1,203 research outputs found

    A Conceptual Model of Exploration Wayfinding: An Integrated Theoretical Framework and Computational Methodology

    Get PDF
    This thesis is an attempt to integrate contending cognitive approaches to modeling wayfinding behavior. The primary goal is to create a plausible model for exploration tasks within indoor environments. This conceptual model can be extended for practical applications in the design, planning, and Social sciences. Using empirical evidence a cognitive schema is designed that accounts for perceptual and behavioral preferences in pedestrian navigation. Using this created schema, as a guiding framework, the use of network analysis and space syntax act as a computational methods to simulate human exploration wayfinding in unfamiliar indoor environments. The conceptual model provided is then implemented in two ways. First of which is by updating an existing agent-based modeling software directly. The second means of deploying the model is using a spatial interaction model that distributed visual attraction and movement permeability across a graph-representation of building floor plans

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    Embarking on the Autonomous Journey: A Strikingly Engineered Car Control System Design

    Get PDF
    openThis thesis develops an autonomous car control system with Raspberry Pi. Two predictive models are implemented: a convolutional neural network (CNN) using machine learning and an input-based decision tree model using sensor data. The Raspberry Module controls the car hardware and acquires real-time camera data with OpenCV. A dedicated web server and event stream processor process data in real-time using the trained neural network model, facilitating real-time decision-making. Unity and Meta Quest 2 VR set create the VR interface, while a generic DIY kit from Amazon and Raspberry PI provide the car hardware inputs. This research demonstrates the potential of VR in automotive communication, enhancing autonomous car testing and user experience.This thesis develops an autonomous car control system with Raspberry Pi. Two predictive models are implemented: a convolutional neural network (CNN) using machine learning and an input-based decision tree model using sensor data. The Raspberry Module controls the car hardware and acquires real-time camera data with OpenCV. A dedicated web server and event stream processor process data in real-time using the trained neural network model, facilitating real-time decision-making. Unity and Meta Quest 2 VR set create the VR interface, while a generic DIY kit from Amazon and Raspberry PI provide the car hardware inputs. This research demonstrates the potential of VR in automotive communication, enhancing autonomous car testing and user experience

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    Spatial representation for planning and executing robot behaviors in complex environments

    Get PDF
    Robots are already improving our well-being and productivity in different applications such as industry, health-care and indoor service applications. However, we are still far from developing (and releasing) a fully functional robotic agent that can autonomously survive in tasks that require human-level cognitive capabilities. Robotic systems on the market, in fact, are designed to address specific applications, and can only run pre-defined behaviors to robustly repeat few tasks (e.g., assembling objects parts, vacuum cleaning). They internal representation of the world is usually constrained to the task they are performing, and does not allows for generalization to other scenarios. Unfortunately, such a paradigm only apply to a very limited set of domains, where the environment can be assumed to be static, and its dynamics can be handled before deployment. Additionally, robots configured in this way will eventually fail if their "handcrafted'' representation of the environment does not match the external world. Hence, to enable more sophisticated cognitive skills, we investigate how to design robots to properly represent the environment and behave accordingly. To this end, we formalize a representation of the environment that enhances the robot spatial knowledge to explicitly include a representation of its own actions. Spatial knowledge constitutes the core of the robot understanding of the environment, however it is not sufficient to represent what the robot is capable to do in it. To overcome such a limitation, we formalize SK4R, a spatial knowledge representation for robots which enhances spatial knowledge with a novel and "functional" point of view that explicitly models robot actions. To this end, we exploit the concept of affordances, introduced to express opportunities (actions) that objects offer to an agent. To encode affordances within SK4R, we define the "affordance semantics" of actions that is used to annotate an environment, and to represent to which extent robot actions support goal-oriented behaviors. We demonstrate the benefits of a functional representation of the environment in multiple robotic scenarios that traverse and contribute different research topics relating to: robot knowledge representations, social robotics, multi-robot systems and robot learning and planning. We show how a domain-specific representation, that explicitly encodes affordance semantics, provides the robot with a more concrete understanding of the environment and of the effects that its actions have on it. The goal of our work is to design an agent that will no longer execute an action, because of mere pre-defined routine, rather, it will execute an actions because it "knows'' that the resulting state leads one step closer to success in its task
    corecore