286 research outputs found

    Design and evaluation environment for collision-free motion planning of cooperating redundant robots

    Get PDF
    This paper deals with path planning methods suitable for use with closely cooperating kinematically redundant robots (primarily open-chain rigid-link manipulators) avoiding collision with segments and obstacles. A Matlab-based environment has been set up for designing such methods and evaluating already existing ones. Within this framework, several of the commonly used distance or intrusion criteria and corresponding path optimization methods have been examined for efficiency and reliability. Finally, proposals for further improvement of the methods are given

    Biohybrid robotics: From the nanoscale to the macroscale

    Full text link
    Biohybrid robotics is a field in which biological entities are combined with artificial materials in order to obtain improved performance or features that are difficult to mimic with hand-made materials. Three main level of integration can be envisioned depending on the complexity of the biological entity, ranging from the nanoscale to the macroscale. At the nanoscale, enzymes that catalyze biocompatible reactions can be used as power sources for self-propelled nanoparticles of different geometries and compositions, obtaining rather interesting active matter systems that acquire importance in the biomedical field as drug delivery systems. At the microscale, single enzymes are substituted by complete cells, such as bacteria or spermatozoa, whose self-propelling capabilities can be used to transport cargo and can also be used as drug delivery systems, for in vitro fertilization practices or for biofilm removal. Finally, at the macroscale, the combinations of millions of cells forming tissues can be used to power biorobotic devices or bioactuators by using muscle cells. Both cardiac and skeletal muscle tissue have been part of remarkable examples of untethered biorobots that can crawl or swim due to the contractions of the tissue and current developments aim at the integration of several types of tissue to obtain more realistic biomimetic devices, which could lead to the next generation of hybrid robotics. Tethered bioactuators, however, result in excellent candidates for tissue models for drug screening purposes or the study of muscle myopathies due to their three-dimensional architecture

    Smart HMI for an autonomous vehicle

    Get PDF
    El presente trabajo expone la arquitectura diseñada para la implementación de un HMI (Human Machine Interface) en un vehículo autónomo desarrollado en la Universidad de Alcalá. Este sistema hace uso del ecosistema ROS (Robot Operating System) para la comunicación entre los diferentes modulos desarrollados en el vehículo. Además se expone la creación de una herramienta de captación de datos de conductores haciendo uso de la mirada de este, basada en OpenFace, una herramienta de código libre para análisis de caras. Para ello se han desarrollado dos métodos, uno basado en un método lineal y otro usando técnicas del algoritmo NARMAX. Se han desarrollado diferentes test para demostrar la precisión de ambos métodos y han sido evaluados en el dataset de accidentes DADA2000.This works presents the framework that composed the HMI (Human Machine Interface) built in an autonomous vehicle from University of Alcalá. This system has been developed using the framework ROS (Robot Operating System) for the communication between the different sub-modules developed on the vehicle. Also, a system to obtain gaze focalization data from drivers using a camera is presented, based on OpenFace, which is an open source tool for face analysis. Two different methods are proposed, one linear and other based on NARMAX algorithm. Different test has been done in order to prove their accuracy and they have been evaluated on the challenging dataset DADA2000, which is composed by traffic accidents.Máster Universitario en Ingeniería Industrial (M141

    Enzyme Powered Nanomotors Towards Biomedical Applications

    Full text link
    [eng] The advancements in nanotechnology enabled the development of new diagnostic tools and drug delivery systems based on nanosystems, which offer unique features such as large surface area to volume ratio, cargo loading capabilities, increased circulation times, as well as versatility and multifunctionality. Despite this, the majority of nanomedicines do not translate into clinics, in part due to the biological barriers present in the body. Synthetic nano- and micromotors could be an alternative tool in nanomedicine, as the continuous propulsion force and potential to modulate the medium may aid tissue penetration and drug diffusion across biological barriers. Enzyme-powered motors are especially interesting for biomedical applications, owing to their biocompatibility and use of bioavailable substrates as fuel for propulsion. This thesis aims at exploring the potential applications of urease-powered nanomotors in nanomedicine. In the first work, we evaluated these motors as drug delivery systems. We found that active urease- powered nanomotors showed active motion in phosphate buffer solutions, and enhanced in vitro drug release profiles in comparison to passive nanoparticles. In addition, we observed that the motors were more efficient in delivering drug to cancer cells and caused higher toxicity levels, due to the combination of boosted drug release and local increase of pH produced by urea breakdown into ammonia and carbon dioxide. One of the major goals in nanomedicine is to achieve localized drug action, thus reducing side-effects. A commonly strategy to attain this is the use moieties to target specific diseases. In our second work, we assessed the ability of urease-powered nanomotors to improve the targeting and penetration of spheroids, using an antibody with therapeutic potential. We showed that the combination of active propulsion with targeting led to a significant increase in spheroid penetration, and that this effect caused a decrease in cell proliferation due to the antibody’s therapeutic action. Considering that high concentrations of nanomedicines are required to achieve therapeutic efficiency; in the third work we investigated the collective behavior of urease-powered nanomotors. Apart from optical microscopy, we evaluated the tracked the swarming behavior of the nanomotors using positron emission tomography, which is a technique widely used in clinics, due to its noninvasiveness and ability to provide quantitative information. We showed that the nanomotors were able to overcome hurdles while swimming in confined geometries. We observed that the nanomotors swarming behavior led to enhanced fluid convection and mixing both in vitro, and in vivo within mice’s bladders. Aiming at conferring protecting abilities to the enzyme-powered nanomotors, in the fourth work, we investigated the use of liposomes as chassis for nanomotors, encapsulating urease within their inner compartment. We demonstrated that the lipidic bilayer provides the enzymatic engines with protection from harsh acidic environments, and that the motility of liposome-based motors can be activated with bile salts. Altogether, these results demonstrate the potential of enzyme-powered nanomotors as nanomedicine tools, with versatile chassis, as well as capability to enhance drug delivery and tumor penetration. Moreover, their collective dynamics in vivo, tracked using medical imaging techniques, represent a step-forward in the journey towards clinical translation.[spa] Recientes avances en nanotecnología han permitido el desarrollo de nuevas herramientas para el diagnóstico de enfermedades y el transporte dirigido de fármacos, ofreciendo propiedades únicas como encapsulación de fármacos, el control sobre la biodistribución de estos, versatilidad y multifuncionalidad. A pesar de estos avances, la mayoría de nanomedicinas no consiguen llegar a aplicaciones médicas reales, lo cual es en parte debido a la presencia de barreras biológicas en el organismo que limitan su transporte hacia los tejidos de interés. En este sentido, el desarrollo de nuevos micro- y nanomotores sintéticos, capaces de autopropulsarse y causar cambios locales en el ambiente, podrían ofrecer una alternativa para la nanomedicina, promoviendo una mayor penetración en tejidos de interés y un mejor transporte de fármacos a través de las barreras biológicas. En concreto, los nanomotores enzimáticos poseen un alto potencial para aplicaciones biomédicas gracias a su biocompatibilidad y a la posibilidad de usar sustancias presentes en el organismo como combustible. Los trabajos presentados en esta tesis exploran el potenical de nanomotores, autopropulsados mediante la enzima ureasa, para aplicaciones biomédicas, y investigan su uso como vehículos para transporte de fármacos, su capacidad para mejorar penetración de tejidos diana, su versatilidad y movimiento colectivo. En conjunto, los resultados presentados en esta tesis doctoral demuestran el potencial del uso de nanomotores autopropulsados mediante enzimas como herramientas biomédicas, ofreciendo versatilidad en su diseño y una alta capacidad para promover el transporte de fármacos y la penetración en tumores. Por último, su movimiento colectivo observado in vivo mediante técnicas de imagen médicas representan un significativo avance en el viaje hacia su aplicación en medicina

    Hybrid bio-robotics: from the nanoscale to the macroscale

    Get PDF
    [eng] Hybrid bio-robotics is a discipline that aims at integrating biological entities with synthetic materials to incorporate features from biological systems that have been optimized through millions of years of evolution and are difficult to replicate in current robotic systems. We can find examples of this integration at the nanoscale, in the field of catalytic nano- and micromotors, which are particles able to self-propel due to catalytic reactions happening in their surface. By using enzymes, these nanomotors can achieve motion in a biocompatible manner, finding their main applications in active drug delivery. At the microscale, we can find single-cell bio-swimmers that use the motion capabilities of organisms like bacteria or spermatozoa to transport microparticles or microtubes for targeted therapeutics or bio-film removal. At the macroscale, cardiac or skeletal muscle tissue are used to power small robotic devices that can perform simple actions like crawling, swimming, or gripping, due to the contractions of the muscle cells. This dissertation covers several aspects of these kinds of devices from the nanoscale to the macro-scale, focusing on enzymatically propelled nano- and micromotors and skeletal muscle tissue bio-actuators and bio-robots. On the field of enzymatic nanomotors, there is a need for a better description of their dynamics that, consequently, might help understand their motion mechanisms. Here, we focus on several examples of nano- and micromotors that show complex dynamics and we propose different strategies to analyze their motion. We develop a theoretical framework for the particular case of enzymatic motors with exponentially decreasing speed, which break the assumptions of constant speed of current methods of analysis and need different strategies to characterize their motion. Finally, we consider the case of enzymatic nanomotors moving in complex biological matrices, such as hyaluronic acid, and we study their interactions and the effects of the catalytic reaction using dynamic light scattering, showing that nanomotors with negative surface charge and urease-powered motion present enhanced parameters of diffusion in hyaluronic acid. Moving towards muscle-based robotics, we investigate the application of 3D bioprinting for the bioengineering of skeletal muscle tissue. We demonstrate that this technique can yield well-aligned and functional muscle fibers that can be stimulated with electric pulses. Moreover, we develop and apply a novel co-axial approach to obtain thin and individual muscle fibers that resemble the bundle-like organization of native skeletal muscle tissue. We further exploit the versatility of this technique to print several types of materials in the same process and we fabricate bio-actuators based on skeletal muscle tissue with two soft posts. Due to the deflection of these cantilevers when the tissue contracts upon stimulation, we can measure the generated forces, therefore obtaining a force measurement platform that could be useful for muscle development studies or drug testing. With these applications in mind, we study the adaptability of muscle tissue after applying various exercise protocols based on different stimulation frequencies and different post stiffness, finding an increase of the force generation, especially at medium frequencies, that resembles the response of native tissue. Moreover, we adapt the force measurement platform to be used with human-derived myoblasts and we bioengineer two models of young and aged muscle tissue that could be used for drug testing purposes. As a proof of concept, we analyze the effects of a cosmetic peptide ingredient under development, focusing on the kinematics of high stimulation contractions. Finally, we present the fabrication of a muscle-based bio-robot able to swim by inertial strokes in a liquid interface and a nanocomposite-laden bio-robot that can crawl on a surface. The first bio-robot is thoroughly characterized through mechanical simulations, allowing us to optimize the skeleton, based on a serpentine or spring-like structure. Moreover, we compare the motion of symmetric and asymmetric designs, demonstrating that, although symmetric bio-robots can achieve some motion due to spontaneous symmetry breaking during its self-assembly, asymmetric bio-robots are faster and more consistent in their directionality. The nanocomposite-laden crawling bio-robot consisted of embedded piezoelectric boron nitride nanotubes that improved the differentiation of the muscle tissue due to a feedback loop of piezoelectric effect activated by the same spontaneous contractions of the tissue. We find that bio-robots with those nanocomposites achieve faster motion and stronger force outputs, demonstrating the beneficial effects in their differentiation. This research presented in this thesis contributes to the development of the field of bio-hybrid robotic devices. On enzymatically propelled nano- and micromotors, the novel theoretical framework and the results regarding the interaction of nanomotors with complex media might offer useful fundamental knowledge for future biomedical applications of these systems. The bioengineering approaches developed to fabricate murine- or human-based bio-actuators might find applications in drug screening or to model heterogeneous muscle diseases in biomedicine using the patient’s own cells. Finally, the fabrication of bio-hybrid swimmers and nanocomposite crawlers will help understand and improve the swimming motion of these devices, as well as pave the way towards the use of nanocomposite to enhance the performance of future actuators.[spa] La bio-robótica híbrida es una disciplina cuyo objetivo es la integración de entidades biológicas con materiales sintéticos para superar los desafíos existentes en el campo de la robótica blanda, incorporando características de los sistemas biológicos que han sido optimizadas durante millones de años de evolución natural y no son fáciles de reproducir artificialmente. Esta tesis cubre varios aspectos de este tipo de dispositivos desde la nanoescala a la macroescala, enfocándose en nano- y micromotores propulsados enzimáticamente y bio-actuadores y bio-robots basados en tejido muscular esquelético. En el campo de nanomotores enzimáticos, existe la necesidad de encontrar mejores modelos que puedan describir la dinámica de su movimiento para llegar a entender sus mecanismos de propulsión subyacentes. Aquí, nos enfocamos en diversos ejemplos de nano- y micromotores que muestran dinámicas de movimiento complejas y proponemos diferentes estrategias que se pueden utilizar para analizar y caracterizar este movimiento. Moviéndonos hacia robots basados en células musculares, investigamos la aplicación de la técnica de bioimpresión en 3D para la biofabricación de músculo esquelético. Demostramos que esta técnica puede producir fibras musculares funcionales y bien alineadas que puede ser estimuladas y contraerse con pulsos eléctricos. Investigamos la versatilidad de esta técnica para imprimir varios tipos de materiales en el mismo proceso y fabricamos bio-actuadores basados en músculo esquelético. Debido a los movimientos de unos postes gracias a las contracciones musculares, podemos obtener medidas de la fuerza ejercida, obteniendo una plataforma de medición de fuerzas que podría ser de utilidad para estudios sobre el desarrollo del músculo o para testeo de fármacos. Finalmente, presentamos la fabricación de un bio-robot basado en músculo esquelético capaz de nadar en la superficie de un líquido y un bio-robot con nanocompuestos incrustados que puede arrastrarse por una superficie sólida. El primer de ellos es minuciosamente caracterizado a través de simulaciones mecánicas, permitiéndonos optimizar su esqueleto, basado en una estructura tipo serpentina o muelle. El segundo bio-robot contiene nanotubos piezoeléctricos incrustados en su tejido, los cuales ayudan en la diferenciación del músculo debido a una retroalimentación basada en su efecto piezoeléctrico y activada por las contracciones espontáneas del tejido. Mostramos que estos bio-robots pueden generar un movimiento más rápido y una mayor generación de fuerza, demostrando los efectos beneficiales en la diferenciación del tejido

    Model for WCET prediction, scheduling and task allocation for emergent agent-behaviours in real-time scenarios

    Get PDF
    [ES]Hasta el momento no se conocen modelos de tiempo real específicamente desarrollados para su uso en sistemas abiertos, como las Organizaciones Virtuales de Agentes (OVs). Convencionalmente, los modelos de tiempo real se aplican a sistemas cerrados donde todas las variables se conocen a priori. Esta tesis presenta nuevas contribuciones y la novedosa integración de agentes en tiempo real dentro de OVs. Hasta donde alcanza nuestro conocimiento, éste es el primer modelo específicamente diseñado para su aplicación en OVs con restricciones temporales estrictas. Esta tesis proporciona una nueva perspectiva que combina la apertura y dinamicidad necesarias en una OV con las restricciones de tiempo real. Ésto es una aspecto complicado ya que el primer paradigma no es estricto, como el propio término de sistema abierto indica, sin embargo, el segundo paradigma debe cumplir estrictas restricciones. En resumen, el modelo que se presenta permite definir las acciones que una OV debe llevar a cabo con un plazo concreto, considerando los cambios que pueden ocurrir durante la ejecución de un plan particular. Es una planificación de tiempo real en una OV. Otra de las principales contribuciones de esta tesis es un modelo para el cálculo del tiempo de ejecución en el peor caso (WCET). La propuesta es un modelo efectivo para calcular el peor escenario cuando un agente desea formar parte de una OV y para ello, debe incluir sus tareas o comportamientos dentro del sistema de tiempo real, es decir, se calcula el WCET de comportamientos emergentes en tiempo de ejecución. También se incluye una planificación local para cada nodo de ejecución basada en el algoritmo FPS y una distribución de tareas entre los nodos disponibles en el sistema. Para ambos modelos se usan modelos matemáticos y estadísticos avanzados para crear un mecanismo adaptable, robusto y eficiente para agentes inteligentes en OVs. El desconocimiento, pese al estudio realizado, de una plataforma para sistemas abiertos que soporte agentes con restricciones de tiempo real y los mecanismos necesarios para el control y la gestión de OVs, es la principal motivación para el desarrollo de la plataforma de agentes PANGEA+RT. PANGEA+RT es una innovadora plataforma multi-agente que proporciona soporte para la ejecución de agentes en ambientes de tiempo real. Finalmente, se presenta un caso de estudio donde robots heterogéneos colaboran para realizar tareas de vigilancia. El caso de estudio se ha desarrollado con la plataforma PANGEA+RT donde el modelo propuesto está integrado. Por tanto al final de la tesis, con este caso de estudio se obtienen los resultados y conclusiones que validan el modelo

    Active Materials

    Get PDF
    What is an active material? This book aims to redefine perceptions of the materials that respond to their environment. Through the theory of the structure and functionality of materials found in nature a scientific approach to active materials is first identified. Further interviews with experts from the natural sciences and humanities then seeks to question and redefine this view of materials to create a new definition of active materials

    Neuromorphic auditory computing: towards a digital, event-based implementation of the hearing sense for robotics

    Get PDF
    In this work, it is intended to advance on the development of the neuromorphic audio processing systems in robots through the implementation of an open-source neuromorphic cochlea, event-based models of primary auditory nuclei, and their potential use for real-time robotics applications. First, the main gaps when working with neuromorphic cochleae were identified. Among them, the accessibility and usability of such sensors can be considered as a critical aspect. Silicon cochleae could not be as flexible as desired for some applications. However, FPGA-based sensors can be considered as an alternative for fast prototyping and proof-of-concept applications. Therefore, a software tool was implemented for generating open-source, user-configurable Neuromorphic Auditory Sensor models that can be deployed in any FPGA, removing the aforementioned barriers for the neuromorphic research community. Next, the biological principles of the animals' auditory system were studied with the aim of continuing the development of the Neuromorphic Auditory Sensor. More specifically, the principles of binaural hearing were deeply studied for implementing event-based models to perform real-time sound source localization tasks. Two different approaches were followed to extract inter-aural time differences from event-based auditory signals. On the one hand, a digital, event-based design of the Jeffress model was implemented. On the other hand, a novel digital implementation of the Time Difference Encoder model was designed and implemented on FPGA. Finally, three different robotic platforms were used for evaluating the performance of the proposed real-time neuromorphic audio processing architectures. An audio-guided central pattern generator was used to control a hexapod robot in real-time using spiking neural networks on SpiNNaker. Then, a sensory integration application was implemented combining sound source localization and obstacle avoidance for autonomous robots navigation. Lastly, the Neuromorphic Auditory Sensor was integrated within the iCub robotic platform, being the first time that an event-based cochlea is used in a humanoid robot. Then, the conclusions obtained are presented and new features and improvements are proposed for future works.En este trabajo se pretende avanzar en el desarrollo de los sistemas de procesamiento de audio neuromórficos en robots a través de la implementación de una cóclea neuromórfica de código abierto, modelos basados en eventos de los núcleos auditivos primarios, y su potencial uso para aplicaciones de robótica en tiempo real. En primer lugar, se identificaron los principales problemas a la hora de trabajar con cócleas neuromórficas. Entre ellos, la accesibilidad y usabilidad de dichos sensores puede considerarse un aspecto crítico. Los circuitos integrados analógicos que implementan modelos cocleares pueden no pueden ser tan flexibles como se desea para algunas aplicaciones específicas. Sin embargo, los sensores basados en FPGA pueden considerarse una alternativa para el desarrollo rápido y flexible de prototipos y aplicaciones de prueba de concepto. Por lo tanto, en este trabajo se implementó una herramienta de software para generar modelos de sensores auditivos neuromórficos de código abierto y configurables por el usuario, que pueden desplegarse en cualquier FPGA, eliminando las barreras mencionadas para la comunidad de investigación neuromórfica. A continuación, se estudiaron los principios biológicos del sistema auditivo de los animales con el objetivo de continuar con el desarrollo del Sensor Auditivo Neuromórfico (NAS). Más concretamente, se estudiaron en profundidad los principios de la audición binaural con el fin de implementar modelos basados en eventos para realizar tareas de localización de fuentes sonoras en tiempo real. Se siguieron dos enfoques diferentes para extraer las diferencias temporales interaurales de las señales auditivas basadas en eventos. Por un lado, se implementó un diseño digital basado en eventos del modelo Jeffress. Por otro lado, se diseñó una novedosa implementación digital del modelo de codificador de diferencias temporales y se implementó en FPGA. Por último, se utilizaron tres plataformas robóticas diferentes para evaluar el rendimiento de las arquitecturas de procesamiento de audio neuromórfico en tiempo real propuestas. Se utilizó un generador central de patrones guiado por audio para controlar un robot hexápodo en tiempo real utilizando redes neuronales pulsantes en SpiNNaker. A continuación, se implementó una aplicación de integración sensorial que combina la localización de fuentes de sonido y la evitación de obstáculos para la navegación de robots autónomos. Por último, se integró el Sensor Auditivo Neuromórfico dentro de la plataforma robótica iCub, siendo la primera vez que se utiliza una cóclea basada en eventos en un robot humanoide. Por último, en este trabajo se presentan las conclusiones obtenidas y se proponen nuevas funcionalidades y mejoras para futuros trabajos

    Active Materials

    Get PDF
    What is an active material? This book aims to redefine perceptions of the materials that respond to their environment. Through the theory of the structure and functionality of materials found in nature a scientific approach to active materials is first identified. Further interviews with experts from the natural sciences and humanities then seeks to question and redefine this view of materials to create a new definition of active materials

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port
    corecore