




UNIVERSIDAD DE SEVILLA

DOCTORAL THESIS

Neuromorphic auditory computing: towards
a digital, event-based implementation of the

hearing sense for robotics

Author:

Daniel Gutiérrez Galán

Supervisors:

Dr. Alejandro Linares Barranco
Dr. Ángel F. Jiménez Fernández

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Robotics and Computer Technology Lab.
Departamento de Arquitectura y Tecnología de Computadores

July, 2022

http://www.us.es
https://investigacion.us.es/sisius/sis_showpub.php?idpers=22013
https://investigacion.us.es/sisius/sis_showpub.php?idpers=7665
https://investigacion.us.es/sisius/sis_showpub.php?idpers=11445
http://www.rtc.us.es/
http://www.atc.us.es




iii

Declaration of Authorship
I, Daniel Gutiérrez Galán, declare that this thesis, titled “Neuromorphic auditory
computing: towards a digital, event-based implementation of the hearing sense
for robotics”, and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:





v

UNIVERSIDAD DE SEVILLA

Abstract
Escuela Politécnica Superior

Departamento de Arquitectura y Tecnología de Computadores

Doctor of Philosophy

Neuromorphic auditory computing: towards a digital, event-based
implementation of the hearing sense for robotics

by Daniel Gutiérrez Galán

In this work, it is intended to advance on the development of the neuromorphic
audio processing systems in robots through the implementation of an open-
source neuromorphic cochlea, event-based models of primary auditory nuclei,
and their potential use for real-time robotics applications.

First, the main gaps when working with neuromorphic cochleae were
identified. Among them, the accessibility and usability of such sensors can be
considered as a critical aspect. Silicon cochleae could not be as flexible as desired
for some applications. However, FPGA-based sensors can be considered as an
alternative for fast prototyping and proof-of-concept applications. Therefore, a
software tool was implemented for generating open-source, user-configurable
Neuromorphic Auditory Sensor models that can be deployed in any FPGA,
removing the aforementioned barriers for the neuromorphic research community.

Next, the biological principles of the animals’ auditory system were studied
with the aim of continuing the development of the Neuromorphic Auditory
Sensor. More specifically, the principles of binaural hearing were deeply
studied for implementing event-based models to perform real-time sound source
localization tasks. Two different approaches were followed to extract inter-
aural time differences from event-based auditory signals. On the one hand, a
digital, event-based design of the Jeffress model was implemented. On the other
hand, a novel digital implementation of the Time Difference Encoder model was
designed and implemented on FPGA.

Finally, three different robotic platforms were used for evaluating
the performance of the proposed real-time neuromorphic audio processing
architectures. An audio-guided central pattern generator was used to control a

HTTP://WWW.US.ES
https://eps.us.es/
http://www.atc.us.es


vi

hexapod robot in real-time using spiking neural networks on SpiNNaker. Then,
a sensory integration application was implemented combining sound source
localization and obstacle avoidance for autonomous robots navigation. Lastly,
the Neuromorphic Auditory Sensor was integrated within the iCub robotic
platform, being the first time that an event-based cochlea is used in a humanoid
robot. Then, the conclusions obtained are presented and new features and
improvements are proposed for future works.



vii

Acknowledgements
Becoming a Doctor of Philosophy has been one of my biggest dreams since

I was young. The path has been long and the task has turned difficult, but there
have been people all along this time who either have support me or have hated
me. To those who have helped me in any kind of situation: thank you all very
much. I have no words to let you all know how much I appreciate you. To
those who have tried to bring me down: you were my biggest motivation. I
have hundreds of words for those people, but only one that can be written here:
"empathy".

I bought my first computer when I was 9 years old. All my friends asked
for the Play Station 2. Instead, I asked for a Pentium 4 with 256 MBytes of RAM
memory. Fransico José Junquero told me "this is going to be the future, and you
have the potential to learn whatever you want". Without that advice, I would not
have asked for a computer, I would not have written these lines. Thank you very
much, this thesis also belongs to you.

Then, I started to show interest for mathematics. When I was 14 years old,
although my marks in math were good, my teacher D. Raúl Espinosa asked me
"What degree would you like to study at the University?", and I replied "Computer
Engineering". Without any doubt, he told me "Man, your study methodology is shit.
You must change it if you want to survive to the first year of university." He was right,
and my marks in math during those two years were horrible. Nevertheless, I
learned to be self-critical and to identify when I was doing things wrong. Many
thanks, Raúl.

Right after that period, in the year before moving to the university, I met one
of the best teachers I have ever had: Carmelo. He taught me the best methodology
to study any science-related subject. Nowadays, I still use his methodology also
for this thesis. And because of that, studying math was not a nightmare anymore;
instead, it was a game to be enjoyed. I will teach my students by using the same
procedure. It will be an honour.

From the University of Seville, where I started to study Computer
Engineering in 2014, I would like to thanks all the professors I had, because I
took the best from all of them. In particular, I would like to thank David Ruíz
Cortés, since he was the first who believed in me. And I also have to say sorry,
since we started working together in big data but I realized I preferred hardware-
related tasks. I will never forget our first meeting when you told me "Fight to be
the boss and then change every single thing that it is not fair here". I am on my way.

In addition, thanks to all my colleagues from the Department of Architecture
and Technology of Computers, to which I belong since 2016, for all the advice,
both scientist and non-scientist discussions, good and bad moments. You all
became my family when I started to spend more than 10 hours per day in the



viii

lab. I will take the liberty of mentioning some colleagues who especially have
shared more moments with me. Thank you, Ricardo and Antonio, for being good
friends, Rafa, Elena, Fernando, Paco, Gabriel, Manuel Domínguez and Manuel
Rivas, among others, for sharing with me your experience, and finally Juanma,
and Alberto, for the technical support and your predisposition.

Although I tried to work in a small company, refusing my dream of working
at the university, I felt that was not my place. It would be impossible to
be the person who I am today without the confidence of Alejandro Linares
Barranco, Ángel Jiménez Fernandez, who also are my supervisors, and Juan
Pedro Domínguez Morales, who is my friend, my mentor, and the guy with who I
would go to hell. Thank you very much Alejandro for giving me the opportunity
to make my dream come true, letting me learn thousands of things at the best
research centres and with the best researchers. In addition, thank you very much
Ángel for being my inspiration and my reference, for supporting me and for
being my friend. Both Alejandro and you have been the persons in charge to
train me, and all my appreciation goes to you.

However, I have been able to write those lines because of Juan Pedro. Man,
we have walked around in Manchester, Bielefeld, Berlin, Paris, Capo Caccia,
Cádiz, and Seville. We have cried, we have worked during weekends and
holidays... But the most important thing, you have remembered me to not give
up. Thank you very much for everything. I would need half of this thesis just for
mentioning every single thing you have helped me or shared with me.

During the years I have been PhD. student, I have travelled a lot. It is still
incredible for me how much I have learned from all the places I have visited.
I would say that I have learned more from every single visit rather than from
the whole PhD. itself. The first event I attended as a PhD. student was to the
Capo Caccia Neuromorphic Workshop in 2017. Two important events occurred
there which were decisive for my career: 1) it was the first time I saw the iCub
robot from the Istituto Italiano di Tecnologia; at that moment, I thought "I have
to work with this robot"; 2) I met amazing people there who nowadays are great
researchers and friends. I would like to say thanks to Charlotte Frenkel, Tim
Walther, Alessandro Aimar, Enea Ceolini, Stefano Buccelli, Elisa Donati, James
Knight, Moritz Milde, and Giacomo Pedretti for sharing with me those awesome
two weeks. And also for saving my life during the "red wine saturation" episode.

There was only one problem at that moment: my English level was not
enough to share my thoughts. The "English problem" was solved by Franca
Oldenburg, our English teacher at the beginning, our best friend now. I could
not be writing this document in English without your help. Thank you for being
such a nice person, teacher, and friend.

Regarding to working with the iCub robot, the path was longer. I had the
great opportunity to do a research visit to the SpiNNaker group at the University
of Manchester, led by Professor Steve Furber, in 2017. I could work with Robert



ix

James, Qiam Liu, Garibaldi Pineda Garcia, Gabriel Fonseca Guerra, Luís Plana,
Andrew Rowley, Michael Hopkins, Alan Stokes and Simon Davidson. Thank you
very much for letting me feel like a part of your team. Special mention to Jesko
Meißel, one of my flatmates in Manchester, for opening my mind.

The most important turning point for my PhD. was in 2018, when I attended
to the Barcelona Cognition, Brain and Technology Summer School. After the
good experience in Capo Caccia, I attended to this summer school with high
expectations. Once there, I realized it was not a neuromorphic summer school,
instead the main topic was more focused on neuroscience. For those two weeks,
several work groups were created, but I could not find any work group related to
my research topic. Then, it happened: Adrián Fernández Amil told me about the
sound localization procedure in humans, and I got fascinated. Thank you very
very much for that conversation, it redirected my research topic. Furthermore, I
met amazing people there: Joan, Diletta, Valeria, Giampiero, Jordi, Álvaro, and
María. To all of you: thank you very much! You changed my file.

Right after the summer school, I went to Bielefeld to collaborate with the
group of Prof. Elisabetta Chicca for two weeks. My good friend Tim Walther was
working there, and he made it much easier. Thanks for the AquaFitness classes,
for organizing dinners and for the awesome beer testing. Thanks also to Martin
for all the good moments and coffee breaks. Especially, I would like to thank
Thorben, with whom I have worked hard in different projects, for being such a
nice colleague, and to Philipp, for being aware of me and tolerating the pure tone
tests in his office. I will never forget the Jalapeños restaurant and its amazing
Nachos.

In November 2018, Prof. Chiara Bartolozzi visited Seville for giving a talk.
I met her at Capo Caccia Neuromorphic Workshop in 2017, when she presented
a demo using iCub. Different from the Daniel that attended to that workshop,
one year and a half later, I had enough knowledge to have a scientist discussion
with Chiara. We talked about the possibility to include our neuromorphic audio
sensor within the iCub, the potential applications of that, and how much I would
like to work with her, her group, and the robot. Today, I can say that it was one
of the best decision of my life. Thanks a lot, Chiara, for believing in me since the
beginning, for helping me during the visits and for still being my mentor.

I could say that 2019 was my best year in terms of research. I went again to
Bielefeld for two weeks, where I started a very nice project with Thorben and Juan
Pedro that was afterwards presented at BioCAS conference. I got a fellowship
from NEUROTECH for attending to the Capo Caccia Neuromorphic Workshop
2019. This time, both my English usage and my experience in the neuromorphic
field were much better. I would like to thank Hector Gonzalez, Lyes Khacef,
Arren Glover, Moritz Milde, Marco Monforte, Giulia D’Angelo, Omar Oubari,
Melika Payvand, Ole Richter, Michael Schmuker, Baris Serhan, Beck Strohmer,
Pau Vilimelis, Enea Ceolini, and Kathrin Aguilar for everything. We did not



x

know, but that was the last time the contest was going to be held before COVID-
19. And it was amazing!

Then, in July 2019 I moved to Genova for three months research visit at the
Italian Instituto of Technology, with Prof. Chiara Bartolozzi. The visit would
not have been possible without the help and perseverance of Marta Caracalli,
who was fighting against the bureaucracy of both institutions. Thank you very
much Marta for your help, your determination, and for your perfect Spanish.
Also, thanks for being such a nice friend. And the project would not have been
successfully finished without the help of Arren Glover, thanks to his advice and
technical support, Maurizio Casti, available 24\7 for anything (thanks for the
gifts after each visit!), Massimiliano Iacono and Marco Monforte, for making
every single task easier, and Chiara Bartolozzi, for her support and useful advice.

But the biggest thing I got from that visit was the people I met there: my best
friend Dennis, with who I lived one of the best summers ever, still remembering
our last techno party in Milan; Ander, sharing hundreds of beers; again Marco
and Massi, for all the hours we have spent together in the lab; Simon, Elisa,
Viola, Shuman, Elena, Simeon, Ella, Giuseppe, Prashanth, Giulio, Damiano,
Luca, Leandro, Juan, Raquel, Fabrizio, Christopher, Marlena, Guido, Tommaso,
Virginia, and many more. You guys are my Italian family. Thank you very much.

On the personal side, I have a clear idea of the list of things I would like to
thank. To the thousands of litters of coffee, for keeping me awake when I had too
much work, and to the hundreds of litters of Jägermeister, for letting me forget all
the bad moments. To Spotify, for 40000 minutes of music every year, providing
me from techno music to classic music. To Steam, for stealing me hundreds of
hours playing videogames instead of doing research. To Overleaf, for turning my
account to the PRO version to write these lines after they felt my pain. To my
friends, for remembering me every single day that I could be working in a big
company earning a lot of money instead of doing shitty research.

And finally, to my family, my parents Isidoro and Regla, my brother Rubén,
and my dog Arturo, for giving me their unconditional love and support, and for
understanding all the sacrifices I did during these last five years. And especially
to the persons I loved and love, for all the time separated by too many kilometres
and the long conversations through video calls in which you all pushed me to
keep working.

I know that this acknowledgements section has become longer, but both this
thesis document and the current version of myself would not be possible and
make no sense without every single person or situation mentioned in these lines.
Thank you all for everything. You all made my life better.



xi

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

I Thesis 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Neuromorphic engineering . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Taking inspiration from the nervous system . . . . . . . . . 9
1.2.2 From biology to engineering . . . . . . . . . . . . . . . . . . 13

1.3 The sense of hearing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Auditory system in biology . . . . . . . . . . . . . . . . . . . 20

1.3.1.1 The ear . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1.1.1 Outer ear . . . . . . . . . . . . . . . . . . . 21
1.3.1.1.2 Middle ear . . . . . . . . . . . . . . . . . . 22
1.3.1.1.3 Inner ear . . . . . . . . . . . . . . . . . . . 23

1.3.1.2 Auditory ascending pathway . . . . . . . . . . . . 28
1.3.1.2.1 Cochlear nuclei . . . . . . . . . . . . . . . 30
1.3.1.2.2 Superior Olive . . . . . . . . . . . . . . . . 33
1.3.1.2.3 Inferior colliculus . . . . . . . . . . . . . . 37

1.3.2 Implementations of the auditory system on circuits . . . . . 39
1.3.2.1 Artificial cochleae . . . . . . . . . . . . . . . . . . . 41

1.3.2.1.1 Lyon’s model . . . . . . . . . . . . . . . . 41
1.3.2.1.2 Lyon & Katsiamis’ model . . . . . . . . . . 43
1.3.2.1.3 Analog cochleae . . . . . . . . . . . . . . . 43
1.3.2.1.4 Digital cochleae . . . . . . . . . . . . . . . 47

2 Objectives 53
2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xii

3 Open-source Neuromorphic Auditory Sensor 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 OpenNAS tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 NAS architecture and design flow . . . . . . . . . . . . . . . 59
3.2.2 Software architecture . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 OpenNAS execution results . . . . . . . . . . . . . . . . . . . 60
3.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 NASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Base architecture . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 NASIC design process . . . . . . . . . . . . . . . . . . . . . . 66
3.3.4 ASIC validation and characterization . . . . . . . . . . . . . 72

3.4 FPGA vs. ASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Event-based models for the sound source localization task 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Event-based model of the Superior Olivary Complex . . . . . . . . 81

4.2.1 Implementing the Cochlear nucleus . . . . . . . . . . . . . . 82
4.2.2 Implementing the Medial Superior Olive . . . . . . . . . . . 88

4.2.2.1 Jeffress model implementation overview . . . . . . 88
4.2.2.2 Coincidence detector neuron model . . . . . . . . . 89
4.2.2.3 Delay line model . . . . . . . . . . . . . . . . . . . . 91
4.2.2.4 ITD extraction network model . . . . . . . . . . . . 93
4.2.2.5 Medial Superior Olive model . . . . . . . . . . . . 96

4.2.3 Lateral Superior Olive . . . . . . . . . . . . . . . . . . . . . . 102
4.2.4 Implementing the Superior Olivary Complex . . . . . . . . . 104
4.2.5 Integrating NAS and SOC: The Neuromorphic Auditory

Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.6 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.6.1 How does the model affect? . . . . . . . . . . . . . 110
4.2.6.2 How does the frequency affect? . . . . . . . . . . . 112
4.2.6.3 How does the distance affect? . . . . . . . . . . . . 115

4.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3 Alternatives to the Jeffress model: The Time Difference Encoder . . 119

4.3.1 The Time Difference Encoder model . . . . . . . . . . . . . . 120
4.3.2 Time Difference Encoder model implementation . . . . . . . 122

4.3.2.1 Gain-generator block . . . . . . . . . . . . . . . . . 123
4.3.2.2 EPSC-generator block . . . . . . . . . . . . . . . . . 125
4.3.2.3 Spike-generator block . . . . . . . . . . . . . . . . . 129

4.3.3 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . 133
4.3.3.2 FPGA implementation . . . . . . . . . . . . . . . . 141

4.3.4 Real-time neuromorphic application . . . . . . . . . . . . . . 144
4.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.4 Comparison between both approaches . . . . . . . . . . . . . . . . . 148



xiii

5 Neuromorphic audio applications for robotics 151
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 Motivation and cases of use . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.1 NeuroPod: from audio to locomotion through spiking CPG 153
5.2.1.1 The hexapod robot . . . . . . . . . . . . . . . . . . . 154
5.2.1.2 Hardware setup: bi-direction communication

between an FPGA and SpiNNaker in real-time . . 157
5.2.1.3 Spiking Central Pattern Generator . . . . . . . . . . 158
5.2.1.4 NeuroPod HDL top module architecture . . . . . . 160
5.2.1.5 Simulation results . . . . . . . . . . . . . . . . . . . 164
5.2.1.6 Towards an audio-guided behavior . . . . . . . . . 167

5.2.2 Audio-visual sensory integration . . . . . . . . . . . . . . . . 173
5.2.2.1 Problem to solve . . . . . . . . . . . . . . . . . . . . 173
5.2.2.2 Bio-inspired solution . . . . . . . . . . . . . . . . . 174

5.2.2.2.1 Optical Flow Encoder Network (OFE) . . 174
5.2.2.2.2 Sound Source Direction Network (SSD) . 175
5.2.2.2.3 Sensory Integration Network (SI) . . . . . 176

5.2.2.3 Hardware setup . . . . . . . . . . . . . . . . . . . . 177
5.2.2.4 Simulation test and results . . . . . . . . . . . . . . 178
5.2.2.5 First steps to a closed-loop system . . . . . . . . . . 180

5.2.3 Neuromorphic implementation of auditory perception in
the iCub robotic platform . . . . . . . . . . . . . . . . . . . . 183
5.2.3.1 The iCub robot . . . . . . . . . . . . . . . . . . . . . 185
5.2.3.2 Hardware integration of the NAC . . . . . . . . . . 187
5.2.3.3 Software integration of the NAC . . . . . . . . . . . 191
5.2.3.4 Implementing an auditory perception application

in real-time . . . . . . . . . . . . . . . . . . . . . . . 195
5.2.3.5 Datasets, tests, and preliminary results . . . . . . . 201

5.3 Is it worth to do the effort? . . . . . . . . . . . . . . . . . . . . . . . . 211

6 Conclusions and future works 213
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7 Bibliography 217

II Appendices 237

A OpenNAS software tool 239
A.1 OpenNAS screens summary . . . . . . . . . . . . . . . . . . . . . . . 239

A.1.1 OpenNAS welcome screen . . . . . . . . . . . . . . . . . . . 240
A.1.2 OpenNAS common settings screen . . . . . . . . . . . . . . . 241
A.1.3 OpenNAS input interface screen . . . . . . . . . . . . . . . . 242
A.1.4 OpenNAS processing architecture screen . . . . . . . . . . . 243



xiv

A.1.5 OpenNAS output interface screen . . . . . . . . . . . . . . . 244
A.1.6 OpenNAS destination folder screen . . . . . . . . . . . . . . 245
A.1.7 OpenNAS generation success screen . . . . . . . . . . . . . . 246

B NASIC test PCB 247
B.1 NASIC test PCB files . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

B.1.1 Schematic: NASIC_test_pcb.SchDoc . . . . . . . . . . . . . . . 248
B.1.2 Board top: NASIC_test_pcb.PcbDoc . . . . . . . . . . . . . . . 249
B.1.3 Board bottom: NASIC_test_pcb.PcbDoc . . . . . . . . . . . . . 251

C Generic purpose PCBs 253
C.1 ADC-PDM microphones board PCB files . . . . . . . . . . . . . . . 253

C.1.1 Schematic: ADC_PDM_mic_board.SchDoc . . . . . . . . . . . 254
C.1.2 Board top: ADC_PDM_mic_board.PcbDoc . . . . . . . . . . . 255
C.1.3 Board bottom: ADC_PDM_mic_board.PcbDoc . . . . . . . . . 255

C.2 ZTEX 2.13 base board PCB files . . . . . . . . . . . . . . . . . . . . . 256
C.2.1 Schematic: ZTEX_base_board.SchDoc . . . . . . . . . . . . . . 257
C.2.2 Board top: ZTEX_base_board.PcbDoc . . . . . . . . . . . . . . 258
C.2.3 Board bottom: ZTEX_base_board.PcbDoc . . . . . . . . . . . . 259



xv

List of Figures

1.1 Cajal’s drawing of neurons in the hippocampus, a region of the
brain important to memory. . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Simplified neuron anatomy. . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Diagram of a spike generated by a neuron (taken from

(Domínguez Morales, 2018)). . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Schematic of pixel circuit from the Mahowald retina model (taken

from (Mead, 1990) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 SpiNNaker machine project from chip to cabinete (taken from

(Sugiarto et al., 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Transmission of an event using AER representation. Image taken

from (Lazzaro et al., 1993). . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Screenshot of NAVIS tool. . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Main window of NAVIS tool showing the cochleogram of the

sentence "En un lugar de La Mancha". Blue dots represent the
output of the left 64-channels, while orange dots represent the
output for the right channels. Image taken from (Dominguez-
Morales et al., 2017c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Anatomy of the ear. Image taken from (Patton et al., 2012). . . . . . 22
1.10 Detailed cross section of the cochlea. . . . . . . . . . . . . . . . . . . 24
1.11 Inner structure of the Organ of Corti. . . . . . . . . . . . . . . . . . . 25
1.12 Effect of sound waves on cochlear structures. Image taken from

(Patton et al., 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.13 Tonotopic distribution of the cochlea (A). Localization of high-

frequency (B), medium-frequency (C) and low-frequency (D)
responses in the cochlea. Image taken from (Domínguez Morales,
2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.14 Ascending Auditory Pathways scheme. Neural signals can
travel from the spiral ganglion to auditory cortex via numerous
pathways. Here, a primary pathway is shown schematically (at
left) and through brain stem cross sections. Notice that only the
connections from one side are illustrated at right image. Image
taken from (Bear et al., 2020). . . . . . . . . . . . . . . . . . . . . . . 29

1.15 Cochlear nerve fibers terminate in the dorsal and ventral cochlear
nuclei in a tonotopic organization. Image taken from (Kandel et al.,
2000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



xvi

1.16 Phase locking in the response of auditory nerve fibers. Sound at
a low frequency can elicit a phase-locked response, either (a) on
every cycle of the stimulus or (b) on some fraction of the cycles.
(c) At high frequencies, the response does not have a fixed-phase
relationship to the stimulus. Image taken from (Bear et al., 2020). . 33

1.17 Phase-locked discharges of an auditory nerve fiber (A) and
a spherical bushy cell of the Anteroventral Cochlear Nucleus
(AVCN) (B). Image taken from (Schnupp et al., 2011). . . . . . . . . 34

1.18 Schematic drawing of primary auditory sound localization circuits
in the mammalian brainstem. Image taken from (Kandler et al.,
2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.19 The tapped delay lines, coincidence detectors and coincidence
counters (rate integrators) of the Jeffress model. Image taken from
(Cariani, 2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.20 Sensory and cortical information flows in the Superior Colliculus
(SC). The superficial layer of the SC is directly connected to the
optic tract, while the deep layers receive auditory (from the inferior
colliculus) and somatosensory input. Cortical feedback moderates
the processing in the deep layer and influences the motor outputs.
Image taken from (Pavlou and Casey, 2010). . . . . . . . . . . . . . 38

1.21 Historical tree diagram of different artificial cochleae developed.
Image taken from (Domínguez Morales, 2018) . . . . . . . . . . . . 40

1.22 Lyon’s model’s cochlea’s filters’ block diagram. Image taken from
(Domínguez Morales, 2018) . . . . . . . . . . . . . . . . . . . . . . . 42

1.23 Frequency response of Lyon’s model (64 sections) for the following
characteristic frequencies: 3.0, 2.0, 1.0, 0.6 and 0.3 kHz. Image
taken from (Miró Amarante, 2013) . . . . . . . . . . . . . . . . . . . 42

1.24 Graphical representation of the filterbank and filter-cascade
architectures in the Lyon-Katsiamis model. Image taken from
(Katsiamis et al., 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.25 Cutoff frequencies (Hz) distribution in Watts’ artificial cochlea
(left) and van Schaik’s (right). Image taken from (Van Schaik et al.,
1996) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.26 Frequency response of a second order filter in a parallel
topology (a) and in a cascade topology (b). Image taken from
(Domínguez Morales, 2018) . . . . . . . . . . . . . . . . . . . . . . . 46

1.27 Block diagram of the digital cochlea proposed by Summerfield et
al. Image taken from (Summerfield and Lyon, 1992) . . . . . . . . . 48

1.28 Frequency response of the digital cochlea implementation by
Leong et al. Image taken from. Image taken from (Leong et al.,
2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



xvii

1.29 (a) Global NAS architecture. (b) Filter banks with Cascade
topology, CFB. (c) Single CFB stage containing an SLPF and an
SH&F. Image taken from. Image taken from (Jimenez-Fernandez
et al., 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Block diagram of the complete architecture of a binaural
Neuromorphic Auditory Sensor (NAS). . . . . . . . . . . . . . . . . 58

3.2 Design flow diagram for full NAS synthesis. . . . . . . . . . . . . . 59
3.3 OpenNAS class diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 OpenNAS tool usage flow. . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 NASIC’s internal architecture block diagram. . . . . . . . . . . . . . 64
3.6 Histograms from pure tones using NAS on Field-Programmable

Gate Array (FPGA). Middle frequencies associated to each
frequency channel were: channel 0, 22000 Hz; channel 1, 8090 Hz;
channel 2, 2975 Hz; channel 3, 1094 Hz; channel 4, 402 Hz; channel
5, 148 Hz; channel 6, 54 Hz; and channel 7, 20 Hz. . . . . . . . . . . 65

3.7 Sonograms from pure tones using NAS on FPGA. . . . . . . . . . . 67
3.8 ASIC design workflow. Image taken from https://www.

einfochips.com/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.9 NASIC cells distribution after the place & route process. . . . . . . 69
3.10 NASIC layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.11 NASIC test Printed Circuit Board (PCB) block diagram. . . . . . . . 72
3.12 NASIC test PCB with the audio input board. . . . . . . . . . . . . . 73
3.13 Histograms from pure tones using NASIC. . . . . . . . . . . . . . . 74
3.14 Sonograms from pure tones using NASIC. . . . . . . . . . . . . . . . 75
3.15 Comparison between FPGA and chip 3. . . . . . . . . . . . . . . . . 77

4.1 Superior Olivary Complex in biology. Green lines represents
excitatory connections, while red lines indicates inhibitory
connections. Image taken from (Liu et al., 2013). . . . . . . . . . . . 80

4.2 Block diagram of the NSSOC model for FPGA. . . . . . . . . . . . . 81
4.3 Representation of the phase lock effect. Image taken from (Liu

et al., 2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Example of the phase lock effect. . . . . . . . . . . . . . . . . . . . . 83
4.5 Block diagram and simulation results of the spherical bushy cell

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Histograms and sonograms for a 500 Hz pure tone with 0.5 and 1.5

of amplitude using a NAS without phase-lock. . . . . . . . . . . . . 85
4.7 Histograms and sonograms for a 500 Hz pure tone with 0.5 and 1.5

of amplitude using a NAS with the phase-lock module. . . . . . . . 86
4.8 Examples of recordings using NAS without and with phase-lock. . 87
4.9 Block diagram of the proposed implementation for the Jeffress

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.10 Finite State Machine (FSM) of the Spike Hold&Coincidence Fire

(SHCF) module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

https://www.einfochips.com/
https://www.einfochips.com/


xviii

4.11 Simulation results of the SHCF module. States 0, 2, 3,
and 4 corresponds to IDLE, WAIT_RIGHT, COINCIDENCE, and
REFRACTORY, respectively. . . . . . . . . . . . . . . . . . . . . . . . 91

4.12 FSM of the Delay Line module. . . . . . . . . . . . . . . . . . . . . . 92
4.13 Simulation results of the Delay Line (DL) module. States 0, 1, and

2 to IDLE, HOLD, and FIRE, respectively. . . . . . . . . . . . . . . . 92
4.14 Example of the ITD network when using a sweep. . . . . . . . . . . 94
4.15 Block diagram of the proposed MSO model. . . . . . . . . . . . . . 97
4.16 Block diagram of the MSO local events monitor. . . . . . . . . . . . 98
4.17 Block diagram of the MSO global events monitor. . . . . . . . . . . 99
4.18 Results from a behavioral simulation of a Medial Superior Olive

(MSO) model when using a 1000 Hz pure tone, placed in front
of the reference, with a distance of 1.5 meters. The plots were
generated using pyNAVIS. . . . . . . . . . . . . . . . . . . . . . . . . 101

4.19 Interaural Level Difference (ILD) (encoded as an event-rate)
measured over time obtained from the input data that generates
the left and right NAS when the sound source is placed at 45° from
the head. Figure taken from (Cerezuela-Escudero et al., 2018). . . . 103

4.20 Block diagram of the proposed SOC module. . . . . . . . . . . . . . 105
4.21 Block diagram for the integration between the NAS model and the

SOC model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.22 Event package format. . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.23 Virtual room created for testing the Neuromorphic Auditory

Complex (NAC). Diamond shape indicates the microphones pair,
where blue diamond correspond to the left microphone and red
diamond correspond to the right microphone. Therefore, sound
sources are placed in front of the microphones pair. The sound
source 0 is the one placed completely on the right. . . . . . . . . . . 109

4.24 Comparison between different configurations of the MSO. . . . . . 111
4.25 Frequency comparison using model 2. . . . . . . . . . . . . . . . . . 114
4.26 Concept of cone of confusion. Figure taken from (Risoud et al., 2018).115
4.27 Effect of the cone of confusion for model 2. . . . . . . . . . . . . . . 117
4.28 Theoretical behavior representation of theTime Difference Encoder

(TDE) model based on the model proposed by Milde et al.(Milde
et al., 2018). a) TDE schematic with facilitatory (fac) and trigger
(trig) input and spiking output. b) Case one: A small positive time
difference between facilitatory and trigger spikes leads to a high
number of output spikes (out). c) Case two: large positive time
difference leads to no output spikes. d) Case three: A negative time
difference leads to no output spikes. e) Number of TDE output
spikes in dependency of time difference ∆t between two input
events (gain: gain factor, epsc: exponential postsynaptic current,
mem: membrane potential). . . . . . . . . . . . . . . . . . . . . . . . 121



xix

4.29 Detailed block diagram of the TDE digital architecture. It is
composed of three main blocks: gain-generator block (red),
Excitatory Post-Synaptic Current (EPSC)-generator block (blue)
and spike-generator block (green). Synchronous modules are
indicated by squared corner blocks with a small triangle, while
asynchronous modules are indicated with rounded corner blocks.
The spike arrow is a 1-bit width signal, where events are either
received as input or sent as output. Control arrows are also 1-bit
width, and they act as flags. Finally, data arrows can be either
n-bit or m-bit width, being used for the internal communication
between blocks and also for loading configuration values. . . . . . 123

4.30 Gain-generator block output example. First, the block receives a
single facilitatory event. Immediately after, timer_0 is loaded with
the "detection_time" signal’s value. The output value of timer_0
decreases by one unit for each time reference tick, which was set
to microseconds. Since the "weight"’s value was set to 1 (meaning
that the timer’s value is left shifted by one position), the shift_1’s
output value is twice the value of timer_0. Then, the block receives
multiple facilitatory events in order to show the accumulative
behavior. add_0 plot shows the value that is used as input for the
spike-generator block. In this case, its value matches the shift_1’s
value, since no trigger event was received. . . . . . . . . . . . . . . . 126

4.31 EPSC-generator block output example. First, the model is
stimulated with a single facilitatory event before the first trigger
event. Then, the current value of shift_1 is loaded in timer_1.
The accumulative effect is also shown when multiple triggers are
received. The sub_0 module generates an increasing signal, which
is used as the clock divider value for the spike generator block. . . 129

4.32 Exhaustive Unsigned Synthetic Spikes Generator (EU-SSG) block
diagram. A complete description of both the implementation and
the behavior of this module is presented in (Jimenez-Fernandez
et al., 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.33 An operation example of the proposed model. The detection time
was set to 700 µs; the tau value was set to 0; the weight value was
set to 4; and the decay value was set to 2. The main clock was set
to 50 MHz, the time reference tick was set to 1 MHz, and the data
width was set to 16. The ∆t value between the facilitatory event
and the first trigger event is 200 µs, while the ∆t value between the
facilitatory event and the second trigger event is 400 µs. . . . . . . . 133

4.34 Register-Transfer Level (RTL) simulation for twelve basic cases of
the TDE model with a time resolution of microseconds. Red, blue,
and green are related to facilitatory, trigger, and spike generator,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



xx

4.35 TDE Interspike Interval (ISI) response for a facilitatory-trigger
pair with different ∆t values for a microseconds resolution
configuration. Note that the smallest ∆t value used was not zero
(no output events would be produced) but 20 ns (one clock cycle). . 136

4.36 TDE ISI response for a facilitatory-trigger pair with different ∆t for
a milliseconds resolution configuration with a detection time of 70
ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.37 Number of TDE output spikes over ∆t variation for microsecond
time reference tick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.38 Number of TDE output spikes over ∆t variation for millisecond
time reference tick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.39 Individual TDE tuning curves and population tuning curve for
microseconds time reference tick. . . . . . . . . . . . . . . . . . . . . 140

4.40 Individual TDE tuning curves and population tuning curve for
microseconds time reference tick. . . . . . . . . . . . . . . . . . . . . 140

4.41 Block diagram of the setup for real-time measurements acquisition. 141
4.42 Output spikes captured by using an oscilloscope. . . . . . . . . . . . 142
4.43 Comparing the TDE response from different measurement sources. 143
4.44 Detailed block diagram of the FPGA top module for the proof-of-

concept, containing both the NAS and the TDE populations. . . . . 145
4.45 Raster plot of the output events from the TDE population and

normalized overall activity. The plots were generated using
pyNAVIS tool (Dominguez-Morales et al., 2021b). TDEs 0 to 3 (left
population) correspond to indexes 0 to 3 in 4.8, and TDEs 4 to 7
(right population) also correspond to indexes 0 to 3 in the same
table. Therefore, TDE 0 and TDE 4 use the same configuration and
so on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1 An octopus-inspired soft robotic arm. Credit: Harvard SEAS. . . . 151
5.2 Block diagram of the entire system. It is composed of the

SpiNNaker board, an FPGA-based board, and a 3D-printed
hexapod robot frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 A) Biological representation of an arthropod’s leg anatomy. B)
Hexapod robot leg actuator IDs. . . . . . . . . . . . . . . . . . . . . . 156

5.4 SpiNN-3 machine and ZTEX 2.13 board. . . . . . . . . . . . . . . . . 158
5.5 Diagram of the spiking neural network model used (top) with an

in-depth view of the CPG architecture (bottom). . . . . . . . . . . . 159
5.6 NeuroPod FPGA top module overview. . . . . . . . . . . . . . . . . 161
5.7 Output spikes for each gait pattern simulated on SpiNNaker. . . . . 163
5.8 Output spikes from the SpiNNaker simulations that show the gait

pattern change behavior. . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.9 Block diagram of the updated NeuroPod system. It is composed of

the SpiNNaker board, implementing different networks, an FPGA-
based board, in which the NAS was deployed, and a 3D-printed
hexapod robot frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



xxi

5.10 Audio-guided NeuroPod FPGA top module overview. . . . . . . . 169
5.11 Diagram of the complete spiking neural network model used for

the audio-guided NeuroPod. This network is composed of several
sub-networks, where each of them has a specific task. . . . . . . . . 170

5.12 Audio-guided NeuroPod hardware setup. . . . . . . . . . . . . . . . 171
5.13 Output spikes from the SpiNNaker simulations that show the gait

pattern change behavior according to the input auditory stimuli. . 172
5.14 The autonomous robot navigates through a cluttered environment.

It tries to reach a sound source while avoiding obstacles. . . . . . . 174
5.15 Complete network. The Optical Flow Encoder (OFE) population

consists of the SPatio-Temporal Correlation (SPTC) Leaky
Integrate-And-Fire (LIF) population and the spiking Elementary
Motion Detector (sEMD) population. The Sound Source Direction
(SSD) population includes coincidence detector neurons and an
additional hard Winner-Take-All (WTA) network. Each WTA
consists of an excitatory LIF neuron population and one Global
Inhibitory (GI) neuron. All excitatory LIF neurons are connected
to the GI neuron. The GI neuron projects back onto the excitatory
LIF neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.16 embedded Dynamic Vision Sensor (eDVS) and NAS feeding spikes
into a SpiNN-3 board through the SpiNNlink connectors. The
eDVS can directly process visual input while the NAS receives
stereo audio input through an audio jack. . . . . . . . . . . . . . . . 178

5.17 (a) Sensory Integration (SI) network’s heading direction response
to a 180 degrees sound source direction sweep. (b) Setup to record
Optical Flow (OF) data used in Figure 5.17c. An eDVS is mounted
on top of a robotic platform which drives purely translational with
a speed of ~0.8 m/s through the scene. The first obstacle is located
in the middle of the visual field, the second one on the right side
and the last one on the left side. All obstacles are positioned at least
40 cm above the ground so that the robot can drive underneath
them. Heading directions for a centered sound source with OF
(c) and without OF (d). (e) Heading direction mean and heading
direction standard deviation (stdd) with OF (red) and without OF
(blue) for five different time periods with different visual scenarios 179

5.18 Hardware setup for the test scenario with real-time input and static
sensors’ position. The screen shows the response of the system.
Red dot: heading direction; blue dots: optical flow. . . . . . . . . . . 181

5.19 Output spikes from both the heading direction network and
optical flow estimation network for the static hardware setup real-
time test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



xxii

5.20 Hardware setup for the test scenario with real-time input and
dynamic sensors’ position. It is composed by the Neuromorphic
Pan-Tilt-Unit including the Event-Based Camera, Neuromorphic
Auditory Sensor with 3DIO Binaural Microphone, and SpiNNaker
board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.21 The iCub robot. Picture taken from (Parmiggiani et al., 2012). . . . . 184
5.22 (A) Photograph of the iCub head electronics. (B) Photograph of the

iCub head electronics. Pictures taken from (Parmiggiani et al., 2012).186
5.23 CAD view of the iCub head components with a block diagram

of the proposed NAC-iCub integration. CAD picture taken from
(Parmiggiani et al., 2012). . . . . . . . . . . . . . . . . . . . . . . . . 188

5.24 Block diagram of the NAC model integrated within the iCub
robot. It is based on the one shown in Fig. 4.21, adding just the
Address Event Representation (AER)-Head Processing Unit (HPU)
wrapper module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.25 AER-HPU wrapper output event package format. . . . . . . . . . . 189
5.26 Yet Another Robot Platform (YARP) modules diagram for the basic

cochlea visualizer application shown in yarpmanager. . . . . . . . . 192
5.27 Cochlea visualizer window showing iCub’s auditory events

activity. (A) Events’ activity when no sound is played. Those
events correspond to the noise produced by the iCub’s fan. (B)
Events’ activity when a 500 Hz tone is played. . . . . . . . . . . . . 193

5.28 Example recording from a woman reading a list of words in front
of the iCub robot, with a distance of 0.5 meters. (A) Spikegram. (B)
Sonogram. (C) Histogram. (D) Average activity. . . . . . . . . . . . 194

5.29 YARP modules diagram for the sound source localization
application shown in yarpmanager. . . . . . . . . . . . . . . . . . . . 196

5.30 YARP visualizers for the auditory perception model. . . . . . . . . . 197
5.31 Overview diagram of the Spiking Neural Networks (SNNs)

implemented on SpiNNaker to implement the auditory perception
on iCub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.32 Spiking neural network diagram of the inferior colliculus model
implemented on SpiNNaker. . . . . . . . . . . . . . . . . . . . . . . 200

5.33 NAS response plots for a 523 Hz pure tone placed at the left. (A)
Spikegram. (B) Sonogram. (C) Histogram. (D) Average activity. . . 202

5.34 MSO response plots for a 523 Hz pure tone placed at the left.
(A) MSO spikegram. (B) MSO histogram. (C) MSO localization
estimation. (D) MSO heatmap. . . . . . . . . . . . . . . . . . . . . . 203

5.35 NAS’ response plots (Figs. (A) Average activity, (B) Sonogram, (C)
Difference, and (D) Histogram) and MSO response plots (Figs. (E)
MSO spikegram and (F) MSO localization estimation) for a 523 Hz
pure tone while moving the iCub head from left to right and back
with a constant velocity. . . . . . . . . . . . . . . . . . . . . . . . . . 207



xxiii

5.36 Screenshot of Gazebo simulator while performing a sound source
localization simulation with a virtual neuromorphic iCub and real
recordings as input stimuli. . . . . . . . . . . . . . . . . . . . . . . . 208

5.37 Output spikes for each gait pattern simulated on SpiNNaker. . . . . 209

A.1 OpenNAS tool welcome message. . . . . . . . . . . . . . . . . . . . 240
A.2 OpenNAS screen for step 1: common settings. . . . . . . . . . . . . 241
A.3 OpenNAS screen for step 2: audio input interface. . . . . . . . . . . 242
A.4 OpenNAS screen for step 3: audio processing architecture. . . . . . 243
A.5 OpenNAS screen for step 4: spiking output interface. . . . . . . . . 244
A.6 OpenNAS screen for step 5: destination folder selection. . . . . . . 245
A.7 OpenNAS final screen: code generator statistics. . . . . . . . . . . . 246

B.1 NASIC test PCB schematic. . . . . . . . . . . . . . . . . . . . . . . . 248
B.2 NASIC test PCB board top view. . . . . . . . . . . . . . . . . . . . . 249
B.3 NASIC test PCB board top 3D view. . . . . . . . . . . . . . . . . . . 250
B.4 NASIC test PCB board bottom view. . . . . . . . . . . . . . . . . . . 251
B.5 NASIC test PCB board bottom 3D view. . . . . . . . . . . . . . . . . 252

C.1 ADC-PDM microphones board PCB schematic. . . . . . . . . . . . . 254
C.2 ADC-PDM microphones board PCB board top view. . . . . . . . . . 255
C.3 ADC-PDM microphones board PCB board top 3D view. . . . . . . . 255
C.4 ADC-PDM microphones board PCB board bottom view. . . . . . . 255
C.5 ADC-PDM microphones board PCB board bottom 3D view. . . . . 255
C.6 ZTEX 2.13 base board PCB schematic. . . . . . . . . . . . . . . . . . 257
C.7 ZTEX 2.13 base board top view. . . . . . . . . . . . . . . . . . . . . . 258
C.8 ZTEX 2.13 base board bottom view. . . . . . . . . . . . . . . . . . . . 259
C.9 ZTEX 2.13 base board bottom 3D view. . . . . . . . . . . . . . . . . . 260





xxv

List of Tables

3.1 OpenNAS performance comparison between two different
processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 NASIC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 NASIC chip pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Hardware resources utilization of the spherical bushy cell model
for different FPGA devices. . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Hardware resources utilization of the SHCF model with detection
time of 50 µs for different FPGA devices. . . . . . . . . . . . . . . . 91

4.3 Hardware resources utilization of the delay line model with
transmission time of 700 µs for different FPGA devices. . . . . . . . 93

4.4 Hardware resources utilization of the Interaural Time Difference
(ITD) network model with a global detection time of 700 µs and 16
coincidence detection neurons for different FPGA devices. . . . . . 96

4.5 Hardware resources utilization of the MSO model with a global
detection time of 700 µs, 10 ITD networks and 16 coincidence
detection neurons per ITD network for the Artix-7 FPGA chip. . . . 99

4.6 Hardware resources utilization of the NAC module for the Artix-7
FPGA chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Comparison of the Superior Olivary Complex (SOC) model
implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.8 Parameters of the TDE population . . . . . . . . . . . . . . . . . . . 139
4.9 Hardware resources utilization for different FPGA devices. . . . . . 143
4.10 Power consumption summary of a TDE unit deployed into the

XC6SLX150T FPGA chip. . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.11 Comparison of a single neuron implementations using an FPGA.

Zero slice registers used means that a memory was used to store
the neuron state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1 Comparative study between state-of-the-art approaches regarding
CPG-based systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 LIF neuron parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.3 AER decodification scheme. . . . . . . . . . . . . . . . . . . . . . . . 162
5.4 FPGA resources consumption and delays . . . . . . . . . . . . . . . 165
5.5 Features of the NAS integrated within the iCub robot . . . . . . . . 190
5.6 MSO parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191





xxvii

List of Abbreviations

AAP Auditory Ascending Pathway
ADC Analog-to-Digital Converter
ADM Asynchronous Delta Modulation
AER Adress Event Representation
AGC Automatic Gain Control
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
ASE Adaptative Synaptic Efficacy
ASIC Application-Specific Integrated Circuit
ATIS Asynchronous Time-based Image Sensor
AVCN AnteroVentral Cochlear Nucleus
ASR Automatic Speech Recognition
BW Backward
CAD Computer-Aided Design
CAR Cascade of Asymmetric Resonators
CAR-FAC CAR with Fast-Acting Compression
CFB Cascade Filter Bank
CMOS Complementary Metal-Oxide-Semiconductor
CN Cochlear Nucleus
CPG Central Pattern Generator
CPU Central Processing Uunit
CQFP Ceramic Quad Flat Package
DAPGF Differentiated All-Pole Gammatone Filter
DCN Dorsal Cochlear Nucleus
DL Delay Line
DMWTA Decision Making Winner-Take-All
DOF Degrees Of Freedom
DPI Differential Pair Integrator
DVS Dynamic Vision Sensor
EDA Electronic Design Automation
eDVS embedded Dynamic Vision Sensor
EPSC Excitatory Post-Synaptic Current
EPSP Excitatory Post-Synaptic Potential
ESM Exhaustive Synthetic Method
EU-SSG Exhaustive Unsigned Synthetic Spike Generator



xxviii

FAC Fast-Acting Compression
FFT Fast-Fourier Transform
FIFO First In. First Out
FPAA Field-Programmable Analog Array
FPGA Field-Programmable Gate Array
FSM Finite State Machine
FW Forward
GALS Globally Asynchronous Locally Synchronous
GI Global Inhibitory
GPU Graphical Processing Uunit
GUI Graphical User Interface
HDL Hardware Description Language
HPU Head Processing Unit
HRTF Head-Related Transfer Function
HWR Half-Wave Rectifier
I2S Integrated Interchip Sound
IC Inferior Colliculus
IHC Inner Hair Cells
IHL Inside-Head Localization
IIR Infinite Impulse Response
IP Intellectual Property
IPSP Inhibitory Post-Synaptic Potential
ILD Interaural Level Difference
ISI Inter-Spike Interval
ITD Interaural Time Difference
LFS Latency to First Spike
LIF Leaky Integrate-And-Fire
LSO Lateral Superior Olive
LST Lateral Sound Transmitter
LUT Look-Up Table
MGB Medial Geniculate Body
MGN Medial Geniculate Nucleus
MSO Medial Superior Olive
MNTB Medial Nucleus of the Trapezoid Body
Vmem Membrane Potential
M-SSG Modulus Synthetic Spikes Generator
NAC Neuromorphic Auditory Complex
NAS Neuromorphic Auditory Sensor
NAVIS Neuromorphic Auditory VISualizer
NoC Network-on-Chip
NSSOC Neuromorphic Spike-based Superior Olivary Complex
OF Optical Flow
OFE Optical Flow Encoder
OHC Outter Hair Cells



xxix

OZGF One-Zerod Gammatone Filter
PCB Printed Circuit Board
PDM Pulse-Density Modulation
PFM Pulse-Frequency Modulation
PID Proportional Integral and Derivative
PWM Pulse-Width Modulation
RAM Random Access Memory
RB-SSG Reverse Bitwise Synthetic Spikes Generator
RIR Room Impulse Response
ROM Read Only Memory
RTL Register-Transfer Level
SAIF Switching Activity Interchange Format
SBPF Spike-based Band-Pass Filter
SC Superior Colliculus
SCFB Spike-based Cascade Filter Bank
SCPG Spiking Central Pattern Generator
sEMD spiking Elementary Motion Detector
SFB Spike-based Filter Bank
SH&F Spike Hold & Fire
SH&CF Spike Hold & Coincidence Fire
SI Sensory Integration
SLPF Spike Low Pass Filter
SNN Spiking Neural Network
SNR Signal-to-Noise Ratio
SoC System On a Chip
SOC Superior Olivary Complex
SPL Sound Pressure Level
SPTC SPatio-Temporal Correlation
SSD Sound Source Direction
SSP Spike Signal Processing
STDP Spike-Timing-Dependent Plasticity
SC Superior Colliculus
TCL Tool Command Language
TCP Transmission Control Protocol
TDE Time Difference Encoder
TSMC Taiwan Semiconductor Manufacturing Company
VCN Ventral Cochlear Nucleus
VHDL VHSIC Hardware Description Language
VLSI Very Large-Scale Integration
WPF Windows Presentation Foundation
WTA Winner-Take-All
XML eXtensible Markup Language
YARP Yet Another Robot Platform





xxxi

Dedicated to all the people who have been mentioned
in the acknowledge.





1

Part I

Thesis





3

Chapter 1

Introduction

“To understand reality, you have to understand how
things work. If you do that, you can start to do

engineering with it, build things. And if you can’t,
whatever you’re doing probably isn’t good science.”

– Carver Mead

Artificial visual processing is a current hot topic in the technological
revolution that we are living in recent years. We have autonomous cars that are
able to identify, understand and follow traffic signals, safely drive on a highway,
and predict accidents even before the driver. Computer-based visual processing
techniques are also used in factories to detect and discard faulty products in
the assembly line. The advance is so impressive that even those techniques are
being applied in medical fields for detecting diseases with more accuracy than
specialized doctors.

The sense of vision provides humans with a large quantity of details that help
us to understand our environment. This is why the vision could be considered
the most important sense. Nevertheless, sometimes visual stimuli need to be put
in context to fully understand reality. Among the whole set of human senses, the
hearing sense is closely linked to the sight sense.

Speech allows us to communicate, interact and share ideas and feelings. It
also helps us to make our daily task easier thanks to the voice assistants. The wide
range of technologies employed in the development of such devices mixes speech
recognition, natural language processing, and contextualized information search,
among others. Commonly, the sound is sent to the cloud, where it is processed by
high-performance servers applying digital signal processing techniques. Hence,
we could say that the processing engine is centralized outside the device.

Although this approach has been proved to work, it faces some
inconveniences which could be desirable to improve or remove, as power
consumption during the "always-on" mode even if there is no data to process,
the complexity of algorithms or noise robustness. Researchers have tried to solve



4 Chapter 1. Introduction

those problems by applying many different techniques until they started to take
inspiration from biology.

Species have been evolved over millions of years, slowly improving their
body shapes, abilities and senses. In this process, the brain has played a key
role by adapting itself according to the needs, optimizing task resolution while
keeping a low power consumption. Since we could confirm that the brain is
one of the most efficient computers ever made, it is the perfect candidate to be
mimicked.

Humans are able to hear thanks to the ear, which receives sound waves,
stimulating the inner ear, and sending the neuronal activity to the auditory cortex
through a pathway. Differently to the cloud-based devices, sound’s features are
extracted in different brain nuclei across the auditory ascending pathway, being
processed by the auditory cortex afterwards. The function carried out by each
nucleus is generally specific, which does not mean that the process to do it is
simple. And this thought could lead to follow phenomenological modelling of
bio-inspired electronics devices instead of an emulation approach.

This way, many works can be found in the literature which aim to design,
part by part, a human-like hearing sense, starting from the ear and its cochlea,
continuing by the extraction of binaural cues for the spatial context in the early
brain nuclei, and finishing with sound detection and speech recognition tasks in
the auditory cortex. Despite those efforts, the use of a bio-inspired solution for
solving auditory tasks is not as high as desired. Maybe because there is a gap
between used technologies or approaches; maybe because the sound itself is not
enough to take a decision and it needs to be exploited together with other sensory
data.

But what is true is that the hearing sense is involved in all our daily
tasks, from learning to teaching, from protecting to being safe. Therefore, to
understand how it works and for applying its benefits to society, either directly
by developing bio-inspired cochlear implants or indirectly by mean of home-
assistant humanoids robots, this thesis has been carried out with dedication,
excitement, and effort.

1.1 Motivation

Currently, auditory perception is becoming popular in different research areas.
For instance, cochlear implants are considered as one of the best achievements
in the bio-engineering field (Zeng et al., 2008; Wilson et al., 1991; Eshraghi et al.,
2012). The performance of such devices, inspired in a certain way from biology, is
incredibly high, making the life of impaired people better. The technology under
the cochlear implants is based on an external digital signal processor connected
to an array of electrodes, which is placed in the human cochlea. Nevertheless, the
fact that the user needs to have an external device could be a problem in some



1.1. Motivation 5

daily aspects. With the new technologies, such as the neuromorphic engineering,
new bio-inspired approaches for auditory sensors could be used for improving
the current version of cochlear implants. And it could lead to the creation of a
new generation of fully neuromorphic cochlear implants with better features.

Although all the efforts were put on cochlear models, there could be other
cases in which the disease affect not directly the cochlea but also the following
sections of the auditory ascending pathway. This means that the person could
have problems for spatial sound source localization, which is an essential task
in safety and socialization. Furthermore, auditory perception is closely linked to
visual perception, being both of them mixed in the brain. As examples, visual
information helps the auditory perception when a person is talking by reading
its lips, and the auditory information helps the visual perception to focus the
attention by localizing the sound in the space (Massaro and Stork, 1998; Molholm
and Foxe, 2005; Khacef et al., 2020).

This neuromorphic approach of the hearing sense, besides to help humans,
can be also applied to robotics. On the one hand, the low-latency nature of the
neuromorphic systems could be exploited for autonomous navigation, using in
combination both visual and auditory sensors. This way, an autonomous car
would be able to detect moving objects that could be out of its field of view thanks
to the sound, reacting to that event in the order of hundreds of microseconds. On
the other hand, human-like robots are considered the best platform to test this
new bio-inspired systems before moving to real experiments with humans. Their
use helps to finely improve the hardware, the software and the final applications
by comparing their behavior with the expected human behavior.

After having a deep look at the state-of-the-art, and after being identified
several aspects related to the neuromorphic auditory perception which can be
improved, this work have been motivated to contribute in the following three
main blocks:

• Facilitate the access of a neuromorphic auditory sensor to the neuromorphic
research community: even though there exist different options, like in-
silico analog cochlea models and some others digital implementations, they
are not so accessible due to whether their high price, low availability, or
difficulty of being configured and used. For further improvements in the
neuromorphic auditory perception field, an open source auditory sensor
would be desirable that could offer the researchers a global platform for
performing experiments.

• Continue with the development of our neuromorphic auditory sensor by
adding new useful features: the cochlea model is just the first step in the
auditory ascending pathway. Therefore, our final desire would be to have
a complete digital, spike-based hearing sense starting from the cochlea up
to the auditory cortex. In this path, the next step is the implementation of
the brain nucleus where the binaural cues for the sound source localization



6 Chapter 1. Introduction

are extracted. In addition, current cochlea models does not implement
this feature directly. Instead, software models have been developed as a
complement with specific requirements, making it difficult to integrate the
whole system in the same robotic platform.

• Integrate the auditory model within robotic platforms for providing them
with the sense of hearing: related to the first item, it is not common to
find neuromorphic cochlea models, either hardware or software, already
integrated in robots, thus making it difficult to advance in the filed of real-
time audio-guided robotics applications. The cochlea models are often used
for generating event-based audio datasets or testing local neuromorphic
audio applications. But it would be desirable to have a robotic platform that
can provide both a neuromorphic sensor set (such as neuromorphic retinas,
cochleas, motor control, etc) together with a unique software framework
that allows the user to manage the input sensory events, avoiding to have
multiple individual sensors managed by multiple individual software.

The proposed improvements and contributions presented in this thesis, that
have been carried out with the best of my intentions, modesty, effort, and without
the aim to have the absolute truth, can be summarized as:

• The implementation of an open source tool for automatically generating
the design files of a technology-independent, digital neuromorphic cochlea
model. Using the NAS as reference (developed by Ángel Jiménez
Fernández in his thesis), this software tool is able to generate custom
Hardware Description Language (HDL) files ready to be synthetized by
FPGA’s oriented tools without the need of being modified by the user. This
way, it would not be necessary to have previous knowledge of HDL code.
As advantage, the generated HDL code is platform independent, therefore
it can be deployed in any FPGA from different vendors. In addition, the
first open hardware NAS Application-Specific Integrated Circuit (ASIC) has
been designed and fabricated to test the performance of our approach.

• The design, implementation, and test of a digital, spike-based model
of the human Superior Olivary Complex (SOC) for performing sound
source localization tasks. This model takes the output spiking information
generated by the NAS as input, and is able to extract useful information
about the localization of sounds in the space. Since it can be deployed
into an FPGA, this model is also technology-independent, configurable and
scalable. In addition, a new approach for the Interaural Time Difference
(ITD) estimation has been proposed by using the concept of the Time
Difference Encoder (TDE) neuron model as an alternative to the Jeffress
model. This TDE model, as well as a proof-of-concept of its usage for the
sound source lateralization task, have been designed and implemented in
this work.



1.2. Neuromorphic engineering 7

• The integration of the neuromorphic auditory sensor within robotic
platforms and the demonstration of real-time neuromorphic audio
processing applications. In particular, the NAS has been used in two
application-specific robots and in one general purpose robot. First, the
NAS was used as input sensor for modifying the movement pattern of
an hexapod robot in real-time, where an internal Spiking Central Pattern
Generator (SCPG) (implemented on SpiNNaker) was commanded by the
input auditory stimuli. Second, the sound source localization information
was combined with visual information in order to implement a real-
time, audio-visual collision avoidance system. Third, both the NAS and
the localization model were integrated within the iCub robot and its
control framework for multi-modal sensory processing tasks and auditory
perception algorithms development.

This thesis is part of the research career of the Robotics and Computer
Technology group (RTC, TEP-108), to which the author belongs. This work is
focused on and aligned with different tasks that are part of national research
projects, which have served as funding, along with the Spanish Ministry of
Education, Culture and Sports, thanks to a Formación del Personal Investigador
scholarship. The knowledge, materials, code, and documents generated in this
thesis have been made open-source (as far as possible) to be used by the research
community due to it was funded with public money. These projects are:

• COFNET project: Sistema Cognitivo de Fusión Sensorial de Visión y Audio
por Eventos (TEC2016-77785-P).

• NPP project: Neuromorphic Processor (P051-15/E03).

• NPP2 project: Neuromorphic Processor Project Phase 2 (P062-18/E03).

• MIND-ROB project: Percepción y Cognición Neuromórfica para Actuación
Robótica de Alta Velocidad (PID2019-105556GB-C33).

1.2 Neuromorphic engineering

Moderns computers are based on the von Neumann architecture, which was
proposed in 1945 by the computer scientist John von Neumann, and it is still
being used nowadays. Over the years, most of the efforts from traditional
computing companies have been focused on improving the speed of computation
without taking too much care of the power consumption. However, the main
problem resides on there is a mismatch between the speed of the memory access
and the speed of the Central Processing Units (CPUs), leading to the so-called
von Neumann bottleneck (Alex, 2009).

Furthermore, Moore’s law is thought to come to an end in the next years
due to physical constraints such as increasing thermal noise (Kish, 2002).
These developments have triggered increasing research efforts for the design of



8 Chapter 1. Introduction

alternative computational architectures which may complement and augment
traditional von Neumann machines. One interesting architecture is the human
brain, which can compute complex correlations in real-time with approximately
100 billion neurons and more than 100 trillion synapses while consuming only 20
watts (Rigden, 1996; Drubach, 2000; Moravec, 1998).

Researchers from the California Institute of Technology (Caltech) started to
study how to build brain-inspired computers in the late 80s, led by Prof. Carver
Mead. Their initial goal was to mimic the behavior of neurons in nervous systems
by means of Very Large-Scale Integration (VLSI) analog circuits. According
to Prof. Mead, "to understand reality, you have to understand how things work.
If you do that, you can start to do engineering with it, build things". Therefore,
his contribution consisted in understanding biological neural systems through
silicon implementations, which has inspired the field of analog neuromorphic
circuits design (Mead, 1989).

Nowadays, the research interest in this topic has grown exponentially. Given
the ability of the brain and the fundamentally different substrate (asynchronous
operation, co-localization of memory and computation, full parallelism, etc.),
neural computation is a promising source of inspiration. The capability to take
complex decisions in real time by means of limited sensory data poses the basis
for the development of a new generation of edge computing devices.

In the last 20 years, many neuromorphic platforms have appeared. Between
them, we can find large-scale, analog neuromorphic processor, as DYNAPs
(Moradi et al., 2017) or BrainScaleS (Schemmel et al., 2010), or digital approaches,
as SpiNNaker (Furber et al., 2013a) or Loihi (Davies et al., 2018). Moreover, the
development of neuromorphic sensors has gained in popularity across the years,
trying to be positioned as a real alternative to conventional sensors. This way, we
can find neuromorphic cameras that mimics the how the human eye works so-
called neuromorphic retinas (Lichtsteiner et al., 2008; Serrano-Gotarredona and
Linares-Barranco, 2013); neuromorphic auditory sensors that implements how
the inner hear works (Chan et al., 2007; Jimenez-Fernandez et al., 2017; Yang et al.,
2016; Xu et al., 2018b); neuromorphic motor control systems imitating how the
muscles are controlled (Jimenez-Fernandez et al., 2012; Perez-Peña et al., 2013a;
Gómez-Rodríguez et al., 2016; Linares-Barranco et al., 2020; Zhao et al., 2020);
neuromorphic odor sensor emulating the sense of smelling (Chicca et al., 2014;
Vanarse, 2020); and neuromorphic touch sensors that could be potentially used
in prosthetic hands (Bartolozzi et al., 2007; Ward-Cherrier et al., 2020).

Those platforms have in common that they allow to deploy spiking
neural network models which take a spiking neuron as a basic computing
unit (Furber, 2016). Thus, for processing the spiking information provided
by the neuromorphic sensors, researchers have aimed at modelling specific
parts of the brain with Artificial Neural Networks (ANNs). For doing
so, neural connectomics and neurophysiological data acquired from biology



1.2. Neuromorphic engineering 9

have been studied intensely to extract the most important characteristics of
neural computation (such as low latency and low power consumption) by
multidisciplinary research teams.

Therefore, we can define the modern neuromorphic engineering concept
as a research field that is dedicated to design and develop artificial
computing systems whose physical properties, structures, or representation
of the information are based on the biological nervous system, and where
researchers from many different research fields, as physics, mathematics, biology,
engineering and even psychology work together.

1.2.1 Taking inspiration from the nervous system

Spanish scientists Santiago Ramón y Cajal received the Nobel Prize in Physiology
or Medicine in 1906 for his work on the structure of the nervous system in
recognition of his discoveries. He discovered that the brain is composed of a
series of independent and interconnected cells, the neurons. His studies were
made possible by advances in staining methods and microscopes. A reproduction
of one of the Ramon y Cajal drawings is shown in Fig. 1.1.

In a neuron, three different parts can be distinguished: dendrites, soma,
and axon. These three main parts are shown in Fig. 1.2 as a simplified scheme.
Dendrites can be considered as the “inputs” of the neuron and their main function
is to collect information from other neurons, which is then sent to the soma.
The soma acts as the central processing unit and performs non-linear operations
on the received information. The information received and processed modifies
the membrane potential of the neuron and, if a specific threshold is reached, an
electric pulse is generated, which will be sent through the axon (the “output” of
the neuron) to other neurons that are connected to this one.

The connection between two neurons is known as the synapse (Johnston
and Wu, 1994), and this connection has complex physiological characteristics.
Hodgkin and Huxley (Hodgkin and Huxley, 1939) analyzed in 1939 the electrical
behavior of an isolated neuron by studying how its sodium and potassium
channels behaved. He demonstrated that the representation, communication,
and processing of information in a neuron is made by means of small electric
pulses in time, known as action potentials or spikes. The neuron that sends
a spike through a synapse is called pre-synaptic neuron, whereas the one that
receives the spike is called post-synaptic neuron.

In general, the resting potential of a neurons is about -70 mV. If the opening
of the ion channel results in a net gain of positive charge across the membrane,
the latter membrane is said to be depolarized, as the potential approaches zero.
This process is called Excitatory Post-Synaptic Potential (EPSP), as it brings the
neuron’s potential closer to its firing threshold (about -55 mV). However, if the
opening of the ion channel results in a net gain of negative charge, this moves



10 Chapter 1. Introduction

FIGURE 1.1: Cajal’s drawing of neurons in the hippocampus, a region of
the brain important to memory.

the potential further from zero and is termed hyperpolarization. This process
is called Inhibitory Post-Synaptic Potential (IPSP), as it changes the charge across
the membrane to be further from the firing threshold (Domínguez Morales, 2018).
If the membrane potential of the neuron reaches the threshold, the neuron will
depolarize abruptly, generating an action potential and transmitting a nervous
impulse. After firing the spike and depolarizing the neuron, it will polarize up
to the point of hyperpolarization, unable to emit a new spike until a specific time



1.2. Neuromorphic engineering 11

FIGURE 1.2: Simplified neuron anatomy.

period, known as the refractory period. Fig. 1.3. shows the diagram of an action
potential generated by a neuron.

The hypothesis of how neurons represent the information (how the
information is encoded into spikes) is one of the key aspects of neural processing
research. Horace Barlow proposed different models (Barlow, 1961), including
the one widely accepted within the neuromorphic engineering community. It
proposes that the information is encoded in the frequency of the spikes using
Pulse-Frequency Modulation (PFM) (Maass and Bishop, 2001; Westerman et al.,
1997; Shepherd, 2003). In this way, the information can be encoded without the
need to perform a temporal discretization of the information (Hynna and Boahen,
2001; Fujii et al., 1996). Other ways of encoding the information are through the
ISI (Indiveri et al., 2006), or through the reset time, where the most important
events are the ones that have been emitted first (Thorpe et al., 2010).

Some key features, such as simplicity, the reduction of the number of
communication channels needed to transmit spikes, and the continuous flow
of information in time, make the spiking representation of the information an
efficient mechanism to work with neuron-based systems. Minimizing the number
of channels needed for communication allows a high rate of interconnectivity
between neurons. Therefore, since the information is not sampled, it avoids
transmitting redundant information and saturating the communication channels
in an unnecessary way by only transmitting spikes when they are needed.

This representation is also very robust to noise: the information is encoded



12 Chapter 1. Introduction

FIGURE 1.3: Diagram of a spike generated by a neuron (taken from
(Domínguez Morales, 2018)).

in the time between two consecutive spikes (ISI), where it is only important if a
spike exists or not. However, analog signals are completely immune to external
perturbations.

The brain is the main part of the central nervous system in most of the
animals. Often, it is located in the head, close to the most important sensory
organs, and is protected by the cranium. The human brain is extremely complex
and it is estimated to have around 100 billion neurons. In turn, one single neuron
can be connected to another 10 thousand neurons. Neural structures are grouped
into layers (mainly in the cortex because many nuclei are not layered) with the
aim of processing part of the information obtained from input. Each layer has a
specific functionality (Shadlen and Newsome, 1994; Rakic, 1988).

Performing a qualitative comparison between how a neural system and a
digital computer work, many essential differences can be found:

• Asynchronous vs. global clock-commanded execution: computers are
controlled by a global clock signal which frequency is generally set to a
couple of gigahertz, and which makes the computer to update its state
continuously every clock cycle. However, neurons process the information
asynchronously without the need of any synchronization mechanism, thus



1.2. Neuromorphic engineering 13

avoiding the global clock signal. Some works suggest that the brain could
have some synchronizing processes (Fries, 2005), although it has not been
proven yet.

• Nondeterministic vs. deterministic: computers are completely
deterministic elements, whose future internal state can be determined
according to the set of instructions to be executed, while neurons respond
to a stochastic model, depending on their reaction to their dynamic
probabilistic models.

• No sampling rate vs. sampled data: computers work with high-resolution
data that are sampled at a constant rate, whereas neurons are the exact
opposite. In addition, they are able to adapt the characteristics of the
information in real time to improve its representation.

• Decentralized vs. centralized processing: In most computational systems,
processing is centralized and carried out by the CPU, in contrast to the way
in which neurons process the information, where each neuron is considered
a tiny CPU that processes a small part of the information independently of
other neurons, thus being equivalent to a massively parallel computer.

• Large vs. low memory needs: computers need memory units to store
instructions that will be executed and also for the data to be used by the
instructions. However, neural systems do not need memory for any of
these purposes, since the neural algorithms that they execute are encoded in
the connection between different neurons. In other words, the information
processing is in the spike stream itself.

1.2.2 From biology to engineering

Neural systems possess remarkable features that have motivated researchers
to develop fully neuro-inspired devices. Taking as reference the biophysical
behavioral description of a neuron, that models the neuron’s behavior by using
complex, non-linear mathematical equations, electronics engineers started to
design analog circuits with the aim of to obtain a response similar to a neuron
response. In its basic form, a neuron can be modelled as a resistor-capacitor
circuit connected in parallel. Nevertheless, there exist tens of neuron’s models in
the living beings which have particular characteristics, thus needing more precise
and specialized circuits designs to exactly reproduce their behaviors. Fig. 1.4
shows one example of circuit design modelling a retina photoreceptor, that can
be considered as the first neuronal analog circuit model.

Analog circuits have significant similarities with neurons such as continuous
electrical signals, asynchronous processing, and adaptive behavior, among
others. Thus, analog neuron designs are considered a good approach when
implementing neuromorphic artificial neuron models. Many works can be found
in the literature presenting analog implementations of neuron models in the last



14 Chapter 1. Introduction

FIGURE 1.4: Schematic of pixel circuit from the Mahowald retina model
(taken from (Mead, 1990)

30 years either using biophysical or phenomenological approaches (Bartolozzi
and Indiveri, 2007; Brette and Gerstner, 2005; Milde et al., 2018). One of the most
popular and implemented model is the LIF neuron (Liu et al., 2002; Indiveri et al.,
2011a), that basically integrates the input current into the neuron’s membrane
potential until it reaches a certain threshold, producing then an output spike.
In addition, this model takes into account the leak of the membrane potential
voltage over time, reflecting the diffusion of ions through the membrane.

This kind of circuits generally consist of tens of transistors and a couple
of capacitors, and those transistors can work at either sub-threshold or above-
threshold, thus becoming very low-power consumption devices. These features
have allowed to design analog neuromorphic procesors, as DYNAP(Moradi et al.,
2017), and analog neuromorphic processing machines, as BrainScaleS (Schemmel
et al., 2010). Moreover, researchers have turned bugs into features, as the device
mismatch of analog circuits, by using the mismatch’s randomness to increase the
robustness of the neuron’s learning procedure.

Nevertheless, digital implementations have been also carried out by
following different approaches. On the one hand, the neuron’s model can be
implemented as a digital circuit to be later deployed into an FPGA or integrated
into an ASIC. These circuits, in turn, can implement single or multiple neurons by
following either biophysical (Cassidy and Andreou, 2008; Perez-Peña et al., 2019;
Tapiador-Morales et al., 2018) or phenomenological (Frenkel et al., 2017; Indiveri
et al., 2011b) modelling techniques. In addition, these neuron models can be
used as processing unit of a neuromorphic processor, creating thus a Network-on-
Chip (NoC) and allowing to implement large neural networks. MorphIC (Frenkel
et al., 2019), Loihi (Davies et al., 2018), and SpiNNaker (Furber et al., 2013b) are



1.2. Neuromorphic engineering 15

good examples of massively multicore neuromorphic processors, among others.

On the other hand, neuron’s models can be simulated by software algorithms
which can be run in parallel computers or Graphical Processing Units (GPUs),
taking advantage from their inherent parallel architecture (Knight and Nowotny,
2019; Knight and Nowotny, 2021). This way, large-scale population of neurons
can be simulated, somethings even obtaining better performance when compared
with neuromorphic hardware solutions, like SpiNNaker (Knight and Nowotny,
2018).

SpiNNaker (Spiking Neural Network Architecture) is a massively parallel
multicore computing system to model very large SNNs in real time, optimized
for neuromorphic applications. Both the system architecture and the design of the
SpiNNaker chip have been developed by the Advanced Processor Technologies
Research Group (APT) at the University of Manchester. Each SpiNNaker
chip consists of eighteen 200 MHz general-purpose ARM968 cores, each one
with its own memory. The chip contains a Globally Asynchronous Locally
Synchronous (GALS) architecture with an asynchronous packet switching
network that is highly optimized for neuromorphic applications (Plana et al.,
2007). The communication between them is done via packets carried by a custom
interconnect fabric. The transmission of these packets is managed entirely by
hardware, giving the overall engine and extremely high bisection bandwidth. It is
important to mention that one of the 18 ARM processors is used for management,
and another ARM core is reserved. Therefore, only 16 ARM cores are involved in
the neuromorphic process.

Fig. 1.5 bottom right shows a picture of the SpiNN-5 machine, which has
48 SpiNNaker chips (86 ARM processor cores) (shown in Fig. 1.5 bottom left)
and 3 Spartan-6 FPGAs to communicate to other boards. Both boards have a 100
Mbps Ethernet connection that is used as control and I/O interface between the
computer and the SpiNNaker board. SpiNN-5 has been used to build a million
core massively parallel computer for human brain simulation (Furber and Brown,
2009), shown in Fig. 1.5 top.

In general, neuromorphic systems are composed of a neuromorphic sensor
(or a group of them) and a set of spiking neural networks with multiple layers.
These networks process the information provided by the sensors in the same
way that the brain does. However, due to the brain has a high density in
terms of neuronal connections, where each of the 105/mm3 neurons could
be connected to other 10 thousand generating a density of connections up to
4km/mm3 (Braitenberg and Schüz, 1998), it is a hard task to design and fabricate
this structure in a VLSI system. Nevertheless, a neuron presents a firing rate
that ranges between 1-10 Hz, scaling up to kHz or MHz if many hundreds
are combined together, meaning that state-of-the-art electronic circuits are much
faster than biological neurons.



16 Chapter 1. Introduction

FIGURE 1.5: SpiNNaker machine project from chip to cabinete (taken from
(Sugiarto et al., 2017)

A mechanism that multiplexes the information in time for a set of neurons in
a single communication channel was proposed for the first time in 1991 (Sivilotti,
1991; Lazzaro et al., 1993; Lazzaro and Wawrzynek, 1995; Boahen, 2000) with the
aim of solving connectivity problems, and it is known as AER. Based on this time
difference and the high bandwidth capacity of the VLSI systems, each neuron is
identified with a unique address, which is sent through a shared bus whenever
the neuron fires a spike. It is an event-driven communication protocol used
originally for transferring spikes (action potentials) between neurons in VLSI
implementations (Mahowald, 1992). Thus, it is an event-driven asynchronous
and digital multiplexing technique.

The main functionality of AER circuits is to provide multiplexing /
demultiplexing mechanisms for spikes that are generated by / on sent to a
set of neurons. Fig. 1.6 schematically shows the transmission of information



1.2. Neuromorphic engineering 17

between two neuromorphic chips using the AER protocol. This protocol uses a
shared multiplexed high-speed bus (AER bus) for transmitting the spikes that
are fired by the neurons on a chip. Each neuron is identified with a unique
address. Every time that a neuron spikes, and thanks to an arbiter circuit, the
address of that neuron will be placed in the AER bus, generating an AER event.
This way, each of the asynchronous spikes will be encoded and multiplexed by
the AER circuit in the bus in the same order as they were generated (Serrano-
Gotarredona et al., 2009; Berge and Hafliger, 2007). The timestamp in which
the address of the neuron is generated corresponds to the timestamp in which
it was fired plus a small delay caused by the codification process. These coding
circuits use a specific arbitrating logic to handle the transmission of multiple
spikes simultaneously from different neurons. Many different AER encoders can
be found in the literature, based on the mechanism used to solve the conflict of
multiple simultaneous spikes and how the addresses are encoded (Cerezuela-
Escudero et al., 2013). Each of these options have their own advantages and
disadvantages depending on the neuromorphic system used. A comprehensive
study of these mechanism can be found in (Liu et al., 2015).

FIGURE 1.6: Transmission of an event using AER representation. Image
taken from (Lazzaro et al., 1993).

The address of the neuron that produces the AER event is decoded on the
receiver chip as soon as it arrives using an asynchronous decoder, sending the
initial spike to the corresponding neuron. In this way, transmitter and receiver
neurons are virtually connected through the AER bus using the AER protocol. If
the delay between adjacent spikes in the input is high enough, the AER decoder
will send the spikes to the corresponding neurons with a delay that corresponds
to the time that the spike takes to reach the decoder plus a small delay caused by
the decoding circuit.

The AER protocol is a 4-phase asynchronous handshake protocol between
the transmitter and the receiver that guarantees the synchronization between
both chips, as shown in Fig. 1.6 bottom. The transmitter starts the communication



18 Chapter 1. Introduction

process with a request. Then, the second chip, the receiver, answers to this
request with an acknowledgement. To conclude the transmission, the transmitter
removes the request and the receiver does the same with the acknowledgement,
resetting the system to its initial condition. Both parts of the communication are
not active until the transmitter starts a new request. A new transmission depends
on the neurons of the transmitter chip that try to send and AER event. Thus, AER
is a data-driven protocol. In this asynchronous protocol, the activity within the
communication bus depends on the data transmissions, which is in contrast with
classical discrete and periodic systems.

With the increasing number of neuromorphic hardware including sensors
and systems for deploying and running SNNs in real time, a proper set of
software tools to process spiking information have become very useful for
debugging tasks, dataset collection, and post-processing algorithms execution.

One of the most popular software tool by the neuromorphic community is
jAER (Delbruck, 2008). It is an open-source (under GNU Lesser General Public
License v2.1) framework for PCs for visualization of real-time or recorded event-
based data1, and rapid development of real-time event-based algorithms and
applications built in Java. jAER consists of an application called “jAERViewer”
that allows to plug in any AER device with USB interface and perform different
functionalities with it, e.g. view the events coming from the device in real time,
log (record) them to a file (with .aedat extension), play a logged AER stream
back and process the events using different filters. Fig. 1.7 shows a screenshot
from AER, receiving spikes in real time from the live output of a Neuromorphic
Auditory Sensor (NAS).

There are many AER devices compatible with jAER, from dynamic vision
and audio sensors to AER monitor/sequencer boards, along with a servo motor
controller, among others. The events are produced by sensors asynchronously
and timestamped (with 1 µs precision). Then, they are transmitted through the
USB to the PC in packets, which contain variable numbers of events, and when
they are received, jAER applies a set of filters chosen by the user. Meanwhile, the
software can render the events that are output by the final filter and add visual
annotations over the output.

For offline representation and analysis of .aedat files, Neuromorphic
Auditory VISualizer (NAVIS) tool was proposed in (Dominguez-Morales et al.,
2017c) as a complement of jAER. NAVIS is open-source tool 2 (under GNU
General Public License) for post-processing the output spiking information
from neuromorphic auditory sensors previously recorded with either Matlab or
jAER. It allows you to load an events file and generate its full raster plot, so-

1With “event-based data” we mean address-events from systems using AER protocol which have
been timestamped.

2NAVIS’s project and code can be found in https://github.com/jpdominguez/NAVIS-Tool

https://github.com/jpdominguez/NAVIS-Tool


1.2. Neuromorphic engineering 19

FIGURE 1.7: Screenshot of NAVIS tool.

called spikegram, histogram, sonogram, disparity, and mean activity plots. A
spikegram example from NAVIS is shown in Fig. 1.8.

FIGURE 1.8: Main window of NAVIS tool showing the cochleogram of the
sentence "En un lugar de La Mancha". Blue dots represent the output of
the left 64-channels, while orange dots represent the output for the right

channels. Image taken from (Dominguez-Morales et al., 2017c).

Furthermore, this tool includes some options for generating audio datasets,
like an automatic splitter or mono-to-stereo/stereo-to-mono converters, among
others. NAVIS has been succesfully used, for instance, in (Dominguez-Morales
et al., 2018a), where authors first converted an audio dataset from heart
recordings to spikes using NAS and jAER, and then NAVIS for generating the
sonogram of each recorded .aedat file.



20 Chapter 1. Introduction

Since NAVIS was implemented by using Windows Presentation Foundation
(WPF), non-Windows users were not able to use it. Therefore, a cross-platform,
open-source (under GNU General Public License) python version was developed
by Dominguez-Morales et al. called pyNAVIS (Dominguez-Morales et al., 2021b)
3. As opposed to NAVIS, pyNAVIS does not have Graphical User Interface (GUI),
so it is not as much interactive as NAS could be due to every action to be carried
out must be already included in the script. However, the advantage of pyNAVIS
is that it can be integrated into bigger scripts as a package, thus allowing the user
to do multiple task but using the same Python script.

1.3 The sense of hearing

In previous chapters, neuro-inspired systems were introduced. These systems
mimic the way in which the senses and the brain process the information. Thus,
it is intended to obtain benefits in the processing that are present in living
organisms and that could be used for particular tasks like speech recognition
and sound source localization. To be able to develop this kind of systems,
it is necessary to have basic biological knowledge of the processing to be
emulated. Therefore, in this chapter, the main characteristics of the sense of
hearing are presented, as well as a state-of-the-art analysis of different bio-
inspired neuromorphic auditory systems that have already been published.

1.3.1 Auditory system in biology

In this chapter, the anatomy and the physiology of the auditory system are
described, emphasizing the parts and structures that are more relevant for audio
processing and sound source localization.

The concept of perception consists in the detection of a stimulus by one or
more sensory receptors. In addition, interpretation, elaboration, and attentional
selection are also components of perception. The sensory receptors of the human
body are continuously sensing things that we are not even aware of (e.g., blood
pressure, blood temperature, carbon dioxide and oxygen concentration, etc.) due
to the fact that the signals that are sensed are not directly sent to the ensemble
of network interactions that give rise to consciousness. In other circumstances,
perception leads to sensation (or conscious perception). In these cases, the
sensory receptors transmit impulses to the brain cortex through nerves and
pathways. The brain cortex is able to integrate these signals into a sensation in
the order of tens or hundreds milliseconds (Hull, 2011).

Hearing is one of the senses that are classified as special senses, which
have specialized organs devoted to them (vision has the eyes, hearing has the
ears, smell has the nose, and taste has the tongue). Therefore, hearing could be

3pyNAVIS’s project and code can be found in https://github.com/jpdominguez/pyNAVIS

https://github.com/jpdominguez/pyNAVIS


1.3. The sense of hearing 21

defined as the detection of sound waves and their integration in order to generate
sensations (Hull, 2011).

Every sensation, including the ones produced by hearing, are the result of the
same sequence of events: first, a stimulus is produced. Then, the sensory receptor
detects the stimulus and converts it into an electrical signal. Next, the signal is
transmitted to the brain (through the auditory pathways in the case of hearing).
Finally, the brain integrates the signal into conscious perception (sensation).

The task of receiving the audio signal, processing it and transforming it
into impulses are carried out inside the ear, while neural processing and sound
recognition are performed in the brain. Thus, two main regions or sections can
be distinguished in the auditory system: the peripheral auditory system, where
sound waves are converted into nerve impulses, and the central auditory nervous
system, which transforms these impulses into sensations.

Different cognitive processes intervene in the central auditory nervous
system, by which context and meaning are given to the sound, i.e., they allow
the recognition of words, the classification of different musical instruments, the
localization of the sound source, distinguishing between different speakers by
their pitch and loudness, etc., among other complex tasks.

1.3.1.1 The ear

The peripheral auditory system, also known as the ear, is responsible for the
physiological processes of hearing. These processes allow the reception of sound,
transforming it into electrical impulses that are then sent to the brain through
the auditory nerves. The mechanical processing of the sound waves and their
transformation into impulses are non-linear processes (Zwicker and Fastl, 2013),
which hinders the characterization and modelling of the auditory perception.

The peripheral auditory system is divided into three interconnected parts:
the outer ear, the middle ear, and the inner ear. Next, the anatomy and
functionalities of each of these three parts of the ear are described, along with
the propagation and the processing of the sound across them.

1.3.1.1.1 Outer ear

The outer ear is the external part of the ear and it consists of the auricle and
the ear canal. The auricle is the visible part of the ear that resides outside the head
(the word “ear” is also used to refer to this part alone) and it is also known as
pinna. Its function is to gather the sound waves and guide them through the ear
canal. When they hit the auricle, the sound waves are reflected and attenuated,
which provides additional information to the brain for determining the direction
of the sound that the auricle is receiving. The determination of the direction
of the sound depends on the outer ear anatomy. Except for specific cases in



22 Chapter 1. Introduction

FIGURE 1.9: Anatomy of the ear. Image taken from (Patton et al., 2012).

which sounds come directly from towards, rearwards, above or below, the sound
reaches the closest ear in a fraction of a second earlier and louder than in the
furthest one. If the difference is higher than 10 µs (minimum human interaural
time difference threshold), the brain is able to detect and interpret it.

The ear canal is 2.5 cm long and it extends from the auricle to the eardrum,
also called the tympanic membrane, in the middle ear. Its main function is to
protect the middle ear and to maintain the middle ear at a stable temperature. It
conducts the vibrations gathered in the auricle to the tympanic cavity, amplifying
sounds with frequencies between 3 and 12 KHz. Each of these components are
shown in Fig. 1.9.

1.3.1.1.2 Middle ear

The middle ear is the part of the ear that is internal to the tympanic
membrane, which separates this part from the outer ear (Fig. 1.9). The eardrum
vibrates when it is hit by sound waves. The middle ear contains three small
ossicles (malleus, incus, and stapes), which propagate the sound waves from the
eardrum to the inner ear. The stapes are in contact with one of the fluids contained
in the inner ear through the oval window. Thus, the ossicular chain acts as a
mechanism to transform air vibrations into waves in the fluid and membranes
of the inner ear. In order to achieve this, the air pressure inside the middle
ear must be the same as the atmospheric pressure, which is possible thanks to
the Eustachian tube (also known as auditory tube or pharyngotympanic tube),



1.3. The sense of hearing 23

connecting the middle ear with the nasopharynx and allowing the pressure to
equalize between the middle ear and throat (Hull, 2011; Patton et al., 2012).

The main functions of the middle ear are:

• To increase the pressure received by the eardrum (impedance matching).
This is essential, since the cochlea is full of liquid, instead of air, and
the density and compressibility of the cochlear liquid (the perilymph) is
almost four thousand times lower than that of the air. If we did not
have a mechanism to increase the pressure inside the middle ear, only
0.1% of the tympanic pressure would reach the cochlea. This acts as
a sound normalization step phase. To protect the inner ear structures
from extremely loud sounds, the stapedius (the muscle that stabilizes the
stapes), stiffens the ossicular chain by pulling the stapes away from the oval
window of the cochlea, decreasing the transmission of vibrational energy to
the cochlea for sounds below 1-2 kHz and above 85-90 dB. This mechanism
is known as the stapedius reflex or acoustic reflex.

• To reduce the transmission of low-frequency sounds, acting as a low-pass
filter, with an attenuation of 15 dB per octave in the 1 kHz band.

1.3.1.1.3 Inner ear

The inner ear is the innermost part of the peripheral auditory system. It
consists of the vestibular system, which is dedicated to control balance, and the
cochlea, dedicated to hearing.

The cochlea, which is shown in Fig. 1.10 top left, is 32-35 mm long, 4
mm2 to 1 mm2 wide (from the base to the apex) spiral-shaped cavity filled
with two different fluids. Fig. 1.10 shows a cross section of the cochlea in
which three tubular ducts can be seen. The central one is the cochlear duct
(also known as scala media) and contains endolymph. The second and third
ducts, called vestibular duct and tympanic duct (or scala vestibuli and scala
tympani, respectively), contain the same fluid, perilymph, due to the fact that
they are interconnected through a small opening in the apex of the cochlea called
helicotrema. The base of the stapes is in contact with the fluid of the vestibular
duct through the oval window, while the tympanic duct terminates at the round
window in the tympanic cavity, as shown in Fig. 1.9. The lining between the
cochlear duct and the vestibular duct is known as the Reissner’s membrane,
while the lining between the cochlear duct and the tympanic duct is called basilar
membrane (Fig. 1.10) (Hull, 2011).

The basilar membrane is a structure whose width and rigidity are not
constant: it is broad and rigid near the oval window, and it gets thinner and
more flexible near the apex of the cochlea. Rigidity decays almost exponentially
with the distance from the oval window. This variation affects the propagation



24 Chapter 1. Introduction

FIGURE 1.10: Detailed cross section of the cochlea.

speed of the sound waves across the basilar membrane, and it is responsible for
one of the most important functionalities of the inner ear: frequency selectivity.

The basilar membrane supports the Organ of Corti (also known as the spiral
organ), the most important element in the cochlea, which is able to transduct
from movement into nerve impulses’ action potential (see Fig. 1.11). The Organ
of Corti contains between 15000 and 30000 receptors called hair cells. Their name
derives from the tufts of stereocilia, known as hair bundles, which protrude
from the apical surface of the cell into the cochlear duct. Each of the “hairs” of
these cells are able to produce receptor potentials when they touch the tectorial
membrane, which is located above the basilar membrane.

Hair cells can be divided into two different types: the Inner Hair Cells (IHCs)
and the Outer Hair Cells (OHCs). There exist around 3500 IHCs and 20000 OHCs.
Both cell types have connections with the afferent nerve fibers, which propagate
action potentials towards the brain, and efferent nerve fibers, which propagate
action potentials from the brain to the cochlea. However, the fiber distribution
is very unequal: more than 90% of the afferent fibers innervate IHCs, whereas
most of the 500 efferent fibers innervate OHCs. The functionality of each type is
presented next.

The behavior of the cochlea starts with the vibrations produced by the
stapes, which generates vibrations in the fluid contained in the vestibular
duct. Oscillations in the perilymph of the vestibular duct are transmitted to
the endolymph, and then to the basilar membrane, which also propagates the
oscillations to the fluid in the tympanic duct (see Fig. 1.12). It is important to
note that the amplitude and frequency of the vibrations are directly proportional
to the amplitude and frequency of the sound waves.



1.3. The sense of hearing 25

FIGURE 1.11: Inner structure of the Organ of Corti.

The sound wave that generates these oscillations has a peak value in its
amplitude in a specific region of the cochlea that depends on the frequency
of the wave and it tends to decrease rapidly near the apex. The lower the
frequency of the sound is, the greater the distance that the wave will travel across
the membrane before being attenuated, and vice versa. This way, the basilar
membrane scatters the different frequency components of a complex spectrum
signal in well-defined positions with respect to the oval window, as is shown in
Fig. 1.13, known as a tonotopic maps.

The waves that are propagated through the cochlea produce a force or
pressure to the cochlear duct, and therefore to the Organ of Corti. In the Organ
of Corti, the hair cells rest upon the basilar membrane, and the external parts of
the stereocilia are in contact with the tectorial membrane (see Fig. 1.11). Both
membranes have different flexibility, making each of them move in relation to
the other one when a wave travels across them. As a result, the external part of
the hair cells bend when the membranes move. This bending produces a change
in the action potential of the hair cells: depending on the bending direction, the
hair cell hyperpolarizes or depolarizes. These variations in the action potential
produce changes in the neurotransmitter released by the hair cells in the synapse
with a first order neuron. The molecules of the neurotransmitters released in the
synapse change the action potential of a neuron of the vestibulocochlear nerve,



26 Chapter 1. Introduction

FIGURE 1.12: Effect of sound waves on cochlear structures. Image taken
from (Patton et al., 2012).

altering the impulse frequency of the action potentials. These action potentials
travel to the brain through the vestibulocochlear nerve (Hull, 2011).

The intensity of the auditory stimulation depends on the number of action
potentials per unit of time and the number of cells that have been stimulated,
while the frequency of the signal depends on which specific populations of
nerve fibers are activated. There exists an association between the input sound
frequency and the section of the cerebral cortex that has been stimulated. The
lower the frequency of the vibration of the sound is, the closer to the apex the
maximum excitation of the basilar membrane will occur. For greater frequencies,
the maximum excitation will take place near the oval window. Depending on
the section of the basilar membrane that oscillates with higher amplitude, the
hair cells of that section will be activated in a higher proportion, stimulating
subsequent afferent neurons that will produce spikes. This process originated
the concept of characteristic frequency, to describe the way in which neurons
in the inner ear respond with a particular low threshold for sound waves with
a specific frequency, and plays an important role in the tone discrimination of a
sound. If the sound wave in the input corresponds to a pure tone, a specific region
of the basilar membrane with a particular characteristic frequency will oscillate
with a higher amplitude. On the other hand, the further the section of the basilar
membrane is from the characteristic frequency of the pure tone, the weaker the
response will be. Thus, each of the sections of the basilar membrane act as an



1.3. The sense of hearing 27

La percepción del habla 67 

 

 

Figura 26. Frecuencia de resonancia de la membrana basilar. 

 

Figura 27. Organización tonotópica de la cóclea. A) Distribución tonotópica de la cóclea. B) 

Localización de la respuesta coclear a altas frecuencias. C) Localización de la respuesta 

coclear a frecuencias medias. D) Localización de la respuesta coclear a bajas frecuencias. 

FIGURE 1.13: Tonotopic distribution of the cochlea (A). Localization
of high-frequency (B), medium-frequency (C) and low-frequency (D)

responses in the cochlea. Image taken from (Domínguez Morales, 2018).

auditory filter that reacts to a narrow frequency bandwidth (critical band).

A higher amplitude sound will produce a higher amplitude wave in the
basilar membrane, increasing the number of IHCs that are excited, along with
the number of action potentials that are generated in the afferent neurons. The
difference between the IHCs and the OHCs lies on their functionality. While IHCs
are in charge of transforming the amplitude of the wave into action potentials
(as was explained in previous lines), the main functionality of OHCs is the
ability to adapt the cochlear response depending on the input stimulus received.
Thus, because of OHCs, the cochlear response is non-linear. The cerebral cortex
classifies tones based on the region of the cochlea that has been excited, and their
amplitudes based on the number of active neurons and their firing rate.

Summarizing, two types of signal representation can be found in the
auditory nerve: the spectral representation and the temporal representation. This
duality is caused by the fact that the hair cells of the cochlea, which present a
tonotopic organization, generate a different response based on the amplitude of
the signal and its temporal envelope. Therefore, for a pure tone with a specific
frequency, it is represented in the auditory nerve by a position, based on the
position of the IHCs that are excited with that frequency, and by the periodicity
of the responses of the fibers that react to that stimulus (temporal representation).



28 Chapter 1. Introduction

1.3.1.2 Auditory ascending pathway

The central auditory nervous system consists of the auditory pathways and the
auditory cortex. The signals generated in the Organ of Corti inside the cochlea
are sent through the vestibulocochlear nerve to the auditory cortex. The auditory
cortex is the part of the temporal lobe of the brain that processes auditory
information in humans and other vertebrates.

From the vestibulocochlear nerve to the auditory cortex, the signal travels
through the ascending auditory pathway (also known as the afferent pathway),
where other important tracts and nuclei of the central auditory nervous system
exist. Fig. 1.14 shows a highly schematic and simplified diagram with only the
main components, although other nuclei exist. Almost all fibers of the auditory
nerve synapse on cells of the Cochlear Nucleus (CN) (comprising the Ventral
Cochlear Nucleus (VCN) and the Dorsal Cochlear Nucleus (DCN)), where the
processing of the acoustic information begins. Signals can take different paths
in their way from the cochlear nucleus to the auditory cortex. Most of the
axons of the cochlear nucleus cells (around 70%) cross over to the opposite side
(contralateral side) of the brain, whereas only 30% of them are connected with
other elements in the same side of the brain as the ear from which the signal was
received. Thus, each of the hemispheres of the brain cortex receives auditory
information from both ears (Hull, 2011).

Both crossed and uncrossed axons of the cochlear nuclei synapse in an area of
the central auditory nervous system called the Superior Olivary Complex (SOC),
which is the first place in the afferent pathway of the auditory system that
receives information from both ears. The superior olivary complex is divided
into three main different nuclei: the Medial Superior Olive (MSO), the Lateral
Superior Olive (LSO) and the Medial Nucleus of the Trapezoid Body (MNTB).
The MSO is believed to measure the time difference of the arrival of sounds
between the ears (Interaural Time Difference (ITD)), whereas the LSO is believed
to be involved in measuring the difference in sound intensity between both ears
(ILD). Both ITD and ILD are very important for determining the azimuth of
sounds, i.e. localizing the input sound in the space.

Then, the impulses are transmitted to the Inferior Colliculus (IC), whose
main functionalities are signal integration from various auditory nuclei,
frequency recognition and pitch discrimination (Skottun et al., 2001; Shore, 2009).
From there, the information goes to the Medial Geniculate Body (MGB) (also
known as medial geniculate nucleus), which is part of the auditory thalamus and
serves as a connection between the IC and the auditory cortex. Neurons in the
auditory cortex are organized based on the frequencies of the sound to which they
respond best, e.g. a frequency map (known as tonotopic map). The impulses
generated by the hair cells in a particular section of the basilar membrane
(sensitive to a specific frequency interval) are projected in the corresponding
region in the auditory cortex. Therefore, the brain perceives the tone received



1.3. The sense of hearing 29

FIGURE 1.14: Ascending Auditory Pathways scheme. Neural signals can
travel from the spiral ganglion to auditory cortex via numerous pathways.
Here, a primary pathway is shown schematically (at left) and through brain
stem cross sections. Notice that only the connections from one side are

illustrated at right image. Image taken from (Bear et al., 2020).



30 Chapter 1. Introduction

in the ear based on the area of the cortex that is stimulated. The auditory cortex
also has neurons that respond best to the action potentials generated by high
amplitude sounds, while others are more sensitive to low amplitude sounds.
Part of the auditory cortex is responsible for giving sense to the information,
discriminating between different sound patterns based on its variations in tone,
frequency, intensity and direction. The auditory cortex also receives information
from other regions of the brain such as the visual cortex and the somatosensory
cortex, collaborating in the interpretation of the signals (Hull, 2011).

The auditory system also transmits information from the auditory cortex
to the cochlea through the efferent pathway (also known as the descending
auditory pathway), giving feedback and modifying the analysis that is made in
the cochlea in the form of frequency discrimination or non-linear amplification
of quiet sounds. OHCs play an important role in this process (Cant and Benson,
2003).

Humans are able to perceive sounds in a frequency region between 20 Hz
and 20000 Hz, although we are more sensitive to the ones between 2000 Hz and
5000 Hz. This range differs between two different persons, shrinking during life,
particularly the perception of high frequency sounds (Rodríguez Valiente et al.,
2014).

The frequency resolution of the ear depends on the intensity and frequency
of the input sound in such a way that the lower the frequency of the input
sound is, the lower the resolution will be. For tones around 200 Hz, we are
able to discriminate sounds with an accuracy of 1 Hz. For higher frequencies,
the frequency resolution increases. For tones around 10 kHz, the frequency
resolution is 200 Hz. The reason for this is that the auditory system acts as a
set of overlapped filters, in which the lower frequencies involve narrower filters
and the higher frequencies involve wider filters (Janus, 2004).

Regarding the duration of the sound, it only has an inferior limit. The
shortest perceptible sound range between 10 and 40 ms (Bascuas, 1997). Twenty
milliseconds is a widely used value when integrating information of sounds in
auditory processing.

1.3.1.2.1 Cochlear nuclei

The afferent nerve fibers from the cochlear cells are connected to the
vestibulocochlear nerve, that terminate in the Cochlear Nucleus (CN). More
specifically, those fibers project in a tonotopic pattern to the cochlear nuclei,
distributing the projections between both the VCN and DCN. The former
encodes the lower frequencies, whereas the latter encodes higher frequencies (see
Fig. 1.15). In addition, each cochlear nerve fiber stimulate different areas within
the CN, thus activating different types of neurons and therefore obtaining diverse
response patterns. Consequently, it can be said that the auditory ascending



1.3. The sense of hearing 31

pathway is split into pathways which extract different cues from the input
acoustic information.

FIGURE 1.15: Cochlear nerve fibers terminate in the dorsal and ventral
cochlear nuclei in a tonotopic organization. Image taken from (Kandel

et al., 2000).

For instance, the cells of the VCN are able to extract timing and spectral
cues that are then sent to other auditory nuclei for further processing. Among
those cells, bushy cells can be considered as the one of the most important cells in
this nuclei. They project bilaterally to the Superior Olivary Complex (SOC), and
the projections can be split in two parts: 1) through the MSO (larger spherical
bushy cells) and 2) through the LSO and MNTB (smaller spherical bushy cells).
In the first case, these cells are sensitive to low frequencies, and projects in a
bilateral way to the MSO. The distribution of cells in the MSO forms a circtuit
that is able to detect interaural time delays, so-called ITD, thus permitting the
localization of sounds in the horizontal plane (low-frequency sounds). In the
second case, those cells are sensitive to high frequencies, and project the LSO
ipsilaterally. In addition, globular bushy cells excite neurons in the contralateral
MNTB that in turn inhibit principal cells of the LSO. The pathways through the
LSO are involved in the detection of interaural intensity differences, so-called
ILD, and contribute to the localization of high-frequency sounds in the horizontal
plane (Kandel et al., 2000).

Stellate cells excite neurons in the ipsilateral dorsal cochlear nucleus,
probably in the ipsilateral LSO, in the periolivary nuclei, and in the contralateral
ventral nucleus of the lateral lemniscus through collaterals of axons that project
to the contralateral Inferior Colliculus (IC). The tonotopic array of stellate cells
encodes the spectra of sounds. Octopus cells excite targets in the contralateral
periolivary region and the ventral nucleus of the lateral lemniscus. These neurons
detect onset transients and periodicity in sounds and may be involved in the
recognition of sound patterns.



32 Chapter 1. Introduction

Octopus and bushy cells in the VCN are able to respond with exceptionally
rapid and precisely timed synaptic potentials. These neurons have a low input
resistance and rapid responsiveness and prevents repetitive firing. Neurons in
the VCN are able to encode different features of sounds because of differences in
the pattern of input and their biophysical properties.

Octopus cells detect synchronous firing in cochlear nerve fibers with
exceptional temporal precision. Individual octopus cells detect coincident firing
in the relatively large number of cochlear nerve fibers (more than 60) that contact
them. Coincident firing in large numbers of cochlear nerve fibers is produced
by periodic sounds such as vowels and musical sounds and by the onset of
broadband sounds found in consonants or clicks.

Compared to octopus cells, bushy cells convey a more sharply tuned but
less temporally precise version of the firing patterns of cochlear nerve fibers.
The roughly 10 cochlear nerve fibers that terminate on each bushy cell deliver
relatively large synaptic currents that require summation of only a few inputs to
trigger an action potential. Two properties of bushy cells enable these neurons to
encode with precision the detailed temporal structure of sounds. First, the cells’
low input resistance shortens the voltage changes produced by the incoming
synaptic currents; their need to summate several inputs removes variability in
the timing of firing in cochlear nerve fibers by averaging.

Second, the temporal fine structure of sounds that bushy cells encode
provides information about the relative time of arrival of inputs to the two
ears and is used at the next synaptic stage to form a map of the Interaural
Time Difference (ITD) that underlie the ability to localize sound sources in the
horizontal plane. The detection of musical pitch also requires the encoding of
the temporal fine structure of sounds, but whether that information is carried
through octopus or bushy cells or through a combination of pathways is not
known (Kandel et al., 2000).

According to the studies, the main source of information about sound
frequency that complements information derived from tonotopic maps is the
timing of neural firing. Recordings made from neurons in the auditory nerve
show phase locking, the consistent firing of a cell at the same phase of a sound
wave (see Fig. 1.16). Considering a sound wave as a sinusoidal variation in air
pressure, a phase-locked neuron would fire action potentials at either the peaks,
the troughs, or some other constant location on the wave. At low frequencies,
some neurons fire action potentials every time the sound has a particular phase
(see Fig. 1.16a). This makes it easy to determine the frequency of the sound; it is
the same as the frequency of the neuron’s action potentials (Bear et al., 2020).

Phase locking can still occur even if an action potential has not fired on every
cycle (see Fig.1.16b). For instance, a neuron may respond to a 1000 Hz sound
with an action potential on only perhaps 25% of the cycles of the input, but those
action potentials will always occur at the same phase of the sound. If you have



1.3. The sense of hearing 33

FIGURE 1.16: Phase locking in the response of auditory nerve fibers. Sound
at a low frequency can elicit a phase-locked response, either (a) on every
cycle of the stimulus or (b) on some fraction of the cycles. (c) At high
frequencies, the response does not have a fixed-phase relationship to the

stimulus. Image taken from (Bear et al., 2020).

a group of such neurons, each responding to different cycles of the input signal,
it is possible to have a response to every cycle (by some member of the group)
and thus a measure of sound frequency. It is likely that intermediate sound
frequencies are represented by the combined activity of a number of neurons,
each of which fires in a phase-locked manner; this is called the volley principle.
Phase locking occurs with sound waves up to about 4 kHz. Above this point, the
action potentials fired by a neuron are at random phases of the sound wave (see
Fig. 1.16c) because the intrinsic variability in the timing of the action potential
becomes comparable to the time interval between successive cycles of the sound.
In other words, the sound waves cycle too fast for the action potentials of single
neurons to accurately represent their timing. Above 4 kHz, frequencies are
represented by tonotopy alone.

1.3.1.2.2 Superior Olive



34 Chapter 1. Introduction

It is important to recall that neurons in the cochlear nuclei only receive
afferents from the ipsilateral auditory nerve. Thus, all of these cells are monaural
neurons, meaning that they only respond to the sound presented to one ear.
However, at all later stages of processing in the auditory system, there are
binaural neurons whose responses are influenced by sound at both ears. The
response properties of binaural neurons imply that they play an important role
in sound localization in the horizontal plane.

FIGURE 1.17: Phase-locked discharges of an auditory nerve fiber (A) and
a spherical bushy cell of the AVCN (B). Image taken from (Schnupp et al.,

2011).

The first structure where binaural neurons are present is the Superior Olive,
also known as Superior Olivary Complex (SOC). Neurons in the SOC receive
input from CN on both sides of the brain stem (see Fig.1.14). Cells in the cochlear
nuclei that project to the superior olive typically have responses phase locked to
lower-frequency sound inputs. Fig. 1.17 shows an example of non phase-locked
response from the auditory nerve fiber (A) versus phase-locked responses from
spherical bushy cells (B).

In many vertebrates, including mammals and birds, neurons in the SOC
compare the activity of cells in the bilateral CN to locate sound sources. The SOC
is a collection of brainstem nuclei that takes part in multiple aspects of hearing



1.3. The sense of hearing 35

and is an important component of the ascending and descending auditory
pathways of the auditory system. Separate circuits detect interaural time and
intensity differences. The SOC is divided into three primary nuclei: the MSO,
LSO, and the MNTB, and several smaller periolivary nuclei. Fig. 1.18 shows those
nuclei in the SOC as well as the cochlea and the cochlear nuclei. The color code
indicates the frequency sensitiveness of each nuclei and its distribution, where
HF means "high frequency" and LF means "low frequency".

FIGURE 1.18: Schematic drawing of primary auditory sound localization
circuits in the mammalian brainstem. Image taken from (Kandler et al.,

2009).

The MSO is thought to help locate the azimuth of a sound, i.e., the angle to
the left or right where the sound source is located. Sound elevation cues are not
processed in the olivary complex since the elevation is extracted by analyzing the
spectral features of the input sound. Differences in arrival times at the ears are
not represented at the cochlea. Instead, a map of interaural phase is created in the
MSO by comparing the timing of firing in responses to sounds from the two ears.
Sounds arrive at the near ear before they arrive at the far ear, with ITDs being
directly related to the location of sound sources in the horizontal plane.

The neurons in the MSO are sensitive to their own preferred ITDs. Although
individual neurons may fail to fire at some cycles, the population of neurons
represents the fine structure of sound waves by firing with every cycle. In so
doing, these neurons carry information about the timing of inputs with every
cycle of the sound. Sounds arriving from the side evoke phase-locked firing that
is consistently earlier at the near ear than at the far ear, resulting in consistent
ITDs. In 1948, Lloyd Jeffress suggested that an array of detectors of coincident
inputs from the two ears, transmitted through delay lines comprising axons with
systematically differing lengths, could form a map of ITDs and thus a map of the
location of sound sources. Fig. 1.19 shows a schematic of the model proposed by
Jeffress in (Jeffress, 1948).



36 Chapter 1. Introduction

FIGURE 1.19: The tapped delay lines, coincidence detectors and
coincidence counters (rate integrators) of the Jeffress model. Image taken

from (Cariani, 2011).

Humans are capable of using interaural time-of-arrival differences (ITDs) of
as small as 10-20 microseconds to distinguish directional differences of sound
sources in the horizontal plane as small as 1-2 degrees (azimuth). Typically,
ITDs range from zero for sounds coming from directly in front to about 700
microseconds for sounds coming directly from either side. Traveling around the
head takes about 700 µs, and the medial superior olive is able to distinguish time
differences much smaller than this. In fact, it is observed that people can detect
interaural differences down to 10 µs.

However, this mechanism does not work with continuous tones at high
frequencies. If a sound coming from the right has a frequency of 20000 Hz,
it means that one cycle of the sound covers 1.7 cm. After a peak reaches the
right ear, it would take less than 0.6 µs before a peak arrives at the left ear,
thus receiving many peaks of such a high-frequency wave in that time period.
Therefore, no longer is there a simple relationship between the direction the
sound comes from and the arrival times of the peaks at the two ears. Interaural
arrival time is not that useful for locating continuous sounds with frequencies so
high that one cycle of the sound wave is smaller than the distance between your
ears (i.e., greater than about 2000 Hz) (Bear et al., 2020).

Fortunately, the brain has another process for sound localization at high



1.3. The sense of hearing 37

frequencies. An Interaural Level Difference (ILD) exists between the two ears
because your head effectively casts a sound shadow (Bear et al., 2020). There is
a direct relationship between the direction the sound comes from and the extent
to which your head shadows the sound to one ear. If sound comes directly from
the right, the left ear will hear a significantly lower intensity. With sound coming
from straight ahead, the same intensity reaches the two ears, and with sound
coming from intermediate directions, there are intermediate intensity differences.

Neurons sensitive to differences in intensity can use this information to
locate the sound. Intensity information cannot be used to locate sounds at lower
frequencies because sound waves at these frequencies diffract around the head,
and the intensities at the two ears are roughly equivalent. Therefore, there is no
sound shadow at low frequencies.

Although the LSO does not form a map of the location of sounds in the
horizontal plane, it performs the first of several integrative steps that use ILDs
to localize sounds. Neurons in this nucleus balance excitatory input from small
spherical bushy cells and stellate cells in the ipsilateral VCN with inhibitory
input from a disynaptic pathway that includes globular bushy cells in the
contralateral VCN and principal neurons of the ipsilateral MNTB. Sounds
that arise ipsilaterally generate relatively strong excitation and relatively weak
inhibition whereas those that arise contralaterally generate stronger inhibition
than excitation. Differences in the location of the sound sources that generate
differences in the balance between excitation and inhibition are reflected in the
firing rates of neurons in the LSO. Neurons in the LSO are thus activated more
strongly by sounds from the ipsilateral than from the contralateral hemifield
(Kandel et al., 2000).

Summarizing the two processes for localizing sound in the horizontal plane:
with sounds in the range of 20–2000 Hz, the process involves interaural time
delay. From 2000–20,000 Hz, interaural intensity difference is used. Together,
these two processes constitute the duplex theory of sound localization.

1.3.1.2.3 Inferior colliculus

The Inferior Colliculus (IC) occupies a central position in the auditory
pathway of all vertebrate animals because all auditory pathways ascending
through the brain stem converge there 1.14. Cells in the VCN send out axons
that project to the SOC on both sides of the brain stem. Axons of the olivary
neurons ascend in the lateral lemniscus (a lemniscus is a collection of axons)
and innervate the IC of the midbrain. Many efferents of the dorsal cochlear
nucleus follow a route similar to the pathway from the VCN, but the dorsal path
bypasses the superior olive. Although there are other routes from the cochlear
nucleus to the IC, with additional intermediate relays, all ascending auditory
pathways converge onto the IC. The neurons in the IC send out axons to the



38 Chapter 1. Introduction

Medial Geniculate Nucleus (MGN) of the thalamus, which in turn projects to
auditory cortex.

Many neurons in the central nucleus carry information about the location of
sound sources. The majority of these cells are sensitive to interaural time and
intensity differences, which are known to be essential cues for localizing sounds
in the azimuth. Neurons are also sensitive to spectral cues that localize sounds
in the vertical plane. To localize sounds accurately, animals must ignore the
re1ections of sounds from surrounding surfaces that arrive after the initial direct
wave front.

FIGURE 1.20: Sensory and cortical information flows in the SC. The
superficial layer of the SC is directly connected to the optic tract,
while the deep layers receive auditory (from the inferior colliculus) and
somatosensory input. Cortical feedback moderates the processing in the
deep layer and influences the motor outputs. Image taken from (Pavlou

and Casey, 2010).

It is also important to mention that the IC sends axons not only to the MGN
but also to the Superior Colliculus (SC), where the integration of auditory and
visual information occurs, and to the cerebellum, as shown in Fig. 1.20. In
addition, there is extensive feedback in the auditory pathways. For instance,
brain stem neurons send axons that contact outer hair cells, and auditory cortex
sends axons to the acMGN and IC.

The SC is critical for reflexive orienting movements of the head and eyes to
acoustic and visual cues in space. By the time they reach the SC, binaural sound
cues and the monaural spectral cues that underlie mammalian sound localization
merge to create a spatial map of sound, an auditory map, in which neurons are



1.3. The sense of hearing 39

unambiguously tuned to specific sound directions. This convergence is critical,
for the binaural level and timing differences alone cannot unambiguously code
for a single position in space. The spectral cues that provide information about
vertical location are essential. Different locations in the vertical plane can give
rise to identical interaural time or intensity differences. Such a spatial map is
formed both in birds and in some mammals (Kandel et al., 2000). Within the SC
the auditory map is congruent with maps of visual space and the body surface.
Unlike the visual and somatosensory maps, the auditory map is computed from a
combination of cues that identify the specific position of a sound source in space,
and is not based on the peripheral receptor surface.

Auditory, visual, and somatosensory neurons in the SC all converge on
output pathways in the same structure that controls orienting movements of the
eyes, head, and external ears. The motor circuits of the SC are mapped with
respect to motor targets in space, and are aligned with the sensory maps. Such
sensory-motor correspondence facilitates the sensory guiding of movements
(Naveros et al., 2019).

1.3.2 Implementations of the auditory system on circuits

Artificial cochleae model the basilar membrane using a set of filters or resonators
with cutoff/center frequencies (depending on whether low-pass filters or band-
pass filters are implemented), which mimic the frequency distribution along
the basilar membrane. Depending on the position of the basilar membrane,
its flexibility and width changes. These changes are implemented by setting
different parameters to the filters.

As has been presented in previous sections, the biological cochlea is a very
complex part of the inner ear, which means that modelling and implementing
its functionality is not an easy task. This fact has resulted on artificial cochleae
implementations that only model part of the characteristics of the biological
cochlea. These characteristics are chosen depending on the application that
researchers want to integrate in the system. Therefore, the majority of artificial
cochleae do not achieve comparable results to the ones obtained by a biological
cochlea.

Since the first design of an artificial cochlea presented by Richard Lyon
and Carver Mead in 1988 (Lyon and Mead, 1988), activities referred to the
implementation of different mathematical models of the cochlea using analog
VLSI have increased. Digital implementations using reconfigurable logic devices
have also increased in popularity, although not as much as analog approaches.

Even three decades after the first silicon cochlea, artificial cochleae are still
far from being comparable to the biological cochlea, especially in terms of power
consumption, frequency range, dynamic range of the input, or noise immunity.
Taking into account that these models aim to emulate in the same way as a system



40 Chapter 1. Introduction

that has evolved for hundreds of millions of years, some good approximations
have been achieved.

Lyon and Mead (1988)
First silicon cochlea

Lazzaro and Mead (1989)
1D with IHCs, SG, etc.

Lyon (1991).
DIF3 filters

Summmerfield et al. (1992)
Digital, AGC

Leong, Jin et al. (2003)
Digital FPGA

Chan, van Schaik et al.. (2007)
Advanced IHC, AER

Watts, Kerns et al. (1992)
Improved 1D

Lazzaro et al. (1994)
Programmable, +

Bhadkamkar et al. (1993)
Different filters

Liu, van Schaik et al. (2010)
Q enhancement, AER

Van Chaik et al. (1998)
CLBTs for biasing

Sarpeshkar et al. (1996)
WLR, nonlinear gain

Sarpeshkar. (1998)
Offset compensation, AGC

Liu, Andreou et al. (1991)
Parallel filterbank

Liu, Andreou et al. (1992)
Parallel with BPFs

Lin, Ki et al. (1994)
Switched capacitor, parallel

Furth and Andreou (1995)
Low power, parallel

Bor and Wu (1996)
Switched capacitor, transmission line

Germanovix and Toumazou (1998)
Parallel filterbank

Jones, Meddis et al. (2000)
Digital, parallel

Graham and Hasler (2002)
C4 band-pass

Abdalla and Horiuchi et al. (2005)
Parallel, Gryo-based filters, AER

Georgiou and Toumazou (2005)
Log-domain, parallel, global ADC

Stoop, Jasa et al. (2007)
Hopf, discrete components

Watts, Lyon et al. (1991)
Bidirectional 1D

Watts (1992)
First 2D

Fragniere (1998)
Current domain 2D

Van Schaik et al. (2001)
2D peudo-voltage domain

Shiraishi (2004)
2D pseudo-voltage/current

Wen and Boahen (2006)
Active, bidirectional coupling

Hamilton, van Schaik et al. (2008)
AQC

Liu, van Schaik et al. (2014)

Yang et al. (2016)

Thakur, Hamilton et al. (2014)

Xu, Thakur et al. (2018)

Jimenez-Fernandez et al. (2017)

Model that follows directly

Elements of previous model used

Key:

FIGURE 1.21: Historical tree diagram of different artificial cochleae
developed. Image taken from (Domínguez Morales, 2018)

Fig. 1.21 shows an scheme of different implementations of artificial cochleae
and their evolution in time.

Artificial cochleae can be categorized in many ways. Generally, they are
classified based on:

• The coupling coefficient that exists between the elements of the filters.
We distinguish between one-dimensional silicon cochlea (1-D) and two-
dimensional silicon cochlea (2-D).



1.3. The sense of hearing 41

• The existence or lack of automatic gain control to allow filters to
dynamically adapt to the intensity changes in the input (active or passive
cochleae).

In this section, the most relevant developments regarding artificial cochleae
are presented, both analog and digital implementations. Each of them is based on
mathematical models that represent the propagation of the sound wave through
the inner ear and the conversion between acoustic energy and nerve impulses for
later processing. Some of the most popular mathematical models of the auditory
system are explained in this section before describing analog and digital cochleae
implementations.

1.3.2.1 Artificial cochleae

As it has been detailed in previous sections, part of the human auditory system
acts as a continuous and overlapped set of band pass filters, which correspond
to a specific region of the basilar membrane. Based on the structure of the band
pass filters that are implemented, two different auditory models can be found:
parallel (independent filters that process the input information at the same time)
or cascade (a set of filters that are connected, where the input of one of them is
the output from the previous one in the cascade).

In the response of the critical bands of the basilar membrane, a very
pronounced peak can be observed, which corresponds to the resonant frequency,
and an attenuation for frequencies above or below the resonant frequency, with
the slope being steeper for higher frequencies. This effect can be achieved with
a cascade band pass filter. A parallel band pass filter would need higher order
filters to implement that behavior.

1.3.2.1.1 Lyon’s model

A cochlear model based on the knowledge of the biological cochlea and its
main functionalities was developed by Richard F. Lyon (Lyon, 1982). This model
describes the propagation of sound in the inner ear and the conversion of acoustic
energy into neural representations. When sound reaches the cochlea, a wave
travels through the basilar membrane. The physical properties of the basilar
membrane change from the base where the oval window is to the apex, so that
the frequency components of the wave reach a maximum in a particular position
of the basilar membrane.

The cochlear model described by Lyon combines a set of filters to represent
the waves that travel through the basilar membrane, Half-Wave Rectifiers
(HWR), to detect the energy of the signal, acting as IHCs, and different Automatic
Gain Control (AGC) stages, to model the behavior of the OHCs. Due to the fact
that the fundamental frequency of the basilar membrane decays exponentially



42 Chapter 1. Introduction

from the base to the apex, the basilar membrane is divided into sections with the
same length to obtain the frequency distribution of the auditory filters.

El sistema auditivo: modelos e implementaciones 

55 

 

Input
Notch Filters

Resonators

Output channels

(High Frequencies) (Low Frequencies)

F1  F3 Fi   Fn  F2  

 

Figura 3.11. Diagrama de bloques de los filtros en el modelo de Lyon 

 

Figura 3.12. Función de transferencia de los filtros usados en el banco de filtros. Imagen 

tomada de (Lyon 1982) 

En la Figura 3.13 se presenta la respuesta de este modelo de 64 secciones para 

una frecuencia de muestreo de 8 kHz. Es interesante resaltar como existe una 

diferencia clara entre las pendientes ascendentes y descendentes respecto la 

frecuencia característica. También se observa que las pendientes de las curvas 

después de la frecuencia fundamental son mayores mientras mayor es la frecuencia 

característica, esto se debe a que la eliminación de las componentes de altas 

frecuencias se produce conforme la señal recorre los filtros. La atenuación de la 

señal a bajas frecuencias se debe a incluir un filtro de preénfasis.  Este filtro de 

preénfasis es un filtro paso de alta que modela una aproximación a la respuesta en 

frecuencia del oído externo y medio.  

FIGURE 1.22: Lyon’s model’s cochlea’s filters’ block diagram. Image taken
from (Domínguez Morales, 2018)

FIGURE 1.23: Frequency response of Lyon’s model (64 sections) for the
following characteristic frequencies: 3.0, 2.0, 1.0, 0.6 and 0.3 kHz. Image

taken from (Miró Amarante, 2013)

At each point in the cochlea, the acoustic wave is filtered by a notch filter4.
Each notch filter operates at successfully lower frequencies so the net effect is
to gradually low-pass filter the acoustic energy. An additional resonator (or

4The notch filter, also known as band-stop filter or band-rejection filter, is a filter that passes most
frequencies unaltered, but attenuates those in a specific range to very low levels.



1.3. The sense of hearing 43

bandpass filter) picks out a small range of the traveling energy and models
the conversion into basilar membrane motion. It is this motion of the basilar
membrane that is detected by the inner hair cells. The block diagram that
represents this cascade architecture is shown in Fig. 1.22. This way, the high
frequency components of the signal are filtered while the remaining components
of the signal travel through the cascade of filters. The rejection of the high
frequency components produces a steep slope in the frequency response of the
filters that correspond to low frequencies. The biological cochlea also presents
this behavior. Therefore, this model provides a good approximation to the
processing that is done in the cochlea.

Fig. 1.23 presents the response of the Lyon’s model for a configuration with
64 sections and a sampling frequency of 8 kHz. It is important to highlight the
difference between the ascending and the descending slopes with respect to the
fundamental frequency. The higher the fundamental frequency, the higher the
slope immediately after. This effect is due to the rejection of the high frequency
components across the cascade of filters. The attenuation of the signal at low
frequencies is caused by the inclusion of a preemphasis filter, which roughly
models the effects of the outer and middle ear.

1.3.2.1.2 Lyon & Katsiamis’ model

Richard Lyon, together with Andreas Katsiamis and Emmanuel Drakakis,
published a research paper in 2007, in which they presented transfer functions
in the continuous domain that were designed based on gammatone filters for
auditory information processing (Katsiamis et al., 2007).

In the paper, the design of two different type of filters is presented:
the Differentiated All-Pole Gammatone Filter (DAPGF) and the One-Zero
Gammatone Filter (OZGF). These designs are characterized for having a
hardware-implementation oriented architecture; they have the same properties
and functionalities as the cochlea operation and overcome some limitations of
the gammatone filters, such as the symmetric response and the complexity in the
frequency domain (Miró Amarante, 2013).

Unlike the cascade architecture of Lyon’s model, this model is based on a
bank of filters with parallel stages that consist of blocks connected in a cascade
fashion. Fig. 1.24 shows how the basilar membrane can be modeled with both a
parallel or a cascade architecture.

1.3.2.1.3 Analog cochleae

A one-dimensional cascade cochlea models the propagation of the sound
wave through the basilar membrane in one unique direction (from the base



44 Chapter 1. IntroductionA. G. Katsiamis et al. 3

Channel 1

Channel 2

Channel 3

Channel m

APEX
Basilar

membrane
fm f3 f2 f1 BASE

f

f

fFilterbank
architecture

Exponential decrease of centre frequencies

Tap m Tap 3 Tap 2 Tap 1 f

Input

Input

Filter-cascade architecture

Figure 1: Graphical representation of the filterbank and filter-cascade architectures. The filters in the filter-cascade architecture have non-
coincident poles; their cut-off frequencies are spaced-out in an exponentially decreasing fashion from high to low. On the other hand, the
filter cascades per channel of the filterbank architecture have identical poles. However, each channel follows the same frequency distribution
as in the filter-cascade case.

high-frequency roll-off slope broadened (the selectivity de-
creased) with a shift of the peak towards lower frequencies,
in contrast to low input intensities where it became steeper
(the selectivity increased) with a shift of the peak towards
higher frequencies. Figure 2 illustrates these results.

From the engineering point of view, we seek filters whose
transfer functions can be controlled in a similar manner, that
is,

(i) low input intensity → high gain and selectivity and
shift of the peak to the “right” in the frequency do-
main;

(ii) high input intensity → low gain and selectivity and
shift of the peak to the “left” in the frequency domain.

As a first rough approximation of the above behavior,
it is worth noting that the simplest VLSI-compatible reso-
nant structure, the lowpass biquadratic filter (LP biquad),
gives a frequency response that exhibits this kind of level-
dependent compressive behavior by varying only one param-
eter, its quality factor. The standard LP biquad transfer func-
tion is

HLP(s) = ω2
o

s2 +
(
ωo/Q

)
s + ω2

o
, (1)

where ωo is the natural (or pole) frequency and Q is the qual-
ity factor. The frequency, where the peak gain occurs or cen-
ter frequency (CF) is related to the natural frequency and Q,
is as follows:

ωLP
CF = ωo

√

1− 1
2Q2

, (2)

0 2 4 6 8 10 12 14 16 18
×103

Frequency (Hz)

10−1

100

101

102

103

G
ai

n
(m

m
/s

/P
a)

0 dB SPL
10 dB SPL
20 dB SPL
30 dB SPL
40 dB SPL
50 dB SPL

60 dB SPL
70 dB SPL
80 dB SPL
90 dB SPL
100 dB SPL

Figure 2: Frequency-dependent nonlinearity in BM tuning curves,
adapted from Ruggero et al. [19].

suggesting the lowest Q value of 1/
√

2 for zero CF. The LP bi-
quad peak gain can be parameterized in terms of Q according
to

HLPmax =
Q

√
1− 1/4Q2

. (3)

FIGURE 1.24: Graphical representation of the filterbank and filter-cascade
architectures in the Lyon-Katsiamis model. Image taken from (Katsiamis

et al., 2007)

of the basilar membrane to the apex). Moreover, in this cascade architecture,
each section of the cochlea (auditory filter) processes the output of the previous
element. Even when using second-order filters, this allows a steep slope effect to
occur, which favors the frequency selectivity of the basilar membrane itself.

The first bio-inspired artificial cochlea was developed by Lyon and Mead in
1988 (Lyon and Mead, 1988) following this one-dimensional cascade topology,
the Lyon’s model, which was presented in section 1.3.2.1.1. (Lyon, 1982). It has
been proved that, in the human cochlea, the resonant frequency across the basilar
membrane decreases exponentially in a logarithmic scale: high frequencies near
the base and low frequencies near the apex. To implement this artificial cochlea,
the basilar membrane has been divided into different segments with the same
length. A set of filters with a specific resonant frequency according to the
resonant frequency of each segment of the basilar membrane is used in a cascade
topology. Each of the filters have the same architecture, only changing the
resonant frequency and their low-pass response. High frequency components
are removed in the output of each filter, which produces a steep slope in the
frequency response curves. This slope is also observed in the biological cochlea
when the wave travels across the basilar membrane. Therefore, despite the
simplicity of this model, it provides a first approximation of signal processing



1.3. The sense of hearing 45

inside a biological cochlea.

The work developed by Lyon and Mead consists of 480 sections of
second-order low-pass filters in a cascade topology with resonant frequencies
logarithmically distributed in order to model the propagation of the wave
and the frequency analysis associated to the basilar membrane. This cochlea
implementation successfully modeled some particular characteristics of the
biological cochlea, and has provided a starting point for the research of
neuromorphic cochleae. There exist several implementations based on this first
one proposed by Lyon and Mead. John Lazzaro added circuits to the Lyon and
Mead’s cochlea in order to model the behavior of the IHCs. These circuits encode
the output spikes of the artificial cochlea (Lazzaro and Mead, 1989a).

Another implementation based on this approach is the work by Lloyd
Watts (Watts et al., 1992), which achieves a better exponential distribution of
the resonant frequencies. This increments the linear range and eliminates the
instability of the signal.

In 1995, Lazzaro and Wawrzynek (Lazzaro and Wawrzynek, 1995) proposed
an improved version of the Watts’ model, adding the AER communication
protocol in the output of the cochlea. It is the first artificial cochlea to use this
kind of communication, which currently is widely extended in neuromorphic
developments.

In 1996, Andre van Schaik, Eric Fragniere, and Eric Vittoz presented a new
artificial cochlea implementation based on Watts’ (Van Schaik et al., 1996). Fig.
1.25 shows the cutoff frequencies distribution of this implementation compared
to the cutoff frequencies distribution achieved in Watts’ work. As can be
observed, in this implementation the exponential distribution of the frequencies
is more uniform. Thanks to this improvement, this artificial cochlea allows
binaural sounds processing, as is presented in works like (Chan et al., 2007)
and (Yu et al., 2009), in which two van Schaik’s artificial cochleae with a more
advanced module to manage the output spikes by using the AER protocol are
used for echolocation tasks. The artificial cochlea that was presented in (Chan
et al., 2007) has also been used to build a classification system in order to
distinguish between two sounds: a clap and a bass drum (Jäckel et al., 2010). This
cochlea was improved in a number of channels, output event rate and frequency
range in (Liu et al., 2010b) and (Liu et al., 2014).

The main downside of the cascade topology is the low fault-tolerance. If any
of the elements of the cascade fails, this error will be propagated to the rest of the
subsequent elements. Moreover, it is important to notice that each segment of the
cascade adds a delay, which is inversely proportional to the center frequency of
the filter. Then, the filters corresponding to low frequencies will introduce more
delay than the ones corresponding to high frequencies. Therefore, the number
of sections (stages or channels) limits the frequency response of the system. The
noise that is generated by the filters is accumulated across the cascade, which



46 Chapter 1. Introduction

El sistema auditivo: modelos e implementaciones 

62 

 

comunicación, y en la actualidad, este protocolo está altamente extendido en los 

desarrollos neuromórficos.  

En 1996, se realiza otra implementación de la cóclea artificial propuesta por 

Watts, expuesta en el trabajo (van Schaik et al. 1996). En la Figura 3.18 se 

muestra la distribución de las frecuencias de corte de esta implementación 

respecto a la distribución de las frecuencias de corte de la implementación de 

Watts. Se observa como en la implementación de van Schaik et al. existe 

uniformidad en la distribución exponencial de las frecuencias. Gracias a esta 

mejora, esta cóclea artificial permite procesamiento de sonidos biaurales, tal y 

como se muestra en los trabajos  (Chan et al. 2007) y (Yu et al. 2009), en los 

que se usan dos cócleas artificiales de van Schaik, ampliadas con módulos más 

avanzados para gestionar los spikes de salida mediante el protocolo AER, para 

hacer experimentos de localización. La cóclea artificial expuesta en (Chan et al. 

2007), también se ha usado en un sistema de clasificación entre dos tipos de 

sonidos: una palmada o bombo (Jackel et al. 2010). Esta cóclea ha sido 

ampliada en número de canales, tasa de eventos de salida y en el rango de 

frecuencias en el trabajo (Liu et al. 2010).  

 

Figura 3.18. Distribución de las frecuencias de corte (Hz) para la cóclea artificial de Watts 

et. al. (izquierda) y de van Schaik (derecha) (van Schaik et al. 1996). 

El principal inconveniente del diseño en cascada es su poca tolerancia a fallos 

ya que si un elemento falla, este error se propagará al resto de elementos 

posteriores. También, hay que destacar que cada segmento va a añadir un cierto 

retraso a la señal de entrada, que será inversamente proporcional a la frecuencia 

FIGURE 1.25: Cutoff frequencies (Hz) distribution in Watts’ artificial
cochlea (left) and van Schaik’s (right). Image taken from (Van Schaik et al.,

1996)

reduces the dynamic range of the system. Some of these issues can be solved
with a parallel topology or a 2-D topology.

120 Modelos e implementaciones del Sistema Auditivo  

 

de cócleas analógicas porque cada filtro actúa de modo independiente y para crear el 

mismo efecto de ‘pendiente pronunciada’ en las altas frecuencias, se necesitaría filtros 

de un orden mayor, lo cual implica un aumento considerable en el área y consumo 

del sistema. En la siguiente figura se compara la salida de un único filtro de segundo 

orden tanto en el modelo 1-D paralelo, Figura 52.a, como en el modelo 1-D en 

cascada, Figura 52.b. 

 

Figura 52. Salida de un filtro de segundo orden, en el modelo de cóclea 

paralelo (a) y en el modelo de cóclea en cascada (b). 

La cóclea bidimensional (2-D) modela tanto la propagación de la onda a lo largo 

de la membrana basilar como el movimiento del líquido interior de la cóclea y de la 

membrana basilar. Tiene en cuenta, por tanto, el desplazamiento longitudinal y 

vertical (ejes x e y). Los filtros vecinos se acoplan a través de un sistema de 

resistencias que modelan el líquido del interior de la cóclea. Este modelo combina las 

ventajas de las dos estructuras 1-D anteriores: el acople de los filtros en paralelo 

permite generar una pendiente pronunciada en las altas frecuencias a pesar de seguir 

siendo filtros de segundo orden; además se mejora la tolerancia a fallos y se evita la 

acumulación de retrasos propio de la estructura en cascada. Las implementaciones de 

este modelo son las más recientes: en 1992, Watts presenta una implementación con 

50 etapas que mejora el rango dinámico, estabilidad y errores derivados de los 

FIGURE 1.26: Frequency response of a second order filter in a parallel
topology (a) and in a cascade topology (b). Image taken from

(Domínguez Morales, 2018)

Parallel topologies are usually chosen for their ease of implementation.
However, even though the issues of cascade topologies are not present in these
models, parallel topologies are not the best option when implementing an analog
cochlea because each filter acts independently from the rest and higher order
filters are needed to produce the same “steep slope” effect in the high frequencies
as in cascade topologies, which increments the power consumption of the system,
requiring a larger silicon area. Fig. 1.26 presents a comparison between the
outputs of a single second-order filter in a 1-D parallel topology (Fig. 1.26 (a)),
and in a 1-D cascade topology (Fig. 1.26 (b)).

The implementations presented in (Liu et al., 1991) and (Liu et al., 1992)
are some examples of parallel topologies. Following the same architecture that
was implemented in these works, in 1998 a new artificial cochlea was developed
for pattern extraction in speech recognition tasks (Kumar et al., 1998). In 2016,



1.3. The sense of hearing 47

Minhao Yang, Chen-Han Chien, Tobias Delbruck and Shih-Chii Liu presented
a 64-channel binaural cochlea with parallel asynchronous event output (Yang
et al., 2016). In this model, each binaural channel performs feature extraction by
analog bandpass filtering and, after that, filtered signals are encoded into events
via Asynchronous Delta Modulation (ADM).

Bidimensional (2-D) cochleae model both the propagation of the wave across
the basilar membrane and the fluid motion within the cochlea and the basilar
membrane. The structure of the filters in this type of artificial cochlea are based
on Lyon and Katsiamis’ model, which is detailed in section 1.3.2.1.2. Neighbor
filters are connected through a set of resistors that model the inner fluid of the
cochlea. This architecture combines the benefits of the previous 1-D architectures
presented before: the coupling of the filters in parallel allows to generate a steep
slope in high frequencies despite being second-order filters; the fault tolerance is
improved and the delay accumulation is avoided. In 1992, Watts presented a 50
stages (channels) implementation that improved the dynamic range, stability and
errors caused by the transistors (Watts et al., 1992), achieving a uniform frequency
response and good values in the quality factors of the filters (Q).

(Fragnière, 1998) describes a 2-D cochlear model in which the pressure and
voltage are mathematically analogous to the acceleration of the basilar membrane
and the action potentials. Some authors have published recent implementations
of this model (Van Schaik and Fragnière, 2001; Shiraishi, 2003; Hamilton et al.,
2008; Wen and Boahen, 2009).

The artificial cochleae implemented in the last two works mentioned before
(Hamilton et al., 2008; Wen and Boahen, 2009), are active. An artificial cochlea is
active when filters change dynamically depending on the input signal. Generally,
the gain is increased for low frequencies and decreased for high frequencies. This
behavior aims to model the functionality of the OHCs. These implementations
use AGC to change the gain of the cochlea depending on the changes produced
in the input signal. However, in these cases, the AGC also controls the quality
factor (Q) of each section of the cochlea. This way, the gain and the bandwidth of
each filter are changed dynamically based on the changes in the characteristics of
the input sound.

1.3.2.1.4 Digital cochleae

The need for more efficient systems with lesser power consumption and
lesser cost led to the research and development of new digital design techniques
and architectures. FPGAs are a very good option for the development of
neuromorphic systems. They are flexible, robust to temperature changes, they
have a better dynamic range, a better Signal-to-Noise Ratio (SNR)5, a simpler

5SNR, or Signal-to-Noise Ratio, is defined as the ratio of signal power to noise power, often
expressed in decibels (dB).



48 Chapter 1. Introduction

computer interface, the board can be used for different applications and their
development time is much shorter compared to analog VLSI systems. However,
they move away from the biological models.

The first digital cochlea was implemented in 1992 using an ASIC
(Summerfield and Lyon, 1992), Fig. 1.27. It contains 71 sections of cascade
filters based on Lyon’s cochlear model. The output of each filter is connected
to a HWR that mimics the functionality of OHCs along with an AGC. Therefore,
even though the model in which it is based is not an active cochlea (it does not
have automatic gain control), this digital implementation includes it.

El sistema auditivo: modelos e implementaciones 

65 

 

3.4.4. Cócleas digitales 

La primera cóclea digital fue implementada en 1992 usando Circuito Integrado 

para Aplicaciones Específicas (ASIC) (Summerfield & Lyon 1992). Contiene 71 

secciones de filtros en cascada siguiendo el modelo coclear de Lyon. La salida de 

cada filtro está conectada a un rectificador half-wave (HWR), que junto al bloque 

de control automático de ganancia (AGC) simulan la función de los OHCs. Por lo 

tanto, esta implementación incluye el control activo de la ganancia aunque el 

modelo en que se basa no lo contempla.  

 

Figura 3.20.Diagrama de bloques de la cóclea digital propuesta por Summerfield et.al. 

Imagen tomada de (Summerfield & Lyon 1992) 

La cóclea digital del trabajo (Jones et al. 2000) implementa el banco de filtros 

paso de banda de segundo orden en una FPGA. El banco de filtros sigue la 

estructura paralela y fue específicamente construido para extraer el tono de sonidos 

complejos. Aunque la cóclea digital tiene una arquitectura sencilla, implementa en 

detalle el modelo de los IHCs y las vías auditivas.   

En el trabajo (Leong et al. 2003) se presenta una implementación de 88 

secciones en cascada mediante filtros IIR de segundo orden (Infinite Impulse 

Response). Este tipo de filtros son frecuentemente usados porque consiguen bandas 

más altas y estrechas con menor número de operaciones aritméticas. En la Figura 

FIGURE 1.27: Block diagram of the digital cochlea proposed by
Summerfield et al. Image taken from (Summerfield and Lyon, 1992)

The digital cochlea of (Jones et al., 2000) implemented a second-order band-
pass filter bank with 30 filters in an FPGA. This filter bank follows a parallel
architecture and it was specifically built for extracting the tone out of complex
sounds. Although this digital cochlea has a simple architecture, it implements
the model of IHC and auditory pathways in detail.

In (Leong et al., 2003), an 88-sections cascade was implemented by using
second order Infinite Impulse Response (IIR) filters. This kind of filters are able
to obtain higher and narrower bands with less arithmetic operations. Fig. 1.28
shows the frequency response of some of the sections of the cochlea presented in
that work.

Parallel architectures achieve a higher speed in the output, but they have
a limitation in terms of the cochlea size because the resources needed increase
linearly with the number of stages in order to produce the steep slope behavior in
the filters. However, in cascade architectures, the design limits are determined by
the speed in the output, due to the fact that it decreases linearly with the number
of stages.



1.3. The sense of hearing 49

634 EURASIP Journal on Applied Signal Processing

0 10 20 30 40 50 60 70 80 90
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

Time

A
m

pl
it

u
de

(a) Impulse response (software).

0 10 20 30 40 50 60 70 80 90
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

Time

A
m

pl
it

u
de

(b) Impulse response (hardware).

102 103 104
−60
−50
−40
−30
−20
−10

0
10
20

Frequency (Hz)

G
ai

n
(d

B
)

102 103 104
−60
−50
−40
−30
−20
−10

0

10
20

Frequency (Hz)

G
ai

n
(d

B
)

32 30 28 26 24 22 20 18 16 14 12 10

10
12

14
16

18
20

22
24

−100

−80

−60

−40

−20

0

20

40

Q
u

an
ti

za
ti

on
er

ro
r

(d
B

)

Width of LUT
Wordlength

Figure 7: Mesh plot showing the quantization errors of implemen-
tations with varying wordlengths and DA ROM widths.

5. RESULTS

The cochlea implementation was tested on an Annapolis
“Wildstar” Reconfigurable Computing Engine [23] which
is a PCI-based reconfigurable computing platform con-
taining three Xilinx Virtex XCV1000-BG560-6 FPGAs. The
cochlea implementations were verified by comparing Synop-
sys VHDL Simulator simulations with the results produced
by a floating-point software model. Synthesis and implemen-

tation were performed using Synopsys FPGA Express 3.4 and
Xilinx Foundation 3.2i, respectively.

5.1. Trade-offs among wordlength, width of DA ROM,
and precision

The coefficients for the biquadratic filters in our implemen-
tation of Lyon and Mead’s cochlea model were obtained us-
ing Slaney’s Auditory Toolbox [24]. This Matlab toolbox has
several different cochlea models, test inputs, and visualiza-
tion tools. The same toolbox was used to verify our designs
and produce cochleagram plots.

The coefficients of these implementations were obtained
from the Auditory Toolbox using the Matlab command
DesignLyonFilters(16000, 8, 0.25), which specifies
a 16 kHz sampling rate, Q = 8, and a spacing which gives 88
biquadratic filters. A series of cochlea implementations, with
wordlengths from 10 to 32 bits and DA ROM width from 10
to 24 bits, was generated in order to present the trade-offs
among wordlengths, widths of DA ROMs, and precisions.

In order to present the improvement in precision with
increasing wordlengths and ROM width, the frequency re-
sponses of several different fixed-point implementations are
plotted in Figure 5. Figure 6 shows impulse and frequency re-
sponses obtained from a software floating-point implemen-
tation, a hardware 16-bit wordlength, and 16-bit ROM width
implementation.

It can be observed that the filter accuracy gradually im-
proves with increasing wordlength or ROM width. When

(b) Frequency response(hardware)(a) Frequency response (software)

FIGURE 1.28: Frequency response of the digital cochlea implementation by
Leong et al. Image taken from. Image taken from (Leong et al., 2003)

Some recent implementations of digital cochleae use IIR filters, and both
parallel (Dundur et al., 2008; Miró Amarante, 2013) and cascade (Gambin et al.,
2010; Mugliette et al., 2011; Thakur et al., 2014) implementations can be found.
The digital design presented in (Dundur et al., 2008) is the basis for the cochlear
implant implementations in FPGAs.

Other designs (Gambin et al., 2010; Mugliette et al., 2011; Thakur et al., 2014)
use time multiplexing to implement the filter bank with a greater number of
sections. For example, the digital cochlea presented in (Mugliette et al., 2011)
has a cascade of 24 second-order IIR filters, and thanks to the time multiplexing,
it only requires 20 multiplier units. Designs that are based on time multiplexing
use less resources in exchange of using higher clock frequencies, increasing the
power consumption of the system.

Using FPGA implementations have some advantages over VLSI analog
systems: a faster design time, more robustness to power supply changes, to
temperatures and to transistor mismatch, a higher dynamic range, a higher SNR,
better stability, FPGAs can be reused for different applications and they have a
simpler interface to the computer.

Two of the most recent digital cochlea implementations in FPGA are
(Jimenez-Fernandez et al., 2017) and (Xu et al., 2018a). In (Xu et al., 2018a),
a digital implementation of a 70-section, 44.1 kHz sampling rate Cascade of
Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) (Lyon, 2017)
cochlear model is presented, where the Cascade of Asymmetric Resonators
(CAR) part simulates the basilar membrane’s response to sound and the Fast-
Acting Compression (FAC) part models the OHCs, the IHCs, and the medial
olivocochlear efferent system functions. The FAC feeds back to the CAR by
moving the poles and zeros of the CAR resonators automatically, making it an
active cochlea model.



50 Chapter 1. Introduction

The digital implementation proposed in (Jimenez-Fernandez et al., 2017),
which is called Neuromorphic Auditory Sensor (NAS), is the one that has
been used throughout this thesis. NAS (Jimenez-Fernandez et al., 2017) is an
audio sensor for FPGAs inspired by Lyon’s model of the biological cochlea
(Lyon and Mead, 1988). This sensor is able to process an excitatory audio
signal using Spike Signal Processing (SSP) techniques (Jimenez-Fernandez et al.,
2010), decomposing incoming audio in its frequency components, and providing
this information as a stream of events using the AER (Boahen, 2000). As
it is implemented on a reconfigurable platform, this sensor’s configuration
parameters are flexible and can be adapted to any application.

NAS decomposes two digitized signals (two in case of a binaural or stereo
NAS, or one in case of a monaural or mono NAS) into a set of sections or bands
(corresponding to particular frequencies), which are previously converted to a
spike train. The decomposition of the signals in each corresponding frequency
band is performed by a bank of Spike-based Low-Pass Filter (SLPF) filters
(Jimenez-Fernandez et al., 2010; Domínguez-Morales et al., 2011) connected in
a cascade topology. The output of this sensor is encoded using the AER protocol
as many of the neuromorphic sensors that were presented in the previous section.

For this decomposition of the input signals (left and right ear) the same
processing is performed. The processing is modeled using a Spike-based Cascade
Filter Bank (SCFB). Each SCFB has many stages (as many as sections in the
cochlea) and consists of a SLPF and a Spike Hold&Fire (SHF) (Jimenez-Fernandez
et al., 2010), which are able to extract two different spike trains: one that is passed
as input to the next stage and another one that corresponds to the signal filtered
by the current stage of the cascade.

This kind of sensor mimics how the biological cochlea processes audio
signals. NAS is able to decompose the input audio signal into different
frequency bands (also called channels). Like in other neuromorphic cochleae
implementations based on a cascade model (Liu et al., 2010b; Leong et al.,
2003; Summerfield and Lyon, 1992; Lyon and Mead, 1988), this decomposition is
carried out by a series of cascade-connected stages that subtract the information
from consecutive spike-based low-pass filters’ output spikes in order to reject out-
of-band frequencies, obtaining a response equivalent to that of a bandpass filter
(Jimenez-Fernandez et al., 2017).

Fig. 1.29 (a) shows the global architecture of a binaural NAS. In this
architecture, the first element in the chain is an AC97 audio codec (CS5344
audio codec), which has two analog signals as inputs (left and right) that are
digitized and multiplexed into a single output. This signal is divided in order
to obtain sampled and digitized values that correspond to each of the input
signals. After that, the information is converted from a digital domain to a
spike domain by using a Reverse Bitwise Synthetic Spikes Generator (RB-SSG)
(Jimenez-Fernandez et al., 2010), which provides a spike stream with a frequency



1.3. The sense of hearing 51
806 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 4, APRIL 2017

Fig. 1. (a) Global NAS architecture. (b) Filter banks with Cascade topology, CFB. (c) Single CFB stage containing an SLPF and an SH&F.

small general purpose building blocks. Each of these blocks
performs a specific primitive arithmetic operation on the spike
streams, and can be combined with others to build large spike
processing systems of the type already used in closed-loop
spike-based PID controllers [32], and trajectory generators for
object tracking [33].

A. Reverse Bitwise Synthetic Spike Generator

Digital sound samples received from a commercial audio
codec were immediately converted into a stream of spikes by
a digital synthetic spike generator (SSG) capable of converting
a discrete number (SSG input) into a fixed spike frequency
rate (SSG output). These output spikes represented the audio
information that would excite the CFB. This SSG is also
the formed part of other elements in the CFB capable of
processing spike-coded signals. This will be explained later.

Although there are several ways to design a digital
SSG [30], [34], the implementation in this paper used the
reverse bitwise method for synthetic AER event generation
[reverse bitwise SSG (RBSSG)] described in [30] and [35].

Fig. 2. RBSSG [10].

This architecture was selected mainly for its low resource
needs (a digital counter and a comparator) and closer to
uniform temporal spike distribution.

An SSG would generally be capable of generating a
synthetic spike stream with a frequency proportional to a
constant (kBWSpikesGen) and an input value (x), as in

RBSSG(x)SpikesRate = kBWSpikeGen ∗ x . (1)

Fig. 2 shows the RBSSG circuit. It uses a continuous digital
counter [Fig. 2 (top)], the output of which is reversed

FIGURE 1.29: (a) Global NAS architecture. (b) Filter banks with Cascade
topology, CFB. (c) Single CFB stage containing an SLPF and an SH&F.

Image taken from. Image taken from (Jimenez-Fernandez et al., 2017)

that is proportional to the digital amplitude. At the output spike generator, ON
and OFF spikes that encode the previously sampled digital value are obtained.

The generated spike train is the input to the cascaded spike-based filter bank
Cascade Filter Bank (CFB) (depending on the NAS architecture implemented
on the FPGA, the number of filters will be different). Fig. 1.29 (b) shows
how these filters are distributed, forming the bank, where the first filters of
the cascade correspond to higher frequencies, and the last ones correspond to
lower frequencies. As was previously mentioned, the filter bank is divided into
different stages, where each stage consists of a spiking low-pass filter along with
a SHF (see Fig. 1.29 (c)). The output of each of the stages is connected to an AER
monitor (Cerezuela-Escudero et al., 2013) that encodes the activity of each stage,
placing the address of the corresponding stage in the output asynchronous AER
bus every time that an event is generated in it.





53

Chapter 2

Objectives

“I have no special talent.
I am only passionately curious.”

– Albert Einstein

In this chapter, the main objectives to be achieved in this thesis are listed.
These objectives are divided in general objectives, presenting a global idea of
the thesis; and specific objectives, where the corresponding tasks to achieve the
general objectives are detailed. Then, the organization of this thesis is presented
by giving a brief description of each chapter and appendix.

2.1 Objectives

According to the proposed improvements and contributions mentioned in the
motivation section 1.1, two types of objectives were proposed: general objectives,
with the aim of analyzing and studying the viability of a fully digital, event-
based auditory system model and its implementation in both ASIC and FPGAs,
for being integrated afterwards within robotic platforms; and more specific
objectives, focused on solving particular problems related to the topic introduced
previously and the design of the corresponding systems and models.

General objectives:

1. Develop a set of tools to provide the community to have access to a
neuromorphic auditory sensor through an open-source project.

2. Study how the human auditory system captures, analyzes and encodes
binaural information into nerve impulses that are processed by the brain
when carrying out sound source localization tasks.

3. Integrate the auditory sensor in both general and specific-purpose robots
for performing audio processing, as well as sensory integration, in real-
time.



54 Chapter 2. Objectives

With these general objectives, it is intended to mimic the human nervous
system to design neuromorphic systems, as well as to explore the benefits of
the auditory processing combined with other sensory information, like vision,
in robotics. To achieve these general objectives, the following set of specific
objectives were proposed:

Specific objectives:

1. Open-source Neuromorphic Auditory Sensor (NAS) for FPGAs and ASICs
implementations:

(a) Study of how NAS works, its parameters, and the behavior of its
internal modules when an input stimulus is presented.

(b) Development of a new tool for automatically generating HDL files
to implement a NAS according to a list of configuration parameters
specified by the user.

(c) Study of the digital ASIC design workflow from RTL description to the
signoff process.

(d) Design of an ASIC containing a tiny NAS model as a proof-of-
concept of the first implementation of a digital, fully event-based
neuromorphic auditory sensor in a chip.

2. Neuromorphic models for binaural cues extraction and sound source
localization:

(a) Study the biological and physiological principles of the binaural
hearing in humans from the ear to the auditory cortex, and the effect
of the visual attention to the auditory perception.

(b) Study and analysis of state-of-the-art Jeffress model implementations
for the ITD extraction.

(c) Design and development of a digital, event-based Jeffress model for
FPGAs.

(d) Design and development of a digital, event-based model of a
simplified human Superior Olivary Complex (SOC) model for
performing the binaural cues extraction.

(e) Integration of the proposed SOC model with the NAS model in order
to contribute to the implementation of a neuromorphic hearing sense.

(f) Characterization and evaluation of the integration under several
conditions for analyzing its scalability and adaptability.

(g) Study of novel alternatives of binaural cues extraction by taking
inspiration from the optical flow estimation process in insects.

(h) Design and implementation of the TDE neuron model for FPGAs.



2.2. Thesis structure 55

(i) Test, analysis and evaluation of the use of the TDE model for the ITD
extraction as an alternative to the Jeffress model for the sound source
lateralization task.

3. Integration of neuromorphic auditory systems for real-time audio
processing in robotics:

(a) Study of the relation between the sound recognition task and
Central Pattern Generators (CPGs) in biology and the state-of-the-art
implementations.

(b) Design of an audio-guided SCPG based on the central nervous system
of insects on SpiNNaker.

(c) Implementation of a neuromorphic robotic platform for performing
real-time test about locomotion changes depending on the recognition
of different auditory input stimuli.

(d) Study of the audio-visual integration process in the brain.

(e) Design, implementation and test of a neuromorphic robotic system to
integrate event-based sensory information for attention-related tasks.

(f) Integration of the proposed neuromorphic auditory sensor within the
iCub robotic platform.

(g) Evaluation of the integration, identification of improvements, and
implementation of a demonstration of real-time audio processing in
iCub.

2.2 Thesis structure

The thesis is structured in three chapters, following the specific objectives
previously detailed, as well as a conclusions and future works chapter. In
addition, three appendices are included containing useful information for the
reader, such as software manuals and design files. Each chapter and appendix
are briefly described below:

• Chapter 3: Open-source Neuromorphic Auditory Sensor (NAS) for FPGAs
and ASICs implementations.

In this chapter, OpenNAS tool is presented. This tool has been developed
to provide an open-source alternative of an event-based auditory sensor
to neuromorphic researchers. The tool architecture, workflow, and
performance are described also in this chapter. In addition, the preliminary
results of the first ASIC implementation of a NAS are showed.

• Chapter 4: Neuromorphic models for binaural cues extraction and sound
source localization.



56 Chapter 2. Objectives

This chapter can be split in two parts. The first part is focused on the
implementation of an event-based SOC model for FPGAs. An event-based
design of the Jeffress model is implemented taking into account the state-
of-the-art implementations, and its characterization results are analyzed in
this chapter. In the second part, a novel digital implementation of the TDE
neuron is detailed. Furthermore, a proof-of-concept the ITD extraction from
auditory information is provided, and its potential use as an alternative to
the Jeffress model is also discussed.

• Chapter 5: Integration of neuromorphic auditory systems for real-time
audio processing in robotics.

In this chapter, three different cases of use of the NAS in robotics are
presented. For each case of use, the main system components are described,
as well as the input stimuli and the expected behavior. Those cases of
use are: 1) an hexapod robot with audio-guided locomotion control, 2) a
mobile robot with event-based sensory integration of both visual collision
avoidance and sound source localization, and 3) the iCub robot with sound
recognition and localization.

• Chapter 6: Conclusions and future works.

This chapter summarizes the contribution of this work and explains the
conclusions extracted from the research of this thesis. Furthermore, it lists
the accepted papers and the future works in the research line of this thesis.

• Appendix A: OpenNAS tool manual.

It contains screenshots of OpenNAS tool screens, as well as a short version
of the user manual describing how the tool works and the meaning of its
configurable parameters.

• Appendix B: NASIC PCB design files.

This appendix contains both the schematic and board files of the PCB
designed for testing and characterizing the NASIC.

• Appendix C: General purpose PCBs design files.

This appendix contains both the schematic and board files of several PCBs
designed during the thesis according to the needs. The development of
these boards has made possible the experiments carried out in this work.



57

Chapter 3

Open-source Neuromorphic Auditory Sensor

“There’s a silly notion that failure’s not an option at
NASA. Failure is an option here. If things are not

failing, you are not innovating enough.”

– Elon Musk

3.1 Introduction

Artificial cochleae are sensors inspired by the way that the biological inner ear
works, as introduced in Chapter 1. Several models (hardware and software) can
be found in the literature, with a similar architecture. In general, they all have
an input stage, where the input sound stimuli are collected; a processing stage
consisting of a set of band-pass filters, commonly with a cascaded topology, and
finally the output stage, where the filters’ outputs are obtained and preprocessed
for subsequent steps.

There are software models that implement the entire auditory periphery
either by means of complex SNNs (James, 2020) or by resolving complex
differential equations (Zilany and Bruce, 2006). In addition, there exist other
works that only implement the functionality of the cochlea by using a filter bank
of gammatone filters (Tabibi et al., 2017; Liu et al., 2013).

Hardware implementations can be also divided into two groups:
reconfigurable and non-reconfigurable architectures. For the latter, the
implementation is fixed (analog (Yang et al., 2016) or digital silicon (Xu et al.,
2018b)) and only a few parameters can be tuned, such as the filter’s gain or the
filter’s quality factor.

Both approaches (software and hardware) present similar disadvantages
when trying to use them in different situations. For instance, software models
may not be deployable in other platforms due to the lack of resources or
architecture incompatibility, like in (James, 2020) where the SpiNNaker machine
(Furber et al., 2014a) is needed. Furthermore, hardware solutions could be
expensive in some cases, or even do not match the application’s requirements.



58 Chapter 3. Open-source Neuromorphic Auditory Sensor

In response to this, one of the main contributions of this thesis is the
introduction of the first software tool for automatically generating a full-custom
Neuromorphic Auditory Sensor (NAS) for FPGA, which was presented in
(Jimenez-Fernandez et al., 2017). This open-source tool is able to generate the
VHSIC Hardware Description Language (VHDL) code needed for implementing
a NAS. Since the generated files contain the source code of the sensor, the users
can adapt, tune, and modify the model according to their needs.

Furthermore, as part of the continuous development of the NAS design flow,
the first NAS ASIC, also called NASIC, was designed and fabricated as a proof-
of-concept.

3.2 OpenNAS tool

One of the main advantages of developing a NAS in an FPGA is its flexibility and
versatility. However, these can eventually become a serious disadvantage, as the
complexity of design building and parameter tuning increases the difficulty of
designing a NAS. With the aim of distributing the NAS along the neuromorphic
research community, we present this open-source tool, known as OpenNAS 1

(Gutierrez-Galan et al., 2021b).

OpenNAS builds a design by instantiating its different blocks and
automatically computing all the parameters (including different filter gains, cut-
off frequencies, First In, First Out (FIFO) memories, and interfaces), guiding users
step by step along the process.

Audio Front End Spike-based Filter Bank – R 
(N channels)

Spikes Output Interface

Spike-based Filter Bank – L 
(N channels)

NAS Output

Audio Data Link

CH. 0 CH. N-1 CH. 0 CH. N-1

CH. 0 CH. N-1 CH. N CH. (2*N)-1

... ...

... ...

FPGA

Spikes Enconder
R- Spikes

L- Spikes

Sp
ik

es
 O

u
tp

u
t 

In
te

rf
ac

e

      NAS OutputAudio Data Link

CH. 0

CH. N-1

CH. 0

CH. N-1

CH. N

CH. (2*N)-1

...
... ...

FPGA

Sp
ik

e 
En

co
de

r

R- Spikes

L- Spikes Spike-based Filter Bank – L 
(N channels)

Spike-based Filter Bank – R 
(N channels)

CH. 0

CH. N-1

...A
u

di
o 

Fr
on

t 
En

d

Sp
ik

e
s 

O
u

tp
u

t 
In

te
rf

ac
e

      NAS OutputAudio Data Link

CH. 0

CH. N-1

...

FPGA

Sp
ik

es
 E

n
co

nd
er

Spikes Spike-based Filter Bank
(N channels)

CH. 0

CH. N-1

...

A
u

d
io

 F
ro

n
t 

En
d

FIGURE 3.1: Block diagram of the complete architecture of a binaural NAS.

NAS is currently used for several neuromorphic applications developed by
different international research groups, demonstrating the utility of OpenNAS
for setting up custom projects and its integration within them. This includes
pattern recognition in audio samples (Dominguez-Morales et al., 2017b) and
sound source localization (Schoepe et al., 2019).

1https://github.com/RTC-research-group/OpenNAS



3.2. OpenNAS tool 59

3.2.1 NAS architecture and design flow

The NAS architecture is mainly composed of three blocks, presented in Fig. 3.1.
Firstly, the input audio signal is acquired by an audio front-end that converts
audio information to Pulse-Frequency Modulation (PFM) spike-coded signals.
Next, the spikes generated by the first block excite a Spike-based Filter Bank
(SFB), which decomposes the information in different frequency bands using
a cascade-fashion or parallel-fashion processing architecture (user selectable)
(Jimenez-Fernandez et al., 2017).

Finally, the spikes obtained from the output of the SFB are collected by
a neuromorphic output interface to propagate the NAS information to any
following processing layer. The current OpenNAS version supports a parallel
AER monitor as output, as well as the SpiNNaker interface, which is used to
connect the NAS to a SpiNNaker board (Painkras et al., 2013).

NAS features 
definition

(mono or stereo, 
number of 

channels….)

NAS Blocks choice 
and parameters 
selection: audio 

input, processing 
architecture, spike 

ouput

Parameter 
tuning

VHDL 
source code 
generation

FPGA IDE tool for 
synthesis 

FPGA programing 
and NAS testing

OpenNAS

Automatic
User Defined

FIGURE 3.2: Design flow diagram for full NAS synthesis.

Users should follow the design flow presented in Fig. 3.2, adjusting the
settings of the three blocks to configure a new NAS. After this step, NAS’
parameters will be computed and the source code will be generated. Finally,
using a development suite for FPGAs, such as Xilinx’s Vivado or Altera’s
Quartus, the NAS can be synthesized and deployed into an FPGA. A detailed
explanation of the technical details is available in the OpenNAS wiki2.

3.2.2 Software architecture

To represent NAS’ components, we used a set of classes, where each class
contains all the parameters and HDL information of a specific component.
The class hierarchy is presented in Fig. 3.3. The main NAS class is
"OpenNasArchitecture", which contains an instance of common parameters
(OpenNASComponents) and one attribute for each of the three NAS components:
AudioInput, AudioProcesingArchitecture, and SpikesOutputInterface (Fig. 3.3 mid).

These are abstract classes that inherit from the "HDLGenerable" abstract class
(Fig. 3.3 top), which contains the methods for generating the HDL code. Finally,
specific component classes inherit from AudioInput, AudioProcesingArchitecture,
and SpikesOutputInterface, implementing each of the component features. Using

2https://github.com/RTC-research-group/OpenNAS/wiki



60 Chapter 3. Open-source Neuromorphic Auditory Sensor

this inheritance tree, a NAS is fully modeled and structured, ready for future
expansions with new NAS features.

Abstract Class

HDLGenerable

Abstract Class

HDLGenerable

+copyDependencies
+copyLicense
+generateHDL
+WriteComponentArchitecture
+WriteComponentInvocation
+WriteTopSignals

Class

OpenNASCommons

Class

OpenNASCommons

+OpenNASCommons
+toXML

-clockValue
-monoStereo
-nasChip
-nCh

Class

OpenNASArchitecture

Class

OpenNASArchitecture

+Generate
+OpenNASArchitecture

-audioInput
-audioProcessing
-nasCommons
-spikesOutput

+toXML
-writeConstraints
-writeTopFile

Abstract Class

AudioInput

Abstract Class

AudioInput

Abstract Class

AudioProcessingArchitecture

Abstract Class

AudioProcessingArchitecture

Abstract Class

SpikesOutputInterface

Abstract Class

SpikesOutputInterface

Class

AC97AudioInput

Class

AC97AudioInput

Class

I2SAudioInput

Class

I2SAudioInput

Class

PDMAudioInput

Class

PDMAudioInput

Class

ParallelSBPFBank

Class

ParallelSBPFBank

Class

CascadeSLPFBank

Class

CascadeSLPFBank

Class

SpikesDistributedMonitor

Class

SpikesDistributedMonitor

Class

SpiNNaker_AERInterface

Class

SpiNNaker_AERInterface

FIGURE 3.3: OpenNAS class diagram.

To guide the user, OpenNAS implements a wizard-based GUI written in
Windows Presentation Foundation (WPF) (Nathan, 2006). The last step is VHDL
generation, which performs the following steps:

1. Each NAS component copies its HDL dependency files and top entity to an
output destination folder.

2. OpenNasArchitecture creates the top NAS HDL file.

3. Sequentially, each component writes I/O signals in the NAS top file.

4. Interface signals between components are added to the NAS top file.

5. Sequentially, each component writes its top component architecture.

6. To the NAS top file, each component adds an invocation to its instance, and
these are connected to each other using interface signals.

7. A template for constraint files is generated with all NAS I/O signals.

8. A NAS summary is written as an eXtensible Markup Language (XML) file.

9. Finally, a Tool Command Language (TCL) file is generated for automatically
creating the project and starting the synthesis process.

3.2.3 OpenNAS execution results

To measure the tuning error and execution time, different NASs were generated
with different CPUs. The tuning error was defined as the difference between
the theoretically ideal parameters’ values and the final achieved values after
configuring the modules’ parameters. The theoretical values are obtained from
the frequency parameters set in OpenNAS, where a logaritmic distribution over
the frequency range is generated. The calculated values are based on the number



3.2. OpenNAS tool 61

TABLE 3.1: OpenNAS performance comparison between two different
processors.

NAS SFB Error AMD Ryzen 3900X (3.80 GHz) Intel Core i7 6700HQ (2.60 GHz)
32ch. Stereo 0.48% 63.48 ms 139.14 ms
64ch. Mono 0.51% 64.36 ms 156.81 ms

128ch. Mono 0.53% 84.62 ms 247.4 ms
256ch. Mono 0.55% 127.28 ms 313.38 ms

of bits of the signals, as well as the characteristic equation of each VHDL module,
which were deatiled in (Jiménez Fernández, 2010). The results are presented in
Table 3.1. The generated NASs have an average error of around 0.5%, which is
lower than the error reported in (Jimenez-Fernandez et al., 2010) (around 1.573%
for a 64-channel NAS).

The time that the software takes to generate a NAS was measured, including
internal parameter tuning, with two different processors: AMD Ryzen 3900X and
Intel Core i7 6700HQ. For all the different cases, the generation time is below a
few hundred milliseconds, increasing with the number of NAS’ channels.

3.2.4 Conclusions

The main contribution of this work is a novel Intellectual Property (IP) core
generator tool that allows researchers to easily design their own NAS for specific
applications. Thanks to its friendly interface and the automatic computation of
its parameters by only following 5 steps in a GUI, the NAS architecture can be
freely distributed to the neuromorphic community, ready for low-cost FPGAs.

FIGURE 3.4: OpenNAS tool usage flow.



62 Chapter 3. Open-source Neuromorphic Auditory Sensor

OpenNAS was designed following a hierarchical class structure to represent
NAS’ components, with its HDL description and parameters, allowing
developers to increase OpenNAS components and functionalities easily. Fig.
3.4 shows a summary of the OpenNAS usage flow from the download of the
repository until the FPGA programming.

3.3 NASIC

As introduced in Section 3.2, FPGA-based solutions can be considered as one of
the best options for testing and validating research developments and proof-of-
concept designs. This approach is also efficient in cases that the reconfigurability
of the design plays a key role, since this kind of platforms are capable of updating
part of its deployed design in real time (Liu et al., 2009; Sabena et al., 2014;
Montealegre et al., 2015).

Nevertheless, ASIC solutions could provide advantages for embedded
applications due to its low-power consumption, small size, and application-
specific input/output interfaces. For instance, a NAS ASIC would be needed in
the future for the first generation of neuromorphic cochlear implants (Lande et al.,
2000). In addition, ASICs are desirable in robotic platforms, like iCub (Natale
et al., 2017), where many different parts and components have to fit in a reduced
space.

For this purpose, this thesis presents an ASIC which implements a tiny
model of the Neuromorphic Auditory Sensor (NAS) as a proof-of-concept, also
known as NASIC. The NAS was generated using the OpenNAS tool, and to
the best of our knowledge, it is the first time that a full event-based, digital
Neuromorphic Auditory Sensor (NAS) is produced as an ASIC. The project’s
repository is open-source, and it can be found on GitHub 3.

3.3.1 Motivation

The NAS was already used within robotic applications, either integrated or not
into the platform itself, as presented in (Schoepe et al., 2019; Gutierrez-Galan
et al., 2019a; Cerezuela-Escudero et al., 2018). In those cases, neither the power
consumption nor the high performance was a crucial aspect to take into account
since the main goal was the applications themselves.

Recent works in the field of e-health and biomedical engineering, where the
NAS was the main component (Dominguez-Morales et al., 2017b; Dominguez-
Morales et al., 2021a), motivated the decision of designing, fabricating, and
testing a NAS ASIC. This way, it would be possible to think of commercial
applications including neuromorphic chips for health-related tasks in hospitals.

3https://github.com/dgutierrezATC/NASIC

https://github.com/dgutierrezATC/NASIC


3.3. NASIC 63

In this sense, analog neuromorphic designs are somehow forced to be
produced as ASICs to be tested and used in real-time, low-power applications.
Although there is reconfigurable alternatives, as the Field-Programmable Analog
Array (FPAA) (George et al., 2016) that offers the possibility to deploy custom
analog designs in a reconfigurable floating-gates fabric, researchers often prefer
to fabricate their own chips to really take advantage of the technology, such
as the low-power consumption (Milde et al., 2018). For instance, there are
analog cochleae ASICs, as presented in Section 1.3.2.1.3, which have been
successfully used in many projects, demonstrating their low-power features and
good performance.

Therefore, we would like to compare the performance of our proposed
digital, fully event-based cochlea model in an ASIC with the existing state-of-
the-art silicon cochleae.

Finally, one of the main goals is to study the ASIC design flow for adding
new functionalities to OpenNAS in order to automatically generate common
ASIC design files, such as the constraints file or testbenches. This way, the
OpenNAS tool would be involved in future NASIC design and fabrication.

3.3.2 Base architecture

The OpenNAS tool was used for generating the NAS’ HDL files. Since this was
the first ASIC designed by the RTC Research Lab., a tiny version of a NAS was
desired to minimize potential risks, such as timing problems, size restrictions,
etc., and to reduce simulation and synthesis times. As it was mentioned before,
the main goal is to check whether the performance of an ASIC-based NAS is
similar or not when compared to the performance of an FPGA-based NAS. Table
3.2 summarizes the selected values for the base project, organized according to
the OpenNAS parameters.

An eight-frequency-channels, mono, cascade Neuromorphic Auditory
Sensor (NAS) was generated, setting the working frequency range between 20
Hz and 22000 Hz. The main clock frequency was set to 48 MHz, that is the same
clock frequency of the FPGA-based board ZTEX 2.13, which has been used to test
the same files on FPGA prior to design the chip. As input interfaces, both I2S-
based interface and Pulse-Density Modulation (PDM)-based microphones were
added for testing the NAS’ behavior with different stimuli sources.

As output interface, a distributed events monitor was included for providing
an AER interface to send the NAS’ output events. However, this module was
removed from the design due to timing problems to satisfy the timing constraints.
Therefore, no output interface was included in this first version. Instead, two
dedicated pins are used for each filter’s output, having sixteen pins in total for
the output events (eight frequency channels, with positive and negative events
for each channel). Thus, the absence of events monitor implies the use of an



64 Chapter 3. Open-source Neuromorphic Auditory Sensor

NASIC

Spike-
based 

cascade 
bandpass 

filter 
bank

I2S 
interface

PDM 
interface

Input interface 
selector

Spike 
generator

Spike 
generator

From 
audio 
ADC

From 
PDM 
mic.

Selector
Raw 

output 
spikes

FIGURE 3.5: NASIC’s internal architecture block diagram.

external FPGA-based board for implementing both the events monitor and the
AER protocol.

TABLE 3.2: NASIC features

Parameter Value Notes
NAS chip Other 180 nm TSMC
NAS type Mono

Num. of channels 8
NAS common

settings
Clock freq. (MHz) 48

Input interface Audio input I2S + PDM All the values were
by default.

NAS architecture Cascade
Start frequency 20 Hz
End frequency 22000 Hz

Processing
architecture

SLPF output att. -15 dB

Output interface Spikes output Raw No AER monitor was
integrated.

The NAS base project was deployed into an FPGA and characterized in order
to set a ground truth for being used as reference when validating the ASIC. For
this characterization, a set of six pure tones were generated and used as input of
the NAS. The pure tone frequencies are identical to the ones used in (Dominguez-
Morales et al., 2016).

The duration of each pure tone was two seconds, and the computer’s volume
was set to 60%. A high speed audio Analog-to-Digital Converter (ADC) with
Integrated Interchip Sound (I2S) interface was used, since it allows to connect an



3.3. NASIC 65

audio cable directly from the computer to the NAS. Fig. 3.6 shows the histograms
of the pure tones used.

0 2 4 6 8 10 12 14
Address

0

20000

40000

60000

80000

100000

N
o.

 o
f s

pi
ke

s

Histogram

(A) 261 Hz.

0 2 4 6 8 10 12 14
Address

0

20000

40000

60000

80000

100000

N
o.

 o
f s

pi
ke

s

Histogram

(B) 349 Hz.

0 2 4 6 8 10 12 14
Address

0

20000

40000

60000

80000

100000

N
o.

 o
f s

pi
ke

s

Histogram

(C) 523 Hz.

0 2 4 6 8 10 12 14
Address

0

20000

40000

60000

80000

100000

120000

N
o.

 o
f s

pi
ke

s
Histogram

(D) 698 Hz.

0 2 4 6 8 10 12 14
Address

0

20000

40000

60000

80000

100000

N
o.

 o
f s

pi
ke

s

Histogram

(E) 1046 Hz.

0 2 4 6 8 10 12 14
Address

0

20000

40000

60000

80000

N
o.

 o
f s

pi
ke

s

Histogram

(F) 1396 Hz.

FIGURE 3.6: Histograms from pure tones using NAS on FPGA. Middle
frequencies associated to each frequency channel were: channel 0, 22000
Hz; channel 1, 8090 Hz; channel 2, 2975 Hz; channel 3, 1094 Hz; channel 4,

402 Hz; channel 5, 148 Hz; channel 6, 54 Hz; and channel 7, 20 Hz.

As it can be seen, the main activity peak for each case is shifted from low
frequencies (higher addresses) to high frequencies (low addresses) according to



66 Chapter 3. Open-source Neuromorphic Auditory Sensor

the input stimulus frequency. The shape of the histogram keeps almost identical
in all cases. However, the average activity, expressed as the number of events per
second, varies between cases. The case 3.6a had about 325000 events per second,
while the case 3.6f had around 250000 events per second.

This effect is produced due to, for low frequency sounds, the lasts bandpass
filters of the cascade filter bank are the ones tuned to have a better response to
those sounds, in the same way to the basilar membrane. Therefore, the sound will
go through the filters in the filter bank, exciting all of them and, thus, producing
more spikes. In the opposite way, high frequency sounds will stimulate the filters
placed at the beginning of the filter bank, thus not stimulating the low-frequency
tuned bandpass filters, which are placed at the end of the filter bank.

Fig. 3.7 shows the sonogram of each pure tone obtained from the NAS
model before designing the ASIC. The correlation between the histograms and
the sonograms is perceptible. It can also be seen how the main frequency band,
i.e., the frequency band with the higher activity, changes according to the input
sound, as it was already observed in the histograms.

3.3.3 NASIC design process

In this design, a 180 nm process technology from Taiwan Semiconductor
Manufacturing Company (TSMC) was used. As Electronic Design Automation
(EDA) software, Design Compiler from Synopsys was used for performing the
synthesis, while Innovus from Cadence was used for carrying out the physical
implementation. The simulations were run using ModelSim from Intel FPGA.

First, the synthesis tool, Design Compiler in this case, was set up. The search
paths for specifying the directories which contain the core and I/O libraries were
set, among others. After configuring the synthesis tool, the next step was to load
the design. This process is a two-stage process. The first one is the analysis stage,
where the software analyzes the RTL HDL code and compiles it. If the design
had any problem, an error would be raised.

The second stage is the design elaboration, where the tool, after analyzing
the code, creates the design and loads it in memory. In this process, much
information and feedback is shown, including state machine extraction, register
inference, and design hierarchy. Several changes were carried out due to some
design errors found at the elaboration step. At this point, a netlist was generated
but without any link to the process technology library.

As a first check, this generated netlist was used as the main component in the
simulation. First, the original HDL code generated by OpenNAS was simulated,
and the resultant simulation file, which includes the NAS’ event address and its
timestamp, was saved. Then, the elaborated netlist was also simulated. Finally,
both simulation files were compared, perfectly matching in both addresses and
timestamps values.



3.3. NASIC 67

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

100

200

300

400

500

600

N
o. of spikes

(A) 261 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

100

200

300

400

500

600

N
o. of spikes

(B) 349 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

100

200

300

400

500
N

o. of spikes

(C) 523 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

100

200

300

400

500

600

N
o. of spikes

(D) 698 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

100

200

300

400

500

600

N
o. of spikes

(E) 1046 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

100

200

300

400

N
o. of spikes

(F) 1396 Hz.

FIGURE 3.7: Sonograms from pure tones using NAS on FPGA.

When the generic netlist was ready, the mapping (to cells) and optimisation
procedures could be applied. Since the timing constraints were not specified at
this point, no timing optimisations were performed. Instead, an area reduction
optimisation was done, having a first approximation of 0.5 × 0.5mm2.



68 Chapter 3. Open-source Neuromorphic Auditory Sensor

FIGURE 3.8: ASIC design workflow. Image taken from https://www.
einfochips.com/

The next step was to constraint the design by modeling the clock and
constraining both the inputs and outputs. First, the clock was created, being
defined at 48 MHz. Just after the clock definition, a first timing test was
performed, verifying that most of the paths were constrained by the clock. Then,
the rest of the clock effects were modelled by defining the clock latency, the clock
uncertainty, and the clock transition. Finally, the I/O timing constraints were set,
and a timing verification was run.

Several timing problems were identified at this point, which were located
in two different parts of the design. On the one hand, there was inconsistency
with the reset signal, which was used sometimes low active and sometimes
high active. On the other hand, the AER events monitor, that was originally
integrated on the design, presented timing problems since its FIFO memories
were implemented as registers instead of memory cells, as it is synthesized in
an FPGA. The reset issue was solved, but the events monitor problem was not
solved and, therefore, it was removed.

After constraining the design, and once the timing problems were solved, a
timing optimisation was performed. A new simulation was carried out in order
to check that the changes applied to the design did not affect its behavior, being
the result of the simulation identical to the reference.

The procedures and function calls were automated by using TCL scripts,

https://www.einfochips.com/
https://www.einfochips.com/


3.3. NASIC 69

allowing us to repeat the whole design flow every time a change was done. These
TCL scripts are being integrated in OpenNAS with the aim to facilitate the NASIC
design process in the future.

For performing the floorplan step, we moved from Design Compiler
(Synopsys) to Innovus (Cadence). Therefore, the design was exported from
the first software tool and imported in the second software tool. The global
configuration was created, as well as the physical constraints (core utilization,
boundaries, power ring, etc).

FIGURE 3.9: NASIC cells distribution after the place & route process.

Input and output pads (known as IO pads) were also defined and placed at
this stage. In turn, IO pads could be split depending on their use, i.e., if the pad
was going to be used for the clock, power supply, or for other signals. Fig. 3.9
shows the distribution of the IO pads on the chip.

After the physical constraints were set, the place & route process was carried
out. The design’s cells were loaded, placed, and distributed over the core area
available, and routed. Although the area estimation during the synthesis was
0.5 × 0.5mm2, a core size of 1 × 1mm2 was set to facilitate the place & route



70 Chapter 3. Open-source Neuromorphic Auditory Sensor

process. Finally, the cells were connected to either the IO pads or power supply
rings, if needed, distributed over the core as shown in Fig. 3.9.

For verification purposes, another simulation was performed after the place
and route process. In this case, the cells’ library was used, containing the real
timing information of the physical cells. Both the number of output spikes
and their order were identical compared to the reference. However, small time
differences (a few nanoseconds) were obtained.

The last step was to fill the empty space inside the core with filler cells to
avoid planarity problems and to ensure good continuity. After that, the final
compilation was performed applying area, power, and timing optimizations.

FIGURE 3.10: NASIC layout.

Fig. 3.10 shows the final design layout, including the bonding pads. Thirty
two pins were needed according to the number of IO pads used during the ASIC
design process. However, a sixty four pins Ceramic Quad Flat Package (CQFP)
package was used due to packaging limitations.

Table 3.3 summarizes the NASIC’s pinout. As it can be observed, half of the
pins were not connected internally to any circuit. For simplification purposes,
the pin usage distribution was set in an alternate way, leaving one empty pin
between each used pin.



3.3. NASIC 71

TABLE 3.3: NASIC chip pinout.

Pin
number Pin name Type Typical

value Notes

0 VSS_CORE_2 Input GND Digital GND.

2 VDD_CORE_2 Input 1.8V Input current up to
1 A.

4 SPIKES_OUT_5 Output 3.3V
6 SPIKES_OUT_4 Output 3.3V
8 SPIKES_OUT_3 Output 3.3V
10 SPIKES_OUT_2 Output 3.3V
12 SPIKES_OUT_1 Output 3.3V
14 SPIKES_OUT_0 Output 3.3V
16 VSS_1 Input GND Digital GND.

18 VDD_1 Input 3.3V Input current up to
1 A.

20 PDM_I2S_SEL Input 3.3V 0 for I2S;
1 for PDM.

22 PDM_DATA_LEFT Input 3.3V
24 PDM_CLK_LEFT Output 3.3V
26 I2S_SD Input 3.3V
28 I2S_WS Input 3.3V

30 I2S_SCLK Input 3.3V To add a 2.7 kOhm
pull-down resistor.

32 VSS_CORE_1 Input GND Digital GND.

34 VDD_CORE_1 Input 1.8V Input current up to
1 A.

36 CLK Input 3.3V The clock frequency
is 48 MHz.

38 RST Input 3.3V Low active reset.
40 SPIKES_OUT_15 Output 3.3V
42 SPIKES_OUT_14 Output 3.3V
44 SPIKES_OUT_13 Output 3.3V
46 SPIKES_OUT_12 Output 3.3V
48 VSS_1 Input GND Digital GND.

50 VDD_1 Input 3.3V Input current up to
1 A.

52 SPIKES_OUT_11 Output 3.3V
54 SPIKES_OUT_10 Output 3.3V
56 SPIKES_OUT_9 Output 3.3V
58 SPIKES_OUT_8 Output 3.3V
60 SPIKES_OUT_7 Output 3.3V
62 SPIKES_OUT_6 Output 3.3V



72 Chapter 3. Open-source Neuromorphic Auditory Sensor

3.3.4 ASIC validation and characterization

After finishing the design part, the fabrication files were sent to the foundry. From
all the manufactured ASICs, ten of them were packaged also by the foundry. No
functional test were performed before receiving the ASICs, so a custom PCB was
needed in order to check and validate each ASIC functionality and to characterize
its behavior.

Since the core cells and IO cells used in this design needed different operating
voltages (1.8 V and 3.3 V, respectively), two linear regulators were needed in the
NASIC test PCB for converting the 5 V input to both voltages. This voltage could
be obtained from two different sources: 1) from an external power supply or 2)
from the FPGA to which the test PCB is connected. In the same way, a 48 MHz
clock was needed, which could be taken from an external oscillator or from the
FPGA.

NASIC test PCB

4
0

-p
in

 c
o

n
n

ec
to

r 
fo

r 
FP

G
A

 in
te

rf
ac

e

1
0

-p
in

 c
o

n
n

ec
to

r 
fo

r 
au

d
io

 in
p

u
t 

in
te

rf
ac

e

NASIC chip

Debug LEDs

C
lo

ck
 

co
n

fi
gu

ra
ti

o
n

 
ju

m
p

er
s

Clock source 
selector

Oscillator
Power supply regulators (1.8V and 

3.3V)
Power supply 
connector(5V)

Power 
supply 

selector

In
p

u
t

O
u

tp
u

t

FIGURE 3.11: NASIC test PCB block diagram.

Related to the connectors, two of them were needed. One of them was used
to interface the audio input PCB (both the schematic and the board can be found
in Appendix C.1). The other one was used to interface the NASIC test PCB with
the FPGA. Fig. 3.12 shows a real picture of the NASIC test PCB with the audio
input board, and its schematic can be found in Appendix B.

For characterizing the chips, the same set of six pure tones were used as
input stimuli for each ASIC. Audio files were played by using the same computer
and the same volume in order to fairly compare the results. Fig. 3.13 shows the
histograms of two pure tones (261 Hz and 1396 Hz) from three different chips.

Using the first case as example, it can be seen that both histograms 3.13a
and 3.13b are identical even though the input stimuli have different frequencies.
Compared to their corresponding histograms obtained from the FPGA (Fig. 3.6a
and Fig. 3.6f, relatively), it can be observed that the ASIC’s response does not



3.3. NASIC 73

FIGURE 3.12: NASIC test PCB with the audio input board.

match with the expected output. In addition, it is important to mention that only
five over ten chips produced events when an input sound was provided. Chips
1, 2, and 3 had very similar responses, while chip 4 and chip 5 had opposed
responses.

A common aspect of all the histograms is that there are channels that do not
produce any event. Nevertheless, the channels that do not produce events in one
specific chip often produce events in a different chip. Therefore, it can be said
that this effect is due to the test PCB. In addition, it can be asserted that it is
not a design problem coming from the filter bank since, in that case, if one of
the first filters has a failure (e.g., not producing events) the following filters will
not produce any events neither (because of the cascade architecture of the filter
bank). However, Fig. 3.13c shows that the last filter produced a response to the
input stimulus while the first filter did not.

The average activity for each chip was measured, obtaining about 30000,
7000, 18000, 3000, and 150 events per second for chips 1 to 5, respectively. Those
distinct values indicate that there is not a fixed pattern in the chips’ response,
making it difficult to determine the source of the problem. Similarly to the
histograms, the average activity did not vary between pure tones.

Along with the histograms, the sonograms were also generated, and they
are shown in Fig. 3.14. It can be observed that the sonogram shown in Fig. 3.14f



74 Chapter 3. Open-source Neuromorphic Auditory Sensor

0 2 4 6 8 10 12 14
Address

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o.

 o
f s

pi
ke

s

1e6 Histogram

(A) Chip 1 - 261 Hz.

0 2 4 6 8 10 12 14
Address

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o.

 o
f s

pi
ke

s

1e6 Histogram

(B) Chip 1 - 1396 Hz.

0 2 4 6 8 10 12 14
Address

0

20000

40000

60000

80000

100000

120000

N
o.

 o
f s

pi
ke

s

Histogram

(C) Chip 4 - 261 Hz.

0 2 4 6 8 10 12 14
Address

0

20000

40000

60000

80000

100000

120000

N
o.

 o
f s

pi
ke

s

Histogram

(D) Chip 4 - 1396 Hz.

0 2 4 6 8 10 12 14
Address

0

2000

4000

6000

8000

N
o.

 o
f s

pi
ke

s

Histogram

(E) Chip 5 - 261 Hz.

0 2 4 6 8 10 12 14
Address

0

2000

4000

6000

8000

N
o.

 o
f s

pi
ke

s

Histogram

(F) Chip 5 - 1396 Hz.

FIGURE 3.13: Histograms from pure tones using NASIC.

presents a discontinuous response to a continuous stimulus over time. Similar
effect is observable in Fig. 3.14c. This problem could be related to timing aspects,
being this feature critical for event-based systems.

The last experiment carried out for testing the NASIC consisted in measuring
the NAS response to a chirp signal. A sound signal of 10 seconds was generated,
where the starting frequency was set to 100 Hz and the ending frequency was



3.3. NASIC 75

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

2500

5000

7500

10000

12500

15000

17500

20000

No. of spikes

(A) Chip 1 - 261 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

2500

5000

7500

10000

12500

15000

17500

20000

No. of spikes

(B) Chip 1 - 1396 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

200

400

600

800

1000
No. of spikes

(C) Chip 4 - 261 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

200

400

600

800

1000

No. of spikes

(D) Chip 4 - 1396 Hz.

0 20 40 60 80 100 120 140 160
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

25

50

75

100

125

150

175

200

No. of spikes

(E) Chip 5 - 261 Hz.

0 25 50 75 100 125 150 175
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

50

100

150

200

250

No. of spikes

(F) Chip 5 - 1396 Hz.

FIGURE 3.14: Sonograms from pure tones using NASIC.

set to 20000 Hz. This audio stimulus was presented to the FPGA-based NAS (the
reference) and also to the five NASIC chips that were working.



76 Chapter 3. Open-source Neuromorphic Auditory Sensor

Fig. 3.15 top shows both the sonogram and the histogram for the FPGA-
based NAS results, and Fig. 3.15 bottom shows both the sonogram and the
histogram for the ASIC-based NAS results (chip 3). Between all of them, only
chip 3 presented a similar response in the average activity when compared to its
digital counterpart, as it can be observed from Fig. 3.15b and Fig. 3.15d. In fact,
although the curve seems similar, the number of events is almost one order of
magnitude lower in the FPGA-based case.

Despite that similarity, the sonograms show the real response for both cases.
The sonogram from the FPGA, shown in Fig. 3.15a, fits with the expected
behavior of the NAS when a sound signal starts with a low frequency and starts
increasing its frequency. It can be clearly observed how the activity is shifted from
low frequency channels to high frequency channels. However, the sonogram
from the ASIC, shown in Fig. 3.15c, did not present that behavior.

Surprisingly, the increasing and decreasing behavior of the overall activity
was observable for the ASIC-based NAS while the chirp was increasing its
frequency. The behavior of channel 3 was similar in both cases (FPGA and ASIC),
having the main activity around time bin 200 and starting to decrease up to the
end of the recording.

With these results, no further characterizations nor measurements were
carried out. It was considered the power consumption measurement as not
relevant since the output activity did not correspond to the input stimuli,
thus not having a correlation between the power consumption and the NAS’
response. Nevertheless, this first attempt to create an ASIC that implements a
neuromorphic sensor helped us to both improve the NAS model and to learn
more about digital design concepts.

In addition, it is important to mention that the behaviors observed from the
chips were not produced due to problems of the designed PCB since, in that
case, a similar response would be obtained from all the ASICs. Therefore, an
mistake was made during either the design flow or the assembly process where
the chip was encapsulated. Nonetheless, further research about the problem will
be carried out with the intention of designing the second version of the NASIC.

3.4 FPGA vs. ASIC

There is not a good answer to the question "What is better: an FPGA-based or
an ASIC-based solution?". Like most of the questions in the field of engineering,
the best answer is always "It depends on the target application". For research,
to use an FPGA could be enough when a proof-of-concept application is being
tested or even a real application is being characterized. However, for commercial
purposes, maybe an ASIC is desired.



3.4. FPGA vs. ASIC 77

0 200 400 600 800
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

100

200

300

400

500

600

700

800

No. of spikes

(A) Sonogram from FPGA.

0 200 400 600 800
Bin (10000 s width)

0

500

1000

1500

2000

2500

3000

N
o.

 o
f s

pi
ke

s

Average activity

(B) Average activity from FPGA.

0 200 400 600 800
Bin (10000 s width)

0

2

4

6

8

10

12

14

Ad
dr

es
s

Sonogram

0

2000

4000

6000

8000

10000

12000

14000
No. of spikes

(C) Sonogram from chip 3.

0 200 400 600 800
Bin (10000 s width)

0

5000

10000

15000

20000

25000

N
o.

 o
f s

pi
ke

s

Average activity

(D) Average activity from chip 3.

FIGURE 3.15: Comparison between FPGA and chip 3.

First thing to take into account is the effort (in terms of both money and
time) employed to design, test, and validate an ASIC. In addition, the complexity
of the process implies the risk to make mistakes. However, the control over the
whole design is guaranteed even at the gate level. On the other hand, when
using FPGAs, researchers can focus all their efforts on the model itself without
taking into consideration the technological aspect of the hardware, saving time
and, thus, money.

Therefore, the next question could be: "Is it then worth to spend time on
ASIC design in research?". According to my experience, it would be better
to use an FPGA-based solution while it is possible. Nowadays, FPGA chips
integrates both programmable logic and microcontrollers that are able to run
operating systems with low power consumption, thus allowing to have the best
from both worlds in a single platform. However, an ASIC-based solution will
always consume less power and will fit better with the final application, thus
being the best solution when an absolute control of the system is required.



78 Chapter 3. Open-source Neuromorphic Auditory Sensor

Finally, an ASIC design would be a good option for commercial purposes
and applications, since mass fabrication would decrease production costs. In this
case, many factors should be taken into account, like the supply and demand
ratio, target consumer, sales volume, etc. Nevertheless, the fact of creating an
ASIC, although it was not perfectly working or the sales volume did not reach the
expectations, could open new paths for future neuromorphic solutions to audio-
related problems in humans.



79

Chapter 4

Event-based models for the sound source
localization task

“The art of conversation is the art of hearing as well as
of being heard”

– William Hazlitt

4.1 Introduction

Besides the cochlea, the auditory ascending pathway contains other nuclei
that extract important features from the input sound. Among them, nuclei
located at the Superior Olivary Complex (SOC) are capable to measure both the
Interaural Time Difference (ITD) and the Interaural Level Difference (ILD). Those
measurements, also known as binaural cues, play a crucial role in the sound
source localization task since they provide useful information about the auditory
scene (Kandel et al., 2000).

In addition, sound source localization can be considered one of the most
remarkable survival skills, since it allows to identify incoming risks in short
time periods, i.e., hundreds of microseconds. In fact, auditory attention and
audiovisual stimuli integration also use this capability, thus, being considered
as an important part of the brain.

According to biology, the SOC in humans, shown in Fig. 4.1 is composed
by three main nuclei, which are the Medial Superior Olive (MSO), the Medial
Nucleus of the Trapezoid Body (MNTB), and the Lateral Superior Olive (LSO),
among others. As it was mentioned in Chapter 1, the MSO extracts ITDs, while
the LSO extracts ILDs. Many works can be found in the literature, either in-deep
studying how those nuclei work or implementing their functionality for specific
applications (Bhadkamkar and Fowler, 1993; Lazzaro and Mead, 1989b; Liu et al.,
2010a; Dávila-Chacón et al., 2018).

The model proposed by Jeffress in (Jeffress, 1948) was a first approach for
modelling the MSO. However, the model has been improved over the years,



80 Chapter 4. Event-based models for the sound source localization task

FIGURE 4.1: Superior Olivary Complex in biology. Green lines represents
excitatory connections, while red lines indicates inhibitory connections.

Image taken from (Liu et al., 2013).

becoming a complex nucleus. For example, contralateral (i.e., opposite side)
projections have a different distribution compared to ipsilateral (i.e., same side)
projections over the coincidence detector neurons. Moreover, delay lines can
adapt themselves depending on the input stimuli.

Unlike the MSO, there is not a well-defined model for the LSO. Although
it is known that neurons on this nucleus work like a frequency rate subtractor, it
is thought that it may work like a frequency coincidence detector, thus having a
similar architecture than the MSO.

Although there exist many implementations (Liu et al., 2008; Chou et al.,
2019; Voutsas and Adamy, 2007), either software or hardware, of the SOC, the
MSO, and the LSO models, neuromorphic solutions are becoming popular due
to their event-based nature. Following the same design principle that was used
during the development of the NAS, in this chapter, an event-based, FPGA-based
model of the SOC is proposed with the aim of to continue the development of a
more complete neuromorphic auditory sensor.

Furthermore, a novel digital implementation of the Time Difference Encoder
(TDE) model was carried out and proposed as an alternative of the Jeffress model
for the ITD extraction. In this case, instead of having an array of coincidence
detector neurons, where in theory only one of them will fire an spike when a
coincidence occurs, a single TDE neuron is used to code the ITD in the number
of output spikes. Preliminary results showed the viability of this approach for
performing the sound source localization task, although future works are needed
in order to improve the accuracy.



4.2. Event-based model of the Superior Olivary Complex 81

4.2 Event-based model of the Superior Olivary
Complex

The Neuromorphic Auditory Sensor (NAS) was implemented by using spike-
based building blocks for audio signal processing. Those blocks consist of basic
operational blocks that, once combined, are able to perform complex operations
in the spike domain. For instance, the addition operation in the events domain
is carried out by the Spike Hold&Fire (SHF) module (Jimenez-Fernandez et al.,
2010), that imitates a simplified version of a LIF neuron with both excitatory (or
first summand) and inhibitory (or second summand) inputs. When this module
is syntethized for an FPGA, its resources consumption are negligible, as well as
its power consumption.

Therefore, this design strategy was also followed for the implementation of
the event-based digital model of the Superior Olivary Complex (SOC). As it was
previously mentioned, the main goal is to achieve a full model of the ascending
auditory pathway, starting with the cochlea and finishing with a spiking neural
network which models the auditory cortex. Although a fully VHDL-based model
is desired, the SNN would be first deployed in already existing neuromorphic
computing platforms, like SpiNNaker (Furber et al., 2014a) or Loihi (Davies et al.,
2018), instead of directly to an FPGA due to the SNN model complexity. In
addition, such platforms already have development frameworks, thus making
some important tasks easier, such as the learning procedure.

SpiNNaker

FPGA

Left NAS Right NAS

A
V
C
N

A
V
C
N

MSO

LSO

IC

ON spikes 
bus

OFF spikes 
bus

FIGURE 4.2: Block diagram of the NSSOC model for FPGA.

Taking the biological model shown in Fig. 4.1 as reference, the
Neuromorphic Spike-based Superior Olivary Complex (NSSOC) model 1 has
been designed and implemented as a complement for the NAS design. The main
block diagram including both the NAS and the NSSOC is shown in Fig. 4.2.
The NAS’ output (ON and OFF events) is directly sent to two modules: 1) the

1The project’s repository is open-source, and it can be found on GitHub https://github.com/
dgutierrezATC/nssoc.

https://github.com/dgutierrezATC/nssoc
https://github.com/dgutierrezATC/nssoc


82 Chapter 4. Event-based models for the sound source localization task

AVCN, which implements a version of the spherical bushy cells for performing
the phase-lock operation, and 2) the LSO, for extracting the ILD. Then, the
AVCN output phase-locked events are sent to the MSO module for extracting the
ITD. All these modules were implemented by using VHDL language for further
deployment into an FPGA-based board.

One of the advantages of implementing these models by using the VHDL
language is that they can be directly integrated with a NAS model, thus avoiding
the need to create a serial interface between the NAS and the NSSOC, e.g., an
AER serial interface. Therefore, no additional delays will be added to the precise
timing of the events produced by the NAS, which is important for extracting ITDs
with high precision. After extracting the binaural cues, the auditory information
is sent to the IC, as shown in Fig. 1.14 in Chapter 1, where all the auditory cues
are combined for obtaining a spatial map of the sound sources. In the proposed
model, the Inferior Colliculus (IC) was implemented as a multi-layer SNN model
using PyNN and deployed into the SpiNNaker machine. The communication
between the NAS, the NSSOC, and SpiNNaker is carried out through a custom
PCB and a modified version of the AER-SpiNNlink Verilog module 2.

The following sections describe the implementation of each module in detail,
their characterization, as well as an analysis of the performance for different MSO
configurations within the NSSOC model.

4.2.1 Implementing the Cochlear nucleus

The phase lock effect takes place at the AVCN thanks to the spherical bushy
cells. These cells produce an spike when the Sound Pressure Level (SPL) of the
input sound is maximum, thus, having the higher displacement in the basilar
membrane at that moment. Since this effect is relative to the SPL, it is not
dependant on the volume of the input sound. Therefore, for a signal with the
same frequency but different amplitude, the resultant phase-locked output spikes
will be identical over time. Fig. 4.3 shows an example of this effect, where even
though both signals increase their volume, the time difference at which the phase-
locked spikes are produced are the same.

However, Kandel et al. (Kandel et al., 2000) described this effect more like
a periodic response at any time of the spherical bushy cells independently of the
SPL instead of an exact response at the maximum value of the SPL, as it was
already shown in Fig. 1.16. Therefore, the precise timing and periodicity of the
phase-locked events are considered more important than the precise moment in
which they are produced.

Those two considerations were crucial when designing the phase lock
module, since some simplifications were applied. As it was mentioned before,

2The project’s repository is open-source, and it can be found on GitHub https://github.com/
dgutierrezATC/NAS_SpiNNaker_interface.

https://github.com/dgutierrezATC/NAS_SpiNNaker_interface
https://github.com/dgutierrezATC/NAS_SpiNNaker_interface


4.2. Event-based model of the Superior Olivary Complex 83

FIGURE 4.3: Representation of the phase lock effect. Image taken from (Liu
et al., 2013).

the NAS’ output spikes follow the rate coding, meaning that the higher the value
is, the higher the frequency will be (and the lower the ISI will be). Thus, in order
to detect the maximum value of the SPL, it should be enough with just detecting
the minimum ISI value. Nevertheless, by applying the simplifications, detecting
the zero-crossing points of the signal is enough. When using the NAS, this zero-
crossing detection process can be made by only detecting the change from ON
events (or positive) to OFF events (or negative), since it has both types of outputs.
In other models where the output events do not have polarity, as the example
shown in Fig. 4.4, the best solution would be the minimum ISI value.

(A) Plot showing sample output data from the
cochlea model.

(B) Plot showing sample output data from the
bushy cell neuron.

FIGURE 4.4: Example of the phase lock effect.

From the digital design point of view, the zero-crossing approach requires
less hardware resources compared to the ISI analysis, and the design complexity
is also reduced. Therefore, the zero-crossing model was implemented for
modelling the spherical bushy cell. The model consists of a register that stores



84 Chapter 4. Event-based models for the sound source localization task

the polarity of the last produced event and a comparator that detects the polarity
change from positive to negative. The output of the model is a single output
that corresponds to the phase-locked event without any polarity. Fig. 4.5a shows
the block diagram of the proposed model, and Table 4.1 summarizes its FPGA
resources consumption.

reg

reg = ‘0’ & in = ‘1’

in

Input spike polarity

out

Phase-locked spike

(A) Block diagram.

1e7

neg.
pos.

In
pu

t
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time ( s) 1e7

out.

Ou
tp

ut

(B) Simulation result.

FIGURE 4.5: Block diagram and simulation results of the spherical bushy
cell model.

Firstly, the design was simulated in order to verify its functionality. A
basic test, in which a sinusoidal spiking signal was artificially generated and
used as input, was carried out. In consonance with the idea, the observed
behavior should be to obtain an output event as soon as the first negative event
is received at the input. As it can be seen in Fig. 4.5b, the simulation results
match the expected behavior, as well as the two considerations which were
mentioned before. In addition, the frequency of the input signal can be estimated
by measuring the ISI value between two consecutive phase-locked output
events, thus facilitating the sound recognition task or pure tones classification
(Dominguez-Morales et al., 2016).

TABLE 4.1: Hardware resources utilization of the spherical bushy cell
model for different FPGA devices.

FPGA chip Slice Registers Used
/ Available

Slice LUTs Used /
Available

XC6SLX150T (Spartan-6) 2/184304 (<0.01%) 0/92152 (0.0%)
XC7A75T (Artix-7) 2/94400 (<0.01%) 0/47200 (0.0%)
XC7K480T (Kintex-7) 2/597200 (<0.01%) 0/298600 (0.0%)

Secondly, four real-time tests were performed in order to analyze the impact
of the spherical bushy cell module within the NAS in terms of number of output
events and the NAS’ response in the frequency domain. The tests were organized
as follows: 1) white noise sounds with the same volume (power equal to 0 dB); 2)
white noise sounds with three different volumes (power equal to -6, 0, and 6 dB);
3) a set of pure tones with the same volume (amplitude equal to 1); and 4) a set
of pure tones with three different volumes (amplitude equal 0.5, 1.0, 1.5, 2.0, and



4.2. Event-based model of the Superior Olivary Complex 85

2.5). The sounds were one second long, and the sample frequency was 48 MHz.
The frequencies for the pure tones test were set to 100, 250, 500, 1000, 2000, 5000,
10000, 15000, 20000, and 25000 Hz.

A 64-frequency-channel, cascade, mono NAS was generated using
OpenNAS, and a set of 64 spherical bushy cells were also instantiated and
connected to the NAS’ output. This set of spherical bushy cell would create the
AVCN module, which only contains as many spherical bushy cell modules as
NAS frequency channels. The I2S-based input was used for sending the sounds
from the computer to the FPGA-based board in real time. The output events were
collected using the USBAERmini2 board and a Matlab script3 for automating the
process.

0 20 40 60 80 100 120
Address

0

2500

5000

7500

10000

12500

15000

17500

N
o.

 o
f s

pi
ke

s

Histogram

(A) 500 Hz, amplitude 0.5, histogram.

0 20 40 60 80
Bin (10000 s width)

0

20

40

60

80

100

120

Ad
dr

es
s

Sonogram

0

25

50

75

100

125

150

175

No. of spikes

(B) 500 Hz, amplitude 0.5, sonogram.

0 20 40 60 80 100 120
Address

0

5000

10000

15000

20000

25000

30000

35000

N
o.

 o
f s

pi
ke

s

Histogram

(C) 500 Hz, amplitude 1.5, histogram.

0 20 40 60 80
Bin (10000 s width)

0

20

40

60

80

100

120

Ad
dr

es
s

Sonogram

0

50

100

150

200

250

300

350

No. of spikes

(D) 500 Hz, amplitude 1.5, sonogram.

FIGURE 4.6: Histograms and sonograms for a 500 Hz pure tone with 0.5
and 1.5 of amplitude using a NAS without phase-lock.

The experiment was carried out twice by enabling and disabling the AVCN
module for comparison purposes. Next, a few representative results among all

3https://github.com/dgutierrezATC/GenericSeqMon

https://github.com/dgutierrezATC/GenericSeqMon


86 Chapter 4. Event-based models for the sound source localization task

the obtained outputs are shown. The full set of output results can be found on
GitHub 4.

Fig. 4.6 shows the results obtained from the test in which the AVCN module
was disabled, and a pure tone of 500 Hz was played at two different volumes (0.5
and 1.5). As it can be seen, both histograms have the main component around the
same frequency. Fig. 4.7a presents a noise peak placed at high frequencies due to
the low volume and the inherent error of the Spike-based Band-Pass Filter (SBPF)
(Jimenez-Fernandez et al., 2017). Nevertheless, this error can be reduced while
increasing the signal amplitude, as shown in Fig. 4.7c. Additionally, the number
of events was different in both cases, having a maximum value of 17500 for
amplitude 0.5 and 35000 for amplitude 1.5. These results matched the expected
behavior of the NAS, which was already analyzed in (Jimenez-Fernandez et al.,
2017; Dominguez-Morales et al., 2016).

0 20 40 60 80 100 120
Address

0

2000

4000

6000

8000

10000

N
o.

 o
f s

pi
ke

s

Histogram

(A) 500 Hz, amplitude 0.5, histogram.

0 20 40 60 80
Bin (10000 s width)

0

20

40

60

80

100

120

Ad
dr

es
s

Sonogram

0

20

40

60

80

100

120

No. of spikes

(B) 500 Hz, amplitude 0.5, sonogram.

0 20 40 60 80 100 120
Address

0

2000

4000

6000

8000

10000

N
o.

 o
f s

pi
ke

s

Histogram

(C) 500 Hz, amplitude 1.5, histogram.

0 20 40 60 80
Bin (10000 s width)

0

20

40

60

80

100

120

Ad
dr

es
s

Sonogram

0

20

40

60

80

100

120

No. of spikes

(D) 500 Hz, amplitude 1.5, sonogram.

FIGURE 4.7: Histograms and sonograms for a 500 Hz pure tone with 0.5
and 1.5 of amplitude using a NAS with the phase-lock module.

4In https://github.com/dgutierrezATC/nssoc, go to Examples, NAS_AVCN,
NAS_I2S_64ch_mono_12att_monitor, realtest, GenericSeqMon, dataset

https://github.com/dgutierrezATC/nssoc


4.2. Event-based model of the Superior Olivary Complex 87

After the first experiment, which established the ground truth, the AVCN
module was enabled and the whole experiment was carried out again. Fig.
4.7d shows the obtained results from the same cases shown in Fig. 4.6. Many
differences can be appreciated from the results obtained in this experiment.
For instance, there is only one peak in the histogram. However, this peak is
not centered in the addresses that correspond to the pure tone frequency, but
it is placed at the high frequency addresses. On the contrary, the addresses
corresponding to the 500 Hz frequency showed an uniform response in terms
of output events instead of a peak, as can be seen in Fig. 4.7a and Fig. 4.7c.

This effect is produced by the Spike-based Band-Pass Filter (SBPF)
implementation since the band-pass filter is implemented by using two Spike-
based Low-Pass Filter (SLPF) in serial for the NAS cascade architecture.
Therefore, the achieved band is not as precise as desired, thus, having several
frequency channels responding equally to the input sound (Jimenez-Fernandez
et al., 2010; Jimenez-Fernandez et al., 2017). This way, the peak can be considered
as noise, and its high value is also due to the tuning process of the SBPF, where
the error is higher while the SBPF’s middle frequency is also higher. Ideally, the
output should present some activity around the addresses associated with the
input sound and no activity in the rest.

(A) 500 Hz, amplitude 1.5, without phase-lock. (B) 500 Hz, amplitude 1.5, with phase-lock.

FIGURE 4.8: Examples of recordings using NAS without and with phase-
lock.

Furthermore, the volume of the input signal almost does not have any
effect on the NAS output response. The maximum number of output events are
practically identical. Nevertheless, two effects can be observed. Firstly, the flat
part, i.e., the addresses with the same activity in the histogram, is shorter for
louder volumes. Secondly, the peak’s shape is softer when the volume is lower,
and more abrupt when the volume is higher.

Related to the overall number of output spikes produced by the NAS, Fig.
4.8 shows the spikegram of both studied cases. Although the reduction of the



88 Chapter 4. Event-based models for the sound source localization task

activity is clearly visible, it was measured, obtaining 1314758 produced events
when the AVCN module was disabled versus 83914 produced events when the
AVCN module was enabled (a reduction of 1566%) for this case. This have some
benefits, like lower power consumption. Also, a lower number of produced
events means smaller FIFO memories and, therefore, less FPGA resources.

One of the negative aspects of the AVCN module is that the phase-locked
spikes cannot be used for sound classification since both the frequency and
the volume of the sound are needed for performing this task, nor for the
ILD estimation in the LSO module, since the volume plays a key role. As
an alternative, a mixed model including the zero-crossing detection and the
ISI analysis could solve this problem since the information about the signal’s
amplitude will be encoded within the ISI value variation. In addition, spherical
bushy cells can adapt themselves in order to tune the precise firing time according
to the input sound (Kandel et al., 2000). This way, an adaptive version of the
spherical bushy cell module would also be desired for future developments in
the auditory attention field.

4.2.2 Implementing the Medial Superior Olive

Next, the MSO nucleus was modeled by also following the event-based approach
presented by Jimenez-Fernandez et al. (Jimenez-Fernandez et al., 2010). The
Jeffress model (Jeffress, 1948) was used as reference as well as the works
presented in (Liu et al., 2013; Glackin et al., 2010). The implementation of the
model was carried out by using a modular approach, since the MSO is basically
composed by coincidence detector neurons and delay lines. Therefore, the basic
modules were designed and implemented for being later encapsulated in other
modules, thus, creating the ITD extraction network.

Lastly, the ITD extraction network module can be again encapsulated in a
bigger module, instantiating as many modules as needed, for creating the MSO
module. In this manner, the MSO module can be configured just by setting
the number of frequency channels, the number of neurons per channel, and the
maximum detection time. Thanks to the VHDL language features, this operation
can be easily done by using the "GENERIC" statement for the configuration and
the "GENERATE" statement for the automatic generation, thus avoiding setting
the model manually.

4.2.2.1 Jeffress model implementation overview

Fig. 4.9 depicts the proposed model for implementing the ITD extraction based
on the work of Jeffress (Jeffress, 1948). The original model was used due to its
simplicity and as a proof-of-concept of an event-based ITD extraction model for
FPGAs. This idea has been published in an international conference (Gutierrez-
Galan et al., 2019b).



4.2. Event-based model of the Superior Olivary Complex 89

H&CF0

DLN-1R

H&CF1

DL1L

DLN-2R

H&CFn-1

DLn-1L

DL0R

...

...

...

...

...

Phase-
locked 
spikes 

from left 
freq. 

channel i

Phase-
locked 
spikes 

from right 
freq. 

channel i

DL0L

H&CF0 
out spike

H&CF1 
out spike

H&CFn-1 
out spike

FIGURE 4.9: Block diagram of the proposed implementation for the Jeffress
model.

As it was mentioned before, the model is composed of two main modules:
1) the coincidence detector neuron (H&CF), represented in Fig. 4.9 by the blue
box, and 2) the delay line (DL), represented in Fig. 4.9 by the pink box. It has
two inputs, the "left_input_spikes" and the "right_input_spikes", which correspond
to the phase-locked NAS’ output from the i-th left and right frequency channels,
respectively. The number of outputs coincides with the number of coincidence
detector neurons, and it is set by the generic parameter NUM_NEURONS.

In addition, the number of delay line modules will be twice the number of
neurons since each coincidence detector neuron receives inputs from both left
and right channels. Next subsections will describe each module in detail, as well
as showing the results from both simulations and real-time tests.

4.2.2.2 Coincidence detector neuron model

The LIF neuron was mostly used for modelling the coincidence detector neuron
(Liu et al., 2013; Glackin et al., 2010). The coincidence detection time can
be established by finely tuning the neuron’s parameters or even by applying
learning procedures as Spike-Timing-Dependent Plasticity (STDP) (Glackin et al.,
2010). In our case, a simplified version of the LIF neuron called SHF and proposed
by Jimenez-Fernanez et al. (Jimenez-Fernandez et al., 2010) was used. The
original model has two inputs, called positive_input and negative_input.

At the initial state, when an input event is received, it is internally held
during a specific time. If no events arrive during that time period, the held event
is released and put in the output. However, if an event is received while the event
is held, the output will depend on both the held event and the incoming event.
For instance, if a positive spike is held and another positive spike is received,
the module will produce an output positive spike, and a positive spike will be



90 Chapter 4. Event-based models for the sound source localization task

held. This way, both the excitatory and inhibitory synapses were modelled, as
well as the temporal decay of the membrane potential. The complete behavioral
description of the SHF model can be found at (Jiménez Fernández, 2010).

Although it is proven that the LIF neurons in the MSO have both excitatory
and inhibitory projections, the simplified version of the Jeffress model (Jeffress,
1948) only considered the excitatory projections. Moreover, a coincidence can be
detected just with one spike from each side without the need of integrating more
spikes during the coincidence detection time due to the phase-locked spikes.

Reset Idle
Coincid
& Fire

Refract

Hold 
left

Hold 
right

reset = 1 sl = 1  and  sr = 1

timeout = 0

timeout = 0

wait for delay

to “idle”

reset = 0

FIGURE 4.10: FSM of the Spike Hold&Coincidence Fire (SHCF) module.

Based on the SHF module, the Spike Hold&Coincidence Fire (SHCF) module
was proposed in order to adapt the original model to the coincidence detector
neuron requirements. This module also has two inputs, but in this case both
of them are positive inputs: one for the left phase-locked spike ("left_spike")
and one for the right phase-locked spike (("right_spike")). Finally, it has one
output ("coincidence_output_spike"), that represents the output spike when a
coincidence is detected. The detection time is set by a generic parameter
(TEMPORAL_COINCIDENCE_WINDOW), expressed in microseconds. Fig. 4.10
shows the Finite State Machine (FSM) that implements the coincidence detection
behavior.

Initially, the SHCF module is in IDLE state, and it remains there until an
input spike is detected. When an input spike is received, the next state is
either HOLD_LEFT or HOLD_RIGHT, depending on the input source. Then,
the module stays in this state until either the coincidence time finishes or if a
spike from the contralateral side is received. If no contralateral spike is received,
the next state is again IDLE, meaning that no coincidence was detected. If the
input spike is coming from the ipsilateral side, it is ignored. This case should not
occur due to the phase-locked spikes prevent from this effect. Nevertheless, if
that happens, it would mean that the detection time configuration is not valid.



4.2. Event-based model of the Superior Olivary Complex 91

Finally, if a contrary side spike is received while being at HOLD_LEFT
or HOLD_RIGHT state, the next state is set to COINCIDENCE_AND_FIRE,
producing an output spike. This state can also be reached if both left and right
spikes are received at the same clock cycle while in IDLE. After producing the
output spike, the module goes into the REFRACTORY state for one clock cycle,
and then to IDLE again.

TABLE 4.2: Hardware resources utilization of the SHCF model with
detection time of 50 µs for different FPGA devices.

FPGA chip Slice Registers Used
/ Available

Slice LUTs Used /
Available

XC6SLX150T (Spartan-6) 15/184304 (0.01%) 27/92152 (0.03%)
XC7A75T (Artix-7) 15/94400 (0.02%) 27/47200 (0.06%)
XC7K480T (Kintex-7) 15/597200 (<0.01%) 27/298600 (0.01%)

The VHDL implementation of this module was done by implementing a
FSM-based architecture. A behavioral simulation, shown in Fig. 4.11 was carried
out in order to verify the correct functionality of the model, and a resources
consumption report, summarized in Table 4.2, was generated. As it can be
observed, a single SHCF unit needs low resources, thus allowing to deploy many
units in a single FPGA chip for implementing large models.

FIGURE 4.11: Simulation results of the SHCF module. States 0, 2, 3, and 4
corresponds to IDLE, WAIT_RIGHT, COINCIDENCE, and REFRACTORY,

respectively.

4.2.2.3 Delay line model

The delay line, or transmission line, is the axon of a spherical bushy cell that
projects into the coincidence detector neuron. For the ITD extraction, the axonal
delays are tuned to transmit the spikes with a certain delay and, therefore, create
the effect described by Jeffress. In addition, the axon’s length affects the axonal
delay, being this feature fixed and not adaptive.



92 Chapter 4. Event-based models for the sound source localization task

From the digital design point of view, it can be implemented as a timer,
where the input enables the timer, and the output is the interruption that
notifies the end of the timer. Nevertheless, a simplified version of the SHF was
used. In this case, the module only has one input, "spike_in", and one output,
"spike_delayed". Furthermore, the transmission time is configured by the generic
parameter TRANSMISSION_TIME, expressed in microseconds.

Reset Idle

Fire

Hold
reset = 1

reset = 0

input = 1

timeout = 1

FIGURE 4.12: FSM of the Delay Line module.

Fig. 4.12 shows the FSM of the delay line module. Its behavior is similar to
the SHF’s FSM. By default, the module is in IDLE state, and stays on it until an
input spike is received. Then, the next state is HOLD, where the module will stay
during a time period equal to TRANSMISSION_TIME. While this state is active,
if a new input spike is received, it is not taken into account, thus being discarded.
After the timer ends, the held spike is released, passing to the FIRE state. Finally,
the module goes again to the state IDLE, where it will be waiting for the next
input spike. Fig. 4.13 shows a simulation screenshot of the DL module.

FIGURE 4.13: Simulation results of the DL module. States 0, 1, and 2 to
IDLE, HOLD, and FIRE, respectively.

In theory, a new input event should not arrive to the module while being
in the HOLD state due to the phase lock module, as it was mentioned before.
Therefore, this case was not taken into account in the delay line module design.
As future work, either a FIFO memory or an accumulative timer could be used
for collecting all the input events without discarding any of them at the expense



4.2. Event-based model of the Superior Olivary Complex 93

of increasing the resources consumption of the module. Table 4.3 summarizes the
resources consumption of the delay line module.

TABLE 4.3: Hardware resources utilization of the delay line model with
transmission time of 700 µs for different FPGA devices.

FPGA chip Slice Registers Used
/ Available

Slice LUTs Used /
Available

XC6SLX150T (Spartan-6) 19/184304 (0.01%) 29/92152 (0.03%)
XC7A75T (Artix-7) 17/94400 (0.02%) 30/47200 (0.06%)
XC7K480T (Kintex-7) 17/597200 (<0.01%) 30/298600

(0.01%)

Compared to the SHCF module, the delay line module requires a few more
resources even though its FSM has less states. This is because the internal timer
of the delay time module works with larger time periods, thus needing more bits
to implement the timer.

4.2.2.4 ITD extraction network model

After the two main components of the Jeffress model were implemented, the
coincidence detector network for extracting the ITD was designed. As it was
mentioned in Section 4.2.2.1, the network can be easily deployed by instantiating
the same two modules as many times as desired. Fig. 4.9 shows the block
diagram of an ITD extraction network with n coincidence detector neurons (or
SHCF) modules. For each SHCF module, two delay line modules are needed: one
for the left spike and one for the right spike, thus having 2n delay line modules.

The ITD extraction network module has two inputs: "left_channel_spike" and
"right_channel_spike", that corresponds to the spikes coming from the left and
right spherical bushy cell associated to one specific frequency channel of the NAS.
In addition, it has as many outputs as the number of coincidence detector neurons
specified in the generic parameter NUM_NEURONS. The SHCF’s ID represents
the spatial localization of the detected sound source in such a way that the
coincidence detector neuron with ID equal to 0 will receive first the events coming
from the left cochlea (left delay line with transmission time equal to zero) and
lately the events coming from the right cochlea (right delay line with transmission
time equal to MAX_DETECTION_TIME). This way, this neuron will only fire a
spike when the sound source is placed completely on the right, meaning that the
sound will first reach the right ear and then, after 700 µs approximately, the left
ear.

The maximum ITD that the network is able to detect can be configured
through the generic parameter MAX_DETECTION_TIME, expressed in
microseconds. Furthermore, based on the work presented in (Liu et al.,
2013), an overlapping time parameter, called DETECTION_OVERLAP, was



94 Chapter 4. Event-based models for the sound source localization task

added. This overlap increases the coincidence detection accuracy by producing,
in some cases, two coincidence spikes at the output.

le
ft

rig
ht

0

1

2

3

4

5

6

7

Ou
tp

ut
s

8

9

10

11

12

13

14

0 100000 200000 300000 400000 500000 600000
Time ( s)

15

FIGURE 4.14: Example of the ITD network when using a sweep.

Therefore, the detection time bin of a single coincidence detector neuron
depends on the global detection time of the network, as well as the total number
of coincidence detector neurons deployed, and the detection overlap. It can be
defined as in Equation 4.1.

detection_time_bin =
MAX_DETECTION_TIME

NUM_NEURONS
+ DETECTION_OVERLAP

(4.1)

In the same way, the transmission time of a single delay line is calculated also
based on the global detection time of the network, as well as the total number
of coincidence detector neurons deployed, and it is proportional to the index
of that specific transmission line. For instance, the first delay line (with index
equal to 0) has no delay, the second one (with index equal to 1) has one time the



4.2. Event-based model of the Superior Olivary Complex 95

MAX_DETECTION_TIME
NUM_NEURONS , and so on. Thus, the transmission time of the i-th delay

line can be defined as in Equation 4.2.

transmission_timei =
MAX_DETECTION_TIME

NUM_NEURONS
× i (4.2)

A behavioral simulation was carried out for validating the module. The
test consisted of the generation of an input spike pair where the time difference
between them was increasing over time. Therefore, a sound source moving from
left to right with respect to the reference can be simulated. The NUM_NEURONS
parameter was set to 16, the MAX_DETECTION_TIME parameter was set to 700
µs, and the DETECTION_OVERLAP parameter was set to 5µs.

The generated input stimuli were organized in bursts of five spike pairs with
one millisecond between pair generations. Firstly, the time difference between
the left and right stimulus was set to 700 µs, meaning that the sound source was
completely placed at the left with respect the reference, creating a 90 degree angle.
Then, for each new spike burst, the time difference value was decreased by 20 µs,
simulating the movement of the sound source towards the center with respect
to the reference. This process was repeated while the time difference was higher
than zero, meaning that the sound source was not placed in front of the reference,
where the time difference is zero.

Secondly, once the simulated sound source was placed in front of the
reference, with an angle of zero degrees, the time difference was increased for
each burst again by 20 microseconds but producing first the right spike and then
the left spike, simulating that the sound source was being moved towards the
right ear. The simulation was stopped when the time difference reached 700
µs, meaning the sound source was then placed at a 90 degree angle on the right
position with respect to the reference. Results from the simulation are shown in
Fig. 4.14.

Two main effects can be clearly observed. On the one hand, it can be seen
that the burst’s width decreases when the time differences are closer to zero since
the coincidence is detected some microseconds earlier in these cases compared
to high time differences. On the other hand, there are some cases where two
consecutive neurons detected a coincidence produced by the same input stimulus
pair due to the overlapping configuration. In general, the network worked
according to the expected output, proving that the model was successfully
implemented.

A resources consumption report of this model was generated for different
FPGA chips and collected in Table 4.4. For a single ITD detection network,
2.89% of the resources are needed in the worst case, meaning that a total of 34
ITD detection networks could be deployed without taking into account the NAS
module. Since the ITD extraction is valid for low frequency channels, a set of ten



96 Chapter 4. Event-based models for the sound source localization task

TABLE 4.4: Hardware resources utilization of the ITD network model with
a global detection time of 700 µs and 16 coincidence detection neurons for

different FPGA devices.

FPGA chip Slice Registers Used
/ Available

Slice LUTs Used /
Available

XC6SLX150T (Spartan-6) 788/184304 (0.42%) 1294/92152
(1.40%)

XC7A75T (Artix-7) 764/94400 (0.81%) 1364/47200
(2.89%)

XC7K480T (Kintex-7) 764/597200 (0.12%) 1364/298600
(0.45%)

to fifteen ITD detection networks could be enough, thus still having free resources
for future implementations.

4.2.2.5 Medial Superior Olive model

Based on the biological principles of the MSO introduced in Section 1, it
can be modelled as a set of ITD detection networks tonotopically organized
and connected one-to-one to the phase-locked NAS output spikes from low-
frequency channels. In this manner, a MSO module was implemented for
automatically deploying as many ITD detection networks as specified by the
generic parameters, thus facilitating the modules’ configuration and the output
events collection. As input lines, the module has four times the value of the
generic parameter NUM_FREQ_CH, since for each frequency channel it will have
inputs for both left and right, as well as positive and negative spikes for each side.
As output, the module has an AER interface, thus allowing the communication
with an external device or with other modules within the same FPGA.

The model was composed by layers, where each layer consisted of two
spherical bushy cell modules (SBC), an ITD detection network module, and a
local events monitor module, as shown in Fig. 4.15. The number of layers can
be defined by the generic parameter NUM_FREQ_CH, that indicates the number
of NAS’ frequency channels from which the events will be received. Two generic
parameters, START_FREQ_CH and END_FREQ_CH, were also needed in order
to set both the initial and the final NAS frequency channels that are going to be
used. In addition, these values were also used to configure the channel’s address
for each local monitor.

In the same way that the ITD detection network module,
the networks’ configuration were carried out through the generic
parameters NUM_NET_NEURONS, MAX_DETECTION_TIME, and
DETECTION_OVERLAPING. These parameters are shared by all the ITD
detection networks inside the MSO module, and they cannot be modified in



4.2. Event-based model of the Superior Olivary Complex 97

ITD network
Local 

monitor

SBC

SBC

Global 
monitor & 

AER 
interface

...

...

on

off

on

off

Spikes 
from left 

freq. 
channel i

Spikes 
from right 

freq. 
channel i

left

right

0

1

2

n-1

0

1

m-1

To SOC AER merger

req data ack

16

16

16

16

Sinlge spike line Control line Data bus

FIGURE 4.15: Block diagram of the proposed MSO model.

real-time. This feature could be implemented by adding a dedicated Random
Access Memory (RAM) memory which would be modified by an external
controller, and it will be implemented in the next version.

For collecting the events from each ITD detection network, a spikes monitor
was used. In a study carried out by Cerezuela-Escudero et al. in (Cerezuela-
Escudero et al., 2013), where different approaches for implementing an event
monitor were compared, the global monitor was identified as a potential
bottleneck point when the output spike rate was high enough. In addition,
both the organization and the number of spike lines in the module which is
being monitored were also considered as a critical aspect when designing a spike
monitor. The work compared a global spikes monitor, where all the spikes were
sent to a single monitor, with a distributed spikes monitor, where the spikes
where divided in groups and, for each group, a local monitor was used. This
way, the workload was distributed, thus reducing the bottleneck problem of
the global monitor output AER interface. Results showed that the distributed
monitor was more efficient in terms of events loss, as well as in terms of FPGA
resources consumption.

Therefore, a distributed events monitor, composed of several local monitors
and a global monitor, was used in this work. The block diagram of the
local monitor module is shown in Fig. 4.16. First, an event encoder was
used for identifying the input spike and labelling it with a number between
[0, NUM_NET_NEURONS − 1]. The event encoder module was designed in
such a way that only one event is encoded at each clock cycle. If two or more
events arrive at the same time, the event with the lowest ID (i.e., closer to zero)
will be encoded.

Then, the encoded events are stored in a FIFO memory. The reading process
is controlled by the arbiter module in the global monitor module. When the



98 Chapter 4. Event-based models for the sound source localization task

Events 
encoder

FIFO
Mask

log2(n)

0

1

n-1

...

o
u

t

new event

 
d

a
ta

_i
n

data_out

no_empty

log2(n) 16

Output 
spikes 

from ITD 
network

Data available signal to 
global monitor arbiter

w

r

Masked event data

Read data signal from 
arbiter

Sinlge spike line Control line Data bus

FIGURE 4.16: Block diagram of the MSO local events monitor.

arbiter enables the read signal, a data from the FIFO is read, and a mask is applied
to the read data. This mask module concatenates the already stored neuron label
with:

• Event polarity, that is always zero.

• Associated NAS frequency channel, determined by the ID of ITD
detection network within the MSO module and both START_FREQ_CH and
END_FREQ_CH parameters.

• Left/right ear, which is always zero since only one MSO nucleus is
instantiated.

• One bit fixed to ’0’ for indicating that the event was produced by the MSO
module.

• One bit fixed to ’1’ for indicating that the event was produced by the SOC
module and not by the NAS.

The resultant masked event is then sent to the global monitor module, where
it is stored in another FIFO memory. The arbiter’s output is used as selector for a
multiplexer, which selects the correct masked event data to be stored in the FIFO
memory. Therefore, this memory will contain data from all the ITD detection
networks. Finally, the data stored in the FIFO memory is sent out through the
AER out interface to either another FPGA module or an external device. The
block diagram of the global monitor module is shown in Fig. 4.17.

As it was done before, a resources consumption report of this model was
generated but only for the Artix-7 FPGA chip, which will be used for the real-
time experiments. Table 4.5 shows the obtained results for a MSO module with
10 ITD detection networks (connected to the NAS frequency channels between
25 and 34), 16 coincidence detection neurons for each ITD network, and a global
detection time of 700 µs with an overlapping time of 5 µs. As it can be seen, the
MSO module almost needs 30% of the FPGA’s Look-Up Tables (LUTs) due to
the multiple instantiations of both the delay lines and the coincidence detector



4.2. Event-based model of the Superior Olivary Complex 99

Arbiter

MuxEncoder

FIFO

AER out 
interface

...

...

16

16 16 16

m log2(m)

16

16

Data 
available 

signal 
from local 
monitors

REQ

DATA

ACK

Sinlge spike line Control line Data bus

0

1

m-1

r

w

data_in

no_empty

data_out

grant in o
u

t

new

0 1 m-1

sel

out

busy

data_in

new

Masked events from ITD networks

FIGURE 4.17: Block diagram of the MSO global events monitor.

neurons. This means that for a more complex MSO model, an FPGA with much
more resources would be needed, taking also into account that there should be at
least 50% of the resources available for the NAS model.

TABLE 4.5: Hardware resources utilization of the MSO model with a global
detection time of 700 µs, 10 ITD networks and 16 coincidence detection

neurons per ITD network for the Artix-7 FPGA chip.

Module name Slice Registers Used
/ Available

Slice LUTs Used /
Available

Left AVCN 20/94400 (0.02%) 0/47200 (0.0%)
Right AVCN 20/94400 (0.02%) 0/47200 (0.0%)
MSO 7640/94400 (8.09%) 13649/47200 (28.92%)
MSO monitor 229/94400 (0.24%) 331/47200 (0.70%)

Once again, a behavioral simulation was performed in order to validate
the implemented module. In this case, the input stimulus was not generated
manually due to its complexity. Instead, a NAS model was used for generating
an events file. Firstly, a 64-frequency channels, stereo NAS with I2S-based input
interface was generated. Then, a virtual room with a pair of microphones and a
sound source was created by using the Room Impulse Response (RIR) generator
(Habets, 2006) Python package. The room’s dimensions were 10 × 10 × 4 meters
(x, y, and z). The microphone pair (subcardioid type, oriented as the human ears,
with a separation of 0.3 meters) was placed at (5, 3, 2), and the sound source was
placed at (5, 4.5, 2). The sound velocity was set to 340 m/s, and the reverberation
time was set to 0.2 seconds. Finally, the sample frequency was set to 48000 Hz,
and a pure tone of 1000 Hz with 0.5 seconds of duration was played.

The output audio file, generated by the RIR generator tool, was then used
as input for the NAS. The NAS was deployed into the ZTEX 2.13 board



100 Chapter 4. Event-based models for the sound source localization task

along with two custom boards: a baseboard (see Appendix C.2), and an audio
input board (see Appendix C.1) for interfacing the baseboard with the computer
audio interface. The audio file was played from the computer with a 80% of
volume, and the output events were collected into an .aedat file by using the
USBAERmini2 board and jAER (Delbruck, 2007).

Next, the events file was loaded by using a Python script and pyNAVIS tool
(Dominguez-Morales et al., 2021b). After checking that all the values were correct
according to the settings, two lists were generated: one containing the addresses
and another one containing the timestamps. Those lists were used as input files
for the VHDL simulation, and the output events generated by the MSO model
were also saved as a text file with a specific format. Finally, the results files were
loaded by using pyNAVIS5, and a set of plots were generated. These plots are
shown in Fig. 4.18.

On the top left, the MSO spikegram is shown. This plot shows the raster plot,
or the raw output events, produced by the MSO module. The x-axis represents
the neurons’ IDs, the y-axis represents the time, and the z-axis represents the
NAS frequency channels, being channel 0 the one with the highest frequency and
channel 63 the one with the lowest frequency. Since the sound source was placed
in front of the microphone pair, the main activity was produced by neurons
with IDs between 6 and 10 along the simulation. However, some activity was
generated by other neurons which do not correspond to the correct localization
due to the noise added when using a real-time setup for generating the recording.

On the top right, the MSO histogram is presented. The histogram shows
the same information that the spikegram but without taking into account the
time. Instead, the total number of events generated by each neuron in each
frequency channel is shown. As it was mentioned before, the main activity was
found in the neurons placed at the middle. Nevertheless, not all the frequency
channels presented activity in those neurons. Frequency channels with a middle
frequency close to the pure tone frequency had a better response compared to
those frequency channels that have lower middle frequencies.

On the bottom left, the MSO heatmap is shown. In this plot, the same
information of the histogram is shown but just using a two dimensions color
map: the frequency channels and the neuron IDs. The number of output events
is represented by a color code, where the meaning of each color is determined by
the color bar placed on the left. In addition, the color assigned to each position
is calculated relatively to the maximum value. Therefore, this view facilitates the
identification of the main activity within the MSO model and gives an idea on
how sparse was the model response to the input stimulus.

Finally, on the bottom right, the position estimation extracted from the MSO
output is plotted. For generating this plot, a software version of the coincidence

5The functionalities needed for loading, verifying, postprocessing and plotting the MSO model
information were implemented as part of this thesis.



4.2. Event-based model of the Superior Olivary Complex 101

Neuron ID

0 2 4 6
8

10
12

14
16

Tim
es

tam
p (

s)

0

100000
200000

300000
400000

500000

Fr
eq

. c
ha

nn
el

0

10

20

30

40

50

60

MSO spikegram

(A) MSO spikegram.

Neuron ID

0 2 4 6 8 10 12 14 16

Freq
. c

ha
nn

el

25
26

27
28

29
30

31
32

33
34

N
o.

 o
f s

pi
ke

s

0

50

100

150

200

MSO histogram

(B) MSO histogram.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neuron ID

25

26

27

28

29

30

31

32

33

34

Fr
eq

. c
ha

nn
el

3.0 4.0 0.0 0.0 0.0 2.0 47.0 226.0 197.0 54.0 7.0 2.0 3.0 0.0 0.0 1.0

3.0 3.0 5.0 0.0 3.0 5.0 59.0 222.0 182.0 82.0 7.0 3.0 2.0 0.0 2.0 4.0

7.0 1.0 6.0 2.0 4.0 18.0 80.0 178.0 115.0 82.0 28.0 12.0 3.0 1.0 2.0 6.0

10.0 6.0 1.0 3.0 14.0 33.0 68.0 98.0 81.0 80.0 33.0 16.0 7.0 3.0 6.0 6.0

10.0 7.0 7.0 7.0 8.0 8.0 20.0 22.0 13.0 21.0 11.0 7.0 5.0 8.0 4.0 11.0

8.0 11.0 9.0 8.0 12.0 9.0 11.0 10.0 10.0 14.0 11.0 13.0 12.0 7.0 9.0 13.0

13.0 5.0 6.0 15.0 5.0 9.0 10.0 12.0 4.0 10.0 8.0 3.0 12.0 6.0 10.0 6.0

5.0 2.0 10.0 10.0 0.0 9.0 8.0 13.0 5.0 14.0 9.0 4.0 7.0 6.0 10.0 4.0

5.0 6.0 6.0 3.0 1.0 14.0 6.0 11.0 2.0 3.0 12.0 4.0 5.0 10.0 1.0 8.0

3.0 6.0 4.0 3.0 1.0 4.0 5.0 14.0 6.0 2.0 3.0 3.0 8.0 6.0 4.0 5.0

MSO heatmap

0

50

100

150

200

N
o. of spikes

(C) MSO heatmap.

0 10 20 30 40 50
Bin (10000 s width)

84

73

61

50

39

28

16

5

5

16

28

39

50

61

73

84

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(D) MSO localization estimation.

FIGURE 4.18: Results from a behavioral simulation of a MSO model when
using a 1000 Hz pure tone, placed in front of the reference, with a distance

of 1.5 meters. The plots were generated using pyNAVIS.

counters from the Jeffress model was used. First, a time bin is defined for
integrating the events of each coincidence detector neuron. Then, the events are
counted, and the neuron with the maximum fired events is selected as the winner.
Finally, the ID of the winner neuron is converted to an angle, being this angle the
estimated position of the sound source in the horizontal plane with respect to the
microphone pair, as shown in Equation 4.3. The value of max_angle_accuracy can
be obtained according to Equation 4.4, and it directly depends on the model’s
architecture.

estimated_angle = max_angle_accuracy × neuron_ID (4.3)



102 Chapter 4. Event-based models for the sound source localization task

In this case, it can be seen that the position of the sound source was estimated
in a range of ±5 degrees with respect to the reference, which is in front of it. Since
there was an even number of coincidence detector neurons, the winner neuron
was oscillating between two consecutive positions. The big oscillations observed
at the end of the plot correspond to the end of the input stimulus, where the MSO
model did not receive any sound, thus producing a random output due to the
existing background noise.

The accuracy of the model directly depends on the number of coincidence
detector neurons and it could be measured from this plot. However, the accuracy
also depends on many other factors, such as the room shape and its dimensions,
the room’s reverberation, the input sound, the distance between microphones
and the sound source, etc. Therefore, the accuracy study can be considered
application-specific measurements, thus not being carried out in this experiment.

This process was not integrated along with the MSO model since the time bin
depends on the final application, thus needing to be configured or even adapted
in real time. In addition, most of the times the MSO events will be sent to a
neuromorphic computing platform, like SpiNNaker, for further processing like
sensory integration, multiple sound sources localization, or auditory attention.
Nevertheless, the coincidence counter module was implemented and tested using
VHDL for future works.

4.2.3 Lateral Superior Olive

According to the block diagram showed in Fig. 4.2, the next nucleus to be
implemented would be the LSO for the ILD extraction. A reduced event-
based model of the LSO was already implemented by Cerezuela-Escudero et
al. in (Cerezuela-Escudero et al., 2018). In that work, the SHF model was used
and combined in groups of four to create a new module: the spike firing rate
subtractor. This module is able to produce a spike stream whose firing rate is
proportional to the rate difference of two input spike streams. Therefore, the ILD
is encoded in the output spike rate. Details about the implementation can be also
found in (Jiménez Fernández, 2010).

The basic module has four inputs: two of them are for the spikes coming
from the left cochlea (positive and negative spikes), being considered as the
excitatory input; and the other two inputs are for the spikes coming from the
right cochlea, being considered as the inhibitory input. Since the NAS model
already implements positive and negative spikes, a model of the Medial Nucleus
of the Trapezoid Body (MNTB) nucleus was not needed.

Therefore, according to the design strategy used for the implementation of
the MSO module, the LSO module would be implemented for automatically
generating a set of SHF modules. The number of ILD extraction units would
be equal to the number of frequency channels specified in the generic parameter



4.2. Event-based model of the Superior Olivary Complex 103

NUM_FREQ_CHANNELS that indicates the number of frequency channels from
which the ILD will be extracted. In addition, the module would also have
two generic parameters for indicating both the first and last frequency channel
addresses (START_FREQ_CH and END_FREQ_CH). Finally, the number of input
signals would be four times the value of NUM_FREQ_CHANNELS since, for each
ILD extraction unit, two inputs from the left cochlea and two inputs from the right
cochlea are needed. The number of output signals would be twice the value of
NUM_FREQ_CHANNELS since, for each ILD extraction unit, both positive and
negative output signals are available.

FIGURE 4.19: ILD (encoded as an event-rate) measured over time obtained
from the input data that generates the left and right NAS when the sound
source is placed at 45° from the head. Figure taken from (Cerezuela-

Escudero et al., 2018).

Fig. 4.19 shows an example of the LSO model response. A sound was played
with an angle of 45 degrees with respect to the head. As it can be seen, the output
firing rate of input A was higher than the output firing rate of input B since the
sound source was placed closer to the input A, thus receiving the sound earlier
and with more power than to the input B. In fact, the event rate of input A is
2.5 × 104events/sec, while the event rate of input B is 2 × 104events/sec, thus
obtaining an estimated ILD of 0.5 × 104events/sec.

According to the biological principles described in Chapter 1, the ILD
works better with high frequency sounds. The ILD estimation can be used for
performing the sound source localization tasks, but it is also used for helping
the MSO to better determine the position of the sound source by correcting the
ambiguity that the high frequency sounds produce at the MSO (Dávila-Chacón
et al., 2018).

Nevertheless, the latest research about the LSO and the ILD extraction
suggests that the LSO’s neurons are temporal differentiators rather than
integrators (Franken et al., 2018), meaning that those neurons not only take into



104 Chapter 4. Event-based models for the sound source localization task

account the firing rate but also the precise timing of the input stimuli, thus acting
similar to the MSO. Therefore, further research on this aspect is needed for
implementing a reliable model of the LSO.

In this thesis, new implementations of the LSO model were not carried out.
Instead, the model proposed by Cerezuela-Escudero et al. will be used in the
future as part of the SOC model proposed in this thesis. As it was mentioned
before, the combination of the MSO and LSO outputs will be performed by
a neuromorphic computing platform such as SpiNNaker or Loihi due to the
complexity of the SNN model for implementing the Inferior Colliculus (IC),
which is the nucleus where this process is carried out.

4.2.4 Implementing the Superior Olivary Complex

The next design step was the implementation of the SOC module. It was
implemented by using the modules detailed in previous sections. Therefore, the
proposed SOC module was composed by two AVCN modules, a MSO module
with an events monitor, the LSO module also with an events monitor, a Read
Only Memory (ROM) memory for storing the configuration parameters, and an
AER merger module for collecting AER events that come from both monitors and
send them out through a single AER output interface. The block diagram of the
proposed model is depicted in Fig. 4.20.

As input, the SOC module receives the raw output spikes from the NAS
frequency channels. The frequency channel addresses, as well as the number
of frequency channels, are defined by the configuration parameters stored in the
ROM memory, which were already described in previous sections. As output, the
module has an AER interface for sending the events either to an another module
or to an external device. Internally, the AER merger receives the AER events
from both the MSO and LSO monitors, and it works as an AER-based arbiter.
More details about this module can be found in (Rios-Navarro et al., 2016).

With this SOC module, both binaural cues can be extracted in parallel from
the same input data. In addition, each submodule inside the SOC module
can be adapted according to the application due to the hierarchical design
strategy followed during the whole implementation process. It will facilitate
the implementation of new features without the need of modifying input/output
interfaces, as well as to disable unused modules for saving both power and FPGA
resources.

4.2.5 Integrating NAS and SOC: The Neuromorphic Auditory
Complex

Finally, the integration of the SOC module with the NAS module was carried
out. Similar to the implementation of the SOC module described in Section 4.2.4,
and taking into account the block diagram shown in Fig. 4.2, three modules



4.2. Event-based model of the Superior Olivary Complex 105

Events monitor

NSOC

Medial Superior 
Olive (MSO)

Lateral Superior 
Olive (LSO)

AER 
Merger

NAS left 
spikes

data req ack datareqack

16

n_reset

clock

ack req data

16 16

spike bus

single data

data bus

seq.

Events monitor

ROM

NAS right 
spikes

NAS left 
spikes

NAS right 
spikes

AVCN AVCN

FIGURE 4.20: Block diagram of the proposed SOC module.

were instantiated within a top module, called Neuromorphic Auditory Complex
(NAC). Fig. 4.21 shows the block diagram of the NAC module.

Firstly, a stereo NAS model was added. The stereo NAS takes the role of
both cochleas. As it was already explained, the NAS configuration is carried
out when it is generated by OpenNAS tool (see Section 3.2). Therefore, no
memories are needed for storing the configuration values. Secondly, the SOC
module was added. As it was mentioned before, only the MSO module was
implemented, although the whole system was already prepared for having both
the MSO and the LSO models. Lastly, the AER merger module was added for
collecting the output events from both previous modules and sending them out
to either another module or an external device.

The NAC module can have two different input interfaces, like the NAS.
These interfaces are 1) I2S-based interface and 2) PDM microphones. The I2S
interface was selected by default since it allows to connect the ZTEX 2.13 FPGA-
based board with the computer through an audio cable for playing sounds. The
NAC only has one output interface: the AER interface. No other interfaces were
implemented since most of the neuromorphic computing systems use this AER
interface as standard for communicating with neuromorphic sensors. Therefore,
the NAC could be interfaced directly with SpiNNaker 6 and with Loihi.

6The communication with the SpiNNaker board is carried out through a custom Verilog module
implemented by the SpiNNaker team. A modified version of this module for supporting the NAC
output package format can be found in https://github.com/dgutierrezATC/NAS_SpiNNaker_
interface.

https://github.com/dgutierrezATC/NAS_SpiNNaker_interface
https://github.com/dgutierrezATC/NAS_SpiNNaker_interface


106 Chapter 4. Event-based models for the sound source localization task

NAC

Neuromorphic 
Auditory Sensor 
(NAS)

Neuromorphic 
Superior Olivary 
Complex (NSOC)

AER 
Merger

I2S_sd

I2S_sck

I2S_ws

n

n

data req ack datareqack

16n_reset

clock

ack req data

16 16

L

R

spike bus

single data

data bus

seq.

NAS

NSOC

AER out

NAS output

FIGURE 4.21: Block diagram for the integration between the NAS model
and the SOC model.

As it can be seen in Fig. 4.21, the NAS’s output is sent to both the SOC
module and the AER merger module in a different way. NAS’s raw output
events, that corresponds to the Spike-based Band-Pass Filter (SBPF)’s output, are
sent to the SOC module, while NAS’s AER events are sent to the AER merger.
Furthermore, SOC’s output events are also sent to the AER merger. The format
of the AER event package is shared by both modules, and it is shown in Fig. 4.22.

015

Pol

114 10 9 8 7 6 5 4 3 213 12 11

AM XSO Neuron ID L/R Frequency channel

1 bit 1 bit 5 bits 1 bit 1 bit7 bits

AER event format for NAS-SOC model

FIGURE 4.22: Event package format.

This format was designed based on the NAS original AER event format7

in order to maintain the compatibility with the already existing NAS-based
applications. Each package contains 16 bits of information organized in 6
different fields, which are described next:

• Bit 15: auditory model ID (AM). This bit is used for identifying if the event
was produced either by the NAS module (’0’) or by the SOC module (’1’).

• Bit 14: SOC model ID (XSO). This bit is used for identifying if the event was
produced either by the MSO model (’0’) or by the LSO model (’1’) within
the SOC module. This bit is taken into account only if the AM bit is set to
’1’.

7See https://github.com/jpdominguez/NAVIS-Tool/wiki/Software-architecture for more
information about the NAS AER events format.

https://github.com/jpdominguez/NAVIS-Tool/wiki/Software-architecture


4.2. Event-based model of the Superior Olivary Complex 107

• Bits 13 to 9: neuron ID (NID). This 5 bits are used for identifying the neuron
ID that produced the event either from the MSO or the LSO. Therefore, a
maximum of 32 neurons for each frequency channel is allowed. These bits
are taken into account only if the AM bit is set to ’1’.

• Bit 8: left/right cochlea (L/R). This bit is used for indicating if the event was
produced by either the left or the right NAS. This bit is taken into account
only if the AM bit is set to ’0’ since only the NAS module was configured as
stereo.

• Bits 7 to 1: frequency channel (FCH). This 7 bits are used for identifying the
NAS frequency channel from which the event was produced. Therefore, a
maximum of 128 frequency channels can be identified. This value is used
for all the submodules. For the NAS module, it indicates the SBPF that
produced an output event. For the SOC module, it indicates the frequency
channel associated to the neuron that produced the event.

• Bit 0: event polarity (POL). This bit is used for indicating if the output event
is positive (’0’) or negative (’1’). This bit is taken into account if the AM bit is
set to ’1’ or if the ’AM’ bit is set to ’0’ and the XSO bit is set to ’1’, that means
that either the event was produced by the NAS or by the LSO modules.

For the final analysis, an FPGA resources consumption report of the NAC
module was generated for the Artix-7 FPGA chip. A 64-frequency-channel,
cascade, stereo NAS was generated using OpenNAS. The input interface was the
I2S protocol, and the output interface was the AER protocol. In addition, a SOC
model was created. It consisted of a MSO model with a global detection time of
700 µs, 10 frequency channels (channels’ addresses from 25 to 34), 16 neurons for
each channel, and 5 µs of overlapping between neurons. On the contrary, no LSO
module was added for this analysis. Results were collected in Table 4.6.

TABLE 4.6: Hardware resources utilization of the NAC module for the
Artix-7 FPGA chip.

Module name Slice Registers Used /
Available

Slice LUTs Used /
Available

NAS 20278/94400 (21.48%) 32547/47200 (68.96%)
SOC 7909/94400 (8.38%) 13978/47200 (29.61%)
AER merger 8/94400 (<0.01%) 24/47200 (0.05%)
Total 28195/94400 (29.87%) 46546/47200 (98.61%)

As it was discussed before, the SOC module (containing only the MSO
model) requires almost one third of the available FPGA’s slice LUTs, while the
NAS modules requires more than two thirds of the FPGA’s slice LUTs. Therefore,
there is no more resources available in this FPGA chip for implementing any other
module, as the LSO module. In addition, it is not possible neither to improve the



108 Chapter 4. Event-based models for the sound source localization task

MSO module by adding either more ITD detection networks or more neurons per
ITD detection network in this FPGA.

The project was then generated for the XC7K480T FPGA chip (Kintex-7),
obtaining a global slice LUTs utilization of 15.59% and 4.72% of slice registers.
Analyzed by module, the NAS needed 10.91% of the available slice LUTs and
3.40% of the slice registers, while the SOC module required 4.68% of the slice
LUTs and 1.32% of the slice registers. Consequently, the Kintex-7 family would
be needed for implementing more complex models (i.e., with more neurons or
frequency channels) or more complete models, including the LSO module.

4.2.6 Analysis and results

Differently to the previous modules that were analyzed and characterized by
behavioral simulations, the integration of the SOC module with the NAS was
directly analyzed by means of real-time experiments. Among other reasons, one
of the main drawbacks is the time needed for completing the simulation, which
could be a couple of hours just for one audio file of 0.5 seconds. Taking into
account a dataset composed by more than 300 audio files, the simulation process
will take too long just for one model configuration, meaning that this option is
not viable.

Another disadvantage is the lack of realism when a system is being
characterized in simulation. The absence of random noise, introduced by
different sources, implies that the model’s response is almost perfect. However,
that situation does not match with the reality, where the noise plays a key role
when working with audio and sound source localization. Therefore, real-time
experiments were carried out for characterizing the NAC module by analyzing
the module’s output in three different aspects: the model configuration, the
frequency of the input stimulus, and the distance between the sound source and
the microphone pair.

As it was already depicted in Section 4.2.2.5, a virtual room with a pair of
microphones was created by using the RIR generator (Habets, 2006). The room’s
dimensions were again 10 × 10 × 4 meters (x, y, and z). The microphone pair
(subcardioid type, oriented as the human ears) was placed at (5, 3, 2). The sound
velocity was set to 340 m/s, the reverberation time was set to 0.2 seconds, and the
sample frequency was set to 48000 Hz.

For this analysis, multiple pure tones from multiple locations and different
distances were generated, thus obtaining a test dataset that was used for the
analysis of the model. Three different distances were established: 0.5 meters,
1.0 meters, and 1.5 meters. For each distance, nine positions were defined in
a semicircular shape between -90 degrees (completely on the left) to 90 degrees
(completely on the right), using as reference the microphone pair, as shown in Fig.
4.23. Then, for each distance and for each position, a set of ten pure tones were



4.2. Event-based model of the Superior Olivary Complex 109

X Label

0
2

4
6

8
10

Y L
ab

el

0

2

4

6

8

10

Z 
La

be
l

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

[7.9544232590366235, 3.520944533000791, 2]
[7.598076211353316, 4.5, 2]
[6.928362829059618, 5.298133329356935, 2]
[6.026060429977006, 5.819077862357725, 2]
[5.0, 6.0, 2]
[3.973939570022994, 5.819077862357725, 2]
[3.071637170940382, 5.298133329356935, 2]
[2.401923788646684, 4.5, 2]
[2.045576740963376, 3.5209445330007907, 2]

FIGURE 4.23: Virtual room created for testing the NAC. Diamond shape
indicates the microphones pair, where blue diamond correspond to the
left microphone and red diamond correspond to the right microphone.
Therefore, sound sources are placed in front of the microphones pair. The

sound source 0 is the one placed completely on the right.

played: 250 Hz, 500 Hz, 750 Hz, 1000 Hz, 1250 Hz, 1500 Hz, 1750 Hz, 2000 Hz,
2250 Hz, and 2500 Hz. The RIR obtained for each pure tone was then convolved
and converted to audio files with .wav extension for being later played with a
Matlab script. With it, the whole dataset can be played automatically, and the
individual response can be saved as an .aedat file for the analysis8.

Two different NAC configurations were used, where the NAS model was
the same and the MSO module within the SOC module was modified. In the
first configuration, 10 ITD detection networks, connected to frequency channels
from the 25th to the 34th, were used, with 16 coincidence detector neurons for
each network. In the second configuration, 4 ITD detection networks, connected
to frequency channels from the 25th to the 29th, were used, with 32 coincidence
detector neurons for each network. In both cases, the global detection time was
set to 700 µs, with an overlapping time of 10 µs.

Two different NAC configurations were used, where the NAS model was

8The virtual room generation, as well as the Matlab scripts for this analysis can be
found in https://github.com/dgutierrezATC/nssoc/tree/master/nssoc/Examples/NAS_SSOC/
NAS_I2S_64ch_mono_12att_monitor_ztex/realtest.

https://github.com/dgutierrezATC/nssoc/tree/master/nssoc/Examples/NAS_SSOC/NAS_I2S_64ch_mono_12att_monitor_ztex/realtest
https://github.com/dgutierrezATC/nssoc/tree/master/nssoc/Examples/NAS_SSOC/NAS_I2S_64ch_mono_12att_monitor_ztex/realtest


110 Chapter 4. Event-based models for the sound source localization task

the same and the MSO module within the SOC module was modified. In the
first configuration (identified as "model 1"), 4 ITD detection networks, connected
to frequency channels from the 25th to the 29th, were used, with 32 coincidence
detector neurons for each network. In the second configuration (identified as
"model 2"), 10 ITD detection networks, connected to frequency channels from
the 25th to the 34th, were used, with 16 coincidence detector neurons for each
network. In both cases, the global detection time was set to 700 µs, with an
overlapping time of 10 µs. The middle frequencies for each channel, from channel
25 to 24, were: 1366.22, 1222.49, 1093.88, 978.80, 875.82, 783.68, 701.24, 627.46,
561.45, and 502.38, respectively and expressed in Hz.

In total, 540 .aedat files were generated. Next subsections will show
some representative examples for comparing and analyzing the impact of
different models’ configurations over the three aspects already mentioned: the
configuration of the model, the frequency, and the distance. A full analysis,
taking into account all the files, was not carried out due to the high number
of samples. In addition, the analysis would depend on the final application,
the input stimuli, and the model configuration. For this reason, this qualitative
analysis was performed. Nevertheless, an individual analysis for each .aedat file
was automatically generated using pyNAVIS tool, and they are available on the
GitHub project’s repository.

4.2.6.1 How does the model affect?

One of the most important decisions before starting a new application is the
model’s configuration to be used. This decision directly depends on the
application’s nature, since the parameters of the model should match with the
application’s requirements. For example, if a high precision is needed, the
number of coincidence detector neurons for each ITD detection network should
increase, thus decreasing the number of ITD detection networks in order to
balance the FPGA resources consumption. This also implies to the model for
being more selective in the frequency range from where the ITD wants to be
extracted. On the other hand, a MSO model with fewer neurons per network
but with more networks would allow covering a wider frequency range, thus
being useful for detecting multiple sound sources in different frequencies.

In this case, the same test file was used for both models. It consisted of a pure
tone of 750 Hz, played for 0.5 seconds, placed at position 5 over 9 (i.e., in front
of the reference with an angle of 0 degrees) with a distance of 0.5 meters. Then,
for each result file, three different plots were generated: the MSO spikegram,
showing the raw output events of the model, the MSO heatmap, showing the
activity of each neuron for each network, and the MSO position estimation, which
gives an idea of the accuracy of the model. These six plots are shown in Fig. 4.24.

It can be observed in the spikegram that model 1 produces almost the same
number of spikes compared to model 2. About the events’ distribution, the



4.2. Event-based model of the Superior Olivary Complex 111

Neuron ID

0
5

10
15

20
25

30

Tim
es

tam
p (

s)

0
100000

200000
300000

400000
500000

Fr
eq

. c
ha

nn
el

0

10

20

30

40

50

60

MSO spikegram

(A) MSO spikegram from model 1.

Neuron ID

0 2 4 6
8

10
12

14
16

Tim
es

tam
p (

s)

0
100000

200000
300000

400000
500000

Fr
eq

. c
ha

nn
el

0

10

20

30

40

50

60

MSO spikegram

(B) MSO spikegram from model 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Neuron ID

25
26
27
28
29

Fr
eq

. c
ha

nn
el

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 8.055.0206.0143.057.06.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.025.062.0156.0115.097.020.05.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.019.075.0162.0122.086.016.02.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 9.044.086.0158.0101.0105.036.09.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.028.058.091.0136.081.0104.068.031.04.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MSO heatmap

0

25

50

75

100

125

150

175

200

N
o. of spikes

(C) MSO heatmap from model 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neuron ID

25

26

27

28

29

30

31

32

33

34

Fr
eq

. c
ha

nn
el

0.0 0.0 0.0 0.0 0.0 1.0 10.0 238.0 185.0 10.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 4.0 17.0 222.0 174.0 22.0 2.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 1.0 23.0 221.0 175.0 22.0 1.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.0 36.0 231.0 173.0 37.0 6.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 6.0 88.0 196.0 141.0 72.0 3.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 2.0 3.0 17.0 59.0 161.0 133.0 72.0 19.0 3.0 0.0 0.0 0.0 0.0

0.0 0.0 4.0 5.0 16.0 30.0 40.0 68.0 30.0 52.0 23.0 20.0 7.0 0.0 1.0 0.0

2.0 6.0 4.0 7.0 8.0 9.0 15.0 10.0 11.0 6.0 12.0 9.0 4.0 2.0 3.0 3.0

5.0 4.0 5.0 2.0 3.0 8.0 1.0 12.0 2.0 4.0 4.0 2.0 3.0 4.0 2.0 5.0

2.0 2.0 4.0 4.0 5.0 6.0 3.0 11.0 3.0 1.0 2.0 4.0 4.0 4.0 2.0 2.0

MSO heatmap

0

50

100

150

200

N
o. of spikes

(D) MSO heatmap from model 2.

0 10 20 30 40 50
Bin (10000 s width)

87
81
75
70
64
59
53
47
42
36
30
25
19
14

8
2
2
8

14
19
25
30
36
42
47
53
59
64
70
75
81
87

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(E) MSO localization estimation from model 1.

0 10 20 30 40 50
Bin (10000 s width)

84

73

61

50

39

28

16

5

5

16

28

39

50

61

73

84

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(F) MSO localization estimation from model 2.

FIGURE 4.24: Comparison between different configurations of the MSO.



112 Chapter 4. Event-based models for the sound source localization task

output events from model 1 are more clustered around neurons 15 and 16 (which
are the middle neurons, corresponding to the position of the sound source), while
model 2 produced a more sparse response. Those events which are far from the
main cluster could be considered as noise, and it is a direct consequence of the
model’s configuration. Therefore, it can be confirmed that the model’s accuracy
directly depends on the number of neurons, as it was expected according to the
state-of-the-art.

Furthermore, the heatmaps show almost identical global behavior,
presenting both models a cone-like response. The highest activity was found
on the peak of the cone, starting to be more sparse while decreasing the
middle frequency of the frequency channels. Finally, the sound source position
estimation shows that both models are able to determine, with the same accuracy,
the real position of the sound source. The oscillations in the estimation were
produced because the number of neurons was not an odd number, thus being
both positions considered as winners.

Summarizing, the model’s parameters have a crucial influence on its
response, and they should be chosen according to the final application. The
global response of the model would be almost the same, and the final decision
would depend on the preliminary results obtained from the first tests carried
out by the user. From that point, the model could be finely tuned to match the
application’s requirements. In our case, model 2 was selected for performing the
rest of the tests since it covers more frequency channels and, for this application,
the accuracy is not relevant.

4.2.6.2 How does the frequency affect?

As it was mentioned in Section 1.3.1.2.2, the MSO works better for low
frequencies (in the range of 300 Hz to 1200 Hz). From that frequency to higher
frequencies, the period of the sound becomes equal or lower than the coincidence
detection time, thus producing ambiguities in the coincidence detection that
can be corrected later by the LSO. This situation could be also improved
by decreasing the coincidence detection time in the ITD detection networks
associated to higher frequency channels. Frequently, the tuning process of the
model’s parameters is performed by mean of a training procedure (Liu et al.,
2013). However, since the learning process implies the development of the
learning algorithm within the system, it was not implemented in this work, and
the configuration process was carried out by hand.

To this end, two different situations were then analyzed in order to verify
the response of model 2 to this kind of situation where the frequency of the
input sound has either low or high frequency. The first analyzed case was the
NAC’s output response for a pure tone of 500 Hz, placed at position 3 over 9
(30 degrees approximately from the very right position) with a distance of 0.5
meters with respect to the reference. The second analyzed case was the NAC’s



4.2. Event-based model of the Superior Olivary Complex 113

output response for a pure tone of 1500 Hz, also placed at position 3 over 9 with a
distance of 0.5 meters with respect to the reference. The resultant plots are shown
in Fig. 4.25.

From the spikegram, it can be already observed that the model’s response to
the high frequency sound (Fig. 4.25b) does not offer any localization information
since there is not any main cluster of points. On the contrary, the spikegram of
the low frequency sound clearly shows the sound position through the model’s
response, concentrating all the produced events around neuron 3. Moreover,
the heatmaps offer a better view about the behavior of the models. For the 500
Hz pure tone, the system was able to determine that the position of the sound
source was more to the right, while for the 1500 Hz pure tone, the system was
not able to determine any region of potential localization. In fact, three different
high activity points can be identified, meaning that the ambiguity was too high,
probably because the distance between the microphones.

Taking a look at the localization estimation plots, it can be seen that the
estimation is highly precise for the case showed in Fig. 4.25e. The plot shows that
the sound source is placed at 60 degrees to the right with respect to the reference,
that matches with the expected result. The final oscillations were produced
because the noise at the end of the audio, thus it should not be taken into account.
However, if we take a look at the localization estimation for the 1500 Hz sound
case, the result is a fully oscillatory behavior without any accurate estimation.
This effect could be produced due to the distance between microphones does not
match the global coincidence detection time. Theoretically, the MSO’s response
should be acceptable with sounds up to 1500 Hz, although for this configuration
that limit was lower.

Therefore, it can be said that the frequency of the input sound is a critical
aspect to take into account for potential applications, like speaker localization or
auditory attention. The maximum accuracy of the system, expressed in degrees,
is determined just by the number of coincidence detector neurons, and it can be
described as in Equation 4.4.

maxaccuracy =
180

NUM_NEURONS
(4.4)

The accuracy is typically measured for the front side with respect to the
reference since the back side follows the same principles than the front side
but with the difference that the sound’s power is lower due to the ear’s shape.
Another factor that affects on the accuracy is the distance between the reference
and the sound source, and it will be analyzed next.



114 Chapter 4. Event-based models for the sound source localization task

Neuron ID

0 2 4 6
8

10
12

14
16

Tim
es

tam
p (

s)

0

100000
200000

300000
400000

500000

Fr
eq

. c
ha

nn
el

0

10

20

30

40

50

60

MSO spikegram

(A) Output spikegram for 500 Hz input sound.

Neuron ID

0 2 4 6
8

10
12

14
16

Tim
es

tam
p (

s)

0

100000
200000

300000
400000

500000

Fr
eq

. c
ha

nn
el

0

10

20

30

40

50

60

MSO spikegram

(B) Output spikegram for 1500 Hz input sound.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neuron ID

25

26

27

28

29

30

31

32

33

34

Fr
eq

. c
ha

nn
el

1.0 8.0 156.0 73.0 1.0 5.0 4.0 7.0 1.0 0.0 6.0 3.0 3.0 3.0 4.0 3.0

2.0 29.0 110.0 93.0 6.0 6.0 2.0 3.0 4.0 2.0 5.0 2.0 10.0 5.0 6.0 4.0

1.0 18.0 126.0 84.0 11.0 4.0 4.0 5.0 2.0 2.0 2.0 3.0 5.0 6.0 2.0 0.0

2.0 37.0 130.0 59.0 10.0 4.0 4.0 2.0 4.0 2.0 5.0 0.0 9.0 6.0 1.0 0.0

1.0 18.0 139.0 74.0 2.0 3.0 5.0 5.0 3.0 2.0 3.0 4.0 5.0 7.0 3.0 0.0

5.0 44.0 111.0 59.0 9.0 6.0 3.0 0.0 4.0 3.0 3.0 8.0 5.0 4.0 3.0 0.0

3.0 44.0 112.0 66.0 4.0 3.0 4.0 5.0 2.0 2.0 1.0 4.0 8.0 6.0 0.0 1.0

13.0 54.0 93.0 49.0 14.0 4.0 4.0 8.0 1.0 1.0 8.0 1.0 6.0 1.0 2.0 2.0

31.0 55.0 86.0 40.0 9.0 10.0 6.0 5.0 1.0 2.0 5.0 5.0 0.0 4.0 2.0 2.0

37.0 44.0 64.0 39.0 6.0 8.0 3.0 6.0 1.0 1.0 7.0 1.0 1.0 2.0 2.0 2.0

MSO heatmap

0

20

40

60

80

100

120

140

N
o. of spikes

(C) Output heatmap for 500 Hz input sound.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neuron ID

25

26

27

28

29

30

31

32

33

34

Fr
eq

. c
ha

nn
el

59.0 52.0 25.0 20.0 9.0 14.0 21.0 54.0 41.0 50.0 33.0 16.0 11.0 15.0 36.0 55.0

14.0 19.0 12.0 21.0 18.0 16.0 20.0 36.0 25.0 23.0 19.0 24.0 13.0 26.0 21.0 22.0

14.0 14.0 9.0 11.0 12.0 14.0 17.0 18.0 13.0 20.0 12.0 9.0 10.0 26.0 17.0 13.0

12.0 4.0 10.0 7.0 15.0 12.0 14.0 19.0 12.0 24.0 19.0 13.0 12.0 21.0 20.0 10.0

5.0 6.0 5.0 7.0 14.0 4.0 15.0 21.0 10.0 14.0 11.0 15.0 14.0 19.0 15.0 9.0

6.0 3.0 6.0 7.0 6.0 5.0 10.0 8.0 13.0 14.0 17.0 10.0 14.0 17.0 16.0 7.0

7.0 11.0 2.0 8.0 8.0 10.0 8.0 5.0 8.0 6.0 14.0 7.0 17.0 2.0 10.0 10.0

9.0 6.0 5.0 7.0 9.0 7.0 5.0 5.0 4.0 10.0 6.0 8.0 3.0 8.0 8.0 16.0

10.0 2.0 8.0 5.0 2.0 4.0 4.0 9.0 3.0 7.0 9.0 5.0 6.0 6.0 6.0 3.0

4.0 2.0 10.0 6.0 1.0 3.0 5.0 6.0 7.0 8.0 6.0 2.0 1.0 5.0 5.0 7.0

MSO heatmap

10

20

30

40

50

N
o. of spikes

(D) Output heatmap for 1500 Hz input sound.

0 10 20 30 40 50
Bin (10000 s width)

84

73

61

50

39

28

16

5

5

16

28

39

50

61

73

84

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(E) Localization estimation for 500 Hz input sound.

0 10 20 30 40 50
Bin (10000 s width)

84

73

61

50

39

28

16

5

5

16

28

39

50

61

73

84

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(F) Localization estimation for 1500 Hz input sound.

FIGURE 4.25: Frequency comparison using model 2.



4.2. Event-based model of the Superior Olivary Complex 115

4.2.6.3 How does the distance affect?

The distance at which a source is producing the sound is important for many
reasons. For instance, the sound wave loses some power while it is being
propagated through the air, as well as it is expanded in all the directions. Those
effects are especially notable in low-frequency sounds, thus coinciding with the
frequency range in which the MSO works better. This situation could lead to
situations in which the model becomes less accurate due to the ambiguity.

According to (Risoud et al., 2018), the ITD and ILD provide precise
localization in the azimuthal plane, with the exception of what is known as the
“cone of confusion”. For sounds coming from the circumference of this cone,
the axis of which is the interauricular line, there are no time or level differences,
leading to confusing perceptual coordinates: the subject is unable to tell whether
the sound is coming from the front or from behind, above or below, or from
anywhere else along the circumference shown in Fig. 4.26. For any sound source
with coordinates ∆, α, θ there is a mirror-image position (∆, 180,−α,−θ) with
similar ITD and ILD.

FIGURE 4.26: Concept of cone of confusion. Figure taken from (Risoud
et al., 2018).

The cone of confusion is critical when analyzing the accuracy of an
application and for tuning the localization estimation in robotics applications.
There are some metrics that measure the ambiguity or confusion, such as the
one presented by Fischer et al. in (Fischer et al., 2020). However, the concept
of accuracy could vary depending on the final application, and it should be first
defined and then measured. In addition, there are dynamic cues that can reduce
ambiguity. According to (Wallach, 1939) and (Risoud et al., 2018), by moving the
head (or, in animals, the ears) extra binaural and spectral cues are introduced,
thus enhancing localization. By leaning the head (and thus the vertical interaural



116 Chapter 4. Event-based models for the sound source localization task

axis) or turning it, the amplitude and phase of the sound waves reaching either
ear are altered, providing dynamic binaural cues. Head movements also provide
an accumulation of Head-Related Transfer Functions (HRTFs) and the creation of
multiple cone of confusions, refining localization by combining the information
and thus constraining probability of a sound source location to a small number
of possible sources.

Risoud et al. concludes in (Risoud et al., 2018) that, like for other sensory
stimuli, auditory perceptual disambiguation also involves integrating multiple
other sensory input, notably visual. Once a sound has been located as coming
from an specific area and a specific distance, visual data help fix the position.
Moreover, prior knowledge concerning the location of the sound source helps
determine its present location. It is noteworthy that images take precedence
over sounds, in the “proximity-image effect” described by Gardner in 1968
(Gardner, 1968): if some visual clue is available, the sound source will be located
accordingly, even if mistakenly.

Again, two different situations were analyzed for verifying how the cone of
confusion affects to the proposed model. For the first case, the NAC’s output
response for a pure tone of 500 Hz, placed at the position 4 over 9 (65 degrees
approximately from the very right position) with a distance of 0.5 meters with
respect to the reference was analyzed. Then, for the second case, the NAC’s
output response for the same pure tone but with a distance of 3.0 meters with
respect to the reference was analyzed. The resultant plots are shown in Fig. 4.27.

Obtained results show the effect of the cone of confusion with the increment
of the distance. Comparing both histograms, the activity of the model when
the sound source is placed at 0.5 meters is more focused on the winner neuron
(neuron 5), while the activity when the sound is placed at 3.0 meters is more
distributed over the neuron 5 and its surroundings. In fact, the heatmaps clearly
show this behavior. Heatmap associated to a closer distance between the sound
source and the reference shows that the winner neuron is the same for all the ITD
detection networks, as well as that the difference of the activity with respect to
the surrounding neurons is notably higher.

On the contrary, the heatmap associated to the other case presents a sparse
activity distribution around neurons 5 and 6, where the range of neurons with
notable activity can be established between neurons 3 and 8. Although in this case
the ambiguity is not high enough for leading the system to have a clear confusion,
it can be seen how the distance directly affects the accuracy of the estimation of
the sound source position. This way, it can be observed in Fig. 4.27e that the
localization estimation was 100% focused on neuron 5 (62 degrees with respect
to the right), without taking into account the last part of the audio. However, for
the case where the distance is 3.0 meters, the estimation presents a slightly noisy
behavior between four different positions.



4.2. Event-based model of the Superior Olivary Complex 117

Neuron ID

0 2 4 6 8 10 12 14 16

Freq
. c

ha
nn

el

25
26

27
28

29
30

31
32

33
34

N
o.

 o
f s

pi
ke

s

0
25
50
75
100
125
150

MSO histogram

(A) Histogram for a distance of 0.5 meters.

Neuron ID

0 2 4 6 8 10 12 14 16

Freq
. c

ha
nn

el

25
26

27
28

29
30

31
32

33
34

N
o.

 o
f s

pi
ke

s

0

20

40

60

80

100

MSO histogram

(B) Histogram for a distance of 3.0 meters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neuron ID

25

26

27

28

29

30

31

32

33

34

Fr
eq

. c
ha

nn
el

4.0 2.0 1.0 5.0 20.0 174.0 57.0 5.0 11.0 8.0 5.0 4.0 3.0 2.0 2.0 2.0

3.0 1.0 2.0 6.0 50.0 121.0 71.0 17.0 6.0 5.0 10.0 4.0 1.0 0.0 1.0 7.0

2.0 3.0 2.0 3.0 21.0 157.0 78.0 10.0 2.0 10.0 7.0 2.0 1.0 1.0 2.0 1.0

0.0 2.0 4.0 0.0 35.0 136.0 69.0 20.0 5.0 6.0 6.0 1.0 1.0 1.0 1.0 6.0

1.0 2.0 1.0 4.0 28.0 148.0 62.0 8.0 11.0 8.0 4.0 0.0 1.0 3.0 0.0 1.0

1.0 3.0 3.0 5.0 51.0 137.0 65.0 11.0 8.0 12.0 3.0 3.0 1.0 1.0 1.0 3.0

2.0 1.0 5.0 1.0 44.0 132.0 74.0 20.0 4.0 10.0 6.0 1.0 1.0 2.0 0.0 3.0

1.0 1.0 3.0 18.0 47.0 83.0 66.0 30.0 10.0 6.0 5.0 2.0 2.0 1.0 0.0 1.0

0.0 2.0 12.0 24.0 29.0 86.0 63.0 34.0 9.0 8.0 9.0 1.0 6.0 1.0 0.0 2.0

2.0 7.0 26.0 27.0 32.0 69.0 31.0 35.0 13.0 6.0 10.0 2.0 2.0 1.0 1.0 0.0

MSO heatmap

0

20

40

60

80

100

120

140

160

N
o. of spikes

(C) Heatmap for a distance of 0.5 meters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neuron ID

25

26

27

28

29

30

31

32

33

34

Fr
eq

. c
ha

nn
el

0.0 1.0 5.0 13.0 50.0 85.0 87.0 39.0 20.0 5.0 3.0 2.0 0.0 1.0 0.0 0.0

1.0 2.0 4.0 12.0 49.0 86.0 62.0 36.0 12.0 9.0 4.0 1.0 3.0 2.0 0.0 0.0

0.0 1.0 1.0 10.0 45.0 81.0 79.0 38.0 14.0 6.0 2.0 1.0 0.0 1.0 0.0 0.0

1.0 1.0 1.0 15.0 32.0 97.0 90.0 29.0 13.0 8.0 1.0 0.0 1.0 1.0 0.0 0.0

1.0 0.0 1.0 8.0 42.0 80.0 100.0 45.0 12.0 11.0 2.0 2.0 1.0 0.0 0.0 0.0

0.0 1.0 2.0 8.0 51.0 95.0 60.0 53.0 15.0 10.0 4.0 1.0 1.0 0.0 0.0 0.0

0.0 1.0 2.0 12.0 51.0 94.0 68.0 48.0 12.0 9.0 6.0 1.0 2.0 0.0 0.0 0.0

1.0 1.0 5.0 22.0 36.0 66.0 74.0 44.0 15.0 12.0 4.0 3.0 0.0 1.0 0.0 1.0

3.0 2.0 10.0 24.0 31.0 74.0 38.0 53.0 15.0 15.0 9.0 2.0 0.0 2.0 1.0 0.0

9.0 3.0 20.0 18.0 24.0 42.0 23.0 32.0 19.0 17.0 14.0 5.0 3.0 2.0 1.0 1.0

MSO heatmap

0

20

40

60

80

100

N
o. of spikes

(D) Heatmap for a distance of 3.0 meters.

0 10 20 30 40 50
Bin (10000 s width)

84

73

61

50

39

28

16

5

5

16

28

39

50

61

73

84

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(E) Localization estimation for a distance of 0.5 meters.

0 10 20 30 40 50 60
Bin (10000 s width)

84

73

61

50

39

28

16

5

5

16

28

39

50

61

73

84

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(F) Localization estimation for a distance of 3.0 meters.

FIGURE 4.27: Effect of the cone of confusion for model 2.



118 Chapter 4. Event-based models for the sound source localization task

TABLE 4.7: Comparison of the SOC model implementations.

Paper reference Model/s Platform Configuration Real-time
(Lazzaro and
Mead, 1989b)

MSO ASIC Manually No

(Liu et al., 2013) MSO Software Manually No
(Glackin et al.,
2010)

MSO FPGA STDP Yes

(Dávila-Chacón
et al., 2018)

MSO, LSO,
IC

Software Bayesian
inference

Yes

This work MSO FPGA Manually Yes

Applied to a robotic platform, this oscillatory behavior could drive a
situation in which the oscillation amplitude increases over time with the robot
movement, thus finally producing a failure. As it was mentioned before, this
problem could be solved by integrating visual information for improving the final
estimation and reducing the oscillation. In addition, the localization estimation
is not fully performed in the MSO, but it is complemented in the Inferior
Colliculus (IC), where a final sound source localization is performed. After
that, this auditory information is sent to the Superior Colliculus (SC), where the
information is combined with the visual information for taking the final decision.
This whole process, although it is complex, would be desired in human-robot
interaction applications for improving the user’s experience.

4.2.7 Conclusion

In this section, an event-based model of the Superior Olivary Complex (SOC)
for performing sound source localization tasks has been presented. This model
is part of the development of a completely digital, event-based neuromorphic
hearing sense, starting with the NAS and ending with the auditory cortex.
By following the same strategy as used in the NAS design, in which spike
building blocks (Jimenez-Fernandez et al., 2010) were used, the model was able
to successfully extract the ITD from the input stimuli.

In addition, the model was integrated with the NAS, and a set of real-time
experiments were carried out for validating the proposed implementation. Table
4.7 compare this work with the works used as reference. Some features, like the
implemented models, if it was implemented either in software or hardware, as
well as if the model’s parameters are tuned by hand or by applying some learning
techniques, were qualitatively compared.

Results obtained from the experiments showed that the model implements
the features described in Section 1.3.1.2 and in Section 4.1, like the effect of the
distance and the effect of the frequency in the MSO model. Further analysis are
required for measuring the accuracy of the model, although preliminary results



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 119

indicates the system is able to determine the position of the sound source very
precisely with an error of a few degrees.

The angular resolution of the model could be improved after integrating the
output information of the MSO model with the output information of the LSO
model. By combining those modules’ outputs with a biologically-inspired model
of the IC, this sound source localization system could be used for solving complex
situations, like auditory attention tasks when multiple sound sources are present
(Chou et al., 2019). Finally, the NAC model is suitable to be integrated in many
robotic platforms due to its VHDL-based nature, thus allowing it fast integration
within any FPGA-based board 9.

4.3 Alternatives to the Jeffress model: The Time
Difference Encoder

A recently proposed model which computes temporal dependencies in SNNs is
the spiking Elementary Motion Detector (sEMD) (Milde et al., 2018). In that work,
the sEMD model consisted of two parts: an event-based vision sensor as input
and the TDE as sensory pre-processing unit. The TDE unit translates the time
difference between two events into a burst of output spikes. Both the number of
output spikes and the duration of the burst produced by the model directly reflect
the temporal correlation of two input signals, and it is inversely proportional
to the time difference. Milde et al. developed an analog Complementary
Metal-Oxide-Semiconductor (CMOS) implementation of the TDE, characterized
its performances on silicon and applied it to the encoding of Optical Flow (OF).
The TDE model has already been used for processing visual (Schoepe et al., 2019),
auditory and olfactory information. Its universal applicability has great potential
for inspiring innovative pre-processing for SNNs, especially supporting close-
loop neuromorphic systems with low latency requirements.

This wide range of possible applications poses a challenge in terms of time
resolution and scalability. Time resolution in analog circuits is constrained by
the size of the capacitors. Therefore, for high time constants applications, large
capacitors would be needed. Furthermore, mismatch problems and parameter
setting difficulties may appear due to the analog nature of the implementation. In
this section, a generic, event-based digital implementation of the Time Difference
Encoder (TDE) model is presented. Its time resolution is configurable by means
of a clock divider, covering a time range from nanoseconds to seconds (Gutierrez-
Galan et al., 2021a).

Moreover, the model can be deployed on FPGA-based platforms. This
computational platform suits the integration of SNNs very well due to its

9A live demo video of this model running in real-time on a robotic platform can be found in https:
//youtu.be/v56lpGJEkA4

https://youtu.be/v56lpGJEkA4
https://youtu.be/v56lpGJEkA4


120 Chapter 4. Event-based models for the sound source localization task

highly-parallel, low-latency nature. This TDE implementation facilitates the
development of complex and reconfigurable neuromorphic networks receiving
input from event-based sensors, such as bio-inspired retinas (Lichtsteiner et al.,
2008) and cochleas (Yang et al., 2016; Jimenez-Fernandez et al., 2017; Liu et al.,
2010b; Chan et al., 2007). Finally, the TDE’s performance was evaluated in
simulation by characterizing its response to synthetic input stimuli and also to
real world recordings from a Neuromorphic Auditory Sensor (NAS).

Summarizing, the main contributions include the digital TDE model
implementation as an alternative of the analog version for event-based, real-
time neuromorphic applications with different time constants. To the best of
our knowledge, this is the first digital implementation of the TDE model. In
addition, the model was fully characterized both in simulation and in an FPGA-
based board. A power consumption of 1 mW was measured for a single neuron,
and up to 400 units could be deployed in a low-cost FPGA chip. Finally, a proof-
of-concept of a sound source lateralization task using the proposed model, where
the events were received in real time from a neuromorphic auditory sensor, is
presented, providing a new alternative to the state-of-the-art of sound source
localization systems. The project is open-source, and the project’s repository can
be found on GitHub: https://github.com/dgutierrezATC/TDE_vhdl.

4.3.1 The Time Difference Encoder model

The TDE model (Milde et al., 2018) translates the temporal difference between
two input events into a short burst of output digital pulses. It comprises two
inputs: the facilitatory pulse (faci) and the trigger synapse (trig), as well as one
spiking output shown in Fig. 4.28a. When an event arrives at the facilitatory
input, an exponentially decaying facilitatory variable is generated, called gain. If
an event enters the trigger synapse shortly after (i.e., small time difference ∆t),
as in Fig. 4.28b, an Excitatory Post-Synaptic Current (EPSC) is produced. In this
process, the amplitude of the EPSC depends proportionally on the facilitatory
variable value i.e., on the gain factor. Therefore, the EPSC’s amplitude decreases
with increasing time difference (see Equation 4.5).

The trigger synapse projects onto a LIF neuron which integrates the
postsynaptic currents in its Membrane Potential (Vmem) (see Equation 4.6). Every
time Vmem reaches the spiking threshold τspike, a digital output pulse is released.
The number of spikes generated is antiproportional to the time difference
between the two input spikes (see Fig. 4.28 e). When the time difference between
the facilitatory and the trigger pulses is long, the gain value at the time of arrival
of the trigger signal is not high enough to generate an EPSC. Thus, no spikes
are generated. In case of a negative time difference (an event arrives first at the
trigger synapse and then at the facilitatory input, as in Fig. 4.28d, with no output
spikes being produced. Therefore, the TDE is direction-selective.

https://github.com/dgutierrezATC/TDE_vhdl


4.3. Alternatives to the Jeffress model: The Time Difference Encoder 121

Ie2 = Ie2 + (we2 × Ie1) (4.5)

FIGURE 4.28: Theoretical behavior representation of theTDE model based
on the model proposed by Milde et al.(Milde et al., 2018). a) TDE schematic
with facilitatory (fac) and trigger (trig) input and spiking output. b) Case
one: A small positive time difference between facilitatory and trigger
spikes leads to a high number of output spikes (out). c) Case two: large
positive time difference leads to no output spikes. d) Case three: A negative
time difference leads to no output spikes. e) Number of TDE output spikes
in dependency of time difference ∆t between two input events (gain: gain
factor, epsc: exponential postsynaptic current, mem: membrane potential).

dV
dt

=
1

Cm
×
(

Ie − (Ilk − Ii)×
(

1 − e
−V
Ut

))
(4.6)

As was introduced in section 4.3, both the number of spikes within the burst
and the burst duration depend on the time difference between the input pulses.
The detection time range of the analog CMOS TDE implementation ranges from
10 nanoseconds up to hundreds of milliseconds, according to (Milde et al., 2018).
This range can be tuned by adjusting the LIF neuron’s parameters in order
to detect the timing differences more precisely in an accurate spectrum, thus
obtaining different TDE response profiles. Those profiles are known as tuning



122 Chapter 4. Event-based models for the sound source localization task

curves, which represent the neuron responses against the time difference between
the facilitatory and the trigger input pulses.

Furthermore, a nonlinear behavior of the tuning curves was expected to
be obtained from the analog CMOS TDE implementation due to the transistors;
however, a linear profile was observed. Milde et al. highlighted in (Milde et al.,
2018) that the nonlinear response was manifested at the population response
level, as well as in the temporal evolution of the ISI distribution within a burst.
This feature was taken into account for the digital model design proposed in
this work, since it determines the way in which the temporal modules are
implemented.

4.3.2 Time Difference Encoder model implementation

The proposed architecture is shown in Fig. 4.29. There are two event-based
inputs: the facilitatory input ("facilitatory") and the trigger input ("trigger"). In
addition, four configuration signals are available to set the model’s parameters:
the facilitatory weight, called "detection_time", which defines the maximum time
difference that the model is able to encode, i.e., the time during which the gain
value is non zero; the gain factor that influences the trigger synaptic weight
("tau"); the gain factor that influences the spike generation process ("weight");
and the decay time factor (decay) of the EPSC signal value. As output, there
is a single event-based signal ("spike"), which is the spike fired by the encoder.
Beyond those signals, the system is governed by the system clock signal ("clock").

Both control and event-based signals have 1-bit width. Internal data lines,
as well as the "detection_time" signal, have n-bit width, with n being a generic
parameter of the model denoted by "NBITS". The rest of the data lines have
m-bit width, with m being also a generic parameter of the model denoted by
"LOG2NBITS", which represents the result of the log2 NBITS. By default, the
"NBITS" value is set to 16, thus "LOG2NBITS" is set to 4. Data width plays a key
role in the model behavior, since it defines the timing resolution and affects the
output response due to the implementation details of the spike generator module.

By following the schematic presented by Moritz et al. (Milde et al., 2018),
the proposed architecture was divided into three computational blocks: the gain
generation, the EPSC generation, and the spike generation, shown in Fig. 4.29
in red, blue, and green, respectively. A phenomenological design strategy was
followed to implement the digital TDE model, in order to avoid the computation
of differential equations. Therefore, no floating point operations were employed.
Instead, integer values were used. This approach was successfully adopted in
Frenkel et al. (Frenkel et al., 2017), where linear operations were performed, thus
reducing both the hardware cost and the model complexity.



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 123

timer_0 shift_1

sh
ift_0

timer_1 shift_2

spikes_
generator_0

add_0
(A+B)

sub_0
(A-B)

reg_0

latch

cmp_0

ZERO

cmp_1
reg_1

latch

i_clock i_tr_tick i_nreseti_decay

o_spike

i_trigger

i_facilitatory

i_tau

i_detection_time i_weight

spike
control
data

seq.

comb.

n m

m

m

start

d_in

d_out

d_o
u
t

d
_
in

d_o
u
t

n_pos

n_p
o
s

start

d_in

d_o
u
t

d_in

d_out

=

=

cl
ld

A

B

A

B

ld

n_pos

clear

write

d_in

clk_div

s_out

gain

epsc

out

FIGURE 4.29: Detailed block diagram of the TDE digital architecture.
It is composed of three main blocks: gain-generator block (red), EPSC-
generator block (blue) and spike-generator block (green). Synchronous
modules are indicated by squared corner blocks with a small triangle, while
asynchronous modules are indicated with rounded corner blocks. The
spike arrow is a 1-bit width signal, where events are either received as input
or sent as output. Control arrows are also 1-bit width, and they act as flags.
Finally, data arrows can be either n-bit or m-bit width, being used for the
internal communication between blocks and also for loading configuration

values.

4.3.2.1 Gain-generator block

When an event is received at the facilitatory synapse, an exponentially decaying
signal is generated (called gain). The decay time constant, as well as the input
synaptic weight, determine the maximum time in which the facilitatory synapse
current is not zero, i.e., the maximum time difference that the TDE is able to
detect. Additionally, if more than one event arrive at the facilitatory input
consecutively while the gain is higher than zero, the resulting gain value is
the sum of the remaining gain value and the new gain value generated due
to the input event. Therefore, a feedback mechanism is needed. In order to
prevent the overflow effect, the gain block saturation level is controlled by the
GAIN_GEN_SAT parameter.

The decaying signal was implemented as a decreasing linear function by
means of a countdown timer with pre-load value (represented by the timer_0
module in Fig. 4.29). The pre-load value establishes the initial configuration of
the timer, i.e., the amount of time that the timer is activated. Thus, this temporal
window restricts the maximum time difference that the model is able to encode.
The input signal "detection_time" sets that value, and it can be updated in real-
time.



124 Chapter 4. Event-based models for the sound source localization task

The feedback feature is achieved by internally appending an adder to
the timer, where its inputs are the timer’s output and the aforementioned
"detection_time" signal value, and the output is the timer’s load value. Therefore,
for each rising edge of the time reference signal "tr_tick", the timer_0 module is
updated according to Equation 4.7.

timer_0[k] =


timer_0[k − 1] + d_t if f aci == 1
GAIN_GEN_SAT if satu == 1
timer_0[k − 1]− 1 if timer_0[k − 1] > 0
0 otherwise

(4.7)

Where timer_0[k] is the timer’s output value at the time reference tick k, k-
1 is the previous time reference tick, d_t is the unsigned integer constant value
defined by the "detection_time" signal, faci corresponds to the "facilitatory" input
signal, and satu is a flag that is activated when the condition (timer_0[k − 1] +
d_t) >= GAIN_GEN_SAT is true.

Two clock domains were used to implement the digital TDE model. The
main clock signal, defined in Fig. 4.29 as "clock", governs the control processes of
the sequential blocks, as well as the input events detection and the output events
generation. Furthermore, a second clock signal, called "tr_tick", is provided
as time reference tick in order to allow the model to operate with different
time scales, thus achieving an operational time range between nanoseconds
and seconds. With this, the model acquires enough flexibility to be used
along with a wide set of neuromorphic sensors, which can operate at different
time resolutions. No internal clock generator was implemented. Instead, an
external configurable clock frequency divider is needed when a TDE module is
instantiated. When multiple instances of a TDE unit are present, a shared clock
frequency divider can be used rather than a single one per unit, thereby reducing
the overall hardware resources consumption and increasing the number of units
that can fit into a design.

While in the standard LIF neuron model (Gerstner et al., 2002) each synapse
outputs a postsynaptic current that integrates onto the membrane potential, the
TDE facilitatory block generates a gain factor that regulates the trigger synapse
weight. Therefore, to cover this feature in the proposed architecture, two
mechanisms were implemented. Firstly, the timer_0 output is weighted by the
input signal "tau" in such a way that the timer value is either right or left shifted
by "tau" positions. The shift operation was implemented according to the Barrel
shifter (Ito, 1989), represented by Equation 4.8.

d_out =

{
d_in ∗ 2n_pos if l_r == 0
d_in/2n_pos if l_r == 1

(4.8)



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 125

where d_out is the output value, d_in is the input data, n_pos is the number of
positions to shift the input data, and l_r is for selecting whether the signal has to
be shifted either to the left or to the right. Since this is a combinational circuit, the
output result is available at the same clock cycle, and thus sequential blocks are
not required for the synchronization. The computed value is then fed as input of
timer_1, which generates the EPSC signal, acting as the trigger synapse weight.

Secondly, timer_0’s output value is weighted by the input signal "weight"
also through a Barrel shifter module. In this case, the result influences the spike
generation process in such a way that it controls the number of spikes to be
generated and, therefore, the precision of the encoding.

The shifted value is read by the spike generator block when a trigger pulse is
detected. Based on the operating principles of the TDE model, detailed in section
4.3.1, it can be deduced that the ratio of the number of spikes to the duration
of the whole burst is proportional to the time difference between the facilitatory
input and the trigger input. For short time differences, the model will produce
many output spikes over a longer time bin, and for long time differences it will
produce less spikes but in a shorter time bin.

A register is included to store the last value used as input for the spike
generator. Thus, it can be used as feedback value to be added to the gain value,
increasing the final gain value and, therefore, increasing the output spike rate.
Equation 4.9 describes the gain feedback register, identified in Fig. 4.29 as reg_0.

reg_0 =


d_in if trigger == 1
0 if timer_0[k] == 0
reg_0 otherwise.

(4.9)

Where reg_0 is the value stored by the register, d_in is the last value loaded
on the spike generator block, trigger corresponds to the input signal "trigger", and
timer_0[k] is the timer’s output value at the time reference tick k. This register is
reset to zero when the timer_0 reaches zero, and it can also be disabled if needed.

Conceptually, it can be affirmed that the gain value influences both the
temporal aspect (through the tau factor) and the amplitude aspect (through the
weight factor) of the TDE response. Fig. 4.30 shows a response example of
the gain-generator block when both single and multiple facilitatory inputs are
provided.

4.3.2.2 EPSC-generator block

Similarly to the gain factor generation, when an incoming event is detected at
the trigger’s input by the analog implementation from (Milde et al., 2018), an
exponentially decaying signal is generated, known as Excitatory Post-Synaptic
Current (EPSC). In the field of Neuroscience, the EPSC is defined as the current



126 Chapter 4. Event-based models for the sound source localization task

faci.

0

1000

2000

ou
t (

ui
nt

) timer_0
shift_1

0 500 1000 1500 2000
time ( s)

0

1000

2000

ou
t (

ui
nt

)

add_0

Gain generator block example

FIGURE 4.30: Gain-generator block output example. First, the block
receives a single facilitatory event. Immediately after, timer_0 is loaded
with the "detection_time" signal’s value. The output value of timer_0
decreases by one unit for each time reference tick, which was set to
microseconds. Since the "weight"’s value was set to 1 (meaning that the
timer’s value is left shifted by one position), the shift_1’s output value is
twice the value of timer_0. Then, the block receives multiple facilitatory
events in order to show the accumulative behavior. add_0 plot shows the
value that is used as input for the spike-generator block. In this case, its

value matches the shift_1’s value, since no trigger event was received.

coming from an artificial synapse that integrates onto a neuron’s membrane
potential. The amplitude of the Excitatory Post-Synaptic Current (EPSC) is
proportional to the gain signal due to the influence of the facilitatory block over
the trigger synaptic weight (Milde et al., 2018). Thus, the smaller the arriving time
difference (∆t) between the facilitatory and trigger events, the higher the gain
factor and, therefore, the higher the amplitude of the trigger synaptic current.

Consequently, if a trigger pulse is detected without any previous facilitatory
pulse, no EPSC current is generated, since the gain factor is zero, as is shown in
Fig. 4.28c. Nevertheless, if a trigger pulse is detected shortly after a facilitatory
pulse (i.e., low ∆t), an EPSC current proportional to the gain signal value at
that time is generated. The generated EPSC current is high enough to generate
spikes when it is integrated onto the membrane potential, as is shown in 4.28b.
Equivalently, if a trigger pulse is detected long after the facilitatory pulse (i.e.,
large ∆t), the resulting EPSC current may not be enough to produce output
spikes, as in Fig. 4.28c.

Multiple events can arrive to the trigger synapse while the gain factor is
higher than zero, thus producing an accumulated EPSC current signal. The



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 127

resulting signal is the sum of the left over EPSC current value and the left
over weighted gain current value. Therefore, a feedback circuit is needed to
limit the output current. The feedback value tends to decrease due to the
decaying gain factor. However, a high input spike rate may saturate the EPSC
current generation. This saturation level is set by the TDE generic parameter
EPSC_GEN_SAT.

Following the same implementation principle of the gain generator block,
the EPSC decaying signal was implemented as a decreasing linear function also
by means of a countdown timer with pre-load value, identified as timer_1 in Fig.
4.29. In this case, we can affirm that the pre-load value is the remaining time
to zero of the gain-generator block timer (timer_0); i.e., the gain current signal
is zero. In order to maintain the synchronization with the gain generator block,
the timer_1 module is updated at every rising edge of the time reference signal
"tr_tick" according to Equation 4.10.

timer_1[k] =


timer_1[k − 1] + (timer_0[k − 1]

/
2tau) if trigger == 1

EPSC_GEN_SAT if satu == 1
timer_1[k − 1]− 1 if timer_1[k − 1] > 0
0 otherwise.

(4.10)

Where timer_1[k] is the timer’s output value at the time reference tick k, k-1 is
the previous time reference tick, tau is a factor to weight timer_0’s output value,
timer_0[k-1] is timer_0’s output value at the previous time reference tick, trigger
corresponds to the input signal "trigger", and satu is a flag that is activated when
the condition (timer_1[k − 1] + (timer_0[k − 1] ∗ 2tau)) >= EPSC_GEN_SAT is
true.

As was previously mentioned, the trigger timer determines the output spike
burst duration as the same way the EPSC synaptic current decay in (Milde
et al., 2018) is set by a voltage parameter. This synaptic current is injected into
the neuron that integrates the current until it generates a spike as soon as the
membrane potential rises above its threshold. Therefore, the neuron is able to
produce spikes while the EPSC signal is higher than zero. In addition, the number
of generated spikes is directly proportional to the EPSC signal duration, and thus
inversely proportional to the time difference between the facilitatory and trigger
input spikes.

In the proposed design, the value that is loaded in timer_1 (i.e., in the EPSC
generator) is called the remaining time to zero. This value influences the spike-
generator block in two similar aspects. Firstly, the spike generator block is active,
i.e., producing spikes while the EPSC value is higher than zero. Thus, it acts
as an enable signal. Moreover, the remaining time to zero is used to handle



128 Chapter 4. Event-based models for the sound source localization task

the temporal evolution of the spike-generation process in order to mimic the ISI
increment of the original analog TDE model (Milde et al., 2018) by exploiting
a feature of the Exhaustive Synthetic Spikes Generator models proposed in
(Linares-Barranco et al., 2006) and implemented in (Jimenez-Fernandez et al.,
2010) and (Gomez-Rodriguez et al., 2005).

The temporal evolution can be adjusted by the factor "decay", which weights
the timer_1’s output also by means of a Barrel shifter module identified in Fig.
4.29 as shift_2. The timer’s value decreases by one unit for each "tr_tick" rising
edge. With this factor, we can scale the decreasing speed, allowing us to obtain a
different range of values, although preserving the time bin, i.e., the activation
time of the spike generator module. Further details about the effect of this
parameter are discussed in the next section.

Due to the implementation details of the spike-generator block, the
generated EPSC signal needs to be inverted, thus obtaining an incremental signal
instead of a decreasing signal. This transformation can be achieved by storing
the reference value and periodically subtracting the original value every time it
is updated. In this case, the reference value corresponds to the pre-load value of
timer_1 when a pulse is detected at the "trigger" input, and the original value is
the timer_1’s output value. A generic register, denoted by reg_1 in Fig. 4.29, was
added to the proposed architecture, and its behavior is described by Equation
4.11.

reg_1 =

{
timer_1[k] ∗ 2decay if trigger == 1
reg_1 otherwise.

(4.11)

Where reg_1 is the value stored by the register, decay is the factor that weights
the timer_1 value, and trigger corresponds to the "trigger" input signal.

Note that the "trigger" signal is latched to let the timer load the pre-load
value and to output the correct value, which takes one clock cycle of the main
clock signal ("clock"). This latched "trigger" signal is shared by reg_1, reg_0, and
the spike_generator_0 modules to keep the synchronization and to operate with
the precise values.

The output of the subtractor module, whose output ranges from zero to
reg_1’s output value, is then used as input of the spike-generator module, which
generates spikes according to both the add_0’s output value and the sub_0’s
output value, i.e., the gain factor value and the EPSC factor value, respectively.
Fig. 4.31 shows a response example of the EPSC-generator block when both single
and multiple trigger inputs are provided after the arrival of a single facilitatory
event.



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 129

trig.

0

1000

2000

ou
t (

ui
nt

) timer_1
shift_2

0 500 1000 1500 2000
time ( s)

0

1000

2000

ou
t (

ui
nt

)

sub_0

EPSC generator block example

FIGURE 4.31: EPSC-generator block output example. First, the model is
stimulated with a single facilitatory event before the first trigger event.
Then, the current value of shift_1 is loaded in timer_1. The accumulative
effect is also shown when multiple triggers are received. The sub_0 module
generates an increasing signal, which is used as the clock divider value for

the spike generator block.

4.3.2.3 Spike-generator block

In the presence of an input facilitatory spike and an input trigger spike, a burst
of output spikes is produced by the spike generator block. As detailed in
subsections 4.3.2.1 and 4.3.2.2, both the amplitude and the duration of the burst
depend on the generated gain factor and the generated EPSC factor respectively.
In contrast to the LIF neuron, which integrates the pre-synaptic current into the
membrane and produces a spike if the membrane potential reaches a threshold,
an event-based unsigned integer-to-spikes converter was implemented based on
the model implemented by Jimenez-Fernandez et al. (Jimenez-Fernandez et al.,
2010).

This converter, called Exhaustive Unsigned Synthetic Spikes Generator
(EU-SSG), takes an unsigned integer value as input and produces a burst of
spikes where both the number of output spikes and their distribution over time
are proportional to the input value. Similarly to the synaptic current integration
process, which polarizes the membrane, producing a membrane potential, the
EU-SSG implements an up counter that increases its value every time a pulse
is detected, shown in Fig. 4.32 as up_counter. Then, the output of the counter
is processed by the Exhaustive Synthetic Method (ESM) block, which determines
the integration method. Finally, analogous to the comparison between the firing
threshold and the membrane potential, the counter’s output value and the input



130 Chapter 4. Event-based models for the sound source localization task

data are compared, and a spike is fired only when both values are equal.

Clock freq. 
divider

Bit-wise

Up counter

A>B

in ce

incr

AND

A B

out

out

o
ut

in

d_in

clk_div

s_out

n

n

FIGURE 4.32: Exhaustive Unsigned Synthetic Spikes Generator (EU-SSG)
block diagram. A complete description of both the implementation and the

behavior of this module is presented in (Jimenez-Fernandez et al., 2010).

To generate the pulse according to the desired output firing rate (expressed
in spikes per second), a clock frequency divider module is used, identified as
clk_freq_div in Fig. 4.32. It has two input signals: the system clock "clock" signal,
and the "clk_div" signal, which is the clock frequency division factor; and one
output signal, i.e., the clock enable "ce" signal, which generates a pulse when
corresponding.

By combining both the input value and the clock frequency divider value of
the spike generator block properly, the desired behavioral output response of the
original TDE model can be achieved. Analytically, the EU-SSG’s output firing
rate for a given input value was obtained following Equation 4.12.

f (d_in) =
Fclock ∗ d_in

2n(clk_div + 1)
(4.12)

Where f is the spike generator’s output firing rate (expressed in spikes per
second), d_in is the input value to be converted to spikes, the constant Fclock is the
system clock frequency (in Hz), n is data width, and clk_div is the internal clock
frequency divider value.

Although the Equation 4.12 is almost identical to the one defined in (Jimenez-
Fernandez et al., 2010), there is a difference in the component 2n, due to the fact
that in the original model the sign is taken into account (2n−1 is used instead),
while in Equation 4.12 the unsigned version is used. However, the number of
bits selected to represent the input value does not affect the maximum firing
rate achievable by the EU-SSG block. d_in is the maximum value that can be
represented with n bits, which is 2n. In that case, if d_in is replaced in Equation
4.12, the maximum output firing rate is expressed as in Equation 4.13.



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 131

fmax =
Fclock

(clk_div + 1)
(4.13)

Where fmax is the spike generator’s output maximum firing rate, the constant
Fclock is the system clock frequency (in Hz), and clk_div is the internal clock
frequency divider value. Therefore, the output firing rate only depends on both
the system clock frequency and the clock frequency divider value. Since the
maximum generating frequency is independent of the number of bits used to
represent the values, this parameter can be set up according to the desired time
resolution, thus benefiting the resource saving and allowing the implementation
of a larger number of TDE units.

Two particular differences can be highlighted from this spike-generator
block compared to the LIF neuron model. Firstly, the EU-SSG block does not
implement any refractory period. Therefore, the spikes can be produced through
consecutive clock cycles. Instead, the clock frequency divider value needs to be
adjusted in order to achieve the desired output spikes distribution. Secondly,
the spike generator does not stop producing spikes. If the input value is higher
than zero, the spike generator continues generating spikes. To stop the spike
generation process, a clear input signal "clear" was added to the EU-SSG block,
which resets its internal registers to zero. This control line is activated by the
comparator cmp_1 when the EPSC’s timer output value reaches zero, meaning
that the EPSC synaptic current is zero and, therefore, there is no current to
integrate.

According to the architecture shown in Fig. 4.29, the EU-SSG input data
("d_in") corresponds to the TDE gain value. This signal depends on the current
value of timer_0, which determines the detection time. The multiplication factor
also controls the number of spikes to generate, as well as the last input value
loaded into the generator. Thus, the gain block’s output signal, and therefore the
"d_in" signal, can be defined as in Equation 4.14.

d_in = reg_0 + (2weight ∗ timer_0) (4.14)

Where d_in is the spike generator input value, reg_0 is the value stored in the
register defined by Equation 4.9, weight represents the timer_0 factor, and timer_0
is the timer value defined by Equation 4.7.

In the same way, the EU-SSG clock divider value ("clk_div") corresponds
to the TDE EPSC value. It depends on the current value of timer_1, which in
turn depends on timer_0 and shift_0, according to Equation 4.10. In addition, the
timer_1’s value is weighted to control the output firing rate and the ISI variation.
Therefore, the EPSC block’s output value can be defined as in Equation 4.15.



132 Chapter 4. Event-based models for the sound source localization task

clk_div = reg_1 − (2decay ∗ timer_1) (4.15)

Where clk_div is the spike generator input value, reg_1 is the value stored
in the register defined by Equation 4.11, decay represents the timer_1 factor, and
timer_1 is the timer value defined by Equation 4.10.

A behavioral example of the proposed model is shown in Fig. 4.33. The first
row shows the input events differentiated by colors and following the color code
used in Fig. 4.28: red color for the facilitatory event and blue for the trigger event.
The second and third rows represent the evolution of the gain and EPSC timers
over time, respectively. The fourth row illustrates the "d_in" signal value loaded
into the spike generator block, and the fifth row represents the clock divider value
of that block. Finally, the sixth row shows the output spikes produced in the
presence of the shown input stimuli.

When an event is detected at the facilitatory input, the gain timer is
initialized according to its detection time value. For each time reference tick,
the gain timer decreases its value. As soon as an event is detected, the current
value of the gain timer is loaded into the EPSC timer. Concurrently, that value is
weighted and loaded into the spike generator as input data. Therefore, the spikes
begin to be generated.

At this moment, the clock divider value of the spike generator is set to zero,
thus producing the spikes at the maximal firing rate. For each time reference
tick, the EPSC timer decreases its value and the clock divider value of the
spike-generator block is updated to a higher value. This causes a decrement in
the output firing rate and, consequently, an increment of the ISI between two
consecutive output events.

When another spike is detected at the trigger input, the current value of the
facilitatory timer is added to the current value of the trigger timer. The input data
of the spike generator block is updated, and the clock divider value is set to zero.
This leads to a reset of the internal counter of the spike-generator block, which
leads to an update of the ISI value according to the new input value. The TDE
produces spikes until the EPSC timer reaches zero, when the internal stop signal
is enabled. A more exhaustive behavioural analysis of the TDE response to both
simple and complex stimuli is presented in the following sections.

4.3.3 Analysis and results

Three test scenarios were considered in order to validate and analyse the
proposed model. Firstly, a behavioral simulation was performed for the most
common input stimulus combinations. The results were cross-validated with the
results presented in the reference work (Milde et al., 2018). Once validated, the
model was analyzed and characterized by carrying out different experiments



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 133

trig.
faci.

In
pu

t

0

500

ga
in

0

500

ep
sc

0

10000

d_
in

0

2000

clk
_d

iv

0 200 400 600 800 1000
Time ( s)

spike

Ou
tp

ut

TDE module's operation example

FIGURE 4.33: An operation example of the proposed model. The detection
time was set to 700 µs; the tau value was set to 0; the weight value was set
to 4; and the decay value was set to 2. The main clock was set to 50 MHz,
the time reference tick was set to 1 MHz, and the data width was set to 16.
The ∆t value between the facilitatory event and the first trigger event is 200
µs, while the ∆t value between the facilitatory event and the second trigger

event is 400 µs.

where the ISI distribution and the number of output spikes were measured.
Secondly, a single TDE unit was synthesized for an FPGA platform. The
output spikes obtained from the FPGA were measured using an oscilloscope and
recorded using a computer. A quantitative comparison was carried out between
the simulation and the deployed version of the TDE unit. Thirdly, a proof-of-
concept of a sound source lateralization system was designed and tested using a
population of TDE units.

4.3.3.1 Simulation

Since the TDE model has two inputs, many different input event combinations
can occur. It is important to study each of these scenarios, since they will directly
affect the behavior of the model and its response. With the aim of verifying
whether the behavior of the proposed model matches the expected output, twelve
cases were simulated. For this experiment, a single TDE unit was instantiated,
with 100 µs as detection time, a tau value of 0, a gain value of 5, a decay value of
1, and a value of 256 for both facilitatory and trigger saturation. In addition, the



134 Chapter 4. Event-based models for the sound source localization task

time resolution was set to microseconds. Fig. 4.34 presents the response of the
TDE unit when being excited by twelve different sequences of input events.

Cases A and B depict simple examples where either a single facilitatory or
trigger event is received by the TDE unit. No events were produced at the output.
However, while the gain signal started being generated in case A, as a response
to the facilitatory event, the trigger signal remained at zero in case B, since no
facilitatory event was received before. Indeed, this effect can also be seen in
case C, where the trigger event is received just a few microseconds before the
facilitatory event. The same response of the model is obtained when both events
arrive at the TDE unit at the same time, as shown in D.

When a facilitatory event is presented at the TDE’s input before the trigger
event, the TDE’s response is inversely proportional to the time difference (also
called ∆t) between them. Cases E to G show the output events generated by the
TDE unit for short, medium and long ∆t values, respectively. As can be seen, the
number of output events decreases with higher ∆t values, while the ISI increases,
matching the expected behavior. When ∆t is higher than the detection time (case
H), the resulting response is the same as having case A first and then case B,
meaning that no events are generated at the output.

The proposed model was also simulated and evaluated in the presence of
more realistic input patterns. In a real world application, the input events are not
received one by one. Instead, a continuous rate of events can be injected to the
input. Cases I and J show the TDE model response when multiple facilitatory or
trigger events are received at the input for a single opposite event.

On the one hand, case I shows how the EPSC signal is incremented by a
value proportional to the remaining time to zero of the gain signal with the arrival
of the second trigger event, following Equation 4.10. The first burst produced
contains more events with lower ISI, whereas the opposite happens in the second
burst. On the other hand, case J shows how the gain signal is incremented by
the detection time value when the second facilitatory event arrives, according to
Equation 4.7. This alters the response of the simple case shown in F, generating a
burst with a higher number of events.

When many consecutive facilitatory-trigger pairs with ∆t lower than the
detection time parameter are received, the accumulated EPSC/gain signal values
increase. Thus, after some time, the signals saturate according to the saturation
parameter. At the saturation level, the TDE output firing rate is considered
maximal, and its behavior can be estimated by using Equation 4.13. We can
affirm that the saturation parameter limits the TDE response, and its value would
have to be set depending on the application and the related statistics of the input
stimuli.

In this regard, the behavioral validation of the proposed TDE model shown
in Fig. 4.34 has been proved to act in accordance with the reference model (Milde



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 135

input

0

100

tim
er

s

0 20 40 60 80 100 120
output

( s)

(A) Single facilitatory spike

(A)

input

0

100

tim
er

s

0 20 40 60 80 100 120
output

( s)

(B) Single trigger spike

(B)

input

0

100

tim
er

s

0 20 40 60 80 100 120
output

( s)

(C) Single trigger spike before single facilitatory spike

(C)

input

0

100

tim
er

s

0 20 40 60 80 100 120
output

( s)

(D) Single facilitatory single trigger t=0

(D)

input

0

100

tim
er

s

0 20 40 60 80 100 120
output

( s)

(E) Single facilitatory single trigger short t

(E)

input

0

100
tim

er
s

0 20 40 60 80 100 120
output

( s)

(F) Single facilitatory single trigger medium t

(F)

input

0

100

tim
er

s

0 20 40 60 80 100 120
output

( s)

(G) Single facilitatory single trigger long t

(G)

input

0

100

tim
er

s

0 20 40 60 80 100 120
output

( s)

(H) Single facilitatory single trigger very long t

(H)

input

0

100

tim
er

s

0 25 50 75 100 125 150
output

( s)

(I) Single facilitatory multiple trigger

(I)

input

0

200

tim
er

s

0 50 100 150 200
output

( s)

(J) Multiple facilitatory single trigger

(J)

input

0

200

tim
er

s

0 50 100 150 200
output

( s)

(K) Multiple facilitatory multiple trigger

(K)

input

0

200

tim
er

s

0 200 400 600 800
output

( s)

(L) Saturation

(L)

FIGURE 4.34: RTL simulation for twelve basic cases of the TDE model
with a time resolution of microseconds. Red, blue, and green are related

to facilitatory, trigger, and spike generator, respectively.



136 Chapter 4. Event-based models for the sound source localization task

et al., 2018) in terms of both performance and requirements. Moreover, cases
which were not evaluated in the original model were also reported in order to
fully characterize the proposed model.

After the behavioral validation, a more precise timing analysis of the TDE
response was carried out. In (Milde et al., 2018), this study was performed by
investigating the ISI distribution within a burst for six different ∆t values. The
ISI was calculated as ISIn = tn − tn−1, where tn is the timestamp of the nth event.
The authors reported that the obtained results matched the expected nonlinear
response in the temporal evolution of the ISI within a burst.

The same test was done in order to verify that the nonlinear ISI variation
feature was also achieved by the proposed model. Fourteen facilitatory-trigger
pairs of events with different ∆t values were used as input stimuli. Two TDE
units were configured to work at different time scales by setting the time reference
tick to microseconds and milliseconds, respectively. Fig. 4.35 presents the results
obtained from simulations with a time reference tick in the scale of microseconds,
instantiating a TDE unit with 700 µs as detection time, 0 as tau, 4 as weight, and
2 as decay. Similarly, Fig. 4.36 presents the results obtained from the simulations,
although setting the time reference tick to milliseconds, instantiating a TDE unit
with 70 ms as detection time, 0 as tau, 0 as weight, and 3 as decay.

0 5 10 15 20 25 30
Output spike pair n

0

20

40

60

80

100

120

In
te

rs
pi

ke
 In

te
rv

al
 (

s)

Interspike Interval distribution within a burst

Time-to-travel
Stim. t: 0 ( s)
Stim. t: 50 ( s)
Stim. t: 100 ( s)
Stim. t: 150 ( s)
Stim. t: 200 ( s)
Stim. t: 250 ( s)
Stim. t: 300 ( s)
Stim. t: 350 ( s)
Stim. t: 400 ( s)
Stim. t: 450 ( s)
Stim. t: 500 ( s)
Stim. t: 550 ( s)
Stim. t: 600 ( s)
Stim. t: 650 ( s)

FIGURE 4.35: TDE ISI response for a facilitatory-trigger pair with different
∆t values for a microseconds resolution configuration. Note that the
smallest ∆t value used was not zero (no output events would be produced)

but 20 ns (one clock cycle).



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 137

0 20 40 60 80 100 120
Output spike pair n

0

1

2

3

4

5

6

7

8

In
te

rs
pi

ke
 In

te
rv

al
 (m

s)

Interspike Interval distribution within a burst

Time-to-travel
Stim. t: 0 ms
Stim. t: 5 ms
Stim. t: 10 ms
Stim. t: 15 ms
Stim. t: 20 ms
Stim. t: 25 ms
Stim. t: 30 ms
Stim. t: 35 ms
Stim. t: 40 ms
Stim. t: 45 ms
Stim. t: 50 ms
Stim. t: 55 ms
Stim. t: 60 ms
Stim. t: 65 ms

FIGURE 4.36: TDE ISI response for a facilitatory-trigger pair with different
∆t for a milliseconds resolution configuration with a detection time of 70

ms.

Similar to the analog CMOS implementation, nonlinear profiles can be
clearly observed in all the cases shown in both Fig. 4.35 and 4.36. These
profiles were obtained by using exclusively linear operations and circuits, thus
avoiding explicit circuitry for generating exponential behaviors. This feature
allows reducing the needed resources and therefore to increase the total number
of TDE units that can be instantiated into an FPGA or ASIC. When the ∆t
value is almost equal to the configured detection time (e.g., above 550 µs for
microseconds and 55 ms for milliseconds), the produced output events are not
enough to represent the characteristic curve that cases with lower ∆t presented.
On the other hand, the first output event pairs seem to have the same ISI value
for most ∆t values (specially for lower ∆t values). These ISI values cannot be
correctly appreciated in the plot, since, according to the global clock, the precision
of the minimum time difference is in the order of nanoseconds, and the Y-axis of
the plot is represented in milliseconds.

The time scale set by the time reference tick affects not only the ISI curves,
which has a better and more regular distribution for the millisecond time
reference, but also the number of output events produced. This effect is caused
by the combined use of both clock domains in the spike generator module, where
the time reference clock is used to manage the inputs and the global clock is used
to produce the events.



138 Chapter 4. Event-based models for the sound source localization task

0 100 200 300 400 500 600 700
t ( s)

0

5

10

15

20
Nu

m
be

r o
f s

pi
ke

s

Number of output spikes over t variation
Detect. time: 100 s
Detect. time: 200 s
Detect. time: 300 s
Detect. time: 400 s
Detect. time: 500 s
Detect. time: 600 s
Detect. time: 700 s

FIGURE 4.37: Number of TDE output spikes over ∆t variation for
microsecond time reference tick.

Another simulation was carried out in order to prove the variation in the
number of output events generated by the TDE unit using both different time
references and detection times. The results are depicted in Fig. 4.37 and Fig. 4.38
for a microsecond and a millisecond time reference, respectively.

0 10 20 30 40 50 60 70
t (ms)

0

20

40

60

80

Nu
m

be
r o

f s
pi

ke
s

Number of output spikes over t variation
Detect. time: 10 ms
Detect. time: 20 ms
Detect. time: 30 ms
Detect. time: 40 ms
Detect. time: 50 ms
Detect. time: 60 ms
Detect. time: 70 ms

FIGURE 4.38: Number of TDE output spikes over ∆t variation for
millisecond time reference tick.

Note that the peak located at ∆t = 300µs (shown in Fig. 4.37) is caused by
the implementation of the spike generator module, since the conversion from an
integer value to a spike stream has an intrinsic error. This error is maximal at that
time in this particular example, and it is deeply analyzed in (Gomez-Rodriguez



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 139

et al., 2005). Due to the timing resolution used in Fig. 4.38, even if the error exists,
the peak cannot be appreciated.

The characteristic curve that relates the number of output events produced
by the TDE with respect to the ∆t value between its facilitatory and trigger inputs
is known as the tuning curve. By varying the parameters’ values of the TDE unit,
its tuning curve can be adjusted. Therefore, it is possible to have a set of TDE
units with different tuning curves.

This feature allows configuring a TDE population with different tuning
curves responding to different input patterns or using the population response as
a global response. Unlike the tuning curve test carried out in (Milde et al., 2018),
in which all the neurons shared the same parameters, we conducted a similar test
with different TDEs configurations.

Table 4.8 summarizes the values used for each TDE unit within the
population created for this test. The population size is four units. All the units
share the saturation value, set to 3000 for both the gain and EPSC signals, as well
as the tau value, which was set to zero.

TABLE 4.8: Parameters of the TDE population

Neuron ID weight
(µs/ms)

decay
(µs/ms)

detection time
(µs/ms)

TDE 0 9 / 4 2 / 1 100 / 10
TDE 1 6 / 2 1 / 2 300 / 30
TDE 2 5 / 1 2 / 3 500 / 50
TDE 3 3 / 0 2 / 12 700 / 60

The time difference of the two input events was varied from 20 nanoseconds
to 750 microseconds for the microsecond time reference, with a 20 microseconds
step size. Similarly, the relative timing was varied from 20 nanoseconds to 75
milliseconds for the millisecond time reference, with a 5 milliseconds step size.
The results obtained from the simulations are depicted in Fig. 4.39 and Fig. 4.40.

Both figures show the effect of the different tuning parameters in the output
response of the TDE units. The TDE0’s tuning curve presents a noticeable slope,
meaning that it has a high output firing rate in a short time bin. On the contrary,
the TDE1’s tuning curve has an almost flat slope, which means it produces less
spikes but in a longer time period.

The tuning curves in Fig. 4.37 and Fig. 4.38 look practically linear. These
tuning curves show a comparable behaviour to the analog model, which is
considered non-linear for large temporal differences and linear for small time
differences by Milde et al. (Milde et al., 2018).

The global behavior of the population, calculated as the sum of the output
events for each TDE unit for each ∆t value, fits an exponential curve. For the



140 Chapter 4. Event-based models for the sound source localization task

0 100 200 300 400 500 600 700
t ( s)

0

25

50

75

100

125

150

175
Nu

m
be

r o
f s

pi
ke

s

Population tuning curve and exponential fit
TDE 0 tuning curve
TDE 1 tuning curve
TDE 2 tuning curve
TDE 3 tuning curve
Population tuning curve
f( t) = e5.07915175 * e 0.00779659 t,
R2 = 0.87, RMSE = 14.61

FIGURE 4.39: Individual TDE tuning curves and population tuning curve
for microseconds time reference tick.

0 10 20 30 40 50 60 70
t (ms)

0

100

200

300

400

500

600

700

Nu
m

be
r o

f s
pi

ke
s

Population tuning curve and exponential fit
TDE 0 tuning curve
TDE 1 tuning curve
TDE 2 tuning curve
TDE 3 tuning curve
Population tuning curve
f( t) = e6.54144743 * e 0.0831564 t,
R2 = 0.93, RMSE = 42.24

FIGURE 4.40: Individual TDE tuning curves and population tuning curve
for microseconds time reference tick.



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 141

microseconds time reference, the obtained exponential fitting curve had a R2 =
0.87 with a RMSE = 14.61. For the milliseconds case, the R2 value was 0.93 with
a RMSE = 42.24.

The spike generator intrinsic error directly effects the exponential
approximation, although the fitting curve can be considered acceptable taking
into account that a nonlinear profile was obtained by using exclusively linear
modules.

4.3.3.2 FPGA implementation

After simulating the proposed model, analyzing and validating its behavior, a
TDE population was deployed into a FPGA-based device in order to verify the
results obtained in the simulation using a hardware platform. Fig. 4.41 depicts
the setup used for this test. The upper part describes in detail the implemented
design deployed into the FPGA. Two timers with periodic interruptions were
used to generate both the facilitatory and trigger events. The time reference tick
was set to microseconds and the ∆t value was fixed to 100 µs, having a wait time
of 1 second between two consecutive stimulus generations. The population size
was set to four in order to maintain the same architecture as in the simulation.
Therefore, a ROM module was added for storing the population parameters,
which were the same as those presented in Table 4.8 for the microseconds case.
Finally, an events monitor was connected to the population output to collect the
events and to send them to the computer by using an AER protocol.

AER monitor + jAER

TDE 3

Periodic faci. 
generator

Periodic trig. 
generator

TDE network

Events 
monitor

faci

trig

TDE 0

TDE 1

TDE 2

FPGA

Oscilloscope

data req ack

ROM

0

1

2

3

param

FIGURE 4.41: Block diagram of the setup for real-time measurements
acquisition.



142 Chapter 4. Event-based models for the sound source localization task

The lower part of Fig. 4.41 describes the two approaches used to measure
the population response directly from the hardware. On the one hand, an
oscilloscope was used to both measure and visualize the output events from
the TDE3. Fig. 4.42 shows a screenshot with the captured events, where the
increment of the ISI over time can be appreciated. On the other hand, a computer
running jAER (Delbruck, 2007) was used to visualize and save the population
output events in real time.

FIGURE 4.42: Output spikes captured by using an oscilloscope.

In addition to the behavioral simulation, a post-synthesis simulation and a
post-implementation simulation were performed. The behavioural simulation
was used as a reference and compared to the simulation results, as well as
the measurements from the oscilloscope and the events collected by the events
monitor. The output of TDE3 was used to compute the Pearson correlation value
(Benesty et al., 2009) for a quantitative comparison.

The results are plotted in Fig. 4.43, showing a high correlation level (0.99 as
the lowest value) and having the greatest differences in the later spike pairs. This
could be caused by the inherent sampling error of the devices used. Nevertheless,
the high correlation degree demonstrates that the TDE behavior does not change
when it is deployed into an FPGA-based hardware in real time.

The resources needed by a single TDE unit were estimated for three different
FPGA chips. In addition, the maximum number of TDE units that can be
instantiated on each of them was reported. Table 4.9 summarizes all estimations.



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 143

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Output spike pair n

0

50

100

150

200

250
In

te
rs

pi
ke

 in
te

rv
al

 (
s)

Interspike Interval measurements for FPGA implementation
Measurement source

Behavioral
Post-synthesis
Post-implem.
AER events
Oscilloscope

Pearson correlation
reference
r = 1.0
r = 1.0
r = 0.99
r = 0.99

FIGURE 4.43: Comparing the TDE response from different measurement
sources.

In addition, a high-level resource consumption comparison can be carried out
between the analog implementation and the digital implementation. The former
uses four capacitors for implementing the temporal decay of the signals, whereas
the latter uses three timers instead. The difference lies in the absence of the
refractory period in the proposed digital version.

Finally, a power consumption study was carried out for the XC6SLX150T
chip, which was also used for all the measurements and real-time experiments in
this work. Firstly, a set of Switching Activity Interchange Format (SAIF) files
were used for a realistic and precise estimation, were a single TDE unit was

TABLE 4.9: Hardware resources utilization for different FPGA devices.

FPGA chip Slice Registers
Used / Available

Slice LUTs
Used /
Available

Max. num.
TDE units

XC6SLX150T
(Spartan-6)

122/184304
(0.07%)

207/92152
(0.23%)

445

XC7A75T
(Artix-7)

140/94400
(0.15%)

179/47200
(0.38%)

263

XC7K480T
(Kintex-7)

140/597200
(0.02%)

179/298600
(0.06%)

1668



144 Chapter 4. Event-based models for the sound source localization task

stimulated with a simple pair of facilitatory and trigger events. The reported
power consumption was less than 1 mW with a static power consumption of 98%
(intrinsic to the FPGA). Then, the system power consumption was measured
directly from the real hardware setup by measuring the power consumption in
two different cases: 1) when the board was programmed and the reset signal
was active (553.6 mW) and 2) when the board was programmed, the reset
signal was not active, and an input events pair was sent (555.1 mW). Therefore,
the measured power consumption for a TDE unit was approximately 1.5 mW,
having a deviation of 0.5 mW with respect to the simulation estimation. These
measurements were summarized in Table 4.10

TABLE 4.10: Power consumption summary of a TDE unit deployed into
the XC6SLX150T FPGA chip.

Case to measure Measurement
Board programmed and reset signal active (A) 553.6 mW
Board programmed, reset no active, input active (B) 555.1 mW
Measured power consumption for a single TDE unit (B-A) 1.5 mW
Estimated power consumption for a single TDE unit 1.0 mW

For comparison purposes, the power consumption of a single analog CMOS
TDE implementation in the XFAB XP018 technology was estimated by means of
a circuit simulation. The static power consumption amounts to 1.4 nW while the
dynamic power consumption increases with the TDE’s output spiking frequency,
reaching approximately 500µW at 500 Hz.

4.3.4 Real-time neuromorphic application

The applicability of the proposed TDE model was evaluated by means of a proof-
of-concept application. In the work presented in Milde et al. (Milde et al.,
2018), the proof-of-concept was focused on a neuromorphic application using
visual information generated by event-based cameras. In this thesis, a real-time
sound source lateralization application for FPGA was implemented using the
Neuromorphic Auditory Sensor (NAS).

Briefly defined, the sound source lateralization is considered as the capability
to identify where the sound source is by using only binaural cues (Plenge, 1974).
Different neuromorphic approaches to solve this task have been proposed in
the last two decades (Finger et al., 2011; Park et al., 2013; Van Schaik et al.,
2004; Schaik, 2010). Simplifying the concept, we will consider the sound source
lateralization as the ability to determine whether the sound is on the left, on the
middle, or on the right.

For this task, the same binaural cues that are commonly used for sound
source localization (ITD and ILD) can be used. A binaural sensor is needed in
order to be able to capture those cues. As introduced before, the Neuromorphic



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 145

Auditory Sensor (NAS), proposed in (Jimenez-Fernandez et al., 2017), is a
neuromorphic sensor capable of decomposing the input sound from a pair of
microphones into its frequency components, emulating the human cochlea. The
general NAS architecture is depicted in Fig. 4.44 top. Since it is an event-based
sensor, its output is encoded as events, thus the information is coded not only in
the number of output spikes but also in the relative time between them. Only the
ITD cue was used in the proof-of-concept application due to the timing nature
given by the proposed TDE model.

Analog audio 
to spikes 
interface

Left spike-based cascade filter  
bank

Right spike-based cascade filter 
bank

Events 
monitor

&
AER 

interface

TDE network

TDE 4

TDE 0 TDE 2

TDE 6

TDE 1

TDE 5 TDE 7

TDE 3

ack

data

req

TDE 0

TDE 2

TDE 4

TDE 7

TDE 6

TDE 5

TDE 3

TDE 1Left channel 33 
output spikes

Right channel 
33 output spikes

trig

faci out

trig

faci out

trig

faci out

trig

faci o
u

t

trig

faci out

trig

faci o
u

t

trig

faci out

trig

faci out

right 
audio

left 
audio

left 
spikes

right 
spikes

input
in

p
u

t

high freq.

low freq.

low freq.

high freq.

...
...

...
...

...
...

...
...

...
...

...
...

left chnn.

right chnn.

... ...

FIGURE 4.44: Detailed block diagram of the FPGA top module for the
proof-of-concept, containing both the NAS and the TDE populations.

The position of a sound source in space can be encoded by the temporal
difference between the arrival of the sound waves at the ipsilateral side and the
contralateral side. This time difference is known as the ITD. According to the
specifications of the TDE model, an output response is exclusively produced if the
incoming facilitatory event arrives before the incoming trigger event. Thus, two
TDE populations were needed to perform the sound source lateralization task:
one for detecting when the sound source is located at the left of the reference (the
microphones pair) and one for detecting when the sound source is located at the
right. Although the auditory information used was the same, thus containing
the same temporal information, it projects onto the two TDE populations in
an opposite way. The network architecture is shown in Fig. 4.44 bottom, and
the parameters values used for the TDE units’ configuration were the same as
those presented in Table 4.8 for the microseconds time reference. Therefore, the
individual tuning curves, as well as the population tuning curve, correspond to
the plot shown in Fig.4.39.

The test scenario was designed as follows: firstly, a virtual room of 10 ×
10 × 2 meters was created, using the RIR generator (Habets, 2006) software
tool. A pair of directional microphones were placed in the center of the room,



146 Chapter 4. Event-based models for the sound source localization task

imitating the human’s ears disposition in a regular head, and at a height of one
meter over the floor. Then, three sound sources were placed at -90, 0 , and +90
degrees with respect to the microphones pair, corresponding to the left, front,
and right positions, respectively, with a separation of two meters. The sound
sources generated a pure tone beep of 500 Hz, with a duration of 0.5 seconds,
every second.

Regarding the auditory sensor, a 64-frequency-channels, binaural NAS, with
a frequency range from 22 Hz to 22 KHz was generated using the OpenNAS
tool (Gutierrez-Galan et al., 2021b). The output events from frequency channel
number 33 were used as input of the TDE population, since the center frequency
of its associated event-based band pass filter was set to 502.38 Hz.

TDE 0
TDE 1
TDE 2
TDE 3
TDE 4
TDE 5
TDE 6
TDE 7

Output spikes
left
right

Overall activity

TDE 0
TDE 1
TDE 2
TDE 3
TDE 4
TDE 5
TDE 6
TDE 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (sec)

TDE 0
TDE 1
TDE 2
TDE 3
TDE 4
TDE 5
TDE 6
TDE 7

0.0 0.5 1.0

Output of the TDE network

FIGURE 4.45: Raster plot of the output events from the TDE population
and normalized overall activity. The plots were generated using pyNAVIS
tool (Dominguez-Morales et al., 2021b). TDEs 0 to 3 (left population)
correspond to indexes 0 to 3 in 4.8, and TDEs 4 to 7 (right population) also
correspond to indexes 0 to 3 in the same table. Therefore, TDE 0 and TDE

4 use the same configuration and so on.

The sound was sent from the computer to the FPGA in real time, and the
TDE population’s output events were collected in a computer by using jAER.
The results obtained from the real-time experiments are shown in Fig. 4.45.
Top and bottom plots show the response of the TDE populations when the



4.3. Alternatives to the Jeffress model: The Time Difference Encoder 147

TABLE 4.11: Comparison of a single neuron implementations using an
FPGA. Zero slice registers used means that a memory was used to store

the neuron state.

Paper
reference

Neuron
model

Modeling
strategy

Temporal
decay type

FPGA
resources
(LUTs/reg)

(Perez-Peña
et al., 2019)

LIF Biophysical
emulation

Exponential 110 / 54

(Frenkel
et al., 2017)

LIF Phenomenological Linear 90 / 0

(Frenkel
et al., 2017)

Izhikevich Phenomenological Linear 247 / 0

(Soleimani
et al., 2012)

Izhikevich Biophysical
emulation

Exponential 493 / 617

(Levi et al.,
2018)

Hodgkin -
Huxley

Biophysical
emulation

Exponential 619 / 521

This work TDE Phenomenological Linear 179 / 140

sound source was placed on the very left and very right positions (high ITD
values), respectively. As expected, most of the activity was produced by the
corresponding TDE population (left and right respectively). The maximum
overall activity was found in those TDE units with higher detection time (TDE
3 for the left side and TDE 7 for the right side). On the contrary, TDE 0 and 4
barely presented any activity due to their low value for the detection time.

The center plot shows the response of both populations when the sound
source was placed in front of the microphones pair. In this case, all the
instantiated TDE units produced output events as a response to the low ITD value
inherent to the input stimuli. The small asymmetry in the overall response can be
explained by the fact that the I2S protocol samples the input sound sequentially.
Therefore, left and right samples provided to the left and right cochleas as input
are slightly different, thus producing different spike activity at the filter’s output.
This activity could be post-processed in order to extract more precise spatial
information of the sound source.

4.3.5 Conclusion

This event-based design encodes temporal differences into a burst of events.
A phenomenological design strategy was followed in order to implement the
TDE behavior with reduced design complexity. The proposed implementation
needs 179 LUTs and 140 registers. The comparison in Table 4.11 shows that the
phenomenological design approaches use less FPGA resources since the design
complexity is reduced.



148 Chapter 4. Event-based models for the sound source localization task

The simulation data presented here faithfully reproduce the behavior
reported in (Milde et al., 2018), where also a phenomenological analog
implementation approach was followed. Once simulated, the model was
deployed into an FPGA-based device in order to characterize its response in
a real-time platform. Although the proposed model is also suitable to be
implemented in a full custom ASIC, an FPGA-based platform was considered
due to its reconfigurability, fast and affordable prototyping workflow. This allows
creating custom TDE populations with different parameters and scaling up the
population’s size if needed, which is not possible in neither analog nor digital
ASIC, unless specified at design time with high silicon overhead.

Another advantage of the FPGA TDE implementation is the wide temporal
resolution range that it offers. It can be adjusted to different temporal domains by
setting a few integer values depending on the specific applications, such as sound
source localization (microseconds), vision (milliseconds), or odour localization
(seconds). Since some neuromorphic systems such as the SpiNNaker (Furber
et al., 2013a) board only provide a milliseconds resolution by default, the digital
TDE supports the application to tasks which require a higher temporal resolution,
as the sound source localization example provided in this work. Furthermore,
the FPGA implementation does not suffer from the mismatch problem common
in analog CMOS circuits.

However, it is also important to mention that, unlike the analog
implementation, the model is not fully asynchronous. This feature forces the
model to have clock signals, thus increasing the static power consumption due
to the switching currents. Therefore, the reported power consumption of the
proposed model is significantly higher (less than 1 mW) compared to the few µW
of power consumption for low output spike frequencies (measured in CADENCE
using XFAB XP018 technology) given by the subthreshold operation level in
which the analog version works.

4.4 Comparison between both approaches

In both proposed models, a proof-of-concept of a sound source lateralization
application were presented to evaluate the usability and performance of the
proposed models with realistic input stimuli. The use of the TDE model for sound
source lateralization represents an efficient alternative to the biologically-inspired
Jeffress model (Jeffress, 1948). In fact, the TDE model may be more similar to the
mammalian mechanism than the Jeffress model, which is specifically a model of
the avian mechanism (Grothe et al., 2010). Since the TDE model encodes temporal
differences in a frequency-coding manner, only two TDE’s (one left, one right)
are needed to encode the full range of sound source angles. However, the Jeffress
model requires more neurons for extracting temporal differences, and the model’s
accuracy is proportional to the number of neurons.



4.4. Comparison between both approaches 149

This way, the hardware resources needed to implement this approach
will be less compared to other state-of-the-art alternatives. Nevertheless, the
combination of TDEs with different facilitatory time constants leads to an
exponential population response, increasing the model’s accuracy. In terms
of post-processing steps, the Jeffress model already provides a clear position
estimation from its output events, while the position estimation from the TDE’s
output needs to be extracted by applying further post-processing operations.
Therefore, by comparing both models, it can be concluded that the Jeffress model
is a more complex model but its output can be directly used as a position
estimation, while the TDE model is less complex but its output has to be
processed in order to extract the position estimation.

As was demonstrated in section 4.3.4, we can distinguish between at least
three different sound source angles in the horizontal plane using the TDE’s
spiking frequency with four units for each side. Also, as showed in section 4.2.6,
the Jeffress model is able to determine the position of a sound source within a
virtual room with a high accuracy. Moreover, the output of both models could
be send to other neuromorphic processors (e.g., Loihi (Davies et al., 2018) or
SpiNNaker (Furber et al., 2013a)) to further improve the localization accuracy
by using an SNNs.

In addition, thanks to the modular structure of both models, they can be
adopted by the neuromorphic research community and seamlessly integrated
with event-driven sensors to support the investigation of novel algorithms for
bio-inspired sensing.





151

Chapter 5

Neuromorphic audio applications for
robotics

“What is now proved was once only imagined.”

– William Blake

5.1 Introduction

Initially, robots were developed with the aim of making our life easier,
performing repetitive or dangerous tasks for humans. Although they were able to
perform these tasks, the latest generation of robots is being designed to take a step
further, by performing more complex tasks that have been carried out by smart
animals or humans up to date. To this end, inspiration needs to be taken from
biological examples. For example, insects are able to optimally solve complex
environment navigation problems, and many researchers have begun to mimic
how these insects behave (Haessig et al., 2020; Angelidis et al., 2021).

FIGURE 5.1: An octopus-inspired soft robotic arm. Credit: Harvard SEAS.



152 Chapter 5. Neuromorphic audio applications for robotics

Another example is the foldable drone (Falanga et al., 2018), which is capable
of changing its morphology to adapt it to the environment, thus being able
to navigate through different spaces, in the same way that both pigeons and
swifts adapt their wing surface. Recent interest in neuromorphic engineering
(Bartolozzi et al., 2022; Christensen et al., 2022) has motivated researchers to take
inspiration in animals not only to design the shape of the robot, but also to mimic
the control mechanisms that manage the motor movement and sensors to collect
external information and act in consequence.

Event-based cameras have been attached to mobile vehicles, such as drones
(Maqueda et al., 2018) and wheeled robots (Milde et al., 2017) to collect
information about the environment. Then, biologically inspired Spiking Neural
Networks (SNNs) can be used to process this information due to the temporal
features of the event-based data, and to control the robot’s actuators using
directly and uniquely events as input stimuli (Perez-Peña et al., 2013a).

The development of audio-based robotics applications has not followed the
path of vision-based applications, thus finding fewer works where the audio
processing and the robotics are mixed. Recent works in audio-guided robotics are
related to the non-contact communication arising from the COVID-19 situation,
as presented in (Grasse et al., 2021), where speech commands were used to
control a robot to deliver objects without contact. Nevertheless, to the best of our
knowledge, most of them do not use a neuromorphic sensor to collect the audio
stimuli or a neuromorphic platform to process the collected data in real-time. The
advantages given by neuromorphic audio sensors could be used to create a new
generation of neuromorphic robots that includes a neuromorphic model of the
hearing sense.

5.2 Motivation and cases of use

With the aim to demonstrate the use of the neuromorphic audio processing
approach along with the robots and its advantages in real-time applications, a set
of demonstrators were developed. For example, robot-human interaction could
be considered one of the most exciting application in the future of neurorobotics,
being an interesting topic when talking about bio-inspired solutions.

Even though we can consider the vision as the main source of information,
it may happen that the region of interest is out of the field of view. Therefore, a
second source of information would be desirable to identify and localize where
the region of interest is and orientate the robot towards that position. This
principle could be apply, for example, to vehicles for autonomous navigation or
to humanoids robots to face the person that is talking. A real-time event-based
sensory integration system was designed and implemented to demonstrate this
concept.



5.2. Motivation and cases of use 153

It also could happen that the robot needs adapt the movement it is
performing according to the auditory stimuli it is perceiving, like the animals
are able to change their movement patterns depending on if they hear a prey or
a predator. The brain area that recognizes the sound needs to be communicated
with the area that generate the movement pattern to produce a fast reaction, that
in some cases could be some milliseconds. A robotic platform was developed
to implement, to the best of our knowledge, the first neuromorphic event-
based audio-guided Central Pattern Generator (CPG) that is able to move up to
twelve servo motors in real-time using a live connection between an FPGA and
SpiNNaker.

Finally, all the concepts studied and developed during this thesis were
intended to be deployed in one of the most complete robotics platforms in the
world: the iCub humanoid robot. With this robot, the sensory integration, the
attention, and the movement task can be studied together in order to study and
understand how humans carry out some specific tasks. In addition, it could help
to test the new generation of auditory devices before using them in humans, and
also to better understand some neurodevelopmental disorders, such as autism,
and its relation to the hearing sense.

5.2.1 NeuroPod: from audio to locomotion through spiking CPG

A Central Pattern Generator (CPG) is a neural structure located at a spinal cord
level. It can generate rhythm patterns which might be used for movements, such
as the generation of various gaits, or swimming (Grillner et al., 2008). There
is proven evidence of such structures in small animals (Duysens and Van de
Crommert, 1998) and possibly in humans (Guertin, 2009; Minassian et al., 2017).
The activity of these structures is released and mediated by the brain stem and
other sub-cortical regions of the brain. Regarding the feedback, the CPG receives
sensory information to adapt its output to the environment.

Locomotion is probably one of the most complex tasks to be developed by
roboticists due to stability issues when several legs are involved (Schilling et al.,
2013). Therefore, from a neurorobotics point of view, the idea of these CPGs is
borrowed from biology to implement locomotion in small robots with several
legs. The reason for this is that these structures can generate a very stable pattern
even without sensory information or brain activity. In fact, some cats that suffered
severe spinal cord injuries, recovered their gaits after treadmill training sessions
(Vogelstein et al., 2008). Real-time biomimetic CPGs research is also promising
for connecting to ex vivo spinal cord with the aim of controlling neuroprosthesis
in hybrid experiments (Ambroise et al., 2013).

There are many works where a CPG has been used within robotics; some
of them mimic the idea of a CPG, although without implementing a spiking
neural network. Instead, they modelled the CPG using differential equations of
coupled oscillators. Examples are: (Sartoretti et al., 2018), where the authors used



154 Chapter 5. Neuromorphic audio applications for robotics

a hexapod robot and they included feedback, (Barron-Zambrano et al., 2010),
where the Van der Pol oscillator model was used and implemented on a FPGA,
and (Crespi et al., 2008a), where the authors used a swimming and crawling fish
robot and implemented the CPG on a microcontroller by solving the equations of
coupled oscillators.

More closely related works, where neuromorphic hardware was used or a
SNN was proposed, are: (Still et al., 2001), where the authors developed an analog
neuromorphic dedicated chip which allocates coupled oscillators and a learning
procedure to have the desired output, although they did not use well-known
neuron models, and (Donati et al., 2014), in which the authors designed and
implemented several CPGs segments to drive a lamprey-like robot. The CPGs
were implemented using neuromorphic hardware in (Qiao et al., 2015), although
online changes of the pattern generated by the CPG are not provided. Likewise,
the work presented in (Cuevas-Arteaga et al., 2017) proposed the implementation
of the CPG using a SNN implemented on SpiNNaker (Furber et al., 2014b),
although it does not offer real time nor online change of the pattern produced
by the CPG. Table 5.1 summarizes the main information about the CPG and real-
time capabilities of the systems presented in some of the state-of-the-art studies
that have been discussed in this section.

In this section, a CPG closely related to its biological counterpart, including
plausible biological features, was implemented in SpiNNaker (Gutierrez-Galan
et al., 2020). In addition, the CPG model was extended for behaving according
to external auditory stimuli through the Neuromorphic Auditory Sensor (NAS).
Both models were ready to be used within robotics, and a hexapod robot was
used to validate the designs and to show the main novelties of this research,
which are the real-time operation of the CPG and the online reconfiguration of
the gait produced by the CPG.

5.2.1.1 The hexapod robot

The NeuroPod robot is divided into three main parts, and each of these has a
specific role or functionality. These parts are the CPG, designed using a SNN and
implemented on a neuromorphic hardware platform. This CPG generates the gait
patterns. The movement controller takes the movement information from the
CPG and controls a set of servomotors through an FPGA-based board. Finally,
the skeleton defines the shape of the robot and also performs the movements.
Further details are provided in the following sections. Figure 5.2 shows a global
overview of the NeuroPod as a block diagram; it also shows the main parts and
how they interface with each other.

An hexapod robot is a six-legged robot inspired by arthropod insects, such
as ants or flies, among others. According to biology, the body of these insects can
be divided into three different regions: the head, the thorax and the abdomen.



5.2. Motivation and cases of use 155

TABLE 5.1: Comparative study between state-of-the-art approaches
regarding CPG-based systems

Ref. Spike-based Materials and methods Real-time
operation

Number
of gaits

Online transition
between gaits

(Ambroise et al., 2013) Yes - Implements a leech heartbeat neural network
on FPGA Yes 1 -

(Sartoretti et al., 2018) No - Coupled oscillators as CPG.
- Modified to allow adaptation to the terrain Yes 1 No, but parameters

can be modified

(Barron-Zambrano et al., 2010) No - Non-linear coupled oscillators implemented in
a soft-core processor for FPGA

Yes, but
only done

in simulation
3 Yes

(Crespi et al., 2008a) No - Chain of non-coupled oscillators No 1 No, but parameters
can be modified

(Still et al., 2001) No
- Coupled oscillators as CPG using a novel
neuromorphic chip
- Support Vector learning algorithm

Yes 1 -

(Donati et al., 2014) Yes

- Segments of the lamprey CPG
- A mixed signal analog/digital VLSI device
interfaced to an FPGA
- Spikes are routed to/from a standard PC
through the FPGA

Yes 1 -

(Cuevas-Arteaga et al., 2017) Yes
- Oscilator-based CPG implemented on SpiNNaker
- SpiNNaker generates local file with results
- Arduino reads local file and controls servomotors

No 3 No

(Rostro-Gonzalez et al., 2015) Yes - Oscilator-based CPG implemented on an FPGA Yes 3 Yes

FPGA
SpiNN 

hardware 
interface

4-chip 
SpiNNaker 

board20-pin 
connector

Hexapod board 
controller

20-pin 
connector

4-chip 
SpiNNaker 

board

FPGA

Hexapod board 
controller

SpiNN 
hardware 
interface

ZTEX 2.13

Xilinx Artix 7

SpiNN-3

Pattern 
selector

sCPGsSp
iN

N
ak

er
 li

n
k

Sp
iN

N
ak

er
 li

n
k

20
-p

in
 c

o
n

ne
ct

o
r

Hexapod controller 
board

SpiNNaker 
interface

Neuropod

I/O

External devices

FIGURE 5.2: Block diagram of the entire system. It is composed of the
SpiNNaker board, an FPGA-based board, and a 3D-printed hexapod robot

frame.

Moreover, each part could be sub-divided into segments according to their
features.

The head is composed of eyes (located in the ocular segment) and a pair of
antennae. Both the eyes and the antennae are used to collect sensory information
about the environment, allowing the movement of the insect in complex scenarios
by performing an obstacle avoidance task (Douglass and Strausfeld, 1995; Milde
et al., 2015). The thorax is composed of three segments: the prothorax, the
mesothorax and the metathorax. Each segment has a pair of legs, and there are
six in total. Up to five parts can be identified in each leg, although only three of
these parts are relevant to motion: coxa, femur, and tibia. Finally, the abdomen
contains the vital organs of the insect, such as the respiratory or reproductive
systems.

Recent focus on the development of smart robots by mimicking biological
processes has motivated many research groups to develop accurate models of



156 Chapter 5. Neuromorphic audio applications for robotics

CFL CFR

CML

CBL

CMR

CBR

FFL

FML

FBL FBR

FMR

FFR

C - Coxa (horizontal)

F - Femur (vertical)

F - Front

M - Middle

B - Back

R - Right

L - Left

A B C

coxa

trochanter

A B

tarsus

body

ThC-joint

CTr-joint

FTi-joint

FIGURE 5.3: A) Biological representation of an arthropod’s leg anatomy. B)
Hexapod robot leg actuator IDs.

hexapod insects. HECTOR (Schneider et al., 2012) is an example of that, where
both the body features and movements were inspired by the morphological
details of the stick insect Carausius morosus.

In this work, a 3D-printed hexapod robot was used, based on the model
featured in (Cuevas-Arteaga et al., 2017). The original design1 was adapted by
designing a new body frame to allocate the electronic devices on it. The frame
dimensions are 20mm × 89mm × 90mm (height, width, depth), without the legs.

According to (Büschges et al., 2008), insect legs are defined as multi-
segmented limbs. Each leg consists of more than 5 segments, as it is represented
in Fig.5.3A. However, only three of them are used when performing a movement:
the coxa, the femur, and the tibia. This is due to the fact that three main leg joints
can be found in an insect leg: the thoraco-coxal (ThC-) joint, the coxa-trochanteral
(CTr-) joint and the femur-tibia (FTi-) joint. The ThC-joint is responsible for
carrying out back and forth movements (horizontal axis), the CTr-joint enables
elevation and depression, and the FTi-joint allows extension and flexion (both in
the vertical axis).

The leg of each hexapod has three degrees of freedom (DOF), one per joint.
However, to develop NeuroPod we only considered two of them because the
movement of the robot can be performed mainly using the coxa and the femur
(Rostro-Gonzalez et al., 2015). Thus, only twelve DOF were taken into account,
instead of eighteen, to implement the gait patterns.

1https://www.thingiverse.com/thing:1021540 (checked on July’2022)



5.2. Motivation and cases of use 157

In order to provide motion, one servomotor was placed on each joint, making
a total of twelve servomotors (Ref. SG90, https://servodatabase.com/servo/
towerpro/sg90). The maximum rotation angle is 180 degrees, although this range
could be reduced due to the mechanical constraints of the body design and the
position of the servo on it.

Therefore, a previous calibration is required. After the calibration process,
and knowing that the theoretical operation speed of the selected servos is
0.12 s/60 degrees, we were able to estimate the pattern period, which can be
defined as the minimum time the robot needs to reach the backward position,
starting from the forward position, and then reach the forward position again.
Measurements of these pattern periods are presented in section 5.2.1.5.

5.2.1.2 Hardware setup: bi-direction communication between an FPGA and
SpiNNaker in real-time

As it was mentioned in Section 1.2.2, the SpiNNaker project is based on a
massive parallel multicore computing system that is able to run very large SNNs
in real time (Furber et al., 2013b). The architecture of the SpiNNaker chip,
which has an asynchronous packet switching network, makes it very efficient
for neuromorphic applications (Plana et al., 2007).

In this work, the SpiNN-3 machine (4 SpiNNaker chips, 72 200MHz ARM9
cores) was used to implement the SNN model, which is described in section
5.2.1.3. The device is shown in Fig. 5.4. This board has an interface, 100
Mbps Ethernet link, which is used to control the SpiNNaker machine from the
computer. It also has two spinn-link connectors that enable a connection to
external devices such as FPGAs and neuromorphic sensors: retinas or cochleas.
This board was connected to an FPGA for real-time bidirectional input/output
communication through the spinn-link interface. This interface is based on the
2-of-7 protocol. Since most of the neuromorphic sensors use the AER protocol to
communicate with other devices, an AER-SpiNN VHDL module was developed
by the SpiNNaker group (Plana et al., 2014), which converts from AER protocol
to 2-of-7 protocol, and vice versa. This module was, in addition, adapted to the
project requirements by our research group2.

An FPGA-based board was used to implement a digital system design,
which controls the neuromorphic robot platform. This approach was considered
in other similar works to implement a hardware version of CPGs, such as (Barron-
Zambrano et al., 2010) and (Rostro-Gonzalez et al., 2015), and also in the field
of neurorobotics and neuromorphic engineering (Yousefzadeh et al., 2017). This
reconfigurable hardware offers flexibility against analog designs and adaptability
in real time, in case of system failures.

2https://github.com/dgutierrezATC/NAS_SpiNNaker_interface

https://servodatabase.com/servo/towerpro/sg90
https://servodatabase.com/servo/towerpro/sg90
https://github.com/dgutierrezATC/NAS_SpiNNaker_interface


158 Chapter 5. Neuromorphic audio applications for robotics

SpiNNaker link connectors

20-pin header

SpiNN-3 board

ZTEX 2.13

Artix7

FIGURE 5.4: SpiNN-3 machine and ZTEX 2.13 board.

From the Xilinx Artix-7 family, the XC7A75T chip was used, mounted on
the ZTEX 2.13 USB-FPGA board with a 48 MHz clock source. This FPGA chip
offers around 75500 logic cells, 100 GPIOs, USB 2.0 interface and DDR3 SDRAM
memory. This board serves as a daughter board mounted on a custom PCB
provided with several components: LEDs, user buttons, an AER 20-pin interface
and a spinn-link interface (see Appendix C). Those interfaces will be used by the
SpiNNaker machine to manage the hexapod robot through the FPGA board. An
extended explanation is provided in section 5.2.1.2.

5.2.1.3 Spiking Central Pattern Generator

A CPG is a neural network in which interconnected excitatory and inhibitory
neurons produce an oscillatory, rhythmic output as a motion pattern, such as
walking, flying, running or swimming, with the absence of rhythmic inputs. In
this work, we focus on three specific gaits: walk, trot and run, which are selected
based on previous working bio-inspired implementations for hexapods (Rostro-
Gonzalez et al., 2015; Cuevas-Arteaga et al., 2017).

Fig. 5.5 (bottom) shows the basic structure for each of the CPGs implemented
in this work. It consists of eight Leaky Integrate-And-Fire (LIF) neurons: two
neurons for the SCPG and six output neurons to command the servomotors.
The green and red neurons (Fig. 5.5) make the other neurons, ranging from 0
to 5, fire within different timings generating the selected gait. Each of these six
neurons are then connected to two output neurons which will command two
different servomotors. This is achievable due to the symmetry of the robot: pairs
of servomotors always perform the chosen gait, independently of the selected



5.2. Motivation and cases of use 159

1

0

2

1

2

0

CPG Trot

CPG Run

CPG Walk

Input + Pattern selector Central Pattern Generators
Output neurons to 

command servomotors

FR
O

M
   

 F
P

G
A

1 2 3 4 5

Inh

Exc

0

FR
O

M
 P

A
TT

E
R

N
 S

E
LE

C
TO

R

TO OUTPUT NEURONS

Inhibitory projection

Excitatory projection

CFR

CMR

CBR

FFR

FMR

FBR

CFL

CML

CBL

FFL

FML

FBL

Phased-CPG pattern

CPG pattern

FIGURE 5.5: Diagram of the spiking neural network model used (top) with
an in-depth view of the CPG architecture (bottom).

SCPG. Table 5.2 presents the parameters of the LIF neuron model that has been
used in this work.

Three SCPGs following this basic architecture (one per gait) are enclosed
within a global SNN model shown in Fig. 5.5 (top). This global network acts
as a mechanism to select which of the SCPGs has to be enabled in order to
start generating the gait, inhibiting the other two at the same time. It receives
a single spike from the FPGA with a specific neuron address (0, 1 or 2) (using
the AER protocol) indicating the gait pattern that needs to be generated. For this,
we used a custom PCB (see Fig. 5.4) to connect the FPGA and the SpiNNaker
board through the spinn-link connector for bidirectional I/O communication.
When this spike reaches the pattern selector population in the SpiNNaker board



160 Chapter 5. Neuromorphic audio applications for robotics

TABLE 5.2: LIF neuron parameters.

Parameter Description Value Unit
cm Capacitance of the LIF neuron 0.25 nF
i_offset Base input current to add each timestep 0.0 nA
tau_m Time-constant of the RC circuit 20.0 ms
tau_refrac Refractory period 2.0 ms
tau_syn_E Excitatory input current decay time-constant 5.0 -
tau_syn_I Inhibitory input current decay time-constant 5.0 -
v_reset Voltage to set the neuron at immediately after a spike -68.0 mV
v_rest Ambient rest voltage of the neuron -65.0 mV
v_thresh Threshold voltage at which the neuron will spike -50.0 mV

(the three neurons that are closer to the SCPGs), this group of neurons transmit
this spike to the selected SCPG, while inhibiting any other that could have been
running at that moment, and also make that SCPG (associated with the gait that
was selected) start generating the spikes. This mechanism allows real-time gait
changes by activating the appropriate SCPGs without introducing a long delay
(hundreds of ms), which is essential for real-time robotics applications.

A single spike is needed by the selected SCPG to start generating the spiking
pattern. The spikes fired by the six SCPG neurons are sent to the last layer of the
model, which consists of twelve neurons corresponding to each of the hexapod
servomotors. These spikes are transmitted back to the FPGA using the spinn-link,
where a circuit commands each of the servomotors using the live output spikes.

As is shown in Fig. 5.5, each neuron of the output layer has two outputs from
SpiNNaker to the FPGA. The first one is the regular spiking pattern generated
by the SCPG to command the servomotors (extension action). The second one is
exactly the same pattern, but phased with a delay of 1 tick, needed by the FPGA to
command the servomotors back to the standard position (performing the flexion
action).

5.2.1.4 NeuroPod HDL top module architecture

As previously mentioned in section 5.2.1.2, a digital system is needed to
implement the neuromorphic robotic controller. This task is often carried out
by using an FPGA-based board, running a custom digital system. Designs are
generally implemented using VHDL, which allows defining any digital circuit
model by describing either its behavior or its components’ interconnections.
Each component of the design is also known as a module, and many functional
modules can be encapsulated by a top module, which defines both the input and
output signals of the digital circuit.

Fig. 5.6 shows an overview of the proposed implementation of the NeuroPod
control system top module. It performs three main functions: to select the gait



5.2. Motivation and cases of use 161

AER-
SpiNNaker 
software 
interface

AER out
CPG 

pattern 
selector

cpgsel_up

new_mode

mode
/2

aer_data
/16

ack

req

data
/7

ack

ack

data
/7

active errorreset dump

aer_data
/16

ack

req

PWM CFR

PWM FFR

PWM CMR

PWM FMR

...
PWM CBL

PWM FBL

AER in
new_aer

aer
/16

actions
/24

cpgmod
/2

event
/5

fw

bw

fw

bw

fw

bw

fw

bw

fw

bw

fw

bw

CPG 
pattern 
decoder

cpgsel_down

PWM generator bank

fblcfr cmr fmrffr cbr cfl fflfbr cml cblfml

FIGURE 5.6: NeuroPod FPGA top module overview.

which the SCPG implemented on SpiNNaker will generate, to send the gait
information to the SpiNNaker machine, receive the live output pattern from it
and, finally, to generate the Pulse-Width Modulation (PWM) signals to control
the servomotors. Further details are given next, starting with the pattern selector
and then following accordingly to the work flow.

First, the CPG pattern selector module was implemented as a 2-bit up/down
unsigned counter. Both up and down signals are declared as input and they are
directly mapped to two buttons located on the base board in which the ZTEX
board is connected. The current counter value indicates the gait: 0 for walking, 1
for trotting, and 2 for running. This information is shown to the user by means of
a pair of LEDs in binary format.

Every time the Central Pattern Generator (CPG) pattern selector changes its
value, an interruption is generated through the signal new_mode to notify that
there is a new data available to the next module. This component is the AER out
module, which converts a 2-bit value to a 16-bit AER event, and also handles the
AER handshake protocol (REQUEST and ACK signals). This conversion to AER
is carried out since the system needs to send information to the SpiNNaker to
generate the pattern.



162 Chapter 5. Neuromorphic audio applications for robotics

TABLE 5.3: AER decodification scheme.

CFR FFR CMR FMR CBR FBR CFL FFL CML FML CBL FBL
FW 0 1 2 3 4 5 6 7 8 9 10 11
BW 12 13 14 15 16 17 18 19 20 21 22 23

As it 5.2.1.2, a VHDL module was developed by the SpiNNaker team (Plana
et al., 2014) for interfacing AER-based neuromorphic devices with the SpiNNaker
machine. It takes AER events as input following the AER protocol, and generates
packets under the 2-of-7 protocol for the communication from the AER device to
the SpiNNaker board. For the reverse communication, it takes 2-of-7 packets and
generates AER events. In addition, this module provides four status signals to
check in real-time if the communication is working properly.

AER events received by the SpiNNaker, generated by the AER-SpiNN
module, are captured by the AER in module, which implements the handshake
and sets the value of the event as a 16-bit output signal. In the same way as
the AER out module, an interruption is enabled every time the AER-in module
receives a new input event.

Those input events correspond to the spikes fired by the output layer
neurons of the SNN implemented on SpiNNaker. Since each output neuron
manages the position of one servomotor, these events have to be mapped to
the correct one. Therefore, depending on the address of the event, an action is
performed over a servomotor.

There are two actions available: either move the servomotor towards the
forward position or move the servomotor towards the backward position. The
decoding scheme is summarized in Table 5.3, where each column represents the
joints of the NeuroPod following the same nomenclature as in Fig. 5.3: the FW
row means forward action, the BW row means backward action, and each value
is the AER event which triggers the action.

The commands received are converted to motion through a PWM generator
block, which receives the decoded AER events by means of a 24-bit signal
(one enabling signal per action). This PWM generator block was implemented
instantiating as many PWM generators as the number of joints that the NeuroPod
has.

The PWM generator implemented includes some features that make the
NeuroPod motion control easier: up to three pulse width values can be set in
the same VHDL module instead of only one. These values were used to define
the positions that the servomotor had to reach. Those positions are: forward,
backward (corresponding to the actions), and home. Two control signals were
added to the PWM generator to select the configuration of the module: fw, which
enables the generation of the PWM signal associated to the FW position, and bw,
which enables the generation of the PWM signal associated with the BW position.



5.2. Motivation and cases of use 163

Input spike

Inactivity

8 ms

Instability

11 ms

Stable pattern

Phased output spikes  -flexion action- (See Fig. 4)Output spikes  -extension action-

FIGURE 5.7: Output spikes for each gait pattern simulated on SpiNNaker.

This module has two input signals, which are connected following the
scheme shown in Table 5.3. When a control signal is set to high, either through
a single pulse or a constant signal, the pulse width value associated with
that control signal is loaded in the configuration register. Then, the PWM
output signal changes automatically, moving the servomotor to the commanded
position. That output signal is held until the module receives a different action
command. Finally, the home position is only activated when the global reset
signal is released.



164 Chapter 5. Neuromorphic audio applications for robotics

8 11 46 13 1337

WALK TROT RUN

[0] [1] [2]

Inactivity

Instability

Stable pattern [X] Input spike from FPGA with address X (See Fig. 4)

Phased output spikes  -flexion action- (See Fig. 4)

Output spikes  -extension action- (See Fig. 4)

ms ms msms ms ms ms ms

FIGURE 5.8: Output spikes from the SpiNNaker simulations that show the
gait pattern change behavior.

5.2.1.5 Simulation results

The results obtained for the simulation of each of the gait patterns on SpiNNaker
are shown in Fig. 5.7. This figure shows the output spikes that the SCPG
generates.

Then, in Fig. 5.8, the same plot is shown for a different scenario in which
we simulated and tested the behavior of the SNN when forcing the system to
change from a specific SCPG to a different one. The figure shows how the system
is able to change from walk to trot and then to run, generating a stable pattern
for each gait after a specific period of time, which, in this case, is 23 milliseconds.
This delay is the time that the network takes to inhibit the neurons related to the
previous gait that was being executed plus the time that the neurons related to the
current pattern take to start generating the correct firing output in a stable way.
Different delays related to these simulations were measured and are presented in
the image.

It is important to mention that these delays were measured in simulation.
For a real-time scenario, the delays do not match these values since, due to the
fact that the servomotors were not able to work at such speed, we had to set
the time_scale_factor parameter on the SpiNNaker board to 100. This made the



5.2. Motivation and cases of use 165

whole simulation run 100 times slower in real time, which is very convenient for
this approach.

Regarding the FPGA, a study of the VHDL module was carried out. A post-
implementation resources consumption report was generated, and also post-
implementation simulations were performed to measure the delays of every
single VHDL module. The obtained results from those analyses are shown in
Table 5.4. To obtain these times, a clock source of 48MHz (23.83 ns of clock period)
was used.

TABLE 5.4: FPGA resources consumption and delays

Resources consumption Delays
LUTs Registers Time (Clock cycles)

CPG pattern
selector 2 (<0.01%) 4 (<0.01%) 20.83 ns (1)

AER
out 7 (0.01%) 5 (<0.01%) 104.15 ns (5)

AER-SpiNN
interface 213 (0.45%) 272 (0.29%) 1374.78 ns (66)

AER
in 7 (0.01%) 10 (0.01%) 41.66 ns (2)

CPG pattern
decoder 12 (0.03%) 24 (0.03%) 20.83 ns (1)

PWM generator
block 720 (1.53%) 576 (0.61%) 1895.53 ns (91)

NeuroPod
Top 986 (2.09%) 893 (0.95%) 3457.78 ns (166)

The amount of resources used by the top module is around 2.1% of the
available LUTs and around 1% of the available number of registers. Most of the
resources were consumed by the PWM generator due to the fact that it needs a
clock divisor, a square signal generator, and a duty-cycle counter for each PWM
signal to be generated. Therefore, the synthesis tool infers three counters along
with its combinational logic control circuitry. This low resources consumption
will allow us to implement more complex spike-based motor control modules
(Jimenez-Fernandez et al., 2012; Perez-Peña et al., 2013b) as well as improving the
NeuroPod top module by including both visual and auditory input information
about the environment.

In addition, the delay added by the full design, in the worst case, is almost
3.5 µs, which is irrelevant compared to the delays presented in Fig. 5.8.



166 Chapter 5. Neuromorphic audio applications for robotics

After the simulation results were obtained, a real-time analysis of the full
system was carried out. Both the latency from a high level command to the
generation of the CPG and the actual motion of the leg were measured using
an oscilloscope. These delays can be discarded since they are three orders of
magnitude lower than the time taken by the SpiNNaker to generate the SCPG
which is 800 ms (the simulated time updated with the time_scale_factor).

According to that latency and the time that a gait cycle takes to be performed,
we can conclude that the theoretical maximum value of the movement speed is
4.16 cm/s. This value is obtained from the distance travelled by the hexapod
divided by the time taken to do it. If we look at the WALK gait, it can be seen that
all the legs (6 legs in total) take 12 milliseconds to complete a cycle (with a cycle
being the period of time that the hexapod takes until its legs start repeating the
same pattern again).

Considering that every single motor moves 30 degrees each time, the
following equation can be used: distance_traveled = sin(angle_moved) ∗
f emur_length. Replacing the values: distance_traveled = sin(30) ∗ (5) = 2.5cm
This value is multiplied by two since the complete cycle is done by the two sides
of the hexapod. Then, the 12ms should be multiplied by the time_scale_ f actor
(100) resulting in 1.2s. If now, we divide the distance travelled by that time,
the maximum speed is the result: 0.05cm/1.2s = 4.16 cm/s. That will offer the
maximum theoretical speed. The general equation is:

Speed =
f emur_length

time_scale_ f actor ∗ time_gait
(5.1)

After that, we compared the simulation time with the real-time delays3. To
this end, four cases of study were defined: resting to movement, stabilization
time, movement’s period, and change time between two different gaits. There
were time differences since the parameter time_scale_factor was set to 100 in the
SpiNNaker script in order to slowdown the SpiNNaker output.

The delays introduced in the open-loop control are very low, in the order
of ms (see Table 5.4). Previous works have a 50ms delay of propagation (Donati
et al., 2014), or a convergence time of 5 seconds in (Crespi, Ijspeert, et al., 2006).
Our results show a time of 23 ms (worst case) to converge and around 20ms
to propagate the gait. Another difference with (Donati et al., 2014) is that we
propose to use SpiNNaker (Furber et al., 2014a) instead of the neuromorphic chip
ROLLS (Qiao et al., 2015). Also, the CPG proposed in this work uses 30 neurons
(considering the pattern selector and the CPGs) which is 10 neurons less than
(Donati et al., 2014).

3Demonstration video is also available: https://youtu.be/YZYAPDJHvLI

https://youtu.be/YZYAPDJHvLI


5.2. Motivation and cases of use 167

5.2.1.6 Towards an audio-guided behavior

Changes in animals’ locomotion are motivated, in general, by either looking for
food or avoiding predators. In both processes, external stimuli are received
through sensors like the eyes, the skin, or the ears. The collected information
about the environment is then processed by the brain, thus producing a reaction
to that input stimulus. This reaction is translated to movement by the spinal cord,
as it was explained in Section 5.2.1.3. Applying this idea to robotics, and using the
advantages of neuromorphic systems, a new generation of robots with learning
capabilities and low-power consumption is starting to gain popularity.

For instance, a fish robot with light, touch, and water sensor (Crespi et al.,
2008b) were used for feeding a SCPG in order to study the adaptation processes,
in real-time, in the robot’s behavior when unpredictable external stimuli were
present. In addition, sensors’ output data was used as feedback to the network
for improving the locomotion, achieving a closed-loop system. Similar work was
presented in (Youssef et al., 2020), where a fish robot was equipped with a pair
of frame-based cameras and a pair of event-based cameras. The main task is
to identify an underwater light stimulus and, depending on its color, activate
the SCPG locomotion to either follow (simulating a prey) or avoid (simulating a
predator) the light source in real time.

The event-based cameras were also mounted in an hexapod robot (Ting et al.,
2020; Lele et al., 2021), using the visual stimulus for learning the locomotion
by imitation and also for object tracking. All of these works used a SNN
for implementing the SCPG in real-time, including adaptation modules for
providing the system with certain autonomy. Although visual stimuli could
be considered as the main source of information, auditory information becomes
crucial when vision does not provide relevant information.

In this direction, some works can be found in the literature. Gomez et al.
proposed in (Gomez-Rodriguez et al., 2007) a system where a CPG, implemented
in VHDL for FPGA, was managed by the output of an analog cochleae (Yang
et al., 2016) for moving a humanoid robot. The cochlea’s output was processed
in order to extract the beats for the event’s burst, modifying the CPG’s output
for each detected beat. Furthermore, a review of the state-of-the-art in the use of
the peripheral auditory system of lizards implemented in biorobotics models for
sound source localization was carried out in (Shaikh et al., 2016).

Most of the implementations use SCPG models, as well as sensors for
interacting with the system and to cause a change in the output locomotion in real
time. However, the use of a fully neuromorphic system (together neuromorphic
sensors and neuromorphic platforms for deploying the SNNs) is not that usual.
Therefore, the proposed NeuroPod system was updated in order to include a
neuromorphic auditory sensor for changing the output locomotion of the robot
(Gutierrez-Galan et al., 2019a). The aim was to implement a real-time sound
recognition system that, depending on the input sound, the hexapod robot react



168 Chapter 5. Neuromorphic audio applications for robotics

AERNode board

Xilinx Spartan 6

SpiNN-5

Audio class. SNN

sCPGs

Sp
iN

N
ak

er
 li

n
k

C
A

V
IA

R
 -

 S
pi

N
N

ak
er

 li
n

k

A
u

di
o

 in
p

ut
 b

o
ar

d

Hexapod controller board

SpiNNaker 
interface

NeuroPod

I/O

CAVIAR

NAS

sWTA

PC

Pure tones generator 
application

CAVIAR to AER-
Rome

Power supply

SpyNNaker script

Block diagram of the system

FIGURE 5.9: Block diagram of the updated NeuroPod system. It is
composed of the SpiNNaker board, implementing different networks, an
FPGA-based board, in which the NAS was deployed, and a 3D-printed

hexapod robot frame.

in a specific way, similar to the work presented in (Youssef et al., 2020). An
overview of the new NeuroPod system is shown in Fig. 5.9.

The sound recognition system, already presented in (Dominguez-Morales
et al., 2016) and in (Dominguez-Morales et al., 2017a), was composed by a NAS
and a multilayer SNN deployed on SpiNNaker, and it was used to classify eight
different pure tones in real time. The training method of the SNN was designed
by the authors based on the NAS output, achieving 100% of accuracy without
any noise, and decreasing that value until 74% when the SNR values was set to 3
dB. The network was composed of three layers: the input layer, that receives the
events from the NAS, and it has as many neurons as NAS’ frequency channels;
the hidden layer, that extracts features from the input sound, and it has as many
neurons as the number of pure tones to be classified; and the output layer, that
provides the output classification by mean of the output firing rate, meaning that
the neuron that fires the most is the winner. This layer also has as many neurons
as tones to be classified (eight in this case), and its output is used as gait selector.

In the FPGA side, the update was carried out by replacing the CPG pattern
selector module (shown in Fig. 5.6) to a mono NAS with 64 frequency channels,
as shown in Fig. 5.10, in the FPGA top module. The button input signal to the
top module was replaced by the new input interface, which were the I2S protocol



5.2. Motivation and cases of use 169

AER-SpiNNaker 
software 
interface

64 channels cascade mono NAS

I2s_bclk

aer_data
/16

ack

req

data
/7

ack

ack

data
/7

active errorreset dump

aer_data
/16

ack

req

PWM CFR

PWM FFR

PWM CMR

PWM FMR

...
PWM CBL

PWM FBL

AER in
new_aer

aer
/16

actions
/24

I2s_din

event
/5

fw

bw

fw

bw

fw

bw

fw

bw

fw

bw

fw

bw

CPG 
pattern 
decoder

I2s_lr

PWM generator bank

fblcfr cmr fmrffr cbr cfl fflfbr cml cblfml

NeuroPod VHDL module

FIGURE 5.10: Audio-guided NeuroPod FPGA top module overview.

signals for sending the audio samples to the NAS. No other VHDL module was
neither replaced nor modified thanks to the modularity of the design.

Regarding to the SCPG original network, shown in Fig. 5.5, several
modifications were needed. First, the SNN for the pure tone classification was
added, without any change, to the original SNN, thus having now two well-
differentiated parts. Then, the output layer of the pure tone classification network
was connected with the input layer of the SCPG network, where the pattern
selector is located. Since the original SCPG network was able to generate up to
three different gaits, only three output neurons from the pure tone classification
network (neurons’ IDs 0, 2, and 4) were connected one-to-one with the input layer
of the SCPG with an excitatory connection.

In addition, a new neuron was added to the input pattern selector layer of
the SCPG network to stop the gait generation for stopping the robot’s movement.
This neuron has an one-to-one excitatory connection with the neuron 6 of the pure
tone classification network, and a one-to-one excitatory connection with a global
inhibitory neuron. This global inhibitory neuron is able to inhibit the whole SCPG
network, having an inhibitory connection with a connection architecture one-to-
all.



170 Chapter 5. Neuromorphic audio applications for robotics

1

0

2

1

2

0

CPG Trot

CPG Run

CPG Walk

WTA + Pattern selector Central Pattern Generators Output neurons

CFR

CMR

CBR

FFR

FMR

FBR

CFL

CML

CBL

FFL

FML

FBL

Input layer Hidden layer Output layer

1

2

3

62

63

0

1

2

0

7

Channel 0

Channel 1

Channel 2

Channel 3

Channel 

62

Channel 

63

2

4

0

7 GI3

Inhibitory projectionExcitatory projection Phased-CPG patternCPG pattern

Full SNN
(Audio classification + sCPG)

FIGURE 5.11: Diagram of the complete spiking neural network model used
for the audio-guided NeuroPod. This network is composed of several sub-

networks, where each of them has a specific task.

The architecture of the input layer was slightly modified since the gait
selection now will come from another SNN, the sound detection network, instead
of from the button on the FPGA. This layer was converted to a WTA network,
thus modifying the parameters of both the neurons and the synaptic connections,
in order to adapt the neurons to the new input firing rate. In the original work,
this process was carried out by software in the host computer since there was not
any further processing. A delay population network was added to each SCPG
output neuron for slowing down the SCPG’s output spikes in order to be able to
move the robot’s motors. In the original work, this adjustment was performed by
setting the running options. However, since the pure tone classification network
was trained for running with the normal configuration, the delay population was
needed to adapt the SCPG output timing. The final network’s architecture is
shown in Fig. 5.11.

Finally, the hardware setup was also adjusted for allowing to run the new
system’s configuration. The SpiNN-3 machine was replaced by the SpiNN-5
machine for allowing the deployment of bigger networks due to its 48 SpiNNaker
chips. Moreover, the FPGA board was also changed since different connectors
were needed. The AER-Node board (Iakymchuk et al., 2014) was used instead
of the ZTEX 2.13. Fig. 5.12 shows the entire hardware setup of the updated
version of NeuroPod. A GUI was implemented for facilitating the script running
and the pure tone generation through four buttons corresponding to the four
pure tones that were used. This software application also receives and shows the
output classification in order to check if the pure tone recognition network works
properly.

A set of tests were carried out for checking the transitions between the
patterns’ generations. The main goal of these tests was to check the behavior



5.2. Motivation and cases of use 171

AER Node board

SpiNN-5

Hexapod robot

Gaits control app

CAVIAR to 
SpiNNaker1

1L. Plana et al. “spI/O: A library of FPGA designs and reusable 
modules for I/O in SpiNNaker systems” (2014).

Servo
controller

board

Audio in

Hardware setup

FIGURE 5.12: Audio-guided NeuroPod hardware setup.

of all the networks during the gait’s transition and to evaluate the result of
the transitions. It may happen that the recognized sound does not match with
the input sound, thus producing the wrong gait, or even that the generated
movement does not follow any expected pattern due to a failure in the firing
synchronization. Some factors which could cause these errors are: to use a
different volume on the computer for playing pure tones compared to the one
used for the training process, or to detect several input stimulus changes in a
short time period, among others.

Fig. 5.13 shows the running output for one test case. Three different plots
were represented: the output events of the input layer (top), the WTA (middle),
and the output layer (bottom). The input layer corresponds to the neuron
population that receives the events from the external NAS, while the output
layer corresponds to the SCPG output that is used to move the motors. The
test comprised four different parts. Firstly, the system was started, and no input
sound was played. Secondly, a pure tone of 261 Hz was played for two seconds.
Thirdly, the pure tone was changed to 130 Hz and played again for two seconds.
Finally, the frequency of the pure tone was changed again to 1396 Hz, and it was
played until the end of the experiment, being the test’s duration ten seconds.

According to the input stimuli, the expected output behavior is the
following: if no input stimulus is presented, there should be no output response;
if the 261 Hz pure tone is played, the SCPG network should produce the TROT
pattern; if the 130 Hz pure tone is played, the output pattern should be WALK;
and when the 1396 Hz pure tone is played, the SCPG network should stop



172 Chapter 5. Neuromorphic audio applications for robotics

NO SOUND 130 Hz261 Hz 1396 Hz

In
tp

u
t 

la
ye

r
W

TA
 

O
u

tp
u

t 
la

ye
r

TROT WALK STOPNO STIMULUS

FIGURE 5.13: Output spikes from the SpiNNaker simulations that show
the gait pattern change behavior according to the input auditory stimuli.

producing events. It can be observed in Fig. 5.13 that the obtained output
matches with the expected behavior. No output events were produced in the
absence of input sound. In addition, the sound recognition network achieved a
100% of accuracy in the pure tone classification, as it is shown in the output of the
WTA network.

After the first auditory stimulus is received and recognized by the network,
there is a short period of instability until the TROT gait is correctly generated.
This effect was already shown in 5.8. The time delay between the firsts auditory
events and the firsts movement’s events is just a few tens of milliseconds, and
a few hundreds of milliseconds for the instability part. Then, the TROT gait is
properly generated until the frequency of the pure tone changes. The empty
spaces in the input layer plot are produced by the software that generates the pure
tones since it first stops the tone generation and then produces the new one. After



5.2. Motivation and cases of use 173

changing the tone’s frequency, and the WTA identifies a new winner, the pattern
selector network stops generating the current pattern and starts generating the
new one, thus having again an instability period. This effect also occurs when
the last pure tone is generated. However, in this case the recognized pure tone
corresponds to the STOP command, therefore not producing any output events.

This proof-of-concept shows that the idea of having a neuromorphic audio-
guided robot can have multiple applications, such as rescue missions after natural
disasters or checking tasks in dangerous places. The research will be focused on
to learn how the auditory information is processed and how it could interact with
locomotive decisions using neuromorphic hardware applied to neurorobotics.

5.2.2 Audio-visual sensory integration

Living beings combine various sensory cues with previously acquired knowledge
to safely navigate towards a target destination. In close analogy to biological
systems, a neuromorphic system which decides how to reach a sound source
without collisions, based on auditory and visual input, was designed and
implemented. The development of this sensory integration system, which
identifies the shortest possible path, is a key achievement towards autonomous
robotics.

In the presence of acoustic stimulation alone, the heading direction points
to the direction of the sound source. When a visual input is introduced into
the network, the heading direction always points at the direction of null optical
flow closest to the sound source. Hence, the sensory integration network is able
to find the shortest path to the sound source while avoiding obstacles. This
section shows that a simple, task-dependent mapping of sensory information
can lead to highly complex and robust decisions. The proposed neuromorphic
system comprises two event-based sensors (the eDVS for vision and the NAS for
audition) and the SpiNNaker processor.

This work (Schoepe et al., 2019) was carried out in collaboration with
Thorben Schoepe and Elisabetta Chicca, from the CITEC at Bielefeld University
and the Bio-Inspired Circuits and Systems (BICS) Lab at the University of
Groningen. The optical flow encoder network was developed as part of Thorben
Schoepe’s thesis, while the sensory integration network is the result of the
research collaboration between our research groups, and it belongs to both theses.

5.2.2.1 Problem to solve

Collision free navigation in a cluttered environment requires fast and robust
decision making. Animals take decisions in a timescale of tens of milliseconds
to execute collision avoidance (Barron et al., 2015). Furthermore, they take
more complicated decisions based on multimodal sensory information combined
with previously acquired knowledge. For example, the female budgerigar (a



174 Chapter 5. Neuromorphic audio applications for robotics

small Australian parrot) incorporates auditory and visual input to track down
a male. The bird uses auditory cues, the Interaural Level Difference (ILD) and the
Interaural Time Difference (ITD), to estimate the male’s position (Amagai et al.,
1996). While approaching the male, the female effectively avoids collisions thanks
to visual information. First investigations indicate that the bird merges Optical
Flow (OF) information with other visual cues to avoid obstacles (Altshuler and
Srinivasan, 2018).

FIGURE 5.14: The autonomous robot navigates through a cluttered
environment. It tries to reach a sound source while avoiding obstacles.

A few task specific SNNs which combine different sensory cues and
previously acquired knowledge have already been proposed. (Chan et al., 2012)
and (Finger et al., 2010) increase the localization preciseness of their sensory
integration network by merging different sensory cues which point at the same
target. (Horiuchi, 2009) combines previously acquired knowledge with one
sensory cue to reach a target direction without collision. We present a new type
of SNN which mimics the behaviour of the budgerigar and other animals.

5.2.2.2 Bio-inspired solution

The proposed bio-inspired network is able to identify and follow the direction
of a sound source while avoiding obstacles. The model consists of an
Optical Flow Encoder (OFE) network and a Sound Source Direction (SSD)
network which receive sensory input from the embedded Dynamic Vision Sensor
(eDVS) (Lichtsteiner et al., 2008) and the Neuromorphic Auditory Sensor (NAS)
(Jimenez-Fernandez et al., 2017) respectively. The two networks feed into the
Sensory Integration (SI) network which chooses the agent’s heading direction.
We evaluate the network’s performance in open loop by applying different
combinations of auditory and visual stimuli to the two sensors.

5.2.2.2.1 Optical Flow Encoder Network (OFE)



5.2. Motivation and cases of use 175

The speed of an object moving in the visual field of a translationally moving
agent is inversely proportional to its relative distance. Bees, flies, and some bird
species use this visual cue called Optical Flow (OF) to safely navigate through
densely cluttered environments (Altshuler and Srinivasan, 2018), while humans
use the OF to balance. Since the discovery of OF, various OF encoding algorithms
and models have been designed (Brosch et al., 2015), based on the Hassenstein-
Reichardt-Detector (Hassentstein and Reichardt, 1956).

One very recent OF detector model is the sEMD proposed by Milde et al.
(Milde et al., 2018). It encodes the time difference between two spikes from
adjacent pixels in both the number of output spikes and the Interspike Interval
(ISI). In this work we feed filtered data from the eDVS into a sEMD population
to encode the spatial distribution of OF (see Fig. 5.15). A spatio-temporal
filter population between the eDVS and the sEMDs reduces the noise and the
spatial resolution of the visual information (See (Milde et al., 2018) for further
information). The OFE network’s output provides topographically arranged
relative distance information in form of OF to the SI network. The whole OFE
network was implemented on SpiNNaker.

5.2.2.2.2 Sound Source Direction Network (SSD)

Birds use the ILD and the ITD to perform the sound source localization task
(Amagai et al., 1996). While ILD achieves better accuracy with high-frequency
sounds, ITD performs better when low-frequency sounds are present(Liu et al.,
2013). As it was detailed in Section 1.3.1, the ITD can be estimated by calculating
the correlation between the input stimuli from both ears to determine the position
of a sound source.

According to (Jeffress, 1948), the correlation can be calculated by using an
array of spike-based coincidence detector neurons. The excitatory output spikes
from the cochlear nucleus Cochlear Nucleus (CN) are fed into those detectors
through delay lines. Depending on the sound source position, the sound waves
arrive earlier to one ear than the other. Those input stimuli coincide in a specific
coincidence detector, which identifies the estimated position. Note that the time
difference is directly related to the distance between the ears.

Since the ears’ distance in birds amounts to just a few centimetres, time
differences are in the tens of microseconds range. These fine temporal delays are
not calculable on SpiNNaker due to limitations in temporal resolution. Because
of that, a spike-based Jeffress model was designed as a real-time VHDL module to
be added along with the NAS, detailed in Section 4.2. However, the coincidence
detector neurons project onto a WTA network (Oster et al., 2009) implemented on
SpiNNaker to decrease the noise in the SSD network’s output. The WTA network
feeds spikes into the Lateral Sound Transmitter (LST) population explained in the
next section (see Fig. 5.15).



176 Chapter 5. Neuromorphic audio applications for robotics

5.2.2.2.3 Sensory Integration Network (SI)

The OFE network’s retinotopic output map and the SSD network’s tonotopic
output map are arranged topographically. Both networks project (directly or
indirectly) onto the SI network’s Decision Making Winner-Take-All (DMWTA)
map (see Fig. 5.15). This type of mapping seems to be quite efficient since it has
been found in different vertebrates which have been optimized over millions of
years (Kaas, 1997). The different sensory maps have to be correctly aligned to
each other to combine multimodal sensory cues in one network.

In human beings the spatially more reliable visual input teaches the
adaptation of the auditory input map (Shi and Müller, 2013). Such an alignment
adaptation has been simulated in neuromorphic systems (Chan et al., 2012; Finger
et al., 2010). Given the current open loop configuration, there is no need for an
adaptive alignment of the visual and auditory maps. Therefore, we simply map
the corresponding positions in all three networks.

Besides the alignment, the importance of different sensory information with
respect to decision making has to be taken into account. Visual information
always dominates the proposed network since collision avoidance is an essential
task to guarantee the agent’s damage-free navigation. To achieve that, the OFE
network’s output (visual information) strongly inhibits the SI network’s DMWTA
population (see Fig. 5.15). This guarantees that the agent never drives into the
direction of a nearby object because the DMWTA population’s output defines the
heading direction.

Whenever the visual field is object free, the heading direction equals the
sound source direction created by the SSD network. That means that the SSD
network’s output could directly be mapped onto the DMWTA population. Still,
when an object appears directly in the sound source direction the corresponding
DMWTA neuron is strongly inhibited so that it can not win. In this condition the
LST population comes into play (see Fig. 5.15). The LST neuron positioned at
the SSD excites the two adjacent neurons. This lateral excitation further spreads
through the LST population until a position with zero OF input is reached. At
that position the DMWTA population releases a spike.

Since the DMWTA population consists of a hard WTA network (Oster et al.,
2009) the winning neuron inhibits all other decision making neurons. At each
instant the network can only decide for one specific heading direction. The
selected heading direction always appears at the position of null OF closest to
the sound source direction. This is caused by the fact that the lateral excitation
wave in the LST population reaches the closest position with null OF with the
smallest delay and with the highest excitation. The lateral excitation decreases
with increasing lateral sound source distance given that the lateral connections
are weak.



5.2. Motivation and cases of use 177

FIGURE 5.15: Complete network. The OFE population consists of the SPTC
LIF population and the sEMD population. The SSD population includes
coincidence detector neurons and an additional hard WTA network. Each
WTA consists of an excitatory LIF neuron population and one GI neuron.
All excitatory LIF neurons are connected to the GI neuron. The GI neuron

projects back onto the excitatory LIF neurons.

This WTA structure matches with findings in mammals supporting the
hypothesis that competing alternatives switch off each other through inhibition
(Barron et al., 2015). When a spike is released by the DMWTA population, it also
sets back the LST population by inhibition.

5.2.2.3 Hardware setup

The AER DVS128 retina chip (Lichtsteiner et al., 2008) comprises pixels which
mimic the bipolar cells present in the mammalian retina. It consists of an array
of 128×128 independent pixels that respond to relative light intensity changes in
real time and are intrinsically invariant to scene illumination. A pixel produces
an event in response to a change in luminance over time. As soon as the event is
produced, the address of the pixel (x and y coordinates, and polarity) is written
on an arbitrated handshaked asynchronous bus known as the Address Event
Representation (AER) bus. The eDVS (Müller and Conradt, 2011) consists of a
DVS128 chip connected to an ARM microcontroller. This device is intended for
embedded robotics.

The NAS (Jimenez-Fernandez et al., 2017), that was already detailed in
Section 1.3.2.1.4, is a spike-based audio sensor inspired by Lyon’s model of the



178 Chapter 5. Neuromorphic audio applications for robotics

FIGURE 5.16: eDVS and NAS feeding spikes into a SpiNN-3 board through
the SpiNNlink connectors. The eDVS can directly process visual input

while the NAS receives stereo audio input through an audio jack.

biological cochlea (Lyon and Mead, 1988), implemented on FPGA. This sensor
decomposes incoming audio signals in their frequency components as the inner
hair cells do in the inner ear. It was implemented using a SLPF bank with
a cascade topology (Jimenez-Fernandez et al., 2010). Each SLPF represents a
frequency range, and its output consists of a stream of AER events. In this work,
we used a 64-channel binaural NAS generated with OpenNAS (Gutierrez-Galan
et al., 2021b) 4. In addition, a 4-node SpiNNaker machine was used since it has
two SpiNNaker links for connecting two external devices. Those interfaces were
used to connect the eDVS and the NAS as input to the SNN (see Fig. 5.16).

5.2.2.4 Simulation test and results

Two experiments were conducted to characterize the network’s performance. In
the first experiment, only auditory information was fed into the network to verify
that the SI network’s heading direction follows the sound source direction. In the
second experiment, OF was added to investigate the network’s behaviour when
it tries to follow a sound source in a cluttered environment.

In the first experiment, a synthetic audio file was generated by using a
Python script along with the RIR generator library. In this script, a 500 Hz sound
source was swept from left to right at 2 meters receptor distance. This recording
was fed into the NAS in order to check the SI network’s sound source following
behaviour.

For all tests, events from one of the 64 NAS channels with a center frequency
close to the sound source frequency of 500 Hz were used. As shown in Fig. 5.17
(a), the heading direction (identified as neuron id) follows the sound sweep from

4https://github.com/RTC-research-group/OpenNAS

https://github.com/RTC-research-group/OpenNAS


5.2. Motivation and cases of use 179

left (high id) to right (low id). The correlation between expected and achieved
heading direction amounts to 89% (Pearson correlation coefficient) (Benesty et al.,
2009).

FIGURE 5.17: (a) SI network’s heading direction response to a 180 degrees
sound source direction sweep. (b) Setup to record OF data used in Figure
5.17c. An eDVS is mounted on top of a robotic platform which drives
purely translational with a speed of ~0.8 m/s through the scene. The first
obstacle is located in the middle of the visual field, the second one on the
right side and the last one on the left side. All obstacles are positioned at
least 40 cm above the ground so that the robot can drive underneath them.
Heading directions for a centered sound source with OF (c) and without OF
(d). (e) Heading direction mean and heading direction standard deviation
(stdd) with OF (red) and without OF (blue) for five different time periods

with different visual scenarios

In the second experiment, a synthetic audio file with a centered sound source
generated similarly as in subsection 5.2.2.2.2 was fed into the NAS. Additionally,
eDVS recordings were projected into the OFE network. These recordings were
done with a robot executing pure translational motion through the environment
as shown in Figure 5.17 (b).

As long as only sound information is fed into the whole network, the mean of
the heading direction lies as expected close to neuron id zero, which corresponds
to the sound source direction (Fig. 5.17 (d) and (e)). The same accounts for region
one in Figure 5.17 (c) and (e) because the robot is not moving. In Figure 5.17
(c), in region two, three, and four, a high amount of OF changes the heading
direction. In region two, the heading direction’s standard deviation is very high.
As explained in subsection 5.2.2.2, the heading direction always points to the
direction of null OF closest to the sound source direction.

Since the obstacle is located in the middle, there is no clear closest direction
with zero OF and the heading direction fluctuates a lot between both sides. This



180 Chapter 5. Neuromorphic audio applications for robotics

could be seen as a problem, but in case of a closed-loop experiment, the first
laterally located spike will cause a turn of the robot so that the object is not
centrally located anymore. What happens in case of a laterally positioned object
can be seen in region three. The heading direction points significantly to the left.

This can be explained by the fact that the obstacle is located at the right side.
This makes the path at the left side around the obstacle the shorter one. In region
four, the same effect can be shown but with the obstacle on the left side. After
avoiding the obstacles, the heading direction goes back to the middle. This is
almost identical to the behaviour without OF (Region 5). As expected, the SI
network always points at the direction of null OF closest to the sound source.

The proposed sensory integration SNN shows the expected behaviour: it
adjusts its heading direction to the sound source direction with a correlation
of 89%. When OF is introduced into the network the heading direction always
points at the direction of null OF closest to the sound source. Hence, the sensory
integration network is able to find the shortest path to the sound source while
avoiding obstacles under well-defined test conditions.

5.2.2.5 First steps to a closed-loop system

After testing the system using recordings from both sensors and demonstrating
the ability of the network to select the shorter path around obstacles toward the
sound source, real-time input stimuli were feed into the SNN. In addition, the
system was improved by closing the loop. Two different test scenarios were taken
into account: 1) real-time input with static sensors’ positions and 2) real-time
input with dynamic sensors’ positions.

In the first test scenario, a NAS, a 3DIO ears-like microphone5, a eDVS, and
a SpiNN-3 machine were used, as shown in Fig. 5.18. The 3DIO microphone was
used as audio input for the NAS, which was directly connected to SpiNNaker.
A headphone was placed over the microphone to avoid external noise and to
control the input sound stimulus. In addition, the eDVS sensor, also connected to
SpiNNaker, was placed on a table and the background objects were removed.

For the auditory stimulus, three positions of the 500 Hz pure tone were used:
-90º, 0º, and 90º (left, middle, and right). This way, the sound source always
belongs fixed to a specific position in the space. For the visual stimulus, the
optical flow generation was carried out by shaking an object in front of the eDVS
since it was fixed on the table. This way, an obstacle could be simulated by
shaking the hand for a time in front of the camera or in one of both sides, as
shown in Fig. 5.18. No ego-motion events are induced due to the eDVS is fix on
the table, thus facilitating the obstacle detection from the OF.

The SNN model was slightly adjusted for receiving real-time events that may
contain some noise compared to the events from the recordings. Fig. 5.19 shows

5https://3diosound.com/products/free-space-binaural-microphone

https://3diosound.com/products/free-space-binaural-microphone


5.2. Motivation and cases of use 181

FIGURE 5.18: Hardware setup for the test scenario with real-time input and
static sensors’ position. The screen shows the response of the system. Red

dot: heading direction; blue dots: optical flow.

the results of a real-time test where the sound source was placed at 0º and some
OF was generated by moving the hand around the boundaries of the eDVS.

FIGURE 5.19: Output spikes from both the heading direction network and
optical flow estimation network for the static hardware setup real-time test.

These findings were further investigated on a closed-loop robotic platform
(Schoepe et al., 2020). A pan-tilt-unit was selected as robotic platform, where
the event-based sensors were mounted as shown in Fig. 5.20. The ears-like
microphone was place on the top of the platform, which was aligned with the
center of the pan-tilt-unit’s base motor. Then, the Dynamic Vision Sensor (DVS)



182 Chapter 5. Neuromorphic audio applications for robotics

FIGURE 5.20: Hardware setup for the test scenario with real-time input and
dynamic sensors’ position. It is composed by the Neuromorphic Pan-Tilt-
Unit including the Event-Based Camera, Neuromorphic Auditory Sensor

with 3DIO Binaural Microphone, and SpiNNaker board.

was also aligned with the center of the microphone. However, it was placed on
the middle of the pan-tilt-unit due to space restrictions.

The microphone was connected to one AER-Node FPGA board configured
with the same NAS architecture detailed in Section 5.2.2.3. This board was
directly interfaced to the SpiNNaker board through the SpiNN-link interface by
using a custom PCB. The motor was also connected to this board in order to be
controlled by the events coming from the head direction network on SpiNNaker.
In a similar way, the DVS camera was connected to another AER-Node FPGA
board to collect the output events and send them to the SpiNNaker board by
using the second SpiNN-link interface available on the SpiNN-3 machine.

Regarding to the SNNs models, the network’s architecture kept unchanged.
The two networks (optical flow encoder network and a sound source direction
network) feed into the sensory integration network which chooses the system’s
heading direction. This heading direction information controls the position of a
pan-tilt unit through a head direction cell network, as proposed in (Massoud and
Horiuchi, 2010).

For testing the system, the sound source position was moved around



5.2. Motivation and cases of use 183

different positions while the obstacles were simulated by waving their hands or
moving an object in front of the retina. As it can be watched in this video 6,
the system reacted to these stimuli in real time, being able to find the closest
direction to the sound source while avoiding obstacles, and the pan-tilt-unit
moved accordingly to the heading direction calculated in the SNN.

This movement is relatively slow compared to other real-time robotic
applications (Falanga et al., 2019). However, the reason resides in the large
integration time for the audio-visual information. A larger integration period
means more accuracy on the localization or heading direction but a slower
system. The auditory information can be processed in the microseconds range,
while the visual information is processed in the milliseconds range.

This means that when only auditory information is integrated, the system
could work faster. Therefore, one possible solution to speed up the system
could be to decrease the integration time of the obstacle avoidance network, thus
having less visual accuracy but more movement speed. Further research will be
carried out on this aspect by studying the attentional mechanisms. According to
(McDonald et al., 2000), the sound source localization could improve the visual
perception in such a way that we could obtain faster but less accurate reactions to
a new events (involuntary reaction) and also slower but more accurate reactions
after knowing the new situation (voluntary reaction). Those findings would
allow the implementation of the proposed audio-visual integration system into
mobile robots, such as hexapods or 4-wheel robots, for performing neuromorphic
autonomous navigation.

5.2.3 Neuromorphic implementation of auditory perception in
the iCub robotic platform

From the beginning of the technological era, the existence of humanoid robots
was a common desire for many researchers. Soon, this dream will come true,
and humanoid robots will be a common presence among humans. These kinds
of robots are now used for multiple tasks: object and sound recognition, visual
scene understanding, human detection and recognition, speech understanding,
grasping, manipulation and locomotion capabilities, and even robot-human
interaction. However, these capabilities come at a considerable computational
cost and often are deployed on remote computing systems, with the need of
constant data transfer.

In the last years, emergent research fields, such as neuromorphic
engineering, aim to look into biology, not only to take inspiration about how
to design robots, but also to mimic how humans figure out both simple and
complex tasks in order to obtain low-power embedded solutions for solving
those tasks. A well-known example of a humanoid robot is iCub (Natale

6https://youtu.be/M0r2moBMmEo

https://youtu.be/M0r2moBMmEo


184 Chapter 5. Neuromorphic audio applications for robotics

et al., 2017). iCub is a humanoid platform that was designed and developed
to be used as a testbed for algorithms and theories modeling aspects of human
cognition, including learning, perception and motor control (Natale et al., 2021).
It provides to researchers with a ready-to-use, complete, humanoid platform,
with sophisticated kinematics, a human-like sensory system, and a mature
documentation and software Application Programming Interface (API).

Although there is a wide list of works about audio signal processing, most
of them are specialized in one task, such as specific feature extraction for audio
classification, sound source localization, or keyword spotting. Nevertheless, a
combination of all of those elements is desired to obtain the whole information
provided by the auditory scene. This way, bio-inspired models of the Auditory
Ascending Pathway (AAP), as the one proposed by (Dávila-Chacón et al., 2018),
can be used as inspiration for the neuromorphic approaches of the hearing sense.

FIGURE 5.21: The iCub robot. Picture taken from (Parmiggiani et al., 2012).

In addition, many works can be found in the literature that show how
iCub can learn through visual stimuli (Monforte et al., 2020; Iacono et al., 2018;
Wiesmann et al., 2012; Pasquale et al., 2015), but only a few of them use audio-
visual information (Tikhanoff et al., 2010; Gonzalez-Billandon et al., 2020). The
combination of the visual information together with auditory information could
improve the accuracy in the learning procedures, thus allowing the system to be
more robust. Moreover, other complex problems, as the cocktail party problem



5.2. Motivation and cases of use 185

(Thakur et al., 2015) or any other attentional problem (Hambrook et al., 2017),
could be further investigated from the neuromorphic engineering point of view.

In this section, the integration of the NAS, combined with the Superior
Olivary Complex (SOC) model detailed in Section 4.2 (also called Neuromorphic
Auditory Complex (NAC)), within the iCub platform is presented (Gutierrez-
Galan et al., 2022). The main aim of this integration is to provide a neuromorphic
alternative to the traditional methods for audio processing in order to reduce
latency, power consumption, and computational cost. Furthermore, to the best of
our knowledge, this would be the first time that a digital neuromorphic cochlea
model has been integrated within a humanoid robot.

This integration has been carried out by implementing the model separately
into an FPGA and the SpiNNaker platform (Painkras et al., 2013). On the one
hand, the FPGA offers reconfigurability and real-time signal processing of the
proposed neuromorphic model, as well as a direct interface to the iCub main
controller. On the other hand, the SpiNNaker platform offers the environment
for deploying very large SNNs that can simulate complex brain structures, such
as the auditory cortex. In addition, the bidirectional communication between the
iCub and the SpiNNaker offers a potential close-loop system for real-time, audio-
visual neurorobotic applications.

5.2.3.1 The iCub robot

The iCub robotic platform allows researchers to work in any field related to robot
design, development, fabrication, and programming, from hardware to software.
On the one hand, research on new motor design, PCBs, new materials, and new
ASICs are needed to build an efficient and versatile humanoid robot capable
to be used in multiple applications. On the other hand, a high- and low-level
software development is needed to control all the sensors and manage the input
and output data produced by them.

Regarding to the hardware, iCub is provided with several input sensors:
cameras as eyes, microphones as ears, and an electronic skin for providing the
touch sense distributed around the whole body (including the fingers). As
actuators, it has a speaker for talking, motors as muscles, and joints (Natale et al.,
2021). The level of detail of the iCub design is so high that even it has two motors
per eye for implementing the microsaccade movement.

A set of custom PCB are used for communicating with the sensors and
motors. These boards configure the sensors and collect the data, which is then
sent to the host for being visualized and processed. In the same way, the motors’
controller boards read the motors’ status, send the information to the host, and
move the motors according to the user commands. Although the boards are
distributed all over the robot, the main ones are located in the iCub’s head, as
shown in Fig. 5.22. It has mounted a Xilinx Zynq-700 System on a Chip (SoC)
that manage the cameras, the microphones, and the skin. This FPGA board, as



186 Chapter 5. Neuromorphic audio applications for robotics

well as the iCub’s central CPU, is communicated with the host computer, where
YARP is executed for giving software support to iCub.

YARP (Metta et al., 2006) is an open-source middleware upon which the iCub
low-level and application-level modules are developed (Glover et al., 2018). The
goal of YARP is to minimize research-level development and collaboration by
promoting code reuse and modularization, thereby minimizing the workload of
infrastructure-level software development (Metta et al., 2006). It also allows to
use the iCub robot from a high level of abstraction, thus avoiding the need for
deep knowledge about robotics to implement real-time applications.

(A) (B)

FIGURE 5.22: (A) Photograph of the iCub head electronics. (B) Photograph
of the iCub head electronics. Pictures taken from (Parmiggiani et al., 2012).

Alternatively to the traditional version of the iCub, there is a neuromorphic
version of the iCub robot which makes use of neuromorphic sensors and,
therefore, neuromorphic computing and algorithms (Bartolozzi et al., 2011).
The idea of this version is to investigate the advantages of the event-based
representation of the sensed data, such as low latency, low power consumption,
high parallelism, and data transmitting and storing optimizations. In addition,
the asynchronous communication, inherent to event-based systems, reduces the
latency by several orders of magnitude, thus allowing the implementation of
fast sensorimotor closed-loop applications (as shown before), turning iCub as a
perfect candidate to evaluate event-based, real-time robotic applications.

This neuromorphic version of iCub has two Asynchronous Time-based
Image Sensor (ATIS) event-based cameras (Posch et al., 2010) as eyes instead
of frame-based cameras. The skin data is also converted to events in order
to have a neuromorphic representation of the touch sense. However, neither
a neuromorphic cochlea model nor audio-to-events converter were included to
replace the traditional audio processing models and algorithms. The software
part was also updated by adding a new library that incorporates an event-based
framework into the YARP middleware, thus allowing event-based sensors to be
used within the iCub robotic platform (Glover et al., 2018). In this library, a



5.2. Motivation and cases of use 187

multi-threaded event structure is provided to decouple the process of reading
events into a data structure from that of running the algorithm. Modules
are constructed such that the entire history of events is accounted for, but
the processing algorithm runs only at the rate at which it maintains real-time
operation.

According to (Glover et al., 2018), on the iCub robot, a Linux driver reads
the events from the event-based sensors and the zynqGrabber module exposes the
data on a YARP port. A packet of events is sent in a ev::vBottle (a specialized
type of yarp::os::Bottle) such that the bit-coding of the AER is preserved: to
retain data-compression and compatibility with other AER-based hardware. A
module that receives a ev::vBottle can decode the AER and instantiate a ev::vEvent
easily, as event decoding is provided by each event class. Encoding/decoding
typically involves bit-shifts and a typecast to interpret a specific range of bits
as the correct data type. The decoded events are stored in a ev::vQueue which
wraps a std::deque<event<vEvent». The procedure to obtain the event-stream is,
therefore, transparent to the processing module. Reading ev::vBottle from a port
is typically done using callback functionality (i.e., only where data is present)
as the event-stream is asynchronous. Events can be saved and loaded from a
file using the standard tools in YARP as an event-packet is fully interpretable
as a standard yarp::os::Bottle. Therefore, it is easy to save a dataset using the
yarpdatadumper and replay it using the yarpdataplayer. This is done externally
to the event-driven library, simply by connecting the event-stream to/from the
aforementioned modules using YARP connections.

5.2.3.2 Hardware integration of the NAC

As it was mentioned in the previous section, the iCub robot integrates a set of
boards inside its head. Among them, it has a Xilinx Zynq FPGA board, as shown
in Fig. 5.23. This board, in blue color and highlighted with the orange circle,
has multiple purposes. Firstly, it physically interfaces the two ATIS cameras,
the skin, the pair of microphones, and the Ethernet connector for the network
communication through a custom base board PCB. Fig. 5.23 shows the location
of both ATIS cameras (pink) and also the left I2S microphone (yellow).

Secondly, all the events from the neuromorphic sensors, such as the ATIS and
the skin, as well as the sound signals from the microphones, are collected by the
HPU IP core module, that is deployed into the FPGA among other modules. This
IP core not only collect spikes from the sensors, but also send and receives spikes
to and from the SpiNNaker platform (Painkras et al., 2013), as shown in Fig. 5.23.
In addition, the HPU core interfaces to the robot computational system through
the Zynq CPU where a dedicated module manages the communication of spikes
to the robot’s middelware YARP and the event-based processing libraries (Glover
et al., 2018).



188 Chapter 5. Neuromorphic audio applications for robotics

I2S 
microphone

Event-based 
camera

ZynQ

NAC

HPU Core

SpiNNaker

SNNs

Left 
mic.

Left 
camera

Right 
mic.

Right 
camera

Computer

FIGURE 5.23: CAD view of the iCub head components with a block
diagram of the proposed NAC-iCub integration. CAD picture taken from

(Parmiggiani et al., 2012).

Thirdly, the idea was to integrate an auditory system model that comprises
the NAC implemented on the Zynq FPGA, for reconfigurability and real-time
signal processing, and the IC on SpiNNaker, where larger brain areas can be
implemented. Thanks to the bidirectional communication between iCub and
SpiNNaker through YARP, real-time, close-loop audio applications could be
implemented.

For this first part of the integration, both the hardware and the VHDL
modules were analyzed in order to select the best strategy to carry out the
integration. The availability of free communication interfaces in the HPU core
was checked. Once it was verified, the AER sensors map was reviewed, and
a new sensor was proposed to be included. Then, several NAC models were
generated and synthesized for obtaining the FPGA’s utilization report and
determine whether any of the proposed models would fit on it.

The NAC module was integrated within the iCub robotic platform as an
IP core connected to the HPU module. It was finally composed by these 4
components (shown in Fig. 5.24):

1. A a 32-channels stereo NAS (Jimenez-Fernandez et al., 2017), that
implements a spike-based cochlea model, converts the input audio signal
to spikes, which are decomposed into frequency bands;

2. The SOC, detailed in Section 4.2, that implements the MSO model by using
four frequency channels and sixteen neurons per channel;



5.2. Motivation and cases of use 189

NAC

Neuromorphic 
Auditory Sensor 
(NAS)

Neuromorphic 
Superior Olivary 
Complex (NSOC)

AER 
Merger

I2S_sd

I2S_sck

I2S_ws

n

n

data req ack datareqack

16n_reset

clock

ack req data

16 16

L

R

spike bus

single data

data bus

seq.

NAS

NSOC

AER out

NAS output

24

AER-HPU
Wrapper

Wrapper

FIGURE 5.24: Block diagram of the NAC model integrated within the iCub
robot. It is based on the one shown in Fig. 4.21, adding just the AER-HPU

wrapper module.

3. The AER merger, that collects events from both aforementioned modules
and interfaces the NAC to the HPU core by using the AER protocol through
a dedicated port.

4. The AER-HPU wrapper, that adapts the NAC’s output event package
format (shown in Fig. 4.22) to the HPU’s event package format (shown
in Fig. 5.25).

Tables 5.5 and 5.6 summarize both the NAS and the SOC features in detail,
respectively. Statistics provided by the synthesis report showed that the entire
design consumed the 83.40% of the available LUTs, distributed in a 52.18% for
the NAC (38.95% for the NAS and 13.21% for the SOC), a 10.41% for the HPU,
and a 20.07% for other modules. Analyzing these results, it can be seen that
the NAS module was the one that required most resources, even reaching the
100% of utilization when trying a 64-channels NAS. In addition, even though
there are available resources for implementing a more complex SOC model, those
resources were reserved for future improvements of the existing system.

015

Pol

114 10 9 8 7 6 5 4 3 213 12 11

Neuron IDL/R Frequency channel

1 bit 2 bits 1 bit 1 bit7 bits

AER event format for NAS-SOC model for iCub

1631 1730 26 25 24 23 22 21 20 19 1829 28 27

0 Reserved

1 bit 4 bits 3 bits 1 bit 3 bits

Sensor ID

7 bits 1 bit

Sensor ID ResRes XSOAM

FIGURE 5.25: AER-HPU wrapper output event package format.

The event’s package format matches with the AER sensors map, which



190 Chapter 5. Neuromorphic audio applications for robotics

was created to identify every part of the robot suitable to produce events in
an organised way. Two different types of fields can be identified: 1) sensor
identification, like "Sensor ID", that is a unique code for each sensor, and "L/R",
which is only useful for stereo sensor architecture (eyes, ears, hands, etc), and
identifies if the event is coming from the left or right sensor; 2) sensor’s event
information, like "Neuron ID", that identifies the neuron of the SOC model which
produced the event, "AM" (Auditory Model), that identifies if the event was
produced by either the NAS or the SOC, "XSO", that identifies if the produced
SOC event came from the MSO or LSO models, "Frequency channel", that indicates
the NAS’ frequency channel associated to the event for both NAS and SOC
events, and "Pol", that is the polarity of the event.

Comparing this format with the format shown in Fig. 4.22, some differences
can be appreciated. The HPU format contains more fields, which are needed to
process the event within the YARP framework. Furthermore, the position of some
files have been changed in order to maintain the compatibility with the generic
event’s software class in YARP. Nevertheless, the HPU package is produced by
the AER-HPU wrapper module, being thus independent from the NAC module
and easily adaptable to new changes.

TABLE 5.5: Features of the NAS integrated within the iCub robot

Parameter Value Notes
NAS chip Other Zynq 7000
NAS type Stereo Polarity merged

Num. of channels 32
NAS common

settings
Clock freq. (MHz) 100

Input interface Audio input I2S All the values were
by default.

NAS architecture Cascade
Start frequency 20 Hz
End frequency 22000 Hz

Processing
architecture

SLPF output att. -36 dB

Output interface Spikes output AER monitor With the AER-HPU
wrapper.

About the microphones, the standard pair of microphones placed in the
normal iCub was replaced by a pair of MEMS microphones with I2S interface.
These microphones, the ICS-43434 from InvenSense, have a wide frequency
response from 60 Hz to 20 kHz, and a maximum sampling rate of 51.6 kHz in
the high performance mode. Audio samples are collected by a HDL module
that implements the I2S protocol as master. Then, this module sends the data to
the Zynq CPU using a custom driver, which allows to save the audio samples
into a .wav file by using a software application. Since the NAS in the NAC
module already had implemented the I2S interface as input, also in slave mode, it



5.2. Motivation and cases of use 191

TABLE 5.6: MSO parameters.

Parameter Value Notes
Num. of frequency channels 4

Start frequency channel 16 592.47 Hz
End frequency channel 13 1166.80 Hz

Num. of neurons per freq. channel 16
Detection time per channel 700 In microseconds

MSO

Overlaping time 10 In microseconds

was connected to the microphones HDL control module, thus reading the audio
samples and using them as input. This way, recordings in both .wav and event-
based formats can be created using the same audio information for comparison
purposes.

Finally, the sound features extracted with the NAC were pretended to be
combined and integrated by means of more complex structures in order to obtain
relevant information. For this purpose, multilayer SNNs were implemented on
SpiNNaker, that model the functionality of the IC (Dávila-Chacón et al., 2018)
and some parts of the auditory cortex (Dominguez-Morales et al., 2016). As
shown in Fig. 5.23, the output of the NAC is collected by the HPU core and then
sent to SpiNNaker in real-time through another dedicated bidirectional port, thus
allowing the implementation of closed-loop applications.

5.2.3.3 Software integration of the NAC

After verifying that the hardware integration was working by adding a debug
module to the FPGA project and checking by hand every data field of the event
package, the hardware integration part was concluded. Therefore, the software
integration process was started. It consisted of the addition of software modules
for supporting the cochlea events on the YARP event-driven library (Glover et al.,
2018). Thanks to the modular design of the YARP middleware, the integration of
the new modules became easier.

Starting from the iCub robot, the zynqGrabber module, that runs on the Zynq
FPGA, sends the collected events to YARP through a dedicated port by using the
Transmission Control Protocol (TCP) protocol. Those events are received by the
vPreProcess, which tags each event with a unique label that identifies the sensor
which produced the event. Therefore, for each event, the vPreProcess first read
the Sensor ID field of the event package, shown in Fig. 5.25, and creates a generic
event object with the proper label and the rest of the event information. Then,
this object is ready to be sent to any other postprocessing module, as it could be
the visualization module or the application module.



192 Chapter 5. Neuromorphic audio applications for robotics

FIGURE 5.26: YARP modules diagram for the basic cochlea visualizer
application shown in yarpmanager.

A new codec, called codec_CochleaEvent, was created to both code and decode
the events generated by the NAC. In addition, a new port, called audio:o,
was created in the vPreProcess module for sending out to other modules the
events coming from the NAC. The word "EAR" was selected as label for fast
identification of the NAC’s events. A NAS real-time visualizer, shown in Fig.
5.27, was also implemented to check the cochlea’s events activity.

The visualizer was split in two parts: 1) the bottom part, corresponding
to the left cochlea, and 2) the top part, corresponding to the right cochlea. In
addition, each part was also split in rows, from zero to thirty-one, where each
row corresponds to different frequency bands in such a way that the bottom part
represents high frequencies, starting at channel zero, and the top part represents
low frequencies, ending at channel 31. Blue color means a positive event (polarity
equal to zero), while magenta color means a negative event (polarity equal to
one). It also shows the number of events per second.

When no sound is played, both the background noise and iCub’s fan noise
are collected by the microphones, thus producing just noisy events, as shown
in Fig. 5.27a. Nevertheless, these kinds of noisy events are considered as an
intrinsic feature of the event-based sensors, and it could even help to make the
system more robust (Fang et al., 2020). On the other hand, if a sound is played,
the event’s activity increases, as shown in Fig. 5.27b, and the visualizer shows the
variation of the events’ activity over time.

For collecting the NAC’s events in a file, the yarpdatadumper software module
was used. For each recording started by the user, a new text file with a
predefined format was created. Each row contains the vBottle’s ID, the vBottle’s
timestamp, the event’s tag ("EAR" for the NAC), and a list of event-timestamp
pairs (provided by the ZynqGrabber module) grouped in the vBottle object. The
event’s format corresponds to the format shown in Fig. 5.25. Therefore, a



5.2. Motivation and cases of use 193

(A) (B)

FIGURE 5.27: Cochlea visualizer window showing iCub’s auditory events
activity. (A) Events’ activity when no sound is played. Those events
correspond to the noise produced by the iCub’s fan. (B) Events’ activity

when a 500 Hz tone is played.

decoding process is needed to extract the data of each package’s field. A Python
function was implemented to decode the EAR events and generate a text file
containing the extracted information. This way, the file can be loaded into a
postprocessing tool to analyze its content, like pyNAVIS (Dominguez-Morales
et al., 2021b). This tool was updated as part of this thesis for supporting this
format and being able to analyze the recordings.

These recordings from yarpdatadumper can be loaded and played again
by using the yarpdataplayer module. This feature allows researchers to repeat
experiments using the same events as input stimuli, which is important for the
learning procedure in complex tasks, like keyword spotting. A basic recording
was collected as a proof-of-concept to analyze and validate the software part of
the integration. Fig. 5.28 shows the output plots of a recording that consisted of
a female placed in front of the iCub robot one meter away, and reading a list of
keywords.

The spikegram of this recording, shown in Fig. 5.28a, does not allow us to see
any useful information due to the high activity of the implemented NAS model.
However, it can be visualized by generating both the sonogram and the average
activity plots, shown in Fig. 5.28b and Fig. 5.28d, respectively. The sonogram
shows us the frequency response of the input sounds for each frequency channel,
giving an idea of the NAS’ response to every single spoken word. This could
be used to set the connection scheme properly according to those frequency
responses.

In addition, the average activity plot provides information about the number
of spikes produced by each word, which could be useful for tuning the SNN
associated with the keyword spotting detection. Finally, the histogram, presented



194 Chapter 5. Neuromorphic audio applications for robotics

(A)

0 50 100 150 200 250 300 350 400
Bin (100000 s width)

0

20

40

60

80

100

120

Ad
dr

es
s

Right cochlea
Left cochlea

Sonogram

0

10

20

30

40

50

60

70
No. of spikes

(B)

0 10 20 30 40 50 60
Address

0

2000

4000

6000

8000

N
o.

 o
f s

pi
ke

s

Histogram
Left cochlea
Right cochlea

(C)

0 100 200 300 400
Bin (100000 s width)

0

200

400

600

800

1000

1200

1400

1600

N
o.

 o
f s

pi
ke

s

Average activity
Left cochlea Right cochlea

(D)

FIGURE 5.28: Example recording from a woman reading a list of words in
front of the iCub robot, with a distance of 0.5 meters. (A) Spikegram. (B)

Sonogram. (C) Histogram. (D) Average activity.

in Fig. 5.28c, shows that for a female voice, the main response is obtained in
an address range between 14 and 30, which corresponds to a frequency range
between 4500 Hz and 742 Hz. It is important to mention that the fan noise is
mixed with spoken words, thus having a noisy dataset that could be improved
by applying event-based filters before sending the data to SpiNNaker.

With this proof-of-concept, the software integration was successfully
concluded. Therefore, the NAC-iCub full integration was considered as finished,
thus being ready to be used for the researchers. The iCub’s documentation was
also updated by including the NAC features and the meaning of the NAC output,
and the references related to the NAC module were included as well. At this
point, the main task was changed to the development of auditory perception
using the iCub robotic platform and the SpiNNaker machine.



5.2. Motivation and cases of use 195

5.2.3.4 Implementing an auditory perception application in real-time

Perception can be defined as the ability to interpret the information that we obtain
through our different senses from the environment. This interpretation is an
active process, and it depends on our cognitive processes and prior knowledge.
Therefore, auditory perception could be defined as the ability to receive and
interpret information that reaches the ears through audible frequency waves
transmitted through the air or other means (Warren, 2013).

There is a series of processes to follow in order to perceive the sounds around
us. Firstly, the information has to be received by the ear. When an object vibrates,
which is the case of the human voice (vocal chords vibrate), the waves produced
by this action are transmitted by the air or other means. When these waves reach
the inner ear, certain cells are activated. Secondly, the information needs to be
transmitted across the Auditory Ascending Pathway (AAP).

The signals produced by the cells are transmitted through different nuclei
until it finally reaches the medial geniculate nucleus in the thalamus. Finally,
the information is processed by the brain. The auditory information received
by the ear is sent to the auditory cortex in the temporal lobes. The information
is manipulated and sent to the rest of the brain to allow you to interact with
it. Therefore, it can be said that the auditory perception is a multi-step process
(Warren, 2013):

• Detection: if the sound has enough intensity to reach our ears.

• Discrimination: if we are able to differentiate the sound from other
background noise.

• Identification: if we are able to identify where the sound is coming from.

• Recognition: if we recognize our personal relation with the sound (for
example, "it’s my friend’s voice").

• Comprehension: if the sound is a message (someone telling us something),
or the meaning of a sound (the bell showing that the class is over).

Auditory perception plays a crucial role in our day-to-day lives, being
present in almost every task we perform. It allows us to properly interact with our
environment, communicate with other people, alert us of any potential threats
around us, and makes it possible to enjoy music. With this motivation, the
implementation of an auditory perception model in the iCub robot was started.
Taking the integration of the NAC as starting point, as well as the previous works
of event-based sound recognition (Dominguez-Morales et al., 2016; Dominguez-
Morales et al., 2017a; Dominguez-Morales et al., 2018a), the main goal of this
implementation was to provide the iCub with the ability to listen a set of sounds,
recognize them, create a map of the sound sources, and focus its attention on one
of them by orientating the iCub’s head towards the desired sound in real-time.



196 Chapter 5. Neuromorphic audio applications for robotics

FIGURE 5.29: YARP modules diagram for the sound source localization
application shown in yarpmanager.

As it was mentioned in Section 5.2.3, part of the processing is carried out
by the FPGA, and the rest is divided between the YARP framework and the
SpiNNaker platform. Fig 5.29 modules that compose the auditory perception
model. The modules involved on the events reception and visualization from the
Zynq FPGA to YARP are the same as shown in 5.26. Then, the incoming events
need to be mapped by assigning a unique address to each one for being later sent
to either the SpiNNaker board or the next YARP processing module. This way,
the decoding process is carried out only once, thus reducing the latency of the
system.

This task is carried out by the vCochleaEventsMapper module, that takes
CochleaEvent-type events as input and generates AE-type events as output. The
addresses ranges are from 0 to 127 for the NAS and from 128 to 191 for the MSO
since the NAC model architecture cannot be modified in real-time, and it is fixed
as described in Tables 5.5 and 5.6.

In addition, this module also generates two more plots based on the NAC
output events: 1) a visualizer for the MSO and 2) an alternative visualizer for
the NAS frequency activity, shown in Fig. 5.30. For the first one, a real-time



5.2. Motivation and cases of use 197

heat map plot was implemented due to its clarity for showing the main activity
regions, thus allowing us to see if there is more than one sound source. For the
second one, a real-time histogram visualizer was implemented to check the main
frequency component of the input audio and to provide an idea of the nature of
the input sound.

After the events mapping, two different options are available according
to the hardware setup. If the SpiNNaker machine is not available, then the
mapped events from the vCochleaEventsMapper are directly sent to the auditory
attention module on YARP, called vAuditoryAttention. However, if the SpiNNaker
machine is available, then the mapped events are sent to it through the module
zynqGrabberSNNK.

In the second case, the events’ addresses arrive to the external device
population, also called vertex population, where the number of neurons is equal
to the maximum number of addresses of the NAC: 192. Then, those events are
properly sent to four different populations, as shown in Fig. 5.31, depending on
the event’s source. These four populations can be grouped in two groups: 1)
sound recognition and 2) sound source localization.

FIGURE 5.30: YARP visualizers for the auditory perception model.

For the sound recognition network, the multilayer SNN architecture
presented by Dominguez-Morales et al. in (Dominguez-Morales et al., 2016) was
used. This network was trained again with new recordings collected from the
NAC in the iCub robot, and this training process was carried out automatically
by implementing the functionality described in (Dominguez-Morales et al., 2016)
in Python 7.

For the sound source localization part, a multilayer SNN was designed and
implemented based on the architecture proposed by Davila et al. (Dávila-Chacón

7https://github.com/jpdominguez/Multilayer-SNN-for-audio-samples-classification-using-SpiNNaker

https://github.com/jpdominguez/Multilayer-SNN-for-audio-samples-classification-using-SpiNNaker


198 Chapter 5. Neuromorphic audio applications for robotics

et al., 2018). It is split in three different parts. The first part is composed by
three networks which correspond to the excitatory output events coming from
the MSO module in NAC, the excitatory output events coming from the LSO
and the inhibitory output events coming also from the LSO module. In those
networks, the neurons’ activities are combined as shown in Fig. 5.32 left.

Only the MSO activity was used since the LSO model was not integrated
within the NAC module yet. However, the network’s architecture would be
identical to the one used for the MSO network. Let is n the number of coincidence
detector neurons in the ITD detection network. Let is m the number of neurons
in the vertex population associated to the MSO model, being in this case 64
(16 coincidence detector neurons for each ITD detection networks, and 4 ITD
networks connected from channel 13 to channel 16). Therefore, the connection
scheme would be (pre, post), where pre is equal to m and post is equal to m mod(n).
The weight of these connections are identical since the features extraction process
is carried out in the next layer: the Inferior Colliculus (IC) layer.

The IC layer is composed by as many neurons as a single ITD detection
network was set. In this case, the IC layer was composed by 16 neurons. The
connection scheme was inspired by the one presented in (Dávila-Chacón et al.,
2018). For each neuron xi in the MSO layer of the 5.32, there is a projection to
the neuron yi of the IC layer with a weight wi. In addition, for each neuron xi in
the MSO layer of the 5.32, there is also a projection to the neuron yi−1 and yi+1 of
the IC layer with a weight wj (except when i is equal to either 0 or n − 1), where
wi > wj.

This way, each neuron has not only local information but also the
information of its neighbors, thus making the network more robust to noise and
ambiguities. In fact, LSO neurons’ activity would be also combined with the MSO
neurons’ activity in this layer to correct the ambiguities produced by the high
frequencies sounds in the MSO nucleus. Moreover, the IC is able to adapt itself
according to the input sound in both voluntary and involuntary ways (Schreiner
and Winer, 2005; Lopez-Poveda, 2018), being this a key feature for auditory
attention. However, this behavior was not implemented due to SpiNNaker does
not allow to change the neurons’ parameters in real time nor projections’ weights
and delays.

After the IC layer combine all the activity extracted from the auditory cues
and generates and output which indicates the sound source localization, this
information needs to be translated to a movement by taking the decision of how
much the robot has to move its head and the direction of the movement. A
Winner-Take-All (WTA) layer was implemented for taking the final movement
decision. In addition, a reduction in the number of neurons was carried out in
order to improve the decision accuracy (Dávila-Chacón et al., 2018). Fig. 5.32
left shows an example of the projections’ scheme. Each neuron in the WTA layer,
also called sound source population, receive inputs with high weight from two



5.2. Motivation and cases of use 199

VERTEX 
POPULATION

TONES INPUT 
POPULATION

LSO 
POPULATION

EXC.

MSO 
POPULATION

LSO 
POPULATION

INH.

OUTPUT 
POPULATION

TONES 
HIDDEN 

POPULATION

TONES 
OUTPUT 

POPULATION

IC 
POPULATION

SOUND 
SOURCE 

POPULATION

FIGURE 5.31: Overview diagram of the SNNs implemented on SpiNNaker
to implement the auditory perception on iCub.

neurons from the IC layer, and also from the close neighbor of those two neurons,
with lower weight in this case.

Finally, the outputs of both the sound source population and the tones
output population are sent to an global output population with a one-to-one
projection architecture. SpiNNaker allows bidirectional communication through
the vertex population, which means that an external device can both send and
receive events to and from SpiNNaker. Events coming from the external device
are received on SpiNNaker by the vertex population, and then distributed to
one or more networks. Therefore, the output events from SpiNNaker need to
be grouped again in order to send them through the vertex population to the
external device. Neurons’ parameters in this output population are set in such
a way that there exists a one-to-one event correlation, thus avoiding to loose
information.

Taking again the Fig. 5.29 as reference, SpiNNaker output events are
collected in YARP by the zynqGrabberSNNK module. Since events from both
the sound recognition and sound source localization networks were mixed
in the global output population, the vSpiNNakerEventsMapper module was
implemented to split the events in two different sources according to their origin:
1) sound recognition and 2) sound source localization. Therefore, two post-
processing modules were also implemented: 1) the vSoundClassification, and 2)
the vAuditoryAttention.

On the one hand, the vSoundClassification module count the output events
from the sound recognition network in a user-configurable time bin and indicates
the winner neuron based on the events’ activity, as it was done before in



200 Chapter 5. Neuromorphic audio applications for robotics

(Dominguez-Morales et al., 2016). The result of this process is displayed through
a normalized histogram in real-time, shown in Fig. 5.30 top right corner.
By default, if there is not SpiNNaker activity, the neuron with ID equal to 0
(corresponding to 261 Hz pure tone frequency) is set as the winner neuron.

0

1

15

16

17

0

1

15

Vertex pop. MSO pop.

63

0

1

2

14

15

IC pop.

From freq 
channel 

13

From freq 
channel 

14

From freq 
channel 

16

2

0 1 2 3 4 5

1 32

-45 0 +45

IC pop.

Sound source pop.

Excitatory
(Lower weight)

Excitatory
(Highe weight)

Inhibitory

Events coming from the MSO population

FIGURE 5.32: Spiking neural network diagram of the inferior colliculus
model implemented on SpiNNaker.

On the other hand, the vAuditoryAttention module can take its input
from either the vSpiNNakerEventsMapper module, if the SpiNNaker machine is
available, or directly from the vCochleaEventMapper module, if the SpiNNaker
machine is not available. In both cases, this module periodically integrates the
input events to take the final decision about the position where the sound is
coming from. The integration time can be tuned in real-time through YARP, and
it is directly proportional to the desired detection accuracy in such a way that
the higher the integration time is, the higher the accuracy will be. However, the
integration time is inversely proportional to the movement speed. Therefore, a
trade-off between accuracy and movement speed is needed, and it will depend
on the input sound and the background noise.

Finally, the position estimation of the vAuditoryAttention module is received
by the vRobotMovement module. This value indicates the absolute position where
the iCub’s head should be moved with respect to the origin. The iCub’s neck
movement range is [-60°, 60°], thus not covering the desired range of [-90°, 90°],
being negative angles the middle-left region and positive angles the middle-right
region of the horizontal plane. Therefore, the estimation was limited to that
range, and it will be extended to the full range by moving also the torso along
with the neck.



5.2. Motivation and cases of use 201

5.2.3.5 Datasets, tests, and preliminary results

A dataset was created to both analyze and characterize the NAC’s response
within the iCub robotic platform under real working conditions. To this end,
five different recording scenarios were established. First, the background sound
of the laboratory where the robot was placed was recorded in order to have an
estimation about how much noise was being added to the iCub’s microphones.
Four recordings of 20 seconds each were carried out while people were working,
thus producing work-related sounds (keyboards, talking, walking, etc).

A continuous sound was detected after analyzing the recordings. However,
it did not match any pattern of the laboratory sounds except the iCub’s fans.
The robot has one fan placed on the back part of its head, and two more fans
in the backpack where the central computer is located. The noise produced by
the head’s fan inside the plastic cover is collected by the microphones, directly
interfering with the sounds produced outside the plastic cover. New recordings
were collected without any background noise (while the laboratory was empty)
in order to analyze the sound features of the fan noise. The main frequency
component was placed at 500 Hz, which was the same as the one used in Section
5.2.2.5 for the real-time tests. Although this problem can be solved, for example,
by filtering the input sound or simply by replacing the fan by a more quiet
version, it is out of the goals of this thesis, and it will be tackled in the future.

Second, six pure tones (261 Hz, 349 Hz, 523 Hz, 698 Hz, 1046 Hz, and 1396
Hz) were played at five different positions (left or -90º, mid left or -45º, middle
or 0º, mid right or 45º, and right or 90º) for 20 seconds each by using a speaker
placed 1 meter away from the iCub robot and at the same horizontal plane of the
iCub’s microphones. The main purpose of these recordings were to train a SNN
model similar to the one proposed by Dominguez-Morales et al. in (Dominguez-
Morales et al., 2016) to perform real-time sound recognition. Thirty recordings
were available to train the network by using either the method proposed in
(Dominguez-Morales et al., 2016) or any other learning procedure. Differently
from the original paper of pure tones recognition, where the recordings only
contained sound information, these recordings also contain spatial information.
Therefore, the sound recognition will be more robust since the system will be able
to recognize the sounds even when they are not played just in front of the robot.

Fig. 5.33 shows the spikegram (A), sonogram (B), histogram (C), and average
activity (D) plots obtained from a recording of the pure tones dataset, where a 523
Hz pure tone was played at the left side of the robot. The sonogram, as well as
the histogram and the average activity, shows that the activity of the left cochlea
is higher compared to the right one. In addition, the effect of the fan noise can be
seen in the sonogram.

It also can be seen in the histogram that the frequency responses for both
cochleas are identical. If we compare the number of total events of this recording
to the one shown in Fig. 4.6c, the global event activity is lower in iCub (even



202 Chapter 5. Neuromorphic audio applications for robotics

(A)

0 25 50 75 100 125 150 175
Bin (100000 s width)

0

20

40

60

80

100

120

Ad
dr

es
s

Right cochlea
Left cochlea

Sonogram

0

10

20

30

40

50

60

70

80

No. of spikes

(B)

0 10 20 30 40 50 60
Address

0

2000

4000

6000

8000

10000

12000

N
o.

 o
f s

pi
ke

s

Histogram
Left cochlea
Right cochlea

(C)

0 25 50 75 100 125 150 175
Bin (100000 s width)

0

250

500

750

1000

1250

1500

1750

N
o.

 o
f s

pi
ke

s

Average activity

Left cochlea Right cochlea

(D)

FIGURE 5.33: NAS response plots for a 523 Hz pure tone placed at the left.
(A) Spikegram. (B) Sonogram. (C) Histogram. (D) Average activity.

though the clock frequency of the FPGA was higher) due to both the head
shape and the real-time test scenario, where no line-in connector was used.
Furthermore, by simply checking the average activity values, the ILD estimation
could be performed since the intensity difference is clearly visible. Note that the
peaks observed in the average activity plot correspond to the repetition in loops
of the sound track.

After analyzing the NAS’ response, the MSO plots were generated. Fig. 5.34
shows the MSO spikegram (A), the MSO histogram (B), the MSO localization
estimation (C), and the MSO heatmap (D) of the same recording used in Fig.
5.33. The spikegram shows that the main model activity is located at the higher
neuron’s IDs, which correspond to a big time difference between a sound arriving
before to the left and then to the right ear. Almost no activity is found in the lower
neuron’s IDs.

From the MSO histogram plot, it can be observed that the neuron with the
highest activity corresponds to the neuron’s ID 13, and this condition is also
matched by all the frequency channels. In addition, the ITD detection network



5.2. Motivation and cases of use 203

associated with the frequency channel that has the middle frequency more close
to the input pure tone frequency produced more events compared to the others.
The obtained response was distributed by following a pyramidal shape, thus
matching with the expected responses according to the biological measurements
(Bear et al., 2020).

Neuron ID

0 2 4 6
8

10
12

14
16

Tim
es

tam
p (

s)
1e

7

0.00
0.25

0.50
0.75

1.00
1.25

1.50
1.75

Fr
eq

. c
ha

nn
el

0

5

10

15

20

25

30

MSO spikegram

(A)

Neuron ID

0 2 4 6 8 10 12 14 16

Freq
. c

ha
nn

el

13

14

15

16

N
o.

 o
f s

pi
ke

s

0

200

400

600

800

MSO histogram

(B)

0 25 50 75 100 125 150 175
Bin (100000 s width)

84

73

61

50

39

28

16

5

5

16

28

39

50

61

73

84

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(C)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neuron ID

13

14

15

16Fr
eq

. c
ha

nn
el 5.0 2.0 1.0 0.0 2.0 27.0 91.0 215.0 354.0 526.0 694.0 813.0 853.0 888.0 773.0 631.0

4.0 0.0 0.0 1.0 3.0 22.0 72.0 143.0 291.0 480.0 593.0 672.0 756.0 818.0 666.0 543.0

0.0 0.0 0.0 1.0 0.0 0.0 4.0 18.0 53.0 144.0 185.0 304.0 355.0 387.0 310.0 236.0

0.0 0.0 0.0 6.0 21.0 39.0 39.0 21.0 15.0 6.0 5.0 13.0 12.0 14.0 6.0 3.0

MSO heatmap

0

100

200

300

400

500

600

700

800

N
o. of spikes

(D)

FIGURE 5.34: MSO response plots for a 523 Hz pure tone placed at the left.
(A) MSO spikegram. (B) MSO histogram. (C) MSO localization estimation.

(D) MSO heatmap.

A first estimation of the sound position, directly extracted from the raw MSO
events, is shown in the MSO localization estimation plot. The result is a noisy
signal approximately placed in the range [40, 70] degrees. Although this result is
not that accurate as desired, it can offer a first estimation of the sound position
to later obtain a more accurate estimation by using SNN. There are some reasons
which could explain this effect. Firstly, the absence of the ear shape surrounding
the microphone in the iCub’s head leads to a worst binaural cues extraction since
the shape of the ear plays a key role for both the ITD and ILD.

Secondly, the fan noise, placed at the middle of the head, could be altering
the ITDs by shifting the coincidences to the center neurons. This hypothesis
could be tested by switching on and off the iCub’s head fan and recording new



204 Chapter 5. Neuromorphic audio applications for robotics

samples under those conditions to later analyze them and check if the localization
estimation was either improved or kept unchanged. However, the head fan
cannot be stopped due to the thermal constraints of the chips. Therefore, new
alternatives, like to create a virtual scenario simulating those conditions or to use
a new iCub head with different boards, are needed in order to carry out these
kinds of tests.

Thirdly, it may happen that the maximum time difference set for the ITD
detection network for each channel does not match with the maximum ITD value
associated to the iCub according to the distance between both microphones. This
distance is 0.136 meters according to the iCub technical specifications (Beira et al.,
2006). If we consider the speed of sound in air as 340m/s, the time that the sound
need to travel across the iCub’s ears is 400µs when the sound is placed at 90 over
the azimuth in one hear, i.e, when the ITD is maximum. However, the maximum
ITD set for the iCub integrations was 700µs, thus having 300µs of error taking
also into account the reverberation.

If the number of coincidence detector neurons for each ITD detection
network was set to 16 (See Table 5.6), then we can calculate, in a linear way, the
time difference that each neuron can detect as follows:

700µs/16neurons = 43.75µs/neuron

Therefore, the number of coincidence detector neurons needed to detect up
to 400µs can be calculated as follows:

400µs/43.75µs/neuron = 9.14neurons

Taking the ceiling of the result, it means that 10 neurons would be needed to
have that maximum detection time of 400µs. Then, the minimum resolution, in
degrees, for each neuron can be calculated by dividing the detection range, set to
180º (from 90º at the left to 90º at the right, in front of the robot), by the number of
coincidence detector neurons in the ITD detection network, set to 16. This way,
we obtain the following:

180°/16neurons = 11.25 °/neurons

Meaning that each individual coincidence detector neuron has a detection
range of 11.25°. If the needed number of neurons to detect up to 400µs was
estimated as 10, it means that the absolute azimuth range of the iCub robotic
platform can be easily estimated as follows:

11.25°/neurons ∗ 10neurons = 112.5 °

The calculated detection range, 112.5 °, almost matches to the iCub’s neck’s
movement range, which is set to 120 °according to the technical documentation8,
split on 60 °from the centre to the left side, and 60 °from the centre to the right
side. This way, it can be said that the relative azimuth range which is able to be

8http://wiki.icub.org/wiki/Manual



5.2. Motivation and cases of use 205

detected by the iCub robot with the ITD detection network would be calculated
as:

112.5°/2 = 56.25°

Thus having a region of 56.25°from the centre to the left side and another
region of 56.25°from the centre to the right side. Two conclusions can be extracted
from this result which would support this third hypothesis about the shift effect
obtained in the results. Firstly, the maximum ITD value that can be extracted,
and therefore the maximum detection angle in the azimuth, matches with the
movement range of the iCub’s neck joint, enabling to create a direct correlation
between the estimated sound source in the space and the neck’s joint position.

Secondly, the obtained value (56.25°) also matches with the mean value of the
signal plotted in Fig. 5.34c and with the neuron with the maximum firing activity
in Fig. 5.34d, (neuron with ID equal to 13) that corresponds to the fifth neuron of
the left side taking the neuron with ID 8 as reference (5thneuron ∗ 11.25°/neuron =
56.25°). Therefore, this effect could be avoided by finely adjusting the maximum
ITD detection time of the ITD detection networks implemented in the NAC
module. It is important to mention that this effect was not found in the results
showed in Chapter 4.2.6 due to the sounds were recorded in a virtual scenario
with a hear-to-hear distance necessary to have a maximum ITD of at least 700 µs.

Additionally, two more effects can be observed in Fig. 5.34d. Neurons out
of the iCub ITD detection range (theoretically, neurons with IDs 0, 1, 14, and 15)
also had firing activity. In this case, it is biologically plausible that, when the
sound is presented on one of the sides, neurons from the other side (IDs 0 and
1) also fire events since the ITD could be sometimes bigger than the maximum
ITD detection time, thus producing some ambiguities, as shown in Chapter 4.2.6.
However, for the iCub configuration, this effect is shifted from neurons 0 and 1 to
neurons 14 and 15. In addition, neurons 14 and 15 also presented firing activity
because the input sound was noisy, thus maybe inducing bigger ITD values in
the original signal and, therefore, making them to fire. Nevertheless, neurons 14
and 15 should have and firing activity similar to neurons 12 and 13, respectively,
according to (Kandel et al., 2000), but these firing activities are slightly lower due
to the reason mentioned before, i.e., reverberation and aliasing.

Finally, the global winner neuron belongs to the ITD detection network
connected to the NAS’ frequency channel number 16 (middle frequency set to
592.48 Hz), having fired 888 events. This result matches the expected behavior
since the sound played was a pure tone of 523 Hz, which is close to the middle
frequency of the band-pass filter. In addition, the winner neuron is the neuron
13 on each ITD detection network, thus demonstrating that the model is able to
precisely extract the ITD values from the real-word input sounds. It can be also
seen that the global model response has the shape of an inverted triangle due to
the tuning parameters of the NAS’ band-pass filter bank, where the maximum
detection time is directly proportional not only to the ears’ distance but also



206 Chapter 5. Neuromorphic audio applications for robotics

to the characteristic frequency of the band-pass filter. This way, the higher the
middle frequency is, the lower the ITD maximum detection time should be, thus
coinciding with the inverse of the middle frequency (i.e., the period). Although
in this first version of the integration the maximum detection time was set with
the same value for each network, in future versions this parameter will be set
according to the input sound, thus turning this model to its adaptative version
along with the adaptative version of the NAS.

After analyzing the data collected from static sound sources, a third set of
recordings were carried out using dynamic sound sources. The iCub head was
moved in a sinusoidal way from left to right and back (with a movement range of
[−60°, 60°]), while the sound source was placed fix in the middle position, 1 meter
away from the iCub robot. Therefore, from the point of view of the ears, we have
a sound source moving from left to right. Then, the same six pure tones (261 Hz,
349 Hz, 523 Hz, 698 Hz, 1046 Hz, and 1396 Hz) were played for 25 seconds each.
The main aim of this test was to characterize the model’s response to a dynamic
sound source, which could be a person talking in front of the iCub while walking
from left to right. Furthermore, to check if a SNN model of the IC can improve
the first estimation performed by the system without any MSO’s output events
post-processing, as it was already done in (Schoepe et al., 2020).

Fig. 5.35 shows the output plots from both the NAS model and the MSO
model in response to a pure tone of 523 Hz played for 25 seconds. From the
NAS plots, Fig. 5.35a shows the average activity of both left and right cochleae.
It can be clearly seen the oscillatory movement of the iCub head, that was first
looking at its right (left ear closer to the speaker) and then it starting to move
its head towards its left (right ear closer to the speaker). This overall events’
activity differences can be easily extracted by the LSO module to help the MSO
in the sound source localization task. Although no time delays can be directly
observed neither in Figs. 5.35a, 5.35b, 5.35c, Fig. 5.35e shows the output events
of the MSO model. The extracted ITD values matches the movement of the
robot’s head, having a higher number of coincidences in the center neurons (since
the probability of a coincidence is higher (Kandler et al., 2009)) compare to the
extremes, where this activity is slightly lower.

For this experiment, the position estimation was calculated in pyNAVIS by
accumulating events using a time bin and selecting the winner as the neuron
that fired the most. The obtained result was a noisy position estimation, as
shown in Fig. 5.35f. This approach, although acceptable for static sources, did
not work properly for dynamics sources since it does not take into account the
past. Therefore, each estimation is independent, leading the robot to carry out
non-fluid movements. However, the final output can be improved by simply
computing the accumulated mean of the estimated positions.

A bioinspired solution to take into account the temporal aspect of the output
events was taken as an alternative to the traditional mathematical approach. A



5.2. Motivation and cases of use 207

0 50 100 150 200 250
Bin (100000 s width)

0

250

500

750

1000

1250

1500

1750

N
o.

 o
f s

pi
ke

s

Average activity

Left cochlea Right cochlea

(A)

0 50 100 150 200 250
Bin (100000 s width)

0

20

40

60

80

100

120

Ad
dr

es
s

Right cochlea
Left cochlea

Sonogram

0

10

20

30

40

50

60

70
No. of spikes

(B)

0 50 100 150 200 250
Bin (100000 s width)

0

10

20

30

40

50

60

Ad
dr

es
s

Diff. between L and R cochlea

100% L
Cochlea

50% 0%
L==R

50% 100% R
Cochlea

Cochlea predominance

(C)

0 10 20 30 40 50 60
Address

0

2000

4000

6000

8000

10000

12000

N
o.

 o
f s

pi
ke

s

Histogram
Left cochlea
Right cochlea

(D)

Neuron ID

0 2 4 6
8

10
12

14
16

Tim
es

tam
p (

s)
1e

7

0.0

0.5

1.0

1.5

2.0
2.5

Fr
eq

. c
ha

nn
el

0

5

10

15

20

25

30

MSO spikegram

(E)

0 50 100 150 200 250
Bin (100000 s width)

84

73

61

50

39

28

16

5

5

16

28

39

50

61

73

84

Po
si

tio
n 

(in
 d

eg
re

es
)

Left side
C

entre
R

ight side

MSO localization estimation

(F)

FIGURE 5.35: NAS’ response plots (Figs. (A) Average activity, (B)
Sonogram, (C) Difference, and (D) Histogram) and MSO response plots
(Figs. (E) MSO spikegram and (F) MSO localization estimation) for a 523
Hz pure tone while moving the iCub head from left to right and back with

a constant velocity.

model of the IC was designed and implemented by using SNNs to take into
account not only the events but also the temporal relation between them, as
introduced in Section 5.2.3.4.



208 Chapter 5. Neuromorphic audio applications for robotics

FIGURE 5.36: Screenshot of Gazebo simulator while performing a sound
source localization simulation with a virtual neuromorphic iCub and real

recordings as input stimuli.

A set of simulations were performed with the virtual neuromorphic iCub
on Gazebo before using the real iCub robot. The recordings of dynamic sound
sources were used as input stimuli by playing them using YARP data player.
As main application, the sound source localization application in YARP (shown
in Fig. 5.29) was used. Both options, with and without SpiNNaker, were tried in
order to compare the output performance of both position estimation approaches.
Fig. 5.36 shows a screenshot of Gazebo while running the simulation of the iCub
robot moving its head towards the sound source, estimated by using the IC model
on SpiNNaker, as well as the YARP visualizers for the NAC information.

It can be seen in the top right of the figure that the estimation carried out
by the IC module matches the main activity shown in the heatmap visualizer,
meaning that the model works according to the expectations. However, the
iCub’s head was not oriented to the front, which was the current position of the
sound source at the moment of the screenshot. This is because the sound source
was moving from left to right and the neck’s motor needed some time to move
from the left position to the middle position. The motor movement speed is an
input parameter of the module and can be modified in real time.

Preliminary results of the sound source estimation performed by the IC
model were obtained from the SpiNNaker simulation. Fig. 5.37 shows three
raster plots that correspond to three of the entire auditory perception SNN model
(See in Fig. 5.31). The top plot shows the output events from the four ITD
extraction networks implemented in the NAC model that was integrated within



5.2. Motivation and cases of use 209

iCub. Therefore, the same output pattern can be observed four times in the same
plot. Bottom neurons belong to the ITD extraction network connected to the NAS’
frequency channel number 13 and top neurons belong to the acITD extraction
network connected to the NAS’ frequency channel number 16 (See Table 5.6 for
more details). The neurons’ activity is higher for the neurons associated to the
channel 16 since the input audio frequency was 500 Hz, which is close to the
channel 16 middle frequency (592.47 Hz).

The second plot shows the output spikes of the IC SNN model, which
combines the output from the ITD extraction network as explained in the Fig.
5.32. Similar to the localization estimation shown in Fig. 5.35f, the result is
a stream of events organized in a sinusoidal shape. However, both extremes
present a flat response (saturation response) instead of a pure sinusoidal shape.
This effect is produced due to two main reasons: 1) the limitation of the ITD
maximum detection time (explained in this section), and 2) the limitation in the
movement of the iCub’s neck ([-60°, 60°]) that does not allow to reach the entire
180 °range.

0 5000 10000 15000 20000 25000
time

0

20

40

60

Ne
ur

on
 in

de
x

0 5000 10000 15000 20000 25000
time

0

5

10

15

Ne
ur

on
 in

de
x

0 5000 10000 15000 20000 25000
time

0

2

4

6

8

Ne
ur

on
 in

de
x

Output spikes (MSO top; IC middle; SS bottom)

FIGURE 5.37: Output spikes for each gait pattern simulated on SpiNNaker.

Finally, the third plot shows the output spikes of the sound source
localization network, which are sent back to YARP to and collected by the YARP
module that moves the iCub’s head. Although this plot looks less noisy compared
to the middle one, it could be improved by training the network to obtain a
more clear winner neuron. Some conclusions can be extracted from this plot.
It seems the weights of the WTA’s projections were not well set since more than
one neuron were firing a high number of spikes at the same time. No learning



210 Chapter 5. Neuromorphic audio applications for robotics

procedures were used, and the weights were set manually following a trial-
error procedure. A future improvement would be to study and apply a learning
method to improve the WTA accuracy.

In addition, neurons’ activity when iCub’s head is facing to the sound source
(i.e., the ITD is equal to zero) is lower compared to the activity when iCub is
looking completely to either the left or right side. This could be produced by
either a fast transition from one side to the other, and therefore not staying
enough time in the middle position, or the fact that the head is stopped when
it reaches the side, thus staying longer time at that position. It would be also
interesting to evaluate the behavior of the network when more than one sound
source (for example, one static source and one dynamic source) are used.

Beyond the pure tones dataset, two more datasets were generated. One
of them corresponds to the spoken digits dataset, were a group of persons
(both males and females) were seat one meter away in front of the iCub robot
while counting from zero to nine, waiting two seconds between two consecutive
numbers. A total of eight recordings were collected from eight different persons,
four men and four women. A reference dataset can be found in the literature,
the Heidelberg spiking data sets (Cramer et al., 2020). This dataset is composed
by 10000 recordings of twelve different speakers in both German and English
languages. The raw audios were converted to spikes by using a software version
of a biological cochlea instead using a neuromorphic hardware-based sensor.

The other dataset corresponds to the keywords dataset, of which main
purpose is to train a SNN that allows iCub to recognize and understand a set of
speech commands and act according to them. As starting point, a set of eighteen
words were selected: "hi", "ciao", "iCub", "robot", "please", "could", "move", "look",
"head", "arm", "right", "left", "up", "down", "fast", "slow", "start", "stop". These
words were considered as part of a most common sentence that a person could
tell to iCub when interacting with it during a live demonstration. The recordings
were collecting by following the same protocol as the spoken digits dataset, with
a total of eight speakers (four women and for men), placed at one meter of
distance with respect to the iCub’s head, and waiting around 2 seconds between
words.

To the best of our knowledge, there is not any other spike-based keywords
dataset to be used as reference to compare the output spikes of the NAS model. In
(Rasetto et al., 2021), authors converted part of the Google’s Speech Commands
Dataset (Warden, 2018) to spikes using a 32-channel monaural NAS model,
generating 7592 AEDAT files. This dataset is composed by 30 short words
spoken by thousands of different people (Rasetto et al., 2021) using different
recording devices. However, the recordings of the presented spoken words
dataset were recorded using directly a neuromorphic hardware without saving
a traditional audio file before. Nevertheless, it would be possible to save also
the raw audio samples as .wav files since the microphones’ output data lines



5.3. Is it worth to do the effort? 211

are connected to both the NAC and to the traditional sound processing module
in the iCub’s Zynq FPGA. The main advantage of having the input audio in
both formats (.wav and events) will lead to a better comparisons between the
traditional methods of sound processing and the new approaches given by the
neuromorphic engineering.

These two datasets are being used to train a generic SNN model based on
previous works which already used a NAS model to perform words recognition
(Dominguez-Morales et al., 2018b; Rasetto et al., 2021). This task is still under
development due to the complexity of the training task, not having yet enough
conclusive results to mark this process as done. In the future, the main purpose
will be to combine this network along with the sound source localization network
to let the iCub orientate its head towards the person who is talking to it, and
therefore start doing research in attentional mechanisms.

5.3 Is it worth to do the effort?

Most of the people, including researchers, would ask: "Why is it necessary
to develop this neuromorphic approach of the audio processing if it already exists a
traditional alternative which works 100% good?". This question is full of small
aspects that can be discussed from different points of view, and all of them
could be right. In this section, the conlusions found during the design and
implementation of these three cases of use are discussed.

Firstly, the technical difficulties that were found while interfacing all the
components of the system. Normally, a simple demonstrator can be composed by
up to four different boards, being this boards connected by multi-line cables and
different connectors on each board. Taking into account that mobile robots were
used, several failure points can be detected. In addition, different operational
voltages may be required, thus being needed voltage translators to be able
to communicate different devices. This kind of problems are common at any
approach of audio processing since they are intrinsic to the real-time mobile
robots. However, due to nature of the event-based information, neuromorphic
robotics can be considered more robust to the noise in the cables or event to a
connection failure due to their ability to adapt its behavior in real-time (Thor
et al., 2021). Therefore, even from the technical point of view, we can say that it is
worth to do the effort to use neuromorphic hardware to develop a new generation
of robots.

Secondly, it is important to mention that in the last years, the algorithms to
train SNNs have improved their accuracy and usability. However, still nowadays
is difficult to train this kind of networks for a generic application. For example,
to recognize two words by using traditional methods can be considered an easy
task, but the same task is a hard problem when working with neuromorphic
auditory sensors and SNNs (Rasetto et al., 2021). Then, why should we use



212 Chapter 5. Neuromorphic audio applications for robotics

these networks and this approach? Although right now there are not so
many advantages, the noise tolerance and the adaptability are two of the most
important features that the SNN have demonstrated to work. Maybe it is still
too early, and the technology needs to improve a bit, but in some neuromorphic
visual applications, it has been demonstrated that the neuromorphic approach
beats the traditional approach.

Finally, the neuromorphic engineering can be considered as a young field of
research, and a lot of work is still needed to achieve big results. The desired to
develop more biological plausible devices which could interact directly with the
brain is the biggest motivation of the researchers since it may help the people
to recover the vision, the hearing, or the touch sense, thus improving their life
qualities. Therefore, as conclusion of this thesis, we can say that it is totally worth
to do the effort to think, design, develop and test every single idea that could lead
to improve the state of the art about the hearing sense from the point of view of
the neuromorphic engineering.



213

Chapter 6

Conclusions and future works

“Research is what I’m doing when I don’t know what
I’m doing”

– Wernher von Braun

This chapter presents the conclusions of the thesis, its main contributions,
and future works. Before introducing the conclusions, it is important to highlight
that the code generated during the realization of this thesis was shared as open-
source projects. A list of repositories, containing both the repositories associated
to the work of this thesis and the contributions to other repositories, is shown
next:

-Own repositories:

• https://github.com/RTC-research-group/OpenNAS

• https://github.com/dgutierrezATC/NASIC

• https://github.com/dgutierrezATC/nssoc

• https://github.com/dgutierrezATC/TDE_vhdl

• https://github.com/dgutierrezATC/NeuroPod

• https://github.com/event-driven-robotics/NAS_iCub

-Contributions to external repositories:

• https://github.com/dgutierrezATC/NAS_SpiNNaker_interface

• https://github.com/dgutierrezATC/GenericSeqMon

• https://github.com/dgutierrezATC/event-driven

• https://github.com/robotology/event-driven

• https://github.com/jpdominguez/pyNAVIS/tree/ssoc_integration

• Multilayer-SNN-for-audio-samples-classification-using-SpiNNaker

https://github.com/RTC-research-group/OpenNAS
https://github.com/dgutierrezATC/NASIC
https://github.com/dgutierrezATC/nssoc
https://github.com/dgutierrezATC/TDE_vhdl
https://github.com/dgutierrezATC/NeuroPod
https://github.com/event-driven-robotics/NAS_iCub
https://github.com/dgutierrezATC/NAS_SpiNNaker_interface
https://github.com/dgutierrezATC/GenericSeqMon
https://github.com/dgutierrezATC/event-driven
https://github.com/robotology/event-driven
https://github.com/jpdominguez/pyNAVIS/tree/ssoc_integration
https://github.com/jpdominguez/Multilayer-SNN-for-audio-samples-classification-using-SpiNNaker


214 Chapter 6. Conclusions and future works

6.1 Conclusions

In this section, the main contributions and conclusions, extracted from the work
presented throughout this document, are highlighted:

• An in-depth study of the biological principles of the human auditory sense,
as well as the most relevant models for mimicking it, has been carried out.
In addition, a study of the biophysical properties of biological neurons has
been conducted, along with an analysis of different codification strategies
for spike-based signals.

• A state-of-the-art analysis about the use of bio-inspired auditory processing
systems in robotics was conducted. Several common weaknesses were
identified, being an inspiration for this work.

• Since a FPGA-based Neuromorphic Auditory Sensor (NAS) was developed
by our research group, it was decided to make it open-source in order to
allow the neuromorphic community to use it. Therefore, an open-source
software tool, called OpenNAS, was developed to guide the user through
the design, configuration, and deployment of a NAS architecture by means
of a five-steps wizard. This work was published in the Neurocomputing
journal, presented in many Neuromorphic Engineering workshops and
conferences, and it is being currently used in many research centers, as
the IMSE-CNM (Seville, Spain), IIT (Genova, Italy), CITEC (Bielefeld,
Germany), among others. To the best of our knowledge, this is the first
software tool that generates the VHDL code of a neuromorphic sensor.

• The process of ASIC design was studied. An ASIC of a tiny NAS model was
designed, fabricated, and tested. The model consisted of eight-frequency
bands, mono NAS with both I2S- and PDM-based microphones interface
and without output events monitor. Even though the measured behavior
did not match with the expected one, this first approach of a digital,
fully event-based ASIC was considered by us like the beginning of a long
way to achieve medical neuromorphic devices, as neuromorphic cochlear
implants.

• Due to the importance of the sound source localization task and its
applications, a digital, FPGA-based, event-based model of the Superior
Olivary Complex (SOC) was designed, implemented, and tested. This
design contains the Anteroventral Cochlear Nucleus (AVCN), the MSO,
and it is ready to contain the LSO, which is currently under development.
This model can be adapted according to the application’s requirements,
and it has been also integrated within the NAS in order to take advantage
of the intrinsic parallelism offered by the FPGA fabric, thus avoiding
bottleneck problems and, therefore, timing accuracy. This model has been
used in multiple real-time robotic applications, and it was presented in the
Embedded Systems Week Conference (ESWEEK) 2019.



6.1. Conclusions 215

• Since the most relevant information about the localization is encoded in
the time domain, an alternative to the Jeffress model for the ITD encoding
was proposed. The Time Difference Encoder (TDE) model was used as
reference, and to the best of our knowledge, the first digital implementation
of the TDE model for FPGAs was designed and implemented. The model
was also validated with a proof-of-concept sound source lateralization
application, proving the usability of this model for such kind of tasks. This
work was published in the IEEE Transactions on Neural Networks and
Learning Systems (IEEE TNNLS) journal 2021.

• An audio-guided SCPG was developed to control an hexapod robot in real
time, called NeuroPod. In this work, carried out during the one-month
research internship in the University of Cadiz, with the Prof. Fernando
Perez-Peña, a 64-channels, mono NAS was used for classifying pure tones
and to change the motors’ positions according to the identified sound.
The auditory information was sent in real-time from the FPGA to the
SpiNNaker board, where three different SNNs were implemented. Finally,
the movement spikes were sent back to the FPGA, where the motors are
commanded. This work was published in the Neurocomputing journal and
presented in the International Symposium on Circuits and Systems (ISCAS)
2019.

• A novel neuromorphic sensory integration architecture was designed as
part of an international collaboration through several research internships
in the Neuromorphic Behaving Systems Group of the University of
Bielefeld, headed by Elisabetta Chicca. This architecture was composed
by an event-based camera, the DVS, an event-based auditory sensor, the
NAS, and the neuromorphic hardware SpiNNaker. The goal was to
perform autonomous navigation of a moving robot that follows a sound
source while avoiding obstacles. One of the main contributions was to
combine audio-visual information in a neuromorphic hardware and to take
decisions in a close-loop system. This work was presented in the Biomedical
Circuits and Systems Conference (BioCAS) 2019 and in the International
Symposium on Circuits and Systems (ISCAS) 2020.

• To the best of our knowledge, the integration of an event-based
neuromorphic auditory system within the iCub robot was performed for
the first time. This integration was carried out during the five-month
research internship in the Event-Driven Perception for Robotics Group
at the Istituto Italiano di Tecnologia, lead by Chiara Bartolozzi. Several
adaptations were applied to both the hardware and software parts, as
well as new functionalities were implemented for visualizing the auditory
information. A demonstrator was implemented, where the SpiNNaker
board was used to perform SNNs the sound recognition and localization.
This work was presented in the Neuro Inspired Computational Elements
Conference (NICE) 2022.



216 Chapter 6. Conclusions and future works

6.2 Future works

The use of the OpenNAS tool has increased significantly since it was presented
as an open-source project to the community. Some installation and usage issues
have been reported by other users related to operating system incompatibilities.
Therefore, a cross-platform Python version of the OpenNAS tool would be
desirable in order to open this software to a wider range of users, and, thus,
to make it more accesible to the neuromorphic community and facilitate its use.
In addition, the SOC model generation would be added to the tool as well for
unifying the generation process.

Regarding the NASIC, the obtained results from the ASIC characterization
did not match with the expectations. Many aspects from the ASIC design
flow could be improved, starting for the VHDL files. Improving the design by
using the feedback of the Computer-Aided Design (CAD) tools and applying
good designing practices would prevent the next version of the NASIC from
unexpected behaviors. In addition, further verifications and tests will be carried
out, which were skipped due to the lack of experience. As a future work, a new
ASIC will be designed, including debug features and external configuration.

Further work is also needed for the proposed model of the SOC. While the
MSO part was already tested, the LSO part is still under development. Moreover,
an important feature, like the real-time adaptation, is still not included. In
the future, an adaptative version of the SOC model, along with an adaptative
version of the NAS, will be implemented for performing unsupervised auditory
attention tasks. Also, the study of the application of the TDE model in the sound
lateralization task will continue. The performance in terms of accuracy will be
analyzed, and a comparison with the state-of-the-art results will be performed in
order to determine the advantages and disadvantages of this approach.

In the field of robotics, the combination of the work carried out for the
audio-guided SCPG and the work performed in the development of the sensory
integration network will result in a robust, autonomous, fully event-based,
mobile system. By improving the accuracy in the navigation task and adding
unsupervised learning procedures, this kind of robot could be used in rescue or
risky tasks where the adaptation to unknown situations is critical.

Finally, the integration project of the NAS within the iCub robotic platform
has to be finished. Although a functional version was successfully achieved,
some aspects need to be improved. For example, the sound recognition network
accuracy is lower than the original work, and the sound source localization task
could achieve a higher accuracy if a better training strategy is followed. In the
future, both visual and auditory event-based signals will be combined for solving
audiovisual attention-based tasks in real-time, like speech separation during the
cocktail party effect or object recognition through speech commands.



217

Chapter 7

Bibliography

“If you don’t have time to read, you don’t have the time
(or the tools) to write. Simple as that.”

– Stephen King

Alex, Laird (2009). “The Von Neumann Architecture Topic Paper #3”. In:
Computer Sience 319, pp. 360–8771.

Altshuler, Douglas L. and Mandyam V. Srinivasan (2018). “Comparison of
Visually Guided Flight in Insects and Birds”. In: Frontiers in Neuroscience
12, p. 157. ISSN: 1662-453X. DOI: 10.3389/fnins.2018.00157.

Amagai, S., C.E. Carr, and R.J. Dooling (1996). “Brainstem auditory time-coding
nuclei in budgerigars: Physiology”. In: ARO Abstracts 19, p. 191.

Ambroise, Matthieu, Timothée Levi, Sébastien Joucla, Blaise Yvert, and Sylvain
Saïghi (2013). “Real-time biomimetic Central Pattern Generators in an FPGA
for hybrid experiments”. In: Frontiers in Neuroscience 7, p. 215. ISSN: 1662-
453X. DOI: 10.3389/fnins.2013.00215. URL: https://www.frontiersin.
org/article/10.3389/fnins.2013.00215.

Angelidis, Emmanouil, Emanuel Buchholz, Jonathan Patrick Arreguit O’Neil,
Alexis Rougè, Terrence Stewart, Axel von Arnim, Alois Knoll, and
Auke Ijspeert (2021). “A Spiking Central Pattern Generator for the control of
a simulated lamprey robot running on SpiNNaker and Loihi neuromorphic
boards”. In: arXiv preprint arXiv:2101.07001.

Barlow, Horace B (1961). Possible principles underlying the transformations of sensory
messages. MIT press.

Barron, Andrew B, Kevin N. Gurney, Lianne F. S. Meah, Eleni Vasilaki, and
James A R Marshall (2015). “Decision-making and action selection in insects:
inspiration from vertebrate-based theories”. In: Front. Behav. Neurosci.

Barron-Zambrano, Jose Hugo, Cesar Torres-Huitzil, and Bernard Girau (2010).
“Hardware implementation of a CPG-based locomotion control for
quadruped robots”. In: International Conference on Artificial Neural Networks.
Springer, pp. 276–285.

https://doi.org/10.3389/fnins.2018.00157
https://doi.org/10.3389/fnins.2013.00215
https://www.frontiersin.org/article/10.3389/fnins.2013.00215
https://www.frontiersin.org/article/10.3389/fnins.2013.00215


218 Chapter 7. Bibliography

Bartolozzi, C, P Ros, F Diotalevi, N Jamali, L Natale, M Crepaldi, and
D Demarchi (2007). “Event-driven encoding of off-the-shelf tactile sensors
for compression and latency optimisation for robotic skin.” In: RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 166–173.

Bartolozzi, Chiara and Giacomo Indiveri (2007). “Synaptic dynamics in analog
VLSI”. In: Neural computation 19.10, pp. 2581–2603.

Bartolozzi, Chiara, Giacomo Indiveri, and Elisa Donati (2022). “Embodied
neuromorphic intelligence”. In: Nature communications 13.1, pp. 1–14.

Bartolozzi, Chiara, Francesco Rea, Charles Clercq, Daniel B Fasnacht, Giacomo
Indiveri, Michael Hofstätter, and Giorgio Metta (2011). “Embedded
neuromorphic vision for humanoid robots”. In: CVPR 2011 workshops. IEEE,
pp. 129–135.

Bascuas, Luís Enrique López (1997). “La percepción del habla: problemas y
restricciones computacionales”. In: Anuario de psicología/The UB Journal of
psychology 72, pp. 3–22.

Bear, Mark, Barry Connors, and Michael A Paradiso (2020). Neuroscience:
Exploring the brain. Jones & Bartlett Learning, LLC.

Beira, Ricardo, Manuel Lopes, Miguel Praça, José Santos-Victor, Alexandre
Bernardino, Giorgio Metta, Francesco Becchi, and Roque Saltarén (2006).
“Design of the robot-cub (icub) head”. In: Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006. IEEE, pp. 94–100.

Benesty, Jacob et al. (2009). “Pearson correlation coefficient”. In: Noise reduction
in speech processing. Springer, pp. 1–4.

Berge, Hans Kristian Otnes and Philipp Hafliger (2007). “High-speed serial AER
on FPGA”. In: Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on. IEEE, pp. 857–860.

Bhadkamkar, Neal and Boyd Fowler (1993). “A sound localization system based
on biological analogy”. In: IEEE International Conference on Neural Networks.
IEEE, pp. 1902–1907.

Boahen, Kwabena A (2000). “Point-to-point connectivity between neuromorphic
chips using address events”. In: IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing 47.5, pp. 416–434.

Braitenberg, Valentino and Almut Schüz (1998). “Cortical architectonics”. In:
Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, pp. 135–137.

Brette, Romain and Wulfram Gerstner (2005). “Adaptive exponential integrate-
and-fire model as an effective description of neuronal activity”. In: Journal of
neurophysiology 94.5, pp. 3637–3642.

Brosch, Tobias, Stephan Tschechne, and Heiko Neumann (2015). “On event-based
optical flow detection”. In: Frontiers in Neuroscience 9, p. 137. ISSN: 1662-453X.
DOI: 10.3389/fnins.2015.00137. URL: https://www.frontiersin.org/
article/10.3389/fnins.2015.00137.

https://doi.org/10.3389/fnins.2015.00137
https://www.frontiersin.org/article/10.3389/fnins.2015.00137
https://www.frontiersin.org/article/10.3389/fnins.2015.00137


Chapter 7. Bibliography 219

Büschges, Ansgar, Turgay Akay, Jens P Gabriel, and Joachim Schmidt (2008).
“Organizing network action for locomotion: insights from studying insect
walking”. In: Brain research reviews 57.1, pp. 162–171.

Cant, Nell B and Christina G Benson (2003). “Parallel auditory pathways:
projection patterns of the different neuronal populations in the dorsal and
ventral cochlear nuclei”. In: Brain research bulletin 60.5-6, pp. 457–474.

Cariani, P. (2011). “Jeffress model”. In: Scholarpedia 6.7. revision #137337, p. 2920.
DOI: 10.4249/scholarpedia.2920.

Cassidy, Andrew and Andreas G Andreou (2008). “Dynamical digital silicon
neurons”. In: 2008 IEEE Biomedical Circuits and Systems Conference. IEEE,
pp. 289–292.

Cerezuela-Escudero, Elena, Fernando Pérez-Peña, Rafael Paz-Vicente, Angel
Jimenez-Fernandez, Gabriel Jimenez-Moreno, and Arturo Morgado-Estevez
(2018). “Real-time neuro-inspired sound source localization and tracking
architecture applied to a robotic platform”. In: Neurocomputing 283, pp. 129
–139. ISSN: 0925-2312.

Cerezuela-Escudero, Elena et al. (2013). “Spikes monitors for FPGAs, an
experimental comparative study”. In: International Work-Conference on
Artificial Neural Networks. Springer, Berlin, Heidelberg, pp. 179–188.

Chan, Vincent, Craig Jin, and André van Schaik (2012). “Neuromorphic
Audio-Visual Sensor Fusion on a Sound-Localising Robot”. In: Frontiers in
Neuroscience 6, p. 21. ISSN: 1662-453X. DOI: 10.3389/fnins.2012.00021.

Chan, Vincent et al. (2007). “AER EAR: A matched silicon cochlea pair with
address event representation interface”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 54.1, pp. 48–59.

Chicca, Elisabetta, Michael Schmuker, Martin P Nawrot, D Jaeger, and R Jung
(2014). Neuromorphic Sensors, Olfaction.

Chou, Kenny F, Junzi Dong, H Steven Colburn, and Kamal Sen (2019). “A
physiologically inspired model for solving the cocktail party problem”. In:
Journal of the Association for Research in Otolaryngology 20.6, pp. 579–593.

Christensen, Dennis Valbjørn, Regina Dittmann, Bernabé Linares-Barranco,
Abu Sebastian, Manuel Le Gallo, Andrea Redaelli, Stefan Slesazeck,
Thomas Mikolajick, Sabina Spiga, Stephan Menzel, et al. (2022). “2022
roadmap on neuromorphic computing and engineering”. In: Neuromorphic
Computing and Engineering.

Cramer, Benjamin, Yannik Stradmann, Johannes Schemmel, and Friedemann
Zenke (2020). “The heidelberg spiking data sets for the systematic evaluation
of spiking neural networks”. In: IEEE Transactions on Neural Networks and
Learning Systems.

Crespi, Alessandro, Auke Jan Ijspeert, et al. (2006). “AmphiBot II: An amphibious
snake robot that crawls and swims using a central pattern generator”. In:
Proceedings of the 9th international conference on climbing and walking robots
(CLAWAR 2006). Vol. 11. 7-8, pp. 19–27.

https://doi.org/10.4249/scholarpedia.2920
https://doi.org/10.3389/fnins.2012.00021


220 Chapter 7. Bibliography

Crespi, Alessandro, Daisy Lachat, Ariane Pasquier, and Auke Jan Ijspeert (2008a).
“Controlling swimming and crawling in a fish robot using a central pattern
generator”. In: Autonomous Robots 25.1-2, pp. 3–13. ISSN: 0929-5593. DOI:
10.1007/s10514-007-9071-6. URL: http://link.springer.com/10.1007/
s10514-007-9071-6.

Crespi, Alessandro, Daisy Lachat, Ariane Pasquier, and Auke Jan Ijspeert (2008b).
“Controlling swimming and crawling in a fish robot using a central pattern
generator”. In: Autonomous Robots 25.1, pp. 3–13.

Cuevas-Arteaga, Brayan, Juan Pedro Dominguez-Morales, Horacio Rostro-
Gonzalez, Andres Espinal, Angel F Jimenez-Fernandez, Francisco Gomez-
Rodriguez, and Alejandro Linares-Barranco (2017). “A SpiNNaker
application: design, implementation and validation of SCPGs”. In:
International Work-Conference on Artificial Neural Networks. Springer,
pp. 548–559.

Davies, Mike et al. (2018). “Loihi: A neuromorphic manycore processor with on-
chip learning”. In: IEEE Micro 38.1, pp. 82–99.

Dávila-Chacón, Jorge, Jindong Liu, and Stefan Wermter (2018). “Enhanced robot
speech recognition using biomimetic binaural sound source localization”. In:
IEEE transactions on neural networks and learning systems 30.1, pp. 138–150.

Delbruck, T. (2007). “jAER open source project”. In: Internet: http://jaer. wiki.
sourceforge. net.

Delbruck, Tobi (2008). “Frame-free dynamic digital vision”. In: Proceedings of
Intl. Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life and
Society, pp. 21–26.

Dominguez-Morales, Juan P, Stefano Buccelli, Daniel Gutierrez-Galan, Ilaria
Colombi, Angel Jimenez-Fernandez, and Michela Chiappalone (2021a).
“Real-time detection of bursts in neuronal cultures using a Neuromorphic
Auditory Sensor and Spiking Neural Networks”. In: Neurocomputing 449,
pp. 422–434.

Dominguez-Morales, Juan P, D Gutierrez-Galan, A Rios-Navarro, L Duran-
Lopez, M Dominguez-Morales, and A Jimenez-Fernandez (2021b).
“pyNAVIS: an open-source cross-platform software for spike-based
neuromorphic audio information processing”. In: Neurocomputing.

Dominguez-Morales, Juan P, A Rios-Navarro, D Gutierrez-Galan, R Tapiador-
Morales, A Jimenez-Fernandez, E Cerezuela-Escudero, M Dominguez-
Morales, and A Linares-Barranco (2017a). “Live demonstration—Multilayer
spiking neural network for audio samples classification using SpiNNaker”.
In: Circuits and Systems (ISCAS), 2017 IEEE International Symposium on. IEEE,
pp. 1–1.

Dominguez-Morales, Juan P et al. (2017b). “Deep neural networks for
the recognition and classification of heart murmurs using neuromorphic
auditory sensors”. In: IEEE Trans. on Biomedical Circuits and Systems 12.1,
pp. 24–34.

https://doi.org/10.1007/s10514-007-9071-6
http://link.springer.com/10.1007/s10514-007-9071-6
http://link.springer.com/10.1007/s10514-007-9071-6


Chapter 7. Bibliography 221

Dominguez-Morales, Juan P et al. (2017c). “NAVIS: Neuromorphic Auditory
VISualizer tool”. In: Neurocomputing 237, pp. 418–422.

Dominguez-Morales, Juan P et al. (2018a). “Deep Spiking Neural Network
model for time-variant signals classification: a real-time speech recognition
approach”. In: 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE, pp. 1–8.

Domínguez Morales, Juan Pedro (2018). “Neuromorphic audio processing
through real-time embedded spiking neural networks.”

Dominguez-Morales, Juan Pedro, Qian Liu, Robert James, Daniel Gutierrez-
Galan, Angel Jimenez-Fernandez, Simon Davidson, and Steve Furber
(2018b). “Deep Spiking Neural Network model for time-variant signals
classification: a real-time speech recognition approach”. In: International
Joint-Conference on Neural Networks. IEEE, pp. 45–53.

Dominguez-Morales, Juan Pedro et al. (2016). “Multilayer spiking neural
network for audio samples classification using SpiNNaker”. In: International
Conference on Artificial Neural Networks. Springer, Cham, pp. 45–53.

Domínguez-Morales, M, Angel Jimenez-Fernandez, Elena Cerezuela-Escudero,
Rafael Paz-Vicente, Alejandro Linares-Barranco, and Gabriel Jimenez (2011).
“On the designing of spikes band-pass filters for FPGA”. In: International
Conference on Artificial Neural Networks. Springer, pp. 389–396.

Donati, Elisa, Federico Corradi, Cesare Stefanini, and Giacomo Indiveri (2014).
“A spiking implementation of the lamprey’s Central Pattern Generator
in neuromorphic VLSI”. In: IEEE 2014 Biomedical Circuits and Systems
Conference, BioCAS 2014 - Proceedings, pp. 512–515. ISBN: 9781479923465.
DOI: 10.1109/BioCAS.2014.6981775.

Douglass, John K and Nicholas J Strausfeld (1995). “Visual motion detection
circuits in flies: peripheral motion computation by identified small-field
retinotopic neurons”. In: Journal of Neuroscience 15.8, pp. 5596–5611.

Drubach, Daniel (2000). The brain explained. Prentice Hall.
Dundur, Rekha V, MV Latte, SY Kulkarni, and MK Venkatesha (2008). “Digital

filter for cochlear implant implemented on a field-programmable gate
array”. In: proceedings of world academy of science, engineering and technology.
Vol. 33. Citeseer.

Duysens, Jacques and Henry W.A.A Van de Crommert (1998). “Neural control
of locomotion; Part 1: The central pattern generator from cats to humans”.
In: Gait & Posture 7.2, pp. 131–141. ISSN: 0966-6362. DOI: 10.1016/S0966-
6362(97)00042- 8. URL: https://www.sciencedirect.com/science/
article/pii/S0966636297000428.

Eshraghi, Adrien A, Ronen Nazarian, Fred F Telischi, Suhrud M Rajguru, Eric
Truy, and Chhavi Gupta (2012). “The cochlear implant: historical aspects and
future prospects”. In: The Anatomical Record: Advances in Integrative Anatomy
and Evolutionary Biology 295.11, pp. 1967–1980.

https://doi.org/10.1109/BioCAS.2014.6981775
https://doi.org/10.1016/S0966-6362(97)00042-8
https://doi.org/10.1016/S0966-6362(97)00042-8
https://www.sciencedirect.com/science/article/pii/S0966636297000428
https://www.sciencedirect.com/science/article/pii/S0966636297000428


222 Chapter 7. Bibliography

Falanga, Davide, Suseong Kim, and Davide Scaramuzza (2019). “How fast is too
fast? the role of perception latency in high-speed sense and avoid”. In: IEEE
Robotics and Automation Letters 4.2, pp. 1884–1891.

Falanga, Davide, Kevin Kleber, Stefano Mintchev, Dario Floreano, and Davide
Scaramuzza (2018). “The foldable drone: A morphing quadrotor that can
squeeze and fly”. In: IEEE Robotics and Automation Letters 4.2, pp. 209–216.

Fang, Ying, Zhaofei Yu, and Feng Chen (2020). “Noise Helps Optimization Escape
From Saddle Points in the Synaptic Plasticity”. In: Frontiers in neuroscience 14,
p. 343.

Finger, H., S. Liu, P. Ruvolo, and J. R. Movellan (2010). “Approaches and
databases for online calibration of binaural sound localization for robotic
heads”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4340–4345. DOI: 10.1109/IROS.2010.5650515.

Finger, Holger et al. (2011). “Estimating the location of a sound source with a
spike-timing localization algorithm”. In: 2011 IEEE International Symposium
of Circuits and Systems (ISCAS). IEEE, pp. 2461–2464.

Fischer, Tim, Marco Caversaccio, and Wilhelm Wimmer (2020). “A front-back
confusion metric in horizontal sound localization: The fbc score”. In: ACM
Symposium on Applied Perception 2020, pp. 1–5.

Fragnière, Eric (1998). Analogue VLSI emulation of the cochlea. Tech. rep. EPFL.
Franken, Tom P, Philip X Joris, and Philip H Smith (2018). “Principal cells of

the brainstem’s interaural sound level detector are temporal differentiators
rather than integrators”. In: Elife 7, e33854.

Frenkel, Charlotte et al. (2017). “A compact phenomenological digital neuron
implementing the 20 Izhikevich behaviors”. In: 2017 IEEE Biomedical Circuits
and Systems Conference (BioCAS). IEEE, pp. 1–4.

Frenkel, Charlotte et al. (2019). “MorphIC: A 65-nm 738k-Synapse/mm Quad-
Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-
Driven Online Learning”. In: arXiv preprint arXiv:1904.08513.

Fries, Pascal (2005). “A mechanism for cognitive dynamics: neuronal
communication through neuronal coherence”. In: Trends in cognitive sciences
9.10, pp. 474–480.

Fujii, Hiroshi, Hiroyuki Ito, Kazuyuki Aihara, Natsuhiro Ichinose, and
Minoru Tsukada (1996). “Dynamical cell assembly hypothesis—theoretical
possibility of spatio-temporal coding in the cortex”. In: Neural Networks 9.8,
pp. 1303–1350.

Furber, S. B. et al. (2013a). “Overview of the SpiNNaker System Architecture”. In:
IEEE Transactions on Computers 62.12, pp. 2454–2467. ISSN: 0018-9340. DOI:
10.1109/TC.2012.142.

Furber, Stephen and Andrew Brown (2009). “Biologically-inspired massively-
parallel architectures-computing beyond a million processors”. In:
Application of Concurrency to System Design, 2009. ACSD’09. Ninth International
Conference On. IEEE, pp. 3–12.

https://doi.org/10.1109/IROS.2010.5650515
https://doi.org/10.1109/TC.2012.142


Chapter 7. Bibliography 223

Furber, Steve (2016). “Large-scale neuromorphic computing systems”. In: Journal
of neural engineering 13.5, p. 051001.

Furber, Steve B., Francesco Galluppi, Steve Temple, and Luis A. Plana (2014b).
“The SpiNNaker Project”. In: Proceedings of the IEEE. ISSN: 00189219. DOI:
10.1109/JPROC.2014.2304638.

Furber, Steve B, Francesco Galluppi, Steve Temple, and Luis A Plana (2014a).
“The SpiNNaker project”. In: Proceedings of the IEEE 102.5, pp. 652–665.

Furber, Steve B, David R Lester, Luis A Plana, Jim D Garside, Eustace Painkras,
Steve Temple, and Andrew D Brown (2013b). “Overview of the SpiNNaker
system architecture”. In: IEEE Transactions on Computers 62.12, pp. 2454–2467.

Gambin, Isabel, Ivan Grech, Owen Casha, Edward Gatt, and Joseph Micallef
(2010). “Digital cochlea model implementation using Xilinx XC3S500E
spartan-3E FPGA”. In: Electronics, Circuits, and Systems (ICECS), 2010 17th
IEEE International Conference on. IEEE, pp. 946–949.

Gardner, Mark B (1968). “Proximity image effect in sound localization”. In: The
Journal of the Acoustical Society of America 43.1, pp. 163–163.

George, Suma, Sihwan Kim, Sahil Shah, Jennifer Hasler, Michelle Collins, Farhan
Adil, Richard Wunderlich, Stephen Nease, and Shubha Ramakrishnan
(2016). “A programmable and configurable mixed-mode FPAA SoC”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24.6,
pp. 2253–2261.

Gerstner, Wulfram et al. (2002). Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press.

Glackin, Brendan, Julie A Wall, Thomas M McGinnity, Liam P Maguire,
and Liam J McDaid (2010). “A spiking neural network model of the
medial superior olive using spike timing dependent plasticity for sound
localization”. In: Frontiers in computational neuroscience 4, p. 18.

Glover, Arren et al. (2018). “The event-driven software library for YARP—With
algorithms and iCub applications”. In: Frontiers in Robotics and AI 4, p. 73.

Gómez-Rodríguez, F, A Jiménez-Fernández, F Pérez-Peña, L Miró, MJ
Domínguez-Morales, A Ríos-Navarro, E Cerezuela, D Cascado-Caballero,
and A Linares-Barranco (2016). “ED-Scorbot: A robotic test-bed framework
for FPGA-based neuromorphic systems”. In: Biomedical Robotics and
Biomechatronics (BioRob), 2016 6th IEEE International Conference on. IEEE,
pp. 237–242.

Gomez-Rodriguez, F. et al. (2005). “Two Hardware Implementations of the
Exhaustive Synthetic AER Generation Method”. In: Computational Intelligence
and Bioinspired Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 534–540. ISBN: 978-3-540-32106-4.

Gomez-Rodriguez, Francisco, Alejandro Linares-Barranco, L Miro, Shih-Chii Liu,
André Van Schaik, Ralph Etienne-Cummings, and M Anthony Lewis (2007).
“AER auditory filtering and CPG for robot control”. In: 2007 IEEE
International Symposium on Circuits and Systems. IEEE, pp. 1201–1204.

https://doi.org/10.1109/JPROC.2014.2304638


224 Chapter 7. Bibliography

Gonzalez-Billandon, Jonas, Alessandra Sciutti, Matthew Tata, Giulio Sandini,
and Francesco Rea (2020). “Audiovisual cognitive architecture for
autonomous learning of face localisation by a Humanoid Robot”. In: 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
pp. 5979–5985.

Grasse, Lukas, Sylvain J Boutros, and Matthew S Tata (2021). “Speech interaction
to control a hands-free delivery robot for high-risk health care scenarios”. In:
Frontiers in Robotics and AI 8.

Grillner, Sten, Peter Wallén, Kazuya Saitoh, Alexander Kozlov, and Brita
Robertson (2008). “Neural bases of goal-directed locomotion in
vertebrates—an overview”. In: Brain research reviews 57.1, pp. 2–12.

Grothe, Benedikt, Michael Pecka, and David McAlpine (2010). “Mechanisms of
sound localization in mammals”. In: Physiological reviews 90.3, pp. 983–1012.

Guertin, Pierre A. (2009). “The mammalian central pattern generator for
locomotion”. In: Brain Research Reviews 62.1, pp. 45–56. ISSN: 0165-0173.
DOI: 10 . 1016 / J . BRAINRESREV . 2009 . 08 . 002. URL: https : / / www .
sciencedirect.com/science/article/pii/S0165017309000812.

Gutierrez-Galan, Daniel, Chiara Bartolozzi, Juan Pedro Dominguez-Morales,
Angel Jimenez-Fernandez, and Alejandro Linares-Barranco (2022).
“Towards the Neuromorphic Implementation of the Auditory Perception
in the ICub Robotic Platform”. In: Neuro-Inspired Computational Elements
Conference. NICE 2022. Association for Computing Machinery, 11–12.
ISBN: 9781450395595. DOI: 10 . 1145 / 3517343 . 3517347. URL: https :
//doi.org/10.1145/3517343.3517347.

Gutierrez-Galan, Daniel, Juan P Dominguez-Morales, Fernando Perez-Pena,
Angel Jimenez-Fernandez, and Alejandro Linares-Barranco (2019a). “Live
demonstration: neuromorphic robotics, from audio to locomotion through
spiking CPG on SpiNNaker”. In: 2019 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, pp. 1–1.

Gutierrez-Galan, Daniel, Juan P Dominguez-Morales, Fernando Perez-Peña,
Angel Jimenez-Fernandez, and Alejandro Linares-Barranco (2020).
“NeuroPod: a real-time neuromorphic spiking CPG applied to robotics”. In:
Neurocomputing 381, pp. 10–19.

Gutierrez-Galan, Daniel, Juan Pedro Dominguez-Morales, Angel Jimenez-
Fernandez, Ricardo Tapiador-Morales, Antonio Rios-Navarro, and
Alejandro Linares-Barranco (2019b). “A neuromorphic approach of the
sound source localization task in real-time embedded systems: work-in-
progress”. In: Proceedings of the International Conference on Embedded Software
Companion, pp. 1–2.

Gutierrez-Galan, Daniel, Thorben Schoepe, Juan P Dominguez-Morales, Angel
Jimenez-Fernandez, Elisabetta Chicca, and Alejandro Linares-Barranco
(2021a). “An event-based digital time difference encoder model
implementation for neuromorphic systems”. In: IEEE Transactions on Neural
Networks and Learning Systems.

https://doi.org/10.1016/J.BRAINRESREV.2009.08.002
https://www.sciencedirect.com/science/article/pii/S0165017309000812
https://www.sciencedirect.com/science/article/pii/S0165017309000812
https://doi.org/10.1145/3517343.3517347
https://doi.org/10.1145/3517343.3517347
https://doi.org/10.1145/3517343.3517347


Chapter 7. Bibliography 225

Gutierrez-Galan, Daniel et al. (2021b). “OpenNAS: Open Source Neuromorphic
Auditory Sensor HDL code generator for FPGA implementations”. In:
Neurocomputing 436, pp. 35–38.

Habets, Emanuel AP (2006). “Room impulse response generator”. In: Technische
Universiteit Eindhoven, Tech. Rep 2.2.4, p. 1.

Haessig, Germain et al. (2020). “Event-based computation for touch localization
based on precise spike timing”. In: Frontiers in Neuroscience 14, p. 420.

Hambrook, Dillon A et al. (2017). “A Bayesian computational basis for auditory
selective attention using head rotation and the interaural time-difference
cue”. In: PloS one 12.10.

Hamilton, Tara Julia, Craig Jin, Andre Van Schaik, and Jonathan Tapson (2008).
“An active 2-D silicon cochlea”. In: IEEE Transactions on biomedical circuits
and systems 2.1, pp. 30–43.

Hassentstein, B and W Reichardt (Jan. 1956). “Systemtheoretische
Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der
Bewegungsperzeption des Rüsselkäfers Chlorophanus”. In: Z. Naturforsch.
11b, pp. 513–524. DOI: 10.1515/znb-1956-9-1004.

Hodgkin, Alan L and Andrew F Huxley (1939). “Action potentials recorded from
inside a nerve fibre”. In: Nature 144.3651, p. 710.

Horiuchi, T. K. (2009). “A Spike-Latency Model for Sonar-Based Navigation in
Obstacle Fields”. In: IEEE Transactions on Circuits and Systems I: Regular Papers
56.11, pp. 2393–2401. ISSN: 1549-8328. DOI: 10.1109/TCSI.2009.2015597.

Hull, Kerry L (2011). Human Form, Human Function: Essentials of Anatomy &
Physiology. Lippincott Williams & Wilkins.

Hynna, Kai and Kwabena Boahen (2001). “Space-rate coding in an adaptive
silicon neuron”. In: Neural Networks 14.6-7, pp. 645–656.

Iacono, Massimiliano, Stefan Weber, Arren Glover, and Chiara Bartolozzi (2018).
“Towards event-driven object detection with off-the-shelf deep learning”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, pp. 1–9.

Iakymchuk, Taras, Alfredo Rosado, Teresa Serrano-Gotarredona, Bernabé
Linares-Barranco, Angel Jiménez-Fernandez, Alejandro Linares-Barranco,
and Gabriel Jiménez-Moreno (2014). “An AER handshake-less modular
infrastructure PCB with x8 2.5 Gbps LVDS serial links”. In: 2014 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, pp. 1556–1559.

Indiveri, G. et al. (2011a). “Neuromorphic silicon neuron circuits”. In: Frontiers in
Neuroscience 5, pp. 1–23. ISSN: 1662-453X. DOI: 10.3389/fnins.2011.00073.

Indiveri, Giacomo, Elisabetta Chicca, and Rodney Douglas (2006). “A VLSI
array of low-power spiking neurons and bistable synapses with spike-
timing dependent plasticity”. In: IEEE transactions on neural networks 17.1,
pp. 211–221.

Indiveri, Giacomo et al. (2011b). “Neuromorphic silicon neuron circuits”. In:
Frontiers in neuroscience 5, p. 73.

Ito, Akira (1989). Barrel shifter. US Patent 4,829,460.

https://doi.org/10.1515/znb-1956-9-1004
https://doi.org/10.1109/TCSI.2009.2015597
https://doi.org/10.3389/fnins.2011.00073


226 Chapter 7. Bibliography

Jäckel, David, Rico Moeckel, and Shih-Chii Liu (2010). “Sound recognition with
spiking silicon cochlea and Hidden Markov Models”. In: Ph. D. Research in
Microelectronics and Electronics (PRIME), 2010 Conference on. IEEE, pp. 1–4.

James, Robert (2020). “Spikes from sound: A model of the human auditory
periphery on SpiNNaker”. In:

Janus, Scott (2004). Audio in the 21st Century. Intel Press.
Jeffress, Lloyd A (1948). “A place theory of sound localization.” In: Journal of

comparative and physiological psychology 41.1, p. 35.
Jimenez-Fernandez, Angel, Gabriel Jimenez-Moreno, Alejandro Linares-

Barranco, Manuel J Dominguez-Morales, Rafael Paz-Vicente, and
Anton Civit-Balcells (2012). “A neuro-inspired spike-based PID motor
controller for multi-motor robots with low cost FPGAs”. In: Sensors 12.4,
pp. 3831–3856.

Jimenez-Fernandez, Angel et al. (2010). “Building blocks for spikes signals
processing”. In: Neural Networks (IJCNN), The 2010 International Joint
Conference on. IEEE, pp. 1–8.

Jimenez-Fernandez, Angel et al. (2017). “A Binaural Neuromorphic Auditory
Sensor for FPGA: A Spike Signal Processing Approach.” In: IEEE Trans.
Neural Netw. Learning Syst. 28.4, pp. 804–818.

Jiménez Fernández, Ángel Francisco (2010). “Diseño y evaluación de sistemas
de control y procesamiento de señales basados en modelos neuronales
pulsantes”. In:

Johnston, Daniel and Samuel Miao-Sin Wu (1994). Foundations of cellular
neurophysiology. MIT press.

Jones, Simon, Ray Meddis, Seow Chuan Lim, and A Robert Temple (2000).
“Toward a digital neuromorphic pitch extraction system”. In: IEEE
transactions on neural networks 11.4, pp. 978–987.

Kaas, John H. (1997). “Topographic Maps are Fundamental to Sensory
Processing”. In: Brain Research Bulletin 44.2, pp. 107–112.

Kandel, Eric R, James H Schwartz, Thomas M Jessell, Steven Siegelbaum,
A James Hudspeth, and Sarah Mack (2000). Principles of neural science. Vol. 4.
McGraw-hill New York.

Kandler, Karl, Amanda Clause, and Jihyun Noh (2009). “Tonotopic
reorganization of developing auditory brainstem circuits”. In: Nature
neuroscience 12.6, pp. 711–717.

Katsiamis, Andreas G, Emmanuel M Drakakis, and Richard F Lyon (2007).
“Practical gammatone-like filters for auditory processing”. In: EURASIP
Journal on Audio, Speech, and Music Processing 2007.1, p. 063685.

Khacef, Lyes, Laurent Rodriguez, and Benoît Miramond (2020). “Brain-inspired
self-organization with cellular neuromorphic computing for multimodal
unsupervised learning”. In: Electronics 9.10, p. 1605.

Kish, Lazlo B. (2002). “End of Moore’s law: thermal (noise) death of integration
in microand nano electronics”. In: Physics Letters A 305, pp. 144–149.



Chapter 7. Bibliography 227

Knight, James and Thomas Nowotny (2019). “GeNN: GPU-enhanced neural
networks”. In: NEST Conference 2019.

Knight, James C and Thomas Nowotny (2018). “GPUs outperform current HPC
and neuromorphic solutions in terms of speed and energy when simulating
a highly-connected cortical model”. In: Frontiers in neuroscience 12, p. 941.

Knight, James C and Thomas Nowotny (2021). “Larger GPU-accelerated brain
simulations with procedural connectivity”. In: Nature Computational Science
1.2, pp. 136–142.

Kumar, Nagendra, Wolfgang Himmelbauer, Gert Cauwenberghs, and Andreas G
Andreou (1998). “An analog VLSI chip with asynchronous interface for
auditory feature extraction”. In: IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing 45.5, pp. 600–606.

Lande, Tor Sverre, J-T Marienborg, and Yngvar Berg (2000). “Neuromorphic
cochlea implants”. In: 2000 IEEE International Symposium on Circuits and
Systems (ISCAS). Vol. 4. IEEE, pp. 401–404.

Lazzaro, John and Carver Mead (1989a). “Circuit models of sensory transduction
in the cochlea”. In: Analog VLSI Implementation of Neural Systems. Springer,
pp. 85–101.

Lazzaro, John and Carver A Mead (1989b). “A silicon model of auditory
localization”. In: Neural computation 1.1, pp. 47–57.

Lazzaro, John and John Wawrzynek (1995). “A multi-sender asynchronous
extension to the AER protocol”. In: Advanced Research in VLSI, 1995.
Proceedings., Sixteenth Conference on. IEEE, pp. 158–169.

Lazzaro, John, John Wawrzynek, Misha Mahowald, Massimo Sivilotti, and Dave
Gillespie (1993). “Silicon auditory processors as computer peripherals”. In:
Advances in Neural Information Processing Systems, pp. 820–827.

Lele, Ashwin, Yan Fang, Justin Ting, and Arijit Raychowdhury (2021). “An End-
to-end Spiking Neural Network Platform for Edge Robotics: From Event-
Cameras to Central Pattern Generation”. In: IEEE Transactions on Cognitive
and Developmental Systems.

Leong, Monk-Ping, Craig T Jin, and Philip HW Leong (2003). “An FPGA-based
electronic cochlea”. In: EURASIP Journal on Applied Signal Processing 2003,
pp. 629–638.

Levi, Timothée et al. (2018). “Digital implementation of Hodgkin–Huxley neuron
model for neurological diseases studies”. In: Artificial Life and Robotics.

Lichtsteiner, Patrick et al. (2008). “A 128×128 120 dB 15µs Latency Asynchronous
Temporal Contrast Vision Sensor”. In: IEEE journal of solid-state circuits 43.2,
pp. 566–576.

Linares-Barranco, A. et al. (2006). “On algorithmic rate-coded AER generation”.
In: IEEE Transactions on Neural Networks 17.3, pp. 771–788.

Linares-Barranco, Alejandro, Fernando Perez-Peña, Angel Jimenez-Fernandez,
and Elisabetta Chicca (2020). “ED-BioRob: a Neuromorphic Robotic Arm
with FPGA-based infrastructure for Bio-inspired spiking motor controllers”.
In: Frontiers in Neurorobotics 14.



228 Chapter 7. Bibliography

Liu, Jindong, Harry Erwin, and Stefan Wermter (2008). “Mobile robot broadband
sound localisation using a biologically inspired spiking neural network”. In:
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
pp. 2191–2196.

Liu, Jindong, David Perez-Gonzalez, Adrian Rees, Harry Erwin, and Stefan
Wermter (2010a). “A biologically inspired spiking neural network model
of the auditory midbrain for sound source localisation”. In: Neurocomputing
74.1-3, pp. 129–139.

Liu, Qian, Cameron Patterson, Steve Furber, Zhangqin Huang, Yibin Hou, and
Huibing Zhang (2013). “Modeling populations of spiking neurons for fine
timing sound localization”. In: The 2013 International Joint Conference on
Neural Networks (IJCNN). IEEE, pp. 1–8.

Liu, Shih-Chii, Tobi Delbruck, Giacomo Indiveri, Adrian Whatley, and Rodney
Douglas (2015). Event-based neuromorphic systems. John Wiley & Sons.

Liu, Shih-Chii, Jörg Kramer, Giacomo Indiveri, Tobias Delbrück, and Rodney
Douglas (2002). Analog VLSI: circuits and principles. MIT press.

Liu, Shih-Chii, André van Schaik, Bradley A Minch, and Tobi Delbruck (2014).
“Asynchronous Binaural Spatial Audition Sensor With 2x64x4 Channel
Output”. In: IEEE transactions on biomedical circuits and systems 8.4,
pp. 453–464.

Liu, Shih-Chii, André Van Schaik, Bradley A Mincti, and Tobi Delbruck (2010b).
“Event-based 64-channel binaural silicon cochlea with Q enhancement
mechanisms”. In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on. IEEE, pp. 2027–2030.

Liu, Weimin, Andreas G Andreou, and MH Goldstein (1991). “An analog
integrated speech front-end based on the auditory periphery”. In: Neural
Networks, 1991., IJCNN-91-Seattle International Joint Conference on. Vol. 2. IEEE,
pp. 861–864.

Liu, Weimin, Andreas G Andreou, and Moise H Goldstein (1992). “Voiced-speech
representation by an analog silicon model of the auditory periphery”. In:
IEEE Transactions on Neural Networks 3.3, pp. 477–487.

Liu, Ying, Khaled Benkrid, AbdSamad Benkrid, and Server Kasap (2009). “An
fpga-based web server for high performance biological sequence alignment”.
In: 2009 NASA/ESA Conference on Adaptive Hardware and Systems. IEEE,
pp. 361–368.

Lopez-Poveda, Enrique A (2018). “Olivocochlear efferents in animals and
humans: from anatomy to clinical relevance”. In: Frontiers in neurology 9,
p. 197.

Lyon, Richard (1982). “A computational model of filtering, detection, and
compression in the cochlea”. In: Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP’82. Vol. 7. IEEE, pp. 1282–1285.

Lyon, Richard F (2017). Human and machine hearing. Cambridge University Press.
Lyon, Richard F and Carver Mead (1988). “An analog electronic cochlea”. In: IEEE

Transactions on Acoustics, Speech, and Signal Processing 36.7, pp. 1119–1134.



Chapter 7. Bibliography 229

Maass, Wolfgang and Christopher M Bishop (2001). Pulsed neural networks. MIT
press.

Mahowald, Misha (1992). “VLSI analogs of neuronal visual processing: a
synthesis of form and function”.

Maqueda, Ana I, Antonio Loquercio, Guillermo Gallego, Narciso García, and
Davide Scaramuzza (2018). “Event-based vision meets deep learning on
steering prediction for self-driving cars”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5419–5427.

Massaro, Dominic W and David G Stork (1998). “Speech recognition and sensory
integration: a 240-year-old theorem helps explain how people and machines
can integrate auditory and visual information to understand speech”. In:
American Scientist 86.3, pp. 236–244.

Massoud, Tarek M and Timothy K Horiuchi (2010). “A neuromorphic VLSI head
direction cell system”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 58.1, pp. 150–163.

McDonald, John J, Wolfgang A Teder-SaÈlejaÈrvi, and Steven A Hillyard (2000).
“Involuntary orienting to sound improves visual perception”. In: Nature
407.6806, pp. 906–908.

Mead, Carver (1989). Analog VLSI and Neural Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc. ISBN: 0-201-05992-4.

Mead, Carver (1990). “Neuromorphic electronic systems”. In: Proceedings of the
IEEE 78.10, pp. 1629–1636.

Metta, Giorgio, Paul Fitzpatrick, and Lorenzo Natale (2006). “YARP: yet another
robot platform”. In: International Journal of Advanced Robotic Systems 3.1, p. 8.

Milde, Moritz B, Olivier JN Bertrand, Ryad Benosman, Martin Egelhaaf, and
Elisabetta Chicca (2015). “Bioinspired event-driven collision avoidance
algorithm based on optic flow”. In: Event-based Control, Communication, and
Signal Processing (EBCCSP), 2015 International Conference on. IEEE, pp. 1–7.

Milde, Moritz B, Hermann Blum, Alexander Dietmüller, Dora Sumislawska,
Jörg Conradt, Giacomo Indiveri, and Yulia Sandamirskaya (2017). “Obstacle
avoidance and target acquisition for robot navigation using a mixed
signal analog/digital neuromorphic processing system”. In: Frontiers in
neurorobotics 11, p. 28.

Milde, Moritz B et al. (2018). “Spiking elementary motion detector in
neuromorphic systems”. In: Neural computation 30.9, pp. 2384–2417.

Minassian, Karen, Ursula S Hofstoetter, Florin Dzeladini, Pierre A Guertin,
and Auke Ijspeert (2017). “The Human Central Pattern Generator for
Locomotion: Does It Exist and Contribute to Walking?” In: The Neuroscientist
23.6, pp. 649–663.

Miró Amarante, María Lourdes (2013). “Una aportación al procesado
neuromórfico de audio basado en modelos pulsantes. Desde la cóclea a la
percepción auditiva”.

Molholm, Sophie and John J Foxe (2005). “Look ‘hear’, primary auditory cortex
is active during lip-reading”. In: Neuroreport 16.2, pp. 123–124.



230 Chapter 7. Bibliography

Monforte, Marco, Ander Arriandiaga, Arren Glover, and Chiara Bartolozzi
(2020). “Where and When: Event-Based Spatiotemporal Trajectory
Prediction from the iCub’s Point-Of-View”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp. 9521–9527.

Montealegre, Norma, David Merodio, Agustin Fernandez, and Philippe
Armbruster (2015). “In-flight reconfigurable FPGA-based space systems”.
In: 2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). IEEE,
pp. 1–8.

Moradi, Saber, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri (2017). “A
scalable multicore architecture with heterogeneous memory structures for
dynamic neuromorphic asynchronous processors (DYNAPs)”. In: IEEE
transactions on biomedical circuits and systems 12.1, pp. 106–122.

Moravec, Hans (1998). “When will computer hardware match the human brain?”
In: Jouranl of Evolution and Technology 1.

Mugliette, Christian, Ivan Grech, Owen Casha, Edward Gatt, and Joseph Micallef
(2011). “FPGA active digital cochlea model”. In: Electronics, Circuits
and Systems (ICECS), 2011 18th IEEE International Conference on. IEEE,
pp. 699–702.

Müller, G. R. and J. Conradt (2011). “A miniature low-power sensor system for
real time 2D visual tracking of LED markers”. In: 2011 IEEE International
Conference on Robotics and Biomimetics, pp. 2429–2434. DOI: 10.1109/ROBIO.
2011.6181669.

Natale, Lorenzo, Chiara Bartolozzi, Francesco Nori, Giulio Sandini, and Giorgio
Metta (2021). “The iCub platform: evolution and current trends”. In: arXiv
e-prints, arXiv–2105.

Natale, Lorenzo, Chiara Bartolozzi, Daniele Pucci, Agnieszka Wykowska, and
Giorgio Metta (2017). “icub: The not-yet-finished story of building a robot
child”. In: Science Robotics 2.13.

Nathan, Adam (2006). Windows presentation foundation unleashed. Pearson
Education.

Naveros, Francisco, Niceto R Luque, Eduardo Ros, and Angelo Arleo (2019).
“VOR adaptation on a humanoid iCub robot using a spiking cerebellar
model”. In: IEEE transactions on cybernetics 50.11, pp. 4744–4757.

Oster, Matthias, Rodney Douglas, and Shih-Chii Liu (July 2009). “Computation
with Spikes in a Winner-Take-All Network”. In: Neural computation 21,
pp. 2437–65. DOI: 10.1162/neco.2009.07-08-829.

Painkras, Eustace et al. (2013). “SpiNNaker: A 1-W 18-core system-on-chip for
massively-parallel neural network simulation”. In: IEEE Journal of Solid-State
Circuits 48.8, pp. 1943–1953.

Park, Paul KJ et al. (2013). “Fast neuromorphic sound localization for binaural
hearing aids”. In: 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). IEEE.

Parmiggiani, Alberto, Marco Maggiali, Lorenzo Natale, Francesco Nori,
Alexander Schmitz, Nikos Tsagarakis, Jose Santos Victor, Francesco Becchi,

https://doi.org/10.1109/ROBIO.2011.6181669
https://doi.org/10.1109/ROBIO.2011.6181669
https://doi.org/10.1162/neco.2009.07-08-829


Chapter 7. Bibliography 231

Giulio Sandini, and Giorgio Metta (2012). “The design of the iCub humanoid
robot”. In: International journal of humanoid robotics 9.04, p. 1250027.

Pasquale, Giulia, Carlo Ciliberto, Francesca Odone, Lorenzo Rosasco, and
Lorenzo Natale (2015). “Teaching iCub to recognize objects using deep
Convolutional Neural Networks”. In: Machine Learning for Interactive
Systems. PMLR, pp. 21–25.

Patton, Kevin T, Gary A Thibodeau, and Matthew M Douglas (2012). Essentials of
anatomy & physiology. Elsevier/Mosby.

Pavlou, Athanasios and Matthew Casey (2010). “Simulating the effects of cortical
feedback in the superior colliculus with topographic maps”. In: The 2010
International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

Perez-Peña, Fernando, Arturo Morgado-Estevez, Alejandro Linares-Barranco,
Angel Jimenez-Fernandez, Francisco Gomez-Rodriguez, Gabriel Jimenez-
Moreno, and Juan Lopez-Coronado (2013a). “Neuro-inspired spike-based
motion: from dynamic vision sensor to robot motor open-loop control
through spike-VITE”. In: Sensors 13.11, pp. 15805–15832.

Perez-Peña, Fernando, Arturo Morgado-Estevez, Alejandro Linares-Barranco,
Angel Jimenez-Fernandez, Francisco Gomez-Rodriguez, Gabriel Jimenez-
Moreno, and Juan Lopez-Coronado (2013b). “Neuro-Inspired Spike-Based
Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control
through Spike-VITE”. In: Sensors 13.11, 15805–15832. ISSN: 1424-8220.

Perez-Peña, Fernando et al. (2019). “Digital neuromorphic real-time platform”.
In: Neurocomputing.

Plana, L.A., J. Heathcote, J.S. Pepper, S. Davidson, J. Garside, S. Temple, and S.B.
Furber (2014). “spI/O: A library of FPGA designs and reusable modules for
I/O in SpiNNaker systems”. In: DOI: 10.5281/zenodo.51476.

Plana, Luis A, Steve B Furber, Steve Temple, Mukaram Khan, Yebin Shi, Jian Wu,
and Shufan Yang (2007). “A GALS infrastructure for a massively parallel
multiprocessor”. In: IEEE Design & Test of Computers 24.5.

Plenge, Georg (1974). “On the differences between localization and
lateralization”. In: The Journal of the Acoustical Society of America 56.3,
pp. 944–951.

Posch, Christoph, Daniel Matolin, and Rainer Wohlgenannt (2010). “A QVGA 143
dB dynamic range frame-free PWM image sensor with lossless pixel-level
video compression and time-domain CDS”. In: IEEE Journal of Solid-State
Circuits 46.1, pp. 259–275.

Qiao, Ning, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini,
Dora Sumislawska, and Giacomo Indiveri (2015). “A reconfigurable on-line
learning spiking neuromorphic processor comprising 256 neurons and 128K
synapses”. In: Frontiers in neuroscience 9, p. 141.

Rakic, Pasko (1988). “Specification of cerebral cortical areas”. In: Science 241.4862,
pp. 170–176.

Rasetto, Marco, Juan P Dominguez-Morales, Angel Jimenez-Fernandez, and
Ryad Benosman (2021). “Event Based Time-Vectors for auditory features

https://doi.org/10.5281/zenodo.51476


232 Chapter 7. Bibliography

extraction: a neuromorphic approach for low power audio recognition”. In:
arXiv preprint arXiv:2112.07011.

Rigden, J (1996). Body, physics of.
Rios-Navarro, Antonio, Juan Pedro Dominguez-Morales, Ricardo Tapiador-

Morales, Daniel Gutierrez-Galan, Angel Jimenez-Fernandez, and Alejandro
Linares-Barranco (2016). “A 20Mevps/32Mev event-based USB framework
for neuromorphic systems debugging”. In: 2016 Second International
Conference on Event-based Control, Communication, and Signal Processing
(EBCCSP). IEEE, pp. 1–6.

Risoud, M., J.-N. Hanson, F. Gauvrit, C. Renard, P.-E. Lemesre, N.-X. Bonne,
and C. Vincent (2018). “Sound source localization”. In: European Annals of
Otorhinolaryngology, Head and Neck Diseases 135.4, pp. 259–264. ISSN: 1879-
7296. DOI: https://doi.org/10.1016/j.anorl.2018.04.009. URL: https:
//www.sciencedirect.com/science/article/pii/S187972961830067X.

Rodríguez Valiente, A, A Trinidad, JR García Berrocal, C Górriz, and R
Ramírez Camacho (2014). “Extended high-frequency (9–20 kHz) audiometry
reference thresholds in 645 healthy subjects”. In: International journal of
audiology 53.8, pp. 531–545.

Rostro-Gonzalez, Horacio, Pedro Alberto Cerna-Garcia, Gerardo Trejo-Caballero,
Carlos H Garcia-Capulin, Mario Alberto Ibarra-Manzano, Juan Gabriel
Avina-Cervantes, and César Torres-Huitzil (2015). “A CPG system based
on spiking neurons for hexapod robot locomotion”. In: Neurocomputing 170,
pp. 47–54.

Sabena, Davide, Luca Sterpone, Mario Schölzel, Tobias Koal, Heinrich Theodor
Vierhaus, S Wong, Robért Glein, Florian Rittner, C Stender, Mario Porrmann,
et al. (2014). “Reconfigurable high performance architectures: How much are
they ready for safety-critical applications?” In: 2014 19th IEEE European Test
Symposium (ETS). IEEE, pp. 1–8.

Sartoretti, Guillaume, Samuel Shaw, Katie Lam, Naixin Fan, Matthew Travers,
and Howie Choset (2018). “Central Pattern Generator with Inertial Feedback
for Stable Locomotion and Climbing in Unstructured Terrain”. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, pp. 1–5.

Schaik, André van (2010). “Adaptive sound localization with a silicon cochlea
pair”. In: Frontiers in neuroscience 4, p. 196.

Schemmel, Johannes, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz
Meier, and Sebastian Millner (2010). “A wafer-scale neuromorphic hardware
system for large-scale neural modeling”. In: 2010 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, pp. 1947–1950.

Schilling, Malte, Thierry Hoinville, Josef Schmitz, and Holk Cruse (2013).
“Walknet, a bio-inspired controller for hexapod walking”. In: Biological
Cybernetics 107.4, pp. 397–419. ISSN: 03401200. DOI: 10.1007/s00422-013-
0563-5.

Schneider, Axel, Jan Paskarbeit, Mattias Schaeffersmann, and Josef Schmitz
(2012). “Hector, a new hexapod robot platform with increased mobility-

https://doi.org/https://doi.org/10.1016/j.anorl.2018.04.009
https://www.sciencedirect.com/science/article/pii/S187972961830067X
https://www.sciencedirect.com/science/article/pii/S187972961830067X
https://doi.org/10.1007/s00422-013-0563-5
https://doi.org/10.1007/s00422-013-0563-5


Chapter 7. Bibliography 233

control approach, design and communication”. In: Advances in Autonomous
Mini Robots. Springer, pp. 249–264.

Schnupp, Jan, Israel Nelken, and Andrew King (2011). Auditory neuroscience:
Making sense of sound. MIT press.

Schoepe, Thorben, Daniel Gutierrez-Galan, Juan Pedro Dominguez-Morales,
Angel Jimenez-Fernandez, Alejandro Linares-Barranco, and Elisabetta
Chicca (2019). “Neuromorphic sensory integration for combining sound
source localization and collision avoidance”. In: 2019 IEEE Biomedical Circuits
and Systems Conference (BioCAS). IEEE, pp. 1–4.

Schoepe, Thorben, Daniel Gutierrez-Galan, Juan Pedro Dominguez-Morales,
Angel Jimenez-Fernandez, Alejandro Linares-Barranco, and Elisabetta
Chicca (2020). “Live Demonstration: Neuromorphic Sensory Integration for
Combining Sound Source Localization and Collision Avoidance”. In: 2020
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp. 1–1.

Schreiner, Christoph E and Jeffery A Winer (2005). The inferior colliculus. Springer.
Serrano-Gotarredona, Rafael, Matthias Oster, Patrick Lichtsteiner, Alejandro

Linares-Barranco, Rafael Paz-Vicente, Francisco Gómez-Rodríguez, Luis
Camuñas-Mesa, Raphael Berner, Manuel Rivas-Pérez, Tobi Delbruck, et al.
(2009). “CAVIAR: A 45k neuron, 5M synapse, 12G connects/s AER hardware
sensory–processing–learning–actuating system for high-speed visual object
recognition and tracking”. In: IEEE Transactions on Neural Networks 20.9,
pp. 1417–1438.

Serrano-Gotarredona, Teresa and Bernabé Linares-Barranco (2013). “A 128 ×
128 1.5% Contrast Sensitivity 0.9% FPN 3 µs Latency 4 mW Asynchronous
Frame-Free Dynamic Vision Sensor Using Transimpedance Preamplifiers”.
In: IEEE Journal of Solid-State Circuits 48.3, pp. 827–838.

Shadlen, Michael N and William T Newsome (1994). “Noise, neural codes and
cortical organization”. In: Current opinion in neurobiology 4.4, pp. 569–579.

Shaikh, Danish, John Hallam, and Jakob Christensen-Dalsgaard (2016). “From
“ear” to there: a review of biorobotic models of auditory processing in
lizards”. In: Biological cybernetics 110.4, pp. 303–317.

Shepherd, Gordon M (2003). The synaptic organization of the brain. Oxford
University Press.

Shi, Zhuanghua and Hermann Müller (Nov. 2013). “Multisensory perception
and action: Development, decision-making, and neural mechanisms”. In:
Frontiers in integrative neuroscience 7, p. 81. DOI: 10.3389/fnint.2013.00081.

Shiraishi, Hisako (2003). “Design of an analog VLSI cochlea”.
Shore, SE (2009). Auditory/somatosensory interactions. Elsevier.
Sivilotti, Massimo Antonio (1991). Wiring considerations in analog VLSI systems,

with application to field-programmable networks.
Skottun, Bernt C, Trevor M Shackleton, Robert H Arnott, and Alan R Palmer

(2001). “The ability of inferior colliculus neurons to signal differences in
interaural delay”. In: Proceedings of the National Academy of Sciences 98.24,
pp. 14050–14054.

https://doi.org/10.3389/fnint.2013.00081


234 Chapter 7. Bibliography

Soleimani, Hamid et al. (2012). “Biologically inspired spiking neurons: Piecewise
linear models and digital implementation”. In: IEEE Transactions on Circuits
and Systems I: Regular Papers.

Still, Susanne, Bernhard Schölkopf, Klaus Hepp, and Rodney J Douglas (2001).
“Four-legged walking gait control using a neuromorphic chip interfaced
to a support vector learning algorithm”. In: Advances in neural information
processing systems, pp. 741–747.

Sugiarto, I., P. Campos, N. Dahir, G. Tempesti, and S. Furber (2017). “Optimized
task graph mapping on a many-core neuromorphic supercomputer”. In: 2017
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7. DOI:
10.1109/HPEC.2017.8091066.

Summerfield, Clive D and Richard F Lyon (1992). “ASIC implementation of
the Lyon cochlea model”. In: Acoustics, Speech, and Signal Processing, 1992.
ICASSP-92., 1992 IEEE International Conference on. Vol. 5. IEEE, pp. 673–676.

Tabibi, Sonia, Andrea Kegel, Wai Kong Lai, and Norbert Dillier (2017).
“Investigating the use of a Gammatone filterbank for a cochlear implant
coding strategy”. In: Journal of Neuroscience Methods 277, pp. 63–74. ISSN:
0165-0270. DOI: https : / / doi . org / 10 . 1016 / j . jneumeth . 2016 . 12 .
004. URL: https://www.sciencedirect.com/science/article/pii/
S0165027016302898.

Tapiador-Morales, Ricardo et al. (2018). “Neuromorphic LIF Row-by-Row
Multiconvolution Processor for FPGA”. In: IEEE transactions on biomedical
circuits and systems 13.1, pp. 159–169.

Thakur, Chetan Singh, Tara Julia Hamilton, Jonathan Tapson, André van Schaik,
and Richard F Lyon (2014). “FPGA Implementation of the CAR Model of the
Cochlea”. In: Circuits and Systems (ISCAS), 2014 IEEE International Symposium
on. IEEE, pp. 1853–1856.

Thakur, Chetan Singh, Runchun Mark Wang, Saeed Afshar, Tara Julia Hamilton,
Jonathan Tapson, Shihab Shamma, and André van Schaik (2015). “Sound
stream segregation: a neuromorphic approach to solve the “cocktail party
problem” in real-time”. In: Frontiers in neuroscience 9, p. 309.

Thor, Mathias, Beck Strohmer, and Poramate Manoonpong (2021). “Locomotion
control with frequency and motor pattern adaptations”. In: Frontiers in
Neural Circuits 15.

Thorpe, Simon J, Adrien Brilhault, and José-Antonio Perez-Carrasco (2010).
“Suggestions for a biologically inspired spiking retina using order-based
coding”. In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on. IEEE, pp. 265–268.

Tikhanoff, Vadim et al. (2010). “Integration of speech and action in humanoid
robots: iCub simulation experiments”. In: IEEE Transactions on Autonomous
Mental Development 3.1, pp. 17–29.

Ting, Justin, Yan Fang, Ashwin Lele, and Arijit Raychowdhury (2020). “Bio-
inspired gait imitation of hexapod robot using event-based vision sensor

https://doi.org/10.1109/HPEC.2017.8091066
https://doi.org/https://doi.org/10.1016/j.jneumeth.2016.12.004
https://doi.org/https://doi.org/10.1016/j.jneumeth.2016.12.004
https://www.sciencedirect.com/science/article/pii/S0165027016302898
https://www.sciencedirect.com/science/article/pii/S0165027016302898


Chapter 7. Bibliography 235

and spiking neural network”. In: 2020 International Joint Conference on Neural
Networks (IJCNN). IEEE, pp. 1–7.

Van Schaik, André and Eric Fragnière (2001). “Pseudo-voltage domain
implementation of a 2-dimensional silicon cochlea”. In: Circuits and Systems,
2001. ISCAS 2001. The 2001 IEEE International Symposium on. Vol. 3. IEEE,
pp. 185–188.

Van Schaik, André, Eric Fragnière, and Eric A Vittoz (1996). “Improved silicon
cochlea using compatible lateral bipolar transistors”. In: Advances in neural
information processing systems, pp. 671–677.

Van Schaik, André et al. (2004). “A neuromorphic sound localizer for a smart
MEMS system”. In: Analog Integrated Circuits and Signal Processing.

Vanarse, Anup (2020). “Neuronose: An empirical study of neuromorphic
approaches for the development of an artificial olfactory system”. In:

Vogelstein, R Jacob, Francesco VG Tenore, Lisa Guevremont, Ralph Etienne-
Cummings, and Vivian K Mushahwar (2008). “A silicon central pattern
generator controls locomotion in vivo”. In: IEEE transactions on biomedical
circuits and systems 2.3, pp. 212–222.

Voutsas, Kyriakos and Jürgen Adamy (2007). “A biologically inspired spiking
neural network for sound source lateralization”. In: IEEE transactions on
Neural Networks 18.6, pp. 1785–1799.

Wallach, Hans (1939). “On sound localization”. In: The Journal of the Acoustical
Society of America 10.4, pp. 270–274.

Ward-Cherrier, Benjamin, Nicholas Pestell, and Nathan F Lepora (2020).
“NeuroTac: A neuromorphic optical tactile sensor applied to texture
recognition”. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 2654–2660.

Warden, Pete (2018). “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition”. In: CoRR abs/1804.03209. arXiv: 1804.03209. URL:
http://arxiv.org/abs/1804.03209.

Warren, Richard M (2013). Auditory perception: A new synthesis. Vol. 109. Elsevier.
Watts, Lloyd, Douglas A Kerns, Richard F Lyon, and Carver A Mead (1992).

“Improved implementation of the silicon cochlea”. In: IEEE Journal of Solid-
state circuits 27.5, pp. 692–700.

Wen, Bo and Kwabena Boahen (2009). “A silicon cochlea with active coupling”.
In: IEEE transactions on biomedical circuits and systems 3.6, pp. 444–455.

Westerman, Wayne C, David PM Northmore, and John G Elias (1997).
“Neuromorphic synapses for artificial dendrites”. In: Analog Integrated
Circuits and Signal Processing 13.1-2, pp. 167–184.

Wiesmann, Georg, Stephan Schraml, Martin Litzenberger, Ahmed Nabil
Belbachir, Michael Hofstätter, and Chiara Bartolozzi (2012). “Event-driven
embodied system for feature extraction and object recognition in robotic
applications”. In: 2012 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops. IEEE, pp. 76–82.

https://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209


236 Chapter 7. Bibliography

Wilson, Blake S, Charles C Finley, Dewey T Lawson, Robert D Wolford, Donald K
Eddington, and William M Rabinowitz (1991). “Better speech recognition
with cochlear implants”. In: Nature 352.6332, pp. 236–238.

Xu, Ying, Chetan S Thakur, Ram K Singh, Tara Julia Hamilton, Runchun M Wang,
and André van Schaik (2018a). “A FPGA implementation of the CAR-FAC
cochlear model”. In: Frontiers in neuroscience 12, p. 198.

Xu, Ying et al. (2018b). “A FPGA implementation of the CAR-FAC cochlear
model”. In: Frontiers in neuroscience 12, p. 198.

Yang, M. et al. (2016). “A 0.5V 55 µW 64x2-channel binaural silicon cochlea for
event-driven stereo-audio sensing”. In: 2016 IEEE International Solid-State
Circuits Conference (ISSCC), pp. 388–389. DOI: 10 . 1109 / ISSCC . 2016 .
7418070.

Yang, Minhao, Chen-Han Chien, Tobi Delbruck, and Shih-Chii Liu (2016). “A
0.5 V 55µW 64×2 Channel Binaural Silicon Cochlea for Event-Driven Stereo-
Audio Sensing”. In: IEEE Journal of Solid-State Circuits 51.11, pp. 2554–2569.

Yousefzadeh, Amirreza, Mirosław Jabłoński, Taras Iakymchuk, Alejandro
Linares-Barranco, Alfredo Rosado, Luis A Plana, Steve Temple, Teresa
Serrano-Gotarredona, Steve B Furber, and Bernabé Linares-Barranco
(2017). “On multiple AER handshaking channels over high-speed bit-
serial bidirectional LVDS links with flow-control and clock-correction on
commercial FPGAs for scalable neuromorphic systems”. In: IEEE transactions
on biomedical circuits and systems 11.5, pp. 1133–1147.

Youssef, Ibrahim, Mehmet Mutlu, Behzad Bayat, Alessandro Crespi, Simon
Hauser, Jörg Conradt, Alexandre Bernardino, and Auke Ijspeert (2020). “A
neuro-inspired computational model for a visually guided robotic lamprey
using frame and event based cameras”. In: IEEE Robotics and Automation
Letters 5.2, pp. 2395–2402.

Yu, Theodore, Andrew Schwartz, John Harris, Malcolm Slaney, and Shih-Chii Liu
(2009). “Periodicity detection and localization using spike timing from the
AER EAR”. In: Circuits and Systems, 2009. ISCAS 2009. IEEE International
Symposium on. IEEE, pp. 109–112.

Zeng, Fan-Gang, Stephen Rebscher, William Harrison, Xiaoan Sun, and
Haihong Feng (2008). “Cochlear implants: system design, integration, and
evaluation”. In: IEEE reviews in biomedical engineering 1, pp. 115–142.

Zhao, Jingyue et al. (2020). “Neuromorphic implementation of spiking relational
neural network for motor control”. In: 2020 2nd IEEE International Conference
on Artificial Intelligence Circuits and Systems (AICAS). IEEE, pp. 89–93.

Zilany, Muhammad SA and Ian C Bruce (2006). “Modeling auditory-nerve
responses for high sound pressure levels in the normal and impaired
auditory periphery”. In: The Journal of the Acoustical Society of America 120.3,
pp. 1446–1466.

Zwicker, Eberhard and Hugo Fastl (2013). Psychoacoustics: Facts and models.
Vol. 22. Springer Science & Business Media.

https://doi.org/10.1109/ISSCC.2016.7418070
https://doi.org/10.1109/ISSCC.2016.7418070


237

Part II

Appendices





239

Appendix A

OpenNAS software tool

A.1 OpenNAS screens summary

1. Software metadata:

• Current software version: v1.1.34.

• Permanent link to executables of this version: https://github.com/
RTC-research-group/OpenNAS/releases/tag/1.1.34.

• Permanent link to code/repository used of this code version: http:
//github.com/RTC-research-group/OpenNAS.

• Software License: GNU General Public License (GPL).

• Computing platform/Operating System: Microsoft Windows.

• Installation requirements & dependencies: Microsoft .NET Framework
4.5 or greater.

• Software code languages, tools, and services used: C# and VHDL.

• Link to user manual: http://github.com/RTC-research-group/
OpenNAS/tree/master/OpenNAS/Wiki_files/User_manual/.

• Link to developer documentation or manual: https://github.
com/RTC-research-group/OpenNAS/tree/master/OpenNAS/
SandCastleBuilder/Help.

• Support email for questions: dgutierrez@atc.us.es.

https://github.com/RTC-research-group/OpenNAS/releases/tag/1.1.34
https://github.com/RTC-research-group/OpenNAS/releases/tag/1.1.34
http://github.com/RTC-research-group/OpenNAS
http://github.com/RTC-research-group/OpenNAS
http://github.com/RTC-research-group/OpenNAS/tree/master/OpenNAS/Wiki_files/User_manual/
http://github.com/RTC-research-group/OpenNAS/tree/master/OpenNAS/Wiki_files/User_manual/
https://github.com/RTC-research-group/OpenNAS/tree/master/OpenNAS/SandCastleBuilder/Help
https://github.com/RTC-research-group/OpenNAS/tree/master/OpenNAS/SandCastleBuilder/Help
https://github.com/RTC-research-group/OpenNAS/tree/master/OpenNAS/SandCastleBuilder/Help


240 Appendix A. OpenNAS software tool

A.1.1 OpenNAS welcome screen

FIGURE A.1: OpenNAS tool welcome message.



A.1. OpenNAS screens summary 241

A.1.2 OpenNAS common settings screen

FIGURE A.2: OpenNAS screen for step 1: common settings.



242 Appendix A. OpenNAS software tool

A.1.3 OpenNAS input interface screen

FIGURE A.3: OpenNAS screen for step 2: audio input interface.



A.1. OpenNAS screens summary 243

A.1.4 OpenNAS processing architecture screen

FIGURE A.4: OpenNAS screen for step 3: audio processing architecture.



244 Appendix A. OpenNAS software tool

A.1.5 OpenNAS output interface screen

FIGURE A.5: OpenNAS screen for step 4: spiking output interface.



A.1. OpenNAS screens summary 245

A.1.6 OpenNAS destination folder screen

FIGURE A.6: OpenNAS screen for step 5: destination folder selection.



246 Appendix A. OpenNAS software tool

A.1.7 OpenNAS generation success screen

FIGURE A.7: OpenNAS final screen: code generator statistics.



247

Appendix B

NASIC test PCB

B.1 NASIC test PCB files

1. Features:

• 2 PDM microphones interface.

• 1 CS5343 audio ADC with I2S interface.

• 1 3.5mm audio jack female connector.

• 1 generic purpose jumper.

• 10-pin connector for FPGA interface.

• 3.3V power supply.

2. Hardware requirements:

• Any FPGA- or microcontoller-based board with I2S interface.



248 Appendix B. NASIC test PCB

B.1.1 Schematic: NASIC_test_pcb.SchDoc

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
2

D
at

e:
03

/0
5/

20
21

Sh
ee

t  
  o

f
Fi

le
:

D
:\P

ro
ye

ct
os

\..
\N

A
SI

C
_t

es
t_

as
ic

.S
ch

D
oc

D
ra

w
n 

By
:

N
A

S_
C

LK

G
N

D

EX
T_

C
LK

EX
T_

O
SC

EX
T_

O
SC

N
A

S_
C

LK

PDM_CLK_L

PDM_DAT_L

I2S_SD

I2S_SCLK

I2S_WS

PDM_I2S_SEL

EN
1

G
N

D
2

O
U

T
3

V
C

C
4

O
SC

0

M
CS

JK
-6

N
C2

-4
8.

00
-2

5-
B

G
N

D

3.
3V

3.3V

3.3V

1.
8V

1.
8V

3.
3V

G
N

D

N
A

S_
C

LK
_S

EL

N
A

S_
C

LK
_E

N

1 2 3

P1 H
ea

de
r 3

G
N

D

3.
3V

N
A

S_
C

LK
_S

EL

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33
33

34
34

35
35

36
36

37
37

38
38

39
39

40
40

41
41

42
42

43
43

44
44

45
45

46
46

47
47

48
48

4949

5050

5151

5252

5353

5454

5555

5656

5757

5858

5959

6060

6161

6262

6363

6464

SC
K

T0
IC

_S
oc

ke
t

V
D

D
O

1

G
N

D
2

CL
K

1
3

V
D

D
4

O
E

5
CL

K
0

6
SE

L0
7

Q
8

IC
0

83
05

2A
G

IL
FT

1 2 3

P0 H
ea

de
r 3

3.
3V

N
A

S_
C

LK
_E

N

N
A

S_
SP

IK
ES

_O
U

T_
0

N
A

S_
SP

IK
ES

_O
U

T_
1

N
A

S_
SP

IK
ES

_O
U

T_
2

N
A

S_
SP

IK
ES

_O
U

T_
3

N
A

S_
SP

IK
ES

_O
U

T_
4

N
A

S_
SP

IK
ES

_O
U

T_
5

NAS_SPIKES_OUT_6

NAS_SPIKES_OUT_7

NAS_SPIKES_OUT_8

NAS_SPIKES_OUT_9

NAS_SPIKES_OUT_10

NAS_SPIKES_OUT_11

N
A

S_
SP

IK
ES

_O
U

T_
12

N
A

S_
SP

IK
ES

_O
U

T_
13

N
A

S_
SP

IK
ES

_O
U

T_
14

N
A

S_
SP

IK
ES

_O
U

T_
15

N
A

S_
EX

T_
N

R
ES

ET

V
IN

3
V

O
U

T
2

ADJ 1

IC
1

LM
11

17
-3

.3
5V

3.
3V

10
uF

C
T1

C
ap

 P
ol

3
10

uF

C
T2

C
ap

 P
ol

3

G
N

D

12

P_
D

C

H
ea

de
r 2

EX
T_

5V

G
N

D
EX

T_
5V 33

0u
F

C
T0

C
ap

 P
ol

3

G
N

D

1 2 3

P2 H
ea

de
r 3

5V

EX
T_

5V

N
O

D
E_

5V
PB

0

G
N

D

G
N

D

3.
3V 10

K

R
5

Re
s S

em
i

4K
7

R
4

Re
s S

em
i

0.
1 

uF

C
8

Ca
p 

Se
m

i

N
A

S_
EX

T_
N

R
ES

ET

1
1

3
3

5
5

7
7

9
9

11
11

13
13

15
15

17
17

G
N

D
19

21
21

23
23

25
25

27
27

29
29

31
31

33
33

35
35

37
37

39
39

G
N

D
2

4
4

6
6

8
8

10
10

12
12

14
14

16
16

18
18

20
20

G
N

D
22

G
N

D
26

G
N

D
24

28
28

G
N

D
30

32
32

34
34

36
36

38
38

G
N

D
40

H
1

C
on

nA
ER

N
A

S_
SP

IK
ES

_O
U

T_
0

N
A

S_
SP

IK
ES

_O
U

T_
1

N
A

S_
SP

IK
ES

_O
U

T_
2

N
A

S_
SP

IK
ES

_O
U

T_
4

N
A

S_
SP

IK
ES

_O
U

T_
6

N
A

S_
SP

IK
ES

_O
U

T_
3

N
A

S_
SP

IK
ES

_O
U

T_
5

N
A

S_
SP

IK
ES

_O
U

T_
7

N
A

S_
SP

IK
ES

_O
U

T_
8

N
A

S_
SP

IK
ES

_O
U

T_
10

N
A

S_
SP

IK
ES

_O
U

T_
12

N
A

S_
SP

IK
ES

_O
U

T_
14

N
A

S_
SP

IK
ES

_O
U

T_
9

N
A

S_
SP

IK
ES

_O
U

T_
11

N
A

S_
SP

IK
ES

_O
U

T_
13

N
A

S_
SP

IK
ES

_O
U

T_
15

G
N

D

G
N

D
G

N
D

G
N

D

G
N

D

G
N

D

G
N

D

N
O

D
E_

5V

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

N
A

S_
EX

T_
N

R
ES

ET

EX
T_

C
LK

U
SE

R_
LE

D
_0

U
SE

R_
LE

D
_1

U
SE

R_
LE

D
_2

U
SE

R_
LE

D
_3

N
O

D
E_

3.
3V

N
O

D
E_

3.
3V

1
2

3
4

5
6

7
8

9
10

H
0

H
ea

de
r 5

X
2

G
N

D
3.

3V

PD
M

_D
A

T_
L

PD
M

_C
LK

_L
PD

M
_C

LK
_R

PD
M

_D
A

T_
R

I2
S_

SD
I2

S_
SC

LK
I2

S_
W

S
PD

M
_I

2S
_S

EL

10
uF

C
T4

C
ap

 P
ol

3
10

0u
F

C
T5

C
ap

 P
ol

3

33
0u

F

C
T6

C
ap

 P
ol

3

G
N

D

5V

V
IN

3
V

O
U

T
2

ADJ 1

IC
2

LM
11

17
-A

dj

G
N

D
G

N
D10

K

R
8

Re
s S

em
i G
N

D

1.
8V

3.
3V

 fi
xe

d 
vo

lta
ge

 re
gu

la
to

r
1.

8V
 a

dj
us

ta
bl

e 
vo

lta
ge

 re
gu

la
to

r

Re
se

t b
ut

to
n

D
4

LE
D

3

47
0

R
10

Re
s S

em
i

G
N

D

5V

3.
3V

 a
dj

us
ta

bl
e 

vo
lta

ge
 re

gu
la

to
r

3.
3V

 a
dj

us
ta

bl
e 

vo
lta

ge
 re

gu
la

to
r

0.
1 

uF

C
0

Ca
p 

Se
m

i
0.

1 
uF

C
1

Ca
p 

Se
m

i
0.

1 
uF

C
2

Ca
p 

Se
m

i
0.

1 
uF

C
3

Ca
p 

Se
m

i
0.

1 
uF

C
4

Ca
p 

Se
m

i
0.

1 
uF

C
5

Ca
p 

Se
m

i
0.

1 
uF

C
6

Ca
p 

Se
m

i
0.

1 
uF

C
7

Ca
p 

Se
m

i

G
N

D
G

N
D

G
N

D
G

N
D

1.
8V

1.
8V

3.
3V

3.
3V

D
0

LE
D

3

D
1

LE
D

3

D
2

LE
D

3

D
3

LE
D

3

33
0

R
0

Re
s S

em
i

33
0

R
1

Re
s S

em
i

G
N

D
G

N
D

33
0

R
2

Re
s S

em
i

33
0

R
3

Re
s S

em
i

G
N

D
G

N
D

U
SE

R_
LE

D
_1

U
SE

R_
LE

D
_2

U
SE

R_
LE

D
_3

U
SE

R_
LE

D
_0

Re
se

t b
ut

to
n

V
D

D
 C

O
R

E 
1

V
D

D
 C

O
R

E 
2

V
D

D
 P

O
W

ER
 1

V
D

D
 P

O
W

ER
 2

G
N

D

G
N

D

G
N

D

G
N

D

2.
7K

R
11

Re
s S

em
i

I2
S_

SC
LK

G
N

D

1KR
9

Re
s S

em
i

V
SS

_C
O

R
E_

2

V
D

D
_C

O
R

E_
2

V
SS

_C
O

R
E_

1

V
D

D
_C

O
R

E_
1

VSS_1

VDD_1

VDD_1

VSS_1

3.
3V

0.
01

 u
F

C
9

Ca
p 

Se
m

i
N

M
 4

k7

R
12

Re
s S

em
i

G
N

D
G

N
D

N
M

R
13

Re
s S

em
i

3.
3V

1k
 (N

M
)

R
14

Re
s S

em
i

1k
 (N

M
)

R
15

Re
s S

em
i

3.
3V

G
N

D
EX

T_
CL

K

1k
 (N

M
)

R
16

Re
s S

em
i

EX
T_

O
SC

1kR
17

 (N
M

)

Re
s S

em
i

G
N

D

G
N

D

Cl
oc

ks
: t

w
o 

cl
oc

k 
so

ur
ce

s a
re

 a
va

ila
bl

e.
 F

irs
t, 

fro
m

 a
n 

os
ci

lla
to

r. 
Se

co
nd

, f
ro

m
 a

n 
FP

G
A

. A
 ju

m
pe

r i
s n

ee
de

d 
to

 se
le

ct
 b

et
w

ee
n 

th
em

.

A
dj

us
ta

bl
e 

vo
lta

ge
 re

gu
la

to
rs

. C
or

e 
de

vi
ce

s o
pe

ra
te

 a
t 1

.8
V

 +
- 1

0%
. I

O
 d

ev
ic

es
 o

pe
ra

te
 a

t 3
.3

V
 +

- 1
0%

. T
O

 D
O

!!!
: a

dj
us

t t
he

 v
al

ue
s o

f t
he

 c
ap

ac
ito

rs
/re

sis
to

rs
.

A
sy

nc
hr

on
ou

s r
es

et
 b

ut
to

n.
 C

he
ck

 th
e 

V
D

D
 v

ol
ta

ge
, a

s w
el

l a
s t

he
 re

sis
to

r/c
ap

ac
ito

r v
al

ue
s.

C
A

V
IA

R-
40

 c
on

ne
ct

or
. T

w
o 

vo
lta

ge
s s

ig
na

ls:
 5

V
 a

nd
 3

.3
V

. C
he

ck
 th

e 
sig

na
ls 

vo
lta

ge
 fr

om
 th

e 
A

SI
C.

 If
 

th
ey

 a
re

 a
t 1

.8
V

, a
 v

ol
ta

ge
 tr

an
sla

to
r i

s n
ee

de
d.

PD
M

-A
D

C
 a

ud
io

 IF
 b

oa
rd

. I
t n

ee
ds

 a
 

3.
3V

 p
ow

er
 su

pp
ly

. I
ts 

ou
tp

ut
 si

gn
al

s a
re

 
at

 3
.3

V
. I

f t
he

 A
SI

C
 w

or
ks

 a
t 1

.8
V

, a
 

vo
lta

ge
 tr

an
sla

to
r i

s n
ee

de
d.

A
dj

us
ta

bl
e 

vo
lta

ge
 re

gu
la

to
rs

. C
or

e 
de

vi
ce

s o
pe

ra
te

 a
t 1

.8
V

 +
- 1

0%
. I

O
 d

ev
ic

es
 o

pe
ra

te
 a

t 3
.3

V
 +

- 1
0%

. T
O

 D
O

!!!
: a

dj
us

t t
he

 v
al

ue
s o

f t
he

 c
ap

ac
ito

rs
/re

sis
to

rs
.

D
ec

ou
pl

in
g 

ca
pa

ci
to

rs
. O

ne
 p

ai
r f

or
 e

ac
h 

V
D

D
-V

SS
 p

in
 p

ai
r i

n 
th

e 
ch

ip
.

U
se

r L
ED

s f
or

 d
eb

ug
gi

ng
. T

he
y 

ar
e 

ha
nd

le
d 

by
 th

e 
FP

G
A

.

PIC001PIC002
CO

C0
PIC101PIC102

CO
C1

PIC201PIC202
COC

2
PIC301PIC302

COC
3

PIC401PIC402
COC

4
PIC501PIC502

COC
5

PIC601PIC602
COC

6
PIC701PIC702

COC
7

PIC801PIC802
COC

8

PIC901PIC902
CO
C9

PICT001 PICT002

CO
CT
0

PICT101 PICT102

CO
CT

1
PICT201 PICT202

CO
CT
2

PICT401 PICT402

CO
CT
4

PICT501 PICT502

CO
CT
5

PICT601 PICT602

CO
CT
6

P
I
D
0
0
1

P
I
D
0
0
2

CO
D0

P
I
D
1
0
1

P
I
D
1
0
2

CO
D1

P
I
D
2
0
1

P
I
D
2
0
2

CO
D2

P
I
D
3
0
1

P
I
D
3
0
2

CO
D3

P
I
D
4
0
1

P
I
D
4
0
2

CO
D4

P
I
H
0
0
1

P
I
H
0
0
2

P
I
H
0
0
3

P
I
H
0
0
4

P
I
H
0
0
5

P
I
H
0
0
6

P
I
H
0
0
7

P
I
H
0
0
8

P
I
H
0
0
9

PI
H0
01

0

CO
H0

P
I
H
1
0
1

P
I
H
1
0
2

P
I
H
1
0
3

P
I
H
1
0
4

P
I
H
1
0
5

P
I
H
1
0
6

P
I
H
1
0
7

P
I
H
1
0
8

P
I
H
1
0
9

P
I
H
1
0
1
0

P
I
H
1
0
1
1

P
I
H
1
0
1
2

P
I
H
1
0
1
3

P
I
H
1
0
1
4

P
I
H
1
0
1
5

P
I
H
1
0
1
6

P
I
H
1
0
1
7

P
I
H
1
0
1
8

P
I
H
1
0
1
9

P
I
H
1
0
2
0

P
I
H
1
0
2
1

P
I
H
1
0
2
2

P
I
H
1
0
2
3

P
I
H
1
0
2
4

P
I
H
1
0
2
5

P
I
H
1
0
2
6

P
I
H
1
0
2
7

P
I
H
1
0
2
8

P
I
H
1
0
2
9

P
I
H
1
0
3
0

P
I
H
1
0
3
1

P
I
H
1
0
3
2

P
I
H
1
0
3
3

P
I
H
1
0
3
4

P
I
H
1
0
3
5

P
I
H
1
0
3
6

P
I
H
1
0
3
7

P
I
H
1
0
3
8

P
I
H
1
0
3
9

P
I
H
1
0
4
0

CO
H1

P
I
I
C
0
0
1

P
I
I
C
0
0
2

P
I
I
C
0
0
3

P
I
I
C
0
0
4

P
I
I
C
0
0
5

P
I
I
C
0
0
6

P
I
I
C
0
0
7

P
I
I
C
0
0
8

CO
IC
0

PIIC101

P
I
I
C
1
0
2

P
I
I
C
1
0
3CO

IC
1

PIIC201

P
I
I
C
2
0
2

P
I
I
C
2
0
3CO

IC
2

P
I
O
S
C
0
0
1

P
I
O
S
C
0
0
2

P
I
O
S
C
0
0
3

P
I
O
S
C
0
0
4CO

OS
C0

P
I
P
0
0
1

P
I
P
0
0
2

P
I
P
0
0
3COP

0

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3COP

1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3COP

2

PI
P0

DC
01

PI
P0

DC
02

CO
P0

DC

P
I
P
B
0
0
1

P
I
P
B
0
0
2

P
I
P
B
0
0
3

P
I
P
B
0
0
4

CO
PB

0

PIR001PIR002 COR
0

PIR101PIR102 COR
1

PIR201PIR202 COR
2

PIR301PIR302 COR
3

PI
R4
01

PI
R4
02

COR
4

PIR501PIR502 COR
5

PIR801PIR802 COR
8

PIR901PIR902 COR
9

PIR1001PIR1002 CO
R1
0

PI
R1
10
1

PI
R1
10
2

CO
R1

1

PIR1201PIR1202 CO
R1

2

PIR1301PIR1302 CO
R1

3

PIR1401PIR1402 CO
R1
4

PIR1501PIR1502 CO
R1
5

PI
R1

60
1

PI
R1

60
2CO
R1
6

PIR
17 

(NM
)01

PIR
17 

(NM
)02CO

R1
7 

(N
M)

P
I
S
C
K
T
0
0
1

P
I
S
C
K
T
0
0
2

P
I
S
C
K
T
0
0
3

P
I
S
C
K
T
0
0
4

P
I
S
C
K
T
0
0
5

P
I
S
C
K
T
0
0
6

P
I
S
C
K
T
0
0
7

P
I
S
C
K
T
0
0
8

P
I
S
C
K
T
0
0
9

P
I
S
C
K
T
0
0
1
0

P
I
S
C
K
T
0
0
1
1

P
I
S
C
K
T
0
0
1
2

P
I
S
C
K
T
0
0
1
3

P
I
S
C
K
T
0
0
1
4

P
I
S
C
K
T
0
0
1
5

P
I
S
C
K
T
0
0
1
6

PISCKT0017
PISCKT0018

PISCKT0019
PISCKT0020

PISCKT0021
PISCKT0022

PISCKT0023
PISCKT0024

PISCKT0025
PISCKT0026

PISCKT0027
PISCKT0028

PISCKT0029
PISCKT0030

PISCKT0031
PISCKT0032

P
I
S
C
K
T
0
0
3
3

P
I
S
C
K
T
0
0
3
4

P
I
S
C
K
T
0
0
3
5

P
I
S
C
K
T
0
0
3
6

P
I
S
C
K
T
0
0
3
7

P
I
S
C
K
T
0
0
3
8

P
I
S
C
K
T
0
0
3
9

P
I
S
C
K
T
0
0
4
0

P
I
S
C
K
T
0
0
4
1

P
I
S
C
K
T
0
0
4
2

P
I
S
C
K
T
0
0
4
3

P
I
S
C
K
T
0
0
4
4

P
I
S
C
K
T
0
0
4
5

P
I
S
C
K
T
0
0
4
6

P
I
S
C
K
T
0
0
4
7

P
I
S
C
K
T
0
0
4
8

PISCKT0049
PISCKT0050

PISCKT0051
PISCKT0052

PISCKT0053
PISCKT0054

PISCKT0055
PISCKT0056

PISCKT0057
PISCKT0058

PISCKT0059
PISCKT0060

PISCKT0061
PISCKT0062

PISCKT0063
PISCKT0064

CO
SC

KT
0

PIC002
PIC102

PIC202
PIC302

PICT501

P
I
I
C
2
0
2

PIR802

P
I
S
C
K
T
0
0
4

P
I
S
C
K
T
0
0
3
6

NL
10
8V

PIC402
PIC502

PIC602
PIC702

PIC902

PICT201

P
I
H
0
0
2

P
I
I
C
0
0
1

P
I
I
C
0
0
4

P
I
I
C
1
0
2

P
I
O
S
C
0
0
4

P
I
P
0
0
3

P
I
P
1
0
3

PIR502

PIR1301

PIR1401

PISCKT0020

PISCKT0052NL303V

PICT101
PICT401

P
I
I
C
1
0
3

P
I
I
C
2
0
3

P
I
P
2
0
2

PIR1001

PICT001
P
I
P
2
0
1

PI
P0

DC
01

P
I
H
1
0
2
8

P
I
I
C
0
0
3

PI
R1

60
2

NL
EX

T0
CL

K

P
I
I
C
0
0
6

P
I
O
S
C
0
0
3

PIR
17 

(NM
)02

NL
EX
T0

OS
C

PIC001
PIC101

PIC201
PIC301

PIC401
PIC501

PIC601
PIC701

PIC801

PIC901

PICT002

PICT102
PICT202

PICT402
PICT502

PICT602

P
I
D
0
0
2

P
I
D
1
0
2

P
I
D
2
0
2

P
I
D
3
0
2

P
I
D
4
0
2

P
I
H
0
0
1

P
I
H
1
0
2

P
I
H
1
0
1
9

P
I
H
1
0
2
2

P
I
H
1
0
2
4

P
I
H
1
0
2
6

P
I
H
1
0
3
0

P
I
H
1
0
4
0

P
I
I
C
0
0
2

PIIC101

P
I
O
S
C
0
0
2

P
I
P
0
0
1

P
I
P
1
0
1

PI
P0

DC
02

P
I
P
B
0
0
2

PIR901

PI
R1
10
2

PIR1201

PIR1501

PI
R1

60
1

PIR
17 

(NM
)01

P
I
S
C
K
T
0
0
2

PISCKT0018

P
I
S
C
K
T
0
0
3
4

PISCKT0050

P
I
H
0
0
6

PI
R1
10
1

PISCKT0032 NLI2S0SCLK

P
I
H
0
0
4

PISCKT0028 NLI2S0SD

P
I
H
0
0
8

PISCKT0030 NLI2S0WS

P
I
I
C
0
0
8

P
I
S
C
K
T
0
0
3
8

NL
NA
S0
CL
K

P
I
I
C
0
0
5

P
I
P
0
0
2

PIR1402

NL
NA

S0
CL
K0
EN

P
I
I
C
0
0
7

P
I
P
1
0
2

PIR1502NL
NA

S0
CL

K0
SE

L

P
I
H
1
0
2
0

PI
R4
01

P
I
S
C
K
T
0
0
4
0

NL
NA

S0
EX
T0

NR
ES
ET

P
I
H
1
0
7

P
I
S
C
K
T
0
0
1
6

NL
NA
S0
SP
IK

ES
0O
UT
00

P
I
H
1
0
8

P
I
S
C
K
T
0
0
1
4

NL
NA
S0
SP
IK

ES
0O
UT
01

P
I
H
1
0
5

P
I
S
C
K
T
0
0
1
2

NL
NA
S0
SP
IK

ES
0O
UT
02

P
I
H
1
0
6

P
I
S
C
K
T
0
0
1
0

NL
NA
S0
SP
IK

ES
0O
UT
03

P
I
H
1
0
3

P
I
S
C
K
T
0
0
8

NL
NA
S0
SP
IK

ES
0O
UT
04

P
I
H
1
0
4

P
I
S
C
K
T
0
0
6

NL
NA
S0
SP
IK

ES
0O
UT
05

P
I
H
1
0
1
0

PISCKT0064NLNAS0SPIKES0OUT06

P
I
H
1
0
9

PISCKT0062NLNAS0SPIKES0OUT07

P
I
H
1
0
1
2

PISCKT0060NLNAS0SPIKES0OUT08

P
I
H
1
0
1
1

PISCKT0058NLNAS0SPIKES0OUT09

P
I
H
1
0
1
4

PISCKT0056NLNAS0SPIKES0OUT010

P
I
H
1
0
1
3

PISCKT0054NLNAS0SPIKES0OUT011

P
I
H
1
0
1
7

P
I
S
C
K
T
0
0
4
8

NL
NA

S0
SP

IK
ES

0O
UT

01
2

P
I
H
1
0
1
8

P
I
S
C
K
T
0
0
4
6

NL
NA

S0
SP

IK
ES

0O
UT

01
3

P
I
H
1
0
1
5

P
I
S
C
K
T
0
0
4
4

NL
NA

S0
SP

IK
ES

0O
UT

01
4

P
I
H
1
0
1
6

P
I
S
C
K
T
0
0
4
2

NL
NA

S0
SP

IK
ES

0O
UT

01
5

PIC802
P
I
P
B
0
0
1

PI
R4
02

PIR501

PICT601PIIC201
PIR801 PIR902

P
I
D
0
0
1

PIR002

P
I
D
1
0
1

PIR102

P
I
D
2
0
1

PIR202

P
I
D
3
0
1

PIR302

P
I
D
4
0
1

PIR1002

P
I
H
1
0
2
9

P
I
H
1
0
3
1

P
I
H
1
0
3
2

P
I
H
1
0
3
3

P
I
H
1
0
3
4

P
I
H
1
0
3
5

P
I
H
1
0
3
6

P
I
H
1
0
3
7

P
I
O
S
C
0
0
1

PIR1202
PIR1302

P
I
P
B
0
0
3

P
I
P
B
0
0
4

P
I
S
C
K
T
0
0
1

P
I
S
C
K
T
0
0
3

P
I
S
C
K
T
0
0
5

P
I
S
C
K
T
0
0
7

P
I
S
C
K
T
0
0
9

P
I
S
C
K
T
0
0
1
1

P
I
S
C
K
T
0
0
1
3

P
I
S
C
K
T
0
0
1
5

PISCKT0017
PISCKT0019

PISCKT0021
PISCKT0023

PISCKT0025
PISCKT0027

PISCKT0029
PISCKT0031

P
I
S
C
K
T
0
0
3
3

P
I
S
C
K
T
0
0
3
5

P
I
S
C
K
T
0
0
3
7

P
I
S
C
K
T
0
0
3
9

P
I
S
C
K
T
0
0
4
1

P
I
S
C
K
T
0
0
4
3

P
I
S
C
K
T
0
0
4
5

P
I
S
C
K
T
0
0
4
7

PISCKT0049
PISCKT0051

PISCKT0053
PISCKT0055

PISCKT0057
PISCKT0059

PISCKT0061
PISCKT0063

P
I
H
1
0
1

P
I
H
1
0
3
8

P
I
H
1
0
3
9

P
I
P
2
0
3

P
I
H
0
0
5

PISCKT0026 NLPDM0CLK0L

P
I
H
0
0
7

NL
PD
M0
CL
K0
R

P
I
H
0
0
3

PISCKT0024 NLPDM0DAT0L

P
I
H
0
0
9

NL
PD
M0
DA
T0
R

PI
H0
01

0

PISCKT0022 NLPDM0I2S0SEL

P
I
H
1
0
2
1

PIR001

NL
US
ER
0L
ED
00

P
I
H
1
0
2
3

PIR101

NL
US
ER
0L
ED
01

P
I
H
1
0
2
5

PIR201

NL
US
ER
0L
ED
02

P
I
H
1
0
2
7

PIR301 NL
US
ER
0L
ED
03

FIGURE B.1: NASIC test PCB schematic.



B.1. NASIC test PCB files 249

B.1.2 Board top: NASIC_test_pcb.PcbDoc

PAC002PAC001COC0

PAC102PAC101COC1

PAC202 PAC201 COC2

PAC302 PAC301 COC3

PAC402

PAC401

COC4

PAC502

PAC501

COC5

PAC602
PAC601

COC6

PAC702

PAC701

COC7

PAC802PAC801COC8

PAC902 PAC901
COC9

PACT002

PACT001

COCT0

PACT101

PACT102

COCT1

PACT201

PACT202

COCT2

PACT401

PACT402

COCT4

PACT501 PACT502
COCT5

PACT601

PACT602

COCT6

PAD002 PAD001
COD0

PAD102 PAD101
COD1

PAD202 PAD201
COD2

PAD302 PAD301
COD3

PAD401 PAD402

COD4

PAH0010PAH009

PAH008PAH007

PAH006PAH005

PAH004PAH003

PAH002PAH001COH0

PAH1040PAH1039

PAH1038PAH1037

PAH1036PAH1035

PAH1034PAH1033

PAH1032PAH1031

PAH1030PAH1029

PAH1028PAH1027

PAH1026PAH1025

PAH1024PAH1023

PAH1022PAH1021

PAH1020PAH1019

PAH1018PAH1017

PAH1016PAH1015

PAH1014PAH1013

PAH1012PAH1011

PAH1010PAH109

PAH108PAH107

PAH106PAH105

PAH104PAH103

PAH102PAH101COH1

PAIC001

PAIC002
PAIC003
PAIC004

PAIC008

PAIC007
PAIC006
PAIC005

COIC0

PAIC101 PAIC102 PAIC103

PAIC104
COIC1

PAIC204

PAIC203PAIC202PAIC201

COIC2

PAOSC001 PAOSC002

PAOSC003PAOSC004

COOSC0

PAP001

PAP002

PAP003

COP0

PAP101

PAP102

PAP103

COP1

PAP201

PAP202

PAP203

COP2

PAP0DC01
PAP0DC02

PAP0DC03
COP0DC

PAPB004

PAPB003

PAPB002

PAPB001
COPB0

PAR002

PAR001

COR0

PAR102

PAR101

COR1

PAR202

PAR201

COR2

PAR302

PAR301

COR3

PAR402PAR401COR4

PAR502 PAR501COR5

PAR802
PAR801
COR8

PAR901

PAR902
COR9

PAR1002

PAR1001COR10

PAR1101

PAR1102

COR11

PAR1202

PAR1201

COR12

PAR1302

PAR1301

COR13PAR1402
PAR1401

COR14

PAR1502

PAR1501

COR15

PAR1602PAR1601COR16

PAR17 (NM)02 PAR17 (NM)01
COR17 (NM)

PASCKT001PASCKT0016 PASCKT002PASCKT003PASCKT004PASCKT005PASCKT006PASCKT007PASCKT008PASCKT009PASCKT0010PASCKT0011PASCKT0012PASCKT0013PASCKT0014PASCKT0015

PASCKT0048PASCKT0033 PASCKT0034 PASCKT0035 PASCKT0036 PASCKT0037 PASCKT0038 PASCKT0039 PASCKT0040 PASCKT0041 PASCKT0042 PASCKT0043 PASCKT0044 PASCKT0045 PASCKT0046 PASCKT0047

PASCKT0063

PASCKT0062

PASCKT0061

PASCKT0060

PASCKT0059

PASCKT0058

PASCKT0064

PASCKT0057

PASCKT0049

PASCKT0050

PASCKT0051

PASCKT0052

PASCKT0053

PASCKT0054

PASCKT0055

PASCKT0056

PASCKT0017

PASCKT0032

PASCKT0018

PASCKT0019

PASCKT0020

PASCKT0021

PASCKT0022

PASCKT0023

PASCKT0024

PASCKT0025

PASCKT0026

PASCKT0027

PASCKT0028

PASCKT0029

PASCKT0030

PASCKT0031

COSCKT0

PAC002
PAC102

PAC202

PAC302

PACT501

PAIC202

PAIC204

PAR802

PASCKT004

PASCKT0036

PAC402 PAC502

PAC602PAC702

PAC902
PACT201

PAH002

PAIC001

PAIC004

PAIC102

PAIC104

PAOSC004
PAP003

PAP103

PAR502

PAR1301

PAR1401

PASCKT0020

PASCKT0052

PACT101PACT401 PAIC103PAIC203
PAP202

PAR1001

PACT001

PAP201

PAP0DC01

PAH1028

PAIC003

PAR1602

PAIC006

PAOSC003

PAR17 (NM)02

PAC001
PAC101

PAC201

PAC301

PAC401 PAC501

PAC601PAC701

PAC801

PAC901

PACT002

PACT102

PACT202

PACT402

PACT502

PACT602

PAD002PAD102PAD202PAD302

PAD402

PAH001

PAH102

PAH1019

PAH1022

PAH1024

PAH1026

PAH1030

PAH1040

PAIC002

PAIC101

PAOSC002

PAP001

PAP101

PAP0DC02

PAPB002

PAR901

PAR1102

PAR1201

PAR1501
PAR1601

PAR17 (NM)01

PASCKT002

PASCKT0018

PASCKT0034

PASCKT0050

PAH006 PAR1101

PASCKT0032

PAH004

PASCKT0028

PAH008

PASCKT0030

PAIC008

PASCKT0038

PAIC005

PAP002 PAR1402

PAIC007

PAP102 PAR1502

PAH1020

PAR401

PASCKT0040

PAH107

PASCKT0016

PAH108

PASCKT0014

PAH105

PASCKT0012

PAH106

PASCKT0010

PAH103

PASCKT008

PAH104

PASCKT006

PAH1010

PASCKT0064

PAH109PASCKT0062

PAH1012

PASCKT0060

PAH1011

PASCKT0058

PAH1014

PASCKT0056

PAH1013

PASCKT0054

PAH1017

PASCKT0048

PAH1018

PASCKT0046

PAH1015

PASCKT0044

PAH1016

PASCKT0042

PAC802 PAPB001

PAR402

PAR501

PACT601 PAIC201PAR801PAR902

PAD001
PAR002

PAD101
PAR102

PAD201
PAR202

PAD301
PAR302

PAD401PAR1002
PAOSC001PAR1202PAR1302

PAH101

PAH1038

PAH1039

PAP203

PAH005

PASCKT0026

PAH007

PAH003

PASCKT0024

PAH009 PAH0010

PASCKT0022

PAH1021

PAR001

PAH1023

PAR101

PAH1025

PAR201

PAH1027

PAR301

FIGURE B.2: NASIC test PCB board top view.



250 Appendix B. NASIC test PCB

FIGURE B.3: NASIC test PCB board top 3D view.



B.1. NASIC test PCB files 251

B.1.3 Board bottom: NASIC_test_pcb.PcbDoc

PAC002PAC001COC0

PAC102PAC101COC1

PAC202 PAC201 COC2

PAC302 PAC301 COC3

PAC402

PAC401

COC4

PAC502

PAC501

COC5

PAC602
PAC601

COC6

PAC702

PAC701

COC7

PAC802PAC801COC8

PAC902 PAC901
COC9

PACT002

PACT001

COCT0

PACT101

PACT102

COCT1

PACT201

PACT202

COCT2

PACT401

PACT402

COCT4

PACT501 PACT502
COCT5

PACT601

PACT602

COCT6

PAD002 PAD001
COD0

PAD102 PAD101
COD1

PAD202 PAD201
COD2

PAD302 PAD301
COD3

PAD401 PAD402

COD4

PAH0010PAH009

PAH008PAH007

PAH006PAH005

PAH004PAH003

PAH002PAH001COH0

PAH1040PAH1039

PAH1038PAH1037

PAH1036PAH1035

PAH1034PAH1033

PAH1032PAH1031

PAH1030PAH1029

PAH1028PAH1027

PAH1026PAH1025

PAH1024PAH1023

PAH1022PAH1021

PAH1020PAH1019

PAH1018PAH1017

PAH1016PAH1015

PAH1014PAH1013

PAH1012PAH1011

PAH1010PAH109

PAH108PAH107

PAH106PAH105

PAH104PAH103

PAH102PAH101COH1

PAIC001

PAIC002
PAIC003
PAIC004

PAIC008

PAIC007
PAIC006
PAIC005

COIC0

PAIC101 PAIC102 PAIC103

PAIC104
COIC1

PAIC204

PAIC203PAIC202PAIC201

COIC2

PAOSC001 PAOSC002

PAOSC003PAOSC004

COOSC0

PAP001

PAP002

PAP003

COP0

PAP101

PAP102

PAP103

COP1

PAP201

PAP202

PAP203

COP2

PAP0DC01
PAP0DC02

PAP0DC03
COP0DC

PAPB004

PAPB003

PAPB002

PAPB001
COPB0

PAR002

PAR001

COR0

PAR102

PAR101

COR1

PAR202

PAR201

COR2

PAR302

PAR301

COR3

PAR402PAR401COR4

PAR502 PAR501COR5

PAR802
PAR801
COR8

PAR901

PAR902
COR9

PAR1002

PAR1001COR10

PAR1101

PAR1102

COR11

PAR1202

PAR1201

COR12

PAR1302

PAR1301

COR13PAR1402
PAR1401

COR14

PAR1502

PAR1501

COR15

PAR1602PAR1601COR16

PAR17 (NM)02 PAR17 (NM)01
COR17 (NM)

PASCKT001PASCKT0016 PASCKT002PASCKT003PASCKT004PASCKT005PASCKT006PASCKT007PASCKT008PASCKT009PASCKT0010PASCKT0011PASCKT0012PASCKT0013PASCKT0014PASCKT0015

PASCKT0048PASCKT0033 PASCKT0034 PASCKT0035 PASCKT0036 PASCKT0037 PASCKT0038 PASCKT0039 PASCKT0040 PASCKT0041 PASCKT0042 PASCKT0043 PASCKT0044 PASCKT0045 PASCKT0046 PASCKT0047

PASCKT0063

PASCKT0062

PASCKT0061

PASCKT0060

PASCKT0059

PASCKT0058

PASCKT0064

PASCKT0057

PASCKT0049

PASCKT0050

PASCKT0051

PASCKT0052

PASCKT0053

PASCKT0054

PASCKT0055

PASCKT0056

PASCKT0017

PASCKT0032

PASCKT0018

PASCKT0019

PASCKT0020

PASCKT0021

PASCKT0022

PASCKT0023

PASCKT0024

PASCKT0025

PASCKT0026

PASCKT0027

PASCKT0028

PASCKT0029

PASCKT0030

PASCKT0031

COSCKT0

PAC002
PAC102

PAC202

PAC302

PACT501

PAIC202

PAIC204

PAR802

PASCKT004

PASCKT0036

PAC402 PAC502

PAC602PAC702

PAC902
PACT201

PAH002

PAIC001

PAIC004

PAIC102

PAIC104

PAOSC004
PAP003

PAP103

PAR502

PAR1301

PAR1401

PASCKT0020

PASCKT0052

PACT101PACT401 PAIC103PAIC203
PAP202

PAR1001

PACT001

PAP201

PAP0DC01

PAH1028

PAIC003

PAR1602

PAIC006

PAOSC003

PAR17 (NM)02

PAC001
PAC101

PAC201

PAC301

PAC401 PAC501

PAC601PAC701

PAC801

PAC901

PACT002

PACT102

PACT202

PACT402

PACT502

PACT602

PAD002PAD102PAD202PAD302

PAD402

PAH001

PAH102

PAH1019

PAH1022

PAH1024

PAH1026

PAH1030

PAH1040

PAIC002

PAIC101

PAOSC002

PAP001

PAP101

PAP0DC02

PAPB002

PAR901

PAR1102

PAR1201

PAR1501
PAR1601

PAR17 (NM)01

PASCKT002

PASCKT0018

PASCKT0034

PASCKT0050

PAH006 PAR1101

PASCKT0032

PAH004

PASCKT0028

PAH008

PASCKT0030

PAIC008

PASCKT0038

PAIC005

PAP002 PAR1402

PAIC007

PAP102 PAR1502

PAH1020

PAR401

PASCKT0040

PAH107

PASCKT0016

PAH108

PASCKT0014

PAH105

PASCKT0012

PAH106

PASCKT0010

PAH103

PASCKT008

PAH104

PASCKT006

PAH1010

PASCKT0064

PAH109PASCKT0062

PAH1012

PASCKT0060

PAH1011

PASCKT0058

PAH1014

PASCKT0056

PAH1013

PASCKT0054

PAH1017

PASCKT0048

PAH1018

PASCKT0046

PAH1015

PASCKT0044

PAH1016

PASCKT0042

PAC802 PAPB001

PAR402

PAR501

PACT601 PAIC201PAR801PAR902

PAD001
PAR002

PAD101
PAR102

PAD201
PAR202

PAD301
PAR302

PAD401PAR1002
PAOSC001PAR1202PAR1302

PAH101

PAH1038

PAH1039

PAP203

PAH005

PASCKT0026

PAH007

PAH003

PASCKT0024

PAH009 PAH0010

PASCKT0022

PAH1021

PAR001

PAH1023

PAR101

PAH1025

PAR201

PAH1027

PAR301

FIGURE B.4: NASIC test PCB board bottom view.



252 Appendix B. NASIC test PCB

FIGURE B.5: NASIC test PCB board bottom 3D view.



253

Appendix C

Generic purpose PCBs

C.1 ADC-PDM microphones board PCB files

1. Features:

• 2 PDM microphones interface.

• 1 CS5343 audio ADC with I2S interface.

• 1 3.5mm audio jack female connector.

• 1 generic purpose jumper.

• 10-pin connector for FPGA interface.

• 3.3V power supply.

2. Hardware requirements:

• Any FPGA- or microcontoller-based board with I2S interface.



254 Appendix C. Generic purpose PCBs

C.1.1 Schematic: ADC_PDM_mic_board.SchDoc

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
03

/0
5/

20
21

Sh
ee

t  
  o

f
Fi

le
:

D
:\P

ro
ye

ct
os

\..
\A

D
C

_P
D

M
N

od
ev

2.
Sc

hD
oc

D
ra

w
n 

By
:

PD
M

_C
LK

1

G
N

D
2

PD
M

_D
A

T
3

N
C

4

L/
R

5

V
C

C
6

U
L

Co
m

po
ne

nt
_1

PD
M

_C
LK

1

G
N

D
2

PD
M

_D
A

T
3

N
C

4

L/
R

5

V
C

C
6

U
R

Co
m

po
ne

nt
_1

PD
M

_C
LK

_L

PD
M

_C
LK

_R

PD
M

_D
A

T_
L

PD
M

_D
A

T_
R

V
C

C
_3

.3 V
C

C
_3

.3

V
C

C
_3

.3

V
C

C
_3

.3

G
N

D

G
N

D

1
2

3
4

5
6

7
8

9
10

P0 H
ea

de
r 5

X
2

G
N

D
V

C
C

_3
.3

PD
M

_C
LK

_L
PD

M
_D

A
T_

L

PD
M

_C
LK

_R
PD

M
_D

A
T_

R

SD
O

U
T

SC
LK

LR
CK

42 3 1

J0 Ph
on

ej
ac

k3
 R

NG
N

D

5.
1K

R
0

R
es

1

5.
1K

R
1

R
es

1

5.
1K

R
2

R
es

1

5.
1K

R
3

R
es

1

G
N

D

G
N

D

1u
F

C
0

18
0p

F

C
1

C
ap

G
N

D

1u
F

C
2

C
ap

18
0p

F

C
3

C
ap

G
N

D

C
S5

34
3.

A
IN

R

C
S5

34
3.

A
IN

L

Pa
ss

iv
e 

A
na

lo
g 

In
pu

t

12

P1 H
ea

de
r 2

SS
EL

10
0u

F

C
4

T4
95

C

V
C

C
_3

.3

0.
1u

F

C
5

C
ap

V
C

C
_V

A

G
N

D

V
A

 se
le

ct

SD
O

U
T

1

SC
LK

2

LR
CK

3

M
CL

K
4

FI
LT

+
5

A
IN

L
6

V
Q

7
A

IN
R

8
G

N
D

9
V

A
10

A
D

C

C
S5

34
3/

4

O
E/

_S
T

1

G
N

D
2

O
U

T
3

V
C

C
4

Y
1

SG
70

50
C

A
N

/C
B

N
/C

C
N

10
K

R
7

R
es

1

0R
R

5
0R

R
6

0R
R

4
10

K

R
8

R
es

1

V
C

C
_V

A
V

C
C

_V
A

SD
O

U
T

SC
LK

LR
CK

M
CL

K

0.
1u

F

C
6

C
ap

1u
F

C
7

C
ap G
N

D

0.
1u

F

C
8

C
ap

1u
F

C
9

C
ap

G
N

D

C
S5

34
3.

A
IN

L

C
S5

34
3.

A
IN

R

0.
1u

F

C
10

C
ap

1u
F

C
11

C
ap

G
N

D

G
N

D

0R
R

9
V

C
C

_V
A

10
00

pF
C

12

0.
1u

F

C
13

C
apG
N

D

10
R

R
10

R
es

1

N
o 

Po
p

R
11 R

es
1

V
C

C
_3

.3

M
CL

K

G
N

D
0.

1u
F

C
14

C
ap

10
00

pF
C

15

G
N

D

Cr
ys

ta
l O

sc
ill

at
orC

lo
ck

 fr
eq

: 2
4.

57
6 

M
H

z

G
N

D

SS
EL

SD
O

U
T:

 O
U

T
SC

LK
: I

N
/O

U
T

LR
CK

: I
N

/O
U

T
M

CL
K

: I
N

SC
LK

-L
RC

K
:

O
pt

io
na

l p
ul

l-u
p 

re
sis

to
r f

or
 

co
nf

ig
ur

in
g

cl
oc

ks
 in

 M
as

te
r M

od
e 

as
 

de
sc

rib
ed

in
 th

e 
"M

as
te

r M
od

e 
Sp

ee
d 

Se
le

ct
io

n"
se

ct
io

n 
on

 p
ag

e 
13

Pu
ll-

up
 to

 V
A

 fo
r M

as
te

r 
M

od
e

Pu
ll-

do
w

n 
to

 G
N

D
 fo

r S
la

ve
 

m
od

e Pl
ac

e 
th

e 
ca

pa
ci

to
r 

cl
os

e 
to

 th
e 

ch
ip

 p
in

. 
A

nd
 tr

ac
e 

th
e 

lin
e 

un
de

r t
he

 o
sc

ill
at

or
.

P
I
A
D
C
0
1

P
I
A
D
C
0
2

P
I
A
D
C
0
3

P
I
A
D
C
0
4

P
I
A
D
C
0
5

P
I
A
D
C
0
6

P
I
A
D
C
0
7

P
I
A
D
C
0
8

P
I
A
D
C
0
9

P
I
A
D
C
0
1
0

CO
AD
C

PI
C0

01
PI

C0
02

CO
C0

PIC101PIC102
CO

C1

PI
C2

01
PI

C2
02CO

C2

PIC301 PIC302
CO

C3

PIC401 PIC402

COC
4

PIC501 PIC502
COC

5

PIC601 PIC602
COC

6
PIC701 PIC702

COC
7

PIC801 PIC802
CO

C8
PIC901 PIC902

CO
C9

PIC1001PIC1002
CO
C1

0
PIC1101PIC1102

CO
C1
1

PIC1201PIC1202
CO
C1

2
PIC1301PIC1302

CO
C1

3

PIC1401PIC1402
CO
C1
4

PIC1501PIC1502
CO
C1
5

PI
J0

01

PI
J0

02

PI
J0

03

PI
J0

04

COJ
0

P
I
P
0
0
1

P
I
P
0
0
2

P
I
P
0
0
3

P
I
P
0
0
4

P
I
P
0
0
5

P
I
P
0
0
6

P
I
P
0
0
7

P
I
P
0
0
8

P
I
P
0
0
9

P
I
P
0
0
1
0

COP
0

P
I
P
1
0
1

P
I
P
1
0
2

COP
1

PI
R0

01
PI

R0
02

CO
R0

PIR101PIR102 CO
R1

PI
R2

01
PI

R2
02CO

R2

PIR301 PIR302CO
R3

PI
R4
01

PI
R4

02
COR

4

PI
R5
01

PI
R5

02
COR

5

PI
R6
01

PI
R6

02
COR

6

PIR701 PIR702CO
R7

PIR801 PIR802COR
8

PI
R9

01
PI

R9
02

COR
9

PIR1001 PIR1002CO
R1

0 PI
R1

10
1

PI
R1

10
2

CO
R1

1

P
I
U
L
0
1

P
I
U
L
0
2

P
I
U
L
0
3

P
I
U
L
0
4

P
I
U
L
0
5

P
I
U
L
0
6

CO
UL

P
I
U
R
0
1

P
I
U
R
0
2

P
I
U
R
0
3

P
I
U
R
0
4

P
I
U
R
0
5

P
I
U
R
0
6

CO
UR

P
I
Y
1
0
1

P
I
Y
1
0
2

P
I
Y
1
0
3

P
I
Y
1
0
4

CO
Y1

P
I
A
D
C
0
6

PI
C2

01

PIC301

NL
CS

53
43

0A
IN

L

P
I
A
D
C
0
8

PI
C0

02

PIC101

NL
CS

53
43

0A
IN

R
P
I
A
D
C
0
9

PIC102 PIC302

PIC402
PIC502

PIC602
PIC702

PIC802
PIC902

PIC1002
PIC1102

PIC1202
PIC1302

PIC1401
PIC1501

PI
J0

02

P
I
P
0
0
1

P
I
P
1
0
1

PIR102 PIR302

P
I
U
L
0
2

P
I
U
R
0
2

P
I
Y
1
0
2

P
I
P
0
0
8

PI
R6
01

PIR802

NL
LR

CK

P
I
A
D
C
0
4

P
I
Y
1
0
3

NL
MC
LK

P
I
A
D
C
0
1

PI
R4

02

PIR702

P
I
A
D
C
0
2

PI
R5

02

P
I
A
D
C
0
3

PI
R6

02

P
I
A
D
C
0
5

PIC601
PIC701

P
I
A
D
C
0
7

PIC801
PIC901

P
I
A
D
C
0
1
0

PIC1001
PIC1101

PI
R9

01

PI
C0

01
PI

R0
02

PIR101

PI
C2

02
PI

R2
01

PIR301

PIC1201
PIC1301

PIC1402
PIC1502

PIR1002

PI
R1

10
1

P
I
Y
1
0
4

PI
J0

01

PI
J0

03

PI
R0

01

PI
J0

04

PI
R2

02

PI
R1

10
2

P
I
Y
1
0
1

P
I
U
L
0
4

P
I
U
R
0
4

P
I
P
0
0
5

P
I
U
L
0
1

NL
PD

M0
CL

K0
L

P
I
P
0
0
7

P
I
U
R
0
1

NL
PD

M0
CL

K0
R

P
I
P
0
0
3

P
I
U
L
0
3

NL
PD

M0
DA

T0
L

P
I
P
0
0
9

P
I
U
R
0
3

NL
PD
M0
DA
T0
R

P
I
P
0
0
6

PI
R5
01

NL
SC
LK

P
I
P
0
0
4

PI
R4
01

NL
SD
OU

T

P
I
P
0
0
1
0

P
I
P
1
0
2

NL
SS
EL

PIC401
PIC501

P
I
P
0
0
2

PIR701
PIR801

PI
R9

02

PIR1001

P
I
U
L
0
5

P
I
U
L
0
6

P
I
U
R
0
5

P
I
U
R
0
6

FIGURE C.1: ADC-PDM microphones board PCB schematic.



C.1. ADC-PDM microphones board PCB files 255

C.1.2 Board top: ADC_PDM_mic_board.PcbDoc

PAADC06PAADC07PAADC08PAADC09PAADC010

PAADC05PAADC04PAADC03PAADC02PAADC01COADC

PAC002

PAC001COC0PAC102

PAC101
COC1

PAC202

PAC201COC2
PAC302 PAC301COC3

PAC401
PAC402COC4 PAC502

PAC501

COC5

PAC602 PAC601COC6
PAC702 PAC701COC7 PAC802

PAC801
COC8 PAC902

PAC901

COC9
PAC1002

PAC1001COC10PAC1102

PAC1101COC11

PAC1202
PAC1201 COC12PAC1302

PAC1301COC13
PAC1402

PAC1401COC14 PAC1502

PAC1501 COC15

PALINEIN02

PALINEIN01
PALINEIN04

PALINEIN03COLINEIN

PAP0010

PAP009

PAP008

PAP007

PAP006

PAP005

PAP004

PAP003

PAP002

PAP001
COP0

PAR002 PAR001COR0

PAR102

PAR101
COR1PAR202 PAR201COR2

PAR302

PAR301
COR3

PAR402
PAR401
COR4 PAR502

PAR501
COR5 PAR602

PAR601
COR6PAR702

PAR701
COR7

PAR802

PAR801COR8

PAR902

PAR901COR9

PAR1002

PAR1001COR10

PAR1102

PAR1101
COR11

PASSEL01

PASSEL02

COSSEL

PAUL03

PAUL02

PAUL01

PAUL06

PAUL05

PAUL04 COUL

PAUR03

PAUR02

PAUR01

PAUR06

PAUR05

PAUR04COUR

PAY104PAY103

PAY102 PAY101 COY1

PAADC06PAC201
PAC301

PAADC08
PAC002PAC101

PAADC09

PAC102

PAC302

PAC402 PAC502

PAC602
PAC702 PAC802 PAC902

PAC1002PAC1102

PAC1202PAC1302

PAC1401 PAC1501

PALINEIN02

PAP001

PAR102

PAR302

PASSEL01
PAUL02 PAUR02

PAY102

PAP008

PAR601PAR802

PAADC04

PAY103

PAADC01

PAR402PAR702

PAADC02

PAR502

PAADC03

PAR602

PAADC05PAC601
PAC701

PAADC07

PAC801 PAC901

PAADC010
PAC1001PAC1101 PAR901

PAC001

PAR002

PAR101

PAC202

PAR201

PAR301

PAC1201PAC1301

PAC1402 PAC1502

PAR1002

PAR1101

PAY104
PALINEIN03PAR001

PALINEIN04
PAR202 PAR1102

PAY101

PAP005

PAUL01

PAP007

PAUR01

PAP003

PAUL03

PAP009

PAUR03

PAP006

PAR501

PAP004

PAR401

PAP0010

PASSEL02
PAC401 PAC501

PAP002

PAR701

PAR801

PAR902

PAR1001

PAUL05

PAUL06

PAUR05

PAUR06

FIGURE C.2: ADC-PDM microphones board PCB board top view.

FIGURE C.3: ADC-PDM microphones board PCB board top 3D view.

C.1.3 Board bottom: ADC_PDM_mic_board.PcbDoc

PAADC06PAADC07PAADC08PAADC09PAADC010

PAADC05PAADC04PAADC03PAADC02PAADC01COADC

PAC002

PAC001COC0PAC102

PAC101
COC1

PAC202

PAC201COC2
PAC302 PAC301COC3

PAC401
PAC402COC4 PAC502

PAC501

COC5

PAC602 PAC601COC6
PAC702 PAC701COC7 PAC802

PAC801
COC8 PAC902

PAC901

COC9
PAC1002

PAC1001COC10PAC1102

PAC1101COC11

PAC1202
PAC1201 COC12PAC1302

PAC1301COC13
PAC1402

PAC1401COC14 PAC1502

PAC1501 COC15

PALINEIN02

PALINEIN01
PALINEIN04

PALINEIN03COLINEIN

PAP0010

PAP009

PAP008

PAP007

PAP006

PAP005

PAP004

PAP003

PAP002

PAP001
COP0

PAR002 PAR001COR0

PAR102

PAR101
COR1PAR202 PAR201COR2

PAR302

PAR301
COR3

PAR402
PAR401
COR4 PAR502

PAR501
COR5 PAR602

PAR601
COR6PAR702

PAR701
COR7

PAR802

PAR801COR8

PAR902

PAR901COR9

PAR1002

PAR1001COR10

PAR1102

PAR1101
COR11

PASSEL01

PASSEL02

COSSEL

PAUL03

PAUL02

PAUL01

PAUL06

PAUL05

PAUL04 COUL

PAUR03

PAUR02

PAUR01

PAUR06

PAUR05

PAUR04COUR

PAY104PAY103

PAY102 PAY101 COY1

PAADC06PAC201
PAC301

PAADC08
PAC002PAC101

PAADC09

PAC102

PAC302

PAC402 PAC502

PAC602
PAC702 PAC802 PAC902

PAC1002PAC1102

PAC1202PAC1302

PAC1401 PAC1501

PALINEIN02

PAP001

PAR102

PAR302

PASSEL01
PAUL02 PAUR02

PAY102

PAP008

PAR601PAR802

PAADC04

PAY103

PAADC01

PAR402PAR702

PAADC02

PAR502

PAADC03

PAR602

PAADC05PAC601
PAC701

PAADC07

PAC801 PAC901

PAADC010
PAC1001PAC1101 PAR901

PAC001

PAR002

PAR101

PAC202

PAR201

PAR301

PAC1201PAC1301

PAC1402 PAC1502

PAR1002

PAR1101

PAY104
PALINEIN03PAR001

PALINEIN04
PAR202 PAR1102

PAY101

PAP005

PAUL01

PAP007

PAUR01

PAP003

PAUL03

PAP009

PAUR03

PAP006

PAR501

PAP004

PAR401

PAP0010

PASSEL02
PAC401 PAC501

PAP002

PAR701

PAR801

PAR902

PAR1001

PAUL05

PAUL06

PAUR05

PAUR06

FIGURE C.4: ADC-PDM microphones board PCB board bottom view.

FIGURE C.5: ADC-PDM microphones board PCB board bottom 3D view.



256 Appendix C. Generic purpose PCBs

C.2 ZTEX 2.13 base board PCB files

1. Features:

• 8 general purpose LEDs.

• 4 general purpose buttons.

• 2 general purpose jumpers.

• SpiNNaker interface through SpiNN-link connector.

• ADC-PDM microphones board interface (see C.1).

• CAVIAR-20 connector with 20 I/O pins.

• JTAG connector for FPGA programming.

2. Hardware requirements:

• ZTEX 2.13 board: from https://www.ztex.de/usb-fpga-2/
usb-fpga-2.13.e.html.

https://www.ztex.de/usb-fpga-2/usb-fpga-2.13.e.html
https://www.ztex.de/usb-fpga-2/usb-fpga-2.13.e.html


C.2. ZTEX 2.13 base board PCB files 257

C.2.1 Schematic: ZTEX_base_board.SchDoc

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
3

D
at

e:
04

/0
5/

20
21

Sh
ee

t  
  o

f
Fi

le
:

D
:\P

ro
ye

ct
os

\..
\N

A
S_

ZT
EX

_T
op

.S
ch

D
oc

D
ra

w
n 

By
:

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

PA
B

1

H
ea

de
r 3

0X
2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

PC
D

1

H
ea

de
r 3

0X
2

1
2

3
4

PA
B

2

H
ea

de
r 2

X
2

1
2

3
4

PC
D

2

H
ea

de
r 2

X
2

V
IN

V
IN

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D
G

N
D

U
SB

+5

U
SB

+5
V

IN
12

PV
SU

P

H
ea

de
r 2

H

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

IO
_A

3
IO

_A
4

IO
_A

5
IO

_A
6

IO
_A

7
IO

_A
8

IO
_A

9
IO

_A
10

IO
_A

11
IO

_A
12

IO
_A

13
IO

_A
14

IO
_A

18
IO

_A
19

IO
_A

20
IO

_A
21

IO
_A

22
IO

_A
23

IO
_A

24
IO

_A
25

IO
_A

26
IO

_A
27

IO
_A

28
IO

_A
29

IO
_A

30

IO
_B

3
IO

_B
4

IO
_B

5
IO

_B
6

IO
_B

7
IO

_B
8

IO
_B

9
IO

_B
10

IO
_B

11
IO

_B
12

IO
_B

13
IO

_B
14

IO
_B

18
IO

_B
19

IO
_B

20
IO

_B
21

IO
_B

22
IO

_B
23

IO
_B

24
IO

_B
25

IO
_B

26
IO

_B
27

IO
_B

28
IO

_B
29

IO
_B

30

IO
_C

3
IO

_C
4

IO
_C

5
IO

_C
6

IO
_C

7
IO

_C
8

IO
_C

9
IO

_C
10

IO
_C

11
IO

_C
12

IO
_C

13
IO

_C
14

IO
_C

15

IO
_C

19
IO

_C
20

IO
_C

21
IO

_C
22

IO
_C

23
IO

_C
24

IO
_C

25
IO

_C
26

IO
_C

27
IO

_C
28

IO
_C

29
IO

_C
30

IO
_D

3
IO

_D
4

IO
_D

5
IO

_D
6

IO
_D

7
IO

_D
8

IO
_D

9
IO

_D
10

IO
_D

11
IO

_D
12

IO
_D

13
IO

_D
14

IO
_D

15

IO
_D

19
IO

_D
20

IO
_D

21
IO

_D
22

IO
_D

23
IO

_D
24

IO
_D

25
IO

_D
26

IO
_D

27
IO

_D
28

IO
_D

29
IO

_D
30

JT
A

G
_T

D
O

JT
A

G
_T

D
I

JT
A

G
_T

C
LK

JT
A

G
_T

M
S

JT
A

G
_V

IO

1
2

3
4

5
6

7
8

9
10

11
12

13
14

P1 X
ili

nx
 P

ar
al

le
l I

V
 C

on
ne

ct
or

G
N

D

R
ES

ET

JT
A

G
_T

D
O

JT
A

G
_T

D
I

JT
A

G
_T

C
LK

JT
A

G
_T

M
S

JT
A

G
_V

IO

1
2

3
4

5
6

7
8

9
10

P_
G

P1

H
ea

de
r 5

X
2

3.
3V

G
P1

_0
G

P1
_2

G
P1

_4
G

P1
_6G
N

D

PB
0

R
26

4k
7

R
25

10
k

C
20

0.
1 

uF

3.
3V

G
N

D

G
N

D

PB
1

R
3

4k
7

R
1

10
k

C
21

0.
1 

uF

3.
3V

G
N

D

G
N

D

PB
2

R
28

4k
7

R
27

10
k

C
22

0.
1 

uF

G
N

D

G
N

D

PB
3

R
29

4k
7

R
2

10
k

C
23

0.
1 

uF

G
N

D

G
N

D

3.
3V

3.
3V

PR
E_

P

PR
E_

N

O
U

T_
P

O
U

T_
N

33
0

RL
0

Re
s S

em
i

LE
D

_0
G

N
D

33
0

RL
1

Re
s S

em
i

LE
D

_1
G

N
D

33
0

RL
2

Re
s S

em
i

LE
D

_2
G

N
D

33
0

RL
3

Re
s S

em
i

LE
D

_4
G

N
D

33
0

RL
4

Re
s S

em
i

LE
D

_5
G

N
D

33
0

RL
5

Re
s S

em
i

LE
D

_6
G

N
D

33
0

RL
6

Re
s S

em
i

LE
D

_7
G

N
D

33
0

RL
7

Re
s S

em
i

LE
D

_8
G

N
D

A
ER

_A
C

K
A

ER
_R

EQ
G

N
D

A
ER

_0
A

ER
_1

A
ER

_2
A

ER
_3

A
ER

_4
A

ER
_5

A
ER

_6
A

ER
_7

A
ER

_8

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

JP
12

A
ER

 S
eq

ue
nc

er
O

U
T

A
ER

_9
A

ER
_1

0
A

ER
_1

1
A

ER
_1

2
A

ER
_1

3
A

ER
_1

4
A

ER
_1

5

G
N

D

PB
4

R
ES

ET
G

N
D

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

IO
_A

3

IO
_A

4

IO
_D

3

IO
_D

4

IO
_C

3

IO
_C

4

IO
_B

4

IO
_B

3

IO
_D

15

IO
_D

19
IO

_A
18

IO
_A

19

IO
_A

8
IO

_B
8

IO
_A

9
IO

_B
9

IO
_A

10
IO

_B
10

IO
_A

11
IO

_B
11

IO
_C

20
IO

_D
20

IO
_C

21
IO

_C
22

IO
_C

23
IO

_C
24

IO
_C

25
IO

_C
26

IO
_C

27

IO
_C

28

IO
_D

21
IO

_D
22

IO
_D

23
IO

_D
24

IO
_D

25
IO

_D
26

IO
_D

27

IO
_D

28

PD
M

_C
LK

_L
PD

M
_C

LK
_R

PD
M

_D
A

T_
L

PD
M

_D
A

T_
R

+
C

38
10

 u
F

+
C

39
10

 u
F

GND 1

IN
3

O
U

T
4

LM
11

17
-1

.8

LM
11

17

1.
8V

U
SB

+5

V
C

C
A

1

A
1

2

A
2

3

A
3

4

A
4

5

A
5

6

A
6

7

A
7

8

A
8

9

G
N

D
10

O
E

11
B

8
12

B
7

13
B

6
14

B
5

15
B

4
16

B
3

17
B

2
18

B
1

19
V

C
C

B
20

U
1

N
LS

V
8T

24
4

V
C

C
A

1

A
1

2

A
2

3

A
3

4

A
4

5

A
5

6

A
6

7

A
7

8

A
8

9

G
N

D
10

O
E

11
B

8
12

B
7

13
B

6
14

B
5

15
B

4
16

B
3

17
B

2
18

B
1

19
V

C
C

B
20

U
2

N
LS

V
8T

24
4

3.
3V 3.

3V

1.
8V 1.

8V

A
ER

_0
A

ER
_1

A
ER

_2
A

ER
_3

A
ER

_4
A

ER
_5

A
ER

_6
A

ER
_7

A
ER

_8
A

CK
_I

N

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

P2 H
ea

de
r 1

7X
2

A
CK

_I
N

D
A

TA
_I

N
_0

D
A

TA
_I

N
_1

D
A

TA
_I

N
_2

D
A

TA
_I

N
_3

D
A

TA
_I

N
_4

D
A

TA
_I

N
_5

D
A

TA
_I

N
_6

D
A

TA
_O

U
T_

0
A

CK
_O

U
T

D
A

TA
_O

U
T_

1
D

A
TA

_O
U

T_
2

D
A

TA
_O

U
T_

3
D

A
TA

_O
U

T_
4

D
A

TA
_O

U
T_

5
D

A
TA

_O
U

T_
6

D
A

TA
_I

N
_0

D
A

TA
_I

N
_1

D
A

TA
_I

N
_2

D
A

TA
_I

N
_3

D
A

TA
_I

N
_4

D
A

TA
_I

N
_5

D
A

TA
_I

N
_6

A
CK

_O
U

T

D
A

TA
_O

U
T_

0
D

A
TA

_O
U

T_
1

D
A

TA
_O

U
T_

2
D

A
TA

_O
U

T_
3

D
A

TA
_O

U
T_

4
D

A
TA

_O
U

T_
5

D
A

TA
_O

U
T_

6
A

ER
_9

A
ER

_1
0

A
ER

_1
1

A
ER

_1
2

A
ER

_1
3

A
ER

_1
4

A
ER

_1
5

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D

12

SP
IN

N

H
ea

de
r 2

H

12

A
ER

O
U

T

H
ea

de
r 2

H G
N

D

G
N

D

E_
SP

IN
NE_

A
ER

O
U

T

IO
_A

20

IO
_A

21

IO
_A

22

IO
_A

23

IO
_A

24

IO
_A

25

IO
_A

26

IO
_A

27

IO
_B

20

IO
_B

21

IO
_B

22

IO
_B

23

IO
_B

24

IO
_B

26

IO
_B

25

IO
_B

27

IO
_A

13

IO
_A

12
PI
AE
RO
UT
01

PI
AE
RO
UT
02

CO
AE

RO
UT

PIC2001 PIC2002
CO
C2

0

PIC2101 PIC2102
CO
C2

1

PIC2201 PIC2202
CO
C2
2

PIC2301 PIC2302
CO
C2
3

PIC3801 PIC3802

CO
C3
8

PIC3901 PIC3902

CO
C3

9

P
I
D
0
0
A

P
I
D
0
0
K

CO
D0

P
I
D
1
0
A

P
I
D
1
0
K

CO
D1

P
I
D
2
0
A

P
I
D
2
0
K

CO
D2

P
I
D
3
0
A

P
I
D
3
0
K

CO
D3

P
I
D
4
0
A

P
I
D
4
0
K

CO
D4

P
I
D
5
0
A

P
I
D
5
0
K

CO
D5

P
I
D
6
0
A

P
I
D
6
0
K

CO
D6

P
I
D
7
0
A

P
I
D
7
0
K

CO
D7

PI
JP
12
01

PI
JP
12
02

PI
JP
12
03

PI
JP
12
04

PI
JP
12
05

PI
JP
12
06

PI
JP
12
07

PI
JP
12
08

PI
JP
12
09

PI
JP
12
01
0

PI
JP
12
01
1

PI
JP
12
01
2

PI
JP
12
01
3

PI
JP
12
01
4

PI
JP
12
01
5

PI
JP
12
01
6

PI
JP
12
01
7

PI
JP
12
01
8

PI
JP
12
01
9

PI
JP
12
02
0

CO
JP

12

PILM1117010801
PI
LM
11
17
01
08
03

PI
LM
11
17
01
08
04

CO
LM

11
17

01
08

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4

P
I
P
1
0
5

P
I
P
1
0
6

P
I
P
1
0
7

P
I
P
1
0
8

P
I
P
1
0
9

P
I
P
1
0
1
0

P
I
P
1
0
1
1

P
I
P
1
0
1
2

P
I
P
1
0
1
3

P
I
P
1
0
1
4

COP
1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4

P
I
P
2
0
5

P
I
P
2
0
6

P
I
P
2
0
7

P
I
P
2
0
8

P
I
P
2
0
9

P
I
P
2
0
1
0

P
I
P
2
0
1
1

P
I
P
2
0
1
2

P
I
P
2
0
1
3

P
I
P
2
0
1
4

P
I
P
2
0
1
5

P
I
P
2
0
1
6

P
I
P
2
0
1
7

P
I
P
2
0
1
8

P
I
P
2
0
1
9

P
I
P
2
0
2
0

P
I
P
2
0
2
1

P
I
P
2
0
2
2

P
I
P
2
0
2
3

P
I
P
2
0
2
4

P
I
P
2
0
2
5

P
I
P
2
0
2
6

P
I
P
2
0
2
7

P
I
P
2
0
2
8

P
I
P
2
0
2
9

P
I
P
2
0
3
0

P
I
P
2
0
3
1

P
I
P
2
0
3
2

P
I
P
2
0
3
3

P
I
P
2
0
3
4

COP
2

PI
P0
GP
10
1

PI
P0
GP
10
2

PI
P0
GP
10
3

PI
P0
GP
10
4

PI
P0
GP
10
5

PI
P0
GP
10
6

PI
P0
GP
10
7

PI
P0
GP
10
8

PI
P0
GP
10
9

PI
P0
GP
10
10

CO
P0
GP
1

PI
PA
B1

01
PI
PA

B1
02

PI
PA
B1

03
PI
PA

B1
04

PI
PA
B1

05
PI
PA

B1
06

PI
PA
B1

07
PI
PA

B1
08

PI
PA
B1

09
PI
PA
B1
01
0

PI
PA
B1
01
1

PI
PA
B1
01
2

PI
PA
B1
01
3

PI
PA
B1
01
4

PI
PA
B1
01
5

PI
PA
B1
01
6

PI
PA
B1
01
7

PI
PA
B1
01
8

PI
PA
B1
01
9

PI
PA
B1
02
0

PI
PA
B1
02
1

PI
PA
B1
02
2

PI
PA
B1
02
3

PI
PA
B1
02
4

PI
PA
B1
02
5

PI
PA
B1
02
6

PI
PA
B1
02
7

PI
PA
B1
02
8

PI
PA
B1
02
9

PI
PA
B1
03
0

PI
PA
B1
03
1

PI
PA
B1
03
2

PI
PA
B1
03
3

PI
PA
B1
03
4

PI
PA
B1
03
5

PI
PA
B1
03
6

PI
PA
B1
03
7

PI
PA
B1
03
8

PI
PA
B1
03
9

PI
PA
B1
04
0

PI
PA
B1
04
1

PI
PA
B1
04
2

PI
PA
B1
04
3

PI
PA
B1
04
4

PI
PA
B1
04
5

PI
PA
B1
04
6

PI
PA
B1
04
7

PI
PA
B1
04
8

PI
PA
B1
04
9

PI
PA
B1
05
0

PI
PA
B1
05
1

PI
PA
B1
05
2

PI
PA
B1
05
3

PI
PA
B1
05
4

PI
PA
B1
05
5

PI
PA
B1
05
6

PI
PA
B1
05
7

PI
PA
B1
05
8

PI
PA
B1
05
9

PI
PA
B1
06
0

CO
PA
B1

PI
PA
B2

01
PI
PA

B2
02

PI
PA
B2

03
PI
PA

B2
04

CO
PA
B2

P
I
P
B
0
0
1

P
I
P
B
0
0
2

P
I
P
B
0
0
3

P
I
P
B
0
0
4

CO
PB

0

P
I
P
B
1
0
1

P
I
P
B
1
0
2

P
I
P
B
1
0
3

P
I
P
B
1
0
4

CO
PB

1

P
I
P
B
2
0
1

P
I
P
B
2
0
2

P
I
P
B
2
0
3

P
I
P
B
2
0
4

CO
PB

2

P
I
P
B
3
0
1

P
I
P
B
3
0
2

P
I
P
B
3
0
3

P
I
P
B
3
0
4

CO
PB

3

P
I
P
B
4
0
1

P
I
P
B
4
0
2

P
I
P
B
4
0
3

P
I
P
B
4
0
4

CO
PB
4

PI
PC
D1

01
PI
PC
D1
02

PI
PC
D1

03
PI
PC
D1
04

PI
PC
D1

05
PI

PC
D1

06

PI
PC
D1

07
PI

PC
D1

08

PI
PC
D1

09
PI
PC
D1
01
0

PI
PC
D1
01
1

PI
PC
D1
01
2

PI
PC
D1
01
3

PI
PC
D1
01
4

PI
PC
D1
01
5

PI
PC
D1
01
6

PI
PC
D1
01
7

PI
PC
D1
01
8

PI
PC
D1
01
9

PI
PC
D1
02
0

PI
PC
D1
02
1

PI
PC
D1
02
2

PI
PC
D1
02
3

PI
PC
D1
02
4

PI
PC
D1
02
5

PI
PC
D1
02
6

PI
PC
D1
02
7

PI
PC
D1
02
8

PI
PC
D1
02
9

PI
PC
D1
03
0

PI
PC
D1
03
1

PI
PC
D1
03
2

PI
PC
D1
03
3

PI
PC
D1
03
4

PI
PC
D1
03
5

PI
PC
D1
03
6

PI
PC
D1
03
7

PI
PC
D1
03
8

PI
PC
D1
03
9

PI
PC
D1
04
0

PI
PC
D1
04
1

PI
PC
D1
04
2

PI
PC
D1
04
3

PI
PC
D1
04
4

PI
PC
D1
04
5

PI
PC
D1
04
6

PI
PC
D1
04
7

PI
PC
D1
04
8

PI
PC
D1
04
9

PI
PC
D1
05
0

PI
PC
D1
05
1

PI
PC
D1
05
2

PI
PC
D1
05
3

PI
PC
D1
05
4

PI
PC
D1
05
5

PI
PC
D1
05
6

PI
PC
D1
05
7

PI
PC
D1
05
8

PI
PC
D1
05
9

PI
PC
D1
06
0

CO
PC
D1

PI
PC
D2

01
PI

PC
D2

02

PI
PC
D2

03
PI

PC
D2

04

CO
PC
D2

PI
PV
SU
P0
1

PI
PV
SU
P0
2

CO
PV
SU
P

PIR101 PIR102
COR

1

PIR201 PIR202
COR

2

P
I
R
3
0
1

P
I
R
3
0
2

COR
3

PIR2501 PIR2502
CO

R2
5

P
I
R
2
6
0
1

P
I
R
2
6
0
2

CO
R2

6

PIR2701 PIR2702
CO

R2
7

P
I
R
2
8
0
1

P
I
R
2
8
0
2

CO
R2

8

P
I
R
2
9
0
1

P
I
R
2
9
0
2

CO
R2

9

PI
RL
00
1

PI
RL
00
2CO
RL

0

PI
RL
10
1

PI
RL
10
2CO
RL

1

PI
RL
20
1

PI
RL
20
2CO
RL

2

PI
RL
30
1

PI
RL
30
2CO
RL

3

PI
RL
40
1

PI
RL
40
2CO
RL

4

PI
RL
50
1

PI
RL
50
2CO
RL

5

PI
RL
60
1

PI
RL
60
2CO
RL

6

PI
RL
70
1

PI
RL
70
2CO
RL

7

PI
SP
IN
N0
1

PI
SP
IN
N0
2

CO
SP
IN
N

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

P
I
U
1
0
1
0

P
I
U
1
0
1
1

P
I
U
1
0
1
2

P
I
U
1
0
1
3

P
I
U
1
0
1
4

P
I
U
1
0
1
5

P
I
U
1
0
1
6

P
I
U
1
0
1
7

P
I
U
1
0
1
8

P
I
U
1
0
1
9

P
I
U
1
0
2
0

CO
U1

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8

P
I
U
2
0
9

P
I
U
2
0
1
0

P
I
U
2
0
1
1

P
I
U
2
0
1
2

P
I
U
2
0
1
3

P
I
U
2
0
1
4

P
I
U
2
0
1
5

P
I
U
2
0
1
6

P
I
U
2
0
1
7

P
I
U
2
0
1
8

P
I
U
2
0
1
9

P
I
U
2
0
2
0CO

U2

PIC3901

PI
LM
11
17
01
08
04

P
I
U
1
0
2
0

P
I
U
2
0
1

PI
P0
GP
10
2

PI
PA
B1
02
9

PI
PA
B1
03
0

PI
PA
B1
03
3

PI
PA
B1
03
4

PI
PC
D1
03
1

PI
PC
D1
03
2

PI
PC
D1
03
5

PI
PC
D1
03
6

PIR101
PIR201

PIR2501
PIR2701

P
I
U
1
0
1

P
I
U
2
0
2
0

P
I
P
2
0
1
6

P
I
U
2
0
9

NL
AC
K0
IN

P
I
P
2
0
1
9

P
I
U
1
0
1
2

NL
AC
K0
OU
T

P
I
P
2
0
1
4

P
I
U
1
0
1
3

NL
DA

TA
0I

N0
0

P
I
P
2
0
1
2

P
I
U
1
0
1
4

NL
DA

TA
0I

N0
1

P
I
P
2
0
1
0

P
I
U
1
0
1
5

NL
DA

TA
0I

N0
2

P
I
P
2
0
8

P
I
U
1
0
1
6

NL
DA

TA
0I

N0
3

P
I
P
2
0
6

P
I
U
1
0
1
7

NL
DA

TA
0I

N0
4

P
I
P
2
0
4

P
I
U
1
0
1
8

NL
DA

TA
0I

N0
5

P
I
P
2
0
2

P
I
U
1
0
1
9

NL
DA

TA
0I

N0
6

P
I
P
2
0
2
1

P
I
U
2
0
2

NL
DA

TA
0O

UT
00 P
I
P
2
0
2
3

P
I
U
2
0
3

NL
DA

TA
0O

UT
01 P
I
P
2
0
2
5

P
I
U
2
0
4

NL
DA

TA
0O

UT
02 P
I
P
2
0
2
7

P
I
U
2
0
5

NL
DA

TA
0O

UT
03 P
I
P
2
0
2
9

P
I
U
2
0
6

NL
DA

TA
0O

UT
04 P
I
P
2
0
3
1

P
I
U
2
0
7

NL
DA

TA
0O

UT
05 P
I
P
2
0
3
3

P
I
U
2
0
8

NL
DA

TA
0O

UT
06

PI
AE
RO
UT
01

PIC2002 PIC2102

PIC2202 PIC2302

PIC3802
PIC3902

P
I
D
0
0
K

P
I
D
1
0
K

P
I
D
2
0
K

P
I
D
3
0
K

P
I
D
4
0
K

P
I
D
5
0
K

P
I
D
6
0
K

P
I
D
7
0
K

PI
JP
12
01
7

PI
JP
12
01
8

PILM1117010801

P
I
P
1
0
1

P
I
P
1
0
3

P
I
P
1
0
5

P
I
P
1
0
7

P
I
P
1
0
9

P
I
P
1
0
1
1

P
I
P
1
0
1
3

P
I
P
2
0
1

P
I
P
2
0
3

P
I
P
2
0
5

P
I
P
2
0
7

P
I
P
2
0
9

P
I
P
2
0
1
1

P
I
P
2
0
1
3

P
I
P
2
0
1
5

P
I
P
2
0
1
7

P
I
P
2
0
1
8

P
I
P
2
0
2
0

P
I
P
2
0
2
2

P
I
P
2
0
2
4

P
I
P
2
0
2
6

P
I
P
2
0
2
8

P
I
P
2
0
3
0

P
I
P
2
0
3
2

P
I
P
2
0
3
4

PI
P0
GP
10
1

PI
PA
B1

03
PI
PA

B1
04

PI
PA
B1
03
1

PI
PA
B1
03
2

PI
PA

B2
04

P
I
P
B
0
0
2

P
I
P
B
1
0
2

P
I
P
B
2
0
2

P
I
P
B
3
0
2

P
I
P
B
4
0
2

PI
PC
D1

03
PI
PC
D1
04

PI
PC
D1
03
3

PI
PC
D1
03
4

PI
PC
D2

03
PI

PC
D2

04

PI
SP
IN
N0
1

P
I
U
1
0
1
0

P
I
U
1
0
1
1

P
I
U
2
0
1
0

P
I
U
2
0
1
1

PI
PA
B1

05

PI
RL
00
2

NL
IO
0A
3

NL
LE
D0
0

PI
PA
B1

07

PI
RL
20
2

NL
IO
0A
4

NL
LE
D0
2

PI
PA
B1

09
NL
IO
0A
5

PI
PA
B1
01
1

NL
IO
0A
6

PI
PA
B1
01
3

NL
IO
0A
7

PI
P0
GP
10
3

PI
PA
B1
01
5

NL
GP
10
0

NL
IO
0A
8

PI
P0
GP
10
5

PI
PA
B1
01
7

NL
GP
10
2

NL
IO
0A
9

PI
P0
GP
10
7

PI
PA
B1
01
9

NL
GP
10
4

NL
IO

0A
10

PI
P0
GP
10
9

PI
PA
B1
02
1

NL
GP
10
6

NL
IO

0A
11

PI
AE
RO
UT
02

PI
PA
B1
02
3

NL
E0
AE
RO

UT

NL
IO

0A
12

PI
PA
B1
02
5

PI
SP
IN
N0
2

NL
E0

SP
IN

N

NL
IO

0A
13

PI
PA
B1
02
7

NL
IO

0A
14

PI
PA
B1
03
5

P
I
R
2
6
0
1

NL
IO

0A
18

NL
PR
E0
P

PI
PA
B1
03
7

P
I
R
3
0
1

NL
IO

0A
19

NL
PR

E0
N

PI
PA
B1
03
9

P
I
U
2
0
1
8

NL
IO

0A
20

PI
PA
B1
04
1

P
I
U
2
0
1
6

NL
IO

0A
21

PI
PA
B1
04
3

P
I
U
2
0
1
4

NL
IO

0A
22

PI
PA
B1
04
5

P
I
U
2
0
1
2

NL
IO

0A
23

PI
PA
B1
04
7

P
I
U
1
0
8

NL
IO

0A
24

PI
PA
B1
04
9

P
I
U
1
0
6

NL
IO

0A
25

PI
PA
B1
05
1

P
I
U
1
0
4

NL
IO

0A
26

PI
PA
B1
05
3

P
I
U
1
0
2

NL
IO

0A
27

PI
PA
B1
05
5

NL
IO

0A
28

PI
PA
B1
05
7

NL
IO

0A
29

PI
PA
B1
05
9

NL
IO

0A
30

PI
PA

B1
06

PI
RL
10
2

NL
IO

0B
3

NL
LE
D0
1

PI
PA

B1
08

PI
RL
30
2

NL
IO

0B
4

NL
LE
D0
4

PI
PA
B1
01
0NL

IO
0B

5

PI
PA
B1
01
2NL

IO
0B

6

PI
PA
B1
01
4NL

IO
0B

7

PI
P0
GP
10
4

PI
PA
B1
01
6NL

IO
0B

8

NL
PD

M0
DA

T0
L

PI
P0
GP
10
6

PI
PA
B1
01
8NL

IO
0B

9

NL
PD
M0
CL
K0
L

PI
P0
GP
10
8

PI
PA
B1
02
0NL

IO
0B
10

NL
PD

M0
CL

K0
R

PI
P0
GP
10
10

PI
PA
B1
02
2NL

IO
0B
11

NL
PD

M0
DA

T0
R

PI
PA
B1
02
4NL

IO
0B
12

PI
PA
B1
02
6NL

IO
0B
13

PI
PA
B1
02
8NL

IO
0B
14

PI
PA
B1
03
6NL

IO
0B
18

PI
PA
B1
03
8NL

IO
0B
19

PI
PA
B1
04
0

P
I
U
2
0
1
9

NL
IO

0B
20

PI
PA
B1
04
2

P
I
U
2
0
1
7

NL
IO

0B
21

PI
PA
B1
04
4

P
I
U
2
0
1
5

NL
IO

0B
22

PI
PA
B1
04
6

P
I
U
2
0
1
3

NL
IO

0B
23

PI
PA
B1
04
8

P
I
U
1
0
9

NL
IO

0B
24

PI
PA
B1
05
0

P
I
U
1
0
7

NL
IO

0B
25

PI
PA
B1
05
2

P
I
U
1
0
5

NL
IO

0B
26

PI
PA
B1
05
4

P
I
U
1
0
3

NL
IO

0B
27

PI
PA
B1
05
6NL

IO
0B
28

PI
PA
B1
05
8NL

IO
0B
29

PI
PA
B1
06
0NL

IO
0B
30

PI
PC
D1

05

PI
RL
60
2

NL
IO

0C
3

NL
LE

D0
7

PI
PC
D1

07

PI
RL
40
2

NL
IO

0C
4

NL
LE

D0
5

PI
PC
D1

09
NL

IO
0C

5

PI
PC
D1
01
1

NL
IO

0C
6

PI
PC
D1
01
3

NL
IO

0C
7

PI
PC
D1
01
5

NL
IO

0C
8

PI
PC
D1
01
7

NL
IO

0C
9

PI
PC
D1
01
9

NL
IO

0C
10

PI
PC
D1
02
1

NL
IO

0C
11

PI
PC
D1
02
3

NL
IO

0C
12

PI
PC
D1
02
5

NL
IO

0C
13

PI
PC
D1
02
7

NL
IO

0C
14

PI
PC
D1
02
9

NL
IO

0C
15

PI
PC
D1
03
7

NL
IO

0C
19

PI
JP
12
01

PI
PC
D1
03
9

NL
AE

R0
0

NL
IO

0C
20

PI
JP
12
03

PI
PC
D1
04
1

NL
AE

R0
2

NL
IO

0C
21

PI
JP
12
05

PI
PC
D1
04
3

NL
AE

R0
4

NL
IO

0C
22

PI
JP
12
07

PI
PC
D1
04
5

NL
AE

R0
6

NL
IO

0C
23

PI
JP
12
09

PI
PC
D1
04
7

NL
AE

R0
8

NL
IO

0C
24

PI
JP
12
01
1

PI
PC
D1
04
9

NL
AE
R0
10

NL
IO

0C
25

PI
JP
12
01
3

PI
PC
D1
05
1

NL
AE
R0
12

NL
IO

0C
26

PI
JP
12
01
5

PI
PC
D1
05
3

NL
AE
R0
14

NL
IO

0C
27

PI
JP
12
01
9

PI
PC
D1
05
5

NL
AE

R0
RE

Q

NL
IO

0C
28

PI
PC
D1
05
7

NL
IO

0C
29

PI
PC
D1
05
9

NL
IO

0C
30

PI
PC

D1
06

PI
RL
70
2

NL
IO
0D
3

NL
LE

D0
8

PI
PC

D1
08

PI
RL
50
2

NL
IO
0D
4

NL
LE

D0
6

PI
PC
D1
01
0

NL
IO
0D
5

PI
PC
D1
01
2

NL
IO
0D
6

PI
PC
D1
01
4

NL
IO
0D
7

PI
PC
D1
01
6

NL
IO
0D
8

PI
PC
D1
01
8

NL
IO
0D
9

PI
PC
D1
02
0

NL
IO
0D

10

PI
PC
D1
02
2

NL
IO
0D

11

PI
PC
D1
02
4

NL
IO
0D

12

PI
PC
D1
02
6

NL
IO
0D

13

PI
PC
D1
02
8

NL
IO
0D

14

PI
PC
D1
03
0

P
I
R
2
9
0
1

NL
IO
0D

15

NL
OU

T0
N

PI
PC
D1
03
8

P
I
R
2
8
0
1

NL
IO
0D

19

NL
OU
T0
P

PI
JP
12
02

PI
PC
D1
04
0

NL
AE

R0
1

NL
IO
0D

20

PI
JP
12
04

PI
PC
D1
04
2

NL
AE

R0
3

NL
IO
0D

21

PI
JP
12
06

PI
PC
D1
04
4

NL
AE

R0
5

NL
IO
0D

22

PI
JP
12
08

PI
PC
D1
04
6

NL
AE

R0
7

NL
IO
0D

23

PI
JP
12
01
0

PI
PC
D1
04
8

NL
AE

R0
9

NL
IO
0D

24

PI
JP
12
01
2

PI
PC
D1
05
0

NL
AE
R0
11

NL
IO
0D

25

PI
JP
12
01
4

PI
PC
D1
05
2

NL
AE
R0
13

NL
IO
0D

26

PI
JP
12
01
6

PI
PC
D1
05
4

NL
AE
R0
15

NL
IO
0D

27

PI
JP
12
02
0

PI
PC
D1
05
6

NL
AE
R0

AC
K

NL
IO
0D

28

PI
PC
D1
05
8

NL
IO
0D

29

PI
PC
D1
06
0

NL
IO
0D

30

P
I
P
1
0
6

PI
PA

B2
02
NL

JT
AG

0T
CL

K

P
I
P
1
0
1
0

PI
PA
B2

01
NL

JT
AG

0T
DI

P
I
P
1
0
8

PI
PC
D2

01
NL

JT
AG

0T
DO

P
I
P
1
0
4

PI
PC

D2
02

NL
JT

AG
0T

MS

P
I
P
1
0
2

PI
PA
B2

03
NL
JT
AG

0V
IO

PIC2001
P
I
P
B
0
0
1

PIR2502
P
I
R
2
6
0
2 PIC2101

P
I
P
B
1
0
1

PIR102
P
I
R
3
0
2

PIC2201
P
I
P
B
2
0
1

PIR2702
P
I
R
2
8
0
2 PIC2301

P
I
P
B
3
0
1

PIR202
P
I
R
2
9
0
2

P
I
D
0
0
A

PI
RL
00
1 P
I
D
1
0
A

PI
RL
10
1 P
I
D
2
0
A

PI
RL
20
1 P
I
D
3
0
A

PI
RL
30
1

P
I
D
4
0
A

PI
RL
40
1 P
I
D
5
0
A

PI
RL
50
1 P
I
D
6
0
A

PI
RL
60
1 P
I
D
7
0
A

PI
RL
70
1

P
I
P
1
0
1
2

P
I
P
1
0
1
4

P
I
P
B
0
0
3

P
I
P
B
0
0
4

P
I
P
B
1
0
3

P
I
P
B
1
0
4

P
I
P
B
2
0
3

P
I
P
B
2
0
4

P
I
P
B
3
0
3

P
I
P
B
3
0
4

P
I
P
B
4
0
3

P
I
P
B
4
0
4

P
I
P
B
4
0
1

PI
PC
D1
02

NL
RE

SE
T

PIC3801PI
LM
11
17
01
08
03

PI
PC
D1

01

PI
PV
SU
P0
1

PI
PA
B1

01
PI
PA

B1
02

PI
PV
SU
P0
2

FIGURE C.6: ZTEX 2.13 base board PCB schematic.



258 Appendix C. Generic purpose PCBs

C.2.2 Board top: ZTEX_base_board.PcbDoc

FIGURE C.7: ZTEX 2.13 base board top view.



C.2. ZTEX 2.13 base board PCB files 259

C.2.3 Board bottom: ZTEX_base_board.PcbDoc

PAAEROUT01

PAAEROUT02

COAEROUT

PAC2001PAC2002

COC20

PAC2101PAC2102

COC21

PAC2201 PAC2202

COC22

PAC2301 PAC2302

COC23

PAC3801PAC3802 COC38

PAC3901 PAC3902COC39

PAD00APAD00K

COD0

PAD10APAD10K

COD1

PAD20APAD20K

COD2

PAD30APAD30K

COD3

PAD40A PAD40K

COD4
PAD50A PAD50K

COD5
PAD60A PAD60K

COD6
PAD70A PAD70K

COD7

PAJP1201 PAJP1202

PAJP1203 PAJP1204

PAJP1205 PAJP1206

PAJP1207 PAJP1208

PAJP1209 PAJP12010

PAJP12011 PAJP12012

PAJP12013 PAJP12014

PAJP12015 PAJP12016

PAJP12017 PAJP12018

PAJP12019 PAJP12020

COJP12

PALM1117010801 PALM1117010802 PALM1117010803

PALM1117010804COLM11170108
PAP101

PAP103

PAP105
PAP107

PAP109

PAP1011

PAP1013

PAP102

PAP104

PAP106
PAP108

PAP1010

PAP1012

PAP1014

COP1

PAP2034

PAP2033

PAP2032

PAP2031

PAP2030

PAP2029

PAP2028

PAP2027

PAP2026

PAP2025

PAP2024

PAP2023

PAP2022

PAP2021

PAP2020

PAP2019

PAP2018

PAP2017

PAP2016

PAP2015

PAP2014

PAP2013

PAP2012

PAP2011

PAP2010

PAP209

PAP208

PAP207

PAP206

PAP205

PAP204

PAP203

PAP202

PAP201 COP2

PAP0GP1010PAP0GP109

PAP0GP108PAP0GP107

PAP0GP106PAP0GP105

PAP0GP104PAP0GP103

PAP0GP102PAP0GP101

COP0GP1

PAPAB1051 PAPAB1052

PAPAB1053 PAPAB1054

PAPAB1055 PAPAB1056

PAPAB1057 PAPAB1058

PAPAB1059 PAPAB1060

PAPAB101 PAPAB102

PAPAB103 PAPAB104

PAPAB105 PAPAB106

PAPAB107 PAPAB108

PAPAB109 PAPAB1010

PAPAB1011 PAPAB1012

PAPAB1013 PAPAB1014

PAPAB1015 PAPAB1016

PAPAB1017 PAPAB1018

PAPAB1019 PAPAB1020

PAPAB1021 PAPAB1022

PAPAB1023 PAPAB1024

PAPAB1025 PAPAB1026

PAPAB1027 PAPAB1028

PAPAB1029 PAPAB1030

PAPAB1031 PAPAB1032

PAPAB1033 PAPAB1034

PAPAB1035 PAPAB1036

PAPAB1037 PAPAB1038

PAPAB1039 PAPAB1040

PAPAB1041 PAPAB1042

PAPAB1043 PAPAB1044

PAPAB1045 PAPAB1046

PAPAB1047 PAPAB1048

PAPAB1049 PAPAB1050

COPAB1

PAPAB204PAPAB203

PAPAB202PAPAB201

COPAB2

PAPB004 PAPB003

PAPB002 PAPB001
COPB0

PAPB104 PAPB103

PAPB102 PAPB101

COPB1

PAPB204PAPB203

PAPB202PAPB201

COPB2

PAPB304PAPB303

PAPB302PAPB301

COPB3

PAPB404

PAPB403

PAPB402

PAPB401

COPB4

PAPCD1051 PAPCD1052

PAPCD1053 PAPCD1054

PAPCD1055 PAPCD1056

PAPCD1057 PAPCD1058

PAPCD1059 PAPCD1060

PAPCD101 PAPCD102

PAPCD103 PAPCD104

PAPCD105 PAPCD106

PAPCD107 PAPCD108

PAPCD109 PAPCD1010

PAPCD1011 PAPCD1012

PAPCD1013 PAPCD1014

PAPCD1015 PAPCD1016

PAPCD1017 PAPCD1018

PAPCD1019 PAPCD1020

PAPCD1021 PAPCD1022

PAPCD1023 PAPCD1024

PAPCD1025 PAPCD1026

PAPCD1027 PAPCD1028

PAPCD1029 PAPCD1030

PAPCD1031 PAPCD1032

PAPCD1033 PAPCD1034

PAPCD1035 PAPCD1036

PAPCD1037 PAPCD1038

PAPCD1039 PAPCD1040

PAPCD1041 PAPCD1042

PAPCD1043 PAPCD1044

PAPCD1045 PAPCD1046

PAPCD1047 PAPCD1048

PAPCD1049 PAPCD1050

COPCD1

PAPCD204PAPCD203

PAPCD202PAPCD201

COPCD2

PAPVSUP02 PAPVSUP01
COPVSUP

PAR101PAR102

COR1

PAR201

PAR202

COR2

PAR301PAR302

COR3

PAR2501PAR2502

COR25PAR2601PAR2602

COR26

PAR2701

PAR2702

COR27
PAR2801

PAR2802

COR28

PAR2901
PAR2902

COR29

PARL001 PARL002

CORL0

PARL101 PARL102

CORL1

PARL201 PARL202

CORL2

PARL301 PARL302

CORL3

PARL401PARL402

CORL4

PARL501PARL502

CORL5

PARL601PARL602

CORL6

PARL701PARL702

CORL7

PASPINN01

PASPINN02 COSPINN

PAU101 PAU102 PAU103 PAU104 PAU105 PAU106 PAU107 PAU108 PAU109 PAU1010

PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013 PAU1012 PAU1011

COU1

PAU201PAU202PAU203PAU204PAU205PAU206PAU207PAU208PAU209PAU2010

PAU2020PAU2019PAU2018PAU2017PAU2016PAU2015PAU2014PAU2013PAU2012PAU2011

COU2

PAC3901

PALM1117010804

PAU1020 PAU201

PAP0GP102

PAPAB1029 PAPAB1030

PAPAB1033 PAPAB1034

PAPCD1031 PAPCD1032

PAPCD1035 PAPCD1036

PAR101

PAR201

PAR2501

PAR2701

PAU101 PAU2020

PAP2016

PAU209

PAP2019

PAU1012

PAJP1201

PAPCD1039

PAJP1202

PAPCD1040

PAJP1203

PAPCD1041

PAJP1204

PAPCD1042

PAJP1205

PAPCD1043

PAJP1206

PAPCD1044

PAJP1207

PAPCD1045

PAJP1208

PAPCD1046

PAJP1209

PAPCD1047

PAJP12010

PAPCD1048

PAJP12011

PAPCD1049

PAJP12012

PAPCD1050

PAJP12013

PAPCD1051

PAJP12014

PAPCD1052

PAJP12015

PAPCD1053

PAJP12016

PAPCD1054

PAJP12020

PAPCD1056

PAJP12019

PAPCD1055

PAP2014

PAU1013

PAP2012

PAU1014

PAP2010

PAU1015

PAP208

PAU1016

PAP206

PAU1017

PAP204

PAU1018

PAP202

PAU1019

PAP2021

PAU202

PAP2023

PAU203

PAP2025

PAU204

PAP2027

PAU205

PAP2029

PAU206

PAP2031

PAU207

PAP2033

PAU208

PAAEROUT02
PAPAB1023

PAPAB1025

PASPINN02

PAAEROUT01

PAC2002

PAC2102

PAC2202

PAC2302

PAC3802

PAC3902

PAD00K

PAD10K

PAD20K

PAD30K

PAD40K

PAD50K

PAD60K

PAD70K

PAJP12017 PAJP12018

PALM1117010801

PAP101

PAP103

PAP105
PAP107

PAP109

PAP1011

PAP1013

PAP201 PAP203 PAP205 PAP207 PAP209 PAP2011 PAP2013 PAP2015 PAP2017

PAP2018 PAP2020 PAP2022 PAP2024 PAP2026 PAP2028 PAP2030 PAP2032 PAP2034

PAP0GP101

PAPAB103 PAPAB104

PAPAB1031 PAPAB1032

PAPAB204

PAPB002

PAPB102

PAPB202

PAPB302

PAPB402
PAPCD103 PAPCD104

PAPCD1033 PAPCD1034

PAPCD203 PAPCD204

PASPINN01

PAU1010

PAU1011 PAU2010

PAU2011

PAP0GP103

PAPAB1015

PAP0GP105

PAPAB1017

PAP0GP107

PAPAB1019

PAP0GP109

PAPAB1021

PAPAB105

PARL002

PAPAB107

PARL202 PAPAB109

PAPAB1011

PAPAB1013

PAPAB1027

PAPAB1035
PAR2601

PAPAB1037

PAR301

PAPAB1039

PAU2018

PAPAB1041

PAU2016

PAPAB1043

PAU2014

PAPAB1045

PAU2012

PAPAB1047

PAU108

PAPAB1049

PAU106

PAPAB1051

PAU104

PAPAB1053

PAU102

PAPAB1055

PAPAB1057

PAPAB1059

PAPAB106PARL102

PAPAB108

PARL302

PAPAB1010

PAPAB1012

PAPAB1014

PAP0GP104

PAPAB1016

PAP0GP106

PAPAB1018

PAP0GP108

PAPAB1020

PAP0GP1010

PAPAB1022

PAPAB1024

PAPAB1026

PAPAB1028

PAPAB1036

PAPAB1038

PAPAB1040

PAU2019

PAPAB1042

PAU2017

PAPAB1044

PAU2015

PAPAB1046

PAU2013

PAPAB1048

PAU109

PAPAB1050

PAU107

PAPAB1052

PAU105

PAPAB1054

PAU103

PAPAB1056

PAPAB1058

PAPAB1060

PAPCD105

PARL602

PAPCD107

PARL402

PAPCD109

PAPCD1011

PAPCD1013

PAPCD1015

PAPCD1017

PAPCD1019

PAPCD1021

PAPCD1023

PAPCD1025

PAPCD1027

PAPCD1029

PAPCD1037

PAPCD1057

PAPCD1059

PAPCD106

PARL702

PAPCD108

PARL502

PAPCD1010

PAPCD1012

PAPCD1014

PAPCD1016

PAPCD1018

PAPCD1020

PAPCD1022

PAPCD1024

PAPCD1026

PAPCD1028

PAPCD1030
PAR2901

PAPCD1038 PAR2801

PAPCD1058

PAPCD1060
PAP106

PAPAB202PAP1010 PAPAB201

PAP108

PAPCD201

PAP104

PAPCD202

PAP102

PAPAB203

PAC2001

PAPB001

PAR2502
PAR2602

PAC2101

PAPB101

PAR102
PAR302

PAC2201

PAPB201
PAR2702PAR2802

PAC2301

PAPB301PAR202

PAR2902

PAD00A PARL001

PAD10A PARL101

PAD20A PARL201

PAD30A PARL301

PAD40APARL401

PAD50APARL501

PAD60APARL601

PAD70APARL701

PAPB401PAPCD102

PAC3801

PALM1117010803

PAPCD101PAPVSUP01PAPAB101 PAPAB102 PAPVSUP02

FIGURE C.8: ZTEX 2.13 base board bottom view.



260 Appendix C. Generic purpose PCBs

FIGURE C.9: ZTEX 2.13 base board bottom 3D view.








	Declaration of Authorship
	Abstract
	Acknowledgements
	I Thesis
	Introduction
	Motivation
	Neuromorphic engineering
	Taking inspiration from the nervous system
	From biology to engineering

	The sense of hearing
	Auditory system in biology
	The ear
	Outer ear
	Middle ear
	Inner ear

	Auditory ascending pathway
	Cochlear nuclei
	Superior Olive
	Inferior colliculus


	Implementations of the auditory system on circuits
	Artificial cochleae
	Lyon's model
	Lyon & Katsiamis' model
	Analog cochleae
	Digital cochleae




	Objectives
	Objectives
	Thesis structure

	Open-source Neuromorphic Auditory Sensor
	Introduction
	OpenNAS tool
	NAS architecture and design flow
	Software architecture
	OpenNAS execution results
	Conclusions

	NASIC
	Motivation
	Base architecture
	NASIC design process
	ASIC validation and characterization

	FPGA vs. ASIC

	Event-based models for the sound source localization task
	Introduction
	Event-based model of the Superior Olivary Complex
	Implementing the Cochlear nucleus
	Implementing the Medial Superior Olive
	Jeffress model implementation overview
	Coincidence detector neuron model
	Delay line model
	ITD extraction network model
	Medial Superior Olive model

	Lateral Superior Olive
	Implementing the Superior Olivary Complex
	Integrating NAS and SOC: The Neuromorphic Auditory Complex
	Analysis and results
	How does the model affect?
	How does the frequency affect?
	How does the distance affect?

	Conclusion

	Alternatives to the Jeffress model: The Time Difference Encoder
	The Time Difference Encoder model
	Time Difference Encoder model implementation
	Gain-generator block
	EPSC-generator block
	Spike-generator block

	Analysis and results
	Simulation
	FPGA implementation

	Real-time neuromorphic application
	Conclusion

	Comparison between both approaches

	Neuromorphic audio applications for robotics
	Introduction
	Motivation and cases of use
	NeuroPod: from audio to locomotion through spiking CPG
	The hexapod robot
	Hardware setup: bi-direction communication between an FPGA and SpiNNaker in real-time
	Spiking Central Pattern Generator
	NeuroPod HDL top module architecture
	Simulation results
	Towards an audio-guided behavior

	Audio-visual sensory integration
	Problem to solve
	Bio-inspired solution
	Optical Flow Encoder Network (OFE)
	Sound Source Direction Network (SSD)
	Sensory Integration Network (SI)

	Hardware setup
	Simulation test and results
	First steps to a closed-loop system

	Neuromorphic implementation of auditory perception in the iCub robotic platform
	The iCub robot
	Hardware integration of the NAC
	Software integration of the NAC
	Implementing an auditory perception application in real-time
	Datasets, tests, and preliminary results


	Is it worth to do the effort?

	Conclusions and future works
	Conclusions
	Future works

	Bibliography

	II Appendices
	OpenNAS software tool
	OpenNAS screens summary
	OpenNAS welcome screen
	OpenNAS common settings screen
	OpenNAS input interface screen
	OpenNAS processing architecture screen
	OpenNAS output interface screen
	OpenNAS destination folder screen
	OpenNAS generation success screen


	NASIC test PCB
	NASIC test PCB files
	Schematic: NASIC_test_pcb.SchDoc
	Board top: NASIC_test_pcb.PcbDoc
	Board bottom: NASIC_test_pcb.PcbDoc


	Generic purpose PCBs
	ADC-PDM microphones board PCB files
	Schematic: ADC_PDM_mic_board.SchDoc
	Board top: ADC_PDM_mic_board.PcbDoc
	Board bottom: ADC_PDM_mic_board.PcbDoc

	ZTEX 2.13 base board PCB files
	Schematic: ZTEX_base_board.SchDoc
	Board top: ZTEX_base_board.PcbDoc
	Board bottom: ZTEX_base_board.PcbDoc




