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ABSTRACT

In order to ensure high production yield of semiconductor devices, it is desirable

to characterize intermediate progress towards the final product by using metrology

tools to acquire relevant measurements after each sequential processing step. The

metrology data are commonly used in feedback and feed-forward loops of Run-

to-Run (R2R) controllers to improve process capability and optimize recipes from

lot-to-lot or batch-to-batch.

In this dissertation, we focus on two related issues. First, we propose a novel

non-threaded R2R controller that utilizes all available metrology measurements,

even when the data were acquired during prior runs that differed in their contexts

from the current fabrication thread. The developed controller is the first known

implementation of a non-threaded R2R control strategy that was successfully

deployed in the high-volume production semiconductor fab. Its introduction

improved the process capability by 8% compared with the traditional threaded

R2R control and significantly reduced out of control (OOC) events at one of the

most critical steps in NAND memory manufacturing. The second contribution

demonstrates the value of developing virtual metrology (VM) estimators using the

insight gained from multiphysics models. Unlike the traditional statistical regres-

sion techniques, which lead to linear models that depend on a linear combination

of the available measurements, we develop VM models, the structure of which

and the functional interdependence between their input and output variables

are determined from the insight provided by the multiphysics describing the

operation of the processing step for which the VM system is being developed. We

demonstrate this approach for three different processes, and describe the superior

performance of the developed VM systems after their first-of-a-kind deployment

in a high-volume semiconductor manufacturing environment.
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CHAPTER 1

INTRODUCTION

1.1 Process Control Systems for Semiconductor Manufacturing
The state of the art process control systems (PCS) in modern semiconductor

manufacturing typically include statistical process control (SPC), fault detection

(FD) and Run-to-Run control (R2R).

SPC is a continuous improvement methodology that utilizes statistical tools to

monitor and control a process. The acronym SPC consists of three components:

statistical, process and control. First, the “statistical” component summarizes the

data through descriptive statistics (e.g., mean, median, range or standard deviation)

and determines the distribution. Secondly, the “process” component refers to

the transformation of a set of inputs including material, actions, methods and

operations, into desired outputs in the form of product, information, services or

general results [15]. In semiconductor manufacturing, “process” refers to recipes,

tools or chambers, chemicals or gases, raw materials and people. Finally the

“control” components can include control charts, out of control (OOC) rules,

trending rules and reaction mechanisms. The purpose of SPC is to monitor and

control the process to ensure that the process operates normally and at its maximum

potential. A sample SPC chart is shown in Figure 1.1. Here, the SPC chart contains

a center line (or target), control limits and specification limits [16]. The control

limits are calculated by the distribution of historical data in normal operation, and

if the data are normally distributed, then the control limits can be calculated using

the following methods:

UCL = µ+3σ (1.1)

LCL = µ−3σ (1.2)
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Figure 1.1. Sample SPC chart

where UCL is the upper control limit, LCL is the lower control limit, µ is the

population mean and σ is standard deviation of the population. There are many

types of SPC control charts and control limits can be calculated quite differently [17]

for the various types of control charts. Specification limits (USL or LSL) are

engineering limits, which are usually defined by the requirements of internal or

external customers. Specification limits are not determined statistically.

In the past decade, FD [18,19] and R2R control systems [20] have been added into

process monitoring and control systems under the PCS umbrella. A conventional

process control systems (e.g., SPC) exists only as a postprocess control-based

on metrology data, while FD system allows real-time control of equipment and

process parameters before and during wafer processing. FD system collects and

consolidates process trace data from wafer processing tools in real time. Univariate

statistical analysis or multivariate statistical analysis can be used to determine

control limits of the consolidated data. These established control limits can trigger

fault detection and reaction mechanisms. This is also called an out of control action

plan (OCAP). The benefits of FD include preventing excursions, identifying root

causes of faults, matching tools and chambers’ performance and optimizing tool

maintenance and metrology operations. For example, electrostatic chuck (ESC)

inner and outer temperature data were collected in Figure 1.2 [21], which are

process trace data. The “signature” of them can be used to monitor the tool health.



3

 

50

52

54

56

58

60

62

64

66

68

E
S

C
h

u
ck

T
e

m
p

In
n

e
r 

[ 
C

 ]

3:48:00 PM 3:50:00 PM 3:52:00 PM

TimeStamp

46

48

50

52

54

56

58

60

62

64

66

E
S

C
h

u
ck

T
e

m
p

O
u

te
r 

[ 
C

 ]

3:48:00 PM 3:50:00 PM 3:52:00 PM

TimeStamp

Figure 1.2. Sample FD trace data of the ESC inner and outer temperature

FD and SPC are mainly responsible for monitoring process, while R2R control

plays an important role to control process and improve process capability. The

process capability is often measured in a capability index Cpk [22] with a target

value of 1.33 or 1.66 depending on customer’s requirement:

Cpk =min[
USL−µ

3σ
,
µ−LSL

3σ
] (1.3)

As semiconductor features shrink in size and pitch, some critical processes are

not even feasible to run without R2R controllers because the process variations from

incoming steps or current steps are likely greater than the specification window.

R2R controllers consist of inputs, outputs and a process model. The recipe setpoints

(or inputs) are adjusted based on metrology data to achieve desired output. The

controller mode can be either feed-forward (pre-metrology) or feedback (post-
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metrology) and the controller types include single input and single output (SISO)

and multiple inputs and multiple outputs (MIMO).

Dry etch refers to the removal of material by exposing the material to a bom-

bardment of ions, typically a plasma of reactive gases such as the oxygen plasma,

that dislodge portions of the material from the exposed surface. Unlike the isotropic

etching by a wet etch, the dry etch process typically etches anisotropically. Figure

1.3 shows that a R2R controller deployed on dry etch process improved the process

capability (or Cpk) by more than 40% [23] and similar results were obtained on the

diffusion process [24], which is a way to grow a thin layer of material, for example

the silicon dioxide, on silicon wafer with very high temperature.

Figure 1.4 depicts the traditional process monitoring and control system through

the SPC charts system: both pre-metrology and post-metrology are fed into the

SPC system, and western electric rules [17] are used to distinguish common cause

variations and special cause variations. The common cause variations are natural

patterns which are expected to occur during normal operations, while the special

cause variations are unusual patterns or nonquantifiable variations. The SPC chart

can help detect special cause variations and it then triggers the reaction mechanism

when the chart is OOC or trending rules are violated. The reaction mechanisms

include tool maintenance, recipe change, sampling more products and so on. The

 

Figure 1.3. CD process capability is improved by 40% with a R2R controller
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Figure 1.4. Process monitoring and control through SPC Chart

last data point in Figure 1.1 is OOS (out of spec) and in this situation, some action

needs to be taken to react to such an event according to the reaction mechanism.

On top of SPC, FD and R2R controls, we propose that a virtual metrology (VM)

system can be integrated into the PCS for both process monitoring and control

(refer to Figure 1.5). In semiconductor manufacturing, virtual metrology refers to

methods to predict properties of a wafer based on machine parameters and sensor

data from the production equipment and pre-metrology, without performing the

costly physical measurement of the wafer properties [25]. This new architecture

integrates VM and other PCS components (SPC, FD and R2R) altogether. First, VM

collects data from FD, metrology and other data source in the process, and then the

predicted metrology data can be fed into the R2R controller for either feed-forward

or feedback control. Finally, the predicted metrology data and their reliance index

(RI) can be saved in SPC charts in either FD or SPC for process monitoring. In

summary, VM interacts with every single component of the PCS system and it

improves the process control capability by introducing a “predictive mechanism.”

1.2 Introduction to R2R Control
In recent years, R2R control has been thoroughly adopted in semiconductor

manufacturing. R2R control is defined as “a form of discrete process and machine

control in which the product recipe with respect to a particular process is modified

ex situ, i.e., between machine runs, so as to minimize process drift, shift, and

variability” [26]. A framework of fab-wide R2R control was proposed in Figure

1.6 [1]. Currently, most of the control loops in the framework have been achieved
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Figure 1.5. A new architecture for process monitoring and control

 

Figure 1.6. A framework of fab-wide R2R control [1].
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in the production. Deposition processes, such as chemical vapor deposition (CVD)

and physical vapor deposition (PVD) or diffusion, often use thickness metrology as

output, and deposition time or deposition temperature as inputs (or tuning knobs).

The controller mode could be feedback only, except that some PVD controllers

utilize target life as feed-forward components. Photo R2R control often selects

critical dimension (CD) and Registration (REG) as outputs, and it is very likely a

feedback only control system, which adjusts either the CD dose or alignment REG

parameters. On the other hand, etch, electrical-chemical deposition (ECD) and

chemical-mechanical polishing (CMP) control systems can be more complicated.

R2R control systems on these processes often involve feed-forward, feedback and

multiple inputs and multiple outputs.

There are two commonly used R2R algorithms [27], exponential weighted

moving average (EWMA) filter-based R2R control and model predictive control

(MPC). EWMA-based R2R control earned its popularity due to its stability and

easy tuning, but MPC has earned a good reputation because it can handle MIMO

systems and constraints. We will have a quick introduction of these two algorithms

next.

1.2.1 R2R Control Algorithms

The first EWMA-based R2R control system was developed on an epitaxial silicon

deposition system [28]. A simple process model can be described in the linear

regression form,

yk =muk+ bk (1.4)

where yk is the output, m is the process gain (the slope of the model), uk is the

manipulated variable and bk is the bias (intercept) of the model.

In the case that the process gain m is assumed a fixed value, where m could be

obtained through a priori design of experiment (DOE) [29], the intercept state bk

can be estimated via an EWMA filter providing new metrology data are obtained:

b̂k+1 = λ(ym−muk)+ (1−λ)b̂k (1.5)

where the value of the weight λ, a value between 0 and 1, is selected by tuning,

and the typical value of λ is between 0.2 and 0.3. A smaller λ value is often chosen
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for relatively high metrology noise or model noise, while a higher λ value should

be chosen otherwise. The two different model update methodologies for R2R

control are shown in Figure 1.7. The graph on the left illustrates that the model is

updated through estimating a new intercept bk+1: the dotted line is the represented

process model before the shift, with the old intercept state, and the interception

with the target determines the recipe before the shift. After a tool or process shifts,

a new intercept state can be estimated through the EWMA filter, △b represents the

magnitude of the shift for the intercept or “bk+1 − bk”. The solid line represents

the R2R model after the shift, and a new recipe setting can be calculated through

intercepting a new R2R model of bk+1 with the target:

uk+1 =
yt− b̂k+1

m
(1.6)

where yt is the control target.

An alternative option is to update process gain mk, as seen in the graph on the

right of Figure 1.7: instead of modulating the intercept state, we estimate the new

process gain mk+1 through the EWMA filter, assuming intercept b is fixed:

m̂k+1 = λ
(yk− b)

uk
+ (1−λ)m̂k (1.7)
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Figure 1.7. Two model update methodologies for R2R control: model update
through estimating intercept (left graph); model update through estimating slope
(right graph)
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A new recipe setting can be calculated through intercepting a new R2R model of

mk+1 with the target,

uk+1 =
yt−b
m̂k+1

(1.8)

Generally speaking, either estimating intercept state or estimating process gain

often produces similar results, but in certain situations, estimating intercept state

can outperform estimating process gain, and vice versa. This will be further

discussed in the non-threaded R2R control chapter.

MPC has been well adopted in many industries, such as at petrochemical

plants [30], but for semiconductor manufacturing, MPC is relatively new. A linear

state space model [27, 31] can be expressed as,

xk+1 = Axk+Buk+Fωk

yk = Cxk+Duk+νk
(1.9)

where xk is process state, A is state (or system) matrix, B is input matrix, C is output

matrix and D is feed-forward matrix of the general state space representation.

F is the state noise matrix. ωk and νk are state noise and measurement noise,

respectively.

The simple input-output model in Equation (1.4) can be easily transformed into

the format of Equation (1.9) through two methods. For the first method, one can

define xk = bk, then the equation below can be obtained,

bk+1 = bk+ωk

yk = bk+muk+νk
(1.10)

In the state space form [32, 33], we can simply define A = 1, B = 0, F = 1, C = 1 and

D =m.

An alternative state space transformation of Equation (1.4) can be obtained by

assumption of uk+1 = uk and defining state vector xk as,

xk =
[
muk bk

]T
(1.11)

and in the state space form [34, 35],[
muk+1
bk+1

]
=

[
0 0
0 1

][
muk
bk

]
+

[
m
0

]
uk+

[
0
1

]
ωk

yk =
[
1 1
] [muk

bk

]
+νk

(1.12)
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and comparing it with Equation (1.9), one can get A =
[
0 0
0 1

]
, B =

[
m
0

]
, F =

[
0
1

]
,

C=
[
1 1
]

and D= 0. The second transformation method seems to be better because

feed-forward matrix, D, is zero.

The manipulated variable profile, uN, can be calculated through minimization

of the objective function [27] below,

min
uN

J = ∞∑
j=0

(yk+ j− yt)
′
Q(yk+ j− yt)+△u

′
k+ jR△uk+ j

 (1.13)

subject to below constraints:

umin ≤ uk+ j ≤ umax

ymin ≤ yk+ j ≤ ymax

△umin ≤ △uk+ j ≤ △umax

where N is the prediction horizon, Q and R are symmetric positive definite weight-

ing matrices, and △ui = ui −ude f ault, ude f ault is default recommended manipulated

variable. For those R2R controllers used in a semiconductor manufacturing en-

vironment, we usually set N = 1 and Q >> R. Therefore, it is simply a dead-beat

controller [36] if without any constraint.

The state estimation of can be done by quadratic programming [34,37] through

the objective function below:

min
ωk,νk

J = N−1∑
k=−1

ω
′
kQωk+

N∑
k=0

ν
′
kRνk

 (1.14)

subject to the constraints below:

x0 = x̄0+w−1

xk+1 = Axk+Bui+ωk

yk = Cxk+νk

ωmin ≤ wk ≤ ωmax

Q and R are configurable weighting matrices used as part of the optimization cost

function, analogous toλ in EWMA control. The optimization function allows states

to be calculated such that state noise ωk and measurement noise νk are minimized
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while remaining within established model constraints. The states can be estimated

based on historical run data using the control model and the state estimation

optimization Equation (1.14), where N is horizon length, x̄0 is the initial state and

ωmin and ωmax are the lower and upper bounds of the state noise.

The objective function J can be transformed into the form below through

algebraic manipulation [34]:

J =min
Wk

1
2

WT
k HWk+ f TWk

Wk,min ≤Wk ≤Wk,max

(1.15)

where Wk is the state error vector, H is a function of Q’s and R’s in the moving

horizon and f is a function of y’s, u’s and R’s in the moving horizon. Wk’s can be

obtained after solving this objective function though quadratic programming and

Wk is defined as,

Wk =
[
ωk−N ωk−N+1 · · · ωk

]T
(1.16)

where N is the horizon length.

Alternatively, the states can be estimated via Kalman filter [27,38,39], the linear

observer is defined as

x̂k+1|k = Axk+Buk+L(yk−Cx̂k|k−1) (1.17)

The observer gain L is known as Kalman gain, which can be computed with

following steady state Riccati equations,

P = A[P−PCT(CPCT+Rν)−1CP]AT+FQωFT

L = APCT(CPCT+Rν)−1
(1.18)

where Qω is the covariance of state noise, Rν is the covariance of measurement

noise and F is state noise matrix. The disadvantages of such state estimation using

Kalman filter would be that it cannot handle constraints as well as the moving

horizon.

1.2.2 Threaded and Non-threaded R2R Control

Most R2R controllers are designed to function when the set of contexts, such

as process chamber and device, remain fixed (threaded) from run to run, and
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wafers with similar process history are assumed to have similar characteristic.

Each context is segregated from other context groups; for example, a wafer was

processed in the same chamber and same device. The control thread separates each

of the states into a unique and single disturbance for the R2R model. In Table 1.1,

we showed that the contexts of three chambers and two devices define a total of

6 threads in the threaded R2R controller and the intercept state is tracked by each

defined thread.

Referring to Equation (1.4), the intercept state bk can be assumed as the lump

sum of all contexts biases or contributions. The benefit of this is that within each

thread, we do not need to worry about how the individual context state changes,

nor the non-linear interactions among those context bias contributions [40]. While

the problem is that it often causes metrology dilution problem or insufficient data

for certain threads, one can imagine what would happen if there were more than

20 chambers in the example of Table 1.1. It is well known that threaded controllers

often have difficulty with low-volume products interjected into high-volume man-

ufacturing of a typical device. The problem is exacerbated for a Fab with a high

mix of products, in which case it may be expected to have only one or two lots of a

given low-volume device started each week. In such circumstances, the threaded

controller will produce corrective actions based on metrology information obtained

several days ago when an identical thread was last run. Depending on the process,

if a chamber drifts faster than metrology feedback with the same contexts, the

threaded R2R control will likely fail to perform satisfactorily during the low-volume

product run as a consequence of a drift that has not been captured by the metrology.

Table 1.1. Control thread definition example: contexts of three chambers and two
devices

Chamber Device Control Thread State
A 1 A1 bA1
A 2 A2 bA2
B 1 B1 bB1
B 2 B2 bB2
C 1 C1 bC1
C 2 C2 bC2
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To address such problems, there is an increasing interest in designing non-

threaded controllers [41–43] that share information between different control threads

and loops. In such non-threaded implementation of the R2R control, the metrology

information is shared between production runs for high-volume and low-volume

devices. By using the information from all runs, a better control for both high-

volume and low-volume devices may be expected, with the most significant

benefits likely realized for infrequent threads [44].

The key difficulty in implementing non-threaded R2R control is establishing

the association of the measured deviations of the device properties from reference

values with the run contexts. For example, every context of the run potentially

contributes to the intercept term bk,

yk =muk+ (bChamber(i)
k + bDevice( j)

k ) (1.19)

where bChamber(i)
k and bDevice( j)

k are context contributions from some chamber and

device respectively. A more generic form can be expressed as following,

bk =
∑

i

bContexti
k = CA,kbContext

k (1.20)

where bContexti
k is the single intercept bias contribution from every context group,

CA,k is the context row vector and bContext
k is a column vector which contains the

individual intercept state corresponding to each context.

Clearly, any number of combinations of individual context contributions can

add up to the same value of bk. Such nonuniqueness implies that it is not

possible to obtain unique values of context intercepts for the given metrology

measurements and the corresponding control inputs used during the kth run. In

essence, the contribution of the individual contexts to bk are not observable [45].

The other assumption of this method is the linear interactions among contexts state

contributions, while the interactions among contexts may not be linear in certain

circumstances.

It has been proved that CA,k is always rank deficient [41] and

τ = c−1 (1.21)
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where τ is number of unobservable state, and c is number of context categories.

Let’s define CA,k as one row of context matrix CA for multiple runs. CA is still

unobservable [40]. However, if we denote a new state zk, which is the linear

combination of xk:

zk = CA,kxk (1.22)

We have proved that zk is always observable, and the non-threaded R2R recom-

mendations of input depends on zk not xk. Therefore, this is the foundation of our

non-threaded R2R approach, which will be discussed in detail in the non-threaded

R2R control chapter.

1.3 R2R Control and Virtual Metrology
Besides the non-threaded R2R controller, VM is one of the new techniques

to address the high demand of metrology operations by R2R controllers. It was

proposed that VM data would be fed into the wafer to wafer (W2W) controller [2]

in Figure 1.8: the metrology of every wafer is predicted by VM module, the

predicted output ŷk and actual output yk can be used in the feedback loop of a

W2W controller. We know that most R2R controllers in production are lot to lot

(L2L) based, because measuring all wafers is very costly in terms of cycle time

and metrology capacity [20]. With the help of the VM system, all wafers can be

potentially controlled by a W2W controller.

Besides the W2W VM-R2R feedback applications, the VM-R2R applications

below would also be very useful:

• Feed-forward application [46, 47]. Wafer level predictions (VM data) can be

fed forward to the wafer level R2R controller at downstream process steps,

for example dry etch step, so that all wafers in a lot can be compensated to

improve process control performance.

• Lot level feedback application. In most lot level feedback R2R controllers,

only a small portion of the lots are sampled because of cycle time reduc-

tion and costly metrology operations. With the help of VM, 100% of the

lots’ metrology data becomes available, either actual metrology or predicted
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Figure 1.8. VM and W2W R2R control [2]

metrology. Such lot level VM data can be used in the feedback loops of R2R

controllers for Cpk improvement.

• R2R model update. It’s well known that the R2R control model can drift over

time, often referred to as process gain m, and such plant and model mismatch

problem can cause the downgrade of R2R control performance. In this

research, process gain is estimated from time to time through multiphysics-

based model in the VM module, while the intercept state, bk, is still updated

upon new metrology data. Therefore, a better process control can be realized.

1.4 Introduction to Virtual Metrology
VM is considered to be a system that predicts metrology data without physically

measuring. The outputs of VM can be the CD or thickness of a wafer, and the inputs

are typically the process trace data such as pressure, temperature, chemical or gas

flows and so on. The predictions (outputs of VM) can be used in the SPC for

process monitoring or, if it’s accurate enough, it can be used in R2R for controlling

the processes. Historically, the algorithms for VM are typically statistical methods

such as regression and classification [48, 49]. Before introducing the new method
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in this research, let’s quickly review the statistical regression methods used for VM

models.

1.4.1 Principle Component Analysis

In semiconductor manufacturing, there are a large number of measured vari-

ables (FD data or SPC data) that change over time. These variables, however,

usually change in a highly correlated manner due to the underlying physical or

chemical principles. These independently varying components that are indirectly

observed through the measured variables are called latent variables (LV). LVs

resemble state variables (e.g., intercept states in R2R control theory) because both

uniquely determine the state of the system, they both are not directly measurable

but they are observable through metrology data and finally, both are not uniquely

defined. However, there are major differences between state variables and latent

variables: the state variables are often used in dynamic systems and LVs are

normally used in the steady state; also the number of state variables is usually

larger than the number of measured variables, but the number of latent variables is

usually less than the number of measured variables. Principle component analysis

(PCA) is widely used in chemical engineering [49].

Let x ∈ ℜM denote a sample vector (or one wafer) of FD data with M sensors

and assume that there are N wafers, which results in a data matrix X ∈ℜN×M, and

the data matrix can be decomposed into M column vectors or N row vectors as is

shown in the following,

X =
[
x1 x2 · · · xM

]
=


xT(1)
xT(2)
...

xT(N)

 (1.23)

and the sample mean and sample standard deviation can be computed as below,

and each column can be normalized by them.

x̄i =
1
N

N∑
j=1

xi j (1.24)

si =

√√√√
1

N−1

N∑
j=1

(xi j− x̄i)2 (1.25)
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where xi j is the i jth element of matrix X.

Principal component analysis (PCA) extracts the direction of the largest vari-

ance in the m dimensional measurement space. The data decomposition can be

expressed as follows,

X = t1pT
1 + t2pT

2 + · · ·+ tkpT
k + X̃ = TPT+ T̃P̃T (1.26)

where t1 and p1 are the score and the loading of the first principal component, t2

and p2 are the score and the loading of the second principal component and so on.

X̃ = T̃P̃T is the residual matrix, T =
[
t1 t2 · · · tk

]
and P =

[
p1 p2 · · · pk

]
.

Figure 1.9 [3] is used to illustrate what score t and loading p mean exactly. The

principle component is the best fit of all 6 data points shown in Figure 1.9 B. Only

one principle component is shown for ease of visualization. The loading has two

vectors, p1 and p2, which are the direction of cosines. The score vector in this case

has six components, and each component corresponds to the projection of the data

point on the principal component line.
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Figure 1.9. A principle component in the case of two variables: A. The loading for
the principle component, also the direction of principle component B. The scores
of the principle component, which are the projections of the sample points (1-6) on
the principle component direction [3]
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Perhaps one can notice that the principle component loadings p = cos(θ1)2 +

cos(θ2)2 = cos(θ1)2 + sin(θ1)2 = 1, and this property can be extended to more di-

mensions, for arbitrary direction p ∈ ℜM with ∥p∥ = pTp = 1. The projection of X

onto this direction line is,

t = Xp (1.27)

The objective of PCA is to maximize the variance along the loadings, which can be

written as,

max tTt = (Xp)TXp = pTXTXp (1.28)

and subject to

pTp = 1 (1.29)

Applying the Lagrange multiplier, the above objective function can be rewritten

as,

J = pTXTXp+λ(1−pTp) (1.30)

and the solution of maximizing of this objective function is,

XTXp = λp (1.31)

λ = pTXTXp (1.32)

Both nonlinear iterative partial least squares (NIPALS) [50] and singular value

decomposition (SVD) [49] algorithms can be used to decompose the matrix X into

P and T. The procedure of NIPALS is as follows:

1. Scale X to zero mean and unit variance and set Xi = X

2. Choose a starting point of ti as some columns of Xi, and iterate below relations

defined in the following equation until ti converges or the maximum number

of iterations is reached.

pi = XT
i ti�∥XT

i ti∥ (1.33)

ti = Xipi (1.34)

3. Compute residue

Xi+1 = Xi− tipT
i (1.35)
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4. Iterate through all factors by setting i = i+1

There are some important properties of PCA, where PCA loadings and scores

are orthogonal to each other:

pT
i p j = 0

tT
i t j = 0

(1.36)

for i , j.

1.4.2 Partial Least Squares

Partial least squares (PLS) is a widely used algorithm for predictions, especially

for VM [51,52]. It would be useful to understand ordinary least squares (OLS) [53]

first before we disucss PLS. For n wafers FD input data X and metrology output

data Y, the data matrices can be described as,

X =
[
x(1) x(2) · · · x(N)

]T ∈ℜN×M (1.37)

Y =
[
y(1) y(2) · · · y(N)

]T ∈ℜN×M (1.38)

A linear process model is assumed, then

Y = Xθ+V

y(k) = θTx(k)+v(k)
(1.39)

and the OLS solution of the process gain is,

θls = (XTX)−1XTY (1.40)

While in many semiconductor processes, lots of process trace (or FD data)

data items can be highly correlated or collinear. The collinearity may come from

underlying physical or chemical correlations due to material or energy balances

and restricted variability among the process variables required by safety or tuning

knob constraints. In any of these cases, the OLS solution is ill-conditioned due to

high collinearity among data items. Fortunately, the PLS algorithm could be the

solution by virtue of the fact that the principle components are not correlated and
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the regression coefficients are not correlated either, as we discussed in the PCA

section earlier.

Similar to PCA, PLS decomposes input X and output Y data matrices into

principal components,

X = tpT+E

Y = uqT+F
(1.41)

where t and u are scores, p and q are scores, and E and F are residuals. t = Xw and

u = Yq and the loadings w and q are subject to the below constraints,

∥w∥ = 1

∥q∥ = 1
(1.42)

The difference between PLS and PCA is that PLS not only minimizes the resid-

uals, E and F, but also tries to maximize the correlation between the scores [54–56],

u and t. This objective can be expressed as,

J =max(tTu) (1.43)

Applying Lagrange multipliers, the objective function J can be rewritten as,

J =max{wTXTYq+
1
2
λw(1−wTw)+

1
2
λq(1− qTq)} (1.44)

Taking derivatives with respect to w and q,

∂J
∂w
= XTYq−λww = 0

∂J
∂q
= YTXw−λqq = 0

(1.45)

The solution of the PLS objective function leads to eigenvectors and eigenvalues as

below,

XTYYTXw = λwλqw

YTXXTYq = λqλwq
(1.46)

where the loadings w and q are the eigenvectors of XTYYTX and YTXXTY, respec-

tively.
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It is easy to show that λq and λw have to be the largest eigenvalues associated

with the eigenvectors w and q, and

λq = λw (1.47)

The data input and output matrices, scores and loading, and their dimensions

are shown in Figure 1.10 [48] and the PLS algorithm with NIPALS [4] is listed

below:

1. Outer regression: get a starting vector ui from some column of Yi (if Y is single

column, then ui = Y), and iterate the following equations until ti converges or

a maximum number of iterations is reached.

wi = XT
i ui/∥XT

i ui∥ (1.48)

ti = Xiwi (1.49)

qi = YT
i ti/∥YT

i ti∥ (1.50)
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ui = Yiqi (1.51)

2. Inner regression: calculate the inner regression coefficient,

bi = uT
i ti/tT

i ti (1.52)

3. Residual deflation: remove the present component from Xi and Yi and use

deflated matrices as the next component Xi+1 and Yi+1.

pi = XT
i ti/tT

i ti (1.53)

Xi+1 = Xi− tipT
i (1.54)

Yi+1 = Yi− ûiqT
i = Yi− bitiqT

i (1.55)

also noting that the inner model estimate ûi replaces the Y scores ui to give

the prediction of Y from X.

4. Set i = i+ 1 and return to the second step until i = imax or there is no more

significant information in X about Y.

1.4.3 Neural Networks

Since PLS deals with linear models only, neural networks (NN) would be very

useful for nonlinear VM models. Back-propagation neural network (BPNN) has

been used to predict CVD thickness [57–59], and other neural network methods,

including piecewise linear neural networks (PLNN), fuzzy neural networks (FNN),

simple recurrent neural networks (SRNN) and radial basis function neural net-

works (RBFN) have been also tested for VM modeling [5, 60, 61].

The following is a quick introduction to BPNN [62–64]. A typical neural network

consists of an input layer X, a hidden layer Z and an output layer Y, as shown in

Figure 1.11, and each layer has multiple components or units. For instance, there

are four inputs, two hidden layer units and three outputs in the case of Figure 1.11.
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Figure 1.11. Back-propagation neural network architecture

The feed-forward process involves transferring an input to input layer neurons

which passes the input values into the hidden layer. Each of the hidden layer

nodes computes a weighted sum of its inputs, passes the sum through its activation

function and the output of activation function presents the result to the output layer.

The neuron uses the following transfer function,

pi =

n∑
i=1

xiwi (1.56)

where wi is the weight of an input, and n is the number of inputs.

The output of a hidden unit zi = 1 when pi ≥ θ, while zi = 0 if pi < θ. θ is called

the threshold of activation function, again for mathematical convenience, we can

set
n∑

i=1

xiwi−θ = 0 (1.57)

The activation function is often chosen to be the Sigmoid function by virtue

of the fact that the derivative of the output with respect to input is a function of

output only.

β =
1

1+ e−α
(1.58)
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dβ
dα
= β(1−β) (1.59)

The BPNN algorithm is to adjust the weights to minimize the difference, mean

square error (MSE), between desired output (or target) and actual output, and it

uses supervised learning, meaning that it uses training data for which both inputs

and desired outputs are known. The network weights will be set or frozen after

the network has been trained.

For the simplest BPNN in Figure 1.12, for demonstration purposes only, it has

only one input, one hidden unit and one output. It is easy to show that,

p1 = w1x

p2 = w2z
(1.60)

where z = sigmoid(p1) and y = sigmoid(p2).

The performance function J is introduced to minimize the distance between the

output y and the desired output d,

J = −1
2

(d− y)2 (1.61)

Note that the constant coefficient, −1
2 , is picked just for mathematical convenience.

The name of back-propagation can be explained by the fact that w2 is always

updated first after obtaining new output data y (or J), and then w1 can be updated

with new w2 through the following steps:

J
x

w1 w2

p1 p2

z y

d

 

Figure 1.12. The simplest neural network: x is the input, z is the hidden layer, y is
the output, d is the desired output, w1 and w2 are the weighting factors and J is the
objective function or performance function.
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• Update w2 first:

w2(k+1) = w2(k)+∆w2(k) = w2(k)+γ
∂J
∂w2

(1.62)

where γ is the learning weight, which is a user defined value.

∂J
∂w2
= (d− y)y(1− y)z (1.63)

• Update w1 later with a new w2:

w1(k+1) = w1(k)+∆w1(k) = w1(k)+γ
∂J
∂w1

(1.64)

∂J
∂w1
= x(d− y)y(1− y)w2(1− z)z (1.65)

Above is a quick discussion for feed-forward neural network using Sigmoid

functions, trained by the error backpropagation algorithm. The basic idea of BPNN

is gradient descent and BPNN limitations are discussed in the literature [65].



CHAPTER 2

SCOPE OF THIS WORK

In last chapter, we reviewed all components in the process control system of

semiconductor manufacturing and their interactions. In this research, we focus on

two of them, non-threaded R2R control and virtual metrology, both of which are

relatively new and have drawn a lot of attention from process control engineers

and researchers in recent years.

2.1 Motivations and Objectives
Metrology data are very costly in semiconductor manufacturing in terms of

cycle time and metrology tool cost. In a high mix production environment, the

traditional threaded R2R controller likely fails to function due to metrology dilution

problems as we discussed in the introductory chapter. The motivation of this

research is to develop new non-threaded R2R control algorithms through sharing

information among different control threads in a high mix production without

imposing a metrology penalty. Two fundamental problems of non-threaded R2R

controllers, observability and computational cost, have prevented non-threaded

R2R control from being widely deployed [66]. First, a reliable R2R solution becomes

vital, because excursions of R2R control can be very costly in semiconductor

manufacturing. Much past research attempted to address this problem through

either model reduction or by imposing additional constraints on the non-threaded

R2R model; in essence, the system needs to be observable. In addition, these

methods, to some extent, increase the computational cost and make non-threaded

control impractical in the production environment. The other motivation of this

research is to solve these practical problems which would enable factory-wide

deployment of non-threaded R2R control systems.
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On the other hand, in the VM research, we use physical and chemical reaction

models in building virtual metrology systems. This approach is substantially

different from current approaches of purely empirical regression modeling, which

identifies correlations based exclusively on process trace data or FD data. Most of

the published VM papers were built using PLS, Kalman filter or Neuron Network

methods. Lately, the PLS algorithm seems to be the most dominant approach

in building VM systems. The problem of these statistical methods is that pre-

dicted metrology is often not accurate enough to be used by the R2R controller

at critical process steps, so we want to incorporate multiphysics knowledge into

VM modeling to improve the quality of prediction. One of our motivations of

this research is to feed virtual metrology data into R2R controllers to improve

process capabilities at critical process steps. Furthermore, we want to benchmark

physical and chemical reaction modeling with statistical modeling, such as PLS or

Kalman filtering, and identify the pros and cons of the two methods. Although

VM has been proposed to be used in W2W R2R controllers, with the current

metrology and manufacturing execution system (MES) scheme in semiconductor

manufacturing, W2W control is still impossible, except for some tool types with

onboard metrology systems. Currently, MES with “semiconductor equipment and

materials international” standard (or SEMI standard) does not support W2W R2R

control either. The predictions in our research projects are etch rate of diluted HF

solutions, thickness profile of a diffusion furnace and etch rate in an O2 plasma

resist descum process. Although we cannot achieve W2W R2R control in this

research, we still can reduce the etch rate qualification frequency on test wafers

and provide high-quality predicted etch rate data to the batch-to-batch (B2B) R2R

control system, which improves process capability and process monitoring on

production wafers. In the diffusion VM research, the thickness of every wafer

in a batch is predicted, where it is potentially used in a wafer level feed-forward

controller in dry etch (DE) area to reduce wafer level variations. Finally, the etch

rate monitoring of every product wafer is proposed in the O2 plasma resist descum

project. Although VM prediction cannot be used in a R2R controller in the resist

descum case, it would be very useful to prevent process or equipment excursions
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through wafer level etch rate monitoring.

2.2 Overview of This Dissertation
2.2.1 Hybrid Non-Threaded R2R Control

In Chapter 3, we begin with a problem statement of non-threaded R2R control, in

which there is a need for non-threaded R2R to solve metrology dilution problems.

However, we encounter three practical problems associated with non-threaded

R2R controllers. First, the unobservable states in the control system can cause

bias in the state estimation of a non-threaded R2R control system. The second

challenge is that the matrix size changes when new tools and new devices are

added into production, so the R2R model dimension changes also. Finally, the

computational cost of non-threaded R2R is very high; for instance, it takes a lot of

time to accomplish the states estimation.

After we reviewed several approaches to solve the observability problem in

the literature, we propose a hybrid non-threaded R2R methodology to solve this

observability problem by downgrading the controller mode from non-threaded

R2R control to threaded R2R control. The business rules define the downgrade

criteria, which is used to prevent biased non-threaded R2R recommended settings

from downloading into production tools. We present two state space model

representations, and explain how to handle matrix size changes when new context

items are added. Limiting number of states and horizon length is discussed for

long state estimation execution, and we also propose a load balance design, parallel

computing, to speed up the computation of the next recommendation settings for

all context combinations. In the demonstration section, two real non-threaded

implementations and their results in high volume production Fab are presented.

Our new contributions include the following:

• We propose a novel approach to the design of non-threaded controllers with-

out imposing additional constraints or complexity to ensure observability.

• This solution has been implemented and successfully deployed at the real

production environment, at IM Flash, and has demonstrated such advantages

as high reliability and ease for maintenance.
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• A new frame work of auto-tuning non-threaded R2R control is also proposed.

2.2.2 Etch Rate Prediction of Diluted HF Solution

In Chapter 4, we demonstrate that our new methods, incorporating physics and

chemical reaction model into VM, can be used to improve prediction of the etch

rate of silicon oxide in a diluted HF solution. Compared with traditional linear

regression models, this is a better method to select key process variables and it

is a better method to build meaningful process indicators. Multiphysics models

also require less training data than traditional approaches. We demonstrate that the

prediction results are better than those that can be obtained using traditional regres-

sion methods. Since feeding VM data into R2R controllers is one of the important

ways to materialize VM’s benefits, in this research, we have also integrated virtual

metrology and R2R control in the local oxidation of silicon (LOCOS) process module

in a real production environment. The benefits we achieved include excursion

prevention, process capability improvement, yield and cycle time improvement

and cost reduction.

Our new contributions and conclusions to this virtual modeling work include:

• Demonstrated the usage of multiphysics models to select process variables

for VM models. For example, the temperature factor can be removed or

included for the VM model and we justified why it can be removed in the

model, using process or chemical reaction knowledge.

• Built meaningful process indicators. We used the ratio of two chemical flows

as prediction indicators in this work. Traditionally, only mean and standard

deviation of process trace data are used in the VM model.

• Accounted for the incoming batch variations from chemicals (e.g., HF

49% concentrations or gases). Without taking account of those incoming

materials, VM prediction accuracy would be compromised or downgraded.

• Created a multiphysical model requiring less training data compared with

statistical model. For example, 500 wafers data was used for training VM
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model [67], but the multiphysics model we developed only needs as few as 3

or 4 data samples to train the VM model.

2.2.3 Thickness Profile Prediction of Diffusion Furnace

In Chapter 5, we first introduce the diffusion furnace process and equipment,

and then we elaborate on the generic R2R controller of the diffusion furnace.

Although R2R controls flatten the thickness profile to some extent, the thickness

profile cannot be completely removed. Next, we incorporate physics insights,

equipment knowledge and design of experiment to develop a new multiphysic

model, which consists of five Gaussian curves and one intercept term, to predict

the thickness profile of a furnace. The model parameters can be updated via

the latest metrology data. On the other hand, we encounter some challenges on

building a reliable furnace VM model, such as queue time effect of metrology

tools without nitrogen purge, which impacts the accuracy of actual thickness

measurements. Finally, excellent results are obtained using such multiphysical

models after overcoming those challenges. In Section 5.7, we propose to use VM

prediction data at downstream process steps, like the dry etch step or the ion

implant step.

Our new contributions and conclusions to this virtual metrology project include:

• Described the physics insights of R2R control and the VM system of the

diffusion furnace.

• Transformed the parameter estimation problem to a state estimation in the

state space representation of the VM model.

• Converted a complicated nonlinear system to a linear system via reasonable

assumptions.

• Identified VM project difficulties such as queue time related problems.

• Extended diffusion VM usage to other processes, including dry etch and ion

implant.
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2.2.4 Etch Rate of Resist Descum

In Chapter 6, we introduce the plasma dry etch processes and chemical reactions

of O2 descum processes. Several etch rate models in the literature are also reviewed.

In the next section, key model parameters are selected using the background

knowledge of process and chemical reactions. A PLS regression model is tested,

while the “Zonal” data analysis is proposed to improve the prediction quality

on top of the traditional PLS regression using in-line data. Model update is

another important aspect of constructing a reliable VM system. Three model

update methods are also simulated and compared. Furthermore, along with a

new process indicator, gas ratio, is created by using extensive chemical reaction

knowledge, the multiphysics-based model is constructed and the prediction result

is improved. Finally, some challenges with unknown incoming variations are

discussed and future work is proposed.

The new contributions of this work include the following:

• Proposed a new “Zonal” data analysis, which is a potential method to obtain

accurate process gains without a costly DOE.

• Created new process indicators using deep chemical reactions knowledge.

• Simulated and compared three different model update methods of the PLS

regression method.

• Constructed a more complicated multiphysics-based VM model compared

with etch rate prediction in the wet etch project.



CHAPTER 3

HYBRID NON-THREADED RUN-TO-RUN

CONTROL

3.1 Abstract
Although a non-threaded Run-to-Run (R2R) controller has many advantages,

such as sharing metrology information among different control threads and im-

proved low-volume products process control performance, model-based non-threaded

R2R controllers often have practical issues such as unobservability and high com-

putational costs of state estimation. In this paper, we propose solutions to these

practical issues. Such non-threaded R2R control solutions have been implemented

at the high volume production fabrication plant, IM Flash. Both process capability

and OOC (out of control) events across all products, including both high volume

and low volume products, were significantly improved by such non-threaded R2R

control implementation.

3.2 Introduction
Semiconductor devices are produced at fabrication plants (Fabs) in a sequence

of many hundreds of batch processing steps, many of which require nanoscale pre-

cision. A batch consists of one or more lots of wafers, each lot typically containing

25 wafers. Batches are serially processed by such steps as lithography, dry and

wet etch, chemical vapor deposition (CVD) and diffusion. Fabrication steps impact

critical dimensions, electrical and – more generally – material properties, feature

alignments, interconnects and other properties that often cannot be assessed in real

time. Instead, they are measured during separate metrology steps conducted after

critical fabrication steps are completed. Metrology characterizes the deviations

of the measured properties from the target. During the subsequent runs, the
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processing conditions (known as a recipe) are adjusted to reduce deviations from

the target and maintain each fabrication step in control, thus ensuring high product

yield. The function of the Run-to-Run (R2R) controllers is to make the needed recipe

adjustments so that the next batch hits the target. Depending on the process and

equipment, these adjustments may be implemented for the whole batch, one lot,

or even an individual wafer. To calculate the needed correction for the current run

k, a simple linear R2R model is often used to describe the relationship between the

metrology output yk and the manipulated variable uk:

yk =muk+ g fk+ bk (3.1)

where m is the process gain (the slope of the model); g and fk are the feed-forward

gain and the disturbance introduced during proceeding fabrication steps [68],

which together describe the influence of processing history on the current pro-

cessing step; and bk is the bias (intercept) of the model.

The block diagram depicted in Figure 3.1 summarizes the operation of the R2R

controller. After the completion of kth run of a given fabrication step, the metrology

measurements, ym, of critical dimensions, film thickness, or other parameters are

acquired and the model (3.1) is updated. Depending on the process, either the slope

m, or the intercept bk is adjusted. For example, in dry etch (DE) processes, the etch

rate is often relatively stable and the process variations are adequately captured

Run-to-Run

Controller
Process Step

MetrologyState Estimation

y

ym

u

Update intercept

state or slope

state

yt (target)

f (feed forward

disturbance)

Figure 3.1. Run-to-Run controller.
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by a changing bias, with the etch rate m being obtained through the design of

experiment (DOE) [17]. To update the bias, the following exponentially-weighted

moving average (EWMA) [28, 69] filter is often used:

bk+1 = λ(ym−muk− g fk)+ (1−λ)bk (3.2)

where the value of the weight λ (between 0 and 1) is selected by tuning.

For other processes, it is more appropriate to update the process gain. A

representative example is a CVD process. Since the deposition occurs not only

onto the surface of the wafers but also onto the walls of the CVD chamber [70], the

rate of the chemical vapor deposition changes with time, which causes the process

gain to change. Using the EWMA filter, the updated gain can then be obtained as:

mk+1 = λ
ym− b− g fk

uk
+ (1−λ)mk (3.3)

where the values of λ in (3.2) and (3.3) are generally different. The correct choice

between updating b or m (both of which are often referred to as states) becomes

particularly important, when feed-forward disturbances are present and their

values are known from metrology measurements conducted prior to the current

fabrication step. On the other hand, when g fk = 0 or unknown, then either the

intercept or the slope adaptation is often equally acceptable.

After the model is updated based on the available metrology data (“State

Estimation” block in Figure 3.1), the R2R controller uses the model predictions

to adjust the manipulated variables in order to achieve the target metrology values

yt during the next run. For example, assuming that the metrology data, yk, were

used to adjust the intercept of the model with the gain held constant, the deadbeat

R2R controller will select the following value of the manipulated variable during

the next run [1, 27, 71]:

uk+1 =
yt− g fk+1− bk+1

m
(3.4)

Alternatively, if the metrology was used to estimate a new value of the process

gain, then

uk+1 =
yt− g fk+1− b

mk+1
(3.5)

There are many factors that lead to deviation from the metrology targets,

including the sequence of processing steps that the wafer has been subjected to, the
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specific equipment (known as tools) used in the processing sequence, and the type

of the product that is being manufactured. Collectively, these factors are known

as contexts. The sequence of processing steps and tools used to perform them are

known as a thread associated with a given wafer. R2R control is most effective when

the corrective actions are based on the metrology obtained, when all contexts of

runs k and k+1 are matched, or threaded. Threaded controllers are R2R controllers

designed to function when all contexts are matched.

In certain Fabs, threaded R2R control strategy is problematic. This includes Fabs

with a “high mix” of products, or when low-volume products are produced as an

infrequent interjection into a high-volume manufacturing of a typical product [72].

In such situations, there may be only one or two lots of a given low-volume

product started each week. Consequently, a threaded controller has to produce

corrective actions based on “old” metrology data obtained several days ago when

an identical thread was last run. If a tool or a process drifts faster than metrology

feedback, the threaded R2R control will likely fail to perform satisfactorily during

the low-volume product run. Even in high-volume manufacturing, if the contexts

are defined narrowly (e.g., down to the slot position in a diffusion furnace, etc.),

a large number of control threads will be present and long metrology delays may

occur between threaded runs.

The limitations of the threaded control may be addressed by designing and

deploying controllers that share information among different control threads [73].

Such non-threaded R2R controllers use all available metrology measurements

to take corrective actions, irrespective of matched or mismatched contexts. By

sharing the metrology data between high-volume and low-volume products, a

better control may be achieved, with the most significant improvements likely

realized during infrequent threads.

Many algorithms implementing the basic idea of non-threaded control have

been proposed. The key element in this strategy is the model update based on

non-threaded information. This problem, often referred to as the state estimation of

m and/or b, was approached in the past by using Kalman filtering [40,41,66,74], the

recursive least square (RLS) [75,76], the best linear unbiased estimation (BLUE) [40]
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and the dynamic analysis of variance (ANOVA) [77] to estimate non-threaded R2R

states. The previously proposed methods also differ in the formalism used to

share non-threaded information, which includes such approaches as the just-in-

time adaptive disturbance estimation (JADE) algorithm [42] and a random walk

model [78, 79].

Despite significant efforts invested into the development of non-threaded R2R

control technology, it is still common to see spurious results produced by non-

threaded controllers that are addressed in the production environment, by limiting

the maximum allowed change in the manipulated variable between consecutive

runs and other ad hoc means. Such control excursions can often be traced to

un-observability of a model used in the state estimations, changing model size as

new contexts are added to describe a thread and the high computational cost of

solving the state estimation problem in real time.

In this paper, we describe a hybrid approach that uses a non-threaded controller

under normal circumstances, but reverts to the threaded algorithm mode when

certain “business rules” are violated. This approach is the first hybrid control sys-

tem design implemented in the high-volume production of NAND flash memory

products. It showed a significant improvement compared to the standard threaded

control and was more reliable than other non-threaded control designs.

This chapter is organized as described here. The next section formulates the

non-threaded control problem and highlights practical issues with implementing

non-threaded controllers in the production environment. Section 3.4 summarizes

several algorithms proposed in the literature and discusses their limitations. The

proposed hybrid method is described in Section 3.5 and its application in the

high-volume production environment is demonstrated in Section 3.6. The chapter

concludes with a discussion of the proposed approach and directions for future

improvements.

3.3 Problem Statement
A typical problem in high production mix environments is that often there

are many control threads for certain threaded R2R controllers, which causes the
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dilution of metrology data and downgrades the process control performance. For

example, Figure 3.2 [42] demonstrates this problem, assuming both photo tools

and reticles are drifting over time, and every photo tool and reticle combination

has to be treated as a separate thread, and j× l threads are required, where j(= 2) is

number of photo tools and l(= 2) is the number of reticles. The drawback of such

a control scheme is metrology dilution. A 100% of lots sampling rate for a device

results in an effective sampling rate of only 25%, because there are j× l = 4 threads

instead of 2 ( j = 2) threads, one for each tool. In this case, some of the feedback

loops may operate with very long metrology delays, which can cause failure in

process control. Therefore, a non-threaded R2R controller is demanded to solve

such metrology dilution problems by sharing information among various threads.

Consider a simple linear model with feed-forward disturbance (3.1) and the

single intercept state bk can be separated into relevant contexts based errors as

shown in (3.6):

yk =muk+ g fk+
∑

i

bContexti
k (3.6)

and in matrix form,

Reticle

1

Reticle

2

Tool 1

Tool 2

 

Figure 3.2. Metrology data are diluted due to increased control threads.
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bk =
∑

i

bContexti
k = CA,kbContext

k (3.7)

where bContexti
k is the single intercept bias contribution from every context group,

CA,k is the context row vector and bContext
k is a column vector, which contains the

individual intercept state corresponding to each context.

Using the classic photo example, context matrix CA,k has four columns when

there are two tools and two reticles,

CA,k =
[
1 0 | 1 0

]
(3.8)

where columns 1, 2, 3 and 4 represent Tool 1, Tool 2, Reticle 1 and Reticle 2,

respectively. Tool 1 and Reticle 1 were used in the example of (3.8). On the other

hand, bContext
k has four elements, one for each context item.

In the more generic form of the photo R2R control example,∑
i

bContexti
k = bTool( j)

k +bReticle(n)
k (3.9)

where photo tool and reticle are the related contexts which contribute to the errors

of the intercept state. An alternative threaded R2R solution using the same context

definitions will result in j× n control threads, considering j photo tools and n

reticles, which often causes insufficient metrology data for some of the feedback

loops.

For multiple runs, the context matrix CA has a dimension of r×s, r is the number

of runs and s is the number of contexts. CA,k is one of the rows of CA.

CA =



CA,r
...

CA,k
...

CA,2
CA,1


(3.10)

This assumes one can estimate all intercept contributions of all related contexts.

The deadbeat control law is used by a non-threaded R2R controller to calculate the

recommended recipe setting of the next lot:

uk+1 =
yt− g fk−CA,k+1b̂Context

k+1

m
(3.11)
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One of the state space models that can be used to describe such a non-threaded

R2R controller is,

xk+1 = xk+ωk

yk = Ckxk+Duk+νk
(3.12)

where xk = bContext
k is the state vector, yk is the output, D (= m) is the process gain,

uk is the input, ωk is the state noise and νk is the measurement noise. Ck (= CA,k) is

the output matrix.

The first problem here is how to estimate the contexts-based states bContext
k . The

detailed state space design and state estimation methodology of such non-threaded

controllers will be outlined in Section 3.5. At this time, we also want to point out

three practical issues associated with such non-threaded control systems: the first

one is that controller is unobservable because context matrix is always rank deficient

[40,41]. The second issue is that state space model sizes are continuously changing

(or growing) [41, 66] when new contexts are added, such as new tools or new

devices. Finally, the state estimation often involves high computational cost [66].

For example, the state estimation can take a long time.

3.3.1 Bias in State Estimation

The difficulty in implementing a model-based non-threaded R2R control is

in establishing the association of the measured deviations of the part properties

to reference values with the run contexts. Clearly, any number of combinations

of individual context contributions can add up to the same value of bk. Such

nonuniqueness implies that it is impossible to obtain unique values of context

intercepts for the given metrology measurements and the corresponding control

inputs used during the kth run. In essence, the contributions of individual contexts

are not observable. Zheng et al. [80] pointed out that the tool-based approach is

unstable when the plant is nonstationary. The product-based control will be stable,

but its performance will be inferior to single product control when the drift is

significant. Hanish [41] pointed out that the number of unobservable states is one

less the number of context categories; Wang [40] proved that the context matrix CA

is always rank deficient, so there is no guarantee that unbiased estimates of each
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individual intercept state can be obtained. Three common scenarios can introduce

biased state estimations in non-threaded R2R control:

• Addition of new contexts by adding new tools (chambers) or new devices

and so on.

• Tool maintenance events

• Not having historical data in the moving horizon

All these scenarios can cause biased individual state estimation of a non-

threaded R2R controller. The overall intercept state can also be biased because

it is only linear combinations of individual context states (3.7). Consequently, the

controller recommended recipe settings calculated by (3.11) can be biased too. Such

bad R2R recipe adjustments can increase the risk of excursion for products. The

cost of such excursion in a production Fab can be very high.

3.3.2 The Change of Matrices Sizes

Another challenge of a model-based non-threaded R2R control is that the matrix

size of CA,k and bContext
k will be changed when new tools are added or new devices

are introduced at the production Fab. Using the classic photo example again, when

a third reticle is added, context matrix CA,k changes its dimension. Compared with

(3.8), it now has five columns as shown below,

CA,k =
[
0 1 | 0 0 1

]
(3.13)

Tool 2 and Reticle 3 were used in example of (3.13). At the same time bContext
k also

changes from a four element vector to a five element vector. Such matrix size

changes must be considered in the non-threaded R2R design, or the non-threaded

R2R control will be broken, whenever a new context item is added. Harirchi et

al. [66] proposed modifying the state vector and associate matrices so that the

prediction of Kalman filter can continue. In this way, extra steps of the Kalman

filter procedure are added, and the computational complexity or cost is significantly

increased. In Section 3.5 of this dissertation, we will propose how to address this

issue without increasing the computational complexity.
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3.3.3 Long Execution Time for State Estimation

The state estimation execution time of a model-based non-threaded R2R can

last a relatively long time compared with threaded R2R controls, because of the

intensive calculations introduced by the large dimension of contexts matrix and

long horizon length. Harirchi et al. [66] analyzed the computational complexity in

the case of Kalman Filtering-based non-threaded R2R control.

The state estimation execution duration can take as long as five minutes or more

based on our experiments, which will be shown in Section 3.5. In addition, we still

have to compute the non-threaded R2R recommended settings for each unique

context combination at metrology update time, which can take a lot of time too.

These intensive calculations can potentially cause unintended server or database

problems. In Section 3.5 of this dissertation, we will propose how to minimize the

impact of long execution time of state estimation and how to mitigate the risk of

this kind of server event.

3.4 Background
After reviewing non-threaded R2R control literature, we discovered that most

of them identify practical issues, which are either the un-observability of the control

system or the change of model dimension due to the addition of new context items.

Such practical issues are not addressed explicitly in any non-threaded R2R control

literature, which can possibly lead to negative impact in real implementation.

3.4.1 Kalman Filtering

When process gain is equal to 1, the state space model of (3.12) becomes:

xk+1 = xk+ωk

yk = Ckxk+uk+νk
(3.14)

For multiple runs in the moving horizon, one can define a new state space

system with h measurements in the horizon,

xk+1 = xk+ωk

ya
k = C̃kxk+ua

k+ν
a
k

(3.15)

where ya
k is the augmented outputs with dim(ya

k)= h×1, ua is the augmented inputs

with dim(ua
k) = h× 1, C̃k is the contexts matrix and each row of C̃k represents the
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context of a single run. Also C̃k is with α order rank deficient compared with the

number of states in xk.

A reduced order system [41,81] can be obtained via state space transformation,

such that the system becomes observable for the transformed system. If we define,

x̄k = Txk (3.16)

then

ya
k = C̃kxk+ua

k

ya
k = C̃kT−1Txk+ua

k

ya
k = C̄kx̄k+ua

k

(3.17)

A transformation matrix T can be found, so that the last α columns of C̄k (or C̃kT−1)

are zero, so the last α states elements of x̄k have no effect on ya
k and only the first few

states in x̄k are to be estimated. Now one can solve the state estimation problem

via the Kalman filter [27, 82] without any observability problems.

However, the Kalman filter method is not practical for the production en-

vironment when the number of states changes [41]. For example, lithography

gets a new state with every new reticle. Harirchi et al. [66] also investigated the

methods of solving problems introduced by new context items and evaluated the

computational cost of the Kalman filter, which are the two practical problems of

Kalman filtering based non-threaded R2R implementation.

3.4.2 Jade Algorithm

Firth et al. [42] proposed JADE algorithm, for given context matrix CA , the total

observed bias can be estimated by (3.18),

CAb̂Context = b (3.18)

where ˆbContext is an s× 1 vector of context-based state estimates, the matrix CA

dimension is r× s and b is an r× 1 vector; r is the number of runs and s is the

number of contexts.
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JADE reconstructs context matrix in the sense of EWMA and finds context-based

states using the least square solution:

b̂Context = (CT
ACA)−1CT

Ab (3.19)

Using the classic two tools and two reticles photo example of (3.8) when Tool

1 and Reticle 1 were the run context, the unique solution of b̂Context in (3.19) is not

guaranteed for a single run, because the number of observations is less than the

number of variables being estimated. On the other hand, context matrix CA is rank

deficient, because the separate context items are confounded with one another [40].

One of the extreme examples is that CA becomes (3.20) for multiple runs, where

Tool 2 and Reticle 1 were used for all four runs:

CA =


0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0

 (3.20)

The unique solution of ˆbContext in (3.19) is not guaranteed because the rank of CA

is less than the number of unknowns. In order to solve the rank deficient context

matrix, JADE modified equation (3.19) into the recursive update of contexts bias

contributions (3.21). [
CA
I

]
b̂Context

k+1 =

[
b

b̂Context
k

]
(3.21)

where I is an s× s identity matrix and s is the number of context items, ˆbContext
k is

the estimation of context-based state contributions. CA is truncated to a specified

number of rows, q , which is chosen by the user. In this way, only the biases for the

context items used in these latest runs are updated. Biases for context items not used

remain unchanged. By introducing a weighting matrix Q to assign preference to the

current measurement versus past measurement for state contribution estimation,

an objective function can be written as (3.23). For simplicity in the notation, define

Ω=

[
CA
I

]
and b̃ =

[
b

b̂Context
k

]
.

J(b̂Context
k+1 ) =

1
2

(b̃−Ωb̂Context
k+1 )TQ(b̃−Ωb̂Context

k+1 ) (3.22)
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Q composes the following submatrices,

Q =
[
Q1 Q2
Q3 Q4

]
(3.23)

where Q2 and Q3 are matrices of zeros , Q1 is q× q matrix and Q4 is s× s matrix,

Q1 = diag
[
λ λ2 · · · λq

]
(3.24)

Q4 = diag
[
α1(1−λ) α2(1−λ) · · · αs(1−λ)

]
(3.25)

whereλ is a tuning parameter to weight current measurement to past state estimates

and αi represents relative weighting between the context-based state estimation.

The objective function (3.23) can be solved using the least square solution

procedure; the context-based bias estimation can be obtained,

b̂Context
k+1 = (ΩTQΩ)−1ΩTQb̃ (3.26)

The limitation of JADE is that it needs qualification runs to obtain unique

context-based state estimates (or initial state). Without the correct initial states

from those qualification runs, the context-based state estimation can be biased.

3.4.3 EWMA Method

Recently, Prado and Feng [83] explored EWMA method again for non-threaded

R2R state estimation in a real production environment:

yk =muk+ bdevice
k + btool

k (3.27)

b̂device
k+1 = b̂device

k +λdevice(yk−muk− b̂device
k − b̂tool

k ) (3.28)

b̂tool
k+1 = b̂tool

k +λtool(yk−muk− b̂device
k − b̂tool

k ) (3.29)

where λdevice is device gain and λtool is tool gain. b̂device
k and b̂tool

k are device state and

tool state, respectively. Prado and Feng used deadband and filter to remove noise

before estimating the states. Although the evaluations of Hanish [41] showed that

Kalman filter outperforms the EWMA method, he pointed out that the Kalman

filter algorithm has a practical problem, which is the changing size of matrices in

the production environment. Therefore, the EWMA algorithm was recommended
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in the real production environment. The algorithm is based on the EWMA method,

which makes it very easy to replicate and understand, but changes to the gain of

each context (e.g., λdevice or λtool) are a limitation. It still needs to find a way to

update them automatically. Stuber [84] used this method for a DE CD control,

and he used an optimizer in Excel and historical data to estimate the initial states

for b̂device
o and b̂tool

o which helped to achieve optimal performance faster. Stuber

also studied the limitation of the EWMA method post maintenance events. He

showed that the shift in a tool state post maintenance events can bump device state

estimates and vice versa.

3.4.4 Model Regularization

Patel [43] proposed the model regularization for high product mix control,

which enforced a unique solution by adding constraints to ensure that the bias

(states) estimates stay centered on 0 for n− 1 out of n contexts. Only one context

state is allowed to track arbitrary drift without any constraint, and the rest of the

context states are constrained to be centered around zero.

Let ỹk = yk−muk and if one has a set of observations, then these observations

can be stacked to get the following:

Ỹr−1 = CA,r−1bContext
r−1 +Wr−1 (3.30)

with

˜Yr−1 =


ỹ0
ỹ1
...
˜yr−1

 (3.31)

Wr−1 =


w0
w1
...

wr−1

 (3.32)

where Ỹr−1 is the vector of ỹk, CA,r−1 is context matrix, bContext
r−1 is context bias vector

and Wr−1 is noise terms.
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Patel added another set of equations (or constraints) on top of (3.30):
˜Yr−1
· · ·
0

 =
CA,r−1
· · ·
η

bContext
r−1 +

Wr−1
· · ·
ω

 (3.33)

where η is a matrix which helps enforce the constraints. As an example, consider

a system with three contexts groups, with S1 = 3 (meaning three components in

context group 1), S2 = 2 and S3 = 3.

η =

0 0 0
... 1 1

... 0 0 0

0 0 0
... 0 0

... 1 1 1

 (3.34)

with the above designed constraints, the context biases (or states) can be obtained

uniquely. Thereby, Patel presented a solution to the observability problem of

non-threaded R2R control.

3.5 Methods
In this section, we first introduce two non-threaded state space models and

then we propose some new methods to solve those practical problems related to

model-based non-threaded R2R controllers.

3.5.1 Two Model-Based Non-threaded R2R State Space Representations

A single input and single output (SISO) system can be described in equation

(3.1), if we define state vector xk:

xk =
[
muk bk

]T
(3.35)

then a state space model [30, 34, 85] can be used to represent such a system,

xk+1 = Axk+Buk+Fωk

yk = Cxk+G fk+νk
(3.36)

where xk is the state vector, ωk is the state noise and νk is the measurement noise.

A is the state matrix, B is the input matrix, C is the output matrix and G is the

feed-forward matrix.
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A modified version state space model is designed for non-threaded Run-to-Run

control as following:

xk+1 = Axk+Buk+Fωk

yk = Ckxk+G fk+νk
(3.37)

where the output matrix Ck is no longer a constant matrix, and it depends on the

run contexts.

Compared with the earlier definition of CA,k, Ck is defined as

Ck =
[
1 CA,k

]
(3.38)

Using the two tools and two reticles example, the intercept state can be separated

into different contexts contributions, refer to (3.7). One can have,

bk = xTooli
k +x

Reticle j

k (3.39)

where Tooli can be Tool 1 or Tool 2, and Reticle j can be Reticle 1 or Reticle 2. When

the contexts of the current run are Tool 1 and Reticle 1, the output matrix Ck can be

obtained,

Ck =
[
1 1 0 1 0

]
(3.40)

and the corresponding state vector xk is,

xk =
[
muk xT1

k xT2
k xR1

k xR2
k

]T
(3.41)

Similarly, if contexts of the next run are Tool 2 and Reticle 2, then the output matrix

will become,

Ck =
[
1 0 1 0 1

]
(3.42)

One can immediately notice that the output matrix Ck depends on contexts.

However, matrices A , B , F and G do not depend on the contexts and they stay

as a constant matrix like a standard state space model (3.36). After evaluating the

observability of the system (3.37) by computing the observability matrix [81], we

concluded that the system (3.37) is not observable.
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For an alternative state space model (3.12), let’s denote a new state zk, which is

the linear combination of xk:

zk = CA,kxk (3.43)

zk+1 = zk+ωk

yk = zk+Duk+νk
(3.44)

where D is the process gain. One can prove that system (3.44) is now observable. In

fact, we only care about the linear combination of the states, zk, instead of individual

states xk for non-threaded R2R control, because non-threaded recommendations for

inputs of the next run depends on zk, not xk:

uk+1 =
yt− zk

m
(3.45)

where yt is the output target.

3.5.2 The Hybrid Non-threaded R2R Control Methodology

During the non-threaded R2R controller testing phase, we discovered that

sometimes the biased zk’s were calculated, because of the issues discussed in

Section 3.3. To solve this problem, a new architecture is proposed in Figure 3.3.

Both threaded and non-threaded modules are executed at the same time; threaded

recommended settings serve as the reference. When non-threaded recommended

settings significantly deviate from the reference, according to the business rules

defined in the controller, the control mode will be downgraded from non-threaded

control to threaded control. Such hybrid non-threaded design is more reliable,

because it can prevent biased non-threaded recommended settings from being sent

to the manufacturing execution system (MES).

Using the two tools and two reticles example, both threaded and non-threaded

estimators provide correct state estimation of zk’s. The threaded estimator does this

by using a separate estimator for each thread. For the example with states xR1
k , xR2

k ,

xT1
k , and xT2

k , the threaded estimation of z1
k = xR1

k +xT1
k , z2

k = xR1
k +xT2

k , z3
k = xR2

k +xT1
k ,

and z4
k = xR2

k + xT2
k is obtained using four separate threaded estimators. For each
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Figure 3.3. Non-threaded R2R control architecture
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context defined in threaded R2R control module, the state estimator is described

as below:

zk+1 = λ(yk−muk)+ (1−λ)zk (3.46)

Such full factorial threaded design often results in the risk of metrology dilution.

In real implementation, the variability introduced by reticles is ignored, and only

two threads are considered, zT1
k and zT2

k , corresponding to Tool 1 and Tool 2. In

such implementation, the metrology is less diluted, or the estimate is updated more

often, but at the cost of reduced performance, caused by ignoring the contribution

of the selected reticle to the measured deviations from the target obtained at the

metrology step.

On the other hand, a single non-threaded estimator needs to estimate xk’s.

Although we are only interested in zk’s, and only zk’s are guaranteed to converge

to correct values. For convenience, zk’s are updated by updating the contributing

states, though there is no guarantee or expectation that the updated xk’s give the

correct estimate of individual states. For example, after z1
k is found, arbitrarily

the values of xT1
k and xR1

k are updated to be equal to xT1
k−1 +ω

T1
k and xR1

k−1 +ω
R1
k ,

and ωT1
k = ω

R1
k . ωk’s are the state noise. This update of states is done purely

for bookkeeping purposes. Such a method provides the estimate of the linear

combination of biases of individual contexts that contribute to the overall bias

measured by metrology. In our terminology, we call these linear combinations,

zk’s, while individual context biases are denoted as states, xk. No attempt to

estimate correct values of xk’s is made. States are estimated so that only their linear

combinations are correct.

For non-threaded R2R control, state vector can be estimated by quadratic

programming [34, 37] through the objective function below:

min
ωk,νk

J = N−1∑
k=−1

ω
′
kQωk+

N∑
k=0

ν
′
kRνk

 (3.47)

subject to following constraints:
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x0 = x̄0+w−1

xk+1 = Ak+1xk+Bk+1uk+ωk

yk = Ckxk+νk

ωmin ≤ wk ≤ ωmax

(3.48)

Q and R are configurable weighting matrices used as part of the optimization cost

function, analogous to λ in EWMA control. The optimization function allows

states to be calculated in order that state noise ωk and measurement noise νk are

minimized, while remaining within established model constraints. The states can

be estimated based on historical run data using the control model and the state

estimation optimization equations (3.47) (3.48), where N is horizon length, x̄0 is the

initial state and ωmin and ωmax are the lower and upper bounds of the states.

The objective function J can be transformed into the form below through

algebraic manipulation [34]:

J =min
Wk

1
2

WT
k HWk+ f TWk

Wk,min ≤Wk ≤Wk,max

(3.49)

where Wk is the state error vector, H is a function of Q’s, R’s and C’s in the moving

horizon and f is a function of y’s, u’s, R’s and C’s in the moving horizon. Wk’s can

be obtained after solving this objective function though quadratic programming

and Wk is defined as,

Wk =
[
ωk−h ωk−h+1 · · · ωk

]T
(3.50)

where h is the horizon length. Note, that not all states are updated after each

metrology, and only the states used in Ck are updated. The estimates of other states

are kept at the prior values for the last run.

The linear combinations of states zk’s is observable. The consequence of correctly

estimated zk’s is the correct estimation of the difference in states corresponding to

the same context. For example, with the correctly estimated z1
k and z2

k , we get the

correct value of xT1
k − xT2

k (=z1
k − z2

k), and so on. Therefore, the correctly estimated

state differences are the consequence of correctly estimated zk’s, not the other way

around, and this makes the non-threaded control effective.
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Compared with non-threaded state estimation, the threaded estimator is tuned

more aggressively to provide rapid conversion. A relatively high λ value is used

in our practice in some special cases, either after tool maintenance or at the starting

point of a new thread, we increase the λ equal to one. The conversion of the

non-threaded estimator is slower than the threaded R2R control, but the update of

xk’s is obtained after every metrology run, not just the threaded run.

The business rules define downgrade criteria [44], which can include but are

not limited to the following:

• The number of valid records in the moving horizon for a given context is less

than certain threshold.

• Adjustment directions between threaded R2R control and non-threaded R2R

control are opposite, and the opposite is not only justified by the sign, but

also by the magnitude.

• The maximum absolute recommended settings difference between threaded

R2Rs and non-threaded R2Rs is greater than certain tolerance.

Figure 3.4 showed the evaluation results of state estimation for both threaded

and non-threaded R2R modules: the values of zk’s in the non-threaded module do

not converge to the threaded module zT1
k (Tool 1 context) or zT2

k (Tool 2 context)

before run 40. In this case, the controller mode is downgraded from non-threaded

R2R control to threaded R2R control before run 40, and it then recovers to non-

threaded R2R control after run 40.

3.5.3 Handling of Varying Matrices Sizes

The dimension output matrix (3.38) can be changed when adding new reticles,

which has been discussed [41,66]. We propose that dummy contexts can be added

to solve this issue. For example, four reticles (or more) can be configured in the

model, although only two of them are currently used in production. The other two

are so called dummy contexts reserved for future use. In this case, equations (3.40)
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Figure 3.4. Evaluation of state estimation for threaded and non-threaded R2R
control

and (3.41) become (3.51) and (3.52); Contexts of current run are Tool 1 and Reticle

1,

Ck =
[
1 1 0 1 0 0 0

]
(3.51)

and the corresponding state vector xk is,

xk =
[
muk xT1

k xT2
k xR1

k xR2
k xD1

k xD2
k

]
(3.52)

The last two elements, xD1
k and xD2

k in (3.52) are called dummy context states.

Similarly, this methodology can be extended to other context groups, for example

the tools context. However, there must be a maximum limit for the number of

dummy contexts one can reserve (e.g., max number of states is equal to 100). If

the state vector has too many elements, more than 100 for example, then the state
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estimation execution could be very long in terms of time, which we will discuss in

the next section.

3.5.4 Handling of Long Execution Strategy

The state estimation of non-threaded R2R can be very expensive in terms of

execution time. The execution time of state estimation is correlated with both

number of states and the horizon length, which is shown in Table 3.1. In mass

deployment of non-threaded R2R controls, the cost of state estimation has to be

considered to prevent R2R server problems and database blocking issues.

Though a larger number of states would normally require a longer horizon to

ensure that all linear combinations zk’s are updated, note the following limitations.

First, an increase in the horizon leads to higher computational demand, which may

prevent computation of the control updates with the required frequency. Second,

a longer horizon may result in slower convergence. The longer the horizon, the

more average of the historical data (or less forgetting the past or historical data),

and therefore it results in less aggressive tuning.

In our non-threaded controller design, we recommended that horizon length

be less than or equal to 30 records, and the number of states be less than or equal

to 100, due to our system constraints. These numbers can be chosen differently,

according to the specific server capacities.

Besides the state estimation, computing non-threaded recommended settings

of every context combination can be time consuming, too. A load balancing in

Table 3.1. Execution time of non-threaded state estimation
No. of States Horizon Length Execution Time (Seconds)

106 18 74

106 30 220

106 50 240 (or more)

106 100 240 (or more)

94 18 32

94 30 93

94 40 240 (or more)
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strategy design is outlined in Figure 3.5. For a 3-chamber DE tool, and assuming

that there are valid post-metrology data for every chamber, a web service can be

sent for each chamber with valid metrology. Since there are multiple servers in the

pool, three different events can be processed by three different servers in parallel.

Therefore, a better load balancing of long execution strategy can be achieved.

3.6 Demonstration
3.6.1 Non-threaded Run-to-Run: CMP Mismatch Handling

A CMP mismatch handling system is one of the non-threaded R2R controllers

built at IM Flash, referring to Figure 3.6, which controls the recess of trench oxide to

form Faraday Blades between (floating gate) FG structures and increasing surface

area for gate coupling [86]. The graph on the left is before the DE step and the

graph on the right is after the DE step.

NT State

Estimation

Update recommended

settings for all non-

threaded Contexts

associated with Chamber 1

send an event for

each valid Etch

Chamber

Listen to Event

Post Metro

Listen to Event Listen to Event

Update recommended

settings for all non-

threaded Contexts

associated with Chamber 2

Update recommended

settings for all non-

threaded Contexts

associated with Chamber 3

Figure 3.5. Load balancing among different servers
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Figure 3.6. Recess oxide before and post dry etch step.

At one time, chemical mechanical planarization (CMP) on-board metrology

mismatch was a major problem for the process control in this module. Such

mismatch problems were fixed through metrology tool calibration and applying

metrology calibration offsets. However, the CMP tool to tool mismatch issue

post DE was then discovered, which is shown in Figure 3.7: polysilicon thickness

measurements after the DE step have a strong dependency and separation on CMP

tools. For example, the wafers processed by CMP Tool 1 tend to have lower poly

thickness.

A non-threaded R2R controller was built to compensate for the CMP tool

mismatch problem post DE process. The control schematic is shown in Figure

3.8. An alternative solution is to create four different processes in the threaded

controller, one process for each CMP tool, but process control performance can be

downgraded in this way due to metrology data dilution. The dilution of metrology

data occurs because that metrology data is divided into four different CMP tool

threads. In the non-threaded design, the intercept state is separated into three

different context groups. They are DE chamber states, Device states and CMP tool
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states which is shown in the following,

bk = xChamberi
k +x

Device j

k +xCMPToolk
k (3.53)

The advantage of non-threaded R2R control is that all metrology data are fully

utilized by state estimation. Parallel testing between threaded and non-threaded

controllers showed that the Cpk of non-threaded is 8% better than that of threaded

R2R control, shown in Figure 3.9: one of the DE chambers was released for non-

threaded R2R control, while the rest of the chambers remained as threaded R2R

control. After the non-threaded R2R control was released for all chambers and

all devices, we discovered that out of control (OOC) events in statistical process

control (SPC) chart were reduced significantly across all products, as is shown in

Figure 3.10.

3.6.2 Non-threaded Run-to-Run: Photo Tool Mismatch

Photo tool to tool mismatch issues have often been observed in DE R2R control.

Figure 3.11 shows that one photo tool’s state is higher than the other one’s in
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the non-threaded R2R control. Instead of separating each photo tool as an inde-

pendent control thread, a non-threaded R2R controller was designed to solve the

metrology dilution problem. Two different non-threaded R2R algorithms, EWMA

and model-based non-threaded (3.37) (3.47) and (3.48), were compared against

the threaded R2R controllers performance. The threaded R2R controller was in

active mode while the two non-threaded R2R controllers were in passive mode

(the data collection mode). In the EWMA non-threaded R2R controller [83], the

R2R controller computes the intercept related to each context for every measured

lot.

yk =muk+ bDevice
k + bPhotoTool

k + bEtchChamber
k (3.54)

b̂Device
k =b̂Device

k−1 +λDevice(yk−1−muk−1−

bDevice
k−1 − bPhotoTool

k−1 − bEtchChamber
k−1 ) (3.55)

b̂PhotoTool
k =b̂PhotoTool

k−1 +λPhotoTool(yk−1−muk−1−

bDevice
k−1 − bPhotoTool

k−1 − bEtchChamber
k−1 ) (3.56)

b̂EtchChamber
k = b̂EtchChamber

k−1 +λEtchChamber(yk−1−

muk−1− bDevice
k−1 − bPhotoTool

k−1 − bEtchChamber
k−1 ) (3.57)

Equation (3.54) showed how the intercept term is separated, and equations (3.55)

to (3.57) described how each intercept state is updated, where λ is the EWMA

damping factor. Two non-threaded R2R controllers were in passive mode for

data collection, while the threaded R2R controller was in active mode to control

the process. The estimated output of a non-threaded controller is computed by

following.

ŷNT
k = yk+m(uNT

k −uTH
k ) (3.58)

where uTH
k is recommended setting of the threaded control and uNT

k is the non-

threaded recommended setting in passive mode. ŷNT
k is the estimated output of a

non-threaded R2R controller if it is in active mode.

The head-to-head comparison results are listed in Table 3.2.
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Table 3.2. Head to head non-threaded R2R control comparisons
Controller Type Cpk PPM

Threaded 1.20 180
EWMA Non-threaded 1.21 174

Model-based Non-threaded 1.24 123

The model-based non-threaded R2R performed the best in terms of Cpk and

the threaded R2R controller performed the worst. PPM is parts per million, which

is the probability of out of control events in the SPC chart.

3.7 Discussion
A few interesting topics will be discussed in this section; some of them might

lead to the future research.

3.7.1 State Estimation of the Non-threaded R2R Controller

One of the advantages of the non-threaded R2R control is that the intercept

states of the non-threaded controller is updated much more frequently than that

of the threaded R2R controller. Data in Figure 3.12 are real production data that

we obtained from a non-threaded controller, which showed that the state of a

non-threaded controller is updated more frequently. A better process control can be

realized in non-threaded R2R control because the process and equipment drift can

be captured more quickly. On the other hand, the non-threaded R2R control module

is tuned less aggressively, compared to the threaded R2R module, as discussed

earlier. Referring to equation (3.47), in the wafer level non-threaded R2R controller

we built, the R/Q ratio is set at 0.01, which is much smaller, compared to 0.1

typically used in threaded R2R controls. The non-threaded R2R controller tuning

technique can be a future research topic. Figure 3.13 showed that it took about 10

valid metrology events for the controller to reach steady state from the zero initial

state. During such transition period, non-threaded R2R control is automatically

downgraded to threaded controller, due to business rules validation. Recently,

Stuber [84] suggests that historical data can be used to estimate the initial states,

which can help the controller reach optimal states quickly.
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3.7.2 Tuning Non-threaded R2R Control

The non-threaded R2R control tuning process is outlined as the flow chart of

Figure 3.14. The non-threaded R2R performance can be estimated and compared

with that of the threaded R2R controller, using equation (3.58). It might take

several tuning iterations to get the controller tuned to the optimum state, and one

should not turn on the non-threaded control module, unless significant Cpk gain

is observed. If this tuning process can be automated, then a self-tuning of the

non-threaded R2R control can possibly be achieved.

Start

Threaded R2R

Control Module

(Active Mode)

Non-Threaded

R2R Control

Module

(Passive Mode)

Benchmarking

Threaded and

Non-Threaded

R2R Data

Cpk gain?

Tuning on Non-

Threaded R2R Control

End

yes

no

Fine Tuning Non-

Threaded R2R

Control (Q/R

Ratio)

Figure 3.14. Benchmarking performance between threaded and non-threaded R2R
control.
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3.7.3 Reduction of Qualification Runs Using Non-threaded R2R

Other research [87] demonstrates that a non-threaded R2R controller can be

possibly used to minimize qualification runs after tool maintenance. Historically, a

lot of qualification runs (or target wafers) have to be conducted post maintenance

events; sometimes it can be as many as one for every recipe. Such qualification

runs will increase the cost of production and impact the cycle time. Production

wafers used in qualification runs usually have to be downgraded and possibly

scrapped. Increased cycle time is often seen, because the tool has to be offline for

production until all qualifications are passed. However, if one can estimate tool

state and recipe state in the following equation,

yk =muk+ btooli
k + b

recipe j

k (3.59)

then we do not have to run as many qualification runs. Perhaps, we only need

a single recipe qualification to release all recipes, so that a reduced number of

qualification runs can be realized.

3.8 Summary
The unobservable states issue is a road block to build reliable non-threaded

R2R controllers, and such problems have been addressed in a new hybrid non-

threaded R2R controller design by automatically downgrading the controller from

non-threaded mode to threaded control mode. This method proved to work with

high reliability in a complex manufacturing environment. For a long time, people

claimed that model-based non-threaded R2R controllers are not practical, because

the number of states changes when new contexts are added, for example adding

new tools or adding new reticles. We solved this issue by reserving dummy contexts

in the non-threaded R2R controller without adding additional complexity. After

the non-threaded R2R controller was deployed in a real production environment,

we observed some negative impacts on servers. For example, long execution time

of the state estimation. Limiting the number of dummy states and balancing the

load among servers are proposed to overcome such problems.

We demonstrated the above methods in a DE R2R control, which has been

deployed on one of the most critical processes in a production Fab. Threaded,
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EWMA-based non-threaded and model-based non-threaded R2R controller per-

formances were compared head to head on the same process and the same tool

in production, and the data collection showed that the model-based non-threaded

controller outperforms the other two control methods, EWMA non-threaded and

threaded R2R controls.

Finally, we discussed how to benchmark the performance of non-threaded R2R

control with that of threaded R2R control. A framework of an automatic tuning

non-threaded controller is proposed, which leads to future research topics.



CHAPTER 4

ETCH RATE PREDICTION OF SILICON

DIOXIDE FILM IN A DILUTED

HF SOLUTION

4.1 Abstract
In order to reduce the cost introduced by metrology steps, while still allowing

for advanced control with its high requirements on the availability of up-to-date

measurements, there has been an increased interest in Virtual Metrology (VM) as

an approach that can predict the metrology data without physically conducting

the measurements. VM utilizes process trace data from the fault detection (FD)

system of the current process step and selected data from previous steps, including

pre-metrology data or other data from either product or process, to predict the

post-metrology data. In this research, we propose to incorporate a multiphysics

model into semiconductor virtual metrology to improve the prediction quality and

accuracy, and VM prediction is integrated into the Run-to-Run (R2R) control system

to improve the process capability. Furthermore, we demonstrate that the benefits

of VM can be realized in high volume production, including variation reduction,

excursion prevention, yield improvement, cost of ownership reduction and cycle

time improvement.

4.2 Introduction
There can be hundreds of process steps in semiconductor wafer fabrications,

depending on the complexity of the device, the circuit and its connections. To

ensure good production yield, the semiconductor manufacturing requires frequent

monitoring of both tools and processes at each step. Tool and process monitoring

using statistical process control (SPC) often involves metrology operations, which
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are deployed at almost every step in the advanced wafer fabrication facilities

(Fab). In recent years, R2R controllers have been adopted by Fab to improve

process capability, and R2R controllers optimize recipe parameters from lot-to-lot

or wafer-to-wafer using feedback or feed-forward metrology data. Advanced

process control and monitoring require a large amount of metrology data, but

more metrology operations will increase manufacturing cost and increase cycle

time. Therefore, there has been an increased interest in virtual metrology as an

approach that can predict the metrology data without physically conducting the

measurements.

The international technology roadmap for semiconductors (ITRS) identifies

virtual metrology as an increasingly critical technology for improving productivity

and reducing waste [88]. The movement from reactive to predictive in process

control solutions has become a new standard in industry. Referring to Figure

4.1, VM is meant to predict postprocess physical and electrical quality parameters

of wafers and/or devices from the information collected from the manufacturing

tools and any other information available in the preprocessing steps and current

steps (e.g., process trace data in FD) in Fab. The wafer level metrology predictions

together with real metrology data can be fed forward to a wafer level R2R controller

in the downstream process step. Such a control scheme would be beneficial for

reducing wafer level variations in semiconductor manufacturing.

Process Step

N-1

Process Step

N

Process Step

N+1
Metrology Metrology

Fault Detection

(FD)

Virtual Metrology

Wafer Level

FF+FB Run-to-

Run Controller

Metrology

Figure 4.1. Place of execution of VM in a process flow
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VM is commonly used in other fields, often known by different names, but this

approach is relatively new in semiconductor manufacturing. In process industries,

inferential or soft measurements are common. A classic example of inferential

measurements is using the pressure and temperature measurements to predict

composition of key components in distillation [89]. Chemometrics can be applied

to solve the predictive problems in chemistry [90]. In predictive applications, prop-

erties of chemical systems are modeled with the intent of predicting new properties

or behavior of interest. In both cases, the datasets can be very large and highly

complex, involving hundreds to thousands of variables, and hundreds to thousands

of cases or observations. Multivariable analysis, such as principal components

analysis (PCA) and partial least squares (PLS), has shown their effectiveness at

empirically modeling the low rank structure, exploiting the interrelationships or

latent variables in the data. Partial least squares in particular was heavily used in

chemometric applications such as pattern recognition and signal processing [91]

for many years before it began to find regular use in other fields [49, 92], such as

semiconductor manufacturing.

In semiconductor manufacturing, VM systems are built at different metrology

steps [93], which can be classified by the following types:

1. Film thickness measurements [Easy]

2. Critical dimension (CD) measurements [Medium]

3. Electrical parameters measurements [Medium]

4. Defect inspection and scans measurements [Difficult]

Film thickness metrology is relatively easy to predict, because the film thickness

is usually determined by a single processing step, such as chemical vapor depo-

sition (CVD) and physical vapor deposition (PVD). CD and electrical parameters

are harder to predict, because they are usually related to multiple process steps

and multiple feed-forward components. The data on defect inspection and scans

or real time defect analysis (RDA) is very difficult to predict, because it is related

not only to the current process, but also to the whole process module or even the

whole process integration [93].
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4.3 Motivations
In this research, we use physical and chemical reaction models in building

VM systems. Such an approach is substantially different from current approaches

of purely empirical modeling, which identify correlations based exclusively on

process trace data or FD data. Most of the published VM systems in literature

were built on regression algorithms such as Neuron Networks, PLS and Kalman

filter. In recent years, moving horizon PLS has gained popularity for constructing

linear VM models, while Neural Networks seems to be the dominant approach

for modeling non-linear systems. The challenge for these statistical methods in

our research is that the predicted metrology is not consistently accurate enough

to be used by a R2R controller at critical process steps. Therefore, we hope that

the prediction quality can be improved further by incorporating multiphysics and

process knowledge into the VM system.

The other motivation for this research is to integrate VM systems into R2R

controllers. R2R controllers can be optimized in that R2R model, process gain,

is updated by VM systems from time to time. Without VM, the process gain is

usually set at constant, which is obtained in a DOE. Furthermore, we would like

to compare multiphysics integrated models with pure statistical regression models

and identify pros and cons of these two methods.

VM data has been proposed to be integrated into wafer-to-wafer (W2W) R2R

controllers [2,94]. However, with the current metrology and manufacturing execu-

tion system (MES) system in a manufacturing Fab, it is still hard for W2W control to

be realized, except for some tool types having onboard metrology. The predicted

quality parameter in this research is the etch rate of silicon dioxide in a diluted

HF solution, and the tool type running such a process is a batch tool instead of

a single wafer processing tool. Therefore, our intention is not to build a W2W

R2R control using the VM system, but to demonstrate additional VM benefits

for this batch process, including R2R model optimization, excursion prevention

by monitoring product wafers while processing and online or off-line metrology

sample reductions.
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4.4 Background
4.4.1 Virtual Metrology Using Statistical Models

Statistical models such as principle component analysis (PCA) and partial least

squares (PLS) have been successfully used for process monitoring, fault detection

and reconstruction [49]. Both PCA (4.1) and PLS (4.2)(4.3)(4.4) are linear regression

methods [3]. The input matrix of X can be decomposed into a loading P, a score T

and residual:

X = TPT+ X̃ = TPT+ T̃P̃T (4.1)

where X is input data matrix, T is score matrix, P is loading matrix and X̃ or T̃P̃T

is the residual. Such decomposition can be done through either singular value

decomposition (SVD) [95] or nonlinear iterative partial least squares (NIPALS) [50]

procedure.

The objective of PCA is to maximize the variance along the loadings and

minimize the residual, while the objective of PLS is that PLS not only tries to

minimize the residual, but also wants to maximize the correlations between the

scores of input matrix X and output matrix Y. In other words, it also maximizes

the correlations between T and U.

X = TPT+ X̃ (4.2)

Y =UQT+ Ỹ (4.3)

where X is a matrix of features for the independent variables (or process data), Y is

a matrix of features for the dependent variables (or metrology data), P is the matrix

of X loadings, Q is the matrix of Y loadings, T is the matrix of X scores and U is the

matrix of Y scores.

First, X and Y are scaled to be zero mean and unit variance. Then the matrix X

is decomposed into a score matrix T and a loading matrix P, while at the same time,

matrix Y is decomposed into a score matrix U and a loading matrix Q. If Y has only

one variable, then the decomposition of Y can be omitted by simply setting Q = 1.

The outer models perform the principal component regression of both X and Y by

equations (4.2) and (4.3).
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The inner model establishes a linear relationship between scores ui and ti using

least square regression (4.4):

ui =miti+ ei

mi =
uT

i ti

tT
i ti

(4.4)

where ui and ti are one of the scores of Y and X, respectively, mi is one of the

regression coefficients of the inner model and ei is one of the intercepts of the inner

model regression. The NIPALS procedure of PLS decomposition can be found in

[3].

Let’s denote u1 as the first column of score vectors for the Y matrix, and t1 as

the first column of score vectors for the X matrix. The second projection scores pair

(t2 and u2), or second columns of T and U, are correlated, but usually less than the

first pair (t1 and u1). The third projection scores pair (t3 and u3) are less correlated

than the second projection scores pair (t2 and u2)· · ·, and so on. By inserting a new

observation in X space, one can obtain t1, t2, t3 · · ·, which give predicted values of

u1, u2, u3 · · · via equation (4.4), which leads to the predicted value of Y via equation

(4.3).

PLS regression methods are often chosen for VM models [2, 96, 97]. The

advantages of PLS regression include:

• PLS is able to handle high dimensional and collinear data

• It is easy to interpret the results

• Online implementation is straight forward

Neural Networks is the other empirical model for VM [5, 98, 99]. Compared

with linear regression PLS, it handles nonlinear systems. The Neural Networks

model was used to predict CVD thin film thickness, as shown in Figure 4.2. The

VM model consists of one input layer, one hidden layer and one output layer.

There are m neurons in the input layer (x1, x2,· · ·, xm), and corresponding m selected

variables after data preprocessing. z1, z2, · · ·, zn are neurons in the hidden layer,

which corresponds n training samples. Three neurons (y1, y2 and y3) in the output
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Figure 4.2. Neural network based VM model for CVD thickness [5]

layer are used to predict the Mean, Range and Uniformity, respectively. Gauss

function is chosen for the transfer function in the hidden layer, while the output

transfer function can be a simple linear function. Back-propagation neural net-

works (BPNN), piecewise linear neural networks (PLNN), fuzzy neural networks

(FNN), simple recurrent neural networks (SRNN) and radial basis function neural

networks (RBFN) have been tested for modeling VM [5, 57–61]. It is true that

Neural Network is capable of representing complex nonlinear functions, while

PLS and PCA have the advantages of easily handling variable collinearity and data

dimension reductions.

In a typical data transformation and data flow for VM, the process data and

metrology data are collected from production equipment and metrology equipment

respectively. First, the raw data are checked to ensure its completeness to assure

data quality, then it is normalized to be zero mean and unit variance. The data di-

mension reduction is performed next by eliminating insignificant parameters. VM

prediction and reliance index (RI) are then calculated. RI indicates the confidence

of VM predictions and a greater value of RI represents a better credibility of VM
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prediction results. Such data flow structures have been proposed since 2007 [59].

The importance of data quality in virtual metrology was emphasized to build

accurate VM models [98, 100]. There are three pieces related to data integrity. The

first piece is the quality of the data. The second piece is the quality of the data

processing system. A good data processing system should be able to perform data

“cleaning” and transformation. Data “cleaning” fills in the missing values and

eliminates outliers. Data transformation usually means normalization of collected

process data. The last, but not least, is the data dimension reduction, which extracts

the important parameters from many process data items.

Besides the data quality research, more VM algorithms were explored. The

recursive moving window PLS [2] gained its popularity. A typical PLS model is

based on historical data and such a model is then updated, when enough data

points have been accumulated. Using all the data points from the beginning

would lead to computational problems. In a recursive PLS method that uses a

moving window, which can be used to calculate a new PLS model every time, a

new data point is obtained, and old data points that are out of that window are

discarded. The recursive moving window PLS was designed to be used by W2W

R2R controllers. W2W R2R control can be only realized on limited tools with

onboard metrology (or integrated metrology) installed; however, VM data can

enable wafer level R2R controls on process tools without onboard metrology [2].

A plasma etch process is relatively difficult to be modeled, because it is often

associated with incoming variations. Etch bias, the difference between two CD

patterns, was modeled in [67], and the Neural Networks algorithm was chosen,

due to its fast computations. Etch rate modeling of plasma etch was also explored

in 2009 [52]. In this work, several variables selection and modeling techniques

were examined, and the best performing model was Neural Network. Linear

and nonlinear algorithms were compared to predict CVD film thickness [101,102].

The best VM model was neural network (nonlinear modeling). In 2010, Kalman

filter-based VM [103] was introduced, and support vector regression (SVR) [104]

was evaluated in 2011. A promising VM model, canonical variate analysis (CVA),

was benchmarked with PLS in 2011 [105]. It showed that CVA outperforms PLS,
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because CVA captures the directions of maximum correlation between process

sensor variable input x and quality variable y, while a PLS model may include the

directions representing variations in the process sensor variables that are irrelevant

to predicting quality variables. CVA aims to find a set of canonical vectors Wx

and Wy (4) that maximize the correlation between the output quality variables

and input process variables that are orthogonal to each other. After finding the

canonical vectors, a model prediction of the quality variables at the time point kth

can be written as:

ỹ(k) = (Wy)−1(B ·x(k)Wx)

B = diag(b1,b2, · · ·,bN) (4.5)

where Wx and Wy are canonical vectors. The coefficients of this model b1,b2, · · ·,bN

can be obtained by standard least square estimation:

bi = (XTwi
x)TYTwi

ypinv[(XTwi
x)T(XTwi

x)]

=
ρi
√

(wi
y)TΣyy(wi

y)√
(wi

x)TΣxx(wi
x)

(4.6)

where Σxx and Σyy are the covariance matrices of input and output, and pinv is

Moore Penrose pseudo inverse.

Recently, PLS-based VM was used to achieve real-time release of medical device

components [96]. Another effort was made to model plasma etch using PLS in

2013 [97]. The main contribution of this work was to use T-PLS [106] to monitor

data quality and to filter outliers. T-PLS has the advantage, based on total projection

to latent structures, because the standard PLS structure has limitations in which

the scores can contain variations not related to the output y. All above statistical

methods, either linear or nonlinear, are all empirical data driven models.

Evaluating confidence levels for virtual metrology is critical, because the VM

system is incomplete without a reliance index (RI). The RI and the global similarity

index (GSI) [107] are proposed to gauge the degree of reliability. The RI and its

threshold value are obtained by analyzing the process trace of the production tool

to thereby determine whether the virtual metrology result is obtained with high
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confidence. In order to help in gauging the degree of reliability further, the GSI and

the individual similarity index (ISI) are proposed to define the degree of similarity

between the input set of process data and all of the historical sets of process data.

4.4.2 Etch Rate Prediction Using PLS

The one bath (ONB) system, shown in Figure 4.3, is a 20 liter volume tank

which is used to mix the HF 49% chemical with deionized (DI) water. To obtain

precise concentration, more than 20 liters of DI Water are introduced into the tank,

resulting in an overflow in the ONB tank. The reason for such overflow is to ensure

that the mixing process is more uniform. As shown in Figure 4.4, the chemical

charging time of this process is about four minutes, with the HF flow rate close to

100 ml/min and the DI wafer flow 50 liter/min, for the recipe of 500:1, in that 500

units of DI water are mixed with 1 unit of HF 49% by volume. The HF flow is

turned on about one minute after the recipe starts (or trace data collection starts),

and the window start is defined as a few seconds after HF flow is turned on to

filter out flow meter noise, caused by the turbulence and the window ends at the

end of chemical charging. The means and standard deviations within the defined

window are calculated for each process trace data as the process indicators, which

can be used in process monitoring in the FD system.

Besides bath the HF flow rate and the bath DI water flow rate, other process

trace data are also collected, including bath temperature, N2 pressure and so on.

The prediction of the oxide etch rate in the diluted HF solution may be related to

all of the available process data or only a subset of them. After several iterations

of PLS evaluations, five process indicators are selected to the PLS model to predict

bath etch rate with best prediction result:

1. Bath temperature mean

2. DI water flow rate mean

3. DI water flow rate standard deviation

4. HF flow rate mean

5. HF flow rate standard deviation
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PLS evaluation results are plotted in Figure 4.5. To obtain a reliable model, a

minimum number of principal components should be selected in the model. The

optimum number of principal components can be determined by both predicted

residual error sum of squares (PRESS) and percent variation explained [92].

PRESS =
∑

(ycal− yact)2 (4.7)

where ycal is the calculated value through the PLS model and yact is the actual value.

In our evaluation, four principal components are chosen, as shown in the top graph

in Figure 4.3, which results that 54% variation can be explained for cumulative Y

as PRESS approaches to a minimum value 0.782. The percent variations that can

be explained by cumulative X are about 78.4%. The validation method we choose

is “leave one out cross validation”, computed for the validation sets based on the

models constructed by leaving out one observation at a time, resulting in an R2 of

0.54.

In the next chapter, we will show that an improved result can be obtained

through a multiphysics model.

4.4.3 Limitations of Statistical Models

The traditional statistical VM models have the following limitations, which lead

us to consider multiphysics-based models:

• Poor input data quality issues. Process trace data have a lot of noise.

Without the physics knowledge, traditional statistical model-based prediction

is downgraded by averaging out the noise.

• Lack of physical correlation. The process data items used by traditional

statistical models are often the mean or standard deviation of process trace

data, which does not carry any direct physical correlation with the output

variable.

• Large training data requirements. A large training data set is often required

for traditional statistical models.
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Figure 4.5. PLS evaluation results

• Incoming material variations. Traditional statistical models often cannot

handle incoming material variations, including incoming chemical batch

variations.

• Statistical biases on selecting key process parameters. Statistical methods

can be biased on process data items reduction or selecting key process pa-

rameters, due to tool-to-tool or instrument-to-instrument mismatches.
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4.4.4 Scope of This Work

The remainder of this paper is organized as follows. Section 4.5 explains the

etch rate mechanism of silicon dioxide in a diluted HF solution, reliance index and

the multiphysics-based model on etch rate predictions. Section 4.6 elaborates a

new approach to integration of virtual metrology into R2R control. Next, Section

4.7 presents the benefit analysis of this virtual metrology project and finally, and

Section 4.8 concludes the work with a summary.

4.5 Virtual Metrology Using a Multiphysics Model
4.5.1 Etch Rate Prediction Background

High volume semiconductor manufacturing facilities face challenges related

to HF etch processing of wafers (or wet etch). For example, the high cost of

test wafers, the large metrology sampling rate requirement and the considerable

engineering time required make it difficult to achieve accurate control of etch rate.

Taking chemical samples, measuring sample composition at a chemical lab and

troubleshooting etch rate shift are time consuming. Depending on the process,

the tools have to be taken off-line to sample etch rate measurement at least once

a week; and the same thing occurs after each tool maintenance event. Such etch

rate metrology has impacted the Fab cycle time performance. Using VM would

improve cycle time. Other benefits of etch rate VM are listed as following:

• Much better process control and monitoring with virtual etch rate on every

process run

• Less taxing on metrology capacity, because 100% sampling is not needed for

process control

• Ability to set the framework to model all HF cleans (wet etch) with VM

• Lower use of less etch rate wafers, or non-process wafer (NPW) reductions

• Incorporation of VM into R2R control

• Decreased downtime postmaintenance events
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In the traditional approach, the first task is to reduce data items in the prediction

model. The principle component analysis can be used for this purpose; however, it

will only provide the results, assuming linear dependence of the Etch Rate on the

available process data. In our multiphysics approach, we first use the fundamental

insight into the mechanisms influencing etch rate change, and then select the model

structure to reflect such knowledge. This may lead to a nonlinear dependence of

the etch rate on the available process data.

4.5.2 HF Etch Rate and Its Mechanism

We reviewed some previous work related to etch rate modeling of silicon dioxide

in a diluted HF solution and its mechanism. Starting with basic reaction kinetics

(4.8) of dilute HF solutions [108]:

[HF]
k1−−−⇀↽−−−
k2

[H+]+ [F−]

[HF2
−]

k3−−−⇀↽−−−
k4

[HF]+ [F−] (4.8)

where the equilibrium constants at 25 oC are listed in (4.9),

ke1 =
k1

k2
= 0.0013

ke2 =
k3

k4
= 0.104 (4.9)

If we define, A = [HF], B = [HF−2 ], C = [F−] and D = [H+], then changes in

the composition can be described by the following ordinary differential equations

(ODE’s):
dA
dt
= −k1A+ k2CD+ k3B− k4AC

dB
dt
= −k3B+ k4AC

dC
dt
= k1A+ k3B− k2CD− k4AC

dD
dt
= k1A− k2CD (4.10)

Solving all these equations (4.10) together, the evaluation results of the initial

concentration [HF] = 0.05 mol/liter is shown in Figure 4.6. Equilibrium constants

at 25 oC can be looked up in the handbook [109].
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Figure 4.6. Composition changes of each species for initial concentration [HF]
equal to 0.05 mol/liter

Given the composition in the etch tank, Judge [108] provided the following

correlation for the etch rates,

R(Ang./sec) =5.0×107[HF−2 ]e
−△E1

RT

+2.2×106[HF]e
−△E2

RT +C(T) (4.11)

where △E1 and △E2 are activation energy and C(T) is a constant term depending

on temperature.

An alternative etch rate model was proposed by introducing dimer term (HF)2

into the HF etch rate mechanism [6]:

R = a[(HF)2]+ b[(HF)2]2+ c[HF−2 ]

+d[HF−2 ]× log(
H+

HF−2
) (4.12)
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2HF
ke3−−−⇀↽−−− (HF)2 (4.13)

The equilibrium constant Ke3 of (4.13) is 2.7 liter/mol.

The equilibrium in the dilute HF solution considering dimerization (4.12) is

plotted in Figure 4.7 by solving equations (4.10) and (4.13) together.

The conclusion from these chemical reaction models is that the SiO2 film etch

rate is dependent on total fluorine F concentration, activation energy and the

temperature. The above etch rate models using chemical reaction are better than

the empirical data-driven approaches such as PLS because they not only help us

understand the fundamentals of chemical reaction and build better process indi-

cators, but they also help us to correctly select key parameters (process variables)

which should be part of the model. Next we will use this insight to develop and
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Figure 4.7. The calculated fraction of each component in an HF solution as a
function of total fluoride concentration [6]
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validate etch rate model using the correlation between predicted data and real HF

weight percent (wt%) measurement from the chemical lab.

4.5.3 Etch Rate Prediction Using the Multiphysics-Based Model

According to equations (4.11) and (4.12), the silicon dioxide etch rate in a

diluted HF solution depends on species concentration, activation energy and

temperature. The temperature factor can be safely eliminated from the model

because the temperature is very stable according to the collected process trace

data, and the temperature is controlled precisely at 23±0.1oC. On the other hand,

the activation energy of the chemical reaction remains the same for the same thin

film. Therefore, our conclusion is that etch rate only depends on chemical species

concentrations. Although it might be a nonlinear function, one can assume the

linearity by eliminating higher order terms when HF solution is very diluted and

the etch rate varies in a small range (e.g., from 22.5 Angstroms per minute to 26.5

Angstroms per minute):

R = b[HF]wt% (4.14)

where [HF]wt% is the weight percent of a dilute HF solution and b is a constant.

The prediction of etch rate actually becomes predicting the weight percent of a

dilute HF solution. Experiments were designed for the prediction model for the

weight percent of a dilute HF solution, and data collection was done successfully.

The weight percent of the dilute HF solution can be measured accurately in the

chemical analysis lab through a titration procedure [110], while the difficulties we

encountered include the production constraints, tool safety interlock and chemical

lab sampling logistics and so on. With the help from engineers from both the

wet process and the process control system, the data collection and analysis were

completed with the following conclusions. The weight percent of a dilute HF

solution can be predicted by equation (4.15):

[HF]wt% = k
QHF

QDIW
(4.15)

where QHF and QDIW volumetric flow rate means of HF and DI Water, respectively,

and k is a constant, which can be different for every chamber or tank.
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The measured and predicted weight percent of dilute HF solution is listed in

Table 4.1. The predicted concentration using equation (4.15) is strongly correlated

to the real measurement in the chemical analysis lab.

The governing equation of etch rate prediction is equation (4.16) after combining

equations (4.14) and (4.15):

R̂ = K
QHF

QDIW
(4.16)

where K is a coefficient, which depends on the chamber context and K = bk.

The coefficient K can be estimated for each context using an exponential weighted

moving average (EWMA) filter (4.17) (4.18):

K̂N = λKCal,N+ (1−λ)K̂N−1 (4.17)

KCal,N =
Rmeas,NQDIW,N

QHF,N
(4.18)

where KCal,N is the estimated coefficient using real etch rate metrology and the flow

rates data from FD system at current run. Q is the mean value of FD traces within

the window (the portion of blue color curve in Figure 4.4). λ is a weighting factor

whose value is between 0 and 1.

4.5.4 Etch Rate Prediction Reliance Index

A reliance index (RI) is designed to gauge the reliability of the predictions and

RI is also used to filter out the false alarms when VM is used for the propose of

Table 4.1. The measured and the predicted weight percent of HF solution

Tool Lot ID HF Wt% Measured HF Wt% Predicted

P15T2 W960442.002 0.052 0.0539

P15T2 X122062.002 0.053 0.0533

P15T2 X155312.002 0.054 0.0541

P15T2 W289142.002 0.055 0.0540

P15T2 W307782.002 0.053 0.0537

P15T2 W326502.002 0.053 0.0534

P15T2 W334102.002 0.054 0.0540
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processes monitoring. RI and global similarity index (GSI) are evaluated as the

indicators of prediction quality [107, 111, 112].

Let Zŷi denote the normalized prediction of VM and Zŷri denote the normalized

reference prediction. The RI [111] is computed as,

RI = 2
∫ ∞

Zŷi
+Zŷri
2

1√
2πσ

e−
1
2 ( x−µ
σ )2

dx (4.19)

with µ = Zŷi if Zŷi < Zŷri , µ = Zŷri if Zŷi > Zŷri and σ = 1. In fact, the RI of (4.19) is

the overlap area between two normally distributed bell curves, Zŷi and Zŷri , and

Zŷi ∼N(0,1), Zŷri ∼N(0,1). The reference prediction can be calculated using a least

square multiregression method.

On the other hand, the GSI assesses the similarity of the input data sets between

the model samples and recent data, and Mahalanobis Distance is used to quantify

such similarity. Let ri j denote the correlation coefficient between the parameters i

and j in the input data, and there are k runs of input data and ri j is computed as,

ri, j =
1

k−1

k∑
l=1

zilz jl (4.20)

where zil and z jl are the normalized input data items and the correlation coefficients

matrix for n parameters is defined as,

R =


1 r12 · · · r1n

r21 1 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

 (4.21)

The GSI can be computed by (4.22):

GSIk =
D2

k

n
=

ZT
k R−1Zk

n
(4.22)

where D2
k is the Mahalanobis Distance, and Zk is the normalized input data of kth

run, which includes n parameters.
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Alternatively, we evaluate a new method to compute a RI through the probabil-

ity of failure in a multicomponent system (4.23). Series systems function properly

only when all their components function properly [17].

P(A∧B∧C) = P(A) ·P(B) ·P(C) (4.23)

with the assumption that A, B and C are independent components. Therefore,

proposed RI can be evaluated by (4.24):

RI = PDQ ·PHF ·PDIW ·PHORIZON ·PTIME (4.24)

and the explanation of each term in equation (4.24) is listed as following:

• PDQ is the data quality value of FD data. This value is received from FD

system directly, and it is related to missing data and other data quality factors

during data collection in the FD system.

• PHF is the two-tailed probability of the z-score of HF flow zHF occurring by

assuming that the HF flow rate is normally distributed. The population mean

µ and the standard deviation σ can be computed by historical data:

zHF =
QHF−µ
σ

(4.25)

• PDIW is the two-tailed probability of the z-score of DI water flow occurring,

which is similar to PHF.

• PHORIZON is evaluated by the invalid records in the moving window horizon.

The horizon length is a user defined value. The record is validated by a set of

limits testing, for example the goodness of fit (GOF) of metrology is greater

than a specified threshold (e.g., 0.9).

PHORIZON = 1−αninv

nh
(4.26)

where α is the user-defined weight for the horizon factor, ninv is the number

of invalid records in the moving horizon and nh is the user-defined horizon

length.
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• PTIME is related to time elapsed between now to the time stamp of last model

update. The longer the time since last model update, the lower the PTIME

value. PTIME can be simply evaluated by a linear equation (4.27):

PTIME = 1−β t
tmin

(4.27)

where β is the user defined weight for time factor, t is the time elapsed between

now to last model update and tmin is minimum requirement of frequency for

VM model update which depends on the speed of etch rate drift.

In the actual implementation, RI is not only used to disable the out of control

action plan (OCAP) of predicted etch rate, but it is also used to monitor the health

of the VM system. For example, if the RI is consistently lower than its threshold,

then it would indicate that VM model update stops working for some reason.

Furthermore, RI can be part of the dynamic tuning of a R2R controller [112].

4.5.5 Etch Rate Virtual Metrology Design

The main architecture is outlined in Figure 4.8, and the design of the VM

involves two systems, FD and R2R. The connection between the two systems is

through web services. The Run-to-Run system collects the flow rates data from

the FD system to predict etch rate via equation (4.16). VM model parameters need

to be updated from time to time to capture the chemical batch and chemical flow

variations. Depending on the processes, some etch rate qualifications run once a

week and some critical processes run every day. Whenever new etch rate actual

metrology data (or etch rate qualification data) is available, the model parameters

K will be updated by Run-to-Run, in other words, K will be re-estimated using

equations (4.17) (4.18). K carries both the flow meter calibration and the variation

of chemical batch HF 49% information, while the flow rate ratio carries the physics,

or the multiphysics-based information. Both the etch rate predictions and the

prediction reliance index are saved in FD system for OCAP.

4.5.6 Virtual Metrology Results Analysis and Discussions

The initial data collection results were very encouraging. As shown in Figure

4.9, the correlation (r2) between actual measured etch rate and the predicted etch
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rate is 0.83 for the first two weeks’ data collected after this VM system was built,

and the recipe that was used was 100 : 1, 100 units of DI wafer mixing with 1 unit

of HF49% by volume. After collecting one year’s data, the correlation r2 value

downgrades a bit to 0.64, as shown in Figure 4.10.

In an ideal situation, the slope and r2 are equal to 1 and the intercept is equal

to 0 for both Figure 4.9 and Figure 4.10. The results shown in Figure 4.10 are

still compelling for the long-term VM data collection, and our results collected in

the high-volume production are at least comparable to or better than the results

published. After some troubleshooting of the outliers in Figure 4.10, we found that

some of them are caused by test wafer preparation problems and the others are

unknown events. Recently a logic was implemented as a solution for fast tracking

the sudden changes: if the absolute prediction error, |ERpredicted−ERmeasured|/ERtarget,

[ Å/min ]

[ 
Å

/m
in

 ]

Figure 4.10. Long-term results r2 = 0.64: correlation between actual measured etch
rate and predicted etch rate
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is beyond 10%, then the moving horizon of the VM will be reset, which means that

VM needs to collect fresh data to make any new predictions, and the RI drops to

zero immediately after reset. One of the benefits of implementing this is to better

track dramatic shifts by unknown events, for example, some types of maintenance

events. It would be even better if the maintenance event were integrated into the

VM system for automatic reset.

4.6 Integration of Virtual Metrology into Run-to-Run Control
Typically an R2R controller adjusts recipe parameters based on metrology data

to improve process capability, while metrology operations have constraints due to

high cost and long cycle time. In a high-volume semiconductor manufacturing

environment, wafer level metrology sampling is basically avoided due to these

constraints. In many cases, only 10% to 20% of lots are sampled for the metrology

and furthermore, there is a delay between process step and metrology steps, and

as a result, R2R performance is downgraded. VM becomes a promising system

to improve R2R control performance in two main aspects, real time metrology

and 100% availability. Feeding VM data into R2R controllers is one of the usages

to realize VM benefits, which includes feed-forward and feedback at following

applications:

• Wafer level feed-forward application. By far, this is one of the most promis-

ing benefit models because wafer level R2R control is demanded for many

critical steps. The wafer level predictions (VM data) can be fed forward to a

wafer level R2R controller at the downstream process steps, refer to Figure 4.1,

in such a way that all wafers in a lot are compensated to improve the process

control performance. Such R2R systems requires high demand on predic-

tion quality because typically, there is no dampening for the feed-forward

components in the R2R control.

• Lot level feedback application. In most lot level feedback R2R control

systems, only a small portion of the lots are sampled due to the cost and cycle

time constraints. With the help of VM, 100% of the lots’ metrology become

available, either actual metrology or predicted metrology. Furthermore, the
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R2R control performance is often downgraded due to metrology delays [79],

while VM data become real time as it takes only seconds to compute metrol-

ogy predictions. As a result, the lot level R2R control performance can be

improved when 100% lot level data are available with VM data in real time.

• Wafer to wafer (W2W) R2R application. There are many benefits for W2W

R2R control through VM, including minimizing metrology delay and im-

proving wafer level process capability [2, 51, 113]. However, most of MES

systems do not allow wafer level recipe adjustment after the lot is committed

on the tool, so the wafer to wafer (W2W) control is very challenging to be im-

plemented except some process tools having onboard metrology. Therefore,

the W2W R2R implementations in the high-volume production are limited

to the tools with onboard metrology systems today, while wafer level VM

predictions will enable more W2W control applications in future.

• R2R control model update application. It’s well known that R2R control

models drift over time but it is assumed to be constant. For example, process

gain (or slope) is assumed to stay constant, so the plant and model mismatch

downgrades R2R control performance. In this research, R2R model (or slope

term “etch rate”) is updated through the VM, so that the R2R control can

remain optimal as another benefit model of VM. We will discuss this more

next.

In this VM research project, the outputs of the VM system are etch rate prediction

and its reliance index. On the process control side, the process module controlled

by R2R using VM data is called “local oxidation of silicon”(LOCOS) [114, 115],

which is a typical process in the isolation structure of devices in semiconductor

fabrication, and a conventional LOCOS isolation structure is illustrated in Figure

4.11, which includes the topographies of a semirecessed and fully-recessed LOCOS

structure. An accurate process control of locally oxidized silicon process is essential

for electrical performance of the isolation structure. The LOCOS process flow and

steps are listed in Figure 4.12.
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Before the implementation of VM, the only R2R control step is “Pre Oxidation

Clean,” and problems of such a control scheme are listed in the following:

• Poor Cpk (Cpk < 1) was obtained at the final step “Post Diffusion Thin Oxide

Thickness Metrology” even when 100% of the lots were sampled (so-called

“over” sampling) at step “Post Nitride Strip Oxide Thickness”.

• Long metrology tool time is spent at step “Post Nitride Strip Oxide Thickness”

because 100% of lots were sampled, and this increased the cycle time of

production line.

• Furthermore, the metrology tool was operated at its constrained capacity, and

the cost of an extra metrology tool is close to two million dollars.

A better control scheme was developed with the help of VM at step “Post

Diffusion Wets Clean” and the block diagram of R2R control using VM is described

in Figure 4.13. The R2R control type is a feed-forward and feedback batch control

system: the intercept state, bk, is continuously updated by post metrology step

“Post Nitride Strip Oxide Thickness” via the EWMA filter for feedback control:

bk+1 = λ(ym− R̂uk− fk)+ (1−λ)bk (4.28)

whereλ is the damping factor, which is a value between 0 and 1, ym is the metrology

at kth run, R̂ is the process gain, uk is the manipulated variable at kth run and fk is

the feed-forward disturbance.

On the feed-forward side, “Post Diffusion Oxide Thickness Measurement”, fk,

is a feed-forward component to R2R control. The R2R model (or process gain), R̂, is

continuously updated by VM system using equation (4.16). Such model update is

critical for incoming feed-forward disturbance compensation as mentioned earlier,

because there is no dampening factor for the feed-forward component fk in (4.29).

The etch rate R̂ needs to be accurate, otherwise the controller recommended setting

in following would be biased:

uk+1 =
yt− bk+1− fk

R̂
(4.29)

where yt is the control target of step “Post Nitride Strip Oxide Thickness” and uk+1

is the R2R recommended settings.
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Figure 4.13. Run-to-Run controller model update through virtual metrology

For dampening noise impact from VM system, R2R process model R̂ is up-

dated only when the mismatch between plant and model is greater than certain

threshold and also RI is high (for example, the mismatch is greater than 2% and

RI is greater than 70%). We have demonstrated that such R2R and VM control

scheme has improved the process capability greatly in high-volume semiconductor

manufacturing production. Furthermore, it also improves other metrics, including

excursion prevention, yield improvement, cycle time reduction and cost reduction.

We will discuss them in detail in Section 4.7.

4.7 Benefit Analysis
Cheng et al. have proposed the VM benefit model [93], which includes the

following aspects and cost reduction measures, thus providing a competitive edge

for semiconductor manufacturing companies:

• Cycle time reduction by skipping on-line or off-line metrology

• Yield enhancement through process capability improvement
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• Cost saving of nonproduct wafers

• Capital expenditure (or capex) reduction

In fact, the VM system in this research project has realized the benefit of every single

aspect in above benefit list, which has reduced the manufacturing cost significantly.

4.7.1 Excursion Prevention

The predicted etch rate and its reliance index provide additional process indica-

tors to prevent process excursions. Those new process indicators are saved in the

FD system with limits and OCAP, which can be used for process monitoring in real

time and total inspection of all batches. For example, it was the newly predicted

etch rate and its reliance index that highlighted differences between the actual etch

rate and the predicted etch rate. After investigating further, a leak was found in the

tank. This is one of the examples that VM can be used for excursion prevention.

4.7.2 Process Capability Improvement

After VM and R2R control strategies were deployed in real semiconductor

manufacturing, a significant improvement of process capability index, in terms

of Cpk, has been observed. As shown in Figure 4.14, only one tool was released

first as a pilot for this new control scheme starting from June 2nd, and all tools

were released on August 5th based on the excellent results of this pilot line. The

Cpk was improved from 0.8 to 1.48 for the SPC chart of “Post Nitride Strip Oxide

Thickness” step, an 85% Cpk improvement. Moreover, the performance of the final

LOCOS metrology step “Post Diffusion Thin Oxide Thickness Metrology” was also

improved, as shown in Figure 4.15. The Cpk was improved from 0.57 to 1.21,

a 110% Cpk improvement. Figure 4.15 collected much less data compared with

Figure 4.14 due to a low sampling rate. Since “Post Nitride Strip Oxide Thickness”

is a pre-metrology step for the R2R controller at “Pre Oxidation Clean,” it needs

more lots to be measured for feed-forward. We confirm that the Cpk improvement

in Figure 4.15 is the result of incoming variation reduction by R2R and VM at step

“Post Nitride Strip Oxide Thickness” in Figure 4.14.
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4.7.3 Yield Improvement

Besides the Cpk improvement of in-line SPC charts of metrology data, data

analysis showed that the variation of final electrical parametric data corresponding

to oxide thickness is improved by 20%. As a result, such electrical parametric data

improvement is translated into a 0.15 die per wafer yield gain.

4.7.4 Cycle Time Reduction

The cycle time reduction is achieved mainly from the sampling rate reduction at

metrology step “Post Nitride Strip Oxide Thickness”. The Cpk improvement at this

oxide thickness metrology step has enabled us to reduce sampling rate from 100%

to 50% at metrology step “Post Nitride Strip Oxide Thickness”. As shown in Figure

4.12, the feed-forward and feedback R2R controller at the “Pre Oxidation Clean”

step required a 100% lot level sampling rate to support process control and process

capability in the past. After the implementation of VM and the R2R controller at

step “Post Diffusion Wets Clean”, the process capability is improved significantly,

which is shown in Figure 4.14. Therefore, an over sampling requirement is no

longer needed. As a result, a 50% sampling reduction can be translated into 8.6

minutes of cycle time reduction due to the escape rate improvement.

4.7.5 Cost Reduction

Cost saving is the driving force of semiconductor manufacturing improvement,

and yearly cost saving can be estimated from the below equation [93]:

Saving =Wo ∗ [
1

1− (△CTP+△CTM)
−1] ∗ (1+△Y)

(P−C)+△CostM+△CostT−CostV −CostQ (4.30)

where Wo is number of wafer output per year,△CTP is % cycle time reduction due to

VM allowing production wafers to skip metrology sampling, △CTM is % cycle time

reduction due to VM allowing less test wafers used in the off-line tool monitoring

process and more intelligent dynamic metrology schemes, △Y is % enhancement

on process capability, reduction in scrap and so forth, P is the average selling price,

C is the average production cost, △CostM is the cost saving of test wafers per year

when applying VM, △CostT is the capex reduction per year when applying VM,
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CostV is the maintenance cost of VM and CostQ is the additional cost per year due

to false alarms or missed detections by VM.

In this single virtual metrology project, our estimated cost saving is US$346,564

per year, which includes the cycle time reduction by skipping the metrology step,

yield benefit, cost savings of the test wafers and the metrology tool capex reduction.

4.8 Summary
This work demonstrated that incorporating physics and a chemical reaction

model into virtual metrology can improve virtual metrology prediction quality.

It’s a better method to select key process variables for building VM, and it’s a better

method to establish “meaningful” process indicators compared with traditional

statistical regression models. We have also demonstrated that prediction results

of multiphysics-based model are improved over those obtained in traditional

statistical approaches. Furthermore, multiphysics models require less training

data than other approaches due to fast convergence behavior. Finally, incoming

variations and raw materials from chemicals and gases are to be accounted for in

the VM model; without taking those into account, VM prediction accuracy can be

biased or compromised sometimes.

Besides the previous proposed W2W R2R control enabled by VM in literature,

the R2R control model parameter, which is the etch rate (or slope) in our case,

can be updated through virtual metrology in “real time”. In this way, R2R

control is operated at its optimal state, especially for compensating feed-forward

components. We also demonstrated in high volume semiconductor manufacturing

that integrating VM into R2R controller can improve process capability and yield

significantly.

Our contributions in this project include: 1) this work is the first one to

incorporate a multiphysics model into semiconductor virtual metrology to improve

prediction quality and accuracy; 2) this work is the first one to use a VM system to

update R2R control model parameters; 3) this work is the first one to account for

incoming chemical batch variations in virtual metrology models; and finally, 4) this

work realized almost all of the VM benefits in high volume production including
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excursion prevention, process capability and yield improvement, cycle time and

cost reduction.



CHAPTER 5

A GENERIC DIFFUSION FURNACE VIRTUAL

METROLOGY

5.1 Abstract
The recipe adjustments by a furnace R2R controller, in fact, only keep five

monitoring wafers’ thicknesses on target, so it improves the thickness uniformity

along boat slots only to some extent. However, the thickness profile in each heater

zone or across all five heater zones cannot be completely eliminated because of

temperature uniformity problems and depletion effect. In this project, we use a

design of experiment and a multiphysics model to predict the wafer thickness

of each boat slot, which can be potentially used as feed-forward components by

a wafer level controller at the downstream process step to improve wafer level

variations. On the other hand, several challenges are encountered during this

research project, for instance, the queue time effect and the compensation of R2R

adjustments. New methods are proposed to solve these challenging problems, and

the results obtained are discussed.

5.2 Introduction to the Diffusion Furnace
5.2.1 Introduction to Furnace Process

The name “diffusion” furnace was created long before ion implant was invented

in the mid-80s [116, 117]. The main function of a diffusion furnace was a thermal

diffusion process which introduces dopants into silicon. A typical diffusion process

involved a mask of silicon dioxide, which defined the area to receive the dopant.

The dopant was introduced to the wafer surface in either liquid or gas form, and

then dopant was driven deep into the wafer through the high temperature process,

for example, 900 oC. Over the last few decades, the original function of “diffusion”
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furnace has been completely replaced by ion implant, and nowadays, diffusion

furnaces function in three main applications [118]:

• Growth of a new layer of material, which consumes some of the substrate;

for example, silicon dioxide grows on the substrate while consuming some

of the silicon substrate.

• Deposit of new thin films without consuming silicon substrate; for instance,

ploy-silicon deposition.

• Heat treatments including anneal and alloy.

The diffusion processes often involve chemical reactions, low pressure or “vac-

uum”, and high temperature. The chemical reaction turns gas and substrate into

another material, and the property of the new material is very different from the

original substrate. For example, a “dry” oxidation [119, 120] can be described as,

Si+O2→ SiO2 (5.1)

while a “wet” oxidation [119] can be described as,

Si+2H2O→ SiO2+2H2O (5.2)

“Dry” oxidation is used to obtain better film quality, while the deposition rate

of “wet”is much faster than the “dry” oxidation. There are two reasons why “wet”

oxidation is faster. Firstly, small molecules diffuse faster than big molecules: The

H2O molecule is smaller than the O2 molecule, so the H2O molecule diffuses faster

to the reaction site, where the silicon substrate interface is. Second, the more

reactive radicals provide higher oxidation rate: both O2− and OH− radicals are

reactive radicals in “wet” oxidation, and these radicals are looking for combining

and re-combining opportunities. Therefore, a better oxidation rate can be achieved

in “wet” oxidation. Approximately 44% of the thickness of the grown oxide comes

from substrate silicon, which is shown in Figure 5.1.

Almost all diffusion processes are processed in low pressure or vacuum for

better film property, thickness controllability and safety reasons. In most cases, the
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Figure 5.1. Growing oxide in diffusion furnace consumes some of the silicon
substrate

diffusion processes involve high temperature (e.g., 800 to 1000 oC) to achieve the

desired film property, but high temperature also causes dopant migration, as a side

effect [118].

The deposition of new material using a diffusion furnace is often called low

pressure chemical vapor deposition (LPCVD). The high temperature drives chem-

ical reactions and low pressure prevents reactants from recombining or reacting

with gasses in air and improves step coverage. For example, poly-silicon can be

deposited via LPCVD in the diffusion furnace at a temperature of about 500 oC

[121]:

SiH4→ Si+2H2 (5.3)

and such deposition of new material without consuming any silicon substrate is

shown in Figure 5.2.

Another application of a diffusion furnace is the heat treatment for either copper

annealing or annealing after ion implants [118]. For the better quality of copper, a

copper annealing process can transform the crystal structure into a more desirable

grain structure for either resistance reduction or chemical and mechanical polishing

(CMP) uniformity improvement. On the second application of heat treatment,

the ion implant process damages the silicon surface, and devices do not function

properly without repairing these damages. A rapid thermal process (RTP) has been

developed to repair the implant damages as shown in Figure 5.3. At the same time,

the implanted dopants can be also activated by moving them to the silicon lattice
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Figure 5.2. Depositing poly-silicon in diffusion furnace does not consume any
silicon substrate

 

Si atom

Dopant atom     (A)

     (B)

Figure 5.3. The damaged lattice and its repair: (A) The lattice is damaged by an
ion implant process (B) The lattice is repaired by a rapid thermal process
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site to improve the electrical property of devices being fabricated. Figure 5.3 shows

differences before and after the “repair” by a RTP.

5.2.2 Introduction to Furnace Equipment

The diffusion furnace is a batch tool, which processes 4 to 6 lots together. Figure

5.4 describes a Kokusai vertical furnace which consists of a front opening unified

pod (FOUP) storage rack, two FOUP load ports, one wafer transfer station, a boat

where wafers are loaded and a tube where wafers are processed. As seen in Figure

5.5, the liner goes between the wafer boat and tube, which is also very important.

Without a liner, gas would exit directly to exhaust.

Compared with many single wafer processing tools, there are many advantages

of a diffusion batch tool in that the operating cost is cheaper and the process time

(RPT) per wafer is shorter provided that it is a “full” batch. It does have some

 

FOUP Storage

FOUP 

Loadport

Boat

Tube

Wafer Transfer 

Station

Figure 5.4. Kokusai vertical diffusion furnace
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1) The gases enter the reaction chamber 

through the injectors 

4) The gases exits the reaction chamber

3) The gases leave the top of the 

inner liner and then directed down 

toward the pump line

2) The gases then travel upward 

around the processes wafers

LPCVD Gas Flow

Figure 5.5. The configuration of boat, liner and tube

disadvantages. For example, the process is very slow, and sometimes it takes

as long as 8 hours. Furthermore, it can impact multiple lots in a batch when

equipment has problems like particle issues, pump failures or recipe aborts, etc.

The other unique problem of a diffusion furnace is that the thickness profile in

normal conditions exists due to the misalignments between the monitoring wafer

locations and heater centers, refer to Figure 5.6, as well as the gas depletion effect

of a vertical furnace where the gas is usually introduced from the bottom in Figure

5.5. R2R control of the diffusion furnace drives the thickness of all five monitoring

wafers to the control target, while it does not address the thickness variation within

a heater zone. In this paper, Section 5.3 illustrates R2R control of a diffusion furnace,

Session 5.4 summarizes the motivations of developing diffusion furnace virtual

metrology, Session 5.5 discusses the DOE data and evaluation results, Session 5.6

explains our multiphysics of furnace VM and some of its challenges and Session

5.7 gives our conclusions and the future work.
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Figure 5.6. Heater center and monitoring wafer location in the boat drawing and
their misalignment
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5.3 Introduction to Diffusion Furnace R2R Control
5.3.1 Furnace R2R Control Model

Several diffusion R2R control systems have been proposed in the past [122–124].

In this section, we will propose a new furnace R2R controller which handles any

number of the input and output combinations.

A typical input and output model of a diffusion furnace without the load size

effect [123] is described below,

yk =Muk+bk (5.4)

where yk is the output, which is the thickness metrology of monitor wafers, M is the

process gain matrix, which is obtained in the DOE, uk is a vector of tuning knobs

and bk is a vector of intercept states, in matrix form,

yk =


TopThicknessk

TopCenterThicknessk
CenterThicknessk

BottomCenterThicknessk
BottomThicknessk

 (5.5)

M =


m11 m12 m13 m14 m15
m21 m22 m23 m24 m25
m31 m32 m33 m34 m35
m41 m42 m43 m44 m45
m51 m52 m53 m54 m55

 (5.6)

uk =


TopTemperaturek

TopCenterTemperaturek
DepositionTime

BottomCenterTemperaturek
BottomTemperaturek

 (5.7)

and

bk =


b1k
b2k
b3k
b4k
b5k

 (5.8)

The setpoint of “CenterTemperature” (from the center heater) of a furnace is

usually fixed. In other words, it is not turned by the R2R controller. How-

ever the “DepositionTime” in (5.7) is added as another turning knob, which re-

places the tuning knob of “CenterTemperature”. Such a control scheme by fixing
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“CenterTemperature” is relatively stable, because equation (5.4) becomes an “under-

determined” case otherwise.

In general, there are three cases [23, 26] for equation (5.4) where yk ∈ ℜl and

uk ∈ℜn:

• when l = n, a unique solution exists, also known as the exact case.

• when l > n, no exact solution exists, but there is still a least square solution,

also known as the “over-determined” case.

• when l<n, there is not a unique solution, also known as the “under-determined”

case.

The diffusion controller developed a few years ago is called a generic diffusion

R2R controller, which solves all three cases above. This approach has been used

to increase the R2R deployment pace and to minimize any negative impacts in the

worldwide Micron Fab network [23, 24].

5.3.2 State Space Representation

A linear discrete state space model [30,34,85] used in the generic diffusion R2R

controller is described below,

xk+1 = Axk+Buk+Fωk (5.9)

yk = Cxk+νk

where xk is the state vector, ωk is the state noise and νk is the measurement noise.

A is the state matrix, B is the input matrix, F is the state noise matrix and C is the

output matrix.

For example, if we define state vector xk ∈ℜ10 as following [85],

xk =
[
Muk bk

]T
(5.10)

and assuming uk+1 = uk, then the below matrices are obtained:
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A =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


(5.11)

B =



m11 m12 m13 m14 m15
m21 m22 m23 m24 m25
m31 m32 m33 m34 m35
m41 m42 m43 m44 m45
m51 m52 m53 m54 m55

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(5.12)

F =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(5.13)

C =


1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1

 (5.14)

To build a more generic control system, we define a control system with a

larger dimension in the actual implementation, where yk ∈ ℜ10, uk ∈ ℜ10 and
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xk ∈ ℜ20, which can handle up to 10 inputs and 10 outputs (10× 10) in control

system dimension. In the next section, we will discuss how to solve a “smaller”

dimensional system, for example 3×3, in a generic diffusion controller.

5.3.3 State Estimation of Furnace R2R Control

For the state vector defined in (5.10), in fact, only intercept states bk needs to

be estimated. There is no state noise of the “Muk” term defined by the state noise

matrix F. On the other hand, we do not recommend estimating parameters in the

process gain matrix M, which should be obtained through the DOE, due to the lack

of excitement of data during normal operation.

The state estimation is done by quadratic programming [34,37] with the below

objective function:

min
ωk,νk

J = h−1∑
k=−1

ω
′
kQωk+

h∑
k=0

ν
′
kRνk

 (5.15)

subject to the following constraints:

x0 = x̄0+w−1

xk+1 = Axk+Buk+Fωk

yk = Cxk+νk

(5.16)

Q and R are configurable weighting matrices used as part of the optimization

cost function. The optimization function allows states to be calculated such that

state noise ωk and measurement noise νk are minimized while remaining within

established model constraints. The states can be estimated based on historical run

data using the control model and the state estimation optimization equations (5.15)

(5.16), where h is horizon length and x̄0 is the initial state.

The objective function J can be transformed into the following form through

algebraic manipulation [34]:

min
Wk

J =
1
2

WT
k HWk+ f TWk

Wk,min ≤Wk ≤Wk,max

(5.17)
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where Wk is the state error vector, H = Q̃+MT
AR̃MA and f = (−2YTR̃MA)T. For an

example, when horizon length h = 3, the below matrices are obtained,

W =
[
ω−1 ω0 ω1 ω2

]T
(5.18)

Q̃ =


Q 0 0 0
0 Q 0 0
0 0 Q 0
0 0 0 Q

 (5.19)

R̃ =


R 0 0 0
0 R 0 0
0 0 R 0
0 0 0 R

 (5.20)

MA =


C 0 0 0

CA C 0 0
CA2 CA C 0
CA3 CA2 CA C

 (5.21)

Y = y−MBu−MCx̄0 (5.22)

y =
[
y0 y1 y2 y3

]T
(5.23)

u =
[
0 u0 u1 u2

]T
(5.24)

MB =


0 0 0 0
0 CB 0 0
0 CAB CB 0
0 CA2B CAB CB

 (5.25)

MC =


C

CA
CA2

CA3

 (5.26)
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A state noise vector Wk is obtained by solving this objective function (5.15)

though quadratic programming (5.17) and Wk is defined as,

Wk =
[
ωk−h ωk−h+1 · · · ωk

]T
(5.27)

where h is the horizon length.

After the state noise vector Wk is obtained, all states in the moving horizon can

be updated accordingly. It is also observed that the dimension of the above matrices

is proportional to the horizon length: the longer the horizon length, the bigger the

dimension of matrices, (5.18) to (5.26). Therefore, an increased computational cost

has been observed by extending the horizon length h.

Typically, a diffusion R2R control has five inputs and five outputs, which is used

in example (5.11) to (5.14). Since the diffusion controller is a generic control system,

sometimes the number of inputs and outputs can be less than five. In this case, one

can simply reduce the rank of Q and R to be equal to the number of actual outputs.

In illustration, for a three inputs and three outputs control problem (3×3), Q and

R are set as following for the state estimation:

Q =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 (5.28)

R =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 (5.29)

In summary, the state estimation of any combination of multiple inputs and

multiple outputs (MIMO) problems up to a maximum dimension specified in

the control system, (10× 10) in our case, is solvable in the generic diffusion R2R

controller.

5.3.4 Furnace R2R Control and Its Performance

The generic diffusion R2R controller was coded on the E3 platform from Applied

Material, and the controller type is model predictive control (MPC) [125] outlined in
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Figure 5.7: batches “k−4” through “k” have been processed in the furnace reactor

and have post-metrology measurements. The filter horizon consists of a fixed

number historical runs which is used to estimate the states. Batch “k+1” has not

yet been processed, which constitutes the prediction horizon. The recommended

setting uk+1 for the next batch without constraints is computed as following,

uk+1 =
yt− b̂k+1

M
(5.30)

where yt is the control target and b̂k+1 is the estimation of intercept states. On the

other hand, uk+1 can be also computed with respect to tuning knob’s constraint

through equation (1.13).

Excellent process capability improvements in terms of Cpk have been obtained

after deploying such generic diffusion R2R controller. For instance, over 90% Cpk

improvement is obtained for a poly-silicon deposition process in Figure 5.8, and

the model dimension is a six inputs and nine outputs system, where the inputs

include all five-zone heater temperatures and a deposition time. On the other

hand, the outputs are the thickness measurements of monitor wafers from nine

different furnace positions, or boat slots. The increased number of monitor wafers

compared with five monitor wafers is part of the effort in flattening the thickness

profile of a diffusion furnace.

Overall, we have seen an average of 40% Cpk improvement for all diffusion

processes, besides other benefits including increased R2R deployment pace and

reduced R2R controller excursions related to the controller development.

5.4 Motivations for VM of Diffusion Furnace
The thickness profile of a vertical diffusion furnace often introduces variations

into process steps downstream. In the last section, we discussed the diffusion R2R

 

K K+1 K+2K-1K-2K-3K-4

Filter Horizon Prediction Horizon

Figure 5.7. The filter horizon and predictive horizon for model predictive control.
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Figure 5.8. A furnace R2R control (6× 9) improved process capability in terms of
Cpk by more than 90%.

control which is used to improve the thickness profile of a vertical diffusion furnace.

In the example of Figure 5.8, more monitor wafers (nine vs. five) are used to flatten

the ploy-silicon deposition thickness profile, while using more monitor wafers

means more manufacturing cost and long cycle time (almost doubled metrology

time). On the other hand, the thickness profile in each heater zone or across all five

heater zones cannot be completely eliminated by an R2R controller because of the

temperature uniformity problems [126] and a depletion effect [127].

Our motivations for doing this research project include the following:

• Improve the thickness profile prediction through multiphysics model, so that

it can enable wafer level compensation at the downstream process steps.

• Provide wafer level thickness data of all wafers in a diffusion batch for quality

control and analysis.

• Understand the challenge and roadblock of this diffusion VM project and

look for future research topics.

5.5 Incorporating Multiphysics into Furnace VM
5.5.1 Background

A method of predicting a diffusion furnace profile through neural networks was

proposed by Bode and Toprac [127] and the thickness profile can be compensated
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by an etch R2R controller in the downstream. They pointed out that deposition

rate by a diffusion furnace is affected by normal variations in temperature, reactant

flow rate and gases depletion, as shown in Figure 5.5. The gases enter the reactor

from the bottom, then they travel upward around the process wafers. Therefore, it

is possible that a decreased gas concentration occurs at an increased distance from

the gases inlet. Such a phenomenon is called the depletion effect, and to overcome

the gas depletion problem, the furnace is divided into four or five independently

controlled heater zones, as seen in Figure 5.6. Most of the diffusion furnaces

have five heater zones including top, top center, center, bottom center and bottom.

For example, if the gas concentration is higher in the bottom of the reactor, then

the temperature setpoint of the bottom zone can be lowered to slow down the

deposition rate in the bottom zone.

Since the reaction rate is related to both temperature and gas concentrations, it

is important to understand the temperature distributions of a furnace. Hirasawa et

al. [128] analyzed the heat transfer mechanisms and the steady state temperature

distribution of a vertical furnace. The gas velocity in the reactor is very slow, in the

order of 0.01 m/s, so convective heat transfer can be negligible. The tube in Figure

5.4 is made from silicon carbide or quartz, and at steady state, temperature across

the tube is constant, in that it is very thin, and the gap between the heating coil and

the tube is very small, so the effect of the tube can be negated too. Therefore, the

radiation dominates the heat transfer in steady state of a diffusion furnace.

In the steady state condition of a furnace without any wafers loaded, the

radiative heat transfer is given by (5.31) (5.32),

qi = −Gi+

m∑
k=1

GkFik (5.31)

Gi = ϵiσT4
i + (1−ϵi)

m∑
k=1

GkFik (5.32)

where qi is the net radiative heat flux absorbed in the i element, Gi is the radiosity

of the i element, ϵi is emissivity, σ the Stefan-Boltzmann constant and Fik is the

configuration factor, which is described in [129].
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The steady state temperature distribution [129] for a furnace without any wafer

is,

Ti = (
m∑

k=1

GkFik/σ)0.25 (5.33)

where Gk is the radiosity of the k element and Ti is the steady state temperature

distribution of a small sphere.

In the unsteady condition, the conduction also contributes to the heat transfer.

The unsteady thermal conduction is described as [128]:

ρCp
∂T
∂t
=

1
r
∂
∂r

(λ1r
∂T
∂r

)+
∂
∂z

(λ2
∂T
∂z

)+Q (5.34)

where T is temperature, r and z are radial and axial coordinates of the furnace,

ρ is density, Cp is specific heat, λ1 and λ2 are the radial and the axial thermal

conductivity, and Q is the sum of the radiative heat absorbed and the heat generated.

Although heat transfer mechanism is important to understand the temperature

distributions, the fundamental models (5.33) (5.34) were not used for the VM model

in this research, because we are more interested in the thickness profile along the

z direction. It is also difficult to obtain accurate model parameters, such as λ1 and

λ2.

5.5.2 Design of Experiment

A DOE is created to understand the contributions of the deposition rate of each

tuning knob. The DOE data were collected with the help of the diffusion process

engineers, and they are plotted in Figure 5.9.

Figure 5.9 consists of six subplots, each corresponding to one of the six tuning

knobs:

• Deposition Time: the deposition rate is about 0.07 Å/S across all boat slots.

• Top Temperature: the peak of deposition rate change by temperature is

located at the heater center, boat slot 145. The shape is not very clear because

it is one of the end zones of the furnace. It may be a “bell” shape curve but

with a very limited confidence.
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Figure 5.9. Design of experiment: deposition rate change by tuning knob at each
boat slot (or furnace position)
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• Top Center Temperature: the peak of deposition rate change by temperature

is near the heater center, boat slot 130. The shape is close to “bell” shape for

the left-hand side, but there is not enough data to justify the shape for the

right-hand side of curve.

• Center Temperature: the peak of deposition rate change by temperature is

located at the heater center, boat slot 73, and the shape of the curve is clearly

a “bell” shape.

• Bottom Center Temperature: it is similar to “Top Center Temp”, the peak of

deposition rate change by temperature is near the heater center, boat slot 16.

• Bottom Temperature: it is similar to “Top temp”, which is the other end of

the boat.

After analyzing above DOE data, we give a hypothesis that the furnace temper-

ature profile would be a combination effect of five Gaussian curves, one for each

heater zone, and an intercept term contributed by the “deposition time” knob.

5.5.3 Curve Fitting Results

This hypothesis inferred by the DOE data is supported by the curve fitting

results in Matlab. Figure 5.10 shows the thickness profile evaluations by adding

on the heater zone contributions one by one. For illustration purposes, the upper

graph of each subplot is the accumulated effect from all contributions, and the

lower graph of each subplot are individual knob contributions.

Figure 5.11 is the overlay between fitting curve and the actual metrology, and

the curve fitting is done by the curve fitting toolbox in Matlab. The general equation

used in the curve fitting is,

y = xte
−(p−pt)2

2σ2t +xtce
−(p−ptc)2

2σ2tc +xce
−(p−pc)2

2σ2c +xbce
−(p−pbc)2

2σ2bc +xbe
−(p−pb)2

2σ2b +xint (5.35)

where y is the thickness metrology; p is the boat slot of the measured wafer; xt,

xtc, xc, xbc and xb are the peak values of each Gaussian curve corresponding to

the heaters from Top, Top Center, Center, Bottom Center and Bottom heater zone,
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Figure 5.10. Accumulation effect and its contributions of a diffusion furnace
thickness profile
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respectively; σt, σtc, σc, σbc and σb are the standard deviations to define the “spread”

of each Gaussian function; pt, ptc, pc, pbc and pb are the boat slots of each heater

center location; and finally xint is the intercept term.

pt, ptc, pc, pbc and pb are known values in the model (5.35). The inputs to the

curve fitting toolbox in Matlab are p and y vectors, and the outputs of the curve

fitting are peak values, xt, xtc, xc, xbc and xb, as well as the standard deviations, σt,

σtc, σc, σbc and σb.

5.5.4 VM Model Update Methods

Two model update methods are proposed for the diffusion furnace VM. If the

thickness profile shape does not change over time, then only the intercept term is

to be updated, as shown in Figure 5.12.

A new intercept state xint,k+1 moves the whole thickness profile up and down

without changing the shape of the thickness profile, which is a simpler case. The

intercept state can be updated via an EWMA filter after obtaining new metrology

data.
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x̂int,k+1 =λ(y−xte
−(p−pt)2

2σ2t +xtce
−(p−ptc)2

2σ2tc +xce
−(p−pc)2

2σ2c +xbce
−(p−pbc)2

2σ2bc +xbe
−(p−pb)2

2σ2b )

+ (1−λ)x̂int,k+1 (5.36)

whereλ is the EWMA weight. Some assumptions have to be made for such a model

update method that the peaks (xt, xtc, xc, xbc and xb) and standard deviations (σt,

σtc, σc, σbc and σb) are fixed values, and they stay the same as the values obtained

at model fitting time. In other words, they do not drift over time. Since most of

the diffusion processes are controlled by the R2R controllers, and the setpoint of

each heater zone is adjusted by the R2R controller from time to time, this affects the

peak values of the Gaussian curves. Therefore, such assumptions would be only

correct for those processes without R2R controls.

The other model update method would be better, because we do not have to

make such assumptions that the shape of a thickness profile stays the same. VM

updates not only the intercept xint but also the peak values (xt, xtc, xc, xbc and xb).

The standard deviations (σt, σtc, σc, σbc and σb) are assumed to be the fixed values
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in order to simplify the system from a nonlinear system to a linear one (5.37):

y =
[
xt xtc xc xbc xb

]

c1
c2
c3
c4
c5

+xint (5.37)

where c1 = e
−(p−pt)2

2σ2t , c2 = e
−(p−ptc)2

2σ2tc , c3 = e
−(p−pc)2

2σ2c , c4 = e
−(p−pbc)2

2σ2bc and c5 = e
−(p−pb)2

2σ2b , c1 to c5

can be computed as the boat slot of the measured wafer is known and the standard

deviations (σt, σtc, σc, σbc and σb) are assumed to be constant. The assumption of

a fixed standard deviation is reasonable because it is mainly determined by the

heaters’ design such as the length of the heater.

The model update becomes parameters estimation of xt, xtc, xc, xbc, xb and xint.

Assuming that all parameters drift slowly over time in (5.38),

xt,k+1
xtc,k+1
xc,k+1
xbc,k+1
xbk+1

xint,k+1


=



xt,k
xtc,k
xc,k
xbc,k
xb,k

xint,k


+



ω1,k
ω2,k
ω3,k
ω4,k
ω5,k
ω6,k


(5.38)

and also the linear system (5.37) can be rigorously transformed into (5.39).

yk =
[
c1,k c2,k c3,k c4,k c5,k 1

]


xt,k
xtc,k
xc,k
xbc,k
xb,k

xint,k


(5.39)

Therefore, this system can be described in a linear time varying (LTV) state space

form [32, 33],

xk+1 = Axk+ωk (5.40)

yk = Ckxk+νk

and defining xk =
[
xt,k xtc,k xc,k xbc,k xb,k xint,k

]T
, below system matrices of state

space model can be obtained,



123

A =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(5.41)

Ck =
[
c1,k c2,k c3,k c4,k c5,k 1

]
(5.42)

The states vector xk, can be estimated by equations (5.15) (5.17), so this concludes

the second method of VM model update.

5.5.5 Queue Time and Metrology

One of the challenges on this project is that ploy thickness growth begins when

the FOUP is open. Figure 5.13 shows that native oxide grows much faster at the

beginning, especially in the first 50 minutes, and then it settles down after 200

minutes. This problem is not observed at the diffusion furnace step, because the

nitrogen purging is equipped at the load port of the furnace, while the metrology

tool does not have a such nitrogen purge, where this queue time problem is

discovered.
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Exposing the wafers to air for two hours and then measuring seems to be a

solution to this metrology queue time problem, but this solution increases the cycle

time of the line and wastes metrology tool utilization. A better solution would

“offset” the metrology data by accounting for how long it takes to measure the

wafers by a metrology tool and the offset can be calculated by the model established

in Figure 5.13.

5.5.6 Effects of R2R Control and Its Compensation

The other challenge in this project is how to account for R2R control adjustments.

As shown in Figure 5.14, there is a gap between the two predictions at different

times: one profile is predicted at the diffusion step and the other one is done at

the post-metrology time. The prediction gap is from the R2R control adjustments,

because the R2R controller makes the recipe adjustments as soon as it obtains the

new metrology data. The VM strategy estimates new model parameters toward the

thickness profile “inferred” by the metrology data before the R2R adjustment, while

the thickness profile “deviates” from the metrology data after the R2R adjustments.

Therefore, the R2R adjustments need to be accounted for when making predictions
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Figure 5.14. VM prediction gap at different times, furnace step vs. metrology step
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for the next batch, when it’s tracked out at the diffusion step. This would be

especially useful when the post diffusion metrology sampling rate is not 100%.

The R2R effects can be accounted for by the peak values and the intercept

adjustments. The peak values (of Gaussian curves) are mainly impacted by

temperature knob adjustments, while the intercept is changed by the deposition

time adjustment of the R2R control. The adjusted peak values and intercept can be

estimated as the following,

xadjusted = Θ△u+xcurrent (5.43)

where xadjusted are the new peak values and new intercept after R2R adjustment, Θ

is the gain matrix which can be obtained by a DOE, △u is the process tuning knob

adjustment of R2R control and xcurrent is the latest state estimation by the VM. In

matrix form,

xt,adjusted
xtc,adjusted
xc,adjusted
xbc,adjusted
xb,adjusted

xint,adjusted


=



θt 0 0 0 0 0
0 θtc 0 0 0 0
0 0 θc 0 0 0
0 0 0 θbc 0 0
0 0 0 0 θb 0
0 0 0 0 0 θint





△ut
△utc
△uc
△ubc
△ub
△utime


+



xt,current
xtc,current
xc,current
xbc,current
xb,current

xint,current


(5.44)

where θint is the process gain for the deposition time, which can be easily estimated

from the R2R gain matrix in (5.6):

θint =
m13+m23+m23+m43+m53

5
(5.45)

while θt, θtc, θc, θc, θbc and θb are the peak gains of temperature knobs, which may

not be readily available in the R2R gain matrix depending on the heaters center

locations and the monitor wafers’ locations. However, a DOE in Figure 5.9 is very

helpful to estimate them.

After compensating the R2R adjustments, an improvement on prediction gap

between the furnace step and the metrology step has been observed as shown in

Figure 5.15.

5.6 VM Results and Conclusions
Typically, only five wafers are measured at the metrology step post poly de-

position of a diffusion step. However, more wafers can be measured to validate
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the predicted profile of a diffusion batch. Figure 5.16 is the overlay plot of actual

metrology and VM prediction at the furnace step with queue time compensation,

and in the case that the wafers of every other boat slot are measured. The correlation

is very good with r2 = 0.72, which is shown in Figure 5.17.

We demonstrated the diffusion VM capabilities in one of the critical diffusion

processes, which has four Angstroms for the control window and only eight

Angstroms for the specification window in the SPC control chart. Quite a few

queue time related difficulties were discovered. One is related to the metrology

tool without the nitrogen purge and the other one is related to the outgassing effect

after a special dry etch step.

The other use case of this VM system is that the furnace prediction profile is

used for the wafer level reliability analysis by quality engineers. For example, if

a wafer in slot 16 is measured below the lower spec limit on the SPC chart, then

the wafer in slot 15 would be also below the lower spec limit, because the wafer in

boat slot 16 is thicker than that of boat slot 15, according to the thickness profile in

Figure 5.15.
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5.7 Summary and Future Work
The diffusion furnace processes wafers in a batch, typically five to six lots.

The thickness profile along the boat slots exists because of the heaters’ design

and gas depletions. A neural network method was proposed to predict such

thickness profile in the past, while we incorporate the physics insight, equipment

knowledge and the experiments to develop a multiphysics model, which consists

of five Gaussian curves and one intercept term, to predict the thickness profile. The

model parameters are updated as soon as new metrology data become available.

Furthermore, the R2R control adjustment can be accounted for to improve the

prediction accuracy, and we propose a method to compensate the R2R adjustments.

On the other hand, there are some challenges on building a reliable furnace VM

model, such as the queue time effect of the metrology tool without nitrogen purge,

which impacts the accuracy of the actual metrology data. Excellent prediction

results were obtained in such multiphysical VM models after overcoming those

challenges.

Since measuring all wafers in a batch is not feasible due to metrology constraints,

future work should include feeding forward VM data to a wafer level R2R controller

at downstream process steps. The benefit of doing this is that wafer level variations

caused by the furnace position can be reduced or removed. For example, the

operating recipe at the dry etch step can be modified based on the predicted

thickness profile model to prevent over-etch or under-etch, which was proposed in

the literature. We propose to extend this methodology to other process steps, such

as the ion implantation step. In ion implant processes mask layer thickness can

block ion penetration [118], so the film thickness profile of a diffusion process, oxide

thickness or poly-silicon thickness can influence the poly-silicon resistance [14]. A

tuning knob such as implant dose would help improve such wafer level variations.

Other future work would be to continuously improve the metrology accuracy,

such as the queue time related problem and other incoming variations, so that the

VM model can be “calibrated” better by a reliable metrology data source.



CHAPTER 6

THE OXYGEN PLASMA RESIST DESCUM

VIRTUAL METROLOGY

6.1 Abstract
The resist descum step is a partial resist stripping step where residuals can be

cleaned up. The photo resist residuals often cause yield loss because they block the

following dry etch step. To prevent blocked etch or over etch of photo resist, the etch

rate of resist descum is “monitored” by the etch rate qualifications, which could

be performed a few days apart. In high-volume semiconductor manufacturing,

thousands of wafers can be processed during the time window between the two etch

rate qualification runs, and the risk of excursion due to poor etch rate is very high.

Increasing the frequency of etch rate qualifications would impact the availability

of production tools and increase the usage of non-product wafers. Therefore,

it increases the manufacturing cost. A virtual metrology system is proposed to

monitor the etch rate of all product wafers to mitigate the risk of blocked etch. In

this research, we start with the background of the etch rate mechanism and use

the insights about chemical reactions to select model parameters. The traditional

PLS model is tested first, and then we propose a new method which conducts the

“Zonal” data analysis to improve the prediction quality of the PLS. We demonstrate

that the multiphysics-based model outperforms the PLS model through adding

new process indicators which use the knowledge of chemical reactions. Finally, we

conclude the discussions with the VM challenges, their potential solutions and the

future work that might be done in this area.
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6.2 Introduction
6.2.1 Introduction to Plasma Dry Etching

Wet chemical etch was used much earlier than a plasma etch in semiconductor

manufacturing. However, it has now been largely replaced by the plasma etch, or

dry etch, for two reasons [118]:

• The plasma process often generates very reactive species, and these species

can etch more vigorously than those species in the nonplasma environment.

• The other important reason why plasma etch outperforms wet etch is that

directional or anisotropic etching becomes possible with the help of plasma.

Anisotropic etch is required to minimize underetching and etch bias which

enables smaller and high density structures.

A simple plasma reactor is described in Figure 6.1: it consists of opposed parallel

plate electrodes in a chamber that is pumped down to a low pressure, which is

typically between 0.01 Torr to 1 Torr. After applying high frequency voltages

between the two electrodes, usually 100 to 1000 volts for the driving voltage and

13.56 MHz for the driving frequency [130], a plasma is formed by current, which

emits a characteristic glow. At the same time, reactive species are generated by this

electrical discharge.

The plasma is an ionized gas with equal numbers of positive and negative

charges, although the extent of ionization is very small, only one charged particle

released per one million neutral molecules or atoms. The majority of negative

charged particles are free electrons. Although the energy transfer from electrons

to gas molecules is inefficient, electrons can obtain an elevated energy, typically

many electron volts, in plasma. The increased temperature of electrons drives the

collisions between electrons and molecules to form radicals in low temperature

neutral gas. It will require very high temperatures, e.g., 1000oK to 10000oK, to

create the same amount of reactive species without a plasma.

Electrons are light with very high mobility, so they diffuse the fastest and

recombine with charged particles near the walls or boundary surface. A sheath (or

a thin boundary layer) is then formed when such diffusions occur. The depletion
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Figure 6.1. A simple plasma reactor

of electrons in the sheath leaves a positive potential to the walls. The positive

ions are accelerated through the sheath potential and they strike the walls as the

realization of ion bombardments. Three types of plasma etching include physical

sputtering, chemical reaction and ion-assisted etching. In this research, O2 plasma

downstream etching is used, and sometimes it is also called chemical dry etching.

6.2.2 Introduction to O2 Plasma Photo Resist Etching

Oxygen plasmas are used to etch photo resist isotropically, as shown in Figure

6.2, and such isotropically resist etch is extensively used in plasma etch applications

of semiconductor manufacturing [8]. In the stripping process of photo resist,

the plasma can cause some negative impacts. For example, impinging ions can

cause electrical damage of devices, or the charging introduced by plasma induced

potential can cause electrostatic punch through of the thin gate oxide. To solve the
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Figure 6.2. O2 plasma reactions with photo resist [7]

above-mentioned problems, downstream plasma is often used in the resist descum

process. In the O2 downstream plasma stripping, gas from the plasma source

flows downstream into the chamber in a way that only neutral O and O2 can get

to the resist covered substrate. The reason for this phenomenon is that the charged

species, electrons or positive O+2 , have a much higher loss rate compared with the

neutrals when plasma excitation is taken away [131]. The ideal downstream plasma

etch is a spontaneous chemical reaction, which does not require ion, electron and

photon bombardment.

Chamber pressure also plays an important role for the isotopical etch of the

resist descum process [8]. Figure 6.3 illustrates that at pressure below 0.1 Torr, the

characteristic potentials across the sheath and the voltage applied to the discharge

increase significantly. Therefore, the physical sputter rate increases rapidly. When

chamber pressure is increased to 1.0 Torr, the etching process becomes isotropical

chemical reaction. However, most plasma etch is operated between these two

extremes, which is ion-assisted reactive etch. The chamber pressure of a descum

process is close to 1.0 Torr, and that is the reason why it is an isotropical etch.
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Compared with direct plasma etch, the downstream plasma etch is more difficult

to control because the importance of wall collisions and recombinations in deter-

mining the composition of a species in the flux is vastly increased and the factors

that control radical recombination at walls and the interaction between different

species are not well understood [131].

At room temperature, the rate of reaction of atomic O with photo resist is very

slow. An elevated temperature of 150 oC to 230 oC is required to obtain practical

etching rates [131]. Similar to other chemical reactions, O2 plasma resist strip

conforms to the first order chemical reaction rate law with an activation energy

Ea = 11.8 kcal/mole. The activation energy drops to Ea = 9 kcal/mole when hydrogen

or water is added to the downstream plasma. In Arrhenius form,

R = Aexp(−Ea/RT) (6.1)

where R is etch rate, A is the pre-exponential factor, Ea is the activation energy,

R is universal gas constant and T is the absolute temperature. Figure 6.4 shows

that temperature plays an important role in the etch rate, and at least 150 oC is
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required to get a satisfactory etch rate. Mixing with other gases, like N2O, would

also increase the etch rate of photo resist and the activation energy for the reaction

would drop to Ea = 11.0 kcal/mole compared with the pure O2 plasma [9].

In summary, the two basic requirements of O2 plasma photo resist etching are

the damage free from radiations of plasma and a practical etch rate.

6.2.3 Chemical Reactions in Photo Resist Descum

Downstream O2 plasma is used to isotropically strip photo resist from silicon

wafers, and pure O atoms are highly selective to resist over silicon or oxide.

Before we go into the chemical reactions in the plasma, let’s have a look on

the photo resist first. Photo resists are primary long-chain organic polymers

consisting of mostly carbon and hydrogen [132], Figure 6.5 is a positive photo

resist diazonaphthoquinone (DNQ), which is the photoactive compound (PAC),

and novolac, a matrix material called resin.

In the discharge region, O atoms are produced by electron impact dissociation

of the O2, which is carried by flowing gas to the wafer. For a pure O2 downstream
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Figure 6.5. DNQ-Novolac photoresists

plasma discharge, there are inelastic electron-neutral collisions which supply the

ions and radicals, which are continuously lost through chemical reaction and

recombination. The formation of an ion, or ionization, can be described as the

following collisions and reactions [8],

e−+O2→O+2 +2e− (6.2)

the radicals can be formed by the below reaction,

e−+O2→O+O (6.3)

and finally the heat and light are given by excitations,

e−+O2→O∗2 (6.4)

O∗2→ hν (6.5)

e−+O→O∗ (6.6)

O∗→ hν (6.7)

where e is electron, h is the Planck’s constant, ν is the frequency, and O∗2 and O∗ are

the excited state of O2 and O, respectively.
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Chemical reactions of O2 plasma resist strip can be described as the below [7],

CaHbOc+O2(plasma)→ CO2+CO+H2O(gas) (6.8)

CaHbOc+O2+N2→ CO2+CO+H2O+NOx(gas) (6.9)

where CaHbOc is the photo resist.

While the by-products of such O2 plasma resist descum can be much more

complicated than those described in (6.9), because hydrocarbon “combustion” is a

very complicated process, a spectroscopic study of O2 plasma stripping of photo

resisted is conducted [10] to analyze the behavior of byproducts. The stripping

of photo resists from a silicon wafer using a downstream oxygen plasma has

been monitored using the optical emission from electronically excited OH and

CO species in the ultraviolet region of the spectrum. Besides the chemically stable

species, such as CO2 and H2O, the CO and OH species are also produced in the

excited electronic states with some radiative lifetimes in the order of 10−6 to 10−7

second. The spectrum band of (CO∗,OH∗), CO∗ and OH∗ are 283.0 nm , 297.7 nm ,

and 308.9 nm, respectively, and the intense is spectrally isolated from other systems

arising from plasma-induced oxidation of photo resist. Figure 6.6 showed that the

amount of resist etched is nonlinearly correlated with elapsed time by monitoring

CO∗ band, and similar behavior can be obtained for (CO∗,OH∗) and OH∗. Also CH∗

is suggested as another byproduct in the etch rate and plasma power study [11].

The forming gas, H2N2, a mixture of hydrogen and nitrogen, is introduced to

improve the etch rate of photo resist. Refer to equation (6.1), the activation energy

drops from Ea = 11.8 kcal/mole to Ea = 9 kcal/mole when hydrogen or water is

added to the downstream plasma. Similarly refer to Figure 6.4, which shows that

adding N2O also improves the etch rate of the photo resist, in other words, adding

N2O into O2 plasma decreases the activation energy of the reaction. Some research

showed that adding 1 % of nitrogen into the O2 plasma can greatly improve the

etch rate of photo resist [13]. Another benefit of the forming gas is that the wafer

vapor is formed in the chemical reactions, which not only decreases the activation

energy, but also protects semiconductor devices from sodium contamination by

resists [12].
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6.2.4 Physical Etching Models

Three different etching models are proposed for plasma dry etch [118], with dif-

ferent types of etching mechanisms including physical, chemical and ion-assisted

etching.

The first model is a linear model, which is the simplest model by assuming

that chemicals, radicals and ions act independently and they can be combined in a

linear function. Some research shows that etch rate is a linear combination of each

component in the flux [133–135].

R =
ScK f Fc+KiFi

N
(6.10)

where R is etch rate, Sc is sticking coefficient which is between 0 and 1, Fc is the

chemical flux including reactive neutral and free radicals and Fi is the ion flux at

each point of the surface, while K f and Ki are the relative rate constants for the two

processes, which can include any stoichiometric factors.

The second model is the saturation or adsorption model, which is designed to

account for the fact that chemical and physical components have interactions and
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they do not act independently on etch rate R. There is a saturation effect which

means that increasing one of the components in the flux will increase the etch rate

to a maximum point. Then the etch rate is saturated due to lack of enough of the

other components [136–138]. On the other hand, considering both reactive neutral

species and ions that strike the substrate during etching process, the neutral species

are adsorbed on the wafer surface and react with material on the surface, which

forms the by-products, while the ions strike the wafer surface which can enhance

the removal of by-products from the surface as well as improving the adsorption of

neutral species. The mechanism is that sputtering the loosely held by-products can

induce the reactions to convert the by-products into more volatile species [139,140]

R =
1
N

1
1

KiFi
+ 1

ScFc

(6.11)

The equation (6.11) is analogous to one in which two “capacitance” are connected

in series rather than in parallel as encountered in electrical engineering.

Finally, a more advanced model can address issues like sidewall inhibitor related

ones in ion-assistant etching and physical sputter systems. While the below model

tries to address redepositing sputtered material [141, 142],

R =
KspY(θ)Fi−KrdSrdFrd−ScdFd

N
(6.12)

where Ksp is coefficients, Y(θ) is sputtering yield which is angle θ dependent, Krd

is direct redeposition coefficients, Srd is sticking coefficients of direct redeposition,

Frd is chemical flux of direct redeposition, Scd is the sticking coefficients of material

which are sputtered off the surface but go into plasma and then drop back down

to the wafer surface and Fd is the chemical flux of that.

6.2.5 Model Parameters Candidates

The chamber temperature is one of the good candidates for the VM model

parameters, because temperature directly affects the etch rate, which is shown in

Figure 6.4.

The chamber pressure needs to be considered as well since the atomic oxygen

intensity is a function of chamber pressure, shown in Figure 6.7. The etch rate
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increases with pressure to a maximum at approximately 0.1 Torr and then it starts

to decrease [11].

Besides the temperature and chamber pressure, the plasma power is found to

be strongly correlated to the photo resist etch rate in the downstream O2 plasma.

Figure 6.8 shows that the removal rate of resist is a linear function of applied RF

forward power [11]. A higher removal rate occurs at a higher applied RF power.

Finally, O2 gas flow and forming gas flow H2N2 are selected as the model

parameters since O radicals are the main “etchant” of the photo resist. On the other

hand, the forming gas H2N2 is used to improve the etch rate by decreasing the

activation energy of the chemical reactions.

6.3 Partial Least Squares Model
6.3.1 Process Data and Model Parameters Selections

The process data items collected in FD are listed in Table 6.1.

All “SetPoint” items and “PinPosition” can be safely eliminated because they

are straight lines, and “MicrowaveTime” and “WaferCountTotal” are timer and
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Table 6.1. Process data items of a descum process

Data Item Name Units Data Type

ChamberPressure mtorr double

ChamberPressureSetpoint mtorr double

ChamberTemp celsius double

ChuckTemp celsius double

ChuckTempSetpoint celsius double

ForwardPower watts doubles

ForwardPowerSetpoint watts doubles

H2N2GasFlowLow sccm doubles

H2N2GasFlowLowSetpoint sccm doubles

MicrowaveTime hours doubles

O2GasFlowHigh sccm doubles

O2GasFlowHighSetpoint sccm doubles

PinPosition NA double

ThrottleValveAngle degrees double

WaferCountTotal NA long
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counter related to the tool maintenance cycle, which can be safely removed also.

Although etch rate is strongly dependent on temperature, which is shown in Figure

6.4, “ChuckTemp” and “ChamberTemp” are not selected as the model parameters,

because they are controlled perfectly, as shown in Figure 6.9. The reason for

the accurately controlled temperature is that the wafer chuck is a “big” piece of

aluminum which improves the temperature uniformity and stability of the system.

In summary, the parameters used in the PLS model evaluations in the next

section include the following,

• ChamberPressure

• ForwardPower

• H2N2GasFlowLow

• O2GasFlowHigh

6.3.2 PLS Model and Validation

The detailed PLS algorithm is introduced in Chapter 4. “Leave-One-Out”

method is used for model validation, and some model validation methods will

be introduced in next section. Figure 6.10 is the result of the validation.
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Figure 6.10. PLS model evaluation results

As a result, only 26% of the variation of input data X and 25% of the variation of

output data Y can be explained by the PLS model. In the normal operation region,

all input data items (or process indicators) are hovering around their setpoints,

and there are not enough variations in the data for building an accurate model.

That is why a DOE is required to force recipe setpoints to their extremes, so better

metrology responses can be obtained. Therefore, the results of the PLS model

through the inline FD data and metrology data without any classification can be

downgraded. We will propose a “Zonal” data analysis in the next section, which

would be able to overcome such problems.

6.3.3 “Zonal” Data Analysis

In the “Zonal” data analysis, we purposely classify the metrology data into

different zones. Based on the metrology data’s distribution, the data is divided

into a “High Zone” and a “Low Zone”, as shown in Figure 6.11: Q1 is called the
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Figure 6.11. Metrology data are classified into high and low zones

first quartile, which is the 25th percentile of the data set; Q3 is the upper quartile,

which is the 75th percentile of the data set. Data between Q1 and Q3 is called

the interquartile range (IQR). In the example in Figure 6.11, the data in the “High

Zone” is greater than Q3, while the data in the ‘Low Zone” is less than Q1.

We discovered that the PLS regression model can be improved in some cases

if we exclude the data points that fall into the interquartile range. Figure 6.12 is

the new validation results after such “treatment” using the same data set of Figure

6.11, and the percent variation can be explained for cumulative Y is improved from

27% to 50%. Such improved result could be from the noise reduction by excluding

data in the interquartile range by the assumption that metrology data carries more

noise when it is close to the control target.

6.3.4 Model Validation Methods

Three cross validation methods [143, 144] can be used for the PLS evaluations:

• Holdout. It partitions the data into two mutually exclusive data sets: one is

the training data set and the other one is the validation data set. It often uses

two-thirds of data as training data, and the rest is used as validation data.

• K-fold. It is also known as rotation estimation, which randomly divides the
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Figure 6.12. Improved PLS model evaluation result is obtained after excluding
data in interquartile range

data into k subsets, each of them is used to validate the model which is fit by

the rest of the data. So a total k models will be evaluated. The one with the

best validation result will be the final model.

• Leave-one-out. Similar to k-fold, it estimates k-fold cross validation by using

a single data sample into the fold.

6.3.5 Model Update Methods

A recursive PLS was proposed to adapt the process changes for on-line model-

ing [145]

For a PLS regression model in the original data scale,

yk =mxk+ b (6.13)

where yk is the output or metrology, m is the model coefficients obtained in PLS

regression, xk is the input data and b is the intercept.
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Let’s denote y as the metrology vector in the moving horizon, the ȳ as the mean

of y vector and σy as the standard deviation of y vector. Similarly, we denote x as

the input vector in the moving horizon, the x̄ as the mean of the x vector and σx as

the standard deviation of x.

yk and xk can be normalized as,

ys,k =
yk− ȳ
σy

(6.14)

xs,k =
xk− x̄
σx

(6.15)

where ys,k is normalized of yk with zero mean and unit variance and similarly xs,k

is normalized of xk, then one can obtain that,

yk = ys,kσy+ ȳ (6.16)

xk = xs,kσx+ x̄ (6.17)

Solving equations (6.13) (6.16) and (6.17), a VM model equation in scaled form

can be obtained,

ys,k =
mσx

σy
xs,k+

bk− (ȳ−mx̄)
σy

(6.18)

The following three cases are proposed to be compared through Matlab evalu-

ations,

• Case 1: a model whose inputs and outputs are in the original scale, yk =

mxk+ bk, with bk is updated via the EWMA filter,

bk+1 = λ(yk−mxk)+ (1−λ)bk (6.19)

where λ is the EWMA weighting factor.

• Case 2: a model whose inputs and outputs are centered and scaled (refer to

(6.20)) assumes that the intercept term is equal to zero while ȳ, x̄, σy and σx

are continuously updated by the data in the moving horizon.

ys,k =msus,k (6.20)
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• Case 3: a model whose inputs and outputs are in the original scale, yk =

mkxk+ bk, while mk and bk are updated through the following,

mk =
msσy

σx
(6.21)

bk = ȳ−mkx̄ (6.22)

where ms is the model coefficients obtained via the PLS regression in the form

of centered and scaled data. Note that since there are multiple components

in the input data, we need to estimate the process gain of each component

using equation (6.21).

Evaluation results are plotted in Figure 6.13 and Figure 6.14. It turns out that

Case 2 and Case 3 produce the same prediction results. The result of Case 1 is better

than that of Case 2 and Case 3, because the root mean square error cross validation

(RMSECV) [146] is smaller(Case1 = 18.2 vs. Case2 = 20.2). The RMSECV is defined

as following,

RMSECV =

√∑
(ypred− yact)2

n
(6.23)

where ypred is the VM prediction, yact is the actual metrology and n is the validation

sample size.

The reason updating intercept produces a better prediction result is related to

its better tracking of the drift for incoming variations. We have implemented such

intercept state estimation in the multiphysics-based model, which will be discussed

in Section 6.4.

6.3.6 PLS Model Discussions

The challenges of the VM model using a moving horizon PLS include unknown

incoming variations and the difficulty of obtaining the right signal or right model,

because, as we have shown, all input data or process indicators are hovering

around their setpoints and there is not enough variation in the data for building

an accurate model. In addition, other difficulties include the process conversions,

each chamber with its own VM model and the model likely changes over time.
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Figure 6.13. Actual metrology and predicted metrology overlay for Case 1.
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In order to build a causal model, a DOE is often required because we can

intentionally push the tuning knobs to their constraints and at the same time, the

most important factors can be screened out.

6.4 New Methods
6.4.1 Introduction of New Model Parameters

In the earlier discussions, we explained why forming gas H2N2 is added to

improve the stripping rate of photo resist. Fujimura et al. [12] analyzed the etch

rate of resist when additive H2O vapor or H2 is mixed with the O2 plasma, and they

report that water vapor and hydrogen as the additive gas decrease the activation

energy of resist stripping. Figure 6.15 shows that H2 improved the etch rate rapidly

at relatively low concentration and etch rate starts to decline after it reaches the

peak, when the hydrogen mixing ratio is about 10%. Since 96.2% of the forming

gas is nitrogen and the rest is hydrogen, the corresponding mixing ratio in our case

is about 0.43%. The relative concentration of atomic oxygen was calculated from

the emission intensity ratios OI(6158)/ArI(7067).
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Figure 6.15. Etch rate and relative O atom concentration changes with hydrogen
and oxygen mixing ratio [12].
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On the other hand, Premachandran [13] reported that the etch rate of photoresist

is greatly enhanced by adding 1% of nitrogen into the oxygen plasma. The

improved etch rate is mainly from the increase of atomic oxygen concentration

and certain impurity gases can improve the dissociation of oxygen molecule in the

plasma [147, 148]. Figure 6.16 shows that the etch rate of photo resist is increased

by a factor of 2 when 1% of nitrogen is mixed with oxygen [13]. Based on the

above background, a new process indicator, which is the gases ratio H2N2/O2, is

proposed to be added to the VM model.

On the other hand, a DOE forces recipe process knobs to their extremes, and it

often provides the variation needed for constructing an accurate model. Refer to

Appendix C. A DOE was conducted to estimate the gains of the model parameters of

the multiphysics-based model, while the PLS analysis was used to justify selection

of the model parameters. The results of the PLS analysis are shown in Figure 6.17,

where the gas ratio H2N2/O2, forward power and chamber pressure are selected

as the model parameters, which explains over 80% of the etch rate variations. This
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Figure 6.17. PLS analysis of descum DOE data.

result is improved over the previous results obtained through the data in normal

production conditions. The etch rate response of gas ratio H2N2/O2 is plotted in

Figure 6.18 and the etch rate response of the other process knobs can be found in

Appendix C.

6.4.2 The VM Model Based on DOE and Its Results

The virtual metrology model derived from the DOE can be described as follow-

ing:

EtchRate =m1(ForwardPower)+m2(ChamberPressure)+m3(
H2N2

O2
)+ Intercept (6.24)

in a simpler form,

Rk =mxk+ bk (6.25)

where Rk is the etch rate metrology, m is a fixed gain (row vector), xk is the input

data (column vector) and bk is the intercept, which can be estimated through the

EWMA filter.

bk+1 = λ(Rk−mxk)+ (1−λ)bk (6.26)
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Figure 6.18. Etch rate response with the gas ratio factor

Compared with Figure 6.12, an improved correlation, R2 = 0.708, is obtained on

the VM model based on the DOE in Figure 6.19.

6.5 Challenges and Discussions
There are many factors which add variations to the etch rate in a dry etch

process [148]. Besides the plasma power, chamber temperature, gas flows, chamber

pressure and impurity presented in the plasma chamber, we believe that there are

other incoming variations which are difficult to be accounted for. The photo resist

variation might be one of the unknown incoming variations, for example, the

resist batch. Different resist batches or resists made by different manufacturers

may have different film properties, which result in different film stress. The other

unknown variation is the elapsed time from the photo step to the etch step, and

our theory is that the longer the elapsed time, the more solvent in the resist can be

lost, although the data analysis shows no correlation. The VM model often shifts

with a maintenance event. A good VM system would be able to account for all

maintenance events, no matter at current step or at upstream steps.

A diffusion analysis on the O2 plasma resist etch shows that the etch rate at the
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Figure 6.19. The prediction and measurement correlation of the VM model based
on DOE.

edge is independent of wafer diameter, but the etch rate at the center is inversely

proportional to the square of wafer diameter [149]. This explains the uniformity

problem of etch rate within a wafer. The other source of variation within the wafer

is called the “loading effect”, which is related to distribution and the fraction of

surface area of the film being exposed. We did not account for the within-wafer

variation in this project.

6.6 Conclusions and Future Work
Although the “Zonal” data analysis improved the prediction quality of the

traditional PLS model to some extent, a VM model using chemical reactions and

equipment knowledge, which is the multiphysics-based model, outperforms the

traditional statistical regression models. Not only are key process indictors selected

or removed as model parameters using multiphysics knowledge, but also a new

process indictor is created through extensive chemical reaction information.

The main contributions of this work include the following:

• Developed the “Zonal” data analysis, which is a promising method to obtain
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accurate model parameters without a costly DOE.

• Created new process indicators using the chemical reactions background

knowledge.

• Conducted evaluations and compared three different model update methods.

• Achieved the wafer level etch rate monitoring.

The linear etch rate model is used in this research with the assumptions that

the gas and the plasma power act independently. In future work, I want to

explore the nonlinear VM model, because the chemical reactions in the O2 +

H2N2 downstream plasma are very complicated and some nonlinear etch rate

behaviors of plasma power or chamber pressure are expected. Other improvement

opportunities include the handling of incoming material variations, e.g., resist

batch variations.



CHAPTER 7

CONCLUSIONS AND PROPOSED FUTURE

WORK

7.1 Conclusions
Non-threaded R2R control and virtual metrology are important components

of process control systems, and both of them are designed to address the costly

metrology operations. The threaded R2R controls do not share any information

among different threads and the metrology data are diluted, so a larger metrology

sampling rate is required to maintain the performance of the process control. How-

ever, more metrology operations increase the cost of semiconductor manufacturing

due to cycle time and metrology tool cost. In contrast, a non-threaded R2R control

does not require a high sampling rate, because the metrology information among

different control threads can be shared.

On the other hand, virtual metrology predicts the metrology data without

conducting the actual measurements. The predicted metrology data can be used

for either process monitoring or process control. The metrology related cost can

be reduced by skipping on-line or off-line metrology operations. If the prediction

quality is high enough, then this predicted metrology data can be fed into the R2R

controllers. Process control and perhaps yield can be improved through variation

reductions by VM and R2R controllers.

7.1.1 Hybrid Non-threaded Run-to-Run Control

The major problems associated with a non-threaded R2R controller include

unobservable control systems, the continuous change of model dimensions and

the high computational cost of state estimation. We addressed the ”unobservable

control system” problem by a novel hybrid non-threaded R2R controller design,

where the controller mode can be downgraded from the non-threaded mode to
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the threaded control automatically, when the unobservable problems occur. The

changing model dimension issue was solved by reserving dummy contexts in the

non-threaded R2R controller without adding any other complexity. After the non-

threaded R2R controller had been deployed in the real production environment,

we encountered the same high computational costs of the state estimation, in terms

of long execution time and the crash of the software execution engine (SEE). We

proposed to balance the workload among servers through web services and we also

limited the number of dummy states in order to address the high computational

costs. Such hybrid non-threaded R2R has been successfully deployed in one of

the most critical processes in the high volume production environment, and we

have demonstrated its improved process control performance and as well as its

robustness.

Threaded, EWMA based non-threaded and the model-based non-threaded R2R

controller performances were compared head to head on the same process and

the same tool in production, and our data collection showed that the model-based

non-threaded controller outperforms the other two control methods, the EWMA

non-threaded and the threaded R2R controls. The data collection was done with

the threaded control in the “active” mode, which means it actively controlled the

process, and the other two non-threaded R2R controllers were in the “passive”

mode. Such a framework allows us to compare the performance of controllers in

real time, so an automatic on-line tuning of the non-threaded R2R control can be

realized.

7.1.2 Etch Rate Prediction of Silicon Dioxide Film in Diluted HF Solution

Virtual metrology is commonly built upon traditional statistical regression

models, such as PLS and neural networks. Since the chemistry of etching silicon

dioxide in the diluted HF solution is well described in the literature, in this research

project, we incorporated physics and chemical reaction models into the virtual

metrology. The comparison between traditional PLS regression model and the

multiphysics-based model suggested that the multiphysics-based model is a better

method to select key process variables for the VM model and it is a better method
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to establish meaningful process indicators. We also discovered more advantages of

a multiphysics-based model. For instance, it requires less training data because of

its fast convergence and it can account for variations of chemical and gas batches

and VM prediction accuracy can be biased or compromised without taking account

of those.

The VM data can be fed into R2R controllers. For example, VM thickness

predictions can be used as a feed-forward component of a wafer level dry etch R2R

controller downstream to improve wafer level variations. In our research, we used

the VM system in a different way where VM is used to update the R2R model.

An R2R control model, typically the slope, is usually fixed, so the R2R control

performance may be downgraded after process conversions at the current step or

the upstream steps. A frequent model update through the VM system ensures the

optimal state, especially when there is a feed-forward component.

We have demonstrated in high volume production that the multiphysics-based

VM model produces better prediction quality than the traditional statistical models.

The predicted etch rate is also used to update process gains of the R2R controller, so

that the R2R controller compensates feed-forward disturbance better. The process

control was still capable after a 50% sampling rate reduction. This project has

realized almost all the VM benefits, which include excursion prevention, yield

improvement, process capability gain, cycle time and the cost reduction.

7.1.3 A Generic Diffusion Furnace Virtual Metrology

No matter how well a furnace R2R controller performs, the thickness profile

exists because of the design of the heaters and the gas depletion effect. Such

thickness profile introduces variations into semiconductor manufacturing. We

developed a multiphysics model through the equipment knowledge and the design

of experiment. Five Gaussian curves and one intercept term are used to produce the

final thickness profiles. If the shape of the thickness profile changes over time, then

the peak magnitudes of the five Gaussian curves can be updated through metrology

data. In the case that the shape of the thickness profile remains the same, only the

intercept term is to be updated when new metrology becomes available. To get rid

of nonlinear complexity, we propose to assume that the standard deviation terms
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remain the same, and such an approximation is acceptable, because the standard

deviations are “mainly” determined by design of heaters such as the length of the

heater, which is fixed. Such assumptions have made the state estimation much

simpler.

Two difficulties, queue time effects and the R2R control adjustment, were

discovered when we deployed this strategy in the actual production environment.

An offset curve or model was established to solve queue time problem. On the

other hand, R2R adjustments can be modeled or offset by adjusting the peak value

of the Gaussian curves or the intercept term. We obtained excellent prediction

results after solving these problems.

One of the major benefits of this project is feeding forward diffusion thickness

profile data to a wafer level R2R control at the downstream process steps, so wafer

level variation caused by different furnace positions can be reduced or removed.

The wafer level dry etch R2R controller application was proposed in literature,

while we propose to extend this methodology to an ion implantation step, which

will be discussed in detail in Section 7.2.

7.1.4 Oxygen Plasma Resist Descum Virtual Metrology

As of today, the plasma physics and phenomenon are not well understood

and this makes virtual metrology of dry etch very challenging. We studied the

major characteristics of O2 plasma resist descum process including the sodium

contamination free, electrical charge and radiation free through the downstream

plasma and the etch rate improvement by introducing a forming gas H2O2. Model

parameters were selected through the background of physics and chemical reac-

tions. First we invented a new method called “Zonal” data analysis, which can

improve the prediction quality of a PLS model by almost 50%. Three recursive PLS

model update methods were simulated on the same data set, and we concluded that

intercept update performs best, because it can adapt to the incoming variations.

We created a new process indictor through the extensive chemical reaction

and process knowledge to improve the multiphysics-based etch rate model. The

model parameters were obtained through a DOE. Based on the experience of

the PLS evaluations, the model update is through the intercept state estimation,
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which captures the drift of incoming variations. A r2 = 0.708 was achieved in

the production environment, which is sufficient for real time wafer level etch rate

monitoring. The multiphysics-based we used is a simple linear model and we

believe that the prediction can be improved further through exploring nonlinear

models or handling incoming material variations like resist batch.

7.2 Future Work
7.2.1 Context Matching and Relaxation

Every wafer within a lot has a context history, and two wafers having the same

context history tend to have the similar metrology data. Such assumptions in most

situations are valid because two wafers in a lot were processed at a similar time

frame and by the same gas or chemical batch. As long as the chamber does not

drift too quickly, then we can safely assume that the two wafers going through the

same contexts (or chambers) have the same metrology. Based on this assumption,

we would be able to develop a new VM model called “context matching and

relaxation.”

Referring to Table 7.1, there are four steps affecting the post metrology data,

where “step 1” has the most significant contribution, “step 2” has the second most

significant contribution, and so forth. If two wafers in the same lot went through the

same context (or process chamber) for all four steps, then the absolute prediction

error is relatively small, while the prediction error bar grows when the context

matching level is relaxed [150] as shown in Figure 7.1.

Let η denote the confidence of prediction which is associated with the context

matching level analysis, and the prediction of unmeasured wafer can be described

Table 7.1. The context match and relaxation
Matching Level Step 1 Match Step 2 Match Step 3 Match Step 4 Match

Full contexts match Yes Yes Yes Yes

Relaxed match 1 Yes Yes Yes No

Relaxed match 2 Yes Yes No No

Relaxed match 3 Yes No No No



159

Full Match Relaxed context

match Level 1

Relaxed context

match Level 2

Relaxed context

match Level 3

Abs Prediction Error

Figure 7.1. Prediction error bar grows when context matching level is relaxed.

as,

ŷ = ηywa f er+ (1−η)ylot (7.1)

where ŷ is the prediction of an unmeasured wafer, η is the confidence factor related

to the context relaxation level, ywa f er is the actual metrology of a wafer which has

the best context match with the wafer being predicted and ylot is the lot average of

all measured wafers.

This VM model is able to handle multiple sources of variations from upstream

steps. The future work includes the research of estimating η through the analysis

of variance (ANOVA) or a bootstrap, and testing of this algorithm in the real

production environment.

7.2.2 Auto Tuning of Non-threaded R2R Control

Referring to equation (3.47), the tuning of R and Q of ratio for the state estimation

is an art, while the nature of poor noise disturbance rejection makes the non-

threaded state estimation tuning more difficult compared with the threaded R2R

control. In Figure 3.14, we proposed a framework of the automatic tuning non-
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threaded controller as an extension of the non-threaded R2R research. The process

of R and Q ratio tuning is described in Figure 7.2.

The data collection phase ensures the non-threaded R2R controller collects

enough data, and the performance function can be evaluated as a mean squared

error (MSE),

J =
1
n
Σn

i−1(ŷi− yi)2 (7.2)

where n is the number of valid record in the moving horizon, ŷi is the output

prediction and yi is the actual metrology. A new R and Q ratio can be validated

through a passive validation phase before it can be applied to the production.

Sensitivity check

and adjust tuning

weight Q/R

Tuning Start

Passive validation

Accept?

Tuning End
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Data Collection

Apply new Q/R

ratio

No

Choose

performance

function

 

Figure 7.2. The process of auto-tuning state estimation Q and R for a non-threaded
R2R control.
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If Q is a fixed value, then the “sensitivity” is given by,

Sensitivity =
∂J
∂R

(7.3)

and the sign of “sensitivity” can be used to determine the tuning direction of R.

However, how to come up with “sensitivity” (numerically or analytically) and the

magnitude of adjustment are still to be researched in future.

7.2.3 VM and Wafer Level Implant R2R

In Chapter 5, we demonstrated the prediction capability of a poly-silicon profile

in Figure 5.16. One of our goals is to realize the benefit of such a diffusion VM

system. Dry etch R2R controller application was proposed in literature [127], while

we want to extend this methodology to an ion implantation step.

Referring to Figure 7.3, poly-silicon resistors are determined by the factors like

sheet resistance, poly-silicon resistor dimension and the contact resistances. Kyuho

et al. applied APC in the ion implantation for an analog device [14] and a strong

correlation was discovered between poly-silicon resistance and the poly-silicon

thickness, as shown in Figure 7.4.

As an extension of the research, combining the thickness profile prediction

in Chapter 5 and the R2R algorithm [14] of an ion implant, a wafer level R2R

Interlayer film

Field oxide

Poly-silicon resistance

Protective film

1
st
 Al

Polysilicon

Barrier metal oxide

Poly-silicon contact 

Figure 7.3. Poly-silicon resistor [14]
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Figure 7.4. The relationship between the poly-silicon resistance and the gain size
of the poly-silicon [14]

controller can be implemented at the downstream ion implant step to compensate

for the furnace thickness profile.

The resistance of the poly-silicon can be predicted as,

R1 = aypoly+ b (7.4)

where R1 is the prediction of resistance through poly-silicon thickness ypoly, and a

and b are coefficients.

The distance between the predicted resistance and the target value, R2, can be

computed as,

R2 = Rt−λ(R1−Rt) (7.5)

where Rt is the poly-silicon resistance target and λ is a damping factor.

Finally, the wafer level implant dose, Qd, can be calculated as following,

Qd = cR2
2+dR2+ e (7.6)

where c, d and e are coefficients.

This is a feed-forward wafer level R2R control implementation at the ion implant

step. The implant dose is manipulated by the incoming wafer thickness predictions.

It would be a very interesting project to realize the VM benefits of a wafer level

thickness prediction for the diffusion furnace in the future.



APPENDIX A

CURVE FITTING IN MATLAB

The curve fitting toolbox is used for the diffusion furnace VM project, and this

is a quick introduction to the usage of this toolbox. The curve fitting application

can be opened by entering “cftool” in the Command Window of Matlab.

A.1 Data Selection
The data selection tab can be accessed by clicking the “data” button, and one can

use the drop-down lists in the curve fitting application to select X data and Y data

in the workspace. Our furnace data set includes an input vector p and an output

vector y, which are the boat slots and their corresponding thickness metrology

data. Refer to Figure A.1: select p as “X data” and select y as “Y data.”

A.2 Data Fitting
The data fitting tab can be accessed by clicking the “Fitting” button, and

“Custom Equations” is selected for the “Type of fit” as shown in Figure A.2. We

can choose p as the “Independent variable”, and then we can enter equation (5.35)

as the “General Equations”. The lower and upper constraints are used for better

convergence.

A.3 Curve Fitting Results
The detail curve fitting result is the screen shot shown in Figure A.3, and the

output includes the five standard deviation terms of all five Gaussian curves, five

peak values and one intercept term. The goodness of fit is also part of the output.

The results of curve fitting are plotted in Figure A.4. Please note that five

standard deviation terms are assumed to be fixed in the VM model while the five
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Figure A.1. Data selection for curve fitting application

peak values and one intercept term can be used as the initial states, which can be

updated by the actual metrology data.
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Figure A.2. Data fitting in the curve fitting application
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General model: 

     f(p) = x_t*exp(-(p-150).^2./(2*std_t^2))+x_tc*exp( -(p-120).^2./(2*std_tc^2)  

                    )+x_c*exp(-(p-75).^2./(2*std_c^2))+x_bc*exp(-(p-25) 

                    .^2./(2*std_bc^2))+x_b*exp(-(p-(-10)).^2./(2*std_b^2)  

                    )+x_int 

Coe�cients (with 95% con�dence bounds): 

       std_b =       18.44  (11.4, 25.47)  

       std_bc =       22.61  (-6.518, 51.74)  

       std_c =          25  (�xed at bound) 

       std_t =       15.17  (5.963, 24.38)  

       std_tc =          25  (�xed at bound) 

       x_b =       5.656  (-45.66, 56.98)  

       x_bc =       14.21  (-80.8, 109.2)  

       x_c =       12.55  (-69.7, 94.8 1) 

       x_int =       28.98  ( -86.68, 144.6)  

       x_t =       13.56  ( -41.79, 68.92)  

       x_tc =       11.74  ( -76.41, 99.89)  

 Goodness of �t:  

  SSE: 3.066 

  R-square: 0.8593  

  Adjusted R-square: 0.8469  

  RMSE: 0.1836  

 

Figure A.3. Curve fitting results
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DATA COLLECTION OF ETCH RATE AND HF

WEIGHT PERCENT
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Table B.1. 1000:1/T2 HF etch rate and weight percent

Date and Time LotID Sample Wt% ER (Å/min) Predicted Wt%

6/21/2013 10:28:00 AM V556252.002 0.053 9.775 NA

6/27/2013 9:24:00 AM V670782.002 0.053 10.432 NA

7/6/2013 5:22:00 PM V839482.002 0.052 10.257 NA

7/10/2013 10:20:00 AM W903622.002 0.054 10.369 NA

7/13/2013 4:17:00 PM W960442.002 0.052 10.221 0.046

7/23/2013 8:15:00 AM X122062.002 0.053 10.244 0.046

7/24/2013 5:22:00 PM X155312.002 0.054 10.325 0.047

8/1/2013 12:29:00 PM W289142.002 0.055 11.147 0.046

8/2/2013 8:52:00 AM W307782.002 0.053 10.803 0.046

8/3/2013 9:23:00 AM W326502.002 0.053 10.838 0.046

8/3/2013 2:49:00 PM W334102.002 0.054 10.851 0.046

8/7/2013 11:25:00 AM W390932.002 0.052 10.401 NA

Table B.2. 500:1/T2 HF etch rate and weight percent

Date and Time LotID Sample Wt% ER (Å/min) Predicted Wt%

6/21/2013 9:17:00 AM V567022.002 0.104 2.270 NA

6/27/2013 9:01:00 AM V666592.002 0.1 2.190 NA

7/6/2013 5:02:00 PM V825732.002 0.101 2.163 NA

7/10/2013 10:08:00 AM W898522.002 0.102 2.256 NA

7/13/2013 3:55:00 PM W960452.002 0.101 2.299 0.094

7/23/2013 7:44:00 AM X131292.002 0.101 2.246 0.093

7/24/2013 5:02:00 PM X100182.002 0.104 2.316 0.094

8/1/2013 12:09:00 PM W296322.002 0.103 2.424 0.093

8/2/2013 9:03:00 AM W312522.002 0.102 2.430 0.093

8/3/2013 9:46:00 AM X312572.002 0.101 2.201 0.093

8/3/2013 5:10:00 PM W334162.002 0.1 2.227 0.092

8/7/2013 10:47:00 AM W402762.002 0.104 2.273 NA
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Table B.3. 500:1/T4 HF etch rate and weight percent

Date and Time LotID Sample Wt% ER (Å/min) Predicted Wt%

6/22/2013 2:44:00 PM V589252.002 0.11 2.360 NA

6/29/2013 12:03:00 PM V710242.002 0.11 2.270 NA

7/6/2013 3:17:00 PM V832402.002 0.107 2.293 NA

7/10/2013 10:32:00 AM W896002.002 0.113 2.316 NA

7/13/2013 3:05:00 PM W960432.002 0.107 2.354 0.108

7/23/2013 6:59:00 AM X126302.002 0.107 2.295 0.107

7/24/2013 4:30:00 PM X154062.002 0.108 2.300 0.107

8/1/2013 11:04:00 AM X296312.002 0.107 2.361 0.108

8/2/2013 10:20:00 AM W312782.002 0.108 2.327 0.108

8/3/2013 7:05:00 AM W312522.002 0.108 2.285 0.108

8/3/2013 2:05:00 PM W334152.002 0.107 2.305 0.107

8/7/2013 10:35:00 AM W402742.002 0.108 2.342 NA

Table B.4. 100:1/T4 HF etch rate and weight percent

Date and Time LotID Sample Wt% ER (Å/min) Predicted Wt%

6/22/2013 2:25:00 PM V589222.002 0.486 24.950 NA

6/29/2013 11:23:00 AM V711272.002 0.478 24.500 NA

7/6/2013 2:50:00 PM V837162.002 0.482 24.842 NA

7/10/2013 10:52:00 AM W894602.002 0.477 24.243 NA

7/13/2013 3:25:00 PM W955982.002 0.477 24.353 0.476

7/23/2013 6:15:00 AM X125102.002 0.483 24.452 0.477

7/24/2013 4:11:00 PM W150602.002 0.482 24.431 0.478

8/1/2013 1:00:00 PM W282402.002 0.487 24.432 0.479

8/2/2013 10:01:00 AM W264442.002 0.482 24.736 0.478

8/3/2013 7:38:00 AM X296312.002 0.477 24.213 0.475

8/3/2013 1:45:00 PM W334122.002 0.474 24.656 NA

8/7/2013 10:06:00 AM W394242.002 0.48 24.207 NA



APPENDIX C

DESIGN OF EXPERIMENT FOR DESCUM

C.1 DOE Table and Interpretation
Although the process knobs or recipe setpoints can be pushed to their extremes,

some constraints have to be considered in this process. For example, the total gas

flow has to be above 5000 sccm and the minimum chamber pressure is 710 mTorr.

The DOE design and results are listed in Table C.1.

Figure 6.18 and Figures C.1 to C.4 are the etch rate response of selected process

knobs, and equations (C.1) to (C.5) are the linear fits of etch rate responses with the

selected process knobs.

ER = 1035.58(
H2N2

O2
)+193.45 (C.1)

ER = −0.0217(O2)+425.95 (C.2)

ER = 0.1954(H2N2)+194.34 (C.3)

ER = 0.0512(ForwardPower)+137.35 (C.4)

ER = 0.3824(ChamberPressure)+24.14 (C.5)
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Table C.1. DOE of O2 plasma descum

No. O2GasFlow H2N2GasFlow ForwardPower ChamberPressure Etch Rate

(Sccm) (Sccm) (Watt) (mTorr) (Å/min)

1 5280 600 3300 750 300.07

2 4458 600 3300 750 321.47

3 6480 600 3300 750 291.06

4 5280 600 3300 750 307.40

5 5280 500 3300 750 309.68

6 5280 700 3300 750 319.39

7 5280 600 3000 750 282.16

8 5280 600 3600 750 312.80

9 4680 600 3300 750 336.02

10 5280 600 3300 710 288.32

11 5280 600 3300 790 325.44

12 5080 600 3300 750 319.86

13 5500 600 3300 750 307.14

14 5280 600 3300 750 317.77

15 5280 400 3300 750 267.23

16 5280 800 3300 750 360.08

17 5280 600 3300 750 316.03

18 5280 600 3000 750 291.57

19 5280 600 3600 750 322.37

20 6050 600 3300 750 287.16

21 5280 600 3300 710 306.5

22 5280 600 3300 790 330.57

23 5280 600 3300 750 306.6
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Figure C.1. Etch rate response with the O2 gas factor
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Figure C.2. Etch rate response with the H2N2 gas factor
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Figure C.3. Etch rate response with the RF forward power factor
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Figure C.4. Etch rate response with the chamber pressure factor
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