3,347 research outputs found

    Problems of sensor placement for intelligent environments of robotic testbeds

    Full text link
    In this paper, we consider problems of sensor placement for intelligent environments of robotic testbeds. In particular, we consider the problem of sensor placement and the problem of sensor placement for triangulation based localization. We present experimental results for these problems. Also, we use artificial physics optimization algorithms for solution of the problem of sensor placement. We consider artificial physics optimization for different virtual forces. In particular, we use Runge Kutta neural networks for the calculation of values of virtual forces. © 2013 Andrey Sheka

    Self-organizing maps versus growing neural Gas in detecting anomalies in data centers

    Get PDF
    Reliability is one of the key performance factors in data centres. The out-of-scale energy costs of these facilities lead data centre operators to increase the ambient temperature of the data room to decrease cooling costs. However, increasing ambient temperature reduces the safety margins and can result in a higher number of anomalous events. Anomalies in the data centre need to be detected as soon as possible to optimize cooling efficiency and mitigate the harmful effects over servers. This article proposes the usage of clustering-based outlier detection techniques coupled with a trust and reputation system engine to detect anomalies in data centres. We show how self-organizing maps or growing neural gas can be applied to detect cooling and workload anomalies, respectively, in a real data centre scenario with very good detection and isolation rates, in a way that is robust to the malfunction of the sensors that gather server and environmental information

    Design and Evaluation of Distributed Algorithms for Placement of Network Services

    Get PDF
    Network services play an important role in the Internet today. They serve as data caches for websites, servers for multiplayer games and relay nodes for Voice over IP: VoIP) conversations. While much research has focused on the design of such services, little attention has been focused on their actual placement. This placement can impact the quality of the service, especially if low latency is a requirement. These services can be located on nodes in the network itself, making these nodes supernodes. Typically supernodes are selected in either a proprietary or ad hoc fashion, where a study of this placement is either unavailable or unnecessary. Previous research dealt with the only pieces of the problem, such as finding the location of caches for a static topology, or selecting better routes for relays in VoIP. However, a comprehensive solution is needed for dynamic applications such as multiplayer games or P2P VoIP services. These applications adapt quickly and need solutions based on the immediate demands of the network. In this thesis we develop distributed algorithms to assign nodes the role of a supernode. This research first builds off of prior work by modifying an existing assignment algorithm and implementing it in a distributed system called Supernode Placement in Overlay Topologies: SPOT). New algorithms are developed to assign nodes the supernode role. These algorithms are then evaluated in SPOT to demonstrate improved SN assignment and scalability. Through a series of simulation, emulation, and experimentation insight is gained into the critical issues associated with allocating resources to perform the role of supernodes. Our contributions include distributed algorithms to assign nodes as supernodes, an open source fully functional distributed supernode allocation system, an evaluation of the system in diverse networking environments, and a simulator called SPOTsim which demonstrates the scalability of the system to thousands of nodes. An example of an application deploying such a system is also presented along with the empirical results

    Improving Data Center Energy Efficiency Using a Cyber-physical Systems Approach: Integration of Building Information Modeling and Wireless Sensor Networks

    Get PDF
    AbstractThe increase in data center operating costs is driving innovation to improve their energy efficiency. Previous research has investigated computational and physical control intervention strategies to alleviate the competition between energy consumption and thermal performance in data center operation. This study contributes to the body of knowledge by proposing a cyber-physical systems (CPS) approach to innovatively integrate building information modeling (BIM) and wireless sensor networks (WSN). In the proposed framework, wireless sensors are deployed strategically to monitor thermal performance parameters in response to runtime server load distribution. Sensor data are collected and contextualized in reference to the building information model that captures the geometric and functional characteristics of the data center, which will be used as inputs of continuous simulations aiming to predict real-time thermal performance of server working environment. Comparing the simulation results against historical performance data via machine learning and data mining, facility managers can quickly pinpoint thermal hot zones and actuate intervention procedures to improve energy efficiency. This BIM-WSN integration also facilitates smarter power management by capping runtime power demand within peak power capacity of data centers and alerting power outage emergencies. This paper lays out the BIM-WSN integration framework, explains the working mechanism, and discusses the feasibility of implementation in future work

    Wireless Sensor Networks for Condition Monitoring in the Railway Industry : a Survey

    Get PDF
    In recent years, the range of sensing technologies has expanded rapidly, whereas sensor devices have become cheaper. This has led to a rapid expansion in condition monitoring of systems, structures, vehicles, and machinery using sensors. Key factors are the recent advances in networking technologies such as wireless communication and mobile adhoc networking coupled with the technology to integrate devices. Wireless sensor networks (WSNs) can be used for monitoring the railway infrastructure such as bridges, rail tracks, track beds, and track equipment along with vehicle health monitoring such as chassis, bogies, wheels, and wagons. Condition monitoring reduces human inspection requirements through automated monitoring, reduces maintenance through detecting faults before they escalate, and improves safety and reliability. This is vital for the development, upgrading, and expansion of railway networks. This paper surveys these wireless sensors network technology for monitoring in the railway industry for analyzing systems, structures, vehicles, and machinery. This paper focuses on practical engineering solutions, principally,which sensor devices are used and what they are used for; and the identification of sensor configurations and network topologies. It identifies their respective motivations and distinguishes their advantages and disadvantages in a comparative review
    corecore