest 

bone in the foot (Figure 2.8).  

 

Figure 2-8 Representation of foot bones. Extracted from (Soysa et al., 2012) 

In the rearfoot section of the foot sits the subtalar joint, which is formed superiorly from 

the talus and inferiorly by the calcaneus and navicular. The talus is the second largest 

bone in the foot, it supports the tibia and sits upon the calcaneus. The subtalar joint 

motions are linked to the ankle joint motions and to the mid-tarsal joint motions 

(Rockar, 1995). The midfoot contains a pyramid shaped collection of bones, constituting 

the arch of the foot, which includes the cuneiform bones, the cuboids bones and the 

navicular bones (Figure 2.8). The mid-tarsal joint rests in the midfoot section of the foot 

and consists of the talo-navicular and the calcaneocuboid joints (Blackwood et al., 2005). 

Finally, the forefoot includes the phalanges and the metatarsals, but also the 

metatarsophalangeal joint for each toe (Figure 2.8).  

The complexity of the structures in the foot has driven multiple researchers to identify 

a methodology to describe motion and interplay between foot sections. By the use of 

multi-segment models (Simon et al., 2006) it is possible to separate the foot into 
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sections, or foot segment, and explore motion of each segment and interplay between 

them.  Forces applied to the foot structure can be quantified using ground reaction force 

plate technology. The motion of each segment can be recorded with the use of skin 

mounted reflective markers, whose movement in space is recorded by a system of 

cameras, with 3D kinematics analysed from the traces of the marker in space (Arndt et 

al., 2007; Nester et al., 2014; Lundgren et al., 2008). The majority of studies on foot 

biomechanics focus on the investigation of inter-segment angles and motion during 

different types of locomotion or postural tasks (Hunt et al., 2001; Jenkyn and Nicol, 

2007; Bruening et al., 2012, Arnold et al., 2013). These studies provide useful insight into 

foot biomechanics, but do not take into consideration the possible role of the intrinsic 

foot muscles. 

2.4.2.   Musculature of the human foot 
 

The foot muscles can be divided into two categories: intrinsic vs extrinsic. The intrinsic 

foot muscles originate and insert entirely within the foot complex, whereas the extrinsic 

muscles originate away from the foot in the lower limb with the two compartments 

linked through long tendons, which extend and inserts into the foot. 

2.4.2.1. Intrinsic foot muscles 

 

The intrinsic muscles of the foot consist of one muscle on the dorsal surface and four 

layers of muscles on the plantar surface (Figure 2-9). The dorsal muscles are the Extensor 

digitorum brevis and the Extensor hallucis brevis. Early studies have indicated that 

contraction of these muscles varied significantly between participants during walking 

trials (Soysa et al., 2012), therefore it was not possible to investigate their function, and 

very little is still known about them. On the other hand, the plantar intrinsic foot muscles 
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represent the majority of the muscle tissue in the foot, and due to their contribution to 

walking, standing and running, they have been of great interest to research and clinical 

investigations.  

 

 

Figure 2-9 Representation of the first three layers of the intrinsic foot muscles. Panel A) 

shows the most superficial muscles, Panel B) shows the second layer and Panel C) the 

third and deep layer. The image has been amended from OpenStax (2016) down loaded 

from: 

https://commons.wikimedia.org/wiki/File:1124_Intrinsic_Muscles_of_the_Foot.jpg. 

 

The following table summarises the anatomical and morphological properties of each 

plantar intrinsic foot muscles, from a cadaveric study on eleven dissected fresh-frozen 

cadaveric feet (eight males and three females) with an age range between 50 and 88 

years old. All participants reported no gross abnormalities (such as severe deformities, 

injury), which was visually inspected prior to dissection. 

 

https://commons.wikimedia.org/wiki/File:1124_Intrinsic_Muscles_of_the_Foot.jpg
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Table 2-2-1 Summary of origin, insertion and proposed functions of the intrinsic foot muscle. 
Morphological data extracted from Kura et al (1997), where ML indicates Muscle length and 
PCSA indicates Physiological cross-sectional area 

Muscle name Origin Insertion Action Morphological 
data  

First layer (superficial) 

Abductor 
digiti minimi 

lateral aspect of the 
proximal phalanx of the 
5th toe 

medial and lateral 
calcaneus  

Abduction of 5th toe  ML: 112.8±19.1 mm 
PCSA: 3.79±1.83 cm2 
 

Abductor hallucis  from the medial 
tubercle of calcaneus 
and the border of 
plantar aponeurosis 

medial aspect of the 
base of the proximal 
phalanx of the hallux 

Hallux abduction, 
assists in flexion of 
the hallux at the MTP 
joint. 

ML: 115.8±4.9 mm 
PCSA: 6.68±2.07 cm2 

Flexor digitorum 
brevis 

Calcaneus 
 

deep surface of the 
plantar aponeurosis  

Flexion of lateral four 
toes  

ML: 98.2±14.1 mm 
PCSA: 1.5±0.6 cm2 

Second Layer 
Quadratus 
plantae (medial, 
M and lateral, L, 
heads) 

medial and lateral 
processes of the 
calcaneus tubercles 
 

lateral border of the 
flexor digitorum 
longus tendon 
 

assists flexor 
digitorum longus to 
flex the lateral toes 

ML, L head: 55.3±3.9 
mm 
ML, M head: 
81.3±20.1 mm 
PCSA: 1.00 ± 0.41 
cm2(L head), 
1.96 ± 0.94 cm2(M 
head) 

Lumbricals tendinous slips of the 
flexor digitorum longus  
 

Proximal phalanges 
and extensor 
tendons (four lateral 
toes) 

MTP joint flexion, 
interphalangeal 
joints extension 
(relevant toe) 

ML: 44.3±13.1 mm 
PCSA: 0.26±0.17 cm2 

Third Layer 
Adductor hallucis 
(transverse head, 
T, and oblique 
head, O) 
 

bases of metatarsals II-
IV (O head), 
ligamentous coverings 
of the plantar aspects 
of the 3rd-5th MTP joints 
and from the deep 
transverse metatarsal 
ligaments (T head)  

Lateral aspect of the 
base of the proximal 
phalanx of the hallux 
 

Foot adduction, 
assists in flexing the 
hallux, maintaining 
the transverse arch 
of the foot 
 

ML: 24.8±4.2 mm (T 
head), 67.4±4.6 mm 
(O head) 
PCSA: 0.62 ± 0.26 cm2 
(T head), 4.94 ± 1.36 
cm2  
(O head) 

Flexor digiti 
minimi brevis 
 

plantar surface of the 
base metatarsal V and 
to the sheath of the 
adjacent fibularis 
longus tendon 

base of the proximal 
phalanx of the 5th 
toe 
 

the flexion of the 5th 
toe  
 

ML: 51.0±5.3 mm 
PCSA 2.00±1.02 cm2 
 

Flexor hallucis 
brevis 
(lateral head, L, 
and medial head, 
M) 

plantar surface of the 
cuboid and the 
adjacent lateral 
cuneiform (L head), 
plantar surface of the 
medial and 
intermediate 
cuneiform s(M head). 

sides of the base of 
the proximal phalanx 
of the hallux. 
 

Flexion of the first 
MTP joint 
 

ML: 65.3±7.1 mm (L 
head), 76.0±19.8 mm 
(M head) 
PCSA: 2.12 ± 0.84 cm2 
(L head), 1.80 ± 0.75 
cm2 (M head) 

Fourth layer 

Plantar interossei 
(3) 
 

medial aspect of 
metatarsals III-V 
 

Medial surface of the 
base of the proximal 
phalanx of the 
metatarsals  

Toe adduction  
 

ML: 50.5±6.8 mm 
PCSA 1.34±0.56 cm2 
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The intrinsic foot muscles flex and abduct/adduct the metatarsophalangeal joints and in 

the “foot core paradigm” (Soysa et al, 2012) they have been identified as the local 

stabilizers of the entire body during locomotion and postural balance maintenance. The 

“foot core paradigm” poses attention to the foot structure as the local stabiliser during 

motion, in comparison to more obvious and bigger compartments (e.g. lower limbs, 

trunk) considered as global stabilisers, and highlighting the foot role and importance 

during postural tasks or locomotion. The most commonly investigated muscles are those 

of the first layer (Abductor hallucis, flexor digitorum brevis, abductor digiti minimi) as 

they are the most superficial ones. From a cadaveric study, the abductor hallucis 

appeared to be the muscle with the largest cross-sectional area (Kura et al., 1997) and 

therefore able to produce the majority of force in abduction and flexion of the great toe. 

Moreover, this muscle seems to be the most important in medial arch support (Reeser 

et al., 1983) due its larger cross-sectional area. EMG activity in Abductor Hallucis was 

correlated with better balance performance, defined as smaller centre of pressure 

sways (Zhang et al, 2017).  Soysa et al (2012) highlighted how investigation of these 

muscles is challenging, due to their anatomical closeness, and while cadaveric study can 

provide some useful information, the interplay between these muscles during live 

movement is required to indicate their relevance in standing and postural tasks. 

 

2.4.2.2. Extrinsic foot muscles 

 

Extrinsic foot muscles are part of the new “foot core paradigm”, where they have been 

identified as the global movers contrasting to the intrinsic foot muscles’ role as local 

stabilisers. Summary of anatomical features and some morphological properties is 

showed in the following table. 
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Table 2-2-2. Summary of origin, insertion and proposed actions of the extrinsic foot muscle.  

Muscle Name Proximal origin Distal attachment Action 

Anterior group 
Extensor digitorum 
longus 

lateral condyle of the tibia and 
upper section of the medial 
surface of the fibula 

tendon splitting into four 
parts, inserting into the 2nd 
and 3rd phalanges of the 
toes, except the hallux 

Extension of 
phalangeal of 
toes 

Peroneus tertius distal part of the anterior 
surface of the fibula 

dorsal surface of the base of 
the first metatarsal bone 

Foot Eversion 

Extensor hallucis 
longus 
 

middle two-fourths of the fibula 
 

dorsal aspect of the base of 
the distal phalanx of the 
hallux 

Extension of 
phalanges of 
first ray 

Tibialis anterior 
 

lateral condyle of the lateral 
surface of the tibia 
 

medial and plantar surface of 
the 1st cuneiform and to the 
base of the 1st metatarsal 
bone 

Dorsiflexion 
Foot inversion 

Lateral Group 
Peroneus brevis 
 

lower region of the lateral 
surface of the fibula 

Styloid process of the 5th 
metatarsal 

Foot eversion 

Peroneus longus 
 

head and upper section of the 
lateral surface of the fibula 

lateral aspect of the base of 
the 1st metatarsal bone 

Foot eversion 

Posterior Group 
Gastrocnemius 
muscle (GM) 
(superficial) 
 

posterior aspects of the femoral 
condyles (medial aspect for 
medial GM and lateral aspect for 
lateral GM) 

distal bony attachments, the 
Achilles’ tendon (AT), 
inserting into the mid-
portion of the posterior 
surface of the calcaneus 

Plantar flexion 

Soleus (superficial) 
 

posterior surface of the fibular 
head, proximal part of the 
posterior surface of the fibula, 
and the middle third of the 
medial border of the tibia 

distal bony attachments, the 
Achilles’ tendon (AT), 
inserting into the mid-
portion of the posterior 
surface of the calcaneus 

Plantar flexion 

Plantaris muscle 
(superficial) 

lateral part of the supracondylar 
line of the femur 

posterior part of the 
calcaneus 

Plantar flexion 

Flexor hallucis 
longus (deep) 

lower part of the posterior 
surface of the body of the fibula 

into the base of the terminal 
phalanx of the hallux 

Flexion of first 
ray 

Flexor digitorum 
longus (deep) 
 

posterior side of the tibia from 
under the popliteal line 
 

main tendon splits into four 
smaller tendons and each 
inserts into the bases of the 
distal phalanges of the 2nd-
5th toes 

Flexion of the 
phalanges of the 
toes 

Tibialis posterior 
(deep) 
 

posterior surface of the tibia and 
a medial segment on the upper 
portion of the posterior surface 
of the fibula 

into the tuberosity of the 
navicular 
 

Plantar flexion 
and inversion 

 

 

 

These extrinsic muscles contribute to foot and ankle motion, by dorsi/planti flexing foot 

and toes or inverting/everting the foot. In contrast to the intrinsic foot muscles, the 
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extrinsic muscles have been investigated to a great extent in the literature. Recent 

studies have investigated medial and lateral gastrocnemius in humans (Bojsen-Moller, 

et al., 2004) and cats (Maas et al., 2010), showing how both heads of the calf muscles 

independently act on the ranges of ankle and knee angles during standing. In a more 

recent study (Vieira et al., 2010) the activities of the human MG and LG muscles were 

independently modulated for the control of upright stance. Moreover, in another study 

(Vieira et al., 2011) the recruitment of MG units occurred intermittently throughout 

standing (modal interval of 500 ms), with an intrinsic temporal triggering (two 

recruitments per second) controlling the motor unit recruitment timing in the MG 

muscle in standing.  

The extrinsic foot muscles have been shown to play a fundamental role in standing 

(Vieira et al., 2010; Vieira et al., 2011) and single-leg stance (Muehlbauer et al., 2014). 

However, whilst there is a large array of literature related to extrinsic foot muscles it is 

still not clear what the level of coordination with the intrinsic foot muscles is, as the 

combined behaviour of these two compartments has been investigated in one study 

only (Zelik et al., 2015). In this study, surface EMG was recorded from one intrinsic foot 

muscles and four extrinsic foot muscles and EMG envelopes were used to evaluate the 

timing of peak muscle activity to assess whether the coordination between intrinsic and 

extrinsic foot muscles was either sequential or synchronous. Results seem to suggest 

that during the stance-to-swing transition a sequential muscle activity occurred with 

activation of the ankle plantarflexors, followed by the metatarsophalangeal (MTP) 

flexors (Flexor digitorum brevis, Flexor digitorum longus), MTP extensors (Extensor 

hallucis brevis, Extensor digitorum brevis, Extensor hallucis longus), and then ankle 

dorsiflexors. Their study showed how a relationship between these two compartments 



 
 

51 
 

exists and is potentially fundamental to locomotion. However, considering the 

importance of intrinsic foot muscles in balance and the role of extrinsic foot muscles as 

ankle stabilisers, it is not clear what is the relationship between these two 

compartments during postural tasks and therefore more investigation is needed. 

Recently, intrinsic foot musculature has been shown to fulfil an active role in the 

adjustment of the longitudinal arch, actively stiffening it to provide a stable structure 

during heel-strike and push-off (Bates et al., 2013); while facilitating more compliant 

properties during mid-stance, allowing it to attenuate loading. In addition, an increase 

in vertical load causes the longitudinal arch height and length to deform significantly, 

resulting in stretching of musculature and in an increase in muscle activity (Kelly et al., 

2014). However, this study had participants in a seated position with loading applied to 

the knee to simulate what happens during standing while removing the natural sway. 

Knowledge is therefore still missing as to what the activation patterns of intrinsic foot 

muscles are in scenarios including natural sways such as tasks of challenging balance. 

Such knowledge could help understand features of muscles activation in the context of 

different biomechanical demands and inform understanding of differences in foot 

functioning in healthy and pathological conditions.  
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2.5. Previous research on electromyographic activity of human intrinsic foot 

muscles 
 

One of the first EMG studies on foot function (Mann and Inman, 1964) on 12 participants 

showed that the Abductor digiti minimi, Abductor hallucis, Flexor digitorum brevis, 

Dorsal interossei and lumbrical muscles were all active during the stance phase of gait 

and continued until toe off. However, they indicate that the bony arches of the foot have 

been shown to be structurally self-supporting requiring minimal muscular support 

during postural activities, with the foot’s ligaments providing passive support to 

maintain the integrity of the foot during quiet standing. 

Further early electromyographic studies (Basmajian and Stecko, 1963) also argued that 

contribution of intrinsic foot muscles is not as fundamental as muscles in the lower limb 

and that bones and ligaments alone are able alone to maintain the arch. Moreover, the 

plantar aponeurosis was widely accepted to be the primary structure responsible for 

arch support during rest. One study analysed muscle activation from Gastrocnemius, 

Tibialis anterior, Peroneus longus, Flexor digitorum brevis, Abductor hallucis and 

Abductor digiti minimi in a static standing position, concluding that low levels of activity 

was exerted by these muscles. Even though they noted that intrinsic foot muscles 

become very active while rising onto the toes, they concluded that this group of muscles 

does not play an important role in normal static support of the arches in the foot. During 

a second early study (Basmajian and Stecko, 1963), intramuscular EMG were collected 

while participants were seated, and an increasing loading was applied to the knee. They 

concluded that muscle activation was only noticeable when the loading reached double 

the participant’s body weight, and, therefore that no active role was performed by the 

intrinsic foot muscles in normal arch support and the primary source of support are 
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bones and ligaments. These studies were the first to investigate the activation of 

intrinsic foot muscles during postural tasks, however the investigation was limited to a 

small selection of intrinsic foot muscles (Abductor hallucis and flexor digitorum brevis), 

using an invasive technique. The condition tested were also very limited (standing and 

loaded seating) and considering when these studies were performed, advancement in 

technology and analysis techniques could provide different results.  

 

A later EMG study conducted by Reeser et al (1983), recorded fine wire EMG from two 

of the most superficial muscles (Abductor hallucis and Abductor digiti minimi) and one 

muscle of the second layer (Quadratus plantae) during a series of free exercises, that 

combined movement of the toes, the foot and the ankle. These movements included 

flexion and extension of the toes, inversion and eversion of the foot and dorsiflexion and 

plantarflexion of the ankle. They suggested that, contrary to what was previously stated, 

intrinsic foot muscles do play a fundamental role in supporting the foot structure on the 

foot in both posture and locomotion. This study however, applied this technique to only 

four participants, and an invasive approach was used in this study as well, therefore 

further investigation was required.  

Later, Fiolkowski et al (2003) investigated the role of intrinsic foot muscles in supporting 

the medial longitudinal arch, with one electrode positioned in the middle portion of 

Abductor hallucis and each participant (n=10) was asked to perform a maximum 

voluntary contraction (MVC) for 2 seconds by plantar flexing their hallux. In the second 

part of the study, anaesthesia was injected into the plantar nerve, ablating the use of 

the intrinsic foot muscles. Results show that intrinsic musculature in the plantar aspect 
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of the foot has a role in supporting the medial longitudinal arch of the fully loaded foot 

in quiet stance. When anaesthesia was injected into the plantar nerve, authors observe 

an increase in the navicular drop, suggesting that the plantar musculature does support 

the arch and when this support is missing, the arch structure is modified.  

A recent EMG study revealed a small amount of activity in Abductor hallucis, Flexor 

digitorum brevis and the Quadratus plantae muscle during relaxed standing with a 

significant increase in activation with increased postural demands (Kelly et al., 2012). 

The presence of activation in this group of muscles during quiet standing, suggests that 

they do provide postural support for the feet, supporting the findings of Fiolkowski et al 

(2003). In addition, to the static stance data presented by Fiolkowski et al (2003) and 

Kelly et al (2012) showed a moderate (r2=0.5) to strong correlation (r2>0.6) between 

these muscles activation and the mediolateral postural sway in single leg-stance. The 

synchronisation between the centre of pressure and muscle activity showed how the 

selected muscles reacted to sway, suggesting a contribution of these muscles in balance 

control.  

Two other recent studies have focussed on the same three muscles to understand the 

function of the intrinsic foot muscles during increasing loading (Kelly et al., 2014). To 

understand the effect of loading on muscle activity, participants have been asked to 

remain still, while three levels of loading were applied to one leg. Loads ranged from 0% 

of body mass to 150% body mass with 25% increments. Results showed how the intrinsic 

foot muscles have an active role in maintaining the medial arch under these loadings. 

The increased vertical loading caused arch length and height deformations, which 

resulted in stretching of the arch musculature and increased electrical activity. It appears 
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that this group of muscles is able to stiffen the longitudinal arch under load, by 

stretching in a similar manner as the plantar aponeurosis.  

While these intramuscular studies provided fundamental insights on intrinsic foot 

function properties and have contributed to understand the role of this group of muscles 

during quiet standing and postural sways, they have achieved these results by recording 

EMGs using an invasive methodology. If there is a need to study different patient groups 

as well as children, then current methodology techniques are limited. For example, 

balance impairment is a problem in older populations and, in many cases, older adults 

are on medications contra-indicated for intramuscular EMG. Moreover, understanding 

patterns across the intrinsic foot muscles could help in designing orthotics, which are 

commonly used by children and adults, but also in exploring wider aspect of foot 

muscles function, to enable evaluation across the widest range of people possible.  
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2.6. PhD thesis aims and objectives  
 

The overarching aim of the work presented in this thesis was to investigate the potential 

value of non-invasively evaluating intrinsic foot muscle behaviour using multi-channel 

surface electrode arrays. This is achieved by investigating the feasibility of recording 

surface EMG from the plantar region of the foot during postural motor tasks (Chapter 

4), as this approach has never been applied to intrinsic foot muscles. Considering the 

anatomical challenge of recording from this region, the effect of foot loading on the 

multi-channel system of electrodes needed to be investigated and the physiological 

features needed to be analysed. The result from this work revealed that the EMG signals 

from the plantar foot region presented amplitude and frequency features in the 

physiological ranges presented in the literature (Basmajian and De Luca, 1985), 

therefore patterns of intrinsic foot muscles activation could be investigated by analysing 

i) spatial parameters related to changes in the amplitude and signal complexity 

(SampEn) distribution during different postural motor tasks (Chapter 4), ii) the 

association between the mechanics of medial arch motion and the electrical response 

of the intrinsic foot muscles (Chapter 5), and finally iii) the structural properties of the 

EMG signals from intrinsic foot muscles with a novel non-linear analysis technique, to 

investigate how the signal structure change with postural demand and what this can 

reveal about the controller perceived challenge of managing postural tasks (Chapter 6). 
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3.  General methodology 
 

In the following chapter a description of the experimental setup, data acquisition 

protocol and data analysis common to the set of three experimental chapters (Chapters 

4 – 6) and to the preliminary data presented in the Discussion Section (Chapter 7) is 

provided. 

3.1. Participants 
 

Thirty healthy participants (twenty-four males and six females, age: 44 ± 14 years, 

weight: 73 ± 15 kg, height: 1.7 ± 0.1 m) voluntarily took part in the study having provided 

informed, written consent to do so. All procedures were approved by the local ethics 

committee in the Faculty of Science and Engineering in Manchester Metropolitan 

University. Exclusion criteria for participants included foot pain or lower limb pain during 

the last six months.   

For each experimental chapter, the number of participants differs, based on the number 

of trials which needed to be discarded, due to either different types of noise affecting 

the data or technical issues. 
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Table 3-1 Morphological data of the complete dataset (N=30). Participants included in each 
experimental study is indicated with an “ X”. 

Participants 
code 

Age 
(years) 

Weight 
(kg) 

Height 
(cm) 

Foot 
size 
(UK) 

Chapter 
4 (N=25) 

Chapter 
5 (N=21) 

Chapter 
6 (N=20) 

Chapter 
7 (N=17) 

S1 26 65 180 8.5 - - - - 

S2 31 93 187 11 - - - - 

S3 33 81 185 9 X X X X 

S4 29 72 182 9 X X X X 

S5 34 72 169 6.5 X X X X 

S6 36 68 162 4 X X X X 

S7 48 70 170 7.5 X - - - 

S8 62 109 172 6.5 X X X X 

S9 33 62 164 8.5 X  -  -  - 

S10 52 106 183 10 X X X X 

S11 31 86 194 10.5 X X X  - 

S12 48 65 177 6.5  -  -  -  - 

S13 27 96 182 10 X X X X 

S14 23 50 157 5.5 X X X X 

S15 52 70 171 6.5 X X X X 

S16 59 73 161 6.5 X  -  -  - 

S17 28 90 179 10.5 X X X X 

S18 33 71 177 8.5 X X X  - 

S19 57 67 172 9  -  -  - X 

S20 63 65 160 8 X X X  - 

S21 33 73 180 10.5 X X  - X 

S22 55 75 175 9  -  -  -  - 

S23 56 66 178 11 X X X X 

S24 73 60 155 5.5 X  -  -  - 

S25 32 65 167 8 X X X  - 

S26 61 48 159 5.5 X X X X 

S27 30 88 180 10.5 X X X  - 

S28 63 70 180 10 X X X X 

S29 21 64 170 8 X X X X 

S30 45 70 168 9 X X X X 

 

A post-hoc analysis was carried out (α=0.05; effect size=0.5), which revealed that a 

sample of 27 participants would be enough to obtain a statistical power greater than 

80%. 

 



 
 

59 
 

3.2. Experimental Setup 
 

Monopolar surface EMGs were collected (sampling frequency 2048 Hz) from the 

intrinsic foot muscles with a high-density sEMG grid of 64 channels (ELSCH model, OT 

Bioelettronica, Turin, Italy), consisting of 13 rows and five columns, with one missing 

electrode (2 mm diameter, 8 mm inter-electrode distance in both directions). Prior to 

attaching the grid of electrodes, the skin of the plantar region of the right foot was lightly 

abraded with abrasive paste and cleaned to remove any debris. To determine the 

location of the electrode grid, the adipose pads at the heel and metatarsals were 

palpated and the grid was positioned between these regions with the columns along the 

longitudinal axis of the foot (Figure 3 -1).  A conductive cream (Spesmedica, Italy) was 

inserted into each cavity of the grid to assure proper electrode skin interface. The 

reference electrode was positioned around the right ankle.    

 

Figure 3 -1 Position of the 64-channel electrode grid on the plantar region of the foot. Panel a) 
shows an MR image from one participant and the representation of the sEMG grid. The MR 
image shows where the sEMG was positioned. Panel b) shows the whole grid on the sole of the 
foot, with one missing electrode at the top left corner. The grid is positioned between the 
adipose tissue of the metatarsal heads and the heel pad. The majority of the four layers of foot 
muscles is between these two regions. Panel c) a representative map of amplitude distribution 
across the plantar region of the foot. 
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Surface EMGs were also recorded from six extrinsic foot muscles in the lower limb, 

which included: i) medial and lateral gastrocnemius; ii) medial and lateral portions of 

soleus; iii) tibialis anterior; and iv) peroneus longus. Six wireless electrodes (Delsys Inc, 

Trigno, Boston, MA, USA) were positioned on lightly abraded and cleaned skin over each 

muscle belly. The muscle belly was identified by asking the participant to produce a low-

level contraction allowing palpation of the muscle. The multi-channel system of 

electrodes was applied on one foot only according to the limitation imposed by the 

cables connected to the EMG amplifier. By recording from two feet would have involved 

the inclusion of other four cables. The length of these cables would not have allowed to 

maintain the amplifier outside the motion capture recording volume, which therefore 

could have caused hindering of markers. For these reasons, the EMG signals were 

recorded from one foot only. 

 

To record body movement, three-dimensional motion data were recorded (sampling 

frequency 1000 Hz) using a 9-camera motion-capture system (Vicon Motion Systems, 

Oxford, UK) positioned around a 46 × 51 cm force plate (Advanced Mechanical 

Technology, Inc., AMTI, Watertown, Massachusetts, USA) which was covered with a 

50mm thick Styrofoam layer to reduce electrical noise from the ground. Both feet were 

positioned on a single force plate, which was a result of cable length to the EMG 

amplifier, which reduces the distance to it. By moving the amplifier in the recording 

volume, it would have increased the likelihood of hindering markers on the shank or 

foot. 
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Figure 3-2. Representation of the complete marker set. The foot marker set is showed in the 
pictures on the right as well. Black rectangle represent the wireless sEMG sensors, the green 
layer represente the grid of 64 electrodes. Cables were fixed above the knee with elastic 
bandages. 

 

With the use of a combined marker set, 54 reflective markers were positioned on 

anatomical landmarks to track whole body movement.  The Plug-in Gait Marker set was 

utilised for anatomical landmarks on the shoulder to the epicondyle of the knee. From 

the tibial tuberosity to the foot a modified Heidelberg foot marker set (Simon et al., 

2006) was applied (Figure 3-2), with an additional marker on the shank to reduce 

problems associated with marker occlusion. 
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3.3. Experimental Protocol 
 

The experimental protocol was designed to include a range of movements from quasi-

static to motion, which enabled the investigation of foot behaviour during different 

motor demands.  Each participant was asked to stand at a comfortable foot width in the 

test area. The position of the right foot was standardised by the length of the cable 

connected to the EMG amplifier, whereas the left foot was positioned at a comfortable 

distance, trying to maintain a central position on the force plate. While participants were 

told to maintain their comfortable position, an indication of a standard foot width was 

provided to them. This was done to avoid including further constraints to participants’ 

movement, which is already caused by the cables connected to the EMG amplifier and 

the laboratory environment. Moreover, it was possible to identify whether participants 

were drifting from their selected position, by observing the ground reaction force and 

they were then instructed to re-adjust their position.  

 Participants were then instructed to perform one of six motor tasks, including: i) bipedal 

standing (self-selected comfortable stance width); ii) deliberate anterior/posterior sways; 

iii) two-foot tiptoe standing; iv) single-leg standing; v) deliberate medial/lateral sways and 

vi) deliberate leaning toward three selected marks on the ground. Each task was 

presented three times, with the order of tasks randomised between participants.  Each 

trial lasted thirty seconds, while participants were either maintaining a position or, in the 

case of sway tasks (anterior/posterior, medial/lateral and leaning), participants were 

instructed to sway following a metronome beating at 2 Hz. Different frequencies (speeds) 

were tested before selecting a 2 Hz frequency and, it was concluded that higher 
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frequencies would have made the performance of the task too challenging (e.g. too fast), 

whereas lower frequencies would have allowed more space for the interpretation of the 

movement, which could potentially alter the motor control response. 

The selected frequency allows participants to perform the movement with precision.  

 Synchronisation between force plate, motion capture data and EMG signals was 

achieved with the use of an external trigger. 

 

3.4. Data analysis  

3.4.1. Kinematics and kinetics analysis 
 

Kinematics and kinetics measures from motion capture data were used to calculate the 

Centre of pressure (CoP) and segment angles (hip joint angle, knee joint angle, ankle 

joint angle, medial arch angle). The CoP was calculated with Visual 3D (C-motion. Inc, 

Germantown, MD) and a low-pass filter was applied (Butterworth, 4th order, 6 Hz cut-

off). For the purpose of Chapter 4, events corresponding to anterior and posterior sways 

were identified from the CoP path. The data points corresponding to these events were 

manually selected from the CoP trace, following manual inspection of signals. 

Respectively peaks and valleys of the CoP were manually selected, by visualising the 

transition of each participant during the task (e.g from anterior to posterior sway) (Figure 

3-3).  
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Figure 3-3 Example from one representative CoP anterior/posterior trajectory showing the 
manual selection of epochs in the time series. The selction of “Start anterior sway” (red circle), 
“End anterior sway/Start posterior sway” (green circle) and “End posterior sway” (black) was 
repeated until the end of the trial for each wave.  

It was not possible to automate this procedure, because even though they were 

instructed to follow a metronome, slight differences still occurred between participants. 

In Chapter 4, segment angles were also calculated based on the multi-segment models 

used in this study (Figure 3.2). These angles were calculated with the in-built function 

“Compute Model Based” in Visual3D (C-motion. Inc, Germantown, MD), where it is 

possible to define two segments (e.g. hip and knee to calculate knee angle) defining the 

angle and then the trace of the angle over time is calculated.   
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Medial arch angle was calculated between the hindfoot and rearfoot segments, ankle 

angle between foot segment and shank segment, knee between shank and thigh and 

hip angle between trunk and upper leg (Figure 3-4). 

 

Figure 3-4 Representation of the four angles calculated in Chapter 4. The medial arch angle has 
been calculated based on (1) Simon et al (2006) paper, whereas ankle, knee and hip angles have 
been calculated base on the (2) Plug-in marker set. 

 

The focus of the analysis for this thesis was on the processing of the EMG signal and 

most processing routines were common to the three experimental chapters (Chapter 4, 

5, 6).  Hence, in the following sections detailed description of the analysis is provided. 

3.4.2.         Preliminary analysis of surface EMG 
 

Surface EMG is the superficial representation of muscle contraction (Merletti and Parker 

2004) and it is referred to as an interference signal, which is the result of superposition 

of motor unit action potentials within the detection volume of a recording electrode.  As 
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EMG is an electrical signal, it is easily affected by electrical noise, motion artefact and 

poor skin-electrode interface, which need to be identified and removed before further 

analysis. The quality of the surface EMG therefore needs to be assessed to discard 

signals or channels affected by noise, before analysis to extract important amplitude and 

frequency components. For this reason, recorded surface EMGs from the multi-channel 

grid were visually inspected and channels showing noise due to poor skin-electrode 

interface contact or line interference were reconstructed based on the interpolation of 

the signals from neighbouring channels (Gallina and Botter 2013). An example of 

different types of noise is presented in Figure 3.3-5, for two representative cases. Panel 

a) shows an example of a representative participant with clusters of signals showing 

different types of noise. Interpolation was not possible in this case, as neighbour 

channels do not show clear EMG patterns. On the other hand, Panel b) shows one 

channel with noise, surrounded by channels showing clean signals. In this case, it was 

possible to interpolate with neighbour signals and the trial was not discarded.  

 

 



 
 

67 
 

 

Figure 3.3-5 Representation of EMG signals collected with a 64 channels grid from two 
representative participants. Panel a) shows multiple channles with different types of noise. Two 
channels were accidentally disconnetted and therefore no signal was recorded (light blue 
squares). Clusters of channels present poor skin electrode interface (red star). The zoomed 
window shows both thypes of noises, respectively in rows 4, 5,6,7,8.    

 

From the total of 30 participants, for each study a different number of participants was 

included (after discarding those reporting data collection affected by noise): 25 showed 

a complete data set and were therefore included in chapter 4, 21 for chapter 5, 20 for 

chapter 6 and 17 for chapter 8. 

Next, wavelet analysis was used to process EMG signals following the protocol provided 

by (von Tscharner 2000), where a filter bank of k wavelets was selected to represent a 

band-pass filter for the signal, with parameters set to ensure that the original signal 

intensities could be approximately reconstructed from the sum of the k-wavelet-

transformed signals. For the purpose of this study, a filter bank of 11 (0≤k≤10) wavelets 

was used to decompose the myoelectric signals from each selected trial into their 

intensities (Table 3.2).  
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Table 3.4.2 Upper and Lower bands for each wavelet, Central frequency (Hz) and Time 
resolution (ms). 

Wavelet Lower 
Frequency 

(Hz) 

Central 
Frequency 

(Hz) 

Higher 
Frequency 

(Hz) 

Time 
resolution(ms) 

0 2.34 6.90 16.41 75.63 

1 10.16 19.29 33.20 50.63 

2 24.22 37.71 56.25 44.38 

3 44.14 62.09 84.77 34.38 

4 69.92 92.36 119.53 26.88 

5 101.56 128.47 160.16 23.13 

6 139.06 170.39 206.64 21.25 

7 182.42 218.07 258.59 18.75 

8 231.25 271.49 316.41 16.88 

9 285.94 330.62 380.08 16.25 

10 346.48 395.44 449.22 14.38 
 

To remove low frequency artefacts, the signal from the first wavelet was discarded so 

the total intensity at any given time was calculated as the sum of the intensities of the 

selected (1≤k≤10) wavelets (Hodson-Tole et al., 2012). 

The total intensity from the wavelet transformed signal was used for further analysis as 

a measure of EMG intensity over time. The sum of total intensity approximates the 

description of power (von Tscharner, 2000), therefore half of the power is practically 

equal to the square of the root mean square (RMS) values, therefore the square root of 

half the power is equivalent to measures of amplitude such as RMS (von Tscharner, 

2000; Wakeling et al., 2002). The total intensity was calculated for each channel, 

resulting in a map of 64 EMG intensities for each signal time point. 

Surface EMG signals from the extrinsic foot muscles were also visually inspected, 

however, due to some technical problems in the sensor operating system, not all 
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channels were recorded properly. Due to the system almost at the end of its life, data 

from 13 participants was lost between recording and exporting the data on an external 

hard drive and, unfortunately, this was only discovered at the end of each data collection 

session. Seventeen participants showed at least EMG signal from two extrinsic foot 

muscles (tibialis anterior, lateral gastrocnemius), therefore these were included for 

further analysis and processed with wavelet analysis as described above. 

3.4.3. EMG based Centre of Gravity 
 

The use of a multichannel electrode grid allowed the acquisition of EMG signals from a 

wide region of the plantar surface of the foot, and therefore, it was possible to 

investigate spatial features of EMG activity within the region (Rojas-Martínez et al., 

2013). The distribution of EMG intensity values (Figure 3.3) was investigated by 

calculating an intensity-based Centre of Gravity (CoGE), to inform where the region with 

the highest amplitude signal was located and any changes in the CoGE position over the 

course of a trial.  
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Figure 3.3 Schematic representation of the electrode grid where each channel records an EMG 
signal providing a total of 64 signals. Here the intensity distribution is represented with a 
coloured map (b), where the region with the highest intensity are yellow and the regions with 
the lowest intensity are in blue.  

 

To calculate the CoGE, clusters of channels were identified, by segmenting the region 

with highest amplitude (yellow regions in Figure 3.3). The segmentation used was based 

on Otsu’s algorithm (Chen et al., 2010), which allows image segmentation without 

relying on potentially subjective thresholding (Figure 3.3). Otsu’s segmentation works 

directly on the grey level histogram and finds layers by minimising the weighted within-

class variance and maximising the between class variance. Layers can then be identified 

based on this separation between classes (Chen et al., 2010). By selecting only the most 

superficial layer (yellow regions in Figure 3.3) the channels showing the highest values 

were segmented, whereas by adding multiple layers (blue and green layers in Figure 3.3) 

it is possible to investigate multiple levels of the image. 

Figure 3.3 shows an example segmentation applying one and two layers and the results 

of single and multiple thresholding. By selecting only the most superficial layer the 
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channels showing the highest values were segmented, whereas by adding multiple 

layers it is possible to investigate multiple levels of the image.  

 

Figure 3-6 Segmentation example for a representative intensity topographical map. Top panel 
shows the segmentation when one layer is applied, whereas the bottom panel shows the 
segmentation for two-layers. The yellow regions represent the most superficial layer, 
corresponding to highest amplitude values, the dark blue represents the deepest layer and the 
light blue represents values in the middle of the most superficial and deepest layer.  

 

For CoGE calculation, only one layer was utilised, as it was enough to distinguish between 

regions with the highest levels of intensities and region with lower intensities. To include 

only the regions with the highest intensities, clusters of channels showing an intensity 

value bigger than 80% of the maximum, therefore channels representing the highest 

activation, were considered for the calculation of CoGE electrode grid co-ordinates in 
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the medial/lateral (CoGEx) and anterior/posterior (CoGEy) direction (Equation (3.1), 

Equation (3.2)): 

 

𝐶𝑜𝐺𝐸𝑥 =
1

∑ 𝐼(𝑡)
∙ 𝑥(𝑖) ∙ 𝐼(𝑡)                (3.1)   

                𝐶𝑜𝐺𝐸𝑦 =
1

∑ 𝐼(𝑡)
∙ 𝑦(𝑖) ∙ 𝐼(𝑡).             (3.2) 

 

Where, I is the intensity value at tth data point and x and y are the coordinates of the ith 

channels. CoGE were then used for investigation of distribution of intensities across the 

sole of the foot during the postural tasks performed in the experimental protocol. Gx 

and Gy coordinates for each participant were then normalised to foot length and width, 

to compare between participants. 

Although valuable, amplitude based analysis are not able to provide information on the 

mechanisms underlying neuromuscular responses to motion. Therefore, non-linear 

analysis, based on entropy measures, have recently been applied to EMG time series to 

investigate the variability of the EMG signal, which can be informative on aspects of 

motor control process (Svendsen and Madeleine, 2010). In this work, entropy based 

measures were used to analyse the EMG signal to investigate the structure of the signal 

and potentially provide insights into control processes underpinning the postural tasks 

studied (Section 2.3.3.3 of Chapter 2). The processing technique took the form of Sample 

Entropy and Entropy Halflife, whose theory was previously introduced in Section 2.3.3.3 

of the Literature Review (Chapter 2). In the following paragraphs the details of the 

processing technique applied to the EMG data is provided. 
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3.4.4. Sample Entropy analysis 
 

The total intensity from the wavelet transformed myoelectric signal from each electrode 

channel was filtered with a high-pass filter (2nd order Butterworth filter, cut-off 10 Hz), 

to remove the slower temporal signal components related to the movement pattern and 

leaving components relating to short fluctuations in the envelope profile (Enders et al., 

2015).  SampEn was calculated using an open-source software package (Goldberger et 

al., 2000), with a tolerance value, r, of 0.2 and a segment length, m, equal to 2. The 

selection of m and r could change the result of the estimate; therefore, it is important to 

select these parameters appropriately, based on the data series to be investigated. 

Accuracy and confidence of entropy increase as the number of lengths m matches 

increases and this can be done by selecting short templates (small m) and wide tolerance 

(large r). Typical values of m can be found between 2 and 4, depending on the time series 

of the application (e.g. CoP. EMG, ECG,…), whereas r is defined as 0.1 to 0.25 of the 

standard deviation of the signal (Richman and Moorman, 2000). In some papers the 

values are not stated (e.g. Siddiq et al., 2016; Enders et al., 2015). Here we have 

empirically chosen m=2 and r=0.2, led in part by application of SampEn to EMGs 

previously reported (Zhang and Zhou, 2012) and that the resulting values did not tend 

towards zero and in part by applying values of m between 1 and 4 and observing a plateau 

of SampEn values at m=2 and r=0.2. 

 

SampEn values were normalised to the SampEn value resulting from analysis of a 

randomly selected channel in the grid, where the data points were randomly shuffled 
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prior to SampEn calculation.  As a random sequence of data, the result should provide 

the highest value of SampEn meaning all normalised values would be ≤ 1.  

 

As with the analysis of the EMG intensities (Section 3.4.2), the sample entropy analysis 

also provided a map of 64 SampEn values, corresponding to the grid of electrodes. 

Similarly, to the intensity data, this allowed the investigation of the distribution of 

SampEn across the grid, through the calculation of SampEn based CoG (CoGSE). In this 

case, the implementation of Otsu’s segmentation included the use of multiple layers 

(Figure 3.3). This allowed the segmentation of the channels showing the lowest recorded 

SampEn values, represented by values of SampEn lower than 80% of the maximum value 

of the region representing a structured EMG signal, as well as the highest recorded 

SampEn values, represented by SampEn values higher than 80% of the maximum value 

(associated with an EMG signal characterised by more randomness). To select the lowest 

values, a second layer of segmentation was introduced, so the values corresponding to 

the layer between the maximum and the minimum SampEn values were discarded and 

the cluster of channels showing lowest values of SampEn was used to calculate the 

coordinate of the CoGSE.  This analysis allowed investigation of the spatial distribution of 

the signal complexity, indicating regions in the foot with a more structured EMG signal 

than others with more random EMG signal. 
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3.4.5. Entropy Halflife analysis 
 

In Chapters 6, a SampEn based analysis was used, a measure called Entropy Halflife 

(EnHL). The use of EnHL in Chapter 6 and in the pilot experiment in Section 7.2 of the 

Discussion Chapter (Chapter 7) enabled the investigation of the short-term fluctuations 

over time of the EMG signal from the intrinsic and extrinsic foot muscles (Enders et al. 

2015, Hodson-Tole and Wakeling 2017). EnHL provides information about the structure 

persistency during motion and potentially of underlying motor control process during 

simple motor tasks. 

The EnHL approach is based on the reshaping of the original signal, to ensure the 

investigation of a time series where the order is shuffled.  

𝑃𝑖 = [𝑥𝑖+0×𝜏, 𝑥𝑖+1×𝜏, 𝑥𝑖+2×𝜏, 𝑥𝑖+3×𝜏, 𝑥𝑖+𝑗×𝜏],   (Eq. 3.3) 

Where {∀𝑗 ∈ 𝑍≥0|𝑗 × 𝜏 + 𝑖 ≤ 𝐿}, 𝑖 = 1,2, … . 𝜏 and each data point x is reshuffled for 

increasing time intervals (τ). 

Data points at a short time interval could potentially be associated, compared to data 

points at larger time scales, therefore the reshaping scale method described by Enders 

et al. (2015), allows quantification of the time point where the reshuffled signal 

transitions from being structured to being completely random.  A longer EnHL suggests 

that a more persisting structure is present in the time series and that potentially a more 

regular motor unit firing patters is occurring (Enders et al., 2015), whereas a shorter 

EnHL suggests that the signal is more random and perhaps is the result of a more random 

motor unit firing patterns. Further details on the EnHL theoretical aspects has been 

provided in Section 2.3.3.3 of the Literature Review (Chapter 2).  
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The filtered wavelet transformed EMG signal was initially resampled at 1000 Hz, to 

provide an interval between data points of 1 ms, and then truncated by discarding the 

first the last 3% (corresponding to 5 s at the beginning of the trial and 5 s at the end) of 

data points, to ensure the EnHL analysis represented the motor task and excluded the 

initial and final adjustments to the task. This corresponds to the middle 20 s of the trials, 

where the majority of motion seemed to have occurred. This truncation also allowed 

EnHL to be conducted on signals of the same length, since Entropy Halflife is based on 

SampEn calculation, which is dependent on signal length, it might also have an effect on 

the EnHL values.  Each truncated EMG intensity envelope was therefore reshuffled at 

increasingly larger time scales, ranging from 1 ms to 10 seconds, and SampEn calculated 

for each time scale as previously reported (Section 3.4.3). The timescale at which the 

normalised SampEn values were equal to 0.5 indicates the transition from a structured 

to a random signal and was noted as the EnHL value (Figure 2.7).  As for previous 

analyses (Section 3.4.2 and 3.4.3) a map of 64 EnHL values was derived for each trial. 

Moreover, the map of EnHL enabled the investigation of the spatial distribution of EnHL 

across the foot region, which could potentially provide information on healthy patterns 

of EnHL in the foot region.  

EnHL analysis was then performed on the EMG from the extrinsic foot muscles, which 

allowed the study of the interplay of the mechanisms underpinning motion, by 

investigating the relationship of EnHL from intrinsic and extrinsic foot muscles during 

simple motor tasks. 

All processing on EMG signal and kinematic data was performed using custom written 

MATLAB scripts whereas the EnHL processing was performed with a Mathematica 

(Wolfram Mathematica 9, Wolfram Research Inc.) code. 
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4. SURFACE ELECTROMYOGRAPHY CAN QUANTIFY 

TEMPORAL AND SPATIAL PATTERNS OF 

ACTIVATION OF INTRINSIC HUMAN FOOT 

MUSCLES 
This work was presented during an Oral session at the European Society of Biomechanics, July 

2017 in Seville, Spain (Abstract in Appendix A). 

4.1. Introduction 

 

Commercially available electrode arrays are flat and flexible and can be applied to 

various body compartment. Application to intrinsic foot muscles has never been 

attempted, due to the anatomical challenge of their location and, therefore, the 

features of EMG signals from this body compartment are yet to be described. One main 

concern is that loading due to body weight, which could influence signal characteristics. 

As such, signal amplitude changes could represent the movement of electrodes 

toward/away from the intrinsic foot muscles, rather than the physiological 

neuromuscular activation. Moreover, amplitude or frequency values outside ranges 

reported in literature (De Luca et al,1985), might indicate that the signal content is not 

representative of muscle activation. Therefore, the aim of this work was to investigate 

whether it is possible to non-invasively quantify physiologically relevant temporal and 

spatial activation patterns from the plantar foot surface to provide new information 

about the human foot in health and disease. 
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4.2.  Methods  

4.2.1. Participants 
 

Twenty-five healthy participants (twenty-two males and three females, age: 41 ± 15 

years, weight: 73 ± 16 kg, height: 1.7 ± 0.1 m, foot length: 26.3±1.8 cm, navicular height: 

5.9±1.1 cm, foot width: 9.4 ± 0.9 cm) voluntarily took part in the study having provided 

informed, written consent to do so.  

4.2.2. Data acquisition 
 

Recording of surface EMG from the plantar aspect of the foot is fully detailed in Section 

3.2 of General Methodology Chapter (Chapter 3). 

Monopolar surface EMGs were recorded with a 64 grid of electrodes from the plantar 

aspect of the foot, whereas whole body motion was recorded with a 54-marker set, 

combination of the Plug-in Marker Set (from shoulder to knee epicondyle) and the foot 

model described in Simon et al (2006) (Figure 4-1).   

 

Figure 4-1 Image extracted from Simon et al (2006) showing the marker set used in this study 
to investigate foot kinematics.  
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Each participant stood in the test area and was instructed to perform three motor tasks: 

i) bipedal standing (self-selected comfortable stance width); ii) deliberate 

anterior/posterior sways (following a metronome beating at 2 Hz) and iii) two-foot 

continuous standing on tiptoe. These conditions were selected as they provided a range 

of quasi-static and motion-based conditions, and also provided one condition where 

there was no contact between the ground and the electrode grid meaning EMGs would 

be free from external loading.   

4.2.3. Data analysis 
 

Analysis of surface EMG is described fully in Section 3.4 of the General Methodology 

Chapter (Chapter 3). Surface EMG was processed with the wavelet analysis (von 

Tscharner) (Section 2.3.3.1) and to remove low frequency artefacts, the signal from the 

first wavelet was discarded so the total intensity at any given time was calculated as the 

sum of the intensities of the selected (1≤k≤10) wavelets (Hodson-Tole et al., 2012). 

4.2.3.1.  Investigation of physiological signal content 

 

The first analysis step focused on identifying whether signals recorded were the result 

of physiological muscle activation and to what extent they were influenced by body 

weight pressure across the foot. Therefore, mean frequency and total intensity of 

myoelectric signals were calculated and compared to standard values presented in 

literature (Basmajian and De Luca, 1985).  

From the wavelet transformed signal, the total intensity is used as a measure of EMG 

intensity over time and the sum of total intensity approximates the description of power 

(von Tscharner, 2000). Half of the power can be seen as practically equal to the square 

of the root mean square (RMS) values, therefore the square root of half the power is 
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equivalent to measures of amplitude such as RMS (von Tscharner, 2000; Wakeling et al., 

2002).  The mean frequency fm (Wakeling et al., 2002; Hodson-Tole and Wakeling, 2007) 

of the intensity spectrum for each sample point is calculated from (Equation 4.1): 

𝑓𝑚 =
∑ 𝑓𝑐(𝑘)𝑖𝑘𝑘

∑ 𝑖𝑗,𝑘𝑘
                (4.1) 

where fc is the central frequency of each wavelet.  Mean frequency was calculated for 

the entire length of each trial.  Non-physiological signals should show frequency 

components outside the expected range, which usually spans from 20 Hz to 400 Hz.  

Peaks saturating the signal might also suggest non-physiological signal content, 

potentially related to skin-electrode movement. If the signals collected showed 

frequency and amplitude components in the range reported in the literature, it can be 

inferred they are the result of neuromuscular drive. 

Secondly, whether EMG signal amplitudes were affected by changes in the position of 

the centre of pressure under the foot was investigated using trials from the 

anterior/posterior sway task. For this analysis, the centre of gravity (CoGE) within the 

electrode grid was calculated, based on the spatial distribution of the activation 

intensity, and x and y co-ordinate of the maximum activation was extracted (Farina et 

al., 2008; Rojas-Martínez et al., 2012), as descried in Section 3.4.2. of the General 

Methodology Chapter (Chapter 3).  If the signal amplitudes are affected by foot loading, 

we expect CoGE to follow the same pattern of displacement as the biomechanical force 

plate derived CoP, i.e. forward movement of the CoP should correlate with forward 

movement of the EMG based CoGI.  If this relationship is not found, we posit that the 

sEMGs collected can be expected to be primarily representative of muscle activation 

and not predominantly the result of pressure on the electrode grid. 
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The CoP was calculated with Visual 3D (C-motion. Inc, Germantown, MD) and, when 

required, a low-pass filter was applied (Butterworth, 4th order, 6 Hz cut-off) before 

events corresponding to anterior and posterior sways were identified from the CoP path. 

The corresponding filtered wavelet-transformed EMG signals were down sampled to the 

same frequency at which force plate data were sampled (1000 Hz) and the same three 

events were identified in each signal: i) start of anterior sway; ii) end of anterior 

sway/start of posterior sway; iii) end of posterior sway. The data points corresponding 

to these events were manually selected from the CoP trace. For each epoch, the 64 

channels intensity map was segmented to extract the region with the highest amplitude 

values using Otsu’s algorithm (Chen et al., 2010) (Section 3.4.2, Chapter 3). Once the 

CoGE and force plate based CoP were extracted, the correlation between the two was 

calculated for the anterior and posterior sway epochs. 

 

4.2.3.2. Quantifying sEMG complexity and amplitude during different movement tasks 

 

In addition to identifying the physiological content of collected sEMG signals, we sought 

to investigate whether differences in movement patterns were associated with any 

changes in the sEMG amplitudes and complexity.   Review of the biomechanical data 

revealed participants had completed the anterior/posterior sway trials using a variety of 

different strategies (i.e. swaying about the ankle joint vs around the hip joint).  This 

variation in movement ‘strategy’ was therefore exploited to investigate the effects on 

features of recorded sEMG signals. 
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Firstly, to identify the movement strategy employed for each anterior and posterior 

sway event the ankle, knee and hip joint angles were calculated for each sway epoch. As 

the marker set used to track foot motion was a multi-segment model, it was also 

possible to calculate the angle between the rear-foot and the forefoot, corresponding 

to the angle from the medial longitudinal arch. A low-pass filter (Butterworth, 4th order, 

6 Hz cut-off) was applied to marker tracks before angle calculation, when required, to 

remove high frequency noise due to skin-marker contact. For each epoch, the 

correlation between each joint angle and the CoP was evaluated and the joint with the 

largest correlation co-efficient was identified as the dominant joint for that movement. 

The mean sEMG intensity distribution map was calculated for each anterior/posterior 

sway event, with the methodology described in Section 3.4.2 (Chapter 3). The x 

(medial/lateral) and y (anterior/posterior) coordinates of the CoGE were respectively 

normalised to the width and length of the foot for each participant (foot width measured 

as the distance between the first and the fifth distal metatarsal; foot length from the 

hallux to the calcaneus). 

 

SampEn values were calculated for sEMG data from the same anterior/posterior sway 

epochs, with the methodology described in Section 3.4.3. of General Methodology. Here 

r=0.2 and m=2 were used.  This analysis provided a map of 64 SampEn values for each 

epoch identified previously, corresponding to the grid of electrodes, with one map 

produced per anterior/posterior sway epoch. These maps were segmented using the 

same technique applied to the amplitude data (Section 3.4.2, Chapter 3), with the use 

of two layers of segmentation to distinguish the smallest and highest SampEn values. As 
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with the amplitude data, the x (medial/lateral) and y (anterior/posterior) coordinate of 

CoGSE, were respectively normalised to the width and length of the foot for each 

participant. Finally, both amplitude and SampEn CoG values were assigned to one of 

four categories, defining the joint identified as dominated for the associated sway 

epoch, enabling comparison of activation patterns between completed movement 

patterns.  

4.2.4. Statistical Analysis 

 

A Kolmogorov-Smirnov normality test was performed on the resulting data and 

statistical analysis took the form of an ANOVA Generalised Linear Model (Minitab 16, 

Statistical Software (2010). State College, PA: Minitab, Inc.). A separate test was 

completed for each dependent factor (CoGE,CoGSE), with the random factor set as 

participant number and fixed factors the strategy (‘HIP’, ‘KN’,’ANK’, ‘MA’). The critical 

factor was taken to be α ≤ 0.05.  The location of any significant differences was identified 

using Bonferroni post-hoc analysis. Data are reported as mean ± standard deviation 

4.3. Results 

4.3.1.  Physiological signal content 
 

The mean frequency and intensity values for each movement task are shown in Figure 

4.1 and were typical of physiological ranges reported in the literature (Basmajian and 

De Luca, 1985; Merletti and Parker, 2004). Intensity values were also in the range of 

those reported in previous studies (Kelly et al., 2012), recorded with intramuscular EMG 

during tasks of similar effort. Correlation between CoGE and kinematics CoP showed no 

correlation during the anterior/posterior sway task (r2=0.067±0.060), indicating no 

relationship between motion and shift in the myoelectric CoGI.  
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Figure 4-2 Mean ± standard deviation (N = 25) for both mean frequency (Hz) and total intensity 
(uV) for the three tasks: i) anterior/posterior sway (95.76±33.17 Hz, 83.41±52.75 µV, grey 
boxplot), ii) bipedal stance (91.62±27.32 Hz, 27.20±20.27 µV, black boxplot), iii) two-foot tiptoe 
(94.17±29.32 Hz, 115.73 ± 79.24 µV, lightblue boxplot)  

4.3.2.  Relationship between sway movement and sEMG patterns 

 

The highest correlation co-efficient between the CoP and segment angles commonly 

differed between epochs within the same task.  Across the group of 25 participants, the 

majority used three different dominant joints during the entire trial (one for each 

epoch).  Table 4.1 shows the number of epochs (n) that each segment showed the 

highest correlation coefficient with the force plate CoP and the mean and standard 

deviation for each group.  The correlation was strong for each of the four segments, but 

the joint most frequently identified as having the strongest correlation with CoP was the 

medial arch (‘MA’), whereas the least frequently identified joint was the ankle (‘ANK’) 

for both sway phases.  
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Table 4-1 Mean ± S.D. r2 values from association (Pearson’s correlation) between joint 
angle and CoP trace, used to define the dominant joint in each sway epoch. n indicates 
the number of epochs assigned to each joint. 

  Medial Arch 
(MA) 

Ankle (ANK) Knee (KN) Hip (HIP) 

Anterior 
sways 

r2 
0.896 ± 0.09 

n = 104/245 

0.855 ± 0.151 

n = 42/245 

0.891 ± 0.119 

n = 52/245 

0.80.0092 ± 

0.035 

n = 47/245 

p-values 
 

0.00005 ± 

0.00002 

0.0013 ± 

0.0051 
0.0105 ± 

0.442 
0.0092 ± 0.104 

Posterior 
sways 

r2 
0.895 ± 0.113 

n = 105/247 

0.891 ± 0.114 

 n = 35/247 

0.909 ± 0.09 

n = 55/247 

0.909 ± 0.0852 

n = 52/247 

p-values 
 

0.00001 ± 

0.00005 
0.00007 ± 

0.00025 
0.0047 ± 

0.0194 
0.0022 ± 

0.0084 

 

Figure 4.3 shows mean and standard deviation for x and y coordinate of the location of 

the highest EMG activation and most structured signals for both anterior and posterior 

sways. For each segment both pair of coordinates moved a relatively small amount.  The 

region with the highest activation corresponded to the region where the signal is most 

structured and least random. CoGE and CoGSE are both in a region between the 15-37 % 

of foot width and between the 14-32% of foot length, this region corresponds to the 

cluster of electrodes on the third column and seventh row of the grid, which is the region 

located towards the medial of the foot.  
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Figure 4-3 Mean and standard deviation for EMG based CoGE and SampEn based CoGSE 
coordinates. Red markers represent SampEn and blue markers represent sEMG. Each symbol 
represents a dominant segment (Ankle: ‘ANK’, knee: ‘KN’, medial arch: ‘MA’, hip: ‘HIP’). Left 
column represents anterior sways. Right column posterior sways.  

 

 

4.3. Discussion 
 

This study investigated whether it was possible to collect validly physiological sEMG 

from intrinsic foot muscles using a multi-channel electrode array attached to the plantar 

surface of the foot. Features of the recorded signals (Figure 4.1) suggest that they are 

representative of physiological muscle activation and are not adversely influenced by 

pressure on the electrode grid. The signal intensity increasing with task effort is in line 

with previous reports (using intramuscular data) where RMS values from quiet standing 



 
 

87 
 

on two legs were lower than for standing on one leg (Kelly et al., 2012). The frequency 

values are within the physiological range (Merletti and Parker, 2004) with the highest 

mean frequency occurring during the anterior/posterior task.  A key concern of using 

electrode arrays on the plantar foot surface was that signal characteristics would be 

significantly affected by changes in the point of pressure application under the foot.  The 

results however clearly show no association (r2=0.067) between CoG and CoP. In 

addition, the highest intensity values are for the two-foot tiptoe task, the only task 

where no interaction with the ground occurs, strongly indicating that the EMG signals 

recorded may be considered indicators of intrinsic foot muscle activation for the tasks 

assessed here.   

 

During the anterior/posterior sway task participants were challenged to repeatedly and 

regularly change their posture. Kinematic and kinetic analysis showed that, within the 

same trial, the same participant commonly displayed different kinematics. Typically, the 

strongest association occurred between CoP and medial arch angle change (Table 4.1). 

In previous studies, the action of the medial arch has been suggested to be important 

for maintaining posture overarching the foot when performing a balancing task (Kelly et 

al., 2012). This could relate to the function of the intrinsic muscles as toe-flexors and, 

therefore, the high correlation between the sway movement and the medial arch here 

may reflect active gripping of the ground with the toes or passive extension/flexion of 

the joint with the changing centre-of-mass vector direction. 
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During the anterior and posterior sways, the mean position of CoG for both amplitude 

and SampEn did not show large differences in position, suggesting that the phase of 

movement nor the dominant joint had an effect on the regionalised pattern of activation 

in the intrinsic foot muscles.  Both parameters are however grouped in one region, so 

the region with the highest activation and greatest signal structure coincided. The 

location is related to the region associated with the Flexor Digitorum brevis muscle, 

which is part of the most superficial layer of intrinsic foot muscles (Figure 4.2).  The 

clustered nature of the data presented here would be interesting to compare against 

data from clinical populations to explore whether variations might be indicative of 

different pathologies.  

Although mean values for the position of highest activation and most structured signals 

did not differ significantly with movement pattern, differences were seen within 

individual participants, an example of which is shown in Figure 4.4.  
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Figure 4-4 Normalised topographical maps from a representative participant during anterior 
sways. A different dominant joint has been used by the participant for each event. 

 

Here the highest activation occurred during the knee and the lowest for the medial arch 

dominant movement. This may suggest that when flexing around the knee joint the 

intrinsic foot muscles actively facilitate the movement, while if the medial arch is more 

strongly associated with the changes in CoP, the foot is a more passive structure and 

extrinsic muscles may play a larger role in the task.  Figure 4.5 shows the corresponding 

trajectories of each segment angles and the CoP for the epochs (highlighted in grey) 

showed in Figure 4.4. Even though the segment angles are relatively small, it allowed to 

identify epochs within the CoP trajectories and therefore investigate the behaviour of 

intrinsic foot muscles during different strategies.   

 



 
 

90 
 

 

Figure 4-5 Segment angles and CoP trajectories from a representative participant showing three 
epochs (highligthted in grey) of anterior sway motion and the relative segment angle with the 
highest association (solid lines). These epochs correspond to the epochs showed in Figure 4.4. 

 

In the group data these differences are, however, lost due to individual variation. Such 

variability might be related to the position of the grid on the foot with regard participant 

foot size or might reflect differences in foot and intrinsic muscle morphology or 

differences in neuromuscular activation strategies. Further investigation is therefore 

required to understand wider aspects of intrinsic foot muscle activation patterns across 

different motor tasks and participant populations. 

 

In conclusion, this study investigated the behaviour of intrinsic foot muscles using a 

surface multi-channel approach, which opens opportunity to collect data from 

participants where the insertion of a needle is not feasible, and enables exploration of 
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temporal and spatial features of intrinsic foot muscle activation. It is therefore possible 

to non-invasively explore wider aspects of intrinsic foot muscle function to help inform 

understanding of foot muscle properties and function in health and disease. Future work 

should focus on different motion tasks, effects of pathology and the relationship 

between intrinsic and extrinsic foot muscles. 
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5. WHAT IS THE ASSOCIATION BETWEEN 

MEDIAL ARCH MECHANICS AND ACTIVATION 

PATTERNS OF INTRINSIC FOOT MUSCLES? 
 

5.1. Introduction 
 

The human foot is an intricate structure, acting as the base of support for the human 

body. Results from early studies on upright posture seem to suggest that during postural 

control, the majority of active muscles are located in the lower limb (Winter et al., 1995). 

However, a more recent biomechanical study (Menz et al., 2005) showed that the foot 

actively contributes to upright posture via the architecture of the arch and problems 

associated with this structure directly limit the ability to maintain balance. 

The importance of the arch for postural control has been investigated during 

biomechanical studies, which indicate that the combination of bones, ligaments and 

plantar aponeurosis contribute to the support of the arch (Soysa et al., 2012). However, 

few intramuscular EMG studies (Reeser et al., 1983, Fiolkowski et al., 2003) have 

proposed how the intrinsic muscles provide structural support to the medial arch, as 

described in Section 2.5 of the Literature Review (Chapter 2), in quiet standing 

(Fiolkowski et al.,2003, Kelly et al, 2012). This suggests that weakness in the plantar 

musculature has the potential to contribute to problems standing and walking and risk 

of falling with significant potential to influence quality of life in affected populations of 

people. More recent intramuscular EMG studies (Kelly et al., 2012, Kelly et al., 2014) 

investigated the role of intrinsic foot muscles in maintaining balance and providing 

support during quiet stance. In these studies, the intensity of activation increased with 

the effort required by the postural task (i.e. postural demand) (Kelly et al., 2012). These 
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authors also showed that the activation level was strongly correlated with the 

mediolateral direction of movement in single leg-stance, suggesting a contribution of 

intrinsic foot muscles in maintaining balance control and upright posture. However, no 

studies have investigated association between medial arch behaviour, such as angle 

kinematics, and intrinsic foot muscles activation. This information could potentially 

inform understanding of what the response of intrinsic foot muscles is for specific 

postural tasks and the association with medial arch properties. 

Finally, the results reported by Kelly et al. (2012) were achieved by recording muscle 

activation in an invasive way. This approach could cause some discomfort to the 

participant, who then consequently might behave in an unusual manner, caused by 

psychological effects or pain/discomfort associated with the invasive procedure. The 

invasive nature of the approach also precludes assessments of a wide range of clinical 

and healthy populations (e.g. diabetes due to risk of infection, children, elderly on blood 

thinning medication, etc). It is however possible to use non-invasive, multi-channel, 

surface electrodes to record myoelectric signals (Chapter 4).  The advantage of using a 

multi-channel grid of electrodes is the possibility to investigate not only the magnitude 

of myoelectric features, but also the spatial distribution (Literature Review section 

2.3.3.2). The aim of this chapter was therefore to quantify the effects of different 

postural demands on the spatial features of EMGs recorded from the intrinsic foot 

muscles.  It was predicted that different postural tasks would result in different 

kinematics and centre of pressure movements (larger sway, greater changes medial arch 

angle) and these would be associated with changes in spatial features of the intrinsic 

foot muscle EMG.  The following objectives were therefore set: i) recording surface EMG 

with a multi-channel grid of electrodes during simple postural tasks from intrinsic foot 
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muscles; ii) evaluating the medial arch angle and the centre of pressure; iii) quantify the 

EMG based CoGE and force plate derived centre of pressure (CoP) amount of sway and 

medial arch angle magnitude; iv) quantify the association between EMG features and 

medial arch angle properties. 

5.2. Methods  

5.2.1. Participants 

 

Twenty-one healthy participants (eighteen males and three females, age: 40.76 ± 14.14 

years, weight: 76.76 ± 15.53 kg, height: 175.33 ± 9.39 cm) voluntarily took part in the 

study having provided informed, written consent to do so.  

5.2.2. Data acquisition 

 

Experimental setup and data acquisition are described in the General Methodology 

Section (Chapter 3). For the purpose of this investigation, data were analysed from the 

following four motor tasks: i) bipedal stance; ii) single-leg stance; iii) deliberate 

anterior/posterior sways and iv) deliberate medial/lateral sways. These conditions were 

selected as they provided a range of challenges to posture and maintenance of balance 

that enable investigation of the behaviour of intrinsic foot muscles during differing levels 

of centre of mass movement.  

 

5.2.3. Data analysis 

 

Centre of pressure (CoP) from force plate data was extracted from Visual 3D (C-motion. 

Inc, Germantown, MD) and further analyses was produced with custom made routines 
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in MATLAB (MathWorks Inc., MA, USA). Prior to all analyses mediolateral and 

anteroposterior CoP trajectories were detrended, by subtracting the mean from the 

original time series, and bi-directionally filtered (second-order low-pass Butterworth 

filter, cut-off frequency 12.5 Hz) (Roerdink et al., 2006; Donker et al., 2008).  

As the marker set used to track foot motion was a multi-segment model, it was also 

possible to calculate the angle between the rear-foot and the forefoot foot segments, 

corresponding to the angle of the medial longitudinal arch. A low-pass filter 

(Butterworth, 4th order, 6 Hz cut-off) was applied to marker tracks before angle 

calculation, when required, to remove high frequency noise due to skin-marker contact.  

Details of preliminary analysis of surface EMG are reported in General Methodology 

Chapter (Chapter 3, Section 3.4.1.). Wavelet transformed surface EMG signals were used 

to quantify an EMG based centre of gravity (CoGE), which enables evaluation of the 

movement of the highest region of activation across the plantar region of the foot 

(Section 3.4.2, General Methodology). To evaluate the association between parameters, 

the same number of data points is needed, therefore the CoGE was resampled to the 

sampling frequency of the CoP force plate derived (1000 Hz) and to the medial arch 

frequency (100 Hz), respectively for the relevant correlation. 
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5.2.4. Biomechanical parameters analysis 
 

Postural behaviour is often assessed by means of posturography that is the quantitative 

analysis of COP trajectories and deviation in the location of COP measured by means of 

a force platform (Prieto et al., 1996; Roerdink et al., 2006; Ruhe et al., 2011).  The 

posturography measure applied here was the calculation of the distance (Donker et al., 

2008), which provides information about how much the CoP moved from a point of 

reference. This parameter was quantified by calculating the distance between the 

detrended trajectories, so the sway during the trial was evaluated for each time-series 

(Equation (5.1)):  

𝑑𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2                (5.1) 

where   i = 1, …, N samples in COP trajectories (Donker, Ledebt et al. 2008). 

The amount of sway, r, is quantified by calculating the mean value of the d time series. 

This approach was applied to both the CoP trajectories and the medial arch (MA) angle 

trajectories, resulting in calculation of MA amount of sway (rMA) and CoP amount of sway 

(rCoP). 

5.2.5. Surface EMG Parameters 

 

CoGE was calculated for each data point of the time series, resulting in trajectories 

similar to the CoP describing the movement of the highest intensity over time during the 

postural task. This allowed the application of the same posturography measures applied 

to the CoP and MA angle trajectories (Section 5.2.4), facilitating investigation of the 

association between the two parameters. The distance was quantified by applying 
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Equation (5.1) and the amount of sway for the CoGE distance (rCoGE) was then calculated 

as the mean of the distance time series. 

5.2.6. Cross-correlation between CoGE and respectively CoP and medial arch angle 
 

To investigate the association between mechanical behaviour and response of the 

intrinsic foot muscle activation, cross-correlation between CoP (representing whole 

body motion), and medial arch angle (medial arch motion), with CoGE was quantified. 

Cross-correlation was used to quantify the timing information between the mechanical 

and electrical aspect of motion (Nelson-Wong et al., 2009). Prior to the cross-correlation 

being calculated, envelope of trajectories from the CoP, CoGE and MA were quantified, 

by applying a low-pass filter (Butterworth, 2nd order, 2 Hz cut-off)  to the absolute value 

of each of the trajectories (Nelson-Wong et al., 2009). An embedded function in MATLAB 

(xcorr) was used to investigate the cross-correlation and to quantify the time difference 

between trajectories, also known as lag. The reference signal was fixed to be the CoGE, 

whereas the signal to be compared was respectively CoP and MA. A negative lag means 

that either the CoP or the MA changed before the CoP, whereas a positive lag suggests 

that the CoGE changed before CoP or MA.  Table 5.1 shows the cross-correlation analyses 

performed for each trajectory of each time series (CoP, CoGE and MA). 
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Table 5-1 Summary of cross-correlation performed. For COG and CoP X refers to medio-lateral 
(M/L) direction and Y refers to anteroposterior (A/P) directions. For MA X refers to inversion-
eversion (I/E) and Y refers to flexion-extension (F/E). 

 XX XY YX YY 

CoGE -MA CoGEx (M/L 

direction) and 

MAx (I/E) 

CoGEx (M/L 

direction) and 

MAy (F/E) 

CoGEy (A/P 

direction) and 

MAx (I/E) 

CoGEy (A/P 

direction) and 

MAy (F/E) 

CoGE-CoP CoGEx (M/L 

direction) and 

CoPx (M/L 

direction) 

CoGEx (M/L 

direction) and 

CoPy (A/P 

direction) 

CoGEy (A/P 

direction) and 

CoPx (M/L 

direction) 

CoGEy (A/P 

direction) and 

CoPy (A/P 

direction) 

 

The relationship of the lag between CoP and CoGE and the lag between CoGE and MA for 

each pair of trajectories analysed (Table 5.1, XX, XY, YX, YY) was quantified by applying 

the major axis technique (Sokal and Rohlf, 1995) to obtained lag values.  The major axis 

method is usually applied when the relationship between the two variables is not clear 

(which one is the regressor and the dependant) and they are subject to error. This 

method involved calculation of regression values in the linear model, the confidence 

interval and the eigenvalues of the axes. This allowed identification of the relationship 

between the cross-correlation between CoP and CoGE. and the cross-correlation 

between CoGE and MA. 

The goodness of fit (r-squared values) enabled identification of any strong relationships 

between the response of the mechanical variables (CoP, MA) and the intrinsic foot 

muscles activation, while the slope of the major axis can predict time delays between 

CoGE and CoP, if CoGE and MA are known.  If the lines of best fit have a positive slope, 
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shorter time delay between CoGE and MA movement are associated with shorter time 

delays between CoGE and CoP movement  

5.2.7. Statistical analysis 

 

A Kolmogorov-Smirnov normality test was performed on the resulting data and 

statistical analysis took the form of an ANOVA Generalised Linear Model (Minitab 16, 

Statistical Software (2010). State College, PA: Minitab, Inc.). A separate test was 

completed for each dependent factor (rCOP, rCOGE, rMA), with the random factor set as 

participant number, as the analysis will not estimate the effect of each participants, and 

fixed factors the type of task. The critical factor was taken to be α ≤ 0.05.  The location 

of any significant differences was identified using Bonferroni post-hoc analysis. Data are 

reported as mean ± standard deviation.  

 

5.3.  Results 

5.3.1. Difference in Biomechanical and EMG parameters between postural tasks 
 

Figure 5.1-A), shows the amount of movement (rCoP) for each task. The greatest rCoP 

occurred during the mediolateral sway (7.81±1.61 cm) and the smallest for the bipedal 

stance (0.64±0.28 cm). Statistical difference was found between all four tasks (p-value 

<0.05) for the rCoP, with a goodness of fit of the model of 94.84% (R-sq).
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Figure 5. 5-1 Distribution of amount of sway for COP (rCoP), CoGE (rCoGE) and MA (rMA ) values for 
the four postural tasks. Significant difference (p<0.05) in rCoP, rCoGE, rMA, are presented (bracket 
and asterisk); The biggest rCoP  and rCoGE was showed by the mediolateral sway task and the 
smallest during bipedal stance, whereas the biggest rMA was showed by the anterior/posterior 
sway. 
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Figure 5.1-B), shows the amount of movement (rCoGE) for each task for CoGE. The rCoGE 

was the highest for the medio-lateral sway (1.00±0.37 cm) and the smallest for bipedal 

stance (0.78 ±0.40 cm). For rCoGE statistical difference was found between the bipedal 

stance (p-value<0.05) and the three motion tasks, with a goodness of fit of the model of 

73.43 %. (R-sq).  

Figure 5.1-C), shows the amount of movement of the MA angle (rMA) for each task. The 

rMA was highest for the anterior-posterior sway (1.57±0.65 degrees and the smallest for 

bipedal quiet stance (0.41 ±0.73 cm). For rMA the statistical difference was found 

between the bipedal stance (p-value<0.05) and the three motion tasks, with a goodness 

of fit of the model of 28.67 % (R-sq). 

5.3.3.  Cross-correlation between myoelectric parameters and biomechanical 

parameters 
 

The strongest association was found from the cross-correlation of both CoGE-MA and 

CoGE -CoP in the XX combination (mediolateral direction movement for CoGE and CoP 

and the inversion/eversion movement for the MA angle), during the tasks of 

anterior/posterior sway (r2=0.76) and mediolateral sway (r2=0.67) ( Figure 5.2, Panel A) 

and Panel B)) 
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Figure 5-2  Correlation between time delays (lags) for the cross-correlation between CoG and 
MA and CoG and CoP. Red line is the best fit for the data, blue line is the lower confidence 
interval, black line is the upper confidence interval. Panel A) and B) shows the correlation for 
the combination XX, whereas Panel C) shows correlation for the combination XY 

In addition, for the anterior-posterior sway the XY combination (mediolateral direction 

movement for CoGE and CoP and flexion/extension for MA angle) also showed a strong 
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correlation (r2=0.68) (Figure 5.2, Panel C).  For each case, the majority of data points 

were located around the origin, however, the biggest portion of the line of best fit was 

in the negative quadrant.  The other combinations of cross-correlation tested did not 

show strong associations, however the r2 values are reported in Table 5.2 for 

completeness. 

Table 5-2 Summary of r-squared values for each combination of cross-correlation 

 XX XY YX YY 

Single-leg stance 0.15 0.01 -0.05 0.02 

Bipedal stance 0.19 0.16 0.50 0.20 

Mediolateral Sway 0.67 0.23 0.37 0.42 

Anterior-Posterior Sway 0.76 0.68 0.42 0.20 
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5.4.  Discussion 

The aim of this study was to investigate the association between medial arch and body 

movement mechanics and the response of EMG signals recorded from the intrinsic foot 

muscles in a non-invasive way during postural tasks. For this group of healthy 

participants, the largest amount of sway occurred during the mediolateral sway task 

(Figure 5. 5-1, A). The same pattern was reflected in the amount of sway for CoGE (Figure 

5. 5-1, B) where there was a significant difference between the mediolateral sway and 

the bipedal stance task. It seems to suggest that for this task where participants were 

instructed to regularly shift bodyweight in the mediolateral direction, they engaged the 

intrinsic foot muscles at a higher level in respect to the other motion tasks.  

For the medial arch the smallest amount of movement occurred in the bipedal stance 

task, while the largest amount of movement occurred during the anterior-posterior 

sway (Figure 5. 5-1, C), where the foot arches in the sagittal plane. A lot of outliers are 

present in the bipedal stance task, with angle magnitude values similar to those from 

the anterior-posterior sway task.  During quiet standing this group presented large 

changes in medial arch angle, but with small changes in the CoP (no outliers are present 

Figure 5.1A). This might suggest that in some people there are large changed in the MA 

angle even if larger sways do not occur, which could indicate the additional arching of 

the foot to maintain balance.  

The results presented here are in line to previous studies (Kelly et al., 2012) with the 

greater motion during medio-lateral sway seeming to have a stronger effect on intrinsic 

foot muscle activation.  This suggests that during a mediolateral sway there were more 

changes in the CoGE, suggesting more contribution of the intrinsic foot muscles. These 
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could act to stiffen the foot and limit the changes in MA. During anterior-posterior sway 

there is less contribution of intrinsic foot muscles, so the foot is more compliant with 

the type of task and MA produces more movement. 

This might suggest that even if during mediolateral sway the CoGE produces a higher 

amount of sway and therefore contribute to balance, it may also suggest that in order 

to activate the intrinsic foot muscles, the CoP needs to reach a threshold needing more 

balance. This result might then differ in participants where balance is impaired due to 

foot muscles weakness and there may produce a different pattern. 

The relationship between time delays between the mechanical parameters (COP and 

MA) and CoGE revealed that there are three conditions where a strong association 

occurs between the delays between CoP and CoGE movement and between MA and CoG 

movement. These conditions belong mainly to motion in the mediolateral direction for 

the CoGE for the mediolateral sway and anterior-posterior sway tasks, which again 

supports what Kelly et al. (2012) stated. For the anterior-posterior sway the strong 

correlation is also with flexion and extension of the medial arch angle (Figure 5.2, C). The 

positive slope showed by the lines of best fit suggests that shorter time delays between 

CoGE and MA movement are associated with shorter time delays between CoGE and CoP 

movement. The slope value is close to unity in two cases (Anterior-posterior XY, Figure 

5.2.C and mediolateral sway XX, Figure 5.2.B) could indicate a synchronicity between the 

changes in the biomechanics parameters and CoG. In the third case (Figure 5.2,A), the 

slope of the line is less than 1 (0.42), which could indicate that a large change in the time 

delay between CoG and MA produces a relatively small change in the timing between 

CoG and CoP. This relationship seems to differ depending on the task or variables being 
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measured. This could potentially suggest flexibility in the motor control strategy, where 

the nervous system responds to a challenge (task) in a specific manner and depending 

on the association recorded can choose to either act synchronously (first two cases) or 

sequentially (last case).  

The direction of motion generated a specific response both in biomechanics of the foot 

(CoP, MA) and intrinsic foot muscles activation (CoGE). The difference can be seen 

between the mediolateral and anteroposterior direction of movement. Mediolateral 

sway caused more motion in the CoP and as a result more motion in the CoG, whereas 

in anterior-posterior sways participants produce a smaller amount of CoP sway (Figure 

5.1, A), with bigger medial arch angles potentially related to an overarching of the foot.  

This behaviour can also be seen in the cross-correlation where the mediolateral 

direction (X) is the one where the strongest relationship were found (Figure 5.1.).  

However, the variable nature of these data set caused a number of outliers in the cross-

correlation (Figure 5.2) and if these values are removed, the correlation values drop to 

weak values (r2<0.5). By having larger variability in the data, the ability to detect 

statistical significance is reduced. The post hoc analysis indicated a sample size of 27 

participants was appropriate, however the variability in these data may have increased 

the risk of a type II error (no significance when there is one).  

Nevertheless, variability could be interesting as, traditionally, it is identified as noise. 

Previous studies have indicated how most researchers ignore individual variability, by 

averaging group data, which could hinder difference in muscle activation and individual 

strategies (Hug and Tucker, 2017). Variability should therefore be addressed and 

considered as one of the most common feature of human movement and variation of 
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this feature could be an indicator of pathological or healthy states. (Stergiou et al, 2011).  

Moreover, more recently it is becoming apparent that important information may be 

contained in the temporal organisation of the variability. 

As the variability in these results does not allow conclusions to be drawn on the 

dynamics between the biomechanics features (CoP and MA) and the CoG during simple 

motor tasks, by evaluating the structure of the signal variability with entropy-based 

analysis, rather than magnitude based, it could potentially provide insights into the 

motor control to movement and intrinsic foot muscles.  

Therefore, it was decided to exploit the collected set further and evaluate the structure 

of the signal variability with a view of understanding more about neural drive to the 

IFMs. 

 

Further investigations should therefore focus in the non-linear analysis of intrinsic foot 

muscles activity during postural tasks, to investigate the drive to these muscles and 

investigate how much these muscles are actually engaged. This knowledge could help 

inform on control mechanisms of both healthy and clinical population for the design of 

rehabilitation protocols or insole design.  
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6. HOW DOES POSTURAL TASKS AFFECT THE 

ENTROPIC HALFLIFE OF SURFACE EMGs 

FROM INTRINSIC FOOT MUSCLES? 
 

6.1.  Introduction 
 

Human movement is the result of an intricate system of muscles, bones and joints 

working in a combined way to achieve motion (Prieto et al., 1996). Muscles contribute 

to movement by contracting, and pulling tendons attached to bony structures in the 

body.  Investigating the features of human muscle activation is therefore fundamental 

to understand the mechanisms underpinning movement.  

Muscle groups associated with the long bones of the lower limbs are more clearly 

involved in human movement (e.g. tibialis anterior or the triceps surae muscles) and 

they have been often studied in the past (Rainoldi et al., 2016; Winter, 2009; Vieira et 

al., 2011; Vieira et al., 2013). In contrast, other less obvious muscles contributing to 

motion, such as the thin layers of intrinsic muscles within the foot, are often disregarded 

from studies involving the investigation of balance, locomotion or postural control. 

However, recent studies have shown that this group of muscles in the plantar aspect of 

the foot play a fundamental role during quiet stance and balancing tasks, by stiffening 

the foot structure and supporting the arch (Fiolkowski et al., 2003, Kelly et al., 2012, 

Kelly et al., 2014). These studies investigate intrinsic foot muscle activation by analysing 

linear parameters of the myoelectric signal. For example, amplitude based measures 

(e.g. RMS, ARV,..) of the EMG signal, can be considered to indicate the effort level of the 
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muscles during a task; while frequency analysis (e.g. MNF, MDF,…)(Merletti and Parker, 

2004) can provide insights on the frequency components of the signal or fatigue (Falla 

et al., 2003; Troiano et al., 2008).  These measures do not however provide information 

on how challenging the task may actually be for the control process. To understand the 

changes in the controller approach, it is necessary to investigate the structure of the 

EMG signal. Non-linear analysis, such as entropy-based analysis (Richman and 

Moorman, 2000), can provide understanding on the structure and complexity of the 

myoelectric signal, features that have been shown to provide information into the 

factors underlying control processes (Rathleff et al., 2011;Roerdink et al., 2006; Donker 

et al., 2008) and could potentially provide insights into the features of the 

neuromuscular control process. One entropy based measure is called Sample Entropy 

(SampEn) (Richman and Moorman, 2000) and values from this analysis can indicate the 

level of randomness or structure of a time series, such as the EMG signal. Higher values 

of SampEn represent a more random time series, whereas lower values of SampEn 

suggest a more structured time series. A recent study (Zandiyeh and von Tscharner, 

2013) introduced a new tool, called Entropic Halflife (EnHL), based on SampEn analysis, 

which is able to identify the time point representing a transition from SampEn values 

reflecting order to those reflecting randomness within a signal and is fully described in 

Section 2.3.3.3. of the Literature Review (Chapter 2). This methodology is based on a 

rescaling of the original signal, by reorganising the time series over multiple numbers of 

data points to determine the time scale over which subsequent data points remain 

associated to one another. This reshape scale approach provides a means of quantifying 

short-term fluctuations in a signal that can describe adjustments in the underlying signal 

process, and are applicable to studying neuromuscular function during motor tasks. This 
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tool allows the assessment of the EMG structure, which may provide insight into the 

perceived challenge (i.e. complexity) of the task. A longer EnHL suggests the order of the 

signal is maintained for a longer period of time, compared to shorter EnHL representing 

a signal losing the order and transitioning to random at a shorter period of time. This 

has been shown in studies of cycling (Enders et al., 2015) and running (Hodson-Tole and 

Wakeling 2017) where changes in task demand related to load and velocity are 

significant influencing factors. The neural drive to the intrinsic foot muscles has not been 

previously investigated using this approach and, during postural tasks, EnHL has the 

potential to provide insights into how long information in the signal remains relevant to 

the current state of order. Therefore, for more challenging tasks it is predicted that 

longer periods of the signal will remain affiliated (longer EnHL), for less challenging tasks 

more variation occurs and hence the affiliated portions of the signal will occur over 

shorter time periods. The first aim of this study was to therefore quantify EnHL for the 

intrinsic foot muscles and identify the typical range of EnHL values during postural tasks. 

This aim was achieved by: i) quantifying the EnHL of surface EMG signals recorded from 

the intrinsic foot muscles using a multi-channel surface electrode array during three 

postural tasks; ii) evaluate EnHL for surrogate, phase randomised signals to confirm 

EnHL in original signals were dependent on signal structure; iii) compare the values of 

EnHL with previous studies.  

The second aim was to exploit the spatial information provided by the electrode array 

and investigate the variation in EnHL values between the array channels. Results from 

the study presented in Chapter 4 showed a EMG intensity distribution pattern across 

the array, with the highest intensity corresponding to the portion of the foot associated 

with the flexor digitorum brevis. As previous results indicated EnHLs were longer at 
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higher effort levels (Enders et al., 2015; Hodson-Tole and Wakeling 2017), and 

potentially higher EMG intensity, it was hypothesised that electrode channels associated 

with the highest myoelectric intensity would correspond to longer EnHLs. 

6.2.  Methods 

6.2.1. Participants 

 

Twenty healthy participants (seventeen males and three females, age: 39.1 ± 13. 4 years, 

weight: 74.3 ± 14.3 kg, height: 175.7 ± 9.4 cm) voluntarily took part in the study having 

provided informed, written consent to do so.  

 

6.2.2. Data acquisition 

 

Surface EMGs were recorded with a 64-channel grid of electrodes as described in Section 

3.2 of the General Methodology chapter (Chapter 3). Each participant was asked to 

stand in the test area and instructed to perform three motor tasks: i) bipedal stance; ii) 

one-foot stance; iii) two-foot tiptoe stance. These conditions were selected as they 

provided a baseline (bipedal standing) and two more challenging tasks that induce larger 

amplitude natural sways in both anterior/posterior (two-foot tiptoe) and mediolateral 

(one leg stance) directions.  Participants completed three trials of each condition, and 

all trials were taken forward for further analysis. 

6.2.3.  Data analysis  

 

The preliminary analysis of recorded surface EMGs is described in section 3.4.1. of the 

General Methodology chapter (Chapter 3). The total intensity from the wavelet 
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transformed myoelectric signal was filtered with a high-pass filter (2nd order 

Butterworth filter, cut-off 10 Hz), as it was suggested in previous EnHL studies to remove 

the slower temporal signal components, leaving components relating to oscillations in 

the envelope profile (Enders et al., 2015). The filtered wavelet transformed signal was 

then used to calculate the EnHL of the myoelectric signal from the trials. 

Before applying the EnHL algorithm, each wavelet transformed myoelectric signal was 

resampled to 1000 Hz, so that the time difference between data points was 1 ms 

(Zandiyeh and von Tscharner, 2013). The middle twenty seconds of the task was selected 

for analysis (Hodson-Tole and Wakeling, 2017), to avoid inclusion of data points relating 

to initiation or termination of the task. This truncation also ensured all trials were the 

same length, an important consideration as EnHL is based on SampEn calculation, which 

may be influenced by the number of data points included in the analysis (Richman and 

Moorman 2000).  

Based on previous results the threshold EnHL representing neuromuscular drive and 

affected by task demand is predicted to be approximately 40 ms (Enders et al., 2015, 

Hodson-Tole and Wakeling, 2017), whereas longer values do not represent physiological 

response to motion. Preliminary inspection of the EnHL values revealed that in some 

cases very long EnHL values were calculated. These were identified as sporadic channels, 

with values up to two times the order of magnitude of the majority of the other 

simultaneously recorded signals from the electrode grid. Therefore, it was decided to 

consider these sporadic channels as noise/non-physiological and disregard them from 

further analysis. In 10% of the trials (15 out of 135 trials) it was evident that sporadic 

electrodes showed unexpectedly long EnHL. Of these, in 14 trials the number of 
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channels affected was more than 20%. This accounts for more than 12 channels out of 

64, making interpolation of values across channels unreliable and hence these trials 

were disregarded from further analysis. In the remaining 121 trials, less than 12 channels 

were affected, therefore it was possible to interpolate a EnHL value based on 

physiologically realistic surrounding signals. For these trials interpolation was 

completed, and they were retained in the statistical analysis.   

To determine whether the EnHL values truly reflected structure of recorded signals, they 

were also compared with EnHLs calculated from surrogate signals (Enders et al., 2015). 

The surrogate signals were generated from 53 (39% of the complete data set) randomly 

selected trials, and corresponded to the time series containing the power information 

of the selected signal, but with the phase randomized. If the EnHL in the original signals 

was related to the signal structure EnHL values of physiological signals should be greater 

than the EnHL from the surrogate signals. 

Once the range of EnHL values were described, maps of EnHL were analysed in terms of 

the spatial distribution of EnHL across the array. For each trial, the centre of gravity of 

the cluster of channels showing longer and shorter EnHL was calculated, by segmenting 

the EnHL map with two threshold levels. Channels showing EnHL values bigger than 90% 

of the maximum were included in the cluster of longer EnHL, whereas channels with 

EnHL shorter than 90 % of the minimum were included in the cluster of channels 

representing the region with shorter EnHL. Considering that EnHL values come from 

clean and interpolated EMG signals, it was possible to select a very narrow segmentation 

threshold (90%) to include the most divergent conditions. This has been done with 

Otsu’s segmentation as described in Section 3.4.2. of the Methodology Chapter (Chapter 
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3). Finally, the regions in the array and plantar region of the foot comprising the set of 

CoGs (one for each trial) corresponding to respectively longer and shorter EnHL were 

then characterized by calculating the area. The position of each area and its distribution 

can therefore be considered to describe the spatial regionalisation of EnHL values across 

a map of the electrode grid.  

 

6.2.4. Statistical analysis  

 

EnHL values were tested for normality with a Kolmogorov-Smirnov normality test. The 

variance across the groups of EnHL was tested with a Levene’s test. These results showed 

that these data were normally distributed with equal variance between the groups, 

therefore statistical analysis took the form of a General Linear Model ANOVA (Minitab 

16, Statistical Software (2010). State College, PA: Minitab, Inc.). A test was completed 

with the EnHL as the dependent factor, random factor participant number and fixed 

factors the type of task. The location of any significant difference was identified using 

Bonferroni corrected post-hoc analysis. For all analyses the critical factor was taken to 

be α ≤ 0.05.  

A mixed effects model was completed for both the shorter and longer EnHL CoGs, with 

the random factor being the participant number, the fixed factor the type of task and 

the dependant factor the CoG coordinate. The test was computed separately for each 

condition (shorter and longer EnHL), once for the medial/lateral coordinate (CoGEx) and 

once for the anterior/posterior coordinate (CoGEy) 
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6.3. Results 
 

EnHL values for the intrinsic foot muscles showed a total range of: 12 ms and 38 ms for 

the two-foot tiptoe; 11 ms and 35 ms for single-leg stance; and 8 ms and 28 ms for 

bipedal stance. EnHL values are also greater than those from the surrogate signals, with 

a significant difference between the two groups (p<0.05). The EnHL values for the 

surrogate signals were in the ranges: i) 8 ms – 12 ms for the two-foot tiptoe; ii) 8 ms – 

16 ms for the single-leg stance; and iii) 9 ms – 14 ms for the bipedal stance. 

Figure 6-1 shows the distribution of EnHL values for each postural task, with the lowest 

median values occurring during bipedal stance and the highest during two-foot tiptoe. 

The bipedal stance task had the most outliers. There was a statistically significant 

difference between each task (p<0.05).  

 

Figure 6-1 Entropy Halflife values distribution for two-leg stance, single-leg stance and two-foot 
tiptoe for EMG signal (EMG EnHL) and surrogate signal (Surrogate EnHL). A statistical difference 
was found between tasks and between EMG EnHL and surrogate EnHL. 
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Figure 6.2 shows the distribution of the CoG over the sole of the foot for the regions 

with longer and shorter EnHL. Both regions are composed of a group of CoG points (each 

dot representing a trial) and a perimeter encasing the set of CoGs, black for the longer 

EnHL and blue for shorter EnHL. For the bipedal stance the longer EnHL region (inside 

the black perimeter) is found in the central portion of the shorter EnHL region. During 

one-foot stance the longer EnHL is in a similar position, but the shorter EnHL is slightly 

shifted to the lateral aspect of the electrode array (e.g. the foot). Finally, for the two-

foot tiptoe the shorter EnHL region does not incorporate the longer EnHL region, but 

both regions are in the central aspect of the array, in a confined and overlapping 

compartment. The location of both regions for the three tasks is confined between the 

10-60 % of the width of the foot and the 5-50% of the length of the foot. (Figure 6.2, 

Panel A, shaded area)  

 

 

Figure 6-2 Centre of Gravity coordinates of respectively the region with the longest EnHL (black 
dots) and the region with the shortest EnHL (blue dots) for each participant. Each dot represents 
a trial. CoG coordinates were normalised by foot width (CoGx) and foot length (CoGy). The area 
comprising the group of CoG corresponding to highest EnHL is circled in black and the area 
comprising the group of CoG corresponding to shorter EnHL is circled in blue. 
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The mixed effects statistical model showed that the only condition where participants 

and type of task affected the CoG was for the shorter EnHL region, with a significant 

difference in the CoG x-coordinate (smaller values) for the two-foot tiptoe task.  

Table 6.1 shows that the smallest areas, for both longer and shorter EnHL is for the two-

foot tiptoe task, when both regions are more confined than in the other two tasks. The 

largest area of the shorter EnHL occurred during the bipedal stance task, whereas the 

biggest area for the longer EnHL occurred during one-foot stance. 

 

 

 

Table 6-1 Area in cm2 for regions representing shorter and longer EnHL 

 

 BIPEDAL STANCE SINGLE-LEG STANCE TWO-FOOT TIPTOE 

AREA SHORTER 
ENHL(CM2)  

2.934 2.595 0.793 

AREA LONGER ENHL 
(CM2) 

0.607 0.716 0.349 

 

 

6.4.  Discussion 
 

The aims of this study were for the first time to i) investigate values of EnHL for EMG 

signals from intrinsic foot muscles during postural tasks and ii) investigate the 

distribution of EnHL across the foot region.  

The values for EMG signals from intrinsic foot muscles for all three postural tasks, are in 

a similar range to those found for both synthetic (6.68 ms and 10.96 ms) and 

physiological data, (8 ms and 25 ms for treadmill walking, depending on the frequency 
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component of the signal investigated)(Hodson-Tole and Wakeling 2017) Importantly, 

EnHL values were higher than the values from the surrogate signals, showing that the 

phase order is important for EnHL and therefore there is information in the physiological 

signal that could potentially be related to the neural drive. Understanding the temporal 

structure of surface EMG could potentially help understand the functioning of the 

underlying motor control (Baltich et al., 2014) 

Previous results showed how EnHL increases for more challenging mechanical demands, 

i.e. pedalling at a higher load (Enders et al., 2015), running at faster velocities (Hodson-

Tole and Wakeling, 2017). When comparing EnHL from these results for the three 

postural tasks studied, Figure 6.1 shows how the median value of EnHL was affected by 

the task performed. EnHL increased with the postural effort, with the highest value 

during the two-foot tiptoe standing. The difference between tasks suggests that the 

demand placed on the neuromuscular control process differs, with the two-foot tip-toe 

being the most challenging task. Enders et al stated that when motor tasks are more 

challenging, there is a more confined solution space on how to achieve this movement, 

which results in a longer EnHL, meaning the structure of the signal increases. In these 

results, based on the EnHL values, it appears that the most challenging task is the two-

foot tiptoe, showing the longest EnHL and the least challenging the bipedal stance.  

EnHL has never been applied to EMG signal recorded during postural tasks, therefore 

there are no other studies against which direct comparisons can be made. There is, 

however, a study of EnHL applied to CoP path during different postural task (Federolf et 

al., 2013). Results from this study show that during bipedal stance, the EnHL of CoP is 

longer than during single-leg standing.  This differs to results here, where the bipedal 
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stance resulted in the shortest EnHL for the EMG signals.  The differences in EnHL change 

may reflect the fact that EnHL applied to CoP includes a lot of motor control events, not 

only the muscle contraction pattern. Federolf et al. (2013), propose that shorter CoP 

EnHL could reflect a combination of more frequent interventions by the neuromuscular 

system and greater tolerance of variability in the mechanical configuration. In contrast, 

longer EMG EnHL is thought to reflect greater structure and neural drive.  The fact that 

longer EMG EnHLs corresponded to the shorter CoP EnHLs could therefore support the 

proposal that CoP EnHLs are related to altered neuromuscular system interventions. 

In Figure 6.1 there are a number of outliers present in the bipedal stance data with EnHLs 

longer than the median values of both two-foot tiptoe and one-foot stance. Taking into 

consideration the study on CoP EnHL, the CoP of this sub-group of participants was 

investigated, with the prediction that greater fluctuations in CoP would be associated 

with these longer EnHLs (Figure 6.3).  
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Figure 6-3 Centre of pressure (CoP)paths in the medial/lateral direction (CoPx) and in the 
anterior/posterior direction (CoPy) for six outliers (each colour is an outlier) and one randomly 
selected control participant (think red path).  

Figure 6.3 shows the detrended CoP path of each outlier (six trials from a total of four 

participants) compared to two control participants (“Control”), who were randomly 

selected between the group of participants showing a EnHL value in the range identified 

as physiological for the bipedal stance task (Figure 6-1). For the mediolateral direction 
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(CoPx), the path from the outliers and from the control participant is showing a similar 

trend, suggesting that natural sways in the mediolateral direction had similar ranges and 

temporal characteristics. However, for the anterior/posterior direction (CoPy), the path 

for the control participants has smaller amplitude and higher frequency components 

than the data path from the outliers. The longer EnHL in this group of participants, seems 

to suggest that they have adjusted their position frequently to maintain the upright 

posture (Baltich et al., 2014). As maintaining quiet stance seemed to be more 

challenging for this group of participants, with sways in the anterior/posterior direction 

with different feature, this might have influenced the neural control, with a more 

variable EMG signal and longer EnHL.  

It is clear there was more structure in the EMG signals recorded in the outlier trials 

(Figure 6-1). This may   suggests these participants found standing more challenging 

compared to the other participants.  Previous studies (Baltich et al., 2014; Federolf et 

al., 2013) have also stated that CoP EnHL is influenced by the degrees of freedom the 

nervous system can rely on or the number of cognitive functions utilised to accomplish 

a task. Therefore, a longer EnHL might also be the reflection of a task with more states 

(or strategies on how to perform it) available compared to a task where the less states 

are available. Considering the sways in the anterior/posterior direction recorded here 

during the simple task of standing, for this sub-group of participants the number of 

strategies available to accomplish the task were multiple or similar to those required for 

what are assumed to be more challenging tasks (i.e. two-foot tiptoe), resulting in longer 

EMG EnHLs. 
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Alternative explanations for the differences in EMG EnHL that should be considered are: 

i) there are longer scale temporal components in the EMGs that were not removed by 

the applied high pass filter (Section 3.4.4. General Methodology Chapter); ii) that there 

were fluctuations in the signal activation duration and/or duty cycle (Hodson-Tole and 

Wakeling, 2017); iii) or in the raw EMG firing statistics (Wakeling and Hodson-Tole, 

Under Review) and these differences in the characteristics of the EMG signal influenced 

the EnHL values. As the application of EnHL analysis to the study of EMG signal and 

neuromuscular control characteristics is in its infancy further work is required to 

appropriately interpret these findings. Included in this should be consideration of 

possible ways of combining non-linear analysis of CoP and EMG time series, using 

approaches such as cross approximate entropy. 

A final consideration for the outliers is that, this group of participants did not have any 

morphological common feature (i.e. age, weight, height, …), which could have been a 

factor influencing the EnHL. The only morphological feature, which may be a relevant 

factor to consider is foot size, as one participant presents the smallest foot size in the 

group and a second one the biggest foot size. However, the small sample size means it 

is not possible to directly link these morphological traits to factors influencing task 

performance, a topic that could be the focus of future work. 

 

In terms of spatial variation of EnHL, Figure 6.2 shows how for only the two-foot tiptoe 

task, showing the longest EnHL values, the region of longer EnHL and shorter EnHL share 

only partly the central portion of the foot. For the three tasks, the region with longer 

EnHL is in a similar location and also the area presents similar values (Table 6.1).  Results 
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from a previous study (presented in Chapter 4) showed that during postural tasks, there 

is a region in the foot (around the third column and seventh row of the grid) where the 

highest activation levels occur (see Results of Chapter 4). The region corresponds to the 

flexor digitorum brevis and it corresponds to the location where the longer EnHL CoG 

can be observed in these results. For what it concerns the shorter EnHL region, the type 

of task has an effect only for the two-foot tiptoe (p<0.05). During two-foot tiptoe, the 

shorter EnHL region shrinks to the region corresponding to the highest activation (Figure 

6.2), compared to the area of the other two postural tasks.  Previous results applying 

EnHL to EMG signal (Enders et al., 2015, Hodson-Tole and Wakeling, 2017) suggest that 

the motor unit (MU) firing information presents structured components, proposing that 

an increase in MU firing patterns, suggests an increase in the regularity of MU discharge 

and, as a result, EMG signal and short-term fluctuations become more regular. This 

suggests a synchronisation in the MU firing patterns, which is an important factor in 

muscle activation and force development and it is in accordance with the common drive 

concept (De Luca and Erim, 1994), which states that the MU in a single pool receive the 

same net drive from the central nervous system.  Even though it is not possible to talk 

about individual MU properties as these results were collected from surface EMG, both 

Enders et al. (2015) and the results from the present study, showed how increasing the 

effort (respectively, power of cycling and challenge of postural task), produced an 

increase in the EnHL, which could potentially be linked to an increase in MU pattern 

regularity and muscle activation. In this study, the narrowing of the region of shorter 

EnHL to a similar foot portion of the foot, suggests that where the highest activation 

occurs, is also where variation in EnHL occur. Moreover, the Flexor digitorum brevis 

muscle belly is found in the posterior aspect of the foot (McKeon et al., 2015) 
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(originating from the calcaneus), which seemingly seems to correspond to the region 

with longer EnHL. Whereas towards the metatarsals, the Flexor digitorum brevis splits 

into four heads which each insert onto a metatarsal. This region could potentially 

correspond to the shorter EnHL region, which could potentially be involved less during 

two-foot tiptoe. 

 

6.5.  Conclusion 
 

This study shows a baseline range of EnHL during postural tasks, which might be used as 

reference for future investigation. Further investigation is needed, to understand which 

factors of performing a postural task could potentially affect the EnHL and therefore the 

structure of the signal.  Further analysis, should also focus on the relationship between 

the structure of EMG signal from intrinsic foot muscles and extrinsic foot muscles, as 

this might reveal potential information of coordination between these two 

compartments fundamental for standing and locomotion. There is scope for this tool to 

be applied to clinical populations, where the control mechanisms may be additionally 

challenged by pathology. Here the EnHL could reveal how different populations achieve 

similar tasks and which parameters affect neural drive. This is a particular possible 

strength of the approach as it provides a time-based measure that enables comparison 

between studies/populations that the current sample entropy based analyses do not 

afford.  
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7. Discussion 
 

The overarching aim of the work presented in this thesis was to investigate the potential 

value of non-invasively evaluating intrinsic foot muscle behaviour using multi-channel surface 

electrode arrays.  The first objective of this work was to investigate the feasibility of 

collecting surface EMG from a portion of the plantar region of the foot with a non-

invasive methodology. There are some potential difficulties in collecting surface EMG 

from a region loaded with body weight; for example, the grid needs to be flexible and 

soft enough for the participant to stand on it, but on the other hand both body weight 

and the movement on the grid could affect the EMG signal collected. The results in 

Chapter 4 showed that the loading of body weight on the surface EMG grid does not 

interfere with the acquisition of physiological EMG signals. Both amplitude and 

frequency components were in the physiological ranges (Figure 4.1), reported in 

literature with frequency values between 20 Hz and 400 Hz and amplitude values up to 

1 mV. It was therefore concluded that it is possible to record physiological surface EMG 

from the plantar aspect of the foot in a non-invasive way, which opens new opportunity 

to gain more knowledge on spatial activation features of intrinsic foot muscles in a 

healthy group of people. In fact, it was also possible to quantify spatial features of both 

amplitude and signal structure (SampEn) of the activation from the sole of the foot. The 

results showed that the region with the highest activation is the portion of the foot 

corresponding to the Flexor digitorum brevis (Figure 4.2). Moreover, the same region 

presented the most structured signal, suggesting the presence of a more ordered signal 

at higher effort (i.e. higher intensity). The interesting aspect was that for the group of 

participants studied here, the region over which this pattern was observed was really 
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confined, therefore any behaviour outside this portion could potentially represent 

participants showing a different neuromuscular behaviour, perhaps representing a 

different motion control strategy or indicative of a pathology. Future work could focus 

on the investigation of these patterns in clinical populations, such as peripheral 

neuropathy or in aging, where standing might be achieved with different control 

strategies. 

The second objective of the thesis was to use the activation patterns from the plantar 

aspect of the foot and evaluate the response of their spatial features to mechanical 

behaviour during postural tasks (Chapter 5). Specifically, the support of the medial arch 

is one of the main functions of the intrinsic foot muscles (Reeser et al., 1983; Fiolkowski 

et al., 2003), therefore the association between the medial arch angle, force plate 

derived CoP changes and EMG patterns could inform understanding of the behaviour of 

this group of muscles, linked with the mechanical behaviour of the foot. The main 

findings showed that a task comprising mediolateral sways causes greater motion of the 

CoP and of the spatial features of the EMG, whereas an anterior/posterior motion task 

causes the medial arch angle to change the most with relatively small changes in EMG 

spatial features (Figure 5.1). With these results it was possible to show how the direction 

of motion generates a specific response both in biomechanics of the foot (CoP, MA) and 

intrinsic foot muscles activation (CoGE).  This behaviour could also be seen in the cross-

correlation between the time delays of biomechanics parameters (CoP, MA) and time 

delays of intrinsic foot muscles spatial features (CoG) where the mediolateral direction 

(X) is the one majorly involved (Figure 5.2). This could potentially suggest flexibility in 

the motor control strategy, where the nervous system responds to a challenge (task) in 

a specific manner and depending on the association recorded can choose to either act 
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synchronously (mediolateral sway) or sequentially (anterior posterior sway). This could 

be useful in designing of rehabilitation protocols or shoe insoles, knowing that this 

region is mainly activated during sways in the mediolateral direction. This could also help 

in the treatment of ankle sprain, which happen in the sagittal plane and could potentially 

be the result of intrinsic foot muscles weakness (Mickle et al., 2009; Soysa et al., 2012). 

However, the variability of the results in Chapter 5 (Figure 5.2) generated a large number 

of outliers and therefore, by removing these outliers, the association were not as strong 

as with the outliers (Chapter 5). While variability could be an indicator of a different 

strategy applied to motion, it does not allow to provide a valid explanation of the timing 

and association between the biomechanics parameters and the intrinsic foot muscles 

activation. However, these data were analysed with linear analysis, which are based on 

the magnitude of the signal, independent of any temporal information, and potentially 

it is not the best way to process these types of data. Therefore, the use of non-linear 

methodology, could potentially reveal relation of the motor control which are hindered 

with linear analysis. 

The third and final objective of this thesis was, therefore, to investigate the EMG signal 

from the intrinsic foot muscles with a novel non-linear analysis tool, called Entropic 

Halflife, which enables the analysis of the neuromuscular drive during motion. In 

Chapter 6, this methodology was, for the first time, applied to EMG from intrinsic foot 

muscles recorded during a range of postural tasks. New findings from this chapter, 

showed that EnHL from intrinsic foot muscles are in the range of 8 ms and 28 ms for 

quiet stance, 12 ms and 38 ms for two-foot tiptoe and 11 ms and 35 ms for single-leg 

stance (Figure 6.1). These range of values are similar to previous results (Hodson-Tole 
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and Wakeling, 2017, Enders et al., 2015) and represent baseline values for the intrinsic 

foot muscles during postural tasks that could be used as reference for further studies. 

EnHL values from this Chapter also showed, what was previously found in other studies, 

that longer EnHL are indicative of a higher balance demand of the task. In addition, the 

spatial distribution of the EnHL across the foot suggests that it is affected by the type of 

task and the more persistent signal appears to be in the same region where the highest 

activation was found (Figure 6.2). 

In conclusion, results from Chapter 4, Chapter 5 and Chapter 6 show that it is possible 

to non-invasively collect multi-channel surface EMG and draw new knowledge from the 

muscles on the plantar aspect of the foot relating to spatial activation features, signal 

structure properties and neuromuscular drive. These results could therefore help and 

have an impact on understating foot muscle behaviour in populations where balance is 

challenged or in the design of rehabilitation protocols and shoe insoles.   

7.1. Limitations of the study 
 

Limitations of each experimental study are described in the relevant chapters, however 

there are some general limitations, which will be addressed here. 

One overall limitation of the work presented is the number of participants who took part 

in the data collection. While the total number is reasonable (30 participants), the 

number of participants for the single chapters decreased due to either issues associated 

with noise in the EMG signal or technical problems, which caused some of the 

participants’ trials to be discarded. The pool of participants also included a very variable 

age range (21 to 73 years old) and most of the participants were under 40 years old with 

very few over 40 years, which did not allow comparison between groups based on age. 
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Future work should consider assessment of a wider age range, especially as ageing is 

associated with a loss of balance and increased falls risk. Recent work has also shown 

that thermoregulation in the foot during walking exercise differs between young adults 

and those over 40 years of age (Reddy et al., 2017) which given the role of skeletal 

muscles in thermoregulation (Rowland et al., 2015), may also reflect differences in foot 

muscles properties that warrant further investigation. Moreover, the pool of 

participants was made up more of males than females, which might have influenced the 

results, considering the effect of gender on joint kinematic (McLean et al, 2004). 

Another limitation is the size of the EMG electrode array applied to the plantar aspect 

of the foot. The dimension of the 64 channels array could not cover consistently the 

same portion of the foot, because of the different foot sizes. For the majority of the data 

set collected, no EMG signal was recorded from the Abductor hallucis or from the 

Abductor digiti minimi brevis, which are two of the biggest muscles in the foot, but 

located on the medial and lateral aspects outside the edge of the electrode grid. Future 

work should consider development of custom designs for different foot sizes or 

optimising the positioning of a smaller number of electrodes to consistently capture 

more muscles from all participants. 

Taken together the age range of the participants and the range of foot sizes, may have 

influenced the variability seen in the results of the experimental chapters.  This can be 

especially seen in the variability of the EMG signal amplitude and frequency (Chapter 4-

Figure 4.1) and in the cross-correlation results (Chapter 5-Figure 5.2). However, it does 

not seem to have affected the EnHL results (Chapter 6 - Figure 6.1), which in itself is 

interesting, as EnHL provides insights into signal structure, rather than the magnitude of 



 
 

130 
 

the data. Non-linear analysis, such as entropy-based measures, could potentially be 

more suitable for such a variable data set, as it is able to provide more consistent insights 

into intrinsic foot muscles motor control.  

7.2. Future work 
 

This study opens new opportunity of investigating non-invasively surface EMG from the 

plantar surface of the foot. However, there are still some aspects which need further 

investigation, such as the relationship between the intrinsic foot muscles and the 

extrinsic foot muscles compartment. 

The intrinsic foot muscles are believed to work in conjunction with the extrinsic foot 

muscles compartment (Zelik et al., 2015). The intrinsic and extrinsic foot muscles form 

the foot muscles compartment. The extrinsic and intrinsic foot muscles are usually 

evaluated separately, and as far as current literature goes, only one study investigated 

the co-ordination of these two groups of muscles locomotion (Zelik et al., 2015). There 

surface EMG was recorded from muscles contributing to metatarsophalangeal (MTP) 

flexion and extension. Intrinsic foot muscles were Extensor hallucis brevis (EHB), 

Extensor digitorum brevis (EDB) and Flexor digitorum brevis (FDB), were the first two 

muscles are on the dorsal aspect of the foot and only the last one belongs to the plantar 

aspect of the foot. Extrinsic foot muscles were Extensor hallucis longus (EHL) and Flexor 

digitorum hallucis longus (FDHL) and EMG envelopes were used to evaluate the timing 

of peak muscle activity to assess whether the type of coordination between intrinsic and 

extrinsic foot muscles was either sequential or synchronous (as defined by Zelik et al, 

2014). Their results seem to suggest that during locomotion a sequential activation 

occurs during walking with activation of the ankle plantar flexors, followed by the 
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metatarsophalangeal (MTP) flexors (Flexor digitorum brevis, Flexor digitorum longus), 

MTP extensors (Extensor hallucis brevis, Extensor digitorum brevis, Extensor hallucis 

longus), and then ankle dorsiflexors. However, during other motion tasks (such as side-

ways walking, tiptoe) this pattern was not consistent, showing a synchronous pattern. 

Their study showed that a relationship between these two compartments exists and is 

potentially fundamental to understand the interplay between these two compartments 

during postural tasks and locomotion, but considering the promising results from 

Chapter 6, this interplay can be investigated with the EnHL, to understand the underlying 

mechanisms during motor control. From the work in this thesis, several interesting 

questions with regard how posture is controlled, and the role of the intrinsic and 

extrinsic foot muscles arise.  Due to technical issues with the data collected in this work, 

it was not possible to fully address these within the scope of the current thesis, however 

it was possible to provide some preliminary insight which are detailed below. 
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8.  Interplay between body sway and intrinsic 

foot muscles activation for postural balance 

control in humans  
 

From the total 30 volunteers, as described in section 3.1 of General Methodology, EnHL 

was calculated from EMG signals recorded from seventeen healthy participants 

(fourteen males and three females, age: 39.1 ± 13. 4 years, weight: 74.3 ± 14.3 kg, 

height: 175.7 ± 9.4 cm) during three motor tasks: i) bipedal stance; ii) single-leg stance; 

iii) two-foot tiptoe stance.  

Due to a technical problem with the electrode sensors which was only identified at the 

end of the data collection period, not all participants had a full data set of sEMG from 

the six extrinsic muscles. Therefore, it was decided to pick the channel on the tibialis 

anterior, which was present for the complete set of participants, and one antagonist 

muscle. For the majority of participants (16/17 participants) the EMG from the lateral 

gastrocnemius was always properly recorded, whereas for the remaining participant the 

lateral soleus was usable. Considering the percentage of participants showing EMGs 

from the lateral gastrocnemius, signals from antagonist muscles were grouped into a 

single group, referred to from this point on as the antagonist muscle.  Wavelet analysis 

was used to process these extrinsic EMGs, with the same procedure used for the intrinsic 

EMGs described in Section 3.4.1 of the General Methodology (Chapter 3). The filtered 

wavelet transformed EMGs from the extrinsic foot muscles were then used to calculate 

the EnHL of the myoelectric signal from the trials. 

To determine whether the EnHL values found truly reflected structure of recorded 

signals, they were also compared with EnHLs calculated from surrogate signals (Enders 
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et al., 2015). The surrogate signals were generated from 29 (43 % of the complete data 

set) randomly selected trials, and corresponded to the time series containing the power 

information of the selected signal, but with the phase randomized. If the EnHL in the 

original signals was related to the signal structure EnHL values of physiological signals 

should be greater than the EnHL from the surrogate signals.  In addition, EnHL was also 

evaluated for the CoP of the same three postural tasks, to link the neuromuscular drive 

to the CoP with the EMG. 

The results showed values of EnHL for the extrinsic foot muscles differed between tasks, 

with the highest EnHL occurring for single-leg stance. However, the surrogate values 

were similar to those from the EMG values for the majority of cases (except single-leg 

stance Tibialis anterior), which suggests that these values need to be considered with 

caution as similar values between EMG and Surrogate EnHL suggest that the frequency 

content rather than the signal structure (i.e. order of the data points) could be 

dominating the pattern observed (Figure 7.1).  
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Figure 8-1 EnHL distribution for the three postural tasks (two-foot tiptoe, single-leg stance, 
bipedal stance) for Tibialis anterior and the antagonist muscle. 

 

Comparison between intrinsic and extrinsic foot muscles EnHL showed that, during the 

three postural tasks EnHL from extrinsic foot muscles were shorter than EnHL from the 

intrinsic foot muscles, (Figure 7.2). Previous studies have stated that EnHL is associated 

with the motor demand, with longer EnHL for tasks requiring more effort (Enders et al., 

2015). In addition, mechanical demands of the movement can influence the number and 

population of motor units recruited during the activation phase (Hodson-Tole et al., 

2009). In the present study, for the extrinsic foot muscle (TA) and only during single-leg 

stance, EnHL was longer than the surrogate signal. This factor could be the result of the 

involvement of TA in foot inversion as it wraps round and inserts on the medial 

cuneiform and first meta-tarsal, therefore its activation will be linked to controlling 

medio-lateral shape of the foot. For the rest of the tasks, the similarity of EnHL values 

to those from the surrogate signal, suggests that the structure of the signal was not 
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there to be detected. This could mean there is a minimum level of activation or motor 

unit firing that is required for the EMG signal to become structured and therefore to be 

detected by EnHL analysis. Moreover, the region on the extrinsic muscles, over which 

the EMG signal was recorded, was small compared to the dimension of the extrinsic foot 

muscles bellies, therefore the EnHLs as presented here might not be a true reflection of 

the true behaviour of the whole muscle (Vieira et al., 2015).  

 

Figure 8-2 EnHL distribution for extrinsic (EnHL TA, EnHL Ant, in bold characters) and intrinsic 
foot muscles (EnHL IFM) for the three postural tasks. 

 

Comparison of the EnHL for the CoP shows that during dynamic tasks, specifically for 

two-foot tiptoe, more control is driven to the intrinsic foot muscles, with less control to 

the CoP, meaning shorter EnHL values. This also applies to the extrinsic foot muscles, 

with the exemption of TA during single-leg stance, suggesting also more control to this 

muscle (particularly for the plantar flexors). During quiet stance, less drive to the 



 
 

136 
 

intrinsic foot muscles, but with an increase in stability of the CoP (longer EnHL), 

especially in the anterior-posterior direction (Figure7.2, Figure 7.3).  

 

Figure 8-3. EnHL distribution for CoP mediolateral trajectory (x) and antero-posterior trajectory 
(y) for the postural tasks (Two-foot tiptoe, bipedal stance, single-leg stance).  

 

This could potentially suggest that the extrinsic foot muscles maintain the drive to keep 

upright stance, while the intrinsic foot muscles seem to make short-term adjustments 

to maintain the posture. The interplay between the intrinsic and extrinsic foot muscles 

compartment seems to suggest that when the balance is distributed between both legs 

and feet (two-foot tiptoe and bipedal stance), the EMG signal from the intrinsic foot 

muscles is structured over longer periods of time, whereas when equilibrium is shifted 

on one side (single-leg stance), the extrinsic foot muscles are also involved in the motor 

task, with longer EnHL. Moreover, it appears to be more control to the CoP during more 

static tasks, which might suggest the system needs to make fewer short-time 

adjustments to maintain the upright posture.  
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However, one main limitation of this study was the recording of EMG signal from one 

antagonist extrinsic foot muscles only, due to the technical problem which did not allow 

to record from all six muscles identified. The involvement of the medial gastrocnemius 

or the soleus could not be investigated in this study. Further analysis is therefore needed 

to understand the level of contribution of other extrinsic foot muscles during simple 

motor tasks.  There is however scope to further investigate on how much the level of 

activation influences the neuromuscular drive, which could lead to further insights into 

the analysis of biological time series with non-linear analysis.  
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9. Conclusion 
 

In conclusion, this thesis has documented the potential and value of collecting surface 

EMG from the intrinsic foot muscles non-invasively; hence, this work contributes 

knowledge of the in vivo behaviour of the intrinsic foot muscles during postural tasks. 

The insights on the spatial and temporal patterns of activation and signal structure 

suggest that a localised region in the foot is engaged more during postural tasks in health 

participants. Hence, any difference in these patterns could potentially function as 

indicator of different motor strategies, motor impairment or foot deformities and 

should be investigated more widely in future.  

In addition, the work highlighted the potential of applying non-linear analysis to EMG 

time series, where there is more consideration of the temporal evolution of movement 

patterns and the associated variability. This approach has the potential of informing new 

understanding of the mechanisms underpinning motor control in different clinical 

populations. The new findings of this work could therefore help in the design of new 

orthosis and rehabilitation protocols, with the novel methodological approach enabling 

this to be done across any clinical populations.  
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Is it possible to quantify temporal and spatial 
patterns of activation of human intrinsic foot 

muscles? 
Elisabetta Ferrari (1), Glen Cooper (2), Neil D. Reeves (1), Emma Hodson-Tole (1) 
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Introduction 

Pathologies and deformities that affect foot functioning can have major impact on a person’s 

quality of life, with significant associated costs for healthcare providers. Although foot 

anatomy is complex, previous studies of function usually focus on one sub-portion (e.g. one 

muscle), so, it is not clear how a number of muscles within the foot interact in healthy 

individuals. Therefore, the aim of this study was to investigate whether it is possible to 

quantify physiologically relevant temporal and spatial activation patterns of the intrinsic foot 

muscles, from the plantar foot surface. 
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Methods 

All procedure were approved by the local ethics committee. Surface EMGs (sEMG) were 

collected from twenty-two healthy participants (mean±sd:age 41.77±15.08 years, body mass 

73.68±16.13 kg, height 173.68±10.67 cm), who completed simple postural tasks. Participants 

stood on a force plate with a 64-channel grid of electrodes on the plantar surface of the right 

foot and a whole body 54 marker set applied for kinematics data. sEMG from the intrinsic foot 

muscles were initially investigated visually to discard channels showing poor contact or high 

levels of noise. Frequency and amplitude components were extracted to explore whether the 

signals were the result of physiological muscle activation. Median frequencies and root mean 

square (RMS) amplitude were calculated for three tasks: two foot quiet standing, deliberate 

anterior-posterior sways and two foot standing on tiptoe, enabling comparison of sEMG 

features between a quasi-static and motion based conditions and while there was no contact 

between the ground and the grid. To investigate whether signals were affected by the shift in 

foot pressure during movement, RMS values for each channel of the grid were calculated for 

epochs of anterior and posterior sway. Entropy (measure of uniformity) was computed to 

evaluate spatial distribution in muscle activation [1]. Regions showing highest activation were 

segmented and the centre of gravity (CoG) in medial/lateral and anterior/posterior directions 

calculated [1]. Correlations between force plate measures of centre of pressure (CoP) and CoG 

were calculated. 

 

Results 

The lowest RMS values occurred during quiet standing. The task involving deliberate sways 

showed intermediate RMS values and the task involving standing on two foot tiptoe showed 

the highest. Median frequency was highest during quiet standing and lower during the other 

two tasks. Both median frequency and RMS values for the three conditions were within 

physiological ranges [2][3]. The 𝑟2 values from the correlation between the CoG and CoP were 

in the range of 0.0607 ±0.0601, indicating no correlation. Entropy values showed different 

levels of uniformity between tasks, with more uniform distribution during motion. 

 

 

 

Figure 0-1 Median frequency (A) and root mean square (B) for quiet standing (Stand 2L), 

anterior/posterior sways (Leaning); two foot standing on tiptoe (Tip Toe)  
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Discussion 

Both median frequency and RMS values indicate the EMG signals recorded are representative 

of physiological muscle activation. Moreover, the RMS values show the highest activation 

while the grid was not in contact with the floor (tiptoe), suggesting that foot pressure does not 

influence the amplitude of the signal (Fig. 1). Also, no correlation between the centre of gravity 

calculated from surface EMG amplitude and the centre of pressure from the force plate 

suggests that the EMG signals from the intrinsic foot muscles are not the representation of the 

shift of foot pressure on the grid and may therefore be considered as indicators of 

neuromuscular function. It is therefore possible to investigate spatial and temporal features of 

intrinsic foot muscle activation patterns non-invasively, which could help inform understanding 

of foot muscle properties and function in health and disease. 
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The human foot is critical for locomotion and posture, therefore pathologies and 

deformities, which affect its functioning, can have relevant impact on a person’s quality 

of life, with significant associated costs for healthcare providers. Although the anatomy 
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of the foot is very complex, with four layers of muscles in a narrow compartment, 

previous studies of function usually focus on one sub-portion (e.g. one muscle), which is 

not descriptive of the overall biomechanical behaviour; moreover, how intrinsic foot 

muscles activate to achieve motion is still not clear. Therefore, the aim of this study is 

to quantify patterns of intrinsic foot muscle activation, by recording temporal and spatial 

activation across the plantar foot surface.  

Surface EMG was collected from twenty-two healthy participants (40±13 years old). 

Participants stood with a 64-channels grid of electrodes on the plantar surface of the 

foot, while performing simple motor tasks. Each surface EMG trace was divided in 1s 

non-overlapping epochs and root mean square values were calculated for each channel, 

resulting in a 64-root mean square map for each epoch. The entropy of the activation 

pattern across the 64-channels for each epoch was quantified to provide information 

about changes in activation uniformity over time (Farina et al. 2008). Preliminary results 

are showing promise for this technique. 

These methods could provide a tool that can evaluate functional significance of muscle 

activation patterns, adding basic understanding of foot function by investigating 

patterns from different populations (e.g. trained people), and also clinical indicators of 

pathology which may have diagnostic and monitoring value (e.g. preventing foot 

ulceration in diabetes patients) 
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