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Resumo

Dada a atual situação geopolítica e a atual crise energética global, há uma necessidade cada vez
mais premente de reduzir o consumo de energia, especialmente na indústria. Devido à produção
contínua e em massa em que operam os fornos e as linhas de produção, a indústria de fabrico de
embalagens de vidro foi particularmente afetada pelo aumento dos preços da energia no último
ano, sendo provável que esta tendência se mantenha.

Para gerir os gastos energéticos da sua infraestrutura, a BA Glass Avintes tomou medidas
proativas, substituindo o sistema de Controlo de Supervisão e Aquisição de Dados (SCADA) exis-
tente, baseado na tecnologia Siemens S7, pelo software de gestão energética PowerStudio SCADA
da Circutor. Este software oferece estudos energéticos abrangentes, análise de rácios de produção
(consumo de energia por unidade produzida), gestão da qualidade da energia, geração automática
de relatórios e capacidades de visualização de dados.

Foram identificados dois problemas principais: a subutilização do sistema SCADA do Power-
Studio, particularmente em termos da sua funcionalidade de alarmística, e a ausência de ferramen-
tas para prever com exatidão o consumo dos fornos. Uma vez que os fornos constituem a principal
fonte de consumo de energia na fábrica, obter uma compreensão abrangente do seu consumo de
energia é um passo crucial para permitir a tomada de decisões informadas.

O primeiro objetivo desta dissertação foi aproveitar todo o potencial do PowerStudio SCADA
para desenvolver um sistema eficiente e de fácil utilização. O primeiro passo consistiu em de-
terminar a arquitetura do sistema PowerStudio SCADA. Um aspeto crucial foi a definição de um
protocolo para integrar os sistemas antigos existentes com o PowerStudio, permitindo a unificação
da arquitetura da maquinaria da fábrica. O software do PowerStudio utiliza o protocolo OPC
(Open Platform Communications), uma vez que é um método seguro, fiável e aberto para a troca
de informações entre clientes e servidores, incluindo dispositivos industriais como controladores
lógicos programáveis (PLC) e sensores e atuadores (S&A).

Para estabelecer uma comunicação perfeita entre vários equipamentos no chão de fábrica e
o sistema SCADA, foram utilizados contadores inteligentes e tecnologia da Internet das Coisas
(IoT). A conetividade Ethernet foi empregue para garantir a evolução da fábrica de Avintes em
linha com os princípios da Indústria 4.0 (I4.0). Esta integração de dispositivos e recolha de da-
dos constituiu a base para a recolha dos dados que seriam apresentados no novo e melhorado
sistema SCADA. Para garantir uma recolha de dados sem falhas, foram implementadas melhorias
no sistema de alarmes do SCADA para detetar eventuais anomalias nos contadores e melhorar a
monitorização da energia.

O segundo objetivo desta investigação era utilizar os dados adquiridos com o PowerStudio
SCADA e as ferramentas de aprendizagem computacional para realizar uma análise abrangente.
Esta análise foi crucial para identificar valores anómalos e garantir um conjunto de dados padronizado
e consistente para o desenvolvimento de uma ferramenta de aprendizagem supervisionada. O ob-
jetivo desta ferramenta era prever com precisão o consumo de gás e eletricidade para os três fornos
da fábrica de Avintes. Durante esta fase, surgiram duas questões importantes: Em primeiro lugar,
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qual o modelo de regressão que produzia os resultados mais exatos, especificamente adaptados ao
contexto da fábrica de Avintes? Em segundo lugar, qual seria a combinação ótima de períodos de
tempo de treino e de previsão, que resultaria no resultado mais preciso e exato?

Este estudo comparou diferentes modelos de regressão para prever o consumo do forno na
indústria de fabrico de vidro. As conclusões sugerem que os modelos de regressão linear podem
não ser adequados para esta aplicação, enquanto os modelos baseados em árvores apresentam
resultados promissores, em particular o modelo de árvore de decisão.

O modelo de árvore de decisão tem melhor desempenho para períodos de previsão mais longos,
capturando efetivamente padrões de dados complexos. Por outro lado, a regressão polinomial,
quando combinada com o GridSearchCV, produz melhores resultados para períodos de previsão
mais curtos.

Em conclusão, este estudo salienta a importância de um conjunto de dados de treino mais
alargado e de um período de previsão mais curto para melhorar o desempenho do modelo. Com
um período de previsão de duas semanas e dados de treino de três meses, o modelo de árvore de
decisão é selecionado como a ferramenta de previsão final devido à sua eficiência computacional
superior e precisão satisfatória.

Palavras-chave Embalagem de vidro, SCADA, OPC, Aprendizagem Computacional, Gestão
Energética Baseada em Dados, Monitorização Energética em SCADA, Análise de Alarmística
SCADA



Abstract

Given the current geopolitical situation and the current global energy crisis, there is an ever-more
pressing need to reduce energy consumption, especially in industry. Due to the continuous and
mass production that furnaces and production lines operate in, the glass packaging manufactur-
ing industry has been particularly impacted by the rise of energy prices in the last year, and the
likelihood that this trend will continue.

To manage the energy expenditure within its infrastructure, BA Glass Avintes has taken proac-
tive measures by replacing its existing Supervisory Control and Data Acquisition (SCADA) sys-
tem based on Siemens S7 technology with Circutor’s PowerStudio SCADA energy management
software. This software offers comprehensive energy studies, production ratios analysis (energy
consumption per unit produced), power quality management, automatic report generation, and
data visualization capabilities.

Two primary issues were identified: the underutilization of PowerStudio’s SCADA system,
particularly in terms of its alarm functionality, and the absence of tools for accurately predicting
furnace consumption. As the furnaces constitute the primary energy expenditure source in the
plant, gaining a comprehensive understanding of their energy consumption is a crucial step toward
enabling informed decision-making.

The first goal of this dissertation was to leverage the full potential of PowerStudio SCADA to
develop an efficient and user-friendly system. The first step involved determining the architec-
ture of the PowerStudio SCADA system. A crucial aspect was defining a protocol to integrate the
existing legacy systems with PowerStudio, enabling the unification of the factory machinery ar-
chitecture. PowerStudio’s software utilizes Open Platform Communications (OPC) protocol since
it’s a secure, reliable, and open method for information exchange between clients and servers, in-
cluding industrial devices such as programmable logic controllers (PLC) and sensors and actuators
(S&A).

To establish seamless communication between various equipment on the plant floor and the
SCADA system, smart meters and Internet of Things (IoT) technology were utilized. Ethernet
connectivity was employed to ensure the Avintes plant’s evolution in line with the principles of
Industry 4.0 (I4.0). This integration of devices and data collection formed the foundation for
collecting the data, which would be presented in the new and improved SCADA system. To
guarantee flawless data collection, the SCADA’s alarm system enhancements were implemented
to detect any potential malfunctions in the flow meters and improve energy monitoring.

The second objective of this research aimed to utilize data acquired from PowerStudio SCADA
and machine learning tools to perform a comprehensive analysis. This analysis was crucial in
identifying abnormal values and ensuring a standardized and consistent dataset for developing a
supervised learning tool. This tool’s purpose was to accurately predict gas and electricity con-
sumption for the three furnaces at the Avintes plant. During this phase, two significant questions
emerged: Firstly, which regression model yielded the most accurate results specifically tailored
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to the Avintes plant context? Secondly, what would be the optimal combination of training and
prediction time periods, resulting in the most precise and accurate output?

This study compared different regression models for predicting furnace consumption in the
glass manufacturing industry. The findings suggest that linear regression models may not be suit-
able for this application, while tree-based models show promising results, particularly the decision
tree model.

The decision tree model performs better for longer prediction periods, effectively capturing
complex data patterns. On the other hand, polynomial regression, when combined with Grid-
SearchCV, yields better results for shorter prediction times.

In conclusion, the study highlights the importance of a larger training dataset and a shorter
prediction period for improved model performance. With a two-week prediction period and three-
month training data, the decision tree model is selected as the final prediction tool due to its
superior computational efficiency and satisfactory accuracy.

Keywords Glass Packaging, SCADA, OPC, Machine Learning, Data-Driven Energy Manage-
ment, SCADA Energy Monitoring, SCADA Alarm Analysis
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“End?
No, the journey doesn’t end here.”

J.R.R. Tolkien
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Chapter 1

Introduction

This study is part of a curricular dissertation within the engineering area of industrial automation.

The goal is to continue migrating the old SCADA system in BA Glass to the new PowerStudio

SCADA (PSS) one and incorporate all the new systems and features installed on the plant floor.

We are currently on the brink of Industry 4.0 (I4.0), the fourth industrial revolution in which

manufacturing and other industrial processes are conceived as “smart environments” where ma-

chines, sensors, and actuators are interconnected to enable collaboration, monitoring, and control

[1]. SCADA systems are essential to I4.0 as they allow real-time monitoring, control, and opti-

mization of industrial processes.

BA’s current SCADA system relies on Excel files that are fed through Open Platform Com-

munications (OPC) servers. The OPC standard allows the production to access field information

in real-time with greater flexibility and lower costs for the integration, development, and assembly

of process automation or control systems [2].

However, as the Excel files have grown in size and are interconnected with other Excel files

containing manually inserted data, the system has become slower and less effective. As a result of

these challenges, a decision was made to introduce a new system, and PSS was acquired.

Currently, some Circutor equipment is already installed and feeding the SCADA with OPC.

The ultimate objective is to enhance further and complete the installation of this system.

1.1 Context

1.1.1 BA Glass History

Barbosa & Almeida was incorporated in 1912 and dedicated to the commercialization of bottles.

In 1930 the company began industrial activity in Campanhã with semi-automatic technology and

changed its name to Fábrica de Vidros Barbosa & Almeida, Lda (Barbosa & Almeida Glass Fac-

tory LLC). After the introduction of automated technology and the use of automatic machines,

production increased substantially, and in 1969 a new industrial unit in Avintes started operating

with two regenerative furnaces (with heat recovery). In 1971 the first automatic Individual Section

(IS) machine was installed, which allowed for a significant increase in the installed capacity. By
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2 Introduction

1979, the production relied on five IS machines, one of which was computerized. Currently, the

Avintes plant has a production capacity of over 1 billion glass containers per year and employs

around 300 people.

By 1993, BA acquired 94,5% of CIVE - Companhia Industrial Vidreira, SA from the state, a

company located in Marinha Grande, with three furnaces. Later in 1995, CIVE merged by incor-

poration into BA. Through the years, BA acquired factories all around Europe: in Villafranca de

los Barros (1998), in Léon (1999), in Venda Nova by incorporation of the Sotancro Group (2008),

in Sierakow and Jedlice by acquisition of the Polish group Warta Glass (2012), in Gardelegen

by acquisition of HNG Global (2016), and, lastly in Athens, Sofia, Plovdiv and Bucharest by the

acquisition of Yioula Group (2017) [3].

Figure 1.1: BA Glass’s plants location

BA Group is composed of three divisions:

• Iberia (IB), formed by the plants of Avintes (AV), Marinha Grande (MG), Venda Nova (VN),

Léon (LE) and Villafranca de Los Barros (VF), the first three located in Portugal and the

last two in Spain;

• Central Europe (CE) consists of the plants of Sieraków (SI) and Jedlice (JE), located in

Poland, and Gardelegen (GA), in Germany;

• Southeast Europe (SEE), composed of the plants of Athens (AT), located in Greece, Sofia

(SO), and Plovdiv (PV), in Bulgaria, and Bucharest (BU), in Romania.

BA is currently present in over 70 countries with 3900 employees. The 12 plants combined

manufacture over 11 billion glass containers annually for the food and beverage, pharmaceutical,

and cosmetic industries. This results in almost 900 million euros turnover, giving BA a significant

share of the world glass market [4].
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1.1.2 Glass Manufacturing Process

The process of manufacturing a glass container starts with a value chain analysis to improve effi-

ciency and reduce environmental impacts. The raw material for glass production is obtained from

recycling used packaging. Recycled glass, also known in the industry as "cullet," makes up about

60% of a (green or amber) glass bottle and is a 100% recyclable material that can be used several

times without losing quality or characteristics. Using cullet reduces the amount of raw materials

required, the energy consumption for glass molting, carbon dioxide emissions, and the amount of

glass deposited in landfills.

At the time of this study, only amber and dark green bottles were produced at BA Avintes, and

the manufacturing process can be divided into six distinct phases with different technologies and

particularities.

1. Batch: Other ingredients are added to the cullet: sand, with a high silicon content; lime-

stone, as a stabilizer and sodium carbonate, to lower the melting point and save energy. The

raw materials are stored in silos and later mixed.

2. Fusion: The resulting batch is conveyed through a network of conveyors (troughs) and

introduced in the refractory furnaces. The temperature of the furnace can be controlled in

real-time through the control panels of the molting furnaces. Once in the furnace, the glass

batch is molten at 1500 to 1600 ºC. From the homogenization of the raw materials to the

output of molten glass, an average period of 24 hours occurs. The liquid glass flows to the

production line through the refractory channels (or feeders).

3. Forming: The process begins with cutting the glass gob, which is launched by gravity and

conveyed by channels and deflectors to the automatic molding machine. The gobs have the

right amount of glass for the intended packaging model. Molding takes place in two phases.

First, in the starting mold where the outline is formed. This is then transferred to the final

mold, where it comes out with the final shape of the bottle. When they come out of the mold,

the bottles are at approximately 600ºC and are subjected to a very sudden temperature drop,

creating internal stresses.

4. Annealing and surface treatment: To relieve these stresses, they are sent to the annealing

lehr, and subjected to a new temperature rise to 650ºC. Annealing takes approximately one

hour. Then, cold treatment is applied to all bottles to make the glass more durable and

prevent scratches.

5. Inspection and quality control: After annealing, the bottles are sent to the automatic in-

spection area (also called the cold zone), where inspection machines check all the bottles

and detect defects at the visual, dimensional, thickness, and seams or cracks level.

6. Cullet: Bottles that do not meet the quality criteria are automatically rejected on the produc-

tion line and are incorporated into the internal cullet circuit to be recycled again. Samples

are also taken for laboratory analysis of other dimensional and mechanical resistance char-

acteristics.

or
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Packaging: The automatic palletization phase follows. Bottles are packed in layers and

stacked on pallets for movement. They are then transferred to the packaging area, where

the pallets are covered with a plastic film and labeled. From this moment on, the pallets are

ready to be shipped to the end customer [3].

Figure 1.2: Glass container manufacturing process

The Avintes plant is comprised of three furnaces, namely AV2, AV4, and AV5, each with its

own set of production lines. Furnace AV2 accommodates three production lines: L20, L21, and

L22. Similarly, furnace AV4 houses three production lines: L41, L42, and L43. Lastly, furnace

AV5 has four production lines: L51, L52, L53, and L54. These ten production lines collectively

play a crucial role in the manufacturing operations of the Avintes plant, contributing to its overall

productivity and output. Throughout this work, when referring to AV2, AV4, and AV5, it pertains

to the furnaces.

1.1.3 Energy Sustainability in Industry 5.0

Industry 5.0 (I5.0), also known as the human-centric manufacturing era, builds upon the foun-

dation laid by I4.0. While I4.0 focuses on integrating advanced technologies into industrial pro-

cesses, I5.0 emphasizes the collaboration between humans and intelligent systems to achieve sus-

tainable and inclusive manufacturing [5].

One of the key pillars of I5.0 is energetic sustainability, which aims to develop and implement

energy-efficient practices to reduce the environmental impact of manufacturing processes. The

technologies and methods developed in I4.0 are crucial in accomplishing this goal.

I4.0 has emerged as a transformative concept in the manufacturing and industrial sectors, en-

abling the integration of advanced technologies, such as the Internet of Things (IoT), Artificial

Intelligence (AI), big data analytics, and automation, into industrial processes to create smart,

connected systems.

In the context of concerns about the energy crisis, I4.0 has played a crucial role in addressing

and mitigating energy-related challenges. Leveraging data and digital connectivity enables more
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efficient and sustainable energy management practices across industries, while SCADA systems

enhance monitoring and control capabilities.

I4.0 incorporates smart energy systems that utilize real-time data analysis to optimize con-

sumption, reduce waste, and minimize energy usage during peak demand. IoT sensors and con-

nected devices monitor and control energy-intensive processes, while AI-powered systems enable

predictive and adaptive energy management for increased efficiency.

Furthermore, I4.0 facilitates the integration of renewable energy sources, also contributing to

achieving energetic sustainability in I5.0. Smart grids and energy management platforms enable

the seamless integration of renewable energy sources, reducing dependence on fossil fuels.

The collaboration between humans and intelligent systems, a fundamental aspect of I5.0, helps

drive energetic sustainability. Humans can leverage the insights provided by I4.0 technologies to

make informed decisions regarding energy usage, implement energy-saving practices, and contin-

uously improve energy efficiency in manufacturing processes.

In summary, I5.0 builds upon the technological advancements of I4.0 and strongly emphasizes

human collaboration and energetic sustainability. The technologies and practices developed in

I4.0, such as data analytics, AI, and integration of renewable energy sources, will play a vital role

in achieving the goals of I5.0, enabling sustainable and inclusive manufacturing processes that

prioritize energy efficiency and minimize environmental impact.

1.2 Motivation

Energy is a critical input for glass manufacturing processes; consequently, the energy crisis has

significantly impacted BA Glass.

The current global energy crisis has been primarily caused by a combination of factors, in-

cluding the COVID-19 pandemic, extreme weather events (for example, the case of the summer

of 2022’s drought in Portugal), and supply chain disruptions caused by the war in Ukraine and

conflicts in the Middle East [6]. These factors have led to a significant increase in the demand for

energy and a decrease in the supply of energy resources such as oil, gas, and coal. As a result,

energy prices have significantly increased.

Figure 1.3: Evolution of gas prices for non-household consumers (source: EUROSTAT, 2023 [7])
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Figure 1.4: Evolution of electricity prices for non-household consumers (source: EUROSTAT,
2023 [7])

The Avintes facility is committed to sustainability, with a particular emphasis on reducing

energy consumption and emissions through the increased use of recycled glass in its production

processes. In addition, the plant has a cullet treatment station that serves its own needs and other

plants within the BA group. Avintes has earned several certifications, including ISO 9001 for

quality management [8], FSSC 22000 for food safety [9], ISO 14001 for environmental manage-

ment [10], and SA 8000 for social accountability [11]. The facility is working towards achieving

ISO 450001 for health and safety management [12] and ISO 500001 for energy management [13],

further reinforcing its dedication to sustainable operations [3].

1.3 Problem Definition

In order to mitigate the impact of the energy crisis and reduce the carbon footprint that results

from the plant’s operations, it is essential for the Avintes plant to control its energy expenditure.

Currently, data acquisition is performed manually or automatically (through OPC) in some areas,

and all data is recorded in Excel. This process involves three files: one for manual readings, a

second for automatic data linked to the first file, and a third one containing graphs and statistics

used in daily meetings. However, the current use of Excel has resulted in slow and inefficient

files, which highlights the need for a new system that can adequately meet the requirements of a

company the size of BA Glass.

At the start of this study, a SCADA system is being implemented with PowerStudio’s software,

which is a more advanced and efficient system. Currently, the system lacks the basic features of a

SCADA, it’s not intuitive for the user, and it lacks alarms. PowerStudio offers graph presentation

and automatic report generation, but these functionalities are currently underutilized. Enhancing

SCADA effectively addresses the challenges associated with analyzing large data files. Power-

Studio enables users to visualize graphs and tables containing sensor values for any desired time

period, providing a solution to the existing problem.
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The Avintes plant requires significant enhancements in monitoring energy expenditure within

its facility. With the data collected from PSS, this study endeavors to develop a precise consump-

tion prediction tool using ML regression models.

1.4 Objectives

One of the objectives of this dissertation is to improve the SCADA system by enriching the Human

Machine Interface (HMI), connecting missing sensors/meters, and configuring alarms to detect

malfunctions. Additionally, a way of detecting flow meter malfunctions that lead to inaccura-

cies in the recorded data needs to be implemented. The purpose of these efforts is to contribute

significantly to the energy monitoring of the plant.

To enhance the energy efficiency of BA even further, the second part of this dissertation will

focus on the implementation and parameter determination of a machine learning (ML) tool that

can accurately predict furnace energy consumption and evaluate targets. It aims to determine the

optimal combination of training and prediction periods and select the most accurate supervised

learning model using the available data. By analyzing these factors, the intention is to create a

highly accurate consumption prediction tool for enhanced energy efficiency.

The research questions derived from this project are as follows:

1. Which ML regression model is the most accurate in predicting furnace consumption in the

glass manufacturing industry? The first test scenario will address this question.

2. What is the optimal combination of training and testing data sizes for predicting consump-

tion? The second test scenario will provide insights into this question.

As a notable outcome of this dissertation, an article based on this study’s findings, "Energy

Consumption Analysis in SCADA: A Case Study in the Glass Container Industry," has been pre-

pared and is currently under submission for presentation at the Conference on Industry Science &

Computer Science Innovation of 2023 [14].

1.5 Dissertation Structure

Besides the introduction, this dissertation contains five more chapters.

In chapter 2, state of the art is described, and related works are presented.

Chapter 3 focuses on the data collection process using PowerStudio and OPC Router and

provides a comprehensive overview of implementing alarms. The SCADA devices in PowerStudio

were used to monitor and record relevant variables, creating a comprehensive dataset.

Chapter 4 addresses the meticulous analysis following data collection that was conducted to

identify abnormal values and ensure a normalized dataset for developing a regression model ca-

pable of predicting furnace consumption in Avintes. This chapter also concentrates on developing

ML models for extrapolating predictive insights within furnace operations. These efforts con-

tribute to improving operational efficiency and cost estimation in the Avintes facility.
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Chapter 5 focuses on the testing and validation processes for the PSS data collection system

and the prediction model developed for the furnaces’ energy consumption. The data collection sys-

tem is validated by comparing the values from flow meters on the plant floor with those recorded

in SCADA. The prediction model undergoes extensive testing using historical data, assessing its

performance across different time frames and training data sizes. Evaluation includes measuring

accuracy and precision and assessing computational efficiency. Overall, the chapter provides in-

sights into the reliability and effectiveness of the data collection system and prediction model,

ensuring accurate data collection and reliable energy consumption forecasts for the furnaces.

Chapter 6 concludes the dissertation by presenting this project’s results, limitations, and con-

tributions and comments on future work.

Figure 1.5: Workflow with document structure



Chapter 2

State of the Art

BA Glass’ business model revolves around the efficient production of high-quality glass packag-

ing, emphasizing innovation, exceptional customer service, sustainability, and global expansion.

Given the continuous and ongoing nature of glass packaging manufacturing and the significant

energy resources it entails, energy efficiency plays a crucial role in the company’s priorities [3].

This chapter presents the state of the art related to this dissertation, providing a comprehensive

theoretical framework. The literature review covers essential concepts related to SCADA and

presents a range of effective methods for managing it, the role of OPC protocol as a bridge between

legacy systems and PowerStudio SCADA (PSS), and the application of Machine Learning (ML)

techniques and tools as a powerful means for optimizing energy efficiency in the plant.

This chapter lays this study’s foundation and helps establish its context.

2.1 Supervisory Control And Data Acquisition System and Energy
Monitoring

SCADA software applications collect data from sensors and actuators (S&A) and exchange con-

trol parameters with automation units, such as Programmable Logic Controllers (PLC). These

applications display numerical and/or graphical information on the plant’s behavior in real-time to

an operator while also storing relevant variables for further analysis [1].

PLCs are the most commonly used data acquisition and process control devices in the indus-

trial field. The server processes the data collected from the process, and the client (or viewer)

is connected to the network with the server to access and communicate the data with the human

operator. The servers are connected to the controllers through various communication drivers.

The monitoring and control function is a crucial aspect of SCADA systems. The primary func-

tions of these systems include optimizing output parameters and efficiency by automatically con-

trolling the technological process, displaying the real-time condition of the technological process,

graphically displaying process data to develop efficient operating strategies, controlling process

quantities logging, equipment condition, and alarm status effectively, generating periodic operat-

ing reports, allowing users to intervene directly in the process based on their access rights [2].

9
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The utilization of networked smart energy meters for data exchange has been explored in

previous works, specifically in [1] and [15]. In line with these studies, this dissertation aligns with

the aforementioned research, examining the viability and benefits of an Ethernet-based network

for integrating S&A and SCADA systems in the context of I4.0.

S&A are increasingly equipped with embedded Transmission Control Protocol/Internet Proto-

col (TCP/IP)-Ethernet ports. Consequently, adopting an Ethernet-based network becomes a viable

option to connect the S&A network seamlessly with the SCADA system. This approach facilitates

heterogeneity management and enables incorporating advanced S&A capabilities [1]. By lever-

aging the Ethernet-based network, the integration of S&A and SCADA systems can be achieved,

ensuring smooth and efficient data exchange within the framework of I4.0.

In accordance with the work presented in the thesis [16], users’ previous experience should be

considered during the design process. Therefore the design of the new SCADA system should pri-

oritize a graphical interface that closely resembles the existing system. This includes maintaining

consistency in buttons, windows, and other visual components.

By replicating the graphical interface of the existing system as closely as possible, users can

leverage their prior knowledge and experience, thereby minimizing the learning curve associated

with the new system. This approach facilitates a smoother transition process, ensuring continued

efficiency and effectiveness of industrial operations. In other words, a seamless transition be-

tween the existing and new systems allows users to quickly adapt and perform their tasks without

significant disruptions or delays.

SCADA systems have been in use for several decades. In the early days, SCADA systems

were mostly hardware-based and used analog S&A to control the process. Over time, SCADA

systems have evolved to become more software-based by integrating digital technologies. The

rise in the usage of microcontrollers and wireless technology led to the evolution of SCADA to

Cyber-Physical Production Systems (CPPS). CPPS integrates physical and cyber systems to create

smart, interconnected systems that can monitor and control industrial processes in real-time. CPPS

combines various technologies, such as IoT, AI, cloud computing, data analytics, and ML, to create

a new generation of industrial systems. CPPS can potentially increase the production’s efficiency,

enabling the flexible and re-configurable realization of automation system architectures [17, 18].

2.1.1 Digital Twin (DT)

The advances in the previously mentioned information technologies (cloud computing, big data

analytics, and ML) enabled both Cyber-Physical Systems and Digital Twins. Consequently, CPS

and DT emerged almost simultaneously. CPS and DTs belong to different categories, with CPS

falling under the scientific category and DTs under the engineering category. In the context of

industrial practices, DT technology offers significant benefits, allowing engineering systems to

achieve higher levels of precision and better management [17, 18]. CPPS is a specialized type of

CPS that integrates physical machinery and digital technology in manufacturing processes.

The DT typically comprises a physical entity, a virtual representation, and their data connec-

tions. It is increasingly being used to enhance the performance of physical entities by simulating
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their behaviors and providing feedback through their virtual counterpart [17, 19]. Hence, DT tech-

nology is increasingly being explored as a potential solution for managing complex systems like

SCADA or CPPS.

Figure 2.1: CPSs and DTs in manufacturing (source: Fei Tao et al., 2019 [17])

2.1.2 DINASORE

The Dynamic INtelligent Architecture for Software MOdular REconfiguration (DINASORE) is

a novel framework that implements the industrial standard IEC 61499 using Function Blocks

(FBs) in Python. It is designed to implement CPPS and SCADA management, aiming to pro-

vide standardized equipment integration with information systems and other platforms, including

PowerStudio [20]. DINASORE utilizes the 4DIAC-IDE as a graphical user interface (GUI) to sim-

plify the design and deployment of FBs for efficient and on-demand reconfiguration of the target

equipment [21].

One of the key features of DINASORE is its seamless data integration with third-party plat-

forms using OPC UA, enabling smooth communication and interoperability. This framework of-

fers flexibility and reliability, making it suitable for various applications. However, it is important

to note that as the number of FBs increases, the CPU and memory workload linearly escalates,

which should be considered in large-scale implementations [21].

DINASORE addresses the challenges faced when using pre-existing algorithms in high-level

programming languages, particularly in cases where equipment and software compatibility issues

arise. By providing a standardized approach to CPPS and SCADA management, DINASORE

and its companion technology, DT, offer a potential solution for integrating and managing het-

erogeneous systems, facilitating the seamless flow of information, and enhancing overall system

performance.
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2.1.3 PowerStudio SCADA

PSS is a software solution designed to centralize and manage information, process data and gen-

erate reports. Developed by Circutor to manage Electrical Energetic Efficiency (3E), PowerStudio

is a robust factory and plant management tool. Circutor provides a wide range of devices that

streamline the integration of any equipment in the factory, enabling the SCADA system to gather

data more efficiently. PowerStudio’s SCADA delivers valuable data for the daily control of the

plant floor enabling the management of different types of energy consumption, such as electricity,

gas, and water. PowerStudio’s capabilities extend beyond energy management, providing a range

of tools for energetic analysis, production ratios, network quality management, and energetic su-

pervision over every factory equipment. PowerStudio uses OPC, a widely used standard in this

field, to facilitate its connection to other software and hardware [22, 23].

Figure 2.2: Illustration of PowerStudio SCADA OPC and Modbus communications (source:
Circutor, 2016 [24])
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2.1.4 OPC

OPC is an established standard recognized as the benchmark for secure and reliable data exchange

in industrial automation and various other industries. The OPC standard comprises a set of spec-

ifications that govern the interactions between servers and clients from different vendors. Its in-

ception dates back to 1996, driven by the objective of standardizing and unifying diverse PLC

protocols such as Modbus and Profibus. By introducing a middle layer, OPC enables seamless

communication between HMI/SCADA systems and these protocols, regardless of the specific

manufacturer or vendor involved. This intermediary layer facilitates the translation of generic

OPC read/write requests into device-specific commands and vice versa, ensuring interoperability

across the industrial automation landscape [25].

Standard OPC servers offer several advantages for manufacturers’ software clients that need to

interface with various physical devices in their processes. By utilizing a standard OPC server, soft-

ware clients can avoid the need to maintain a library of drivers specific to each device, simplifying

the software architecture and reducing maintenance efforts.

End users also benefit from the use of standard OPC servers. One significant advantage is

the cost reduction achieved by eliminating the need for proprietary device drivers. Instead, plug-

and-play components from different suppliers can be seamlessly integrated, saving both time and

resources during system setup and expansion. Additionally, relying on standard OPC components

rather than specific drivers mitigates the risks associated with compatibility issues and potential

software conflicts.

The OPC Data Access (DA) interface, provided by standard OPC servers, enables crucial

functionalities such as real-time data extraction from various devices, including PLCs, DCSs,

SCADAs, HMIs, and smart sensors. With this interface, software clients can efficiently read, write,

and monitor process variables, facilitating effective control and monitoring of the manufacturing

or industrial processes [26].

Manufacturers and end users can streamline their system integration processes by adhering to

OPC standards and leveraging the flexibility of OPC servers. Real-time data extraction from var-

ious devices becomes seamless, reducing implementation time and ensuring compatibility across

different components. Using standard OPC servers ultimately promotes interoperability, flexibil-

ity, and cost-effectiveness in industrial automation and control systems.

The OPC Foundation established OPC Classic in 1996 using Distributed Component Object

Model (COM/DCOM) technology to facilitate information exchange between hardware devices.

OPC Classic included OPC-DA for data exchange, OPC Alarm and Events (AE) for alarm and

event information, and OPC Historical Data Access (HDA) for working with past data. However,

due to outdated specifications, decreasing support for COM/DCOM, and the need for a unified

service set, OPC Unified Architecture (UA) was developed as the next generation of OPC tech-

nology. OPC UA offers improved security, openness, and reliability, with advantages such as

enhanced security measures, expanded transport options, and a comprehensive information model

[2, 22, 26].
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Figure 2.3: Illustration of OPC Client-Server communication (source: Instrumentation Tools,
2023 [27])

Several studies have highlighted the utilization of OPC for communication purposes in indus-

trial control applications and SCADA systems. The following literature sources provide insights

into the integration and communication capabilities facilitated by OPC:

• In Godoy and Pérez’s study [1], OPC is employed as the communication protocol between

the master PLC and the SCADA application.

• Nicola et al.’s study [2] showcases an example of OPC server-based application software

that can be embedded within a SCADA system.

• Pereira, Reis, and Gonçalves’s research [21] introduces DINASORE, which enables data

integration with third-party platforms by utilizing OPC UA.

• Pinto’s thesis [22] involves the development of a dashboard for energy consumption opti-

mization. An external data module (OPC Router) is employed to input the necessary dash-

board data automatically.

• Diaconescu and Spirleanu’s work [26] employs OPC servers to communicate between in-

dustrial equipment and SCADA systems.

• Stefanov et al.’s work [28] focuses on SCADA modeling for performance and vulnerabil-

ity assessment of integrated cyber-physical systems. Communication between the various

components of the system is established through OPC.

In addition to the mentioned literature sources, it’s important to highlight that PowerStudio’s

software is an example that utilizes OPC for connecting to other software and hardware systems.

Despite OPC-UA being a more modern and superior protocol, as evident from the referred litera-

ture, PowerStudio is not compatible.

2.2 Data-Driven Energy Analysis

The manufacturing and process industries face a significant challenge in effectively harnessing the

potential of the increasing volume of recorded data. With the availability of affordable sensors
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and the need for enhanced process monitoring and reporting, data is accumulating rapidly. This

data explosion presents immense opportunities across various sectors, prompting enterprises to

utilize ML tools to unlock their potential. The advent of I4.0 and the prominence of AI have

further fueled the interest in ML tools, leading to a widespread drive in all industries to explore

and leverage their capabilities [29].

ML can be categorized into three main groups: reinforced, supervised, and unsupervised. In

unsupervised learning, ML algorithms are employed to analyze and cluster datasets that do not

have predefined labels. On the other hand, supervised learning is an ML technique where an

algorithm learns from labeled training data. It involves establishing a mapping between input

variables and their corresponding output variables, using a labeled dataset to guide the learning

process. The algorithm identifies patterns and relationships within the training data and utilizes

this acquired knowledge to make predictions or classify new, unseen data. This study will focus

on using supervised learning to predict the energy consumption of the furnaces in Avintes.

2.2.1 Regression-Based Supervised Methods

Regression-based supervised methods aim to model the relationship between inputs or indepen-

dent variables and outputs. These models typically use parametric equations, where the parameters

are estimated based on the available data. By explicitly capturing this relationship, these methods

provide estimates of the association between individual inputs and the outcome. They also account

for the influence of other inputs, allowing for adjusted measures of association [30].

2.2.1.1 Metrics

According to the work presented in the thesis [31], determining the appropriate metrics to utilize

is an essential step in assessing a model’s performance. This study selected the Coefficient of

Determination (r2), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean

Absolute Error (MAE) as the initial performance metrics.

These metrics are widely used for evaluating regression models in predicting consumption

because they provide different aspects of model performance. Considering these metrics together

allows a better understanding of how well a supervised learning algorithm predicts consumption.

• r2 (2.1): This metric measures the proportion of the variance in the dependent variable that

the independent variables in the model can explain. It is calculated with the ratio between

the Sum of Squares (SS) of residuals and the SS of the total. It ranges from 0 to 1, with

higher values indicating a better fit of the model to the data. If r2 is negative, then it means

that the chosen model fits the data really poorly.

r2 = 1− SSres

SStot
= 1− ∑

n
i=1(yi − f (xi))

2

∑
n
i=1(yi − y)2 (2.1)

• MSE (2.2): This metric calculates the average of the squared differences between the pre-

dicted and actual values. It measures the average squared error of the model’s predictions,
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enabling a comprehensive assessment of overall prediction accuracy.

MSE =
1
n

n

∑
i=1

(yi − f (xi))
2 (2.2)

• RMSE (2.3): This metric is derived from the MSE by taking the square root of the average

squared error. It measures the average magnitude of the errors in the model’s predictions in

the same units as the dependent variable. RMSE is more interpretable than MSE.

RMSE =

√
1
n

n

∑
i=1

(yi − f (xi))2 (2.3)

• MAE (2.4): This metric calculates the average of the absolute differences between the pre-

dicted and actual values. It measures the average absolute error of the model’s predictions,

providing a robust indicator of prediction accuracy.

MAE =
∑

n
i=1 |yi − f (xi)|

n
(2.4)

These metrics are commonly used to assess the accuracy and performance of regression mod-

els, with lower values of MSE, RMSE, and MAE indicating better model performance, while

higher values of r2 indicate a better fit of the model to the data [31].

Testing and training errors are essential for evaluating a model’s performance and generaliza-

tion ability. The testing error measures how well the model performs on unseen data, while the

training error assesses its fit to the training data. By comparing these errors, the following insights

can be gained:

• High testing and training errors indicate underfitting, where the model fails to capture un-

derlying patterns and generalize well.

• If the training error is significantly lower than the testing error, overfitting is present, mean-

ing the model memorizes noise or specific details of the training data.

• When both errors are low and close in value, the model shows good generalization, success-

fully learning patterns and making accurate predictions on new data.

Specific error values depend on the problem, data complexity, and evaluation metrics used. Lower

error values generally indicate better performance. However, it is important to compare errors

across models and assess their relative performance for the specific problem domain.
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(a) Underfitting and overfitting in simple
regression ML (source: Aguiar et al., 2022)

(b) Optimal zone for a good regression model
evaluating testing and training errors (source:

Kumar, 2023 [32])

Figure 2.4: Achieving a well-balanced model

As the referenced thesis [31] explains, selecting appropriate performance metrics, including

the r2, MSE, RMSE, and MAE, conducting a split between train and test sets, and visual analy-

sis of the graphical outputs enables a comprehensive evaluation of the model’s performance. The

combination of quantitative metrics and graphical outputs provides a holistic assessment of predic-

tive accuracy, allowing for informed decision-making and potential improvements in the model.

2.2.1.2 Decision Tree Methods

Decision trees are constructed by recursively partitioning the input space into hypercubes to create

regions with relatively homogeneous outcomes. This process involves applying binary splitting

rules on the input variables hierarchically. The algorithm explores all possible binary splits and

selects the one that maximizes the distinction between the output values of the resulting groups.

While trees can be grown until they achieve purity in the terminal nodes, it is generally discouraged

as it can lead to unstable estimates.

Once a decision tree is built using training data, predictions for new observations are made by

traversing it based on their input values and determining the most frequent class (for classifica-

tion) or the mean of outcomes (for regression) in the corresponding terminal node. Decision trees

require optimization regarding the number of variables and the depth of the tree. Typically, pre-

diction error, such as misclassification rate for classification or mean-square error for regression,

is used as the criterion for optimization, often through cross-validation.

Decision trees offer advantages such as interpretability, accommodating various types of pre-

dictors, and scalability to large datasets. However, they exhibit high variability, making them sen-

sitive to slight changes in the data, which can result in different splitting rules and tree structures.

Additionally, decision trees tend to overfit the training data, leading to a suboptimal performance

on external test sets. Techniques like bagging can be employed to mitigate these issues, which

involves averaging multiple trees trained on resampled versions of the training data [30].
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2.2.1.3 Regularized Regression Methods

In the context of supervised learning, where the goal is to predict an output variable based on

input features, feature selection becomes a crucial step in building effective models. Regularized

regression methods, such as ridge regression and the Least Absolute Shrinkage and Selection

Operator (LASSO), offer valuable approaches for feature selection.

Ridge regression and the LASSO both introduce constraints on the coefficients of the features

in the model. Ridge regression restricts the SS of the coefficients (L2 norm) (Equation 2.5), while

the LASSO restricts the Sum of Absolute Values (SAV) of the coefficients (L1 norm) (Equation

2.6). These regularization techniques encourage the model to assign smaller weights or even zero

weights to less informative or redundant features, promoting sparsity and improving the inter-

pretability of the model.

SSridge(β ) = ∑
i
(yi −β0 −
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2
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By controlling the regularization parameter λ , practitioners can control the degree of shrinkage

applied to the coefficients. A larger λ value results in more coefficients being forced towards

zero, effectively selecting a subset of features that contribute the most to the model’s predictive

power. This provides a way to automatically determine the relevant features and mitigate the risk

of overfitting.

Extensions of the LASSO, such as the group LASSO, have been developed to handle scenarios

where certain groups of features are expected to play a role together. This allows for a joint

selection of related features.

While regularized regression methods like the LASSO and its extensions may not always guar-

antee consistent variable selection, they have demonstrated their usefulness and have been widely

applied in various domains, including genetics and genomics. These methods enable researchers

to uncover the most relevant features and improve model performance [30].

2.2.2 Data Science Programming Languages

Data science programming languages provide the tools and libraries needed to extract insights

from complex datasets. With its user-friendly syntax and extensive libraries, Python has become

immensely popular for data manipulation, analysis, and ML. R, known for its statistical analysis

capabilities, is favored by statisticians and researchers. Julia offers high-performance and parallel

computing, making it suitable for large-scale data processing. SQL is crucial in working with

databases and efficiently querying structured data. Python stands out among these languages due

to its versatility, rich ecosystem, and widespread adoption in the data science community.
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Python is a popular high-level interpreted programming language known for its user-friendly

nature and suitability for various projects. It was created by Guido Van Rossum in 1991 and has

since evolved to its current version, Python 3. Python has gained significant traction in ML and

Big Data due to its extensive collection of third-party libraries catering to these domains. These

libraries provide potent tools and algorithms for data analysis, modeling, and visualization.

One of the notable features of Python is its package management system, with "pip" being the

standard package manager used to install and manage libraries. This allows users to incorporate

and leverage various specialized libraries within their projects efficiently.

In the context of scientific applications, Python has proven to be a valuable tool. Its versatility

and extensive library ecosystem make it well-suited for various scientific disciplines, including

physics, biology, chemistry, and engineering. Scientists can leverage Python’s capabilities to pro-

cess and analyze large datasets, create visualizations, implement advanced statistical models, and

facilitate collaborative research efforts.

Some notable libraries commonly used in scientific applications include:

• NumPy: A fundamental library for numerical computing in Python, providing efficient array

operations and mathematical functions [33].

• Pandas: A powerful data manipulation and analysis library offering versatile data structures

and tools [34].

• Matplotlib: A comprehensive plotting library that enables the creation of static, animated,

and interactive visualizations [35].

• SciPy: A library that provides a wide range of scientific and mathematical algorithms, in-

cluding optimization, linear algebra, signal processing, and more [36].

• Scikit-learn: A popular ML library that offers a comprehensive set of tools for various tasks,

such as classification, regression, clustering, and dimensionality reduction [37].

• TensorFlow and PyTorch: Deep learning frameworks widely used for building and training

neural networks [38, 39].

These libraries and many others contribute to Python’s reputation as a versatile and powerful

language for scientific research and data-driven applications [40].

2.2.2.1 Pandas

The Python Data Analysis Library, commonly known as "pandas", was developed in 2008 and has

gained immense popularity as one of the most widely used Python libraries. Its success can be

attributed to the introduction of powerful data structures such as Series and DataFrames.

Pandas’ DataFrame, in particular, has become a go-to choice for data manipulation and anal-

ysis tasks. With its spreadsheet-like structure comprising rows (entries) and columns (attributes),

DataFrames provide a flexible and intuitive way to handle and analyze tabular data. This tabular

representation allows for easy indexing, slicing, filtering, and transformation of data, making it a

valuable tool for exploratory data analysis and preprocessing.
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One of the factors contributing to pandas’ popularity is its integration with NumPy, another

widely used library for numerical computations. By leveraging the efficient numerical opera-

tions provided by NumPy, pandas can perform quick and optimized calculations on large datasets.

This combination of pandas and NumPy forms a powerful toolkit for data processing and analysis

in Python, ensuring optimal performance and accuracy in developing prediction models for this

study.

Throughout this work, when referring to DataFrames, it pertains to the pandas object. The

rows within a DataFrame represent individual entries, while the columns correspond to different

attributes or features associated with the data.

2.2.2.2 Scikit-learn

The scikit-learn library is an indispensable asset in any ML Python toolkit. It provides a compre-

hensive collection of popular models for classification, regression, and clustering tasks and a wide

range of tools for preprocessing and model evaluation.

Scikit-learn offers various algorithms, including decision trees, support vector machines, ran-

dom forests, gradient boosting, and neural networks. These algorithms cover a broad spectrum of

ML tasks, empowering practitioners to tackle various problems across different domains [37].

To assess and validate the performance of ML models, scikit-learn provides robust evaluation

metrics and techniques. Cross-validation, grid search, and model selection tools assist in opti-

mizing hyperparameters and selecting the best-performing models. These evaluation tools aid in

building reliable and generalizable models.

The popularity of scikit-learn can be attributed to its user-friendly and well-documented ap-

plication programming interface (API), which facilitates easy integration into ML workflows.

Overall, the scikit-learn library plays a vital role in enabling researchers, data scientists, and

practitioners to effectively apply ML techniques to their datasets, promoting innovation and ad-

vancing the field of ML.

2.2.3 Hyperparameter Optimization

ML models often rely on a diverse range of input variables, each with its own specific range of

values. GridSearchCV is a powerful technique used for hyperparameter tuning, which aims to

find the optimal values for the hyperparameters of a given model. The choice of hyperparameters

can significantly influence the performance of a model. However, determining the best values for

hyperparameters beforehand is challenging. GridSearchCV automates the process by exhaustively

searching through a specified dictionary of hyperparameters and their possible values.

In scikit-learn’s "model_selection" package, GridSearchCV provides a convenient way to it-

erate over the defined hyperparameters and fit the model on the training set. It systematically

evaluates the model’s performance for each combination of hyperparameter values. Finally, it

allows us to select the best set of parameters based on the evaluation results.
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Figure 2.5: Grid search workflow (source: Pedregosa et al., 2011 [37])

By utilizing GridSearchCV, we can save a significant amount of time and resources that would

otherwise be required for manual tuning. It streamlines the hyperparameter optimization process

and helps achieve the best possible performance for the model [41].

2.2.4 Transfer Learning

Supervised ML techniques have proven effective in various applications. However, their perfor-

mance relies on the assumption that training and test data share the same features and distribution.

Obtaining high-quality labeled training data can be challenging and costly, limiting the practical

applicability of these methods.

To address this issue, active learning reduces annotation effort by designing an active learner

to query unlabeled instances for labeling. An active learner can achieve high accuracy with fewer

labeled examples by selecting informative data points. However, active learning methods often

assume a budget for querying labeled data, which may be limited in real-world scenarios.

In contrast, transfer learning enables training and testing on different domains, tasks, and dis-

tributions. By leveraging knowledge or labeled data from related fields, an ML algorithm can

improve performance in the target domain. Transfer learning offers an alternative approach to

learning models with minimal human supervision compared to semi-supervised and active learn-

ing methods. It is beneficial when training data is scarce or costly to collect for each specific

domain.

Transfer learning finds applications in various domains, such as recognizing apples to aid in

identifying pears or learning to play the electronic organ to facilitate learning the piano. It allows

for the reuse of training data or extracted knowledge from related domains, enabling the develop-

ment of precise models for the target domain. In scenarios where collecting sufficient training data

is impractical, transfer learning becomes a desirable and crucial approach for knowledge transfer

between tasks or environments [42].
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Chapter 3

PowerStudio Data Collection and
Alarmistics

This chapter focuses on the data collection process using PowerStudio and OPC Router. The

subsequent data analysis is explored in Chapter 4.

Through PSS’s devices, various relevant variables were monitored and recorded, providing a

comprehensive dataset for analysis. This dataset was the foundation for developing the ML model

capable of predicting the consumption of Avintes’s furnaces.

Lastly, this chapter covers the implementation of alarms in PSS, enabling real-time monitoring

and alerting for critical events and abnormal conditions within the plant operations. This ensures

prompt detection and response to potential issues, enhancing operational reliability.

3.1 Integration of PowerStudio SCADA and OPC Router’s Modular
System

This section delves into the integration and communication of devices within the SCADA system

and the development of the external data analytics module employed in this study.

The integration and communication of devices within the SCADA system were paramount

for this research. Through seamless integration, various devices, such as sensors, input/output

devices, and converters, were effectively connected and coordinated, enabling the collection and

transmission of real-time data. This integration facilitated a comprehensive view of the operational

processes and allowed for efficient monitoring and control of critical parameters.

Furthermore, an external data analytics module was specifically developed to augment the

capabilities of the SCADA system. This module collects data and allows connections to plug-ins

facilitating informed decision-making and process optimization.

This module provides a powerful means to analyze and interpret the vast amounts of data the

SCADA system generates. Its integration with SCADA created a holistic and intelligent system,

enhancing the overall performance and effectiveness of the study.

23
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In summary, the integration and communication of devices within the SCADA system and the

data analytics module’s development played a pivotal role in this study. Together, they facilitated

comprehensive data analysis, empowered decision-making, and contributed to the overall success

and effectiveness of the research.

3.1.1 Smart energy meters and IoT

The energy meter is classified into three types. They are electromechanical meters, electronic

meters, and smart energy meters. This innovative smart device is essential for efficiently reviewing

and controlling industrial equipment across various industries and reducing production costs. By

accurately measuring electrical parameters and utilizing universal timestamps in the transmission

system, we can precisely predict measurement precision, isolate faults, and detect issues.

One notable advancement in this field is the digital electronic meter, which boasts a high

resolution, improved efficiency, and compatibility with low current and voltage operations. Its

user-friendly features, such as easy reading and installation, make it a preferred choice. More-

over, the integration of a Global System for Mobile Communications (GSM) modem1 allows for

continuous monitoring of the electrical power supply without the need for human intervention.

The electronic energy meter has been designed using IoT principles and a GSM module to en-

hance its capabilities further. As a comprehensive network of sensing and communication devices,

IoT enables the control of various quantities. This meter is particularly suitable for industrial and

household applications, as it can accurately measure the energy consumption of individual electri-

cal equipment without disrupting their current operation.

Conventional analog and electronic meters, which have been in use since the early stages, rely

on manual operation. A meter reader is responsible for recording the readings, which are then

used to generate billing information.

Overall, the selected smart energy meter based on IoT technology exhibits remarkable effi-

ciency and can seamlessly measure energy consumption in households and industries, providing

valuable insights for optimizing energy usage [43].

In BA Avintes, the readings of sensors and flow meters are carried out using Circutor’s de-

vices. These devices include the LM50+, impulse counters equipped with 50 slots, the LM4A for

analog sensor readings, and the TCP1RS+, which converts serial communications standards RS-

232 and RS-485 to Ethernet through TCP. The connection is established by connecting Ethernet

cables from each TCP converter on different floors to the network hub located on the respective

floor. To ensure proper network configuration, free IP addresses from BA’s intranet are assigned

to each device which are then configured with the MAC addresses as indicated on the devices

[44]. For equipment that doesn’t allow the connection of Circutor’s devices, PowerStudio allows

the configuration of generic Modbus TCP devices. With this type of generic device, the user only

needs to configure the IP address of the equipment that needs to connect to PowerStudio. The

communication of the devices with SCADA is shown in Figure 3.1.

1A GSM modem is a specialized modem that functions with a Subscriber Identification Module (SIM) card and
operates through a subscription with a mobile operator, similar to a mobile phone.
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Figure 3.1: SCADA devices communication scheme

3.1.2 Graphic User Interface

Improvements to the Graphic User Interface (GUI) encompass several key enhancements to en-

hance user experience and functionality. To cater to BA’s international presence, the screens should

be designed to display content in both Portuguese and English, accommodating users from differ-

ent regions. Additionally, implementing an automated report generation feature would streamline

the reporting process, saving time and effort.

The interface is now more intuitive and user-friendly, focusing on presenting significant val-

ues prominently on the screens, the values of each flow meter, and the instantaneous consumption.

This ensures that users can quickly and easily access important information. Furthermore, incor-

porating buttons to open graphs displaying the values of each variable adds a visual element to

the interface, enabling users to analyze data trends and patterns more effectively. Moreover, a

dedicated screen shown if Figure 3.2 has been developed for workers to conveniently modify the

maximum and minimum limits of alarms. This screen greatly simplifies the process of adjusting

variable setpoints, allowing for seamless adaptation to changing conditions.
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Figure 3.2: Alarm setpoint definition screen

The main screen provides a comprehensive overview of consumption metrics, presenting

monthly, daily, and instantaneous consumption values, accompanied by an analog bar indicating

whether the plant is operating within the predefined target range or not. This visual representation

provides users with immediate feedback on the plant’s performance in relation to the set targets.

By implementing these GUI improvements, BA can enhance user accessibility, streamline

reporting processes, improve data analysis capabilities, and provide a more comprehensive and

user-friendly interface for effectively monitoring and managing furnace operations.

Appendix A.1 presents print screens with the before and after improvements.

3.1.3 External Data Analytics Module (OPC Router)

Before the start of this dissertation, a "connection" between PSS and an Excel file was already

implemented to automatically input data from the plant that, up until that point, was acquired

manually. Each variable within a calculated variable group in PSS (OPC-TAG) created in the

Editor program is assigned to the device input associated with the respective flow meter. This

is achieved with an intermediate program, OPC Router. Whenever a new device is added to

SCADA, it is necessary to update "OPC Devices" with PowerStudio’s OPC Server Setup program

and restart OPC Server to ensure the changes take effect. An OPC Classic server configured with

the computer running PowerStudio IP address facilitates communication between the PSS and the

OPC Router.

Within the OPC Router interface, a connection between the OPC-TAG group and the Excel

file is established through the transfer objects "OPC Data Access" and "Excel," respectively. OPC

Data Access is configured with the previously mentioned OPC Classic server and the "tag browser"

feature to choose the appropriate variables from the OPC-TAG group. The Excel transfer object



3.2 Integration of Alarmistics and SCADA 27

was configured, specifying the target file as "Leituras Diárias 23:59" (where the values will be

transmitted) and the specific cells to which each value should be sent.

Lastly, a time trigger was configured to automatically input the data daily at 23:59, ensuring

regular and timely updates to the Excel file. The file’s contents are used for data analytics and the

energy consumption dashboard.

Figure 3.3: Connection created in OPC Router to register SCADA’s values in Excel

The connections were expanded and enhanced throughout this study to encompass a broader

range of devices equipped with sensors and flow meters. These augmentations were implemented

with the overarching goal of optimizing the functionality of the SCADA system.

3.2 Integration of Alarmistics and SCADA

The initial hurdle that required surmounting involved updating PowerStudio to the most recent

iteration, version 4.29.1. The existing version utilized in Avintes, namely 4.0.13, presented certain

limitations. Notably, it could not acknowledge alarms within the browser client and took a long

time during the application export process. Facilitating the update necessitated the creation of an

exception within the firewall configurations, specifically for the computer’s own IP address.

A significant challenge in the current SCADA system is the absence of a reliable means to de-

tect potential malfunctions in the flow meters. Consequently, this leads to occasional inaccuracies

in the recorded data, and identifying such discrepancies becomes exceedingly arduous.

The course of action for integrating flow meter fault detection alarms is outlined as follows:

Within the PSS Editor application, numeric calculated variables (that will hold the values 0

or 1) were added in a group created and labeled "Alarmes Contadores" (Flow meter Alarms in

English). These variables shall subsequently be employed in configuring events that activate the

corresponding alarms. The elaboration of the mentioned events depends on whether the variables

are activated (with a value of 1) or deactivated (with a value of 0).
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In Circutor’s PowerStudio OPC Server Setup application, the inclusion of the newly formed

group of calculated variables from "PowerStudio devices" into the "OPC Devices" category is

necessary. Restarting the OPC Server is advised subsequent to this action.

A script in C# was created after accessing the plugin menus when launching the OPC Router

interface. This script was specifically designed to ascertain the disparity between the previous and

current values of the data tag (input). When this discrepancy exceeds a predefined threshold, set

the output variable (alarm) to true; otherwise, assign it a false value. This script shall also equate

the current value to the preceding value. Refer to Appendix C.1 to consult the script. It is crucial

to note that each threshold was determined based on analyzing the corresponding input from each

flow meter.

Then, a connection was established with the OPC Data Access transfer object (Figure 3.4) for

transmitting the input to the script. The script’s output was then connected to another OPC Data

Access transfer object encompassing the variables sourced from the "Alarmes Contadores" group.

Figure 3.4: Connection in OPC Router to trigger alarms when a flow meter malfunction is
detected



Chapter 4

Data-driven Energy Management,
Monitoring and Forecasting

Following data collection, a thorough analysis was conducted to identify abnormal values, ensur-

ing a normalized and consistent dataset for the models to learn from.

Integrating data collection, analysis, and ML techniques demonstrates a comprehensive ap-

proach to harnessing data-driven insights for enhancing overall operational efficiency.

Furthermore, this chapter discusses the development of ML models specifically designed to

predict the energy consumption of Avintes’s furnaces. These models leverage historical data and

the planned pull to forecast future energy consumption accurately for the following week.

In addition to predictive modeling, this chapter explores optimizing energy consumption with-

in the furnaces. This involved analyzing various operational parameters to maximize efficiency.

The furnaces can operate more effectively by implementing optimized settings while reducing

energy costs and environmental impact.

Lastly, the chapter delves into estimating energy consumption for similar furnaces using the

predictive model developed for one specific furnace. This approach allows for the extrapolation of

insights from one furnace to similar setups, providing valuable guidance for energy management

and resource allocation.

4.1 Dataset Analysis

As explained earlier in this dissertation, a lot of data has already been registered, and the data log

contains data from 2016 but more reliably from 2021. The Excel file "Registos consumos_auto_1"

(Figure B.1) is where most data were extracted for this study. This file contains several sheets with

readings (both manual and automatic) of the gas and electric energy consumption of the furnaces,

refiners, feeders, lehrs, mold lehrs, and shrinking machines. It also contains recorded data from

each furnace and production line’s pull1 (calculated with Equation 4.1). In this file, the specific

1Amount of glass produced in a day

29
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consumption2 of each furnace and equipment of the production lines are also calculated, as shown

in Equations 4.2 and 4.3. This value represents a more straightforward way of measuring the

efficiency of the plant floor.

Pull[kg] =Weightbootle[g]×Velocity[bottles/min]× 480
1000

(4.1)

PCIgas[kcal/m3] = PCIgas[kWh/m3]×860.0506 (4.2)

Consumption[kcal/kg] =V [m3]× (
patm[kPa]+ p f unc[kPa

patm[kPa]
+

Tatm[K]

Tf unc[K]
)×

PCIgas[kcal/m3]

Pull[kg]
(4.3)

The molting process of the glass mixture involves two main components: gas combustion

and electric boosting. This study aims to predict the total energy consumption of each furnace

and determine the optimal combination of electric boosting and gas usage while considering the

furnace infrastructure limits.

The dataset is comprised of labeled features. Firstly, the recorded date provides a temporal

context for the data. Additionally, the dataset contains measurements of pull, represented in kilo-

grams, for each production line and furnace. Cullet, expressed as a percentage, represents the

proportion of recycled glass material (cullet) used relative to the total quantity of cullet and raw

material utilized. The dataset also includes boosting, measured in kilowatt-hours (kWh), which

denotes the electric energy consumed by each furnace’s boosting and production line machinery.

Gas consumption for each furnace and production line machinery is captured in units of normal

cubic meters (Nm³), providing insights into the amount of gas utilized. Finally, the dataset records

the PCI (kcal/m³), which stands for the lower calorific power. In order to guarantee the depend-

ability and uniformity of the data, information prior to 2022 was excluded from the dataset. This

choice was based on the availability of more reliable data from 2021, and any discrepancies arising

from maintenance activities on the furnaces in 2021 had been resolved by 2022.

Several variables influence the fusion process. A higher cullet percentage in the batch mixture

leads to decreased consumption, as glass with a higher cullet content is easier to melt than forming

new glass. The color of the glass also plays a factor in the molting process. In Avintes, variations

of amber and green glass are the ones produced. The quantity of cullet inserted in the batch

mixture affects the color of the glass. Certain colors may facilitate molting due to a higher cullet

percentage. Additionally, energy prices play a crucial role in determining the optimal mix of

electric boosting and gas usage. When electric energy is cheaper, increasing electric boosting

becomes more cost-effective.

Furthermore, different furnaces with varying ages require specific considerations for electric

boosting. Boosting can elevate the temperature of the furnace crown, and older furnaces such as

AV2 have a weaker infrastructure. Therefore, it is essential to exercise caution with boosting in

older furnaces.

2Consumption value in kcal/kg of molten glass
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A CSV file was utilized to access previously mentioned variables but was unavailable in the

"Registos consumos_auto_1" file. This file was extracted from BA’s software BAMeX3 and con-

tains information regarding the quantity of raw material used in the batch mixture, the glass color,

and the log of furnace crown temperature. It is important to note that this file only includes data

until October 2022.

The furnace data exhibits significant fluctuations, including depressions and spikes. These

variations can be attributed to production line halts, inaccurate value readings, or sudden changes

in the pull. It is important to note that the pull and consumption are closely linked; as more glass

is molten, the furnaces consume more. In BA, the pull for the upcoming week is planned and

recorded in an Excel file named "Tiragens" (Pull in English) weekly (Figure B.2).

A plot was created to visualize both data sets to assess the similarity between the actual pull

during production and the planned pull. The purpose was to determine if the planned pull could

effectively filter the actual pull data for training the models. By comparing the two plots, we aimed

to infer if there is a strong similarity between the actual and planned pull. If a close resemblance

is observed, it would suggest that the planned pull can serve as a reliable filter for the actual pull

data.

Figure 4.1: Comparison between actual pull and planned pull for each furnace

Upon examining Figure 4.1, a promising approach for filtering the pull data is to utilize the

planned pull as a benchmark for identifying and excluding abnormal data points. To achieve this,

an in-depth analysis of this file was conducted to determine the pull’s percentile deviation for each

bottle reference and assess the impact of a spout change on the pull. It is worth noting that a basin

3BA Manufacturing eXperience is a data-centralizing platform that integrates data from various sources, including
PSS via OPC. It offers real-time dashboards, visualizations, and recommendation tools to enhance plant operations
[31].
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change inevitably leads to a halt in the production line, making it a critical factor to consider in

this evaluation.

Based on the analysis, it was observed that for AV2, a job change (change of the bottle refer-

ence) does not impact the furnace pull by more than 9%. Similarly, on a normal production day

(without job or spout changes or malfunctions), the specific consumption should remain stable

within a range of 2.5%. Moving on to AV4, the findings indicate that the pull deviation due to a

job change is around 8%, while the specific consumption deviation remains below 2.3%.

Determining the values for AV5 proved to be more challenging since certain bottle references

displayed a higher percentile deviation compared to other furnaces, approaching the magnitude

of deviation seen during a spout change. As a result, the calculated percentile deviation for the

pull on AV5 was 10.6%. However, it is worth noting that AV5 is the most efficient furnace in the

Avintes facility, resulting in a slightly lower specific consumption deviation of 2.4% compared to

AV2.

These conclusions provide insights into the impact of job changes and the overall stability of

the furnaces in terms of pull and specific consumption, aiding in the identification of abnormal

production days.

Subsequently, to prepare the dataset for model training, any values that were found to be below

the threshold, as determined through the aforementioned process, were substituted with the mean

value of the respective features. This data preprocessing step ensures the dataset is normalized

and enables the models to learn from consistent and reliable input. By replacing values below the

calculated threshold with the mean, there’s a certainty that the trained models are not influenced

by potentially erroneous or abnormal data points, enhancing the overall accuracy and robustness

of the models during subsequent analysis and predictions.

Table 4.1: Percentage of filtered data for each furnace

Furnace AV2 AV4 AV5

Percentage of filtered data 27.01% 27.78% 36.97%

After eliminating these irregularities and analyzing the graphs (Appendix A.2), it becomes

evident that the consumption tends to follow a linear trend. Consequently, the ML tool developed

in this study utilizes regression models such as linear, polynomial, Ridge, LASSO, and decision

tree models.

4.2 Analysis and Forecasting for Energy Consumption Prediction us-
ing Data Log Values

The development of the ML model holds significant potential in optimizing furnace operations.

Accurate consumption predictions can assist in proactive planning, resource allocation, and iden-

tifying areas for efficiency improvement.
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The DataFrame used for analysis contained values from 2022. It comprises labeled variables

encompassing important aspects of the production process. The recorded features included the

date, providing a chronological reference for the data. "Raw_Material", represents the amount of

raw material utilized to form glass in the furnace. "Crown_Temp_1", measured in degrees Celsius,

indicated the furnace’s crown temperature. The expenses associated with electricity consumption,

measured in euros per megawatt-hour (C/MWh), and gas consumption, also measured in C/MWh,

were documented. The "Pull" feature was recorded in kilograms. The proportion of cullet in

relation to the total quantity of cullet and raw material used was expressed as a percentage in

the "Cullet" feature. The "Boosting" feature was measured in kWh for each furnace. The "Gas"

feature denoted the amount of gas consumed by each furnace, expressed in units of Nm³. Lastly,

the "Color_Code" feature was represented by a string of 2 characters (e.g., AS, UV, AM, etc).

4.2.1 Impact Analysis of Features on Furnace Consumption

Leveraging the insights gained from the data analysis, an ML model was developed. This model

was trained using the collected data to accurately predict furnace gas and electric consumption.

The model aimed to provide accurate and reliable predictions for future furnace consumption by

considering historical consumption data.

As discussed in Section 4.1, predicting energy consumption in the glass molting process re-

quires careful consideration of various factors, including pull, cullet, glass color, energy prices,

and furnace crown temperature.

Upon analyzing the dataset, the initial step involves identifying the features that exhibit stronger

correlations with the energy consumption of each furnace. This analysis allows us to determine

which specific variables have a more significant impact on the consumption patterns of individual

furnaces. By understanding these correlations, we can gain valuable insights into the factors that

most significantly influence energy usage in the glass melting process.

(a) AV2
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(b) AV4

(c) AV5

Figure 4.2: Feature correlations

To facilitate the understanding of the correlation between variables, the heat map function

from the seaborn Python library was employed to represent the correlation values visually. The

results are depicted in Figure 4.2.

Then, a plot was created to analyze the impact of glass color on total energy consumption

(gas and electrical). The plot in Figure 4.3 depicts the total specific consumption for each color,

visually representing how different glass colors affect overall furnace energy usage. Additionally,

average total energy consumption values were calculated for each color, providing insights into

the extent to which color influences consumption levels. By examining these results, shown in

Table 4.2, we can better understand the relationship between glass color and energy usage.
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After considering the data and variations in color since January 2022, it’s clear that the influ-

ence of color on energy consumption is not significant enough in this time frame to be a significant

factor in the developed model. The observed color variations mainly consist of different shades of

the same color, which explains the minimal difference in energy consumption across these varia-

tions. Therefore, it may not be necessary to include color as a significant factor when analyzing

and predicting energy consumption in this particular context.

Figure 4.3: Total (gas and electrical) specific consumption of Avinte’s furnaces by color

Table 4.2: Average of total specific consumption of each furnace by color

Color
Furnace AV2 AV4 AV5

(kcal/kg) (kcal/kg) (kcal/kg)

AM (amber) 1015.258 930.3996 ————-

AS (strong amber) ————- 934.6722 ————-

MA (dark amber) ————- 927.9933 ————-

MV (antique green) ————- ————- 738.7059

UV (UV green) ————- ————- 743.8408

VB (dark green) ————- ————- 730.4851

Percent difference 0.00% 0.717% 1.81%

After analyzing Figure 4.2, it becomes evident that, in general, there is a weak correlation

between furnace consumption and the other features. However, it is worth noting that there is a

moderate correlation between the pull and gas consumption features in all furnaces, which was

already expected. This correlation is logical as a larger quantity of molten glass leads to higher

energy consumption by the furnace. Hence, we can conclude that the "pull" feature significantly
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impacts furnace energy consumption, whereas the remaining features exhibit weak correlations

with consumption.

4.2.2 Development of Predictive Models for Furnace Consumption

The proposed ML tool functions as an advanced calculator with the objective of utilizing planned

pull values for the upcoming week (data from "Tiragens.xlsx") to predict furnace consumption and

assist in establishing consumption targets for the plant. The Python application generates outputs

for each furnace’s daily kWh and kcal/kg consumption throughout the week. Additionally, it

provides a daily estimation of the expected expenses4 for gas and electricity.

An investigation was conducted to determine the best-performing model among a range of

regression models, including linear regression, polynomial regression, ridge regression, LASSO

regression, and decision tree regression. This selection was motivated by the assumption that the

furnaces’ consumption remains relatively constant.

To optimize the performance of the polynomial, ridge, and LASSO models, Python’s Grid-

SearchCV was employed. This approach allowed for identifying the best parameters for each

model, enabling fine-tuning and improving their accuracy.

Various test scenarios were conducted to determine the optimal combination of training and

testing data and to identify the most suitable model for the application. The methodology is further

explained in Section 5.2. These scenarios were designed to evaluate the models’ performance

under different conditions and periods, from one week to one year.

4.3 Exploring an Approach for Furnace Consumption Optimization

The study of the optimization of the molting process focused on two key components: gas combus-

tion and electric boosting. The aim was to determine the optimal combination of electric boosting

and gas usage while considering the limitations of the furnace infrastructure.

In BA, the relationship between the pull and gas and electrical consumption was initially ex-

amined using Excel, which revealed an inverse correlation - as the pull increased, the specific

consumption decreased. This correlation is logical, as a larger quantity of glass being molten

would result in more efficient energy utilization.

To further explore the effectiveness of studying this relationship, linear, LASSO and ridge

regressions were trained using Python’s scikit-learn (sklearn) library. The linear, LASSO, and

ridge regression models showed significant similarity. Table 4.3 compares the results of sklearn’s

linear regression and the previously determined Excel regression that served as a reference for this

study.

Upon examining the values in Table 4.3, it can be observed that the overall r2 score is generally

low, although still higher than the r2 score obtained from the Excel regression. This outcome was

expected since the data points tend to cluster within a specific range of pull, and consumption is

4To maintain confidentiality, the values employed herein are fictitious and do not represent actual data.
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influenced by numerous other variables, making it challenging to establish a strong relationship

based solely on pull.

Table 4.3: Comparison of Excel’s calculated regression and sklearn’s linear regression for
analyzing gas and boosting in furnaces

Excel Linear

G
as

AV2

y = -2.316 x + 1551.1 -2.258 x + 1535.1

MSE 2187.8032 —————–

Training MSE —————– 1950.9961

Testing MSE —————– 2717.8243

r² 0.25573461 0.20820936

AV4

y = -5.125 x + 1992.5 -5.019 x + 1964.3

MSE 2222.0382 —————–

Training MSE —————– 2230.5084

Testing MSE —————– 2202.9222

r² 0.74151225 0.74315502

AV5

y = -1.201 x + 1208.8 -0.801 x + 1035.4

MSE 1277.3747 —————–

Training MSE —————– 999.4964

Testing MSE —————– 1249.7466

r² 0.074561832 0.18222222

B
oo

st
in

g

AV2

y = -0.653 x + 292.33 -0.354 x + 207.49

MSE 185.8544 —————–

Training MSE —————– 171.8569

Testing MSE —————– 170.0001

r² 0.065964827 0.21874942

AV4

y = -0.723 x + 321.39 -0.467 x + 266.56

MSE 380.6266 —————–

Training MSE —————– 353.5631

Testing MSE —————– 362.5357

r² 0.069499910 0.11231911

AV5

y = -0.240 x + 175.12 -0.0216 x + 80.571

MSE 228.4196 —————–

Training MSE —————– 164.0673

Testing MSE —————– 183.9678

r² -0.33673025 0.0071880091

Similarly, evaluating the MSE allows us to assess the accuracy of the regression models in

predicting specific consumption based on pull. A lower MSE indicates better model performance,
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with more minor differences between predicted and actual values. Comparing the MSE demon-

strates that, except for AV2’s gas consumption, the linear regression performs well and generalizes

effectively.

The r2 score and MSE suggest challenges in establishing a strong relationship between pull

and specific consumption. It implies that other variables besides pull significantly influence the

variations in specific consumption.

In conclusion, the utilization of Python’s scikit-learn library for determining linear regressions

generally provided more accurate and reliable results. It could potentially be used as a viable al-

ternative to Excel in future analyses within the company, enhancing the plant’s decision-making

process regarding energy consumption optimization. Only AV2’s gas consumption sklearn’s re-

gression did not yield superior results compared to the Excel regression. The graphs with the

results are presented in Appendix A.3.

Next, the relationship between the percentage of boosting and the pull was explored, and no

correlation was observed across the three furnaces, as shown in Figure 4.4.

Figure 4.4: Boosting percentage vs. pull in tonnes

Given the understanding that furnace consumption is influenced by multiple variables beyond

pull, an investigation was conducted to study the impact of fixing the percentage of cullet on the

results. By focusing on this subset of data, we can examine any patterns or relationships that

emerge between the variables of interest within this context.

Additionally, to explore the potential relationship between the temperature of the furnaces’

crown and consumption, plots were generated to visualize the variations in temperature and boost-

ing percentage over time. This analysis aimed to identify any significant patterns or relationships

between these variables.

Figure 4.5 presents the plotted data specifically containing values with fixed cullet. By an-

alyzing these plots, insights can be gained regarding the fluctuations of the temperature of the
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furnaces’ crown and the boosting percentage over time. This analysis also allows us to investi-

gate whether any meaningful correlations exist between these variables. Additionally, it provides

an opportunity to assess the impact of fixing the cullet percentage on the correlation between the

boosting percentage and pull. By examining these relationships, we can further understand these

variables’ dynamics and potential influences on furnace performance.

Figure 4.5: Analysis of boosting with cullet within a 5% range

However, it is important to note that establishing significant correlations was challenging due

to the limited data range and insufficient temperature variability. Although there were instances

where an increase in temperature corresponded to an increase in boosting percentage, and vice

versa, no significant correlation was observed among the different furnaces. Despite these lim-

itations, the analysis provides valuable insights into the relationship between the temperature of

the furnaces’ crown and the boosting percentage, indicating a potential association that warrants

further investigation with a larger and more diverse dataset.

This analysis reinforces the previous findings, indicating that a combination of factors beyond

a single variable influences furnace consumption. The results suggest that the correlation between

furnace performance and the variables examined: gas and electrical consumption, boosting per-

centage, cullet percentage, pull, and crown temperature is complex and not easily determined. The

limitations of the dataset, including its size and variability, may have contributed to the absence of

strong correlations.
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4.4 Estimating Consumption using Models Transferred from Other
Furnaces

Transfer learning involves leveraging knowledge or labeled data from related fields to improve the

performance of a ML algorithm in a target domain. It allows for the transfer of learning from one

environment to another, enabling the development of accurate models even when specific training

data is scarce or expensive to obtain.

To explore the application of transfer learning in glass-melting furnaces, an attempt was made

to use the decision tree model trained with AV4’s data to predict the consumption of furnace AV2.

AV2 and AV4 are considered the most similar furnaces among the three in Avintes. However, an

essential factor to consider is the age of the furnaces. To address this, an exclusion criterion based

on furnace age was implemented. As AV2 and AV4 have a six-year difference, data from 2017

was utilized for AV2, while data from 2022 and 2023 was used for AV4. The available data for

analysis was limited to the period from 01-12-2016.

Subsequently, the correlation between specific consumption (in kcal/kg) and the percentage

of cullet used was computed for AV2, resulting in a value of -0.2593. To enhance the similarity

between AV2 and AV4, AV2’s cullet percentage values were adjusted by reducing them by 8%.

Then, the consumption values were proportionally increased based on the correlation factor to

make them more comparable to AV4.

This study performed a performance comparison of the method for one-month and one-year

intervals. The results obtained are presented below in Table 4.4, while the corresponding graphs

can be found in Appendix A.4.

Table 4.4: Comparison of performance metrics for AV2’s model trained with AV2 and AV4 data,
and vice-versa

AV2 model AV4 model

AV2 data AV4 data AV2 data AV4 data

1
Ye

ar Training RMSE 3529.288 ——– ——– 2562.637

l,ine2-6 Testing RMSE 3900.804 11359.27 44642.84 3938.395

r² 0.785390 -2.33293 -25.1136 0.453375

1
M

on
th Training RMSE 1243.204 ——– ——– 1833.829

Testing RMSE 3005.316 30891.03 48033.82 2358.066

r² 0.744955 -21.1131 -43.4497 0.852173

When attempting to estimate the consumption of AV2 using the model calculated for AV4,

and vice versa, it was found that the accuracy of the results was limited. The testing error was

significantly large, and the r² score was found to be well below zero. Upon visual inspection of

the graphs, it was observed that the prediction line deviated significantly from the actual furnace

data, indicating poor performance and a lack of alignment between the prediction model and the

furnace’s consumption patterns.



Chapter 5

Validation and Evaluation

This chapter focuses on the testing and validation processes for the PSS data collection and the

prediction model developed for the furnaces’ energy consumption.

The first part of the chapter covers the testing and validation of the PSS data collection system.

This involves physically visiting the flow meters on the plant floor and comparing the values with

the ones in SCADA.

The second part of the chapter focuses on testing, validating, and evaluating the furnaces’

energy consumption prediction model. This involves subjecting the model to extensive testing

using historical data to assess its predictive capabilities from one week to one month and with

various training data sizes. The model’s performance is evaluated against known consumption

values to measure its accuracy and precision.

The evaluation of the prediction model involves analyzing its strengths and limitations, assess-

ing its robustness, and determining its suitability for practical application. This includes evaluating

factors such as prediction accuracy and computational efficiency.

By thoroughly testing, validating, and evaluating both the data collection system and the pre-

diction model, this chapter provides insights into the reliability and effectiveness of these compo-

nents. This process ensures that the data collected is accurate and trustworthy and the prediction

model can deliver reliable energy consumption forecasts for the furnaces.

5.1 PowerStudio Validation Methodology

A meticulous methodology was employed to validate the accuracy of the values displayed in Pow-

erStudio, involving physically traversing the plant floor and visiting each flow meter. During this

process, a thorough comparison was made between the values observed on the counters and those

presented in the SCADA system. A corrective factor was introduced into the device configurations

to ensure precise decimal representation. This step aimed to validate the seamless communication

between the sensors and the input/output devices connected to SCADA.

The table used to register the values of the flowmeters is shown in Table 5.1.

41
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Table 5.1: Gas flowmeters values registration table

By implementing this methodology, we could effectively verify the consistency and reliabil-

ity of the data displayed in PowerStudio, providing a solid foundation for further analysis and

decision-making.

5.2 Furnace Consumption Prediction Tool Testing Methodology

Two test scenarios were executed in this Section. The first scenario aimed to determine which

regression models outperformed the others, while the second scenario shifted the focus to deter-

mining the optimal combination of training and prediction periods to identify the combination that

yielded the most accurate energy consumption predictions.

These tests involve evaluating various regression models and the performance of each com-

bination of training and prediction periods using appropriate metrics: r2 score, MAE, training

RMSE, testing RMSE, and Standard Deviation (SD).
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The regression models were obtained and analyzed with historical data from the "Registos

consumos_auto_1.xlsx" file, which contains all the necessary data. To ensure the reliability and

consistency of the data, information before 2022 was excluded from the study. This decision was

made because the file provides more reliable data from 2021, and any inconsistencies resulting

from maintenance work on the furnaces in 2021 were resolved by 2022.

A DataFrame was subsequently generated using the data from the file mentioned earlier, in-

corporating the following columns: date, pull (kg), boosting (kWh), gas consumption (Nm³), and

PCI (kWh/m³). Additionally, the total consumption absolute values were calculated from these

features to serve as the target variable for the regression models. The objective of using the total

absolute consumption as the target variable was to assess the algorithm’s ability to detect signif-

icant fluctuations. This choice was made because the specific consumption tends to remain more

constant than the absolute consumption.

As previously mentioned, the models were evaluated using r2 score, MAE, training RMSE,

testing RMSE, and SD. Using these metrics gives a comprehensive understanding of the regression

model’s performance. The r2 summarizes how well the model fits the data. MAE provides an

average magnitude of the prediction errors. The training and testing RMSE evaluate the average

magnitude of the prediction errors, and the comparison between them indicates whether the model

is overfitting or underfitting. SD gives insights into the variability of the predictions.

RMSE directly quantifies the average magnitude of prediction errors, while SD measures the

dispersion of the actual values. Although RMSE and SD reflect different aspects of variability,

they are related in that a smaller RMSE suggests a reduction in the spread of prediction errors,

which is associated with a smaller SD.

Overall, it is essential to consider multiple metrics to assess the model’s strengths and weak-

nesses thoroughly.

5.2.1 First testing scenario

An investigation was conducted using linear, polynomial, ridge, LASSO, and decision tree regres-

sions to determine the better-performing model. The regression models were tested six times for

the following periods:

1. One-month testing period:

• Period 1: From 01-01-2022 to 01-02-2022

• Period 2: From 01-04-2023 to 01-05-2023

2. Six-month testing period:

• Period 1: From 01-01-2022 to 01-07-2022

• Period 2: From 01-11-2023 to 01-05-2023

3. One-year testing period:

• Period 1: From 01-01-2022 to 01-01-2023

• Period 2: From 01-05-2022 to 01-05-2023

By testing the models on different periods, ranging from one month to one year, the perfor-

mance and generalization capabilities of the models across various time horizons were assessed.
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This approach provided insights into how well the different regression models performed on short-

term and long-term predictions, enabling a comprehensive evaluation of their effectiveness.

The dataset was divided into training and testing sets using the "train_test_split()" function

from the sklearn library. The testing dataset comprised 20% of the overall DataFrame, while the

remaining 80% was used for training the regression models. This split ensured the models were

evaluated on unseen data during testing. Code Section 5.1 shows an illustration of the code.

1 # # Prepare data to train the models

2 # Convert dates to Unix timestamps

3 filtered_data["Timestamp"] = filtered_data["Date"].astype("int64") / 10**9

4

5 # Split data into input and output variables

6 X = filtered_data[["Timestamp", "Pull"]]

7 y = filtered_data[["Total_kWh"]]

8

9 # Split the data into training and testing sets

10 X_train, X_test, y_train, y_test = train_test_split(

11 X, y, test_size=0.2, random_state=42)

Code Section 5.1: Python code for splitting the DataFrame in training and testing datasets

In these tests, the independent variables chosen from the DataFrame’s features were "Pull" and

"Timestamp." The selection of pull as a variable was based on its highest correlation with con-

sumption, as identified in Subsection 4.2.1. Additionally, the performance of furnaces is influ-

enced by their age, hence the inclusion of the timestamp feature. Considering that one of the tests

spanned one year, the timestamp variable becomes significant to take furnace efficiency over time

into account.

The models were evaluated using the previously mentioned metrics: r2 score, MAE, training

RMSE, testing RMSE, and SD. Code Section 5.2 demonstrates how these metrics were collected.

1 # # # # # # Linear

2 model_linear = LinearRegression()

3 model_linear.fit(X_train, y_train)

4 ypred_linear_train = model_linear.predict(X_train)

5 ypred_linear_test = model_linear.predict(X_test)

6 # Display results

7 print("Data standard deviation: %.6f" % np.std(y_test))

8 print("\nR-squared score")

9 print(r2_score(y_test, ypred_linear_test))

10 print("\nMean absolute error")

11 print(mean_absolute_error(y_test, ypred_linear_test))

12 print("\nTraining mean squared error")

13 print(mean_squared_error(y_train, ypred_linear_train))

14 print("\nTesting mean squared error")

15 print(mean_squared_error(y_test, ypred_linear_test))

Code Section 5.2: Python code for determining metrics
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To determine the optimal λ value for ridge and LASSO regression, a GridSearchCV approach

was employed. The grid search was performed using ten values ranging from 0.001 to 1000. This

technique systematically evaluated the performance of ridge and LASSO regression models across

the range of λ values using negative MSE as the scoring metric to identify the best fit.

In the case of polynomial regression, a pipeline was utilized to streamline the process. The

pipeline combined PolynomialFeatures and LinearRegression, enabling the creation of polynomial

features and the subsequent fitting of the regression model. The hyperparameters considered in the

grid search were the degree of the polynomial, ranging from 2 to 11, and the fit_intercept param-

eter, which determined whether an intercept term was included in the regression equation. Both

True and False options were explored during the grid search to thoroughly assess the impact of

the fit_intercept parameter on the model’s performance. Negative MSE was the scoring parameter

used for this regression model as well.

Determining a decision tree’s maximum depth value is critical for balancing underfitting and

overfitting. To find the optimal max_depth parameter, several decision trees were trained with

values ranging from two to seven. The performance of each tree was evaluated using accuracy

as the metric. As the depth of the trees increased, the training performance improved. However,

beyond a certain point, the validation performance reached its peak and then started to decline. It

was observed that the maximum depth of four yielded the highest validation performance, indi-

cating the best trade-off between model complexity and generalization. This depth ensured that

the decision tree achieved an appropriate level of accuracy without overfitting the training data,

striking a balance between capturing intricate patterns and maintaining generalizability.

5.2.2 Second testing scenario

The objective of this test scenario was to identify the optimal combination of prediction and train-

ing periods using the best-performing models from the previous scenario. This study used poly-

nomial and decision tree regressions for furnaces AV2 and AV4, and for furnace AV5, the same

models were tested with the inclusion of the LASSO regression model.

The best-performing models were tested using an iterative process. Each regression model

in this test scenario predicted energy consumption for a predetermined period. The models were

trained using data from the chosen precedent training period, and predictions were made itera-

tively, composing a predefined prediction duration set to six months or one year. Code Section

5.3 shows the iteration performed for each user-specified combination. The prediction period

consisted of intervals of one week, two weeks, one month, and two months, and the training pe-

riod options included one, two, and three months. This resulted in twenty-four combinations of

prediction and training periods that were tested.

1 PRED_PERIOD = 60

2 TRAIN_PERIOD = 90

3 PRED_DURATION = 365

4

5 # Define the specified date
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6 specified_date = datetime.date(2023, 5, 1)

7 # Calculate the start and end dates for prediction

8 prediction_start_date = specified_date - datetime.timedelta(days=PRED_DURATION)

9 prediction_end_date = specified_date + datetime.timedelta(days=1)

10 (...)

11 # # Perform the iterative prediction process

12 while prediction_start_date <= prediction_end_date:

13 # Calculate the start and end dates for training

14 training_start_date = prediction_start_date - pd.DateOffset(days=TRAIN_PERIOD)

15 training_end_date = prediction_start_date

16

17 # Filter the training data for the current prediction week

18 training_data = df[(df[’Date’] >= training_start_date) & (df[’Date’] <=

training_end_date)]

19

20 # Split the data into input and output variables

21 X_train = training_data[["Pull"]]

22 y_train = training_data[["Total_kWh"]]

23 (...)

24 # Increment the prediction week

25 prediction_start_date += pd.DateOffset(PRED_PERIOD+1)

Code Section 5.3: Iteration in Python for obtaining results with a user-specified prediction and

training period combination

This method aimed to capture short-term patterns and fluctuations in energy consumption while

maintaining sufficient training data to enable accurate predictions for an extended duration. As

a result, using the timestamp as an independent variable was no longer necessary. Instead, the

model was constructed solely based on the "pull" variable to predict the absolute consumption

values. By focusing on the pull variable, the model aimed to capture the key factor influencing

energy consumption and generate reliable predictions without needing timestamp information.

To calculate the r2 score, MAE, training RMSE, testing RMSE, and SD, two DataFrames

were created: one to store the training data and another to store the predictions. Code Section 5.4

demonstrates how these metrics were calculated.

1 # Prepare an empty DataFrame to store the training and predictions values

2 training_df = pd.DataFrame(columns=[’Date’, ’y_train’, ’Prediction’])

3 predictions_df = pd.DataFrame(columns=[’Date’, ’Prediction’])

4 (...)

5 # # Perform the iterative prediction process

6 while prediction_start_date <= prediction_end_date:

7 (...)

8 # Make the prediction

9 prediction = model.predict(prediction_data)

10

11 # Store the prediction in the predictions DataFrame
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12 prediction_row = pd.DataFrame({’Date’: pred_dates.squeeze(), ’Prediction’:

prediction.flatten()})

13 predictions_df = pd.concat([predictions_df, prediction_row], ignore_index=True)

14 # Store the training data in the training DataFrame

15 training_row = pd.DataFrame({’Date’: train_dates.squeeze(), ’y_train’: y_train.

values.flatten(), ’Prediction’: (model.predict(X_train)).flatten()})

16 training_df = pd.concat([training_df, training_row], ignore_index=True)

17 training_df = training_df.drop_duplicates()

18 (...)

19 pred_date_range = pd.date_range(predictions_df[’Date’].values[0], predictions_df[’

Date’].values[-1])

20 train_date_range = pd.date_range(training_df[’Date’].values[0], training_df[’Date’

].values[-1])

21 y_true = df[df[’Date’].isin(pred_date_range)][’Total_kWh’]

22

23 # Calculate the R-squared score

24 r2 = r2_score(y_true, predictions_df[’Prediction’])

25 # Calculate root mean absolute error (MAE)

26 mae = mean_absolute_error(y_true, predictions_df[’Prediction’].values)

27 # Calculate root mean square error (RMSE)

28 train_mse = mean_squared_error(training_df[’y_train’].values, training_df[’

Prediction’].values)

29 train_rmse = np.sqrt(train_mse)

30 test_mse = mean_squared_error(y_true, predictions_df[’Prediction’].values)

31 test_rmse = np.sqrt(test_mse)

32 # Calculate standard deviation (SD)

33 sd = np.std(y_true)

Code Section 5.4: Python code for determining metrics for the second test

In the initial trial, the metrics indicated a decline in the performance of the regression models

compared to the previous test. The approach employed utilized the bagging technique to address

this issue and enhance the results of at least one model. As mentioned in Subsection 2.2.1.2, bag-

ging involves training multiple trees on resampled versions of the training data and averaging their

predictions, which aims to mitigate the observed performance challenges. The BaggingRegressor

class from Python’s sklearn library was utilized to implement this technique. This class provided

the necessary functionality to train an ensemble of regression trees on resampled training data and

aggregate their predictions for improved performance. To ensure the reproducibility of the results,

random_state was set to forty-two. Overall, there was a slight improvement in the performance of

the decision tree model after applying the bagging technique.

5.3 Results and evaluation

Table B.3 presents the results from the first test scenario, and Appendix A.5 shows the correspond-

ing graphs. Based on the metrics obtained, it is evident that both polynomial and decision tree re-

gressions generally yield the best results. Although the MAE and RMSE values are not ideal, they
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can be deemed acceptable considering the high magnitude of consumption values. However, the

r2 values are somewhat inconsistent. While some tests resulted in negative r2 scores, others exhib-

ited high values, reaching around 0.8. Notably, AV4 proved to be the furnace that was relatively

easier to predict in terms of consumption and presented the most consistent values.

Tables B.4, B.5, and B.6 present the results from the second test conducted on furnaces AV2,

AV4, and AV5, respectively. It was observed that, in general, the combination of a two-week

prediction period and a three-month training period yielded the best results for all three furnaces.

However, there were some variations in the optimal prediction duration. For AV4, the results were

better when predicting consumption over six months. On the other hand, for AV2 and AV5, the

results improved when the prediction spanned over a one-year duration.

Furthermore, the values for AV2 and AV5 raise concerns regarding their consistency. The SD

should ideally be relatively similar for the polynomial and decision tree models since the metric

depends on the original data, but the SD varies significantly. However, in the case of AV5, which

was also tested with the LASSO model, it is noteworthy that SD results are similar to the SD results

of the polynomial regression. This seems to indicate that the problem may lie in the configuration

of the decision tree regression model. Additionally, it would be expected that the SD values would

be larger for one year compared to six months, as the data range is double the size, i.e., there is a

greater variability of values over a longer time span.

In contrast, AV4 demonstrates results that are logical and coherent. Considering that the same

code was used for all three furnaces, it is plausible that the issue lies within the data itself. A

solution could lie in reviewing the data used for AV2 and AV5 to identify any potential errors,

inconsistencies, or outliers that might be contributing to the peculiar results.

In conclusion, based on the results obtained, the decision tree model with a bagging regres-

sor performs best. The optimal combination of prediction and training periods is found to be

two weeks for the prediction period and three months for the training period. This configuration

yields the most accurate and reliable predictions for the given scenario. This model and parameter

combination will be implemented in the ML prediction tool that was proposed at the start of this

dissertation for utilization at the Avintes plant.



Chapter 6

Conclusions and Future Work

This chapter represents the culmination of this work, presenting the final conclusions derived from

the research questions delineated in Section 1.4 and delving deeper into the results from the tests

presented in Section 5.2, which were designed to address these research questions.

Chapter 6 also includes insights into the work developed in Avintes’s SCADA system and the

final application proposed at the beginning of this dissertation. It explores how these contributions

have enhanced BA’s energy monitoring and management.

The final part of this chapter contains a discussion on future work regarding this dissertation’s

subject and highlights the limitations encountered during its development. It explores potential

directions for further investigation that could have been pursued given more time. Moreover, the

limitations faced during the study are carefully examined to provide a comprehensive understand-

ing of the research’s scope and the constraints that were encountered.

6.1 Discussion

Based on the results presented in Section 5.3, the furnace AV4 demonstrated the most promising

outcomes. Therefore, further exploration of the insights gained from the conducted tests will

primarily focus on AV4.

1. Which ML regression model is the most accurate in predicting furnace consumption
in the glass manufacturing industry?

To address the first research question, which examines the most accurate ML regression model

for predicting furnace consumption in the glass manufacturing industry, the results of the first test

scenario indicate that both polynomial regression combined with GridSearchCV and decision tree

combined with a bagging regressor yield the best outcomes. However, it is worth noting that the

decision tree model tends to overfit the data more than polynomial regression.

Answering the first research question suggests that both models have their advantages and

disadvantages, and the selection should be based on the specific requirements of the study. Linear
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regression models, in general, may not be suitable for this application. Tree-based models exhibit

significant potential, and polynomial regression works best in conjunction with GridSearchCV to

avoid relying on a single value for the degree of polynomial regression. Based on the analysis of

the results, the decision tree model appears to perform better for longer prediction periods, while

polynomial regression yields better results for shorter prediction times. The decision tree model

demonstrates its strength when making predictions over extended periods. It captures complex

patterns and relationships in the data, making it particularly effective for longer-term predictions.

2. What is the optimal combination of training and testing data sizes for predicting con-
sumption?

Based on the insights derived from the second test scenario, it becomes apparent that the mod-

els generally exhibit superior performance when trained on a larger dataset and applied to predict

a shorter period. Specifically, the results indicate that the model’s performance is significantly

compromised if the prediction period is longer than the training time. However, it is crucial to

emphasize that the conventional practice of using a 70% training and 30% testing data split still

holds importance. In developing this prediction tool, it is vital to consider the quantity and quality

of the data collected. Striking the right balance between data quantity and data quality is crucial.

In other words, when making a one-week prediction, it is more beneficial to possess a set of

consistently accurate historical data covering one month rather than having three months’ worth

of inconsistent data. This highlights the significance of reliable and consistent data for achieving

better predictive performance. Striving for a robust and accurate dataset will substantially impact

the model’s performance more than merely increasing the data size.

Moreover, the second test also sheds light on the computational efficiency of the regression

models. The decision tree model demonstrates superior processing time compared to polynomial

regression. Despite a slight compromise in accuracy, the decision tree model completes the two-

week prediction period and three-month training period for a one-year prediction span in only 25

seconds, while polynomial regression requires 106 seconds. As a result, the decision tree model

was chosen for developing the final prediction tool.

The second test provides valuable insights for answering the research question. It highlights

the importance of having sufficient historical data to train the model effectively. Additionally, it

suggests that a shorter prediction period allows the model to make more accurate predictions. Con-

sidering the computational efficiency, the decision tree model outperforms polynomial regression.

This factor plays a crucial role in selecting the final prediction tool, as it ensures faster processing

time while maintaining acceptable accuracy levels.

In conclusion, the insights from the second test scenario indicate that a larger training dataset

and a shorter prediction period enhance model performance. Furthermore, the decision tree model,

with a two-week prediction period and three-month training data, is selected as the final prediction

tool due to its superior computational efficiency and satisfactory accuracy.
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6.1.1 Work Contributions

The goal defined for this dissertation was to assist BA Avintes in its energy monitoring and man-

agement objectives. The dissertation’s focus on improving the SCADA system and maximizing

its potential contributes significantly to BA Avintes.

Throughout the study, notable improvements have been made to Avintes’s SCADA. It has

become more user-friendly, offering options for selecting preferred languages. Additionally, the

system now features automatic generation of reports on gas and solar panel energy consumption.

Finally, adding alarms to detect flow meter malfunctions significantly improves energy monitoring

within the plant. These enhancements to the SCADA allow for more streamlined energy monitor-

ing and management processes.

Moreover, the development of the prediction tool holds great value for energy management at

BA Avintes. This tool enables the assessment of projected energy consumption for the upcoming

week based on the planned glass melting operations. By having insight into the expected energy

requirements, BA Avintes can proactively manage energy resources and make informed decisions

to optimize energy consumption. The results obtained from this prediction tool can be found in

Table B.7 and Figure 6.1, while the corresponding code developed for the tool is provided in

Appendix C.2.

Figure 6.1: Graph result from running AV4’s energy consumption prediction tool
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Overall, the dissertation’s contribution to Avintes’s energy monitoring and management objec-

tives is evident. The improvements to the SCADA system and the development of the prediction

tool provide valuable tools and insights for efficient energy management practices, empowering

BA Avintes to make data-driven decisions, enhance energy efficiency, and effectively achieve its

energy management goals.

6.1.2 Limitations

One of the limitations encountered in the study was the quality of the data. The data contained

numerous inaccuracies and inconsistencies, which posed a significant challenge when filtering and

preprocessing it for analysis. Dealing with such data issues can be time-consuming and affect the

results’ reliability and accuracy.

Another limitation was the lack of strong correlation between certain variables, despite their

practical interdependence. While it is known that variables such as gas and electrical consump-

tion, pull, furnaces’ crown temperatures, cullet, quality of bottles produced, and glass color are

interconnected in practice, the available data did not exhibit enough variability or correlation to

study these relationships comprehensively. This lack of variability is due to operational con-

straints within the factory, as extreme conditions (e.g., very high or very low temperatures, high

cullet percentage) would be structurally unsafe for the furnace or result in poor product quality.

Consequently, data capturing such extreme conditions is limited or absent.

As a result, the prediction tool developed for this study primarily considered a single variable,

which may not fully capture the complex interactions and dependencies between the different

factors influencing energy consumption. While this approach is pragmatic given the limitations of

the available data, it is acknowledged that a more comprehensive understanding of the system’s

dynamics would require considering additional variables.

In summary, the limitations related to data quality, inconsistencies, and the lack of variability in

certain interconnected variables constrained the depth of analysis and the ability to study complex

relationships within the glass manufacturing process. Despite these limitations, the study aimed

to provide useful insights and develop a prediction tool that could aid in energy management to a

reasonable extent based on the available data.

Another limitation encountered during the study was the lack of timely technical support from

Circutor, the company responsible for providing support for the SCADA system or related com-

ponents. This limitation hindered the resolution of certain issues that arose during the implemen-

tation or configuration of the SCADA system.

However, despite this limitation, alternative solutions or workarounds were implemented to

mitigate the impact. For example, in the case of the alarm system, although the desired SMS

notification functionality was not operational, an interim solution was implemented with the use

of an alarm light to alert operators to activated alarms. Such adaptations were made to ensure

that the study could progress and achieve its objectives to the best possible extent, considering the

limitations faced.
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6.2 Future Work

If this study had more time, some additional improvements and integrations could have been im-

plemented. One such enhancement would have been establishing a connection between the pre-

diction tool and the SCADA system, enabling the generation of alarms when the plant’s operations

consumed more energy than predicted. The proposed approach for this integration involved uti-

lizing OPC Router and MQTT1. However, due to the complexity of the connection, it was not

feasible to implement within the study’s timeframe.

Furthermore, further improvements to the SCADA system were desired. Although progress

had been made, particularly in managing variables and the GUI for natural gas, some areas still re-

quired attention. The water-related screens within the SCADA system are inaccurate in reflecting

the system in place at the plant and need further refinement. An issue with the alarms not trig-

gering SMS notifications persisted despite numerous tests. To rectify this, technical support from

Circutor is deemed necessary. In the interim, a solution was implemented wherein an alarm light

would turn on when an alarm was activated. This allowed operators to be aware of the alarm and

refer to the SCADA application to identify the specific alarm and address the issue accordingly.

Given additional time, these improvements and integrations could have been pursued, further

enhancing the functionality and usability of the SCADA system and facilitating better energy

monitoring practices at BA Avintes.

1Message Queuing Telemetry Transport is a remarkably straightforward and lightweight messaging protocol that
facilitates subscription and publication of messages.
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Appendix A

Images

A.1 GUI Improvements (3.1.2)

Figure A.1: Automatic gas report
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(a) Before

(b) After

Figure A.2: Main screen
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(a) Before

(b) After

Figure A.3: Plant’s gas consumption screen
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(a) Before

(b) After

Figure A.4: Production lines’ gas consumption screen
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(a) Before

(b) After

Figure A.5: Furnace AV2 cooling system screen
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A.2 Collected Data vs. Filtered Data

Figure A.6: Comparison of collected and filtered total consumption, pull and specific
consumption data (4.1)



62 Images

A.3 Comparison of Regression Models for Predicting Specific Con-
sumption based on Pull

Figure A.7: Relationship between pull and specific consumption: regression performance
comparison (4.3)
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A.4 Transfer Learning: Comparison of Model Performance with Data
Collected from a Different Furnace

(a) Comparison of performance of AV2’s model trained with AV2 and AV4 data

(b) Comparison of performance of AV4’s model trained with AV2 and AV4 data

Figure A.8: Comparison of performance of one furnace’s model with another furnace’s data for a
one-year interval (4.4)
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(a) Comparison of performance of AV2’s model trained with AV2 and AV4 data

(b) Comparison of performance of AV4’s model trained with AV2 and AV4 data

Figure A.9: Comparison of performance of one furnace’s model with another furnace’s data for a
one-month interval (4.4)
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A.5 First Test Scenario Results

Figure A.10: Regression models performance (5.3)
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Table B.3: Metrics obtained for various regression models for each furnace (5.3)



Tables 71

Ta
bl

e
B

.4
:A

V
2’

s
re

su
lts

ob
ta

in
ed

fr
om

th
e

se
co

nd
te

st
sc

en
ar

io
(5

.3
)



72 Tables

Table
B

.5:AV
4’s

results
obtained

from
the

second
testscenario

(5.3)



Tables 73

Ta
bl

e
B

.6
:A

V
5’

s
re

su
lts

ob
ta

in
ed

fr
om

th
e

se
co

nd
te

st
sc

en
ar

io
(5

.3
)



74 Tables

Table
B
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esults

from
the

finalapplication
(6.1)

D
ate

Planned
Pull(kg)

G
as
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B

oosting
(kcal/kg)

Total(kcal/kg)
G

as
(N

m
³)

G
as

(C
)

B
oosting

(kW
h)

E
lectricity

(C
)

2023-06-18
231317.28

769.963643
161.556240

931.519883
19597.233734

222.531219
43454.360419

4345.436042
2023-06-19

231317.28
769.963643

161.556240
931.519883

19597.233734
222.531219

43454.360419
4345.436042

2023-06-20
231317.28

769.963643
161.556240

931.519883
19597.233734

222.531219
43454.360419

4345.436042
2023-06-21

231317.28
769.963643

161.556240
931.519883

19597.233734
222.531219

43454.360419
4345.436042

2023-06-22
231317.28

769.963643
161.556240

931.519883
19597.233734

222.531219
43454.360419

4345.436042
2023-06-23

231317.28
769.963643

161.556240
931.519883

19597.233734
222.531219

43454.360419
4345.436042

2023-06-24
231317.28

769.963643
161.556240

931.519883
19597.233734

222.531219
43454.360419

4345.436042
2023-06-25

231317.28
769.963643

161.556240
931.519883

19597.233734
222.531219

43454.360419
4345.436042

2023-06-26
231317.28

769.963643
161.556240

931.519883
19597.233734

222.531219
43454.360419

4345.436042
2023-06-27

231317.28
769.963643

161.556240
931.519883

19597.233734
222.531219

43454.360419
4345.436042

2023-06-28
231317.28

769.963643
161.556240

931.519883
19597.233734

222.531219
43454.360419

4345.436042
2023-06-29

229560.48
779.878936

165.111962
944.916884

19696.976796
223.663825

44168.466578
4407.346658

2023-06-30
229560.48

779.804922
165.111962

944.916884
19696.976796

223.663825
44168.466578

4407.346658
2023-07-01

229560.48
779.804922

165.111962
944.916884

19696.976796
223.663825

44168.466578
4407.346658

2023-07-02
229560.48

779.804922
165.111962

944.916884
19696.976796

223.663825
44073.466578

4407.346658



Appendix C

Code

C.1 C# Script for Detection of Flow Meter Malfunctions (3.2)

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using inray.OPCRouter.ScriptPlugIn.Shared;

5 using inray.OPCRouter.ScriptPlugIn.Runtime;

6 using inray.OPCRouter.ScriptPlugIn.Runtime.TransferObject;

7

8 namespace OPCRouter.Script

9 {

10 public class Threshold_20 : ScriptTransferObjectBase

11 {

12 public double previousValue;

13 private const double ThresholdPercentage = 0.2;

14

15 /// Method is being called after another transfer object

16 /// wrote values to this transfer object

17 public override void Write()

18 {

19 // Calculate the threshold value

20 double thresholdValue = previousValue * ThresholdPercentage;

21 // Compare the absolute difference to the threshold value

22 if (Math.Abs(previousValue - currentValue) > thresholdValue)

23 { // If the difference is over the threshold

24 previousValue = currentValue;

25 alarm = true;

26 }

27 else { // If the difference is below or equal to the threshold

28 alarm = false;

29 }

30 }

31 }

32 }
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C.2 Final Application (6.1)

1 import datetime

2 import pandas as pd

3 import matplotlib.pyplot as plt

4

5 from sklearn.tree import DecisionTreeRegressor

6 from sklearn.model_selection import GridSearchCV

7 from sklearn.ensemble import BaggingRegressor

8

9 GAS_kWhEur = 0.12

10 ELE_kWhEur = 0.10

11

12 cutoff_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=180))

13

14 # Save resgistos_auto data to a dataframe

15 reg_data = pd.read_excel(r"L:\Energia\Registos consumos_auto_1.xlsx",

16 skiprows=1, sheet_name=’INPUT’, parse_dates=[’Dia’])

17 reg_data = reg_data.loc[reg_data[’Dia’] >= cutoff_date]

18 reg_data = reg_data.loc[:,[’Dia’,’ Forno 4’,’Kwh.1’,’Nm3.1’,’kWh/m3’]]

19 reg_data = reg_data.rename(columns=lambda x: x.strip())

20 reg_data = reg_data.rename(

21 columns={

22 ’Dia’: ’Date’,

23 ’Forno 4’: ’Pull’,

24 ’Kwh.1’: ’Boosting’,

25 ’Nm3.1’: ’Gas’,

26 ’kWh/m3’: ’REN’

27 }

28 )

29 reg_data = reg_data.dropna()

30

31 reg_data[’Gas_kcal/kg’]=reg_data[’Gas’]*reg_data[’REN’]*860/reg_data[’Pull’]

32 reg_data[’Boosting_kcal/kg’]=reg_data[’Boosting’]*860/reg_data[’Pull’]

33 reg_data[’Total_kcal/kg’]=reg_data[’Boosting_kcal/kg’]+reg_data[’Gas_kcal/kg’]

34

35 # Filter data

36 for i in range(1, len(reg_data)):

37 current_value = reg_data.iloc[i, reg_data.columns.get_loc(’Pull’)]

38 previous_value = reg_data.iloc[i - 1, reg_data.columns.get_loc(’Pull’)]

39 if abs(current_value - previous_value) > 0.08 * previous_value:

40 reg_data.iloc[i,reg_data.columns.get_loc(’Pull’)] = reg_data[’Pull’].mean()

41 reg_data.iloc[i,reg_data.columns.get_loc(’Gas_kcal/kg’)] = reg_data[’

Gas_kcal/kg’].mean()

42 reg_data.iloc[i, reg_data.columns.get_loc(’Boosting_kcal/kg’)] = reg_data[’

Boosting_kcal/kg’].mean()

43 current_value = reg_data.iloc[i,reg_data.columns.get_loc(’Total_kcal/kg’)]

44 previous_value = reg_data.iloc[i - 1,reg_data.columns.get_loc(’Total_kcal/kg’)]

45 if abs(current_value - previous_value) > 0.023 * previous_value:



C.2 Final Application (6.1) 77

46 reg_data.iloc[i,reg_data.columns.get_loc(’Total_kcal/kg’)] = reg_data[’

Total_kcal/kg’].mean()

47 reg_data.iloc[i,reg_data.columns.get_loc(’Gas_kcal/kg’)] = reg_data[’

Gas_kcal/kg’].mean()

48 reg_data.iloc[i,reg_data.columns.get_loc(’Boosting_kcal/kg’)] = reg_data[’

Boosting_kcal/kg’].mean()

49

50 # Save planned pull data to a dataframe

51 pull_data = pd.read_excel(r"C:\Users\rmponte\Desktop\Tiragens.xlsx", skiprows=1,

sheet_name=’AV4’)

52 pull_data = pull_data.loc[:,[’Date’,’Tir.3’]]

53 pull_data = pull_data.rename(columns={’Tir.3’: ’Pull’})

54 pull_data = pull_data.dropna()

55 pull_data[’Pull’] = pull_data[’Pull’]*1000

56

57 days_to_subtract = (datetime.date.today().weekday()+2) % 7 # get date from sunday

to sunday

58

59 # Define the specified date

60 date = datetime.date.today() - datetime.timedelta(days=days_to_subtract)

61

62 # Define the start and end dates

63 pred_start_date = date + datetime.timedelta(days=1)

64 pred_end_date = pred_start_date + datetime.timedelta(days=14)

65

66 # Prepare an empty DataFrame to store the predictions

67 pred_gas = pd.DataFrame(columns=[’Date’, ’Prediction’])

68 pred_ele = pd.DataFrame(columns=[’Date’, ’Prediction’])

69

70 # Convert prediction dates to datetime objects

71 pred_start_date = pd.to_datetime(pred_start_date)

72 pred_end_date = pd.to_datetime(pred_end_date)

73 date_range = pd.date_range(start=pred_start_date, end=pred_end_date)

74

75 # Prepare the prediction data for the current week

76 planned_pull = pull_data[pull_data[’Date’].isin(date_range)]

77

78 # Filter the training data for the current prediction week

79 training_data = reg_data[(reg_data[’Date’] >= pred_start_date - pd.DateOffset(days

=90)) & (reg_data[’Date’] < pred_start_date)]

80

81 # Split the data into input and output variables

82 X_train = training_data[[’Pull’]]

83 y_train_gas = training_data[[’Gas_kcal/kg’]]

84 y_train_ele = training_data[[’Boosting_kcal/kg’]]

85

86 # Create the Decision Tree Regressors

87 base_model_gas = DecisionTreeRegressor(max_depth=4)

88 base_model_ele = DecisionTreeRegressor(max_depth=4)
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89 # Define the BaggingRegressor

90 bag_gas = BaggingRegressor(estimator=base_model_gas, random_state=42)

91 bag_ele = BaggingRegressor(estimator=base_model_ele, random_state=42)

92 # Define the hyperparameters to search over

93 param_grid = {’n_estimators’: [10, 20, 30]}

94 # Create the grid search object

95 grid_gas = GridSearchCV(estimator=bag_gas, param_grid=param_grid, cv=5, scoring=’

neg_mean_squared_error’)

96 grid_ele = GridSearchCV(estimator=bag_ele, param_grid=param_grid, cv=5, scoring=’

neg_mean_squared_error’)

97 # Fit it to the data

98 grid_gas.fit(X_train, y_train_gas.values.ravel())

99 grid_ele.fit(X_train, y_train_ele.values.ravel())

100 # Get the best estimator

101 model_gas = grid_gas.best_estimator_

102 model_ele = grid_ele.best_estimator_

103 # Train the model with the best estimator

104 model_gas.fit(X_train, y_train_gas.values.ravel())

105 model_ele.fit(X_train, y_train_ele.values.ravel())

106

107 pred_gas = model_gas.predict(planned_pull[[’Pull’]])

108 pred_ele = model_ele.predict(planned_pull[[’Pull’]])

109

110 # Store the prediction in the predictions DataFrame

111 pred_gas = pd.DataFrame({’Date’: pull_data[pull_data[’Date’].isin(date_range)][’

Date’], ’Prediction’: pred_gas.flatten()})

112 pred_ele = pd.DataFrame({’Date’: pull_data[pull_data[’Date’].isin(date_range)][’

Date’], ’Prediction’: pred_ele.flatten()})

113

114 results = pd.DataFrame(columns=[’Date’, ’Planned Pull (kg)’, ’Gas (kcal/kg)’, ’

Boosting (kcal/kg)’])

115

116 results = pd.DataFrame({’Date’: pull_data[pull_data[’Date’].isin(date_range)][’Date

’], ’Planned Pull (kg)’: pull_data[pull_data[’Date’].isin(date_range)][’Pull’],

’Gas (kcal/kg)’: pred_gas[’Prediction’], ’Boosting (kcal/kg)’: pred_ele[’

Prediction’]})

117

118 results[’Total (kcal/kg)’]=results[’Gas (kcal/kg)’] +results[’Boosting (kcal/kg)’]

119 results[’Gas (Nm^3)’]=results[’Gas (kcal/kg)’]*results[’Planned Pull (kg)’]/(

reg_data[’REN’].mean()*860)

120 results[’Gas expense (Eur)’]=results[’Gas (Nm^3)’]/reg_data[’REN’].mean()*

GAS_kWhEur

121 results[’Boosting (kWh)’]=results[’Boosting (kcal/kg)’] *results[’Planned Pull (kg)

’]/860

122 results[’Electricity expense (Eur)’]=results[’Boosting (kWh)’]*ELE_kWhEur

123

124 # Calculate standard deviations

125 a = reg_data[’Gas_kcal/kg’].std()/reg_data[’Gas_kcal/kg’].mean()

126 b = reg_data[’Boosting_kcal/kg’].std()/reg_data[’Boosting_kcal/kg’].mean()
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127 c = reg_data[’Total_kcal/kg’].std()/reg_data[’Total_kcal/kg’].mean()

128

129 display_range = pd.date_range(start=datetime.date.today()-pd.DateOffset(days=30),

end=datetime.date.today())

130

131 # Display the predictions

132 print(results)

133

134 fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True, figsize=(10, 14))

135 ax1.plot(reg_data[reg_data[’Date’].isin(display_range)][’Date’],

136 reg_data[reg_data[’Date’].isin(display_range)][’Gas_kcal/kg’], label=’

Previous Data’)

137 ax1.plot(results[’Date’], results[’Gas (kcal/kg)’], label=’Prediction’)

138 ax1.fill_between(results[’Date’], (1+a)*results[’Gas (kcal/kg)’],

139 (1-a)*results[’Gas (kcal/kg)’], color=’orange’, alpha=0.3)

140 ax1.set_ylabel(’Gas Consumption (kcal/kg)’, fontsize=14)

141 ax1.tick_params(axis=’both’, which=’major’, labelsize=12)

142 ax1.legend(fontsize=14)

143 ax1.grid()

144

145 ax2.plot(reg_data[reg_data[’Date’].isin(display_range)][’Date’],

146 reg_data[reg_data[’Date’].isin(display_range)][’Boosting_kcal/kg’], label=

’Previous Data’)

147 ax2.plot(results[’Date’], results[’Boosting (kcal/kg)’], label=’Prediction’)

148 ax2.fill_between(results[’Date’], (1+b)*results[’Boosting (kcal/kg)’],

149 (1-b)*results[’Boosting (kcal/kg)’], color=’orange’, alpha=0.3)

150 ax2.set_ylabel(’Boosting Consumption (kcal/kg)’, fontsize=14)

151 ax2.tick_params(axis=’both’, which=’major’, labelsize=12)

152 ax2.legend(fontsize=14)

153 ax2.grid()

154

155 ax3.plot(reg_data[reg_data[’Date’].isin(display_range)][’Date’],

156 reg_data[reg_data[’Date’].isin(display_range)][’Total_kcal/kg’], label=’

Previous Data’)

157 ax3.plot(results[’Date’], results[’Total (kcal/kg)’], label=’Prediction’)

158 ax3.fill_between(results[’Date’], (1+c)*results[’Total (kcal/kg)’],

159 (1-c)*results[’Total (kcal/kg)’], color=’orange’, alpha=0.3)

160 ax3.set_xlabel(’Date’, fontsize=14)

161 ax3.set_ylabel(’Total Consumption (kcal/kg)’, fontsize=14)

162 ax3.tick_params(axis=’both’, which=’major’, labelsize=12)

163 ax3.legend(fontsize=14)

164 ax3.grid()

165 plt.tight_layout()

166 plt.show()
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