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Abstract. Reliability is one of the key performance factors in Data Centers. The 
out-of-scale energy costs of these facilities lead Data Center operators to 
increase the ambient temperature of the data room to decrease cooling costs. 
However, increasing ambient temperature reduces the safety margins and can 
result in a higher number of anomalous events. Anomalies in the Data Center 
need to be detected as soon as possible to optimize cooling efficiency and 
mitigate the harmful effects over servers. This paper proposes the usage of 
clustering-based outlier detection techniques coupled with a Trust and 
Reputation System (TRS) engine to detect anomalies in Data Centers. We show 
how SOM and GNG can be applied to detect cooling and workload anomalies 
respectively in a real Data Center scenario with very good detection and 
isolation rates, in a way that is robust to the malfunction of the sensors that 
gather server and environmental information. 
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1 Introduction 

During the last few years, there has been a rapid increase in the number of data 
center facilities over the world. Data Centers provide the required infrastructure for a 
wide range of traditional applications (social and business networking, Webmail, Web 
search, etc.) as well as new-generation applications such as e-Health or Smart Cities. 
Advances in the underlying manufacturing process and hardware design technologies 
have continuously made possible the constant increase in computing capacities. 
However, the increase in computational capabilities has not come for free. These 
facilities consume huge amounts of electrical power, accounting for 2% of the total 
USA energy budget [1]. They also generate a tremendous amount of heat that has to 
be extracted to ensure the reliable operation of server and other computational (IT) 
equipment. The energy consumption needed to cool down servers accounts for around 
30% of the total energy cost of the infrastructure [2]. Even though increasing the Data 
Center room temperature has proven to be a way to save cooling energy, there are 
some important concerns regarding reliability, which is one of the key performance 



factors in Data Centers. The American Association of Heating and Cooling 
(ASHRAE) describes that the inlet temperature of servers should be kept below 30°C 
to avoid CPU redlining [3]. Failures in either the room or the server cooling systems 
could lead to reliability issues that would reduce the Mean Time To Failure (MTTF) 
of IT equipment [4]. Temperature anomalies in the Data Center, as well as any other 
type of anomaly that might affect the reliable behavior of IT equipment, need to be 
detected as soon as possible to mitigate the harmful effects. 

To this end, this paper proposes the usage of clustering-based outlier detection 
techniques coupled with a Trust and Reputation System (TRS) engine to detect 
anomalies in Data Centers. In our previous work [5] we have demonstrated that 
clustering-based outlier detection approaches offer numerous advantages for detecting 
insider attacks, such as high adaptability, flexibility, possibility to detect unknown 
attacks, no restrictions on training data, etc. Data center anomalies exhibit a similar 
behavior, making clustering techniques a good candidate for their detection. 

Within the scope of clustering-based approaches, we encounter different 
deployment possibilities: i) k-means or k-Nearest Neighbour (k-NN) techniques, or ii) 
topology-preserving competitive methods, such as Self-organizing maps (SOM) or 
Growing Neural Gas (GNG). Topology preserving techniques are very convenient for 
our application scenario, since one of the main parameters that reveal the presence of 
outliers is the average distance of a cluster to its closest neighbors. 

The main contributions of this paper can be summarized as follows: 
• We show an exhaustive analysis on the taxonomy of anomalies in Data 

Centers and the information sources used to detect and isolate them. 
• We present a Trust and Reputation System (TRS) coupled with topology-

preserving clustering algorithms to detect and isolate anomalies related to 
data room cooling failures, server workload anomalies and anomalies 
related to the data room monitoring infrastructure. 

• We validate our results with data gathered in a real Data Center room with 
heterogeneous servers. Our experimental setup allows runtime monitoring 
of the facility, as well as the controllable generation of anomalies. 

The remainder of the paper is organized as follows: Section 2 describes the related 
work on the area. Section 3 describes the taxonomy of anomalies and information 
sources, whereas Section 4 describes the Trust and Reputation environment and the 
clustering algorithms used in this scenario. Experimental results are shown in Section 
5. Finally, the most important conclusions are drawn in Section 6. 

2 Previous Work 

Next-generation applications, such as the ones found in Smart Cities, e-Health, 
Ambient Intelligence or Weather analysis, require constantly increasing high 
computational demands that can only be provided in Data Centers [6,7]. Several 
techniques to reduce energy consumption in Data Centers are based on increasing the 
supply temperature of air conditioning units to reduce cooling costs. However, 
increasing the inlet temperature of servers has some drawbacks. A report by the 
Uptime Institute [8] showed that for every 10°C degrees of temperature in excess of 



21°C in the inlet temperature of servers, long-term reliability could be reduced by 
50%. Even though recent research [9] shows that the effect of high temperatures on 
reliability is smaller than what had been assumed, as the ambient temperature 
increases the safety margin for the server thermal shutdown is decreased. 

Moreover, the temperature distribution in a Data Center is not uniform and tends to 
have hot spots, which are areas significantly hotter than the average. To prevent 
server thermal shutdown, the highest CPU temperature limits the maximum Computer 
Room Air Conditioning (CRAC) air-supply temperature. Thus, it is important to be 
able to detect and localize any anomaly taking place at the Data Center. Anomalies 
can be due to failures in the cooling system, in the servers, or misbehaviors in the 
workload assignment, that affect the thermal conditions of the server and room. 

There is much research in the area of anomaly detection in Data Centers. Some 
approaches try to model and estimate the temperature conditions with Computational 
Fluid Dynamics (CFD) simulations [10]. CFD is time and cost expensive, and results 
are not robust to changes in the Data Center. Other works use regression models with 
historic data [11] or threshold-based anomaly detection [12]. All the previous 
techniques rely on considering static Data Center layouts. However, data center 
environments are subjected to constant changes in the placement of servers and racks. 

Learning and training techniques based on fuzzy control have been previously used 
by Sedaño et.al.[13] for temperature control in buildings to maximize energy 
efficiency. For the particular case of Data Centers, machine learning approaches 
based on Neural Networks (NN) aim to find relationships between the thermal 
features. Other works use Self-Organizing Maps (SOM) [14] but only to discover 
network attacks in the Data Center, not as a methodology for anomaly detection. 

In this paper we leverage the usage of topology-preserving clustering algorithms 
such as SOM or Growing Neural Gas (GNG) to detect and isolate anomalies. The 
most similar work to ours is the research by Yuan et.al. [15]. The authors propose the 
usage of a hierarchical neural network to detect temperature anomalies both at the 
server level and at the data center level. As opposed to ours, they do not show a 
complete taxonomy of anomalies, and do not provide metrics such as detection time 
or isolation capacity. 

3 Decomposing Anomalies in Data Centers 

3.1. Taxonomy of anomalies 

Thermal anomalies are not the only ones having a relevant impact in the behavior of 
the overall data room. In general, we can classify anomalies according to their cause 
in the following taxonomies: 

• Data room cooling: caused by failures in the cooling equipment of the data 
room. Their impact depends on the number of CRAC units failing and the 
nature of the failure. 

• Server level: refers to failures in the electronic components of the servers. The 
effect is local to the server (i.e. thermal redlining in the CPUs). However, local 
effects can also have an impact on the room dynamics. 



• Workload execution: workload is allocated to the computing nodes via a 
resource manager. Failures can be understood as tasks assigned to a certain 
computing node that aborted or did not complete properly. Their effect is local 
to a server but can be extended to the nodes absorbing the unattended demand, 
which might become potential hot spots. 

• Information sources: caused by failures in the environmental or in-server 
sensors used to gather information to detect anomalies. Malfunction can come 
because of battery-powered sensors running out of power, environmental 
sensors being moved by data center operators, server sensors providing 
random incorrect values, etc. 

A last taxonomy would be attacks on the information or networks of the data center. 
The scope of these attacks can be very broad, but they are generally related to gaining 
access to the computing nodes to retrieve sensitive information. The aim of this work 
is not to detect anomalies due to foreigner attacks on the data center, which falls 
under the area of security, but to discover anomalies inherent to the data center. 

3.2 Taxonomy of information sources 

Current Data Centers are constantly monitored by a large number of sensors to enable 
overall IT and cooling management. Generally speaking, the information gathered in 
the data center can be classified as follows: 

• Environmental sensors retrieve relevant thermal characteristics of the data 
room. In a real-life scenario, these sensors are: i) temperature sensors to 
measure the inlet and outlet of servers, ii) data room relative humidity sensors, 
iii) differential pressure sensors for raised-floor air-cooled data centers and iv) 
CRAC air supply temperature sensors. 

• Integrated server sensors: these sensors are embedded in the electronics of the 
servers during their manufacture, and can be polled without performance 
overhead. The most relevant sensors are: i) CPU, memory and ambient 
temperature, ii) fan speed sensors and iii) server power consumption sensors. 

• Server workload information: this information is obtained directly through the 
OS of the server (e.g. CPU and memory utilization, disk accesses, etc.). 

• Workload allocation: the resource manager provides information about the 
particular workload allocation to each node, i.e. number of tasks assigned, 
wallclock execution time, start and end time, etc. 

4. Clustering algorithms coupled with Trust and Reputation 
Systems 

Most of the anomalies that take place at the Data center have a direct impact on the 
thermal behavior of the data room. To apply SOM or GNG clustering techniques we 
assume the anomalies demonstrate themselves as spatial and temporal inconsistencies, 
no matter what their source is. The explanation on the next subsections applies both 



for SOM and GNG, as both algorithms follow the same standard steps. They only 
differ in the fact that the size of SOM is fixed from the start, whereas the size of GNG 
grows during the training. Fixed size can be a limitation, as it might not possible to 
know the optimal number of clusters from the start, leading GNG to perform better in 
some scenarios where SOM does not obtain adequate detection and isolation rates. 
Due to space reasons, the reader is referred to [17] and [18] for a deeper explanation 
on the SOM and GNG techniques used in this paper. 

4.1 Feature Extraction and Model Formation 

Following the idea of temporal inconsistency in the presence of anomalies, we 
provide the data model that captures these properties and allows us to deploy machine 
learning. For the case of sensed values, we follow the idea presented in our previous 
work [19] based on extracting n-grams and their frequencies within different time 
windows. We give a short example for a boolean sensor. Let the sensor give the 
following output during the time window of size 20: 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 
0 0. If we fix the n-gram size on 3, we extract all the sequences of size 3 each time 
moving one position forward. In this way we can observe the following sequences 
and the number of their occurrences within the time window: 111 - occurs 6 times, 
110 - 2, 100 - 2, 000 - 6, 001 - 1, 011 - 1. Thus, we can assign them the following 
sequences: 111 -0.33, 110-0.11, 100 - 0.11, 000 - 0.33, 001 - 0.05, 011 - 0.05. In our 
model, the sequences are the features and their frequencies are the corresponding 
feature values. This characterization is performed in predefined time instants and 
takes an established amount of previous data, e.g. we can perform the characterization 
every 20 time periods based on previous 40 values. 

As the extracted feature vectors are not of the same size, we calculate the distance 
function using the approach presented in [20], which calculates distance between 
sequences. The same solution is applied to a continuous magnitude by normalizing 
the values to a fixed range (e.g. from 0 to 5) and quantifying the sensor values to 
reduce the amount of n-grams without losing relevant information. 

4.2. Anomaly Detection 

Our goal is to detect unknown behaviors which have not been seen during the 
training phase, thus, we aim to detect outlying data that belongs to non-outlying 
clusters. For this reason, we calculate the quantization error (QE) of each input as the 
distance from its group center. The deployed distance function [20] is equivalent to 
Manhattan distance after making the following assumption: a feature that does not 
exist in the first vector while exists in the second (and vice versa) actually exists but 
occurs with 0 frequency. In this way, we get two vectors of the same size and the 
distance between the centre and an input is between 0 (when they are formed of the 
same features with the same feature values) and 2 (when the features with the values 
greater than 0 are completely different). Similarly, if the set of the features of one is 
the subset of the feature set of the other, the distance is between 0 and 1. 



During the testing, n-grams not seen in the training appear when a sensor starts 
providing data significantly different than before. When this happens, the distance 
(i.e., the QE value), between the n-gram and its corresponding centre is greater than 1, 
showing evidence of abnormal behavior in the sensor or the data room. 

Sensors are arranged in areas according to the events they report information 
about. All sensors providing information about the same observation (e.g. a thermal 
anomaly in a certain rack or room area), are assigned to the same area. The sensors in 
each area are examined by one or more independent agents. Agents are trained 
separately and execute the clustering algorithms. The system of agents is coupled with 
a reputation system where each sensor has its reputation. 

For our purpose, the reputation value of the sensors is used in two different ways: 
i) individual sensor reputation reflects the level of confidence that other sensors have 
in this sensor, and is used to detect sensor malfunctioning. On the other hand, ii) area-
wide reputation is calculated as the average reputation value for a specific area, and 
reflects the real anomalies occurring in the Data Center (e.g. CRAC malfunctioning). 

The individual reputation of each node (rep) is calculated as follows: 

if(QE < 1) rep = 1; else rep = 1 - QE/2; 

Depending on whether the current reputation is below or above the established 
threshold reputation is updated in a different way. If the current reputation is above 
the threshold and the node starts behaving suspiciously, its reputation falls quickly. 
However, recovering from lower reputation takes more time, as the node has to 
redeem itself. The reputation update can be described in the following way: 

if (last_reputation[node] > threshold) 
new reputationfnode] = last reputationfnode] + 0.8*(rep + log(1.5*rep)); 

else 
new reputationfnode] = lastreputationfnode] + 0.05*(rep+log(1.5*rep)); 

5. Experimental Results 

5.1. Experimental setup 

In this section we show the experimental methodology used for the experiments 
performed in this paper. All data has been collected from a data room belonging to the 
research group. For the purpose of this paper, we restrict our experiments to the 
enterprise servers in one rack. The rack contains two types of servers, different in 
terms of architecture and power consumption: i) SunFire V20z with 2 Dual-Core 
AMD Opteron CPU and 4GB of RAM and ii) Fujitsu RX300-S6 servers with 1 Quad-
Core Intel Xeon processor and 16GB of RAM. The servers are arranged in three 
different partitions: i) one containing all intel servers, ii) one containing one half of 
the AMD servers and iii) a last one containing the other half of AMD servers. 

All servers execute a controllable workload consisting on different tasks of the 
SPEC CPU 2006 benchmark [21], each requiring a different amount of CPU cores, 



arriving with a Poisson statistical distribution. The workload is assigned via the 
SLURM resource manager [22] that distributes workload across partitions. Thus, each 
partition exhibits its own workload profile. A Wireless Sensor Network (WSN) 
developed by the research group is deployed in the Data Center to measure the inlet 
and outlet temperature of all servers as well as per-server power consumption. 
Internal server sensors are collected via the Intelligent Platform Management 
Interface (IPMI) tool that enables us to obtain, for each server: CPU, memory and 
server ambient temperature, and average fan speed. 

Our experimental setup allows full controllability on the data room environmental 
conditions, as well as on the workload execution, enabling the generation of normal 
and abnormal training and test sets, in a fully controlled way. In particular, we 
generate different conditions in the Data centers that lead to two different anomalies: 

• Anomalies in the data room cooling due to a CRAC fan failures 
• Anomalies in the workload execution. 

Moreover, these anomalies take place together with anomalies in the sensing 
infrastructure of the Data Center, i.e. malfunctioning sensors. Anomalies are detected 
with a Trust and Reputation System Engine, called Trustware-Engine, developed by 
our research group and implemented using the C++ programming language. 

The next subsections describe how each type of anomaly is generated, which are 
the information sources needed to detect and isolate them, and how random sensor 
failures can be detected within this scope. To systematize this analysis, we provide 
results on detection ratios, detection time, and isolation time. 

5.2 Anomalies in the data room cooling 

In our experimental setup, during the normal operation of the air conditioner, the 
inlet temperature of the servers varies between 16°C to 23°C. CRAC anomalies can be 
generated by suddenly turning off the air conditioning unit for a certain time. 

For these experiments, we simulate a CRAC failure in a real raised-floor air-cooled 
real Data Center environment composed of three racks (RO, Rl, R2) with servers at 
three heights (HO, HI, H2) that are cooled via 2 CRAC units. Figure la shows the 
simulated rack and CRAC distribution in the data room, and the failing CRAC unit, 
whereas Figure lb shows the inlet and ambient temperature sensor for a server in the 
middle height (HI) in all three racks. 
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Fig: 1. CRAC failure simulated environment and server inlet temperature data 

The information provided by inlet and ambient temperature sensors of servers at 
the same rack and height is highly correlated, comes from two different information 



sources (WSN and internal server sensors) and is sufficient to detect and isolate 
CRAC failures. We arrange data in areas according to their physical position in the 
data center and run the Trustware-Engine to test the anomaly detection with SOM and 
GNG algorithms, both when all sensors are working properly and when some sensor 
malfunction exists during the testing phase. 

The best results for both cases are obtained with SOM, using a training set of 300 
ticks (each tick representing 1 minute) and an n-gram size of 3. Usually, n-gram size 
varies from 2 to 5. Higher n-gram sizes give more sensibility to anomaly detection 
but, at the same time, increase the false positive rate [23]. An n-gram size of 3, 
provides the best tradeoff between detection and false positive rate in our setup. 

Figure 2a shows the results provided by the Trustware-Engine for SOM with a 
CRAC failure starting around tick 500 that highly affects rack 0 (R0), moderately 
affects rack 1 (Rl) and does not affect rack 2 (R2) at all. Red and purple colors 
represent low reputation values and yellow color represents reputation values near 
100 percent. In the horizontal axe, information source IDs are represented for the 
different racks are presented. CRAC-failures are calculated by averaging the 
reputation of sensors in the same area. If reputation is below 40, we consider that an 
anomaly takes place. Figure 2b shows the malfunction of two sensors in Rack 0 (one 
in H2 and another in HO) around time instant 550. Regarding individual sensors, we 
consider that a sensor is malfunctioning when its reputation drops below 60 whereas 
the reputation of its neighbors if stable. Around tick 800 all sensors have a drop in 
their reputation. Because all sensors provide the same values, our system detects a 
CRAC anomaly around tick 800, instead of a sensor malfunction. 

a) CRAC failure detection in 3 different racks b) Sensor malfunction around ticks 550 and 600 for rack 0 (FtOJ 

Fig: 2. CRAC fan failure detection and isolation with individual anomalies in sensors 

For our experiments, we obtain a CRAC failure detection rate of 100%, with a 
false positive rate of 0%, a very low detection and isolation time of 2 and 5 ticks 
respectively and a recovery in reputation values of 40 ticks. 

5.3 Anomalies in the workload execution 

Detecting anomalies in the workload execution in a heterogeneous Data Center is 
not an easy task mainly because of the temporal variation usually exhibited by the 
workload. Power consumption gathered via the WSN shows different profiles 
depending on the workload under execution and the server architecture (AMD vs 



Intel, see Figure 3a). CPU temperature is correlated with power consumption and 
gathered via the internal server sensors, making these two metrics good candidates to 
detect anomalies. Because the SLURM resource manager assigns the incoming 
workload to three different partitions, to detect and isolate anomalies, we arrange the 
sensors depending on the partition they refer to. In this case, GNG techniques with a 
training set of 300 ticks and an n-gram size of 2, outperform SOM in terms of false 
positive rate. Figure 3b shows the detection and isolation of workload anomalies in a 
rack composed of 9 servers belonging to the three previously described partitions. 
Around tick 400 servers in AMD2 partition start having an abnormal behavior that 
extends to more servers around tick 500. When the behavior of the server workload 
changes partially its reputation drops. To avoid false positives, however, we only 
consider that an anomaly exists when the area-wide reputation drops below 40. 

For our experiments, we obtain a workload misconfiguration detection rate of 
100% and again immediate detection and isolation times, as in the previous case. 

a) Power consumption lor AMD iblue) and Intel (red) nodes with time b> Workload misconflguration detection 

Fig: 3. Power profile in two different architectures and workload misconfiguration detection 
with individual anomalies in sensors 

6. Conclusions 

In this work we have presented a clustering-based detection methodology based on 
SOM and GNG coupled with reputation systems to detect and isolate cooling and 
workload anomalies. By making use of sensor topological information and arranging 
data in different areas we differentiate between individual sensor reputation and area-
wide reputation, splitting CRAC and workload data center anomalies from anomalies 
due to the malfunction of information gathering sensors. 

We show how SOM provides better results for CRAC anomaly detections, yielding 
detection rates of 100%, in training data with malfunctioning sensors. We also show 
that GNG yields better detection and isolation rates for workload anomaly detection, 
reducing the false positive rate when compared to SOM. It is important to note the 
very low detection and isolation rate, that allows rapid actuation upon a Data Center 
anomaly and that is a very important feature. In the future, we plan to extend our 
results to wider scenarios and detect anomalies related to the failure of specific server 
components such as power supplies or fans. 

Acknowledgments. Research by Marina Zapater has been partly supported by a PICATA predoctoral 
fellowship of the Moncloa Campus of International Excellence (UCM-UPM). This work has been partially 
supported by the Spanish Ministry of Economy and Competitiveness, under contracts TEC2012-33892 and 
IPT-2012-1041-430000, and INCOTEC. 



References 

1. Koomey, J. "Growth in data center electricity use 2005 to 2010." Oakland, CA: Analytics 
Press. August 1 (2011): 2010 

2. Rasmussen, N. "Calculating total cooling requirements for Data Centers", American 
Power Conversion, White paper #25, 2007. 

3. ASHRAE, TC. "Thermal guidelines for data processing environments-expanded data 
center classes and usage guidance." Whitepaper by ASHRAE TC 9 (2011). 

4. Atienza, D. et al. "Reliability-aware design for nanometer-scale devices." ASPDAC 2008. 
Asia and South Pacific 21 Mar. 2008: 549-554. 

5. Bankovic, Z., et.al. "Self-Organizing maps versus Growing Neural Gas in detecting data 
outliers for security applications". HAIS2QM: 89-96 

6. Lima, L., et.al. "Group decision making and Quality-of-Information in e-Health 
Systems". Logic Journal oflGPL 19.2 (2011): 315-332 

7. Corchado, E., Arroyo, A., Tricio, V. "Son computing models to identify typical 
meteorological days". Logic Journal oflGPL 19.2 (2011): 373-383 

8. Sullivan, R. F., "Alternating cold and hot aisles provides more reliable cooling for server 
farms". Uptime Institute, 2000 

9. El-Sayed, N. et al. "Temperature management in data centers: Why some (might) like it 
hot." ACMSIGMETRICS Performance Evaluation Review 40.1 (2012): 163-174. 

10. Romadhon, R. et al. "Optimization of cooling systems in data centre by computational 
fluid dynamics model and simulation." Innovative Technologies in Intelligent Systems 
and Industrial Applications, (CITIS1Á) 2009 : 322-327. 

11. Haaland, Ben et al. "A statistical approach to thermal management of data centers under 
steady state and system perturbations." Journal of the American Statistical Association 
105.491 (2010): 1030-1041. 

12. Lee, E., Kyung, H. V., and Dario Pompili. "Model-based Thermal Anomaly Detection in 
Cloud Datacenter" 

13. Sedaño, J. et al. "Learning and training techniques in fuzzy control for energy efficiency 
in buildings." Logic Journal oflGPL 20.4 (2012): 757-769. 

14. Depren, O. et al. "An intelligent intrusion detection system (IDS) for anomaly and misuse 
detection in computer networks." Expert systems with Applications 29A (2005): 713-722. 

15. Ma, J., Guanzhong D., and Zhong X.. "Network anomaly detection using dissimilarity-
based one-class SVM classifier." Parallel Processing Workshops, 2009. ICPPW'09. 
International Conference on 22 Sep. 2009: 409-414. 

16. Yuan, Y., Lee, E. K., Pompili, D., Liao, J. "Thermal anomaly detection in datacenters". 
Journal of Mechanical Engineering Science, 226(8) 2104-2117. 2011. 

17. Haykin,S. "Neural networks. A comprehensive foundation", 2nd ed. Prentice-Hall (1999) 
18. Fritzke, B. "Growing Neural Gas Network Learns Topologies". In Advances in Neural 

Information Processing Systems, vol. 7, pp. 225-632. MIT Press, Cambridge (1995) 
19. Moya, J. et al. "Improving Security for SCADA Sensor Networks with Reputation 

Systems and Self-Organizing Maps". Sensors 9.11 (2009): 9380-9397. 
20. Lopez, Javier et al. "Trust management systems for wireless sensor networks: Best 

practices." Computer Communications 33.9 (2010): 1086-1093. 
21. "SPEC CPU2006 Benchmark Descriptions". 2006. 23 Oct. 2013 

http://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf 
22. Yoo, A.B., Morris A.J., Grondona, M. "SLURM: Simple linux utility for resource 

management." Job Scheduling Strategies for Parallel Processing (2003): 44-60. 
23. Bankovic, Z. "Detecting Unknown Attacks in Wireless Sensor Networks That Contain 

Mobile Nodes", Sensors 12 (2012): 10834-10850 

http://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf

