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Abstract 

The increase in data center operating costs is driving innovation to improve their energy efficiency . Previous research has  
investigated computational and physical control intervention strategies to alleviate the competition between energy consumption 
and thermal performance in data center operation. This study contributes to the body of knowledge by proposing a cyber-physical 
systems (CPS) approach to innovatively integrate building information modeling (BIM) and wireless sensor networks (WSN). In 
the proposed framework, wireless sensors are deployed strategically to monitor thermal performance parameters in response to 
runtime server load distribution. Sensor data are collected and contextualized in reference to the building information model that 
captures the geometric and functional characteristics of the data center, which will be used as inputs of continuous simulations 
aiming to predict real-time thermal performance of server working environment. Comparing the simulation results against 
historical performance data via machine learning and data mining, facility managers can quickly pinpoint thermal hot zones and 
actuate intervention procedures to improve energy efficiency. This BIM -WSN integration also facilitates smarter power 
management by capping runtime power demand within peak power capacity of data centers and alerting power outage 
emergencies. This paper lays out the BIM-WSN integration framework, explains the working mechanism, and discusses the 
feasibility of implementation in future work. 
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1. Introduction 

Data centers in the United States consumed about 76 billion kilowatt -hours in 2010, equivalent to 2% of all 
electricity used in the country that year [1], which is also estimated to grow at 12% per year [2]. In 2012, the power 
costs for the data center equipment over its useful life exceed the cost of the original capital investment. By 2020, 
the carbon footprint of data centers is expected to exceed the airline industry [3]. The rising data center energy 
consumption and rising energy costs have elevated the importance of data center energy efficiency as a strategy to 
reduce costs, manage capacity and promote environmental responsibility. Nevertheless, data center energy 
efficiency (defined as the ratio  of useful computation to total source energy) is notoriously low, estimated at 15% or 
less [4]. A  considerable portion of the energy cost of running a data center, however, is avoidable through an 
intelligent understanding and management o f the cyber -physical [5, 6] interactions within  them. Substantial savings 
can be attained by efficiently designing the physical environment [7]. A framework is needed to create a unique 
merger between  the physical infrastructure and resource management functions of the cluster operating system to 
take a holistic view of data center energy management [8]. 

To accomplish this goal, real-t ime server environment information such as temperature needs to be monitored. 
The conventional way of completing this task is via temperature data from the internal thermometers of the 
machines [8]. This has many drawbacks and limitat ions, one being that the location of the temperature reading from 
inside the machine is inconsistent from model to model. Current solution to this problem has been to install external 
temperature sensors, yet this method also has several deficiencies. First, these sensors are expensive. Second, these 
sensors are often permanently installed or built into devices, which leads to a lack of flexibility and contextual 
informat ion. The pro liferat ion of wireless sensor networks (WSN) offers a viab le alternative for the underly ing 
network infrastructure. Therefore, this paper considers data centers as cyber-physical systems (CPS), and proposes 
the integration and coordination of virtual models and the physical infrastructure to simulate and control energy 
efficiency. The CPS approach bridges the cyber layer (e.g. informat ion, communicat ion and intelligence) with the 
physical layer (e.g. servers, CRAC units, and building structures) through the use of WSN.  

Integration of a WSN with an  existing data center building management system (BMS) has a number of 
advantages including cheaper and faster installation, which allows increased number of sensors deployed to gain 
more fine-grained measurements and control, and the associated flexib ility of the temporary infrastructure 
deployment needed to perform measurements in a limited time [9]. Before deploying the WSN, a representation of 
the physical and service environment of data center is needed in order to accurately predict signal propagation and 
as a result, link quality between nodes. This can be easily attained through building informat ion modeling (BIM). 
BIM is a new business paradigm in capital projects that emphasizes integrative practices in  project p lanning, design, 
construction and operation with unprecedented computational support from advanced information modeling 
applications. BIM provides a robust platform that facilitates the creation and sharing of physical and functional 
characteristics of a build ing facility as well as the business intelligence among stakeholders spanning its lifecycle. 
Recent market research suggests that BIM is gaining ubiquitous acceptance and implementation across the global 
architectural, engineering, construction and facility management (AEC-FM) industry. 

2. Related works 

In the proposed CPS approach to integrate BIM and WSN in data center energy modeling and control, a key 
assumption is that critical technology that enables such integration is readily  available and well documented in  
literature. The fo llowing paragraphs reviewed scholar research in the areas of data center thermal simulation and its 
interaction with server load balancing; sensor-based thermal monitoring and energy management; BIM integration 
in thermal simulat ion and real-t ime performance management; machine learning and data mining in energy 
performance predicat ion and optimizat ion, and data center power management. It is understood that conversation, 
meaning the exchange of a large amount of heterogeneous data, needs to take place among these interrelated 
domains and computational frameworks, which will eventually dictates the feasibility of such a highly integra ted 
framework as proposed in this study.    
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2.1. Computational Fluid Dynamic (CFD) model for data center energy management  

Early  work on energy minimization for data centers focused on computational fluid  dynamic (CFD) models to 
analyze and design server racks and data center configurations to optimize the delivery of cold air, and thereby 
minimize cooling costs [7]. There are an increasing number of papers on the CFD simulations of thermal profile of a 
data center in recent years. Schmidt et al. [10] compared CFD modeling results with thermal measurements for data 
center and the comparison is generally satisfactory except some rack thermal profiles deviated from measurements.  
Regions that exceeded the equipment in let air temperature specifications by a significant amount were also reported 
[10]. VanGilder and Lee [11] presented a technique which allows data center designer or operator to ach ieve any 
desired partitioning of available airflow among the floor tiles of a raised-floor data center without resorting to trial-
and-error with the CFD simulations. Providing the efficiency and quality of current CFD simulation practices, its 
workflow tends to be independent and isolated from the overall facility design and configuration process  using BIM. 
The promise held by BIM is to provide a comprehensive information reservoir that captures all physical and 
functional data of a facility at scalable levels of details, including the geometric and system information required in  
the CFD analysis. Yet there is a lack o f protocol for data ext raction from BIM as direct inputs to proprietary CFD 
simulation software applications. Some open information exchange standards such as Industry Foundation Classes 
(IFC) has been tested in fulfilling the role but such as practices remain as individual cases.   

2.2. Load-balancing policies for data center energy efficiency 

Subsequent research focused on the development of optimal load-balancing policies, at both the server and rack 
levels. Constraints on these policies were either the min imum allowed computational performance or the maximum 
allowed peak power consumption [12, 13]. Some recent papers considered policies to minimize the total data center 
energy consumption by distributing the workload in a temperature-aware manner [14]. Research on load distribution 
based on the thermal state of the data center led to the development of fast and accurate estimation techniques to 
determine the temperature d istribution in  a data center, based on sparsely distributed temperature measurements [8]. 
Approaches to the data center energy management problem based on queuing theory and Markov decision processes 
can be found in [15]. In contrast, very few studies [16] considered the dynamics and synergies between the 
computational workload and the cooling performance of the data center. Meanwhile, outcomes of these studies were 
usually presented in a complex and mathematical manner, which made them difficult  to understand for corporate 
owners and data center operators. 

2.3. WSN in thermal monitoring and management 

Research on use of sensors and sensor networks for monitoring rack temperature for a safe and reliab le data 
center can be found in [8, 17 and 18]. WSN is typically integrated in existing BMS. Ambient data collected through 
carefully deployed environmental sensors provide insights in operational thermal performance in data centers, which  
help identify  potential hot zones as well as characterize the thermal profile. More importantly, sensor data can be 
accumulated and analyzed with data mining and machine learning techniques to study time- and load- sensitive 
patterns of thermal performance in data centers, and become valuable basis for predict ing temperature d istribution 
and developing interference strategies to proactively tackle potential service interruption due to overheat.      

2.4. Building information modeling integration with real time thermal management  

There is a lack of scholarly publication on BIM for data center energy efficiency simulation and its possible 
concurrent use with sensing technology such as WSN to provide an integrated solution to data center thermal 
performance, energy efficiency and power management. Nevertheless, several studies, e.g. [19, 20, 21], investigated 
the feasibility and methodology to integrate BIM with wireless environmental sensors for real-t ime thermal 
monitoring and power management in regular buildings, which may be transferrable to data center scenarios. 
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2.5. Machine learning and data mining techniques for building energy management 

Various data mining and machine learning techniques have been used for building energy management. For 
instance, [22] proposed a mult i-modal sensor agent platform that is non-intrusive and low-cost, combin ing 
informat ion such as motion detection, CO2 reading, sound level, ambient light, and door state sensing, and this 
platform aims to decrease the energy usage of HVAC systems in various building applications . Actual test bed 
deployment demonstrates that these sensor agents can be used to accurately estimate the number of occupants in 
each room using machine learn ing techniques, and that these techniques can also be applied to predict future 
occupancy by creating agent models of the occupants. These predictions wi ll then be used by control agents to 
enable the HVAC system increase its efficiency by continuously adapting to occupancy forecasts of each room. In  
[23], an energy efficient building design process  is developed using data mining technology, which  can extract  
interrelationships and patterns of interest from a large dataset that contains information from various sources such as 
the building location, envelope, HVAC system, lighting, controls, and equipment. In [24], data mining techniques 
that are capable of integrating any thermal comfort standards and indoor daylight procedures  is used to learn from 
the vast amount of build ing sensor data, observe correlations between weather conditions, build ing characteristics 
and low-energy comfortable rooms, and build models that optimize occupants’ comfort, energy consumption and 
management and the interrelationship among them. In [25], several machine learning algorithms, including  linear 
regression, neural networks, and Support Vector Machine (SVM) algorithm, are appl ied to and evaluated on a new 
residential data set that contains sensor measurements collected every 15 min, with the objective of determin ing 
which techniques are most successful for predicting next  hour residential build ing consumption. In [26], the authors 
studied how to use SVM algorithm to predict build ing energy consumption in the tropical reg ion, whereas [27] 
apply SVM algorithm to predict hourly build ing cooling load. C4.5 classificat ion algorithm is proposed in [28], an  
improvement of the well-known decision tree algorithm [29], to  analyze the combination  of internal and external 
ambient conditions. The min ing algorithms are used to determine comfort constraints and the influence of external 
conditions on a building’s internal user comfort. 

3. Preliminary study: WSN data consistency with CFD simulation 

In this section, we conduct a consistency check between CFD simulat ion data and measured data through WSN 
in a previous study conducted [18]. The goal is to build the confidence in WSN -based data collection. ANSYS 
FLUENT, a commercial CFD solution, is used to simulate the temperature d istributions inside a server’s hot box. 
The preliminary CFD results will be compared with the experiments at Nodes 6, 7, and 8 of the Georg ia Southern 
University Student Data Center conducted by Bazemore and Li [18] as shown in Fig. 1. 
 

 

Fig. 1. Schematic of the rack group: (a) front of the rack group and (b) back of the rack group [18] . 



1270   Wei Wu et al.  /  Procedia Engineering   118  ( 2015 )  1266 – 1273 

 

Nodes 1 and 2 were placed on the front of Rack 3 whereas Node 3 was placed on the front of Rack 1. Nodes 4, 5, 
9, and 10 were placed on the back sides of the racks.  Nodes 6 and 7 are located in the back midd le of the hot box to 
measure the ambient temperature whereas Node 8 is placed in the hot box air exhaust. To perform the CFD 
simulations, the geometry of server hot box is modeled in a three-dimensional system as shown in Fig. 2. The back 
surface of Rack 1 is set approximately to the average temperature of Nodes 9 and 10 accord ing to [18] at 308.9 K 
whereas the back surface of Rack 3 is set approximately to the average temperature of Nodes 4 and 5 at 303.4 K. 
The ambient temperature is set to 301.2 K and air speed of hot box air exhaust is set at approximately 1.7 mile/hour.  
 

 

Fig. 2. Schematic of a hot box for CFD simulations. 

Table 1 demonstrates satisfactory agreements between the preliminary CFD simulation results and the wireless 
sensor experiments for average temperature readings at Nodes 6, 7 and 8. Both measured and simulated 
temperatures at Node 7 were observed to be slightly higher than Node 6 due to the closer proximity of the higher 
temperature generated from Rack 1. 

                                Table 1. CFD simulation results in comparison with sensor data for average temperature readings at Nodes 6, 7, and 8. 

Node Average Temperature (K, Wireless Sensor) Average Temperature (K, CFD Simulation) 

6 303.7 302.6 

7 304.8 304.3 

8 303.7 302.0 

In addition, Fig. 3 presents the three-dimensional simulated temperature contour plot  for the hot box region. Fig. 
3 suggests that a majority of thermal energy propagates from the back surface of Rack 1 to the hot box domain in  
which the high thermal energy is eventually dissipated to the ambient condition. 
 

 

Fig. 3. Three-dimensional simulated temperature (in K) contour plot for the hot box region. 
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4. Data center power management 

In this section, a trad itional power management technique of a centralized  uninterruptible power supply (UPS) 
based data centers is reviewed, and a power management strategy that can communicate through our common BMS 
with BIM and WSN is proposed. 

The power system of a typical data center is based on a standard AC utility feeder [30]. Two independent utility 
feeders can be used to further increase power reliability of the data centers. Specifically, a UPS can deal with peak 
load during a short period of time (1~2 hours) [31]. For a long period of peak power, it is less effective due to the 
battery used by most of the energy within 2 hours. Thus, many data centers have been employing distributed per -
server batteries, or distributed UPS architectures where indiv idual machines have their own UPS in order to shave 
the peak power, thereby eliminat ing a potential failure of a specific server [ 31]. In  a typical UPS, there are three 
components including AC/DC rect ifier, the battery, and the DC/AC inverter, which suggests that AC/DC/AC double 
power conversion is always required to feed the AC loads. This double power conversion in a centralized UPS 
design is leading up to 35% energy loss, so a distributed UPS can feed po wer to the corresponding server directly  
without using this double power conversion. Each server rack could have a distributed UPS that can be charged and 
discharged throughout a DC distribution power network in Fig. 4. As a result, the efficiency can be increased up to 
35% and save cost by avoiding this AC/DC power conversion [32]. 

By using this DC distribution with distributed UPSs, it may be able to reduce power distribution losses by up to 
50% compared  to the AC distribution system because AC/DC power conversion loss is much bigger than that of 
DC/DC power conversion. Also grid  tie  inverter concept has been studied to increase the battery life o f the UPS 
system [33]. Grid-tie inverters can help the battery life of the UPS by converting DC energy generat ed from 
renewable sources into AC grid  and feeding it into the grid, that allows not only excess DC energy to be fed back to 
the grid, but can be used with UPS in a grid-interactive manner fo r local storages and emergency response. Grid-tie 
system includes a unidirectional DC/DC converter from the renewable energy sources, and DC/AC inverter with 
energy storages with a bidirect ional DC/DC converter for charging and discharging purposes. Interactive control 
would be desired by coordinating with these power electronics converters, DC/DC converters, and DC/AC inverter  
with UPSs. In  terms of the unidirectional DC/DC converter connected to renewable energy sources, Maximum 
Power Point Tracking algorithm (MPPT) would be normally used for the optimal control in the  most of renewable 
energy industries. Moreover, with the use of the proposed dual-scenario BIM/WSN framework exp lained in the 
following section, it is able to keep monitoring the power o f the power usage in each server, so the dynamic peak 
power shaving can be achieved with a min imum t ime delay, saving the energy cost compared to using of the static 
peak power shaving [34]. 
 

 

Fig. 4. DC power distribution system with distributed UPSs. 
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5. Proposed framework 

In developing the framework, we consider two  scenarios: 1) direct intervention in  potential system failure 
scenario; and 2) mitigation and alternative design scenario. In a simple fashion, the proposed framework is 
illustrated in Fig. 5. The data center is represented in BIM, which contains all geometry, thermal property, and 
function informat ion, including all building systems and server layout. WSN is deployed to monitor the real-t ime 
thermal performance of the data center at room, rack, and individual server levels. With allowable performance 
tolerance defined by operators and patterns learned through the data mining/machine learning agent system, the 
WSN can conduct ongoing analysis and diagnosis of thermal performance against such tolerance, and actuate 
potential direct intervention of the HVAC system through the communication with the BMS.  

In the other scenario, when abnormal thermal behavior has been detected, the owner or facility manager may 
choose the mitigation approach to exp lore potential design strategies to improve thermal performance and energy  
efficiency. Desired data center information can be extracted from BIM as input into dedicated thermal and energy 
simulation programs to conduct analysis. The generated simulat ion results will be compared with measured 
performance data to determine the improvements. Such exercise can go on for as many rounds as needed until the 
owner and facility managers are satisfied with the simulat ion results. Due to the parametric modeling capacity, 
different design options could be tested in BIM in a rapidly and financially affordable way. 
 

 

Fig. 5. Proposed dual-scenario BIM-WSN framework. 

6. Discussion and future work 

In this paper, we reviewed current research on data center thermal performance and energy efficiency. Despite 
advancements in simulat ion algorithm and software programs, there is a lack of integrated framework to provide 
data center owners and facility managers with insights into real-t ime monitoring and intervention in a timely  and 
financially  affo rdable manner. Proliferation in BIM and WSN offers a great promise to this issue. We proposed a 
simplistic framework to explore the potential of a CPS approach by integrating BIM and WSN for more robust 
solutions to improve data center thermal performance and energy efficiency. Future research will focus on 
framework development, creating use cases, and conducting case studies to collect empirical data . 
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