1,121 research outputs found

    Fictocritical Cyberfeminism: A Paralogical Model for Post-Internet Communication

    Get PDF
    This dissertation positions the understudied and experimental writing practice of fictocriticism as an analog for the convergent and indeterminate nature of “post-Internet” communication as well a cyberfeminist technology for interfering and in-tervening in metanarratives of technoscience and technocapitalism that structure contemporary media. Significant theoretical valences are established between twen-tieth century literary works of fictocriticism and the hybrid and ephemeral modes of writing endemic to emergent, twenty-first century forms of networked communica-tion such as social media. Through a critical theoretical understanding of paralogy, or that countercultural logic of deploying language outside legitimate discourses, in-volving various tactics of multivocity, mimesis and metagraphy, fictocriticism is ex-plored as a self-referencing linguistic machine which exists intentionally to occupy those liminal territories “somewhere in among/between criticism, autobiography and fiction” (Hunter qtd. in Kerr 1996). Additionally, as a writing practice that orig-inated in Canada and yet remains marginal to national and international literary scholarship, this dissertation elevates the origins and ongoing relevance of fictocriti-cism by mapping its shared aims and concerns onto proximal discourses of post-structuralism, cyberfeminism, network ecology, media art, the avant-garde, glitch feminism, and radical self-authorship in online environments. Theorized in such a matrix, I argue that fictocriticism represents a capacious framework for writing and reading media that embodies the self-reflexive politics of second-order cybernetic theory while disrupting the rhetoric of technoscientific and neoliberal economic forc-es with speech acts of calculated incoherence. Additionally, through the inclusion of my own fictocritical writing as works of research-creation that interpolate the more traditional chapters and subchapters, I theorize and demonstrate praxis of this dis-tinctively indeterminate form of criticism to empirically and meaningfully juxtapose different modes of knowing and speaking about entangled matters of language, bod-ies, and technologies. In its conclusion, this dissertation contends that the “creative paranoia” engendered by fictocritical cyberfeminism in both print and digital media environments offers a pathway towards a more paralogical media literacy that can transform the terms and expectations of our future media ecology

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Investigating the learning potential of the Second Quantum Revolution: development of an approach for secondary school students

    Get PDF
    In recent years we have witnessed important changes: the Second Quantum Revolution is in the spotlight of many countries, and it is creating a new generation of technologies. To unlock the potential of the Second Quantum Revolution, several countries have launched strategic plans and research programs that finance and set the pace of research and development of these new technologies (like the Quantum Flagship, the National Quantum Initiative Act and so on). The increasing pace of technological changes is also challenging science education and institutional systems, requiring them to help to prepare new generations of experts. This work is placed within physics education research and contributes to the challenge by developing an approach and a course about the Second Quantum Revolution. The aims are to promote quantum literacy and, in particular, to value from a cultural and educational perspective the Second Revolution. The dissertation is articulated in two parts. In the first, we unpack the Second Quantum Revolution from a cultural perspective and shed light on the main revolutionary aspects that are elevated to the rank of principles implemented in the design of a course for secondary school students, prospective and in-service teachers. The design process and the educational reconstruction of the activities are presented as well as the results of a pilot study conducted to investigate the impact of the approach on students' understanding and to gather feedback to refine and improve the instructional materials. The second part consists of the exploration of the Second Quantum Revolution as a context to introduce some basic concepts of quantum physics. We present the results of an implementation with secondary school students to investigate if and to what extent external representations could play any role to promote students’ understanding and acceptance of quantum physics as a personal reliable description of the world

    Systemic Circular Economy Solutions for Fiber Reinforced Composites

    Get PDF
    This open access book provides an overview of the work undertaken within the FiberEUse project, which developed solutions enhancing the profitability of composite recycling and reuse in value-added products, with a cross-sectorial approach. Glass and carbon fiber reinforced polymers, or composites, are increasingly used as structural materials in many manufacturing sectors like transport, constructions and energy due to their better lightweight and corrosion resistance compared to metals. However, composite recycling is still a challenge since no significant added value in the recycling and reprocessing of composites is demonstrated. FiberEUse developed innovative solutions and business models towards sustainable Circular Economy solutions for post-use composite-made products. Three strategies are presented, namely mechanical recycling of short fibers, thermal recycling of long fibers and modular car parts design for sustainable disassembly and remanufacturing. The validation of the FiberEUse approach within eight industrial demonstrators shows the potentials towards new Circular Economy value-chains for composite materials

    Historical Burdens on Physics

    Get PDF
    When learning physics, one follows a track very similar to the historical path of the evolution of this science: one takes detours, overcomes superfluous obstacles and repeats mistakes, one learns inappropriate concepts and uses outdated methods. In the book, more than 200 articles present and analyze such obsolete concepts methods. All articles have the same structure: 1. subject, 2. deficiencies, 3. origin, 4. disposal. The articles had originally appeared as columns in various magazines. Accordingly, we had tried to write them in an easily understandable way

    Advanced Materials and Technologies in Nanogenerators

    Get PDF
    This reprint discusses the various applications, new materials, and evolution in the field of nanogenerators. This lays the foundation for the popularization of their broad applications in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics, and artificial intelligence

    END OF LIFE MANAGEMENT OF ELECTRONIC WASTE

    Get PDF
    Electronic products are becoming obsolete at a very high rate due to rapid changes in consumer demand and technological advancements. However, on other hand End-of-Life (EOL) management of electronic products is not effectively approached while these products offer huge opportunities for effective recycling. In this context, this thesis has highlighted the current practices and issues related to EOL management of electronic products focusing on their different material compositions, the uses of their raw materials in the circular economy perspective. The thesis proposes the introduction of digital technologies into the recycling process to improve efficiency. More specifically, this thesis has focused on the corona electrostatic separation process and the improvement of efficiency based on the simulation of the particle trajectories to identify the most effective parameters. Thus, in this frame, a numerical model to predict the particle trajectories in a corona electrostatic separator is developed using COMSOL Multiphysics and MATLAB software and validated with experimental trials. The recycling of electronic waste is becoming challenging due to its diverse and constantly changing material composition. In this regard, this thesis illustrates the use of non-destructive visible near-infrared hyperspectral imaging (VNIR-HSI) technique to identify material accurately; the effectiveness of VNIR-HSI is demonstrated through an experimental campaign combined with machine learning models, such as Support Vector Machine, K-Nearest Neighbors and Neural Network.Nonostante i prodotti elettronici diventino obsoleti ad un ritmo molto elevato, a causa dei rapidi cambiamenti nella domanda dei consumatori e dei progressi tecnologici, la gestione del loro fine vita (End-of-Life (EOL)) non viene affrontata in modo efficace benché offra, invece, grandi opportunità di riciclo. In questo contesto, questa tesi ha evidenziato le attuali pratiche e problematiche relative alla gestione del fine vita dei prodotti elettronici concentrandosi sulla loro diversa composizione, l’utilizzo delle materie prime seconde ricavabili in una prospettiva di economia circolare. La tesi propone l’introduzione di tecnologie digitali nel processo di riciclo per migliorarne l'efficienza. In particolare, questa tesi si è concentrata sul processo di separazione elettrostatica a corona e sul miglioramento dell'efficienza grazie alla simulazione delle traiettorie delle particelle per identificare i parametri più efficaci. Pertanto, in questo studio, utilizzando i software COMSOL Multiphysics e MATLAB, è stato sviluppato un modello numerico per prevedere le traiettorie delle particelle in un separatore elettrostatico a corona; il modello è stato poi validato con prove sperimentali. Il riciclo dei rifiuti elettronici sta diventando sempre più complesso a causa della presenza di mix di materiali diversificati e in continua evoluzione. A questo proposito, la tecnologia di visione iperspettrale non distruttiva basata su lunghezze d’onda nel visibile e nel vicino infrarosso (VNIR-HSI) è stata utilizzata in questo lavoro di tesi per identificare il materiale in modo preciso; l'efficacia di VNIR-HSI, combinato con modelli di apprendimento automatico, come la Support Vector Machine, K-Nearest Neighbors e Neural Network, viene dimostrata attraverso una campagna sperimentale

    Spin Detection, Amplification, and Microwave Squeezing with Kinetic Inductance Parametric Amplifiers

    Full text link
    Superconducting parametric amplifiers operating at microwave frequencies have become an essential component in circuit quantum electrodynamics experiments. They are used to amplify signals at the single-photon level, while adding only the minimum amount of noise required by quantum mechanics. To achieve gain, energy is transferred from a pump to the signal through a non-linear interaction. A common strategy to enhance this process is to place the non-linearity inside a high quality factor resonator, but so far, quantum limited amplifiers of this type have only been demonstrated from designs that utilize Josephson junctions. Here we demonstrate the Kinetic Inductance Parametric Amplifier (KIPA), a three-wave mixing resonant parametric amplifier that exploits the kinetic inductance intrinsic to thin films of disordered superconductors. We then utilize the KIPA for measurements of 209Bi spin ensembles in Si. First, we show that a KIPA can serve simultaneously as a high quality factor resonator for pulsed electron spin resonance measurements and as a low-noise parametric amplifier. Using this dual-functionality, we enhance the signal to noise ratio of our measurements by more than a factor of seven and ultimately achieve a measurement sensitivity of 2.4 x 10^3 spins. Then we show that pushed to the high-gain limit, KIPAs can serve as a `click'-detector for microwave wave packets by utilizing a hysteretic transition to a self-oscillating state. We calibrate the detector's sensitivity to be 3.7 zJ and then apply it to measurements of electron spin resonance. Finally, we demonstrate the suitability of the KIPA for generating squeezed vacuum states. Using a cryogenic noise source, we first confirm the KIPAs in our experiment to be quantum limited amplifiers. Then, using two KIPAs arranged in series, we make direct measurements of vacuum noise squeezing, where we generate itinerant squeezed states with minimum uncertainty more than 7 dB below the standard quantum limit. High quality factor resonators have also recently been used to achieve strong coupling between the spins of single electrons in gate-defined quantum dots and microwave photons. We present our efforts to achieve the equivalent goal for the 31P flip-flop qubit. In doing so, we confirm previous predictions that the superconducting material MoRe would produce magnetic field-resilient resonators and demonstrate that it has kinetic inductance equivalent to the popular material NbTiN
    • …
    corecore