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Scenario

Electrical power Network: Sen-
sors all around network monitor
measurements of interest.
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Scenario

Sensors produce continuous flow of data at high speed:

Send information at different time scales;
Act in adversary conditions: they are prone to noise, weather
conditions, battery conditions, etc;

Huge number of Sensors, variable along time

Geographic distribution:

The topology of the network and the position of the sensors
are known.
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Illustrative Learning Tasks:

Cluster Analysis

Identification of Profiles: Urban, Rural, Industrial, etc.

Predictive Analysis

Predict the value measured by each sensor for different time
horizons.
Prediction of picks on the demand.

Monitoring Evolution
Change Detection

Detect changes in the behavior of sensors;
Detect Failures and Abnormal Activities;

Extreme Values, Anomaly and Outlier Detection

Identification of picks on the demand;
Identification of critical points in load evolution;
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Standard Approach:

This problem has been addressed time ago:

Strategy

Select a finite sample

Generate a static model (cluster structure, neural nets,
Kalman filters, Wavelets, etc)

Very good performance in next month!

Six months later: Retrain everything!

What is the Problem?

The world is not static!
Things change over time.
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The Data Stream Phenomenon

Highly detailed, automatic, rapid data feeds.

Radar: meteorological observations.
Satellite: geodetics, radiation,.
Astronomical surveys: optical, radio,.
Internet: traffic logs, user queries, email, financial,
Sensor networks: many more observation points ...

Most of these data will never be seen by a human!

Need for near-real time analysis of data feeds.

Monitoring, intrusion, anomalous activity Classification,
Prediction, Complex correlations, Detect outliers, extreme
events, etc
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Data Streams

Continuous flow of data generated at high-speed in Dynamic,
Time-changing environments.
The usual approaches for querying, clustering and prediction use
batch procedures cannot cope with this streaming setting.
Machine Learning algorithms assume:

Instances are independent and generated at random according
to some probability distribution D.

It is required that D is stationary

Practice: finite training sets, static models.
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Data Streams

We need to maintain Decision models in real time.
Decision Models must be capable of:

incorporating new information at the speed data arrives;

detecting changes and adapting the decision models to the
most recent information.

forgetting outdated information;

Unbounded training sets, dynamic models.
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Massive Data Sets

Data analysis is complex, interactive, and exploratory over
very large volumes of historic data, eventually stored in
distributed environments.

Traditional pattern discovery process requires on-line ad-hoc
queries, not previously defined, that are successively refined.

Due to the exploratory nature of these queries, an exact
answer may not be required. A user may prefer a fast
approximate answer.
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Data Streams Models

Continuous flow of data generated at high-speed in Dynamic,
Time-changing environments.
The input elements a1, a2, . . . , aj , . . . arrive sequentially, and
describe an underlying function A:

1 Insert Only Model: once an element ai is seen, it can not be
changed;

2 Insert-Delete Model: elements ai can be deleted or updated.

The domain of variables can be huge.
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Traditional / Stream Processing

Traditional Stream

Nr. of Passes Multiple Single

Processing Time Unlimited Restricted

Memory Usage Unlimited Restricted

Type of Result Accurate Approximate

Distributed No Yes



Motivation Data Streams Clustering Clustering Distributed Data Streams Predictive Models Change Detection Novelty Detection

Approximate Answers

Approximate answers:

Actual answer is within 5± 1 with probability ≥ 0.9.

Approximation: find an answer correct within some factor

Find an answer that is within 10% of correct result
More generally, a (1± ε) factor approximation

Randomization: allow a small probability of failure

Answer is correct, except with probability 1 in 1000
More generally, success probability (1− δ)

Approximation and Randomization: (ε, δ)-approximations

The constants ε and δ have great influence in the space used.
Typically the space is O(1/ε2log(1/δ)).
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An Illustrative Example: Count-Min Sketch

Cormode & Muthukrishnan. An improved data stream summary: The

count-min sketch and its applications. Journal of Algorithms, 2005. Used to
approximately solve: Point Queries, Range Queries, Inner Product
queries.
Example: Count the number of packets from the set of IPs that cross a
server in a network.

Simple sketch idea

Creates a small summary as an array of w × d in size

d = 2/ε, W = log(1/δ)

Use d hash functions to map vector entries to [1..w ]

Works on Insert-only and Insert-Delete model streams

d = 2/ε, W = log(1/δ)
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Count-Min Sketch

CM Sketch Structure

Each entry in vector x is mapped to one bucket per row.

Estimate x̂ [j ] by taking minkCM[k, hk(j)]

The estimate guarantees:

x [j ] ≤ x̂ [j ]

x̂i ≤ ε× ||xi ||1, with probability 1− δ.
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Illustrative Problem II

A (real) data warehouse problem

Suppose you have a retail data warehouse

3 TB of data

100s GB new sales records updated daily

Millions of different items

Problem: hot-list

Identify hot items: the top-20 items in popularity
Restricted memory: Can have a memory of 100s-1000s bytes only
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The Top-k Elements Problem

Count the top-K most frequent elements in a stream.

First Approach

Maintain a count for each element of the alphabet.
Return the k first elements in the sorted list of counts.

Problems

Exact and Efficient solution for small alphabets.
Large alphabets: Space inefficient – large number of zero counts.
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The Space Saving Algorithm

Metwally, D. Agrawal, A. Abbadi, Efficient Computation of Frequent and Top-k

Elements in Data Streams, ICDT 2005

Maintain partial information of interest; monitor only a subset m
of elements.

For each element e in the stream

If e is monitored: Increment Counte
Else

Let em be the element with least hits min.
Replace em with e with counte = min + 1

Efficient for skewed data!
If the popular elements evolve over time, the elements that are
growing more popular will gradually be pushed to the top of the
list.
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Illustrative Problem III

Air Quality Monitoring

Sensors monitoring the concentration of air pollutants.

Each sensor holds a data vector comprising measured
concentration of various pollutants (CO2, SO2, O3, etc.).

A function on the average data vector determines the Air
Quality Index (AQI)

Issue an alert in case the AQI exceeds a given threshold.
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Distributed Monitoring:

Given:

A function over the average of the data vectors
A predetermined threshold

Continuous Query: Alert when function crosses the threshold

Goal: Minimize communication during query execution
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Example: Geometric Approach

I. Sharfman, A. Schuster, D. Keren, A Geometric Approach to
Monitoring Distributed DataStreams, SIGMOD 2006

Geometric Interpretation:

Each node holds a statistics
vector
Coloring the vector space :

Grey:
function > threshold
White:
function ≤ threshold

Goal: determine color of global
data vector (average).



Motivation Data Streams Clustering Clustering Distributed Data Streams Predictive Models Change Detection Novelty Detection

Monitoring Threshold Functions
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The Bounding Theorem

A reference point is known to all
nodes

Each vertex constructs a sphere

Theorem: convex hull is
bounded by the union of spheres

Local constraints!
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Basic Algorithm

An initial estimate vector is calculated;

Nodes compute spheres and check its
color;

Drift vector is the diameter of the
sphere

If any sphere non monochromatic:
node triggers re-calculation of
estimate vector
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Analysis

Mostly Local Computations

Minimum communications
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Learning Algorithms: Desirable Properties

Processing each example:

Small constant time
Fixed amount of main memory
Single scan of the data
Without (or reduced) revisit old records.

Processing examples at the speed they arrive

Decision Models at anytime

Ideally, produce a model equivalent to the one that would be
obtained by a batch data-mining algorithm

Ability to detect and react to concept drift



Motivation Data Streams Clustering Clustering Distributed Data Streams Predictive Models Change Detection Novelty Detection

Clustering Time Series Data Streams

Goal: Continuously maintain a clustering structure from evolving
time series data streams.

Ability to Incorporate new Information;

Process new Information at the rate it is available.

Ability to Detect and React to changes in the Cluster’s
Structure.

Clustering of variables (sensors) not examples!
The standard technique of transposing the working-matrix does
not work: transpose is a blocking operator!
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Online Divisive-Agglomerative Clustering

Online Divisive-Agglomerative Clustering, Rodrigues & Gama,
2008 Goal: Continuously maintain a hierarchical cluster’s structure
from evolving time series data streams.

Performs hierarchical clustering

Continuously monitor the evolution of clusters’ diameters

Can detect changes in the clustering structure

Two Operators:

Splitting: expand the structure
more data, more detailed clusters
Merge: contract the structure
reacting to changes.

Splitting and agglomerative criteria are supported by a
confidence level given by the Hoeffding bounds.
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Main Algorithm

ForEver

Read Next Example
For all the clusters

Update the sufficient statistics

Time to Time

Verify Merge Clusters
Verify Expand Cluster
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Feeding ODAC

Each example is processed once.
Only sufficient statistics at leaves are updated.
Released when a leaf expands to a node.
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Expanding a Leaf

Step 1
Find Pivots:
xj , xk : d(xj , xk) > d(a, b)
∀a, b 6= j , k

Step 2
If Splitting Criteria applies:
Generate two new clusters.

Step 3
Each new cluster attract nearest
variables.
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Splitting Criteria

When should we expand a leaf?
Let

d1 = d(a, b) the farthest distance

d2 the second farthest distance

Question:

Is d1 a stable option?
what if we observe more examples?

Hoeffding bound:

Split if d1 − d2 > ε with ε =

√
R2ln(1/δ)

2n
where R is the range of the random variable; δ is a user confidence
level, and n is the number of observed data points.
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Hoeffding bound

Suppose we have made n independent observations of a
random variable r whose range is R.

The Hoeffding bound states that:

With probability 1− δ
The true mean of r is in the range r ± ε where ε =

√
R2ln(1/δ)

2n

Independent of the probability distribution generating the
examples.
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Multi-Time-Windows

A multi-window system: each node (and leaves) receive
examples from different time-windows.
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Change Detection

Time Series Concept Drift:

Change in the distribution generating the observations.

Clustering Analysis Concept Drift

Changing the way time series correlate with each other
Change in he cluster Structure.

The Splitting Criteria guarantees that cluster’s diameters
monotonically decrease.

Assume Clusters: cj with descendants ck and cs .

If diameter(ck)− diameter(cj) > ε OR
diameter(cs)− diameter(cj) > ε

Change in the correlation structure!
Merge clusters ck and cs into cj .
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Properties of ODAC

For stationary data the cluster’s diameters monotonically
decrease.

Constant update time/memory consumption with respect
to the number of examples!

Every time a split is reported

the time to process the next example decreases, and
the space used by the new leaves is less than that used by the
parent.

(a + b)2 > a2 + b2
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Properties of ODAC
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Clustering Distributed Data Streams

Nowadays applications produce infinite streams of data distributed
across wide sensor networks.

Continuously maintain a cluster structure of the data points
generated by the entire network.
P. Rodrigues, J. Gama: Clustering Distributed Sensor Data Streams.

ECML/PKDD 2008: 282-297
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Clustering Distributed Data Streams

Clustering of sensor data gives information about dense regions of
the sensor data space.

Roughly speaking, a 2-cluster analysis:

low S1 ⇔high S2 and S3

high S1 ⇔ low S2 and S3
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Setting and Associated Problems
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System Overview

Reduce dimensionality and communication:
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Reduce dimensionality and communication:

1 Each local sensor keeps an online ordinal discretization of its
data stream

Sensor state ∈ {l ,m, h};
Only send state, when it changes

2 the central server has the global state of the network

Network 3 Sensors state = {l , l , h};
keeps a small list of the most frequent states:
{〈l ,m, h〉 , 〈l , h, h〉 〈m, l , h〉 , 〈m, l ,m〉}

3 Partitional clustering is applied to the frequent states.
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Local Adaptive Grid

Incremental equal-width discretization at each sensor stream
Xi using Partition Incremental Discretization ([Gama and
Pinto, 2006]).

The first layer simplifies and summarizes the data, while the
second layer constructs the final grid by merging the layer-one
intervals.

update is done in constant time and (almost) constant
space.
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Communications

Each sensor will send its state to the central server only if it
has changed since last communication.

The global state is synchronously updated at each time
stamp as a combination of each local site’s state;
s(t) = 〈s1(t); s2(t); . . . , si (t)〉
If no information arrives from a local site i , the central site
assumes that site i stays in the previous local state:
si (t)← s : i(t − 1)
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Monitoring States

The number of cell combinations to be monitored by central
site is exponential to the number of sensors: O(wd).

Only a small number of them represent frequent states.

The Space-Saving Algorithm:

If current state is being monitored, increment its counter.
If it is not being monitored, replace least frequent monitored
state with current state and increment evicted counter.

it tends to give more importance to recent examples,
enhancing the adaptation of the system to data
evolution.
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Centralized Cluster

Each frequent state represents a multivariate point, defined by
the central points of the corresponding unit cells.

When the central site has a top-m set of states, with m > k ,
apply a simple partitional algorithm.
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Furthest Point Clustering

Furthest Point clustering:

the first cluster center c1 is chosen randomly among data
points.

Subsequent k − 1 cluster centers are chosen as the points that
are more distant from the previous centers c1, c2, ..., ci−1, by
maximizing the minimum distance to the centers.

Requires k passes over training points.
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Evaluation: Synthetic Data

System’s granularity can be tuned to the resources available in the
network.
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Main Achievements
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Very Fast Decision Trees

Mining High-Speed Data Streams, P. Domingos, G. Hulten; KDD00

The base Idea:
A small sample can often be enough to choose the optimal splitting
attribute

Collect sufficient statistics from a small set of examples

Estimate the merit of each attribute

Use Hoeffding bound to guarantee that the best attribute is really
the best.

Statistical evidence that it is better than the second best
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Very Fast Decision Trees: Main Algorithm

Input: δ desired probability level.
τ Constant to Solve Ties

Output: T A decision Tree

Init: T ← Empty Leaf (Root)

While (TRUE)

Read next Example
Propagate Example through the Tree from the Root till a leaf
Update Sufficient Statistics at leaf
If leaf (#examples) > Nmin

Evaluate the merit of each attribute
Let A1 the best attribute and A2 the second best
Let ε =

√
R2ln(1/δ)/(2n)

If G(A1) − G(A2) > ε OR (G(A1) − G(A2) < ε < τ)
Install a splitting test based on A1

Expand the tree with two descendant leaves
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Classification Strategies

Accurate Decision Trees for mining high-speed Data Streams, J.Gama, R.
Rocha; KDD03

To classify an unlabeled example:

The example traverses the tree from the root to a leaf
It is classified using the information stored in that leaf

Two classification strategies:

The standard strategy use ONLY information about the class
distribution: P(Classi )

A more informed strategy, use the sufficient statistics P(xj |Classi )

Classify the example in the class that maximizes P(Ck |−→x )
Naive Bayes Classifier: P(Ck |−→x ) ∝ P(Ck)

∏
P(xj |Ck).

VFDT stores sufficient statistics of hundred of examples in
leaves.
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VFDT: Illustrative Evaluation – Error
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VFDT: Illustrative Evaluation – Learning Time
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VFDT: Analysis

Low variance models:
Stable decisions with statistical support.

Low overfiting:
Examples are processed only once.

Convergence: VFDT becomes asymptotically close to that of
a batch learner. The expected disagreement is δ/p; where p is
the probability that an example fall into a leaf.
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Neural-Nets and Data Streams

Multilayer Neural Networks

A general function approximation method;

A 3 layer ANN can approximate any continuous function with
arbitrary precision;

Training Neural Networks

Scan training data several times

Update weights after processing each example (or each epoch)

The only reason for multiple scans of training data is: lack of data
– small training sets.
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Neural-Nets and Data Streams

Neural Networks and Data Streams

Stochastic sequential train

Fast train and prediction:

Each example is propagated once
The error is back-propagated once

No Overfitting

First: prediction
Second: update the model

Smoothly adjust to gradual changes
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Introduction

Data flows continuously over time Dynamic Environments.
Some characteristic properties of the problem can change over
time.
Machine Learning algorithms assume:

Instances are generated at random according to some
probability distribution D.

Instances are independent and identically distributed

It is required that D is stationary

Examples:

e-commerce, user modelling

Spam emails

Fraud Detection, Intrusion detection
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Introduction

Concept drift means that the concept about which data is
obtained may shift from time to time, each time after some
minimum permanence.
Any change in the distribution underlying the data

Context: a set of examples from the data stream where the
underlying distribution is stationary
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The Nature of Change

The causes of change:

Changes due to modifications in the context of learning due to
changes in hidden variables.

Changes in the characteristic properties of the observed
variables.
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Change Detection in Predictive Learning

When there is a change in the class-distribution of the examples:

The actual model does not correspond any more to the actual
distribution.

The error-rate increases

Basic Idea: Monitor the evolution of the error rate.
Main Problems:

How to distinguish Change from Noise?

How to React to drift?
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Monitoring the Learning Process

Gama, et. al, Learning with Drift Detection, Lecture Notes in Computer
Science 3171, Springer.

Suppose a sequence of examples in the form < ~xi , yi >
The actual decision model classifies each example in the sequence
In the 0-1 loss function, predictions are either True or False
The predictions of the learning algorithm are sequences:
T ,F ,T ,F ,T ,F ,T ,T ,T ,F , . . ..
The Error is a random variable from Bernoulli trials.
The Binomial distribution gives the general form of the probability of observing
a F :

pi = (F/i) and si =
√

pi (1 − pi )/i where i is the number of trials.
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The QC Algorithm

The Quality Control Algorithm maintains two registers: Pmin and
Smin such that Pmin + Smin = min(pi + si )
Minimum of the error rate taking into account the variance of the
estimator.
At example j :
The error of the learning algorithm will be

Out-control if pj + sj > pmin + α ∗ smin

In-control if pj + sj < pmin + β ∗ smin

Warning Level: if pmin + α ∗ smin > pj + sj > pmin + β ∗ smin

The constants α and β depend on the desired confidence level.
Admissible values are β = 2 and α = 3.
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The QC Algorithm

At example j the actual decision model
classifies the example

Compute the error and variance:
pj and sj
If the error is

In-control the actual model is
updated Incorporate the
example in the decision model
Warning zone: Maintain the
actual model
First Time: the lower limit of
the window is: Lwarning = j
Out-Control Re-learn a new
model using as training set the
set of examples [Lwarning , j ].
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Analysis of the QC Algorithm

Independent of the Learning Algorithm

Resilient to False Alarms

Maintain a single Decision Model in Memory
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Main Characteristics in Change Detection

Data management
Characterizes the information about training examples stored
in memory.

Detection methods
Characterizes the techniques and mechanisms for drift
detection

Adaptation methods
Adaptation of the decision model to the current distribution

Decision model management
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Decision model management

Model management characterize the number of decision models
needed to maintain in memory.
The key issue here is the assumption that data generated comes
from multiple distributions,

at least in the transition between contexts.

Instead of maintaining a single decision model several authors
propose the use of multiple decision models.
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Dynamic Weighted Majority

A seminal work, is the system presented by Kolter and Maloof
(ICDM03, ICML05).
The Dynamic Weighted Majority algorithm (DWM) is an ensemble
method for tracking concept drift.

Maintains an ensemble of base learners,

Predicts using a weighted-majority vote of these experts.

Dynamically creates and deletes experts in response to
changes in performance.
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Granularity of Decision Models

Occurrences of drift can have impact in part of the instance space.

Global models: Require the reconstruction of all the decision
model. (like naive Bayes, SVM, etc)

Granular decision models: Require the reconstruction of
parts of the decision model (like decision rules, decision trees)
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Outline

1 Motivation

2 Data Streams

3 Clustering

4 Clustering Distributed Data Streams

5 Predictive Models

6 Change Detection

7 Novelty Detection
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Definition

Novelty Detection refers to the automatic identification of
unforeseen phenomena embedded in a large amount of normal
data.

Novelty is a relative concept with regard to our current
knowledge:

It must be defined in the context of a representation of our
current knowledge.

Specially useful when novel concepts represent abnormal or
unexpected conditions

Expensive to obtain abnormal examples
Probably impossible to simulate all possible abnormal
conditions
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Context

In real problems, as time goes by

The distribution of known concepts may change
New concepts may appear

By monitoring the data stream, emerging concepts may be
discovered

Emerging concepts may represent

An extension to a known concept (Extension)
A novel concept (Novelty)

Several interesting applications: Early Detection of Fault in
Jet Engines, Intrusion Detection in computer networks,
Breaking News in a flow of text documents (news articles),
Burst of Gamma-ray (astronomical data),
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Perspective
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Approaches for Novelty Detection in DS

One-class classification

Model knowledge about a single profile
New examples may be identified as members of that profile or
not

Frequencies
A pattern is surprising if the frequency of its occurrence differs
substantially from that expected by chance, given the
previously seen data. (TARZAN; Keogh et al., 2002)

The decision structure
Considers decisions taken by each unit in a decision structure.
In a stable state, the contribution of each unit is likely to
remain constant. Changes in the participation of decision
units may indicate a conceptual change
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Cluster-based novelty detection

Cluster-based novelty detection, Spinoza, Carvalho, Gama, SAC 08.

Initial Phase: Supervised, batch mode

Start by modeling the normal condition.
Learns a partial model about what is known.
Based on a set of classified examples.

Second Phase: Process stream of unlabelled examples

For each incoming example:

If it is explained by the current model: classify the example
and discard

If it is not explained: Store in a short-term memory

Time to Time

Find clusters in the examples stored in the Short Term Memory
Clusters far away from existing ones: Novel concept.
Clusters closed to existing ones: Extend known concepts.
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Perspective
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Perspective
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Initial Phase-Generate Initial Model
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Second-Phase: Process Stream Examples
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Second-Phase: Look for new Concepts
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End of Part I

Questions?



Part 1: Mining Data Streams: A Theoretical Background (Cont’d)



Introduction to Frequent Pattern Mining

• Frequent pattern mining refers to finding 
tt th t t thpatterns that occur greater than a pre-

specified threshold value.
• Patterns refer to items, itemsets, or 

sequencessequences.
• Threshold refers to the percentage of the 

pattern occurrences to the total number of 
transactions. It is termed as Supportpp



Introduction to Frequent Pattern MiningIntroduction to Frequent Pattern Mining 
(Cont’d) 
• Finding frequent patterns is the first step for the 

discovery of association rules in the form of A  B.y
• Apriori algorithm represents a pioneering work for 

association rules discovery
– R Agrawal and R Srikant, Fast Algorithms for Mining 

Association Rules. In Proc. of the 20th International 
Conference on Very Large Databases, Santiago, Chile, y g , g , ,
September 1994

• An important step towards improving the performance of 
association rules discovery was FP Growthassociation rules discovery was FP-Growth
– J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns 

without Candidate Generation. In Proceedings of the 2000 g
ACM SIGMOD International Conference on Management 
of Data (SIGMOD'00), Dallas, TX, May 2000.   



Introduction to Frequent Pattern MiningIntroduction to Frequent Pattern Mining 
(Cont’d) 

• Many measurements have been proposed 
f fi di th t th f th lfor finding the strength of the rules.

• The very frequently used measure isThe very frequently used measure is 
confidence.
C fid f t th b bilit th t• Confidence refers to the probability that 
set B exists given that A already exists in a 
transaction.
– Confidence (AB) = Support (AB) / SupportConfidence (AB)  Support (AB) / Support 

(A)



Frequent Pattern Mining in DataFrequent Pattern Mining in Data 
Streams

• The process of frequent pattern mining 
d t t diff f thover data streams differs from the 

conventional one as follows:
– The technique should be linear or sublinear 

(You Have Only One Look).( ou a e O y O e oo )
– Frequent items (heavy hitters) and itemsets 

are often the final outputare often the final output.



Frequent Items (Heavy Hitters) in DataFrequent Items (Heavy Hitters) in Data 
Streams

• Manku and Motwani have two master 
l ith i thialgorithms in this area:

– Sticky Samplingy p g
– Lossy Counting

G. S. Manku and R. Motwani. Approximate Frequency Counts over Data 
Streams, in Proceedings of the 28th International Conference on Very 
Large Data Bases (VLDB) Hong Kong China August 2002Large Data Bases (VLDB), Hong Kong, China, August 2002.



Sticky Sampling

• Sticky sampling is a probabilistic technique.
• The user inputs three parameters• The user inputs three parameters

– Support (s)
Error (ε)– Error (ε)

– Probability of failure (δ)
• A simple data structure is maintained that has• A simple data structure is maintained that has 

entries of data elements and their associated 
frequencies (e f)frequencies (e, f).

• The sampling rate decreases gradually with the 
increase in the number of processed dataincrease in the number of processed data 
elements.



Sticky Sampling (Cont’d)
• For each incoming element in a data stream theFor each incoming element in a data stream, the 

data structure is checked for an entry.
– If an entry exists then increment the frequency– If an entry exists, then increment the frequency
– Otherwise sample the element with the current 

sampling rate.sampling rate.
• If selected, then add a new entry, else the element is 

ignored.

• With every change in sampling rate, an 
unbiased coin toss is done for each entry with y
decreasing the frequency with every 
unsuccessful coin toss.
– If the frequency goes down to zero, the entry is 

released.  



Lossy Counting
• Lossy counting is a deterministic technique.
• The user inputs two parameters

– Support (s)
– Error (ε)

• The data structure has one more attribute for 
each entry than the sticky sampling technique 
( f ∆) h ∆ i h i ibl(e, f, ∆) where ∆ is the maximum possible error 
in f.
Th t i t ll di id d i t b k t• The stream is conceptually divided into buckets 
with a width w = 1/ ε.
E h b k t i l b ll d b l f N /• Each bucket is labelled by a value of N / w, 
where N starts from 1 and increases by 1. 



Lossy Count (Cont’d)
• For a new incoming element, the data 

structure is checked
– If an entry exists, then increment the 

frequencyfrequency
– Otherwise, add a new entry with ∆ = bcurrent -1

where b is the current bucket labelwhere bcurrent is the current bucket label. 
• When switching to a new bucket, all 

entries with f+ ∆ < bcurrent are deleted.
• Lossy Count outperforms Sticky SamplingLossy Count outperforms Sticky Sampling 

in practice.



Frequent Itemsets in Data Streams

• Manku and Motwani has extended Lossy Counting to 
find frequent itemsets.q

G. S. Manku and R. Motwani. Approximate Frequency Counts over 
Data Streams, in Proceedings of the 28th International Conference on 
Very Large Data Bases (VLDB), Hong Kong, China, August 2002.

• The technique follows the same steps with batch 
processing of transactions according to memorprocessing of transactions according to memory 
availability.

• All subsets of the stored batch are checked and prunedAll subsets of the stored batch are checked and pruned.
• If the frequency of a new entry is greater than the 

number of buckets currently in memory, then a new entry 
is added to the data structure.



Introduction to Time SeriesIntroduction to Time Series 
Analysisy
• Time Series Analysis refers to applying different 

data analysis techniques on measurementsdata analysis techniques on measurements 
acquired over temporal basis.
D t l i t h i tl li d• Data analysis techniques recently applied on 
time series include clustering, classification, 
i d i d i ti lindexing, and association rules.

• The focus of classical time series analysis was 
on forecasting and pattern identification



Introduction to Time Series AnalysisIntroduction to Time Series Analysis 
(Cont’d)
• Similarity measures over time series data 

represent the main step in time series analysisrepresent the main step in time series analysis.
• Euclidean and dynamic time warping represent 

th j i il it d i tithe major similarity measures used in time 
series.

• Longer time series could be represent 
computationally hard for the analysis tasks.

• Different time series representations have been 
proposed to reduce the length of a time series.p p g



Time Series Analysis in DataTime Series Analysis in Data 
Streams
• When data elements (records) in a data 

t d b d th istream are processed based on their 
temporal dimension, we consider the 
process as time series analysis.

• Time series analysis in data streams are• Time series analysis in data streams are 
different in two aspects:
– Several data points are considered to be an 

entry.
– The analysis is done in real-time as opposed 

to traditional time series analysis.



Symbolic ApproXimation (SAX)

• SAX is a fast symbolic approximation of time series.
– J. Lin, E. Keogh, S. Lonardi, and B. Chiu, A Symbolic Representation 

of Time Series with Implications for Streaming Algorithms inof Time Series, with Implications for Streaming Algorithms, in 
proceedings of the 8th ACM SIGMOD Workshop on Research Issues in 
Data Mining and Knowledge Discovery, San Diego, CA. June 13, 2003. 

• It allows a time series with a length n to be transformed to anIt allows a time series with a length n to be transformed to an 
approximated time series with an arbitrarily length w, 
where w <<n.

• SAX follows three main steps:SAX follows three main steps:
– Piecewise Aggregate Approximation (PAA)
– Symbolic Discretization
– Distance measurementDistance measurement

• SAX is generic and could be applied to any time series 
analysis technique.



Piecewise Aggregate Approximation (PAA)Piecewise Aggregate Approximation (PAA)

• A time series with size n is approximated 
i PAA t ti i ith iusing PAA to a time series with size w 

using the following equation.

Where is the ith element in the approximated time seriesWhere    is the i element in the approximated time series



Symbolic Discretization

• Breakpoints are calculated that produce equal 
areas from one point to another under Gaussianareas from one point to another under Gaussian 
distribution.

A l k t bl ld b d– A lookup table could be used.
• According to the output of PAA

– If a point is less than the smallest breakpoint, then it is 
denoted as “a”.

– Otherwise and if the point is greater than the smallest 
breakpoint and less than the next larger one, then it is 
denoted as “b”denoted as b .

– etc.



Distance Measurement

• The following distance measure is applied 
h i t diff t ti iwhen comparing two different time series:

• It returns the minimum distance between 
the original time series.g

• A lookup table is calculated and used to 
find the distance between every twofind the distance between every two 
letters.



SAX (Cont’d)

• SAX has been applied to many data mining 
techniques includingtechniques including
– Clustering (hierarchical and partitioning)

Cl ifi ti (N t i hb d d i i t )– Classification (Nearest neighbour and decision trees)
– Change detection

• SAX represents the state-of-the-art in time 
series data streams analysis due to its generality



Hot SAX
SAX h b d t di di d i ti• SAX has been used to discover discords in time 
series. The technique is termed as Hot SAX.

K h E Li J d F A HOT SAX Effi i tl– Keogh, E., Lin, J. and Fu, A., HOT SAX: Efficiently 
Finding the Most Unusual Time Series Subsequence. 
In the 5th IEEE International Conference on Data 
Mining, New Orleans, LA. Nov 27-30, 2005.

• Discords are the time series subsequences that 
are maximally different from the rest of the time 
series subsequences.

• It is 3 to 4 times faster than brute force 
technique.

• This makes it a candidate for data streaming 
applications



Hot SAX (Cont’d)

• The process starts with sliding widows of a 
fixed size over the whole time series tofixed size over the whole time series to 
generate subsequence

• Each generated subsequence is 
approximated using SAX

• The approximated subsequence is then 
inserted in an array indexed according to y g
its position in the original time series

• The number of occurrences of each SAX• The number of occurrences of each SAX 
word is also inserted in the array.



Hot SAX (Cont’d)

• The array is then transformed to a trie 
h th l f d t thwhere the leaf nodes represent the array 

index where the word appears.
• The two data structures (array and trie) 

complement each othercomplement each other.



Part 2: Ubiquitous Data Stream Mining (UDSM): A TheoreticalPart 2: Ubiquitous Data Stream Mining (UDSM): A Theoretical 
Background



O tliOutline
• Technology Evolution / Scene Setting• Technology Evolution / Scene Setting
• Mobile Data Mining

– Systems and Architectures 
– Adaptation Strategies– Adaptation Strategies
– Algorithms



BackgroundBackground
• Technology Evolution

– Pervasive Computing 
– Wireless Communications
– Sensor Devices

Data Explosion in the Mobile Space– Data Explosion in the Mobile Space



Scale of Networkingg
The wide area networks of 

yesterday (eg: GSM)
> A Million nodes @ €50k

The Nomadic local area 
networks of today (eg: WiFi)y ( g )

> Millions of Nodes @ €100

The Sensor and PersonalThe Sensor and Personal 
area network of tomorrow

> Billions of Nodes @ €1@
Challenges:Challenges:
 Removing social, geographical, economic and capacity Removing social, geographical, economic and capacity 

impediments throughimpediments through the provision of cost effectivethe provision of cost effective

26

impediments through impediments through the provision of cost effective  the provision of cost effective  
infrastructures, allowing an “Always on” network existence.infrastructures, allowing an “Always on” network existence.

 Contributing to accrued facilities based competition.Contributing to accrued facilities based competition.



Mica Sensor Node
• Single channel, 916 Mhz 

radio for bi-directional radio 
@40kps

• 4MHz micro-controller
• 512KB flash RAM
• 2 AA batteries (~2.5Ah), 

DC boost converter

L ft Mi II d

DC boost converter 
(maintain voltage)

• Sensors are pre-calibratedLeft: Mica II sensor node 
2.0x1.5x0.5 cu. In.

Right: weather board with

Sensors are pre calibrated 
(±1-3%) and 
interchangeable

Right: weather board with 
temperature, thermopile 
(passive IR), humidity, light, 

27

acclerometer sensors, 
connected to Mica II node



Wireless Evolution
Focus:Focus: 

UserUser--contentcontent
Focus: 

BandwidthBandwidth
Subscribers

Focus: 

>QoE
> Simplicity
> Performance

>Broadband
>New Services

Focus:

ocus
GrowthGrowth > Service Richness

>Security/trust
>Price

>EfficiencyFocus: 
CoverageCoverage

>Voice Quality
P bili

>Scalability
>Ubiquity

>Coverage
>Mobility

>Portability
>Capacity

>Ubiquity
>Price

Voice
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Explosion of Devices and DataExplosion of Devices and Data

Amount of data received or transmitted 
(in Petabytes/Day)

•• Information explosion and Information explosion and 

(in Petabytes/Day)

1,000,000

1,200,000

Industrial
Automobile

overload overload 
•• Number of communicating Number of communicating 600,000

800,000
Automobile

Entertainment

data devices growing from data devices growing from 
2.4 billion to 23 billion in 2.4 billion to 23 billion in 
2008 and one trillion by2008 and one trillion by

400,000

,
Mobile

2008 and one trillion by 2008 and one trillion by 
20122012

0

200,000

2003 2004 2005 2006 2007 2008

Computers

ChallengesChallenges::
 Designing and managing an information infrastructure where all Designing and managing an information infrastructure where all 

2003 2004 2005 2006 2007 2008
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devices communicate with and understand one anotherdevices communicate with and understand one another
 Creating an advanced digital ecoCreating an advanced digital eco--system for the agile enterprisesystem for the agile enterprise



Part 3: Mobile Data Mining



Data Stream Processing in Resource-g
constrained Environments

• A wide range of data 
streams are generated in or 
sent to resource-
constrained computing p g
environments.
– Spacecrafts Source: www.freeimages.co.ukSpacecrafts
– Wireless sensor networks
– PDAs and smart mobilePDAs and smart mobile 

phones

Mobile Data Mining



Research Issues in Mobile Data Mining

• Limited computational resources
• Limited bandwidth
• Limited screen realestate• Limited screen realestate
• Change of the user’s context



Our Approach

• Adaptability with regard to:

– Computational resourcesComputational resources

U ’ it ti– User’s situation

– Visual clutter



Algorithm Output Granularity (AOG)Algorithm Output Granularity (AOG)
W h d th f• We have proposed the use of 
adapting the algorithm output 
according to resource availability 
and data stream generation/inputand data stream generation/input 
rate.

• The AOG approach is based on 
th f ll i ithe following axioms:

a) The algorithm output rate (AR) is 
function in a data rate (DR), i.e., 
AR f(DR)AR = f(DR).

b) The time needed to fill the 
available memory by the algorithm 
results (TM) is function in (AR), 
i.e., TM = f(AR).

c) The algorithm accuracy (AC) is 
function in (TM), i.e., AC = f(TM).



AOG Typical Procedure
1 D t i th f f d t ti d1- Determine the frequency of adaptation and 

integration.
2- According to the data rate, calculate the2 According to the data rate, calculate the 

algorithm output rate and the algorithm 
threshold/parameter.

3 Mi th i i t i th3- Mine the incoming stream using the 
calculated algorithm threshold.

4- Adjust the threshold after a time frame to4 Adjust the threshold after a time frame to 
adapt with the change in the data rate.

5- Repeat the last two steps till the algorithm 
l t th ti i t l th h ld thlasts the time interval threshold or the 
memory is full.

6- Perform knowledge integration of the results6 Perform knowledge integration of the results.



AOG Primitives



AOG-based Techniques
• In the mining stage, there are three variations in usingIn the mining stage, there are three variations in using 

the threshold according to the mining technique: 
– LightWeight Clustering (LWC): the threshold is used 

to specify the minimum distance between the clusterto specify the minimum distance between the cluster 
center and the data element/record; 

– LightWeight Classification (LWClass): In addition of 
i h h h ld i if i h di husing the threshold in specifying the distance, the 

class label is checked. 
• If the class label of the stored items and the new item that 

are similar (within the accepted distance) is the same, the 
weight of the stored item is increased along with the 
weighted average of the other attributes, 
th i th i ht i d d d th it i• otherwise the weight is decreased and the new item is 

ignored;
– LightWeight Frequent patterns (LWF): the threshold is 

d t d t i th b f t f thused to determine the number of counters for the 
heavy hitters. 



Generality of AOG

• RA-VFKM
AOG b d Q i• AOG-based Querying



Granularity-based Approach

• Combining the three 
possible gran laritpossible granularity-
based adaptation, 
namely:y
– AIG: Algorithm Input 

Granularity 
– AOG: Algorithm 

Output Granularity 
APG: Algorithm– APG: Algorithm 
Processing Granularity



Granularity-based Approach 
Formalization



Granularity-based Approach Procedure



Granularity-based Data Stream Mining Algorithmsy g g

• Clusterers:
– Light-Weight Clustering

RA Cl t– RA-Cluster
– DRA-Cluster
– RA-VFKM
Ch D t ti• Change Detection:
– CHANGE-DETECT

• Classifiers:
– Light-Weight Class (LWClass)
– RA-Class
– DRA-Class

• Time Series Analysers
– RA-SAX

• Frequent Items and Associations
– LWF (Light-Weight Frequent Items)
– HiCoRE (Highly Correlated Energy-Efficient Rules) 



Open Mobile Miner - OMM



Some Experimental Results



Situation Aware ReasoningSituation-Aware Reasoning

Situations

Context

Sensory-originated
datadata



ContextContext

The interrelated conditions in which something exists or The interrelated conditions in which something exists or 
occurs (Merriam Webster) 

 The situation within which something exists or happens The situation within which something exists or happens, 
and that can help explain it (Cambridge Dictionary) 

 “Any information that can be used to characterize the Any information that can be used to characterize the 
situation of an entity” (Dey, 1999) 

 The set of environmental states and settings that either e set o e o e ta states a d sett gs t at e t e
determines an application’s behaviour or in which an 
application event occurs and is interesting to the user” 
(Chen, Kotz, 2000)

46



Situation Awareness - Fuzzy Situation y
Inference (FSI) 



Clutter-aware Visualisation
Si il t• Similar to resource-
awareness and 
situation awarenesssituation-awareness, 
we have developed a 
novel way tonovel way to 
automatically reduce 
the clutter

• The new approach has 
many important y p
applications 
(especially in disaster 

)management)



CACV Algorithm
Th l ith• The algorithm
–Clusters are allowed 

to grow
–ScalingSca g
–Colouring

Active clusters–Active clusters 
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50%• 50% coverage
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Summary

• Mobile data mining has attracted attention over 
the past few yearsthe past few years.

• Mobile data mining serves a number of essential 
applicationsapplications.

• Adaptability is crucial for the success of these 
applicationsapplications.



Part 4: UDSM Applications/Case Studies: Mobile Healthcare, 
Intelligent Transportation Systems and Environmental WSNs



Applications

Intelligent Transportation Systems
Patient Monitoring
Wireless Sensor Networks – EnergyWireless Sensor Networks Energy 
Efficient Habitat Monitoring
S t W d bSmart Wardrobe
Location Analysis: Emergency y g y
Management, Taxis, Couriers  -
DemoDemo
Stock Market Visualisation - Demo



Applications Patient MonitoringApplications – Patient Monitoring
• Need For:

l di i– early diagnosis 
– for remote health monitoring

• rural areas: hard to access hospitals, facilities and 
specialists 
ld l l idi l t i / i it• elderly people avoiding regular trips/visits

– for mobile health monitoring
• Provide continuous and convenient way of 

monitoring
I ti t fid t ti d il• Increase patients confidence to continue daily 
activities
Provide patients with self management and• Provide patients with self-management and 
awareness of disease



Biosensors
Alive Technology

A & D Medical



Bi Ali T h l (QLD)Bio-sensors: Alive Technology (QLD)

Alive Diabetes Management 
S t

Alive Heart Monitor +
Accelerometer +
AliveECG (software) System:

-Bluetooth enabled
-$550

AliveECG (software)
as a package:
-Bluetooth enabled
-$1200-$1200



A & D Medical (VIC)
•UA-767PBT model
-Bluetooth enabled
-uses the oscillometric method
-price $379  
-accuracy - ±3mmHg or 2%  whichever is greater (pressure) ±5% (pulse)
-Measurement range - 20-280mmHg (pressure) 40-200 pulse/minute (pulse)
-Validation -Clinically Validated with a AA rating in accordance to British 
Hypertension Society and AAMI protocols. 



Vitaphone - Professional TelemedicineVitaphone - Professional Telemedicine 
Solutions
Vitaphone Tele-Care-Monitor 3370
• Blood pressure monitor 
• Bluetooth enabled

Vitaphone Tele-ECG-Loop-Recorder 3100 BT Vitaphone Tele-ECG-Loop-Recorder 3300 BT



ActiveECG

ActiveECG with Bluetooth
Includes the ActiveECG hardware, 
a Bluetooth adapter, software for 
Palm OS and companion software 
for the PC, ECG leadwires, battery, 
test cable, extra cover, and one set 
of ECG electrodes. US$899



Recent ProjectsRecent Projects
• Larger scale:Larger scale:

– EPI-MEDICS (Rubel et al. 2005) http://epi-medics.univ-
lyon1.fr/flash/epimedics.html

• European collaboration 
• intelligent personal ECG Monitor (PEM) for early 

d i f didetection of cardiac event
• 80 PEM prototypes finalized and tested on 697 

patients/citizenspatients/citizens   

– MobiHealth (Konstantas et al. 2007) http://www.mobihealth.org/

using 2 5 (GPRS) and 3G (UMTS) technologies• using 2.5 (GPRS) and 3G (UMTS) technologies

• Smaller scale:
– Personal Health Monitoring System (Leijidekkers et al. 

2006a, 2006b, 2007) http://www.personalhealthmonitor.net/index.html



Recent Projects
• EPI-MEDICS (Rubel et al. 2005)

– Detecting cardiac ischemia and arrhythmiag y
• Detecting serial changes with reference to the 

patient’s stored ECGs  

• Personal Health Monitoring System
(Leijidekkers et al 2006a 2006b 2007)(Leijidekkers et al. 2006a, 2006b, 2007)
– Detecting Ventricular Fibrillation and 

Ventricular Tachycardiay



Li it ti f C t S tLimitations of Current Systems

• Context-awareness:
the need for a general and formal context modelling and– the need for a general and formal context modelling and 
reasoning approach

– Situations as a higher level of abstraction over contextSituations as a higher level of abstraction over context
• context: room temp, blood pressure and heart rate
• situations: ‘healthy’ and ‘hypertension’y yp

• Learning: data stream mining on mobile devices
– the need for light weight algorithms
– the need for context-aware adaptation of algorithms



SAAP Mobile MonitoringSAAP Mobile Monitoring

•Dept. of Cardiovascular Research, Monash University
IM Medical Pty Ltd.
Dept. of Bio Medical Engineering, RMIT University



[]=



Defining Medical Situations
Enter variable names and their 
minimum and maximum valuesminimum and maximum values 

1-Add terms for each variable 

2- Enter4 parameters for each term (more…)

Enter situation name and add conditions 
based on pre-defined variables and terms 

(weight for conditions of a situation must 
add up to 1)



Situation-Aware Adaptation 
Demo:



Situation-Aware Adaptation 
Demo:



Visualization of Situations



Visualization of Situations



Evaluation



Evaluation



E al ationEvaluation

The dataset used for the evaluation consists of 131
context states and their scales contribute to the
occurrence of each pre-defined situation as well as the
uncertain situations that occurs when situations evolve.



EvaluationEvaluation



E al ationEvaluation
• When the data corresponds to a pre-defined 

it ti th lt f th h l tsituation the results of three approaches almost 
overlap.

• When changes of data indicate the occurrence 
of an unknown and uncertain situation: 
– differences of reasoning results between CS, DS and 

FSI are more apparent. 
– sudden rises and falls with sharp edges when 

situations change which do not match the real-life 
it tisituations. 

– When the value of context attributes decreases or 
increases its membership degree also increases andincreases, its membership degree also increases and 
decreases accordingly and gradually.



Adaptation EvaluationAdaptation Evaluation
• Adaptation of LWC according to Situation



Adaptation E al ationAdaptation Evaluation
• Adaptation of LWC according to Situation



MobileECGMobileECG



MobileECGMobileECG



MobileECGMobileECG



MobileECGMobileECG



Applications – ITS and RoadApplications ITS and Road 
Safety
• Centre for Accident Research and Road Safety –

Queensland
• Insurance Australia Group

• Intersection Safety
• Crashes on Curves

D k D i i B h i• Drunk Driving Behaviour



Applications ITS and Road SafetApplications – ITS and Road Safety
• Crash Detection on Curves

• Impact Factors on Claim Costs

• Analysis of Crash Data – Building the Knowledge 
BaseBase

• Traditional Data Mining Exercise• Traditional Data Mining Exercise
– With a few twists and turns

• Text Mining
• Cluster Analysis
• Contributing Factors
• Classificatory Analysis



Th U & I A F k ( t’d)The U & I Aware Framework (cont’d)
Matching Vehicle L i fg

Status Data
Speed, Angle, 

Position, 
Direction, Size,  

Maneuver

Learning from 
collision, near 

collision 
events

Data mining

Knowledge 
Base of 
Collision 
Patterns

Preselection
collision 
pattern

Calculating 
Collision Point  

Collision 
Actually 

Happened?

Yes, No

COLLISION 
LEARNING

collision detection 
algorithm

Issue 

Happened?

COLLISION 
DETECTION

Point of 
Collision 
Found?

Calculating Time

Warning / 
Command

Yes, No

COLLISION 
WARNING

Calculating Time 
To Collision 

collision 
detection 
algorithm

Collision 
Predicted?

Yes Yes Time to Avoid < 
Time to Collision?



I t ti Si l tiIntersection Simulation



Collision Patterns LearningCollision Patterns Learning
• Learning is performed by mining sensor and• Learning is performed by mining sensor and 

historical collision data
• No existing research on learning whole setsNo existing research on learning whole sets 

of collision patterns at an intersection 
• Sensor and collision data are generated by g y

the simulation
Veh1_Manouvre Veh1_Direction Veh1_angle Veh2_Manouvre Veh2_Direction Veh2_angle Coll_Type
STRAIGHT RIGHT 0 STOPPED DOWN 90 SideCollision
STRAIGHT RIGHT 0 STRAIGHT RIGHT 0 RearEndCollision
STRAIGHT LEFT 0 STRAIGHT LEFT 0 R E dC lli iSTRAIGHT LEFT 0 STRAIGHT LEFT 0 RearEndCollision
STRAIGHT RIGHT 0 STRAIGHT RIGHT 0 RearEndCollision
STRAIGHT DOWN 90 STRAIGHT DOWN 90 RearEndCollision
STRAIGHT DOWN 90 STRAIGHT DOWN 90 RearEndCollision
STRAIGHT DOWN 90 STRAIGHT DOWN 90 RearEndCollision
STRAIGHT DOWN 90 STOPPED LEFT 0 Sid C lli iSTRAIGHT DOWN 90 STOPPED LEFT 0 SideCollision
STRAIGHT RIGHT 0 STRAIGHT RIGHT 0 RearEndCollision



Preselection

• Collision detection is only performed on pairs 
of vehicles that have the possibility of p y
collisions based on the known intersection 
collision patterns. 
Ch i l th hi l th t hibit• Choosing only the vehicles that exhibits 
behaviours, location, and driving manoeuvres 
that match the collision patterns in thethat match the collision patterns in the 
knowledge base

• Performance is improved by eliminating the p y g
need to check every pair of vehicles at the 
intersection for collision possibility. 



Preselection Algorithm ImplementationPreselection Algorithm Implementation
• Two types of side collision patterns: perpendicular leftTwo types of side collision patterns: perpendicular left 

with straight manoeuvre and perpendicular right with 
straight manoeuvre. 

• Only cars that are located within a certain area and• Only cars that are located within a certain area and 
exhibiting certain manoeuvres are selected. 

• After preselection is executed, only then the pair-wise 
lli i d t ti l ith i li dcollision detection algorithm is applied.



Collision Detection Evaluation

• Speed of detection
• Performance/accuracy: precision and 

coveragecoverage 



Speed of Detection

• Collision Detection Log File with attributes: 
registration number of both vehicles collisionregistration number of both vehicles, collision 
point, time to collision, leg location of both 
vehicles, and collision type, yp

• Average detection time (time to collision) for 
each run is calculated 

• If preselection is ignored in collision detection, 
the average time to collision is 5.6 secondsg

• When preselection is used, the average time to 
collision is 8.7 second



Accuracy: Precision andAccuracy: Precision and 
Coverage Detectionsvalidofnoi i .g

Detectionscollisiontotal
fprecision 

positivetrue


x
=

)( negativefalsepositivetrue  )( zx 
 

Detectionsvalidofno.
Collisionstotal

Detectionsvalidofno
Coverage

.


positivetrue


x
= 

true positive: valid detection

)( positivefalsepositivetrue  )( yx 

false negative: invalid detection
false positive: undetected collision 



Accuracy: Evaluation Result
Sid lli i d t ti• Side collision detection 
– 100% precision when side collision detections 

presentpresent
– 100% coverage when side collisions present

• Rear end collision detection• Rear-end collision detection
– No detection at this stage – most rear-end 

collisions happen as chain effects of side collisionscollisions happen as chain effects of side collisions
– 0% coverage

• OverallOverall
– 100% precision
– < 100 % coverage due to undetected rear-end g

collisions



Applications ITS and RoadApplications – ITS and Road 
Safety
• Approach/Methodology 

– Situation Understanding
• Adaptive Data Stream Mining techniques perform 

real-time on-board diagnostics, with an acceptable 
degree of accuracy for the risk situations identifieddegree of accuracy, for the risk situations identified

P t t i d E l ti– Prototyping and Evaluation



Applications – ITS and RoadApplications ITS and Road 
Safety

• Apply LWC onboard a 
moving vehicle System Overview moving vehicle.

• Create a clustering 
d l

UDM clusters – t

Central Server

model.
• Annotate the clusters 

On-Board Device
Classification models - T

with their labels using 
expert knowledge 
base.

• Apply the annotated pp y
clustering to induce 
the driver status of 



Applications ITS and RoadApplications – ITS and Road 
Safety



Applications – Habitat Monitoring 

• Context-aware energy-efficient 
sensing for habitat monitoring: the 
Case of the Pig Farm and DataCase of the Pig Farm and Data 
Mules

• Learning of Contextual Patterns 
Using Hi-CoREUsing Hi CoRE
.



Sensor Battery

• Battery capacity is finite, and progress in 
b tt t h l i lbattery technology is very slow.

• Battery capacity expected to make littleBattery capacity expected to make little 
improvement in the near future. 



Habitat Monitoring Example

Deployment of 32 sensor nodes using Mica motes 
coupled with Mica weather Boards to monitorcoupled with Mica weather Boards to monitor 
petrel nests activity.

Known context:
(i) Petrels enter or leave nests during light phase(i) Petrels enter or leave nests during light phase 

=> little/no sensing during those times => 
reduce data samplingreduce data sampling.

(ii) Outside temperatures constant => less 
sensors required to sense outside => sleep asensors required to sense outside => sleep a 
few sensors.



Contextual information

A sensor’s context:
its profile such as the location in a sensor- its profile, such as the location in a sensor 
network, and a common situation they face(e.g 
weather is hot)weather is hot)

- sensor state, e.g. battery power, network 
connectivityconnectivity

- history of readings
time- time

- etc.



CASE: Context-Aware Sensing Environment



Context Discovery Module

Purpose is to obtain contextual information. 
• Context based on custom scenarios.
• Mining Data Stream Offline/Online• Mining Data Stream Offline/Online.



M j C f h SMajor Components of the System

(i) Context Discovery Module.
(ii) Context-Trigger Module
(iii) Communication(iii) Communication
(iv) Sensor operations repository



Context-Trigger Module



Other Components

Communication
h dl d f b h d- handles data transfer between the sensors and 
the application, receiving and sending data 

k t b t 2 tipackets between 2 parties.

Sensor Operations Repository
- storage of sensor operations that constitutes- storage of sensor operations that constitutes 

action macros.



Experimental Setup

*Note partitioning of sensors / bootstrapping



Experimental SetupExperimental Setup

*Note partitioning of sensors / bootstrapping



Experimental Tools

• tinyOs,programming with nesC.
• Mica2 motes with sensor board.
• Simulations with PowerTOSSIM• Simulations with PowerTOSSIM 

(Shnayder et al., 2004).



Experiments Performed

(i) Control Experiment
(ii) Transmission Rates Experiment
(iii) Message Size Experiment(iii) Message Size Experiment
(iv) Sleep Mote Experiment



C l EControl Exp.



TransmissionTransmission 
Rate Exp.p



Sleep Mote



CASE Compact In-Network ApplicationCASE Compact – In-Network Application



CASE Compact – In-Network ApplicationCASE Compact In Network Application



CASE Compact - Applications 
CSIROCSIRO
• Experimentally shown to improve energy 

conservation in Physical Clusteringconservation in Physical Clustering 
algorithms such as HEED

• Enable energy-efficient querying of sensorEnable energy efficient querying of sensor 
nodes

Dept. of Primary Industries Victoria
• Data Muling/Data Collection in WSNs• Data Muling/Data Collection in WSNs

– Conserve energy in sensor networks by taking 
advantage of mule data gathering patterns toadvantage of mule data gathering patterns to 
dynamically adapt sensor operations.



Experimental SetupExperimental Setup



E l tiEvaluation 



Evaluation 



Applications Smart Wardrobe (LokeApplications - Smart Wardrobe (Loke, 
Indrawan, Ling and Samira) 

RFID 

Events Data  

RFID 
reader 

Smart 
Wardrobe 
application profile 



Usage of Smart Wardrobe

• Create a fashion profile for users.
• The fashion profile:

– assists users to understand his/her fashionassists users to understand his/her fashion 
behaviour.
assists users to make purchasing decision– assists users to make purchasing decision 
(recommender system).



Main Components of the System

• Hardware
– RFID and RFID reader.

• SoftwareSoftware
– Events detector and events database.

P fil t– Profiles generator.



Physical Layout

RFID
reader

track

RFID tags
b dd d iembedded in

cloth hangers



Events

• Item of clothes is out of the wardrobe.
P ll th RFID t i t l– Poll the RFID tags every s interval.

– ‘Missing’ RFID tags is interpreted as item out 
f th d bof the wardrobe.

• Item of clothes is being worn.
– The item is detected to be out of the wardrobe 

for a given time t.
• A pair of items is being worn together.

– The items are detected to be out of theThe items are detected to be out of the 
wardrobe for a given time t.



Profiles

• Most and least frequently worn item.
M t d l t f tl b d• Most and least frequently worn brand. 

• Most and least frequently worn colour. 
• Most and least frequently worn pattern (eg. 

floral, plain)., p )
• Most frequently worn combination of items;

» During the daytime.u g e day e
» During the evening.
» During the weekend.



Prototype

• Simulation based on the following assumptions:
– The inventory generator creates woman’s clothingThe inventory generator creates woman s clothing 

items. We choose to generate woman data because 
there is a broader range of woman clothing items 
compared to menswearcompared to menswear.

– All clothing items inside a single wardrobe belong to a 
single user.
All l hi i i id h d b d i h– All clothing items inside the wardrobe are tagged with 
RFID tags.

– When one decides not to wear the item, one willWhen one decides not to wear the item, one will 
always put the item back into the wardrobe. 
Therefore, application can be certain that the user 
wears clothing items that have been taken out of thewears clothing items that have been taken out of the 
wardrobe for a long time period



Interface



Sample Profiles



Location Analysisy

134



Stock Market VisualisationStock Market Visualisation

135



Summarizing…

• RFID enables the creation of private and 
unobtrusive users profilesunobtrusive users profiles.

• Design considerations:
Hardware:– Hardware:

• The types of RFID and the placement of the RFID in 
the object.

• The placement of the RFID reader.
• The accuracy of RFID reader.

S ft– Software
• What can be considered as an ‘event’ of interest?
• How to map the RFID readings into an ‘event’ of• How to map the RFID readings into an event  of 

interest?



Part 5: Final WordsPart 5: Final Words



Future Directions (1)

• Mobs4Autism
• Mobile ECG Analysisy

– Real-time discord and motif discovery of 
time series

– Mapping discovered discords and motifs pp g
to real ECG problems

– Using Symbolic ApproXimation (SAX) 
and point-based clustering for time 

i t tiseries representation 
• On-going applications for funding with 

Cardiovascular Research Unit, Monash 
University IM Medical Pty Ltd and theUniversity, IM Medical Pty. Ltd. and the 
Dept. of Biomedical Engineering (RMIT).
– Focus on Cardiac Patients
– Support for post hospital monitoring and– Support for post hospital monitoring and 

recovery 
– Ageing population



Future Directions (2)

• Adaptive model approximation
– Software solutions: using feedback control 

mechanism along with the granularity-based 
approach

– Hardware solutions: using Field g
Programmable Gate Arrays (FPGAs)

– Interaction between the two sets of solutionsInteraction between the two sets of solutions 
would raise a number of issues that need to 
be addressedbe addressed
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