
Spatial Representation for Planning
and Executing Robot Behaviors in

Complex Environments

Francesco Riccio

ID number 1572104

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Engineering in Computer Science
XXX Cycle

Department of Computer, Control,
and Management Engineering
Sapienza University of Rome

Rome, Italy

April 2018

Thesis Advisor
Prof. Daniele Nardi

Co-Advisor
Prof. Barbara Caputo

© 2018 Francesco Riccio
All rights reserved

Thesis not yet defended

Spatial Representation for Planning and Executing Robot Behaviors in Com-
plex Environments
Keywords: Robot Learning, Reinforcement Learning, Policy Improvement, Knowledge
Representation, Decision Making, Spatial Representation
Ph.D. thesis. Sapienza University of Rome

Version: July 20, 2018
Website: https://www.diag.uniroma1.it/∼riccio
Author’s email: riccio@diag.uniroma1.it

https://www.diag.uniroma1.it/$\sim $riccio
mailto:riccio@diag.uniroma1.it

iii

Abstract

Robots are already improving our well-being and productivity in different applica-
tions such as industry, health-care and indoor service applications. However, we
are still far from developing (and releasing) a fully functional robotic agent that
can autonomously survive in tasks that require human-level cognitive capabilities.
Robotic systems on the market, in fact, are designed to address specific applications,
and can only run pre-defined behaviors to robustly repeat few tasks (e.g., assembling
objects parts, vacuum cleaning). They internal representation of the world is usually
constrained to the task they are performing, and does not allows for generalization
to other scenarios. Unfortunately, such a paradigm only apply to a very limited set
of domains, where the environment can be assumed to be static, and its dynamics
can be handled before deployment. Additionally, robots configured in this way will
eventually fail if their “handcrafted” representation of the environment does not
match the external world.

Hence, to enable more sophisticated cognitive skills, we investigate how to design
robots to properly represent the environment and behave accordingly. To this end,
we formalize a representation of the environment that enhances the robot spatial
knowledge to explicitly include a representation of its own actions. Spatial knowledge
constitutes the core of the robot understanding of the environment, however it is
not sufficient to represent what the robot is capable to do in it. To overcome such
a limitation, we formalize SK4R, a spatial knowledge representation for robots
which enhances spatial knowledge with a novel and functional point of view that
explicitly models robot actions. To this end, we exploit the concept of affordances,
introduced to express opportunities (actions) that objects offer to an agent. To
encode affordances within SK4R, we define the affordance semantics of actions that
is used to annotate an environment, and to represent to which extent robot actions
support goal-oriented behaviors.

We demonstrate the benefits of a functional representation of the environment
in multiple robotic scenarios that traverse and contribute different research topics
relating to: robot knowledge representations, social robotics, multi-robot systems
and robot learning and planning. We show how a domain-specific representation,
that explicitly encodes affordance semantics, provides the robot with a more concrete
understanding of the environment and of the effects that its actions have on it. The
goal of our work is to design an agent that will no longer execute an action, because
of mere pre-defined routine, rather, it will execute an actions because it “knows”
that the resulting state leads one step closer to success in its task.

v

Contents

1 Introduction 1
1.1 Motivations . 2

1.1.1 Motivating Example . 2
1.1.2 Role of a Spatial Knowledge Representation 5
1.1.3 Desired Properties of the Representation 5
1.1.4 Desired Robot Capabilities 6

1.2 Contributions . 7
1.3 Thesis Organization and Publications 8

1.3.1 Part I: Preliminaries . 9
1.3.2 Part II: Spatial Knowledge for Robots 9
1.3.3 Part III: Conclusion . 12

I Preliminaries 13

2 Background 15
2.1 Knowledge for Robots . 15
2.2 Spatial Knowledge Representation 20

2.2.1 SK4R Representation Goal 23
2.3 Reasoning and Decision Making . 24

2.3.1 Markov Decision Processes 24
2.3.2 Action-state Value Function 26
2.3.3 Monte-Carlo Tree Search Planning 28
2.3.4 Deep learning . 29

3 Related Work 35
3.1 Knowledge Representation . 35

3.1.1 Spatial Representation in Robotics 35
3.2 Robot Planning and Learning . 38

3.2.1 Multi-Robot Cooperation and Coordination 40
3.3 Contributions to the state-of-the-art 41

II Spatial Knowledge for Robots 45

4 SK4R: Spatial Knowledge for Robots 47
4.1 Spatial Knowledge for Robots . 47

vi Contents

4.1.1 Generating Affordance Semantics 53
4.2 Following Task . 54
4.3 Discussion . 57

5 SK4R for Indoor Robots 61
5.1 Spatial Representation for Indoor Environments 61

5.1.1 Domain-specific Representation for Indoor Scenarios 64
5.2 Implementation of SK4RE for Laser-Range Data 67

5.2.1 Perceptual Layer . 67
5.2.2 Peripersonal Layer . 68
5.2.3 Topological Layer . 68
5.2.4 Semantic Layer . 70
5.2.5 Representing Default Knowledge 71

5.3 Experimental Evaluation . 74
5.3.1 Experimental Setup . 74
5.3.2 Bottom-up Inference . 75
5.3.3 Top-down Inference . 76
5.3.4 Representing Large-Scale Space 77

5.4 Concluding Remarks . 79

6 SK4R for Social Interactions 81
6.1 SK4RE for Social Interactions . 81
6.2 Collaboration Attitude . 82

6.2.1 User Study 1: Proxemics, Gender, Height and Context 83
6.2.2 User Study 2: Human Activity 84
6.2.3 User Study Methodology . 85
6.2.4 User Study 1: Experimental Results 88
6.2.5 User Study 2: Experimental Results 90

6.3 Concluding Remarks . 91

7 SK4R for Multi-Robot Search 95
7.1 Multi-Robot Search for a Moving Target 95
7.2 Distributed Implementation of SK4R 98

7.2.1 Task Assignment . 98
7.2.2 Distributed SK4RE . 98
7.2.3 Implementation of SK4RP – Context System 99

7.3 Application Scenarios . 101
7.3.1 RoboCup Soccer Competitions 101
7.3.2 Indoor Office Scenario . 106

7.4 Concluding Remarks . 109

8 SK4R for Optimistic Planning 111
8.1 Robot Policy Learning . 111
8.2 LoOP: Iterative Learning for Optimistic Planning 114

8.2.1 LoOP . 115
8.2.2 Multi-agent planning . 121

8.3 Optimistic Planning in Robotic Domains 122

Contents vii

8.3.1 Focused Exploration . 123
8.3.2 Policy Generalization . 125
8.3.3 Meta-parameters Evaluation 128
8.3.4 Local Optimization of High-level Behaviors 133

8.4 Concluding Remarks . 135

9 SK4R for Hierarchical Optimistic Planning 137
9.1 Hierarchical Optimistic Planning . 137

9.1.1 h-LoOP . 140
9.1.2 Hierarchical Action Selection 141
9.1.3 h-LoOP Algorithm . 143

9.2 h-LoOP Experimental Evaluation 145
9.2.1 Fetching task . 145
9.2.2 Pick and delivery task . 146

9.3 Concluding Remarks . 148

III Conclusion 151

10 Conclusions 153
10.1 Summary and Contributions . 153
10.2 Open Questions and Future Work . 156

ix

List of Figures

1.1 Scenario of a following task. The robot has to maintain a desired
distance to the target while reacting to external stimuli. 3

1.2 Spatial constraints highlighted to support a correct execution of a
following task. To succeed, the robot has to consider the position of
the person to follow and the arriving point (top-left), obstacles and
objects (top-left) and safety constraints (middle-left). Also, service
robots have to consider social rules such as preferred side of a corridor
and inter-agents proxemics settings (middle-right). At the bottom
the affordance semantics of the following task that is used to satisfy
all the high-level constraints. 4

2.1 Coverage task with a team of aerial robots. The robots are represented
as red dots and their field of view is in yellow. The scenario has been
discretized with a grid-map (black lattice) and the status of the
coverage task is highlighted in gray for cells not visited yet, while
white visited ones. 16

2.2 2D metric map of the Deutsches Museum. 20
2.3 3D point cloud of a church. 21
2.4 Topological map of an indoor office environments. The graph repre-

sents the topology of the building while node colors different areas
(image from [161]). 21

2.5 Semantic map of and indoor office. Objects have been labeled and
anchored in the metric representation of the environment (image
from [33]) . 22

2.6 A hierarchical representation of spatial knowledge in an indoor en-
vironment. The representation spans different layers of abstractions
and highlights relations among objects and places (image from [155]). 23

2.7 Four phases of the Monte-Carlo Tree search algorithm: (1) selection,
(2) expansion, (3) simulation (rollout) and (4) backpropagation. . . . 28

2.8 White squares detector with a handcrafted 2D convolutional filter.
The filter is convolved through the image to detect white squares in
the image. The out put is a distribution over the image highlighting
sections where the filter fired. 30

x List of Figures

2.9 Features detected at different layers of the DNN. Lower layers detect
more simple features of the image (e.g. colors, edges), while top layers
can detect complex features with a significant semantic meaning (e.g.
complete squares). 31

2.10 A visual representation of the DQN used to learn an action policy in
an Atari-2600 game, image from [134]. 32

2.11 The goal is to overlap the filter with one of the squares in the image.
The system can observe the current state (i.e., distance to the target
square), and the reward signal with respect to the current state. . . 32

4.1 A representation for spatial knowledge for robots – SK4R. 50
4.2 A representation for spatial knowledge for robots – SK4R. The repre-

sentation is expanded to highlight its possibility to address complex
task composition and reuse action semantics in different tasks. . . . 51

4.3 SK4R representation for a maze task. 52
4.4 Spatial affordance semantics generate by SK4R to address the maze

task. Each (sub-)figure highlights the output of each individual κ-
function. In order from top to bottom and left to right, actions are
rest, move (forward and backward), left, right, traverse-T-junction,
traverse-dobule-bends. 52

4.5 AS of a following task learned with increasing number of expert
demonstrations. From top to bottom, the figures represent the side
and top view of the model after the first, second and third demonstra-
tion. The target is located at the origin and the plots represent the
probability density function of a pose to afford the task. The plots,
whose coordinates are expressed in meters, show that the model is
able to represent both minimum and maximum distances from the
target, in accordance with the data provided as demonstrations. . . . 55

4.6 Spatial affordance semantics of two κ-functions to satisfy the task
constraints. 56

4.7 Error of the best pose, selected according to the learned model, against
the expert behavior. On the left we report (a) the mean and standard
deviation of relative distance error between the follower and the
target, while on the right (b) the mean and standard deviation of
the relative orientation error are shown. These values have been
obtained by running 20 experiments and incrementally using three
expert demonstrations (arranged on the x-axis). 57

4.8 A representation for spatial knowledge for robots – SK4R. The work-
ing domain of each of the technical chapters is highlighted with
different balloons and colors. References to chapters and related
publications are added to provide a classification of the work of this
thesis. 58

5.1 SK4R environmental module – SK4RE 62

List of Figures xi

5.2 Multi-layered architecture of SK4RE . The perceptual layer integrates
perceptual information from the robot sensors. The peripersonal
layer represents object and landmark information and affordances
in the space immediately surrounding the robot. The topological
layer encodes global topology and coarse geometry and navigation
action affordances. Finally, the semantic layer relates the internal
instance knowledge to human semantic concepts. The four layers are
connected by the probabilistic deep default knowledge model (shaded
purple columns), which provides definitions of generic spatial concepts
and their relations across all levels of abstraction. 63

5.3 Visualization of spatial knowledge represented in the peripersonal
layer for sample places of different semantic categories, expressed as
both Cartesian and polar occupancy grids. 67

5.4 Visualization of generated places and paths on top of the knowledge
in the perceptual layer. The highlighted region corresponds to the
spatial scope of the perceptual representation and displays the value
of the potential φI . The low-resolution lattice is illustrated using
yellow points, and red points indicate the final, optimized locations
of places. Paths highlighted in green afford navigability throughout
the environment. 70

5.5 An SPN for a naive Bayes mixture model P (X1, X2), with three
components over two binary variables. The bottom layer consists
of indicators for each of the two variables. Weights are attached to
inputs of sums. Y1 represents a latent variable marginalized out by
the top sum node. 72

5.6 The structure of the SPN implementing our spatial model. The
bottom images illustrate a robot in an environment and a robocentric
polar grid formed around the robot. The SPN is built on top of the
variables representing the occupancy in the polar grid. 73

5.7 Results of experiments with bottom-up inference: (a) normalized
confusion matrices for semantic place categorization; (b) ROC curves
for novelty detection (inliers are considered positive, while novel
samples are negative). 75

5.8 Prototypical peripersonal representations inferred from semantic place
category. 76

5.9 Examples of completions of peripersonal representations with missing
data grouped by true semantic category. 76

5.10 Contents of the topological and semantic layers after two different runs
over 5-th floor. Gray nodes represent placeholders, while blank nodes
indicate places detected as belonging to novel categories. Colors
indicate recognized semantic place categories: blue for a corridor,
green for a doorway, yellow for a small office, and magenta for a
large office. The two large bottom rooms belong to a novel category:
“meeting room”. 77

xii List of Figures

5.11 Contents of the topological and semantic layers after a single run over
the 7-th floor. Gray nodes represent placeholders, while blank nodes
indicate places detected as belonging to novel categories. Colors
indicate recognized semantic place categories: blue for a corridor,
green for a doorway, yellow for a small office, and magenta for a
large office. The rooms marked with letters A and B belong to novel
categories: “living-room” and “elevator”. 78

6.1 Social factor analyzed to contextualize the social configuration of
the state of the environment. Top to bottom and from left to right,
the factors are “Proxemics Settings”(a), “Gender”(b), “Height”(c),
“Context”(d) and “Activity”(e). 83

6.2 Modified Turtlebot robot. The platform deployed is higher than the
standart version, and features a tablet which is used to carry out
interactions with users. 85

6.3 Collaboration Attitude estimation through questionnaire for the first
User study. Users’answers are highlighted in the figure. 87

6.4 Collaboration Attitude estimation through questionnaire for the sec-
ond User study. Users’answers are highlighted in the figure. 87

6.5 Collaboration Attitude means and standard errors of the first user
study [174] . 88

6.6 Collaboration Attitude analysis of the second user study 90

7.1 SK4R components formalized and implemented to address Multi-
Robot search for a non-adversarial target. 96

7.2 Picture of the Turtlebot, Erratic and Nao robots coordinated with
the proposed approach. 97

7.3 Sketch of our coordination system. The contextual system informs
the team about the current context formalizing the most suitable
strategy. The coordination system coordinates the robots based on
the contextual information: it first updates the local models through
Γ, then reconstructs the distributed world model through f . Finally,
it computes the UEM outputting a mapping from robots to tasks. . 100

7.4 Distributed World Model for the soccer scenario. The model assigns
a score to each cell encoding likelihood to contain the ball (orange in
the picture). 102

7.5 Context hierarchy to model configurations of the environment for a
team of humanoid NAO robots during RoboCup soccer competitions. 103

7.6 Cumulative time during which the ball was not seen in a 10 minutes
game for the two contexts “Throw-In” and “Ball-Lost”. The results
were averaged over 100 runs. 106

7.7 Distributed World Model for the indoor office scenario. 107
7.8 Average time needed to locate the target for the considered algorithms.

The percentages represent the ratio of failed tasks. 108

8.1 SK4R κ-function parameters module – SK4RP 112

List of Figures xiii

8.2 Affordance semantics learned by LoOP in a door-passing scenario
with two humanoids NAO robots. The scheme illustrates how the
algorithm collects direct experience with the environment, runs the
Monte-Carlo search and updates Q-values estimates to generate an
action policy. 113

8.3 Information flow at each iteration of LoOP. The algorithm assumes
an initial state of the environment si which depends on the robot
(orange) and the task to accomplish (green). LoOP (i) evolves the
system, with πi−1, for Troll−in timesteps until state st, in which the
UCTLoOP search is ran; (ii) uses the MC search to generate a set of H
transitions that associates, to each visited state st+h, the action a∗t+h
explored by UCTLoOP; (iii) then, these transitions are (1) aggregated
to the original dataset and (2) used to update the θ parameters of
Φθ. Finally, the policy πi, generated at iteration i, guides the robot
to select an action in the environment and proceed towards task
completion. 116

8.4 UCT execution at a state sh generated by following the policy πi−1
(roll-in). The state is expanded by the algorithm for H iterations.
Admissible actions are selected in accordance with their relative
expected return Q. UCT, then, expands the promising actions by
running a number K of different roll-outs, and selects the best action
a∗h such as a∗h = maxa Q̂(sh, a) + e. 117

8.5 Deep convolutional neural network adopted in LoOP. The network
is implemented within the MXNet environment. 120

8.6 Bird-view (on the left) and top-view (on the right) of fetching task
environment. The figure illustrates the position of the robot (7 DOF
KUKA LBRiiwa arm), the obstacle (plant) and the target position of
the object to fetch (red circle). 124

8.7 Average cumulative reward and number of explored states obtained
by LoOP, DQN, TD-search, random-UCT and vanilla-UCT in 7
iterations in the Kuka fetching scenario. For each of them, the
reward is averaged over 10 runs. The function approximator has been
implemented with DNN. 124

8.8 TEST DONE WITH DNNs. 126
8.9 Affordance semantics distribution over the state-space. 127
8.10 Q-value estimates for all the actions when the “eye contact” social

rule is not respected and viceversa. The red bars corresponds to the
Q-values estimates when the human does not pay attention to the
robot, while the blue in the opposite case. Each action is labeled on
the x-axis while on the y-axis its Q-value estimate. 128

8.11 Environments used in the meta-parameters experimental evaluation
for the two function approximators. 128

8.12 LoOP performance in the door passing scenario. 129
8.13 Q-value estimate for different configurations of the state st for the

blue robot. Actions, selected in accordance with the learned policy,
are marked in yellow while actions with small or zero Q-values are
marked in green and blue respectively. 131

xiv List of Figures

8.14 LoOP performance in the door passing scenario. 132
8.15 Q-value estimate for different configurations of the state st for the

navigation task. Actions with a significant affordance semantics are
marked in yellow, while actions with smallQ-values are marked in green.132

8.16 Example of a full iteration of the Monte Carlo roll-outs: the robot
evaluates all its actions, and selects the best one to maximize Q(st, a).
In this example, the top-left figure shows the world state at a given
time st, and the rollout policy commands the robot to execute the
move-left action. Accordingly, the other sub-figures show the evolu-
tion of the system after each roll-out extending the current policy until
the horizon H = 3. The robot evaluates all the 5 actions: stand (top-
center), move-up (top-right); move-down (bottom-left); move-left
(bottom-center); move-right (bottom-right). In these figures, the
blue arrow represents the chosen action for the current roll-out, while
the purple arrows represent the movements of the robot according to
the current policy. The yellow circle represents the position of the ball.133

8.17 On the right, the normalized average reward of the learner (blue) and
baseline (orange) after different iterations. On the left, the sum of
intercepted ball over five matches. 134

9.1 The κ-function parameters module SK4RP and the κ-functions. . . 138
9.2 h-LoOP generates high-level representations of actions, that are used

to improve the exploration of the search space. In this figure, we show
the action hierarchy generated for a fetching task using a redundant
KUKA light weight arm. 139

9.3 Simplistic example of action clusters generated by h-LoOP. The next
states s′ existing in the complete dataset D0:i (at iteration i) are
agglomerated in a predefined number of clusters. The structure of the
generated hierarchy of states is preserved to define a second hierarchy
H dedicated to actions. In fact, actions a, associated to s′ in D0:i,
are arranged along H by retracing actions of D0:i, whose next states
s′ have been clustered together. 142

9.4 Average cumulative reward and number of explored states obtained
by h-LoOP2L, LoOP, TD-search, random-UCT and vanilla-UCT
in 10 iterations in the Kuka fetching scenario. For each of them, the
reward is averaged over 10 runs. The function approximator has been
implemented with GMMs. 145

9.5 “Pick and delivery” scenario, the environment is composed by 4
working stations, the robot has to collect one item and delivery it to
the operator (blue station). 147

9.6 Average cumulative reward and number of explored states obtained by
LoOP, h-LoOP2L, h-LoOP3L, TD-search, random-UCT and vanilla-
UCT in 10 iterations in the Kuka fetching scenario. For each of them,
the reward is averaged over 50 runs. The function approximator has
been implemented with GMMs. 147

List of Figures xv

10.1 A representation for spatial knowledge for robots – SK4R. The work-
ing domain of each of the technical chapters is highlighted with
different balloons and colors. References to chapters and related
publications are added to provide a classification of the work of this
thesis. 154

xvii

List of Tables

6.1 One-Way ANOVA results . 89
6.2 t-Test: Two-Sample Assuming Equal Variances 90
6.3 Activity: One-Way ANOVA results 91

7.1 Game results of the blue team over 173 runs of a soccer match (i.e.
10 minutes). 106

8.1 The table reports the final scores of five matches after different
MCSDA iterations. 135

xix

List of Algorithms

1 Context-Coordination . 101

2 LoOP . 119
3 LoOP - Cooperative . 122

4 h-LoOP . 144

1

Chapter 1

Introduction

A rtificial agents that are able to autonomously decide what to do, when and
how to do it, is one of the most fascinating and appealing challenges, that

humanity is facing in this century. Researchers in the field of Robotics and Artificial
Intelligence (AI) are pursuing such an ultimate goal by analyzing every aspect of
human psychology, locomotion and cognitive capabilities in order to develop agents
that are able to process information and reach human-level performance.

Robotics and AI have succeeded in multiple scenarios, improving our everyday
well-being and productivity in industry [149], health-care [25] and house keeping [218].
However, in nowadays applications, robots usually rely upon “handcrafted knowledge”
and only show pre-defined behaviors in order to reach a satisfactory compromise
between performance and robustness [190]. We refer to handcrafted knowledge as
concepts and facts explicitly modeled by an expert operator in the robotic platform.
Such a type of knowledge tells the robot about specific concepts restricted to the task,
and does not allow for reasoning beyond the task domain. The industrial scenario
is an exemplar case where handcrafted knowledge is used. In this setting, robots
perfectly repeat a restricted set of tasks, without any “understanding” of what they
are doing. Such a paradigm can only be applied in controlled environments and very
limited domains, where it is possible to foresee every event and operate with pre-
defined routines. Despite the optimal and repeatable behaviors, this paradigm cannot
be adopted on robots deployed in uncontrolled and dynamic environments [154]
(e.g., shared workspace with human beings). Unfortunately, generating human level
cognitive capabilities is not trivial due to an uncountable amount of issues spanning
from perception [231] to natural language understanding [148, 221]. Agents must be
able to represent information in a reusable way, in order to allow reasoning at any
point in time [46]. Humans are able to reuse previous information and overcome new
problems, learn from personal experience, learn from natural language dialogues,
react spontaneously to unexpected stimuli, and reason about others’ intentions and
actions. All these skills are possible thanks to the ability of representing the state of
the external world, store meaningful concepts, and generalize this continuous flow of
information to new situations.

In this thesis, we aim at pushing the current state-of-the-art in cognitive robotics
towards these skills by introducing (1) practical approaches to represent environ-
mental knowledge [155] and (2) novel techniques for decision making and behavior

2 1. Introduction

generation [133]. Our goal, in fact, is to construct a representation of both en-
vironmental and task-related knowledge, which can be easily used to shape robot
behaviors. To this end, we introduce SK4R a spatial knowledge representation
for robots, that is designed to encode high-level concepts and support behavior
execution. Throughout this thesis, we present the SK4R architecture and show
how it can be used to express spatial knowledge on multiple robotic platforms in
various applications. Our aim is to demonstrate that semantic spatial knowledge is
key to improve performance in several scenarios where a robots cannot feature only
“automated” behaviors. Hence, the focus of this thesis consists in demonstrating
that

Spatial knowledge representation is an important feature that robots
must have in order to properly perceive and act in the external world.

To this end, we motivate our approach and highlight the contributions to the
current state-of-the-art of this thesis work. Spatial knowledge in a mobile robot
enables and facilitates successful planning and execution of actions in complex
environments. We specifically focus on scenarios involving large-scale, dynamic,
human environments, such as office buildings and homes [158]. We assume that
a mobile robot is physically capable of sensing the environment using on-board
sensors. This requirement is fundamental for cognitive robots that need to observe
the environment, guarantee autonomous behaviors and update their beliefs while
operating [36].

1.1. Motivations

We motivate our work by (1) discussing the importance of spatial knowledge (with
an example); (2) describing the role that SK4R is expected to play in order to
properly shape robot behaviors; and (3) describing the desired features that a spatial
knowledge representation should have.

1.1.1. Motivating Example
Let us imagine the scenario of a robot with the task to follow a person [92, 171], as
pictured in Figure 1.1. While it may seem rather simple, in order to succeed, the
robot has to account for several environmental features, task-related information and
handle dynamic events. In fact, our actions and position change in accordance with
social relationships (e.g. work hierarchies, parenting, a peer), the number of people
we are following, the location of the task (e.g. corridor, open areas), dynamic events
(e.g. people passing by, obstacles, other robots), time constraints, other people
intents [21]. For a robot, this task is even more difficult due to partial observability
and noise in both the perception and actuation system.

To complete this task, the robot cannot just reason about geometric measurements
and raw sensor data, but it has to abstract its observations and assign to them
a semantic meaning. This allows to relate raw sensor readings to concepts that
characterize the state of the world in a more abstract sense. For example, in order
to support effective decisions, the robot has to feature the possibility to reason

1.1 Motivations 3

Figure 1.1. Scenario of a following task. The robot has to maintain a desired distance to
the target while reacting to external stimuli.

about relative positions of a group of people, rather than pixel values retrieved
directly from the camera sensor. This is usually achieved through a domain-specific
representation of the environment that offers the ability to abstract observations
to high-level concepts – explicitly formulated to support robot decision. The goal
of our representation SK4R is indeed, to provide such a level of understanding
of the environment and let the robot operate in it by reasoning about high-level
concepts, and the effects that its actions have on the environment itself. A possible
solution, to generate a high-level description of the world state, can be achieved
by modeling relevant features individually and merge them altogether within a
unique representation, such as a gridcell map. For example, we can (1) localize
people [24], locate doors and obstacles [7], determine safety distances [132], and
detect objects [167]; and then, (2) use these processed information to annotate
areas of the environment accordingly. Figure 1.2 depicts a possible output of this
solution, where the space is characterized as a gridcell map, and each cell has a score
indicating, to which extent, a given area satisfies the task. The output is a probability
distribution, not only of navigable spaces, but also of areas of the environment that
satisfy the different constraints imposed by the task: position of the person to follow
with respect to the arriving point (Figure 1.2a), obstacles and objects in the scene
(Figure 1.2b) and safety constraints (Figure 1.2c). Also, such a solution can be
used to account for spatial constraints not directly perceivable by the robot such as
preferred side of a corridor, inter-agent proxemics settings and people intentions [21]
(Figure 1.2d). Finally, Figure 1.2e shows the spatial distribution satisfying all the
high-level constraints and that allows the agent to correctly interpret the environment
with respect to its task objective. It is important to remarking that without a spatial
representation encoding these high-level constraints, the robot cannot fulfill the task
requirements and its behavior may result not proper and ineffective. Such a solution
is beneficial for two reasons: firstly it allows to semantic annotation of the space, and
secondly, it provides an explicit representation of how the robot should move within
the environment and select its actions. In contrast, existing spatial representations
do not explicitly relate robot actions to the environment, rather, they address the
problem of knowledge representation and planning separately [232]. In this thesis,

4 1. Introduction

(a) Target and Destination (b) Obstacles and objects

(c) Safety (d) Social rules

(e) Affordance semantics of the following task

Figure 1.2. Spatial constraints highlighted to support a correct execution of a following
task. To succeed, the robot has to consider the position of the person to follow and
the arriving point (top-left), obstacles and objects (top-left) and safety constraints
(middle-left). Also, service robots have to consider social rules such as preferred side of a
corridor and inter-agents proxemics settings (middle-right). At the bottom the affordance
semantics of the following task that is used to satisfy all the high-level constraints.

we demonstrate that explicitly modeling robot actions and spatial knowledge within
the same representation is crucial to enable cognitive robots capabilities. In fact,
we define SK4R as a functional representation of the environment that can be
implemented and used to annotate the environment, and support decision making.

1.1 Motivations 5

1.1.2. Role of a Spatial Knowledge Representation
Referring to the discussion of roles of a knowledge representation in [45] – where
the authors analyze different requirements and features that a representation should
have, and a more specific analysis for spatial knowledge in [157], we expect SK4R
to assume a set of roles for an autonomous robot:

• a substitution (surrogate) of the world that allows the robot to reason about
actions involving parts of the environment beyond its sensory horizon. The
surrogate is intended to represent the belief [91, 201] about the state of the
world and express what the robot can do to accomplish its task. It is a way
of structuring spatial information so that it is computationally feasible to
perform inferences and action planning. It is important to note that such a
representation is inherently imperfect, i.e. it is incomplete (some aspects of
the world are not represented), inaccurate (captured with uncertainty), and
likely to become invalid (e.g. due to the dynamics of the world);

• a definition of relevant aspects of the world, and a specification of the formalism
used to represent and relate them. To this end, the representation defines
the levels of abstraction at which spatial entities (e.g. objects, obstacles, area
topology) exist and the types of relations among them. It is worth noticing
that this significantly affects the ability of the robot to plan and execute
specific actions. Furthermore, the representation does not require to be more
expressive than needed by the robot in order to successfully act. It only has
to represent aspects of the world relevant to characterize the task of the robot,
and to support its actions;

• a medium of communication between the robot and humans. In scenarios
involving human-robot collaboration, spatial knowledge provides a common
ground for communication and knowledge transfer. The representation must
therefore be capable of connecting human spatial concepts to those internal to
the robot.

1.1.3. Desired Properties of the Representation
Having in mind the roles of a representation, practical limitations, and existing
robotic systems [214, 116, 132, 79], we now describe desired properties of a spatial
knowledge representation in realistic dynamic environments. Given the robot sensing,
it is useless to represent the environment as accurately as possible. A very accurate
representation is likely to be intractable and requires a substantial effort to be kept
up-to-date. Moreover, its usability remains constrained by robot capabilities. Hence,
the primary property is that the representation should instead be minimal and the
spatial knowledge should be represented only as accurately as required to support
the functionality of the robot.

Planning is a computationally demanding process and its complexity increases
exponentially with the size of the environment and number of considered spatial enti-
ties. However, due to the way real-world environments are structured and limitations
of robot sensors and actuators, decomposing the planning problem can greatly reduce
its complexity while maintaining highly optimal results. The representation, in fact,

6 1. Introduction

has to be able to provide support for both long-term global plans and short-term
local behaviors [132, 11, 79]. To this end, a spatial representation should perform
knowledge abstraction, characterizing spatial phenomena of gradually increasing
complexity. This leads to an intuitive representation of the continuous space, which
significantly reduces the number of states for planning [81] and provides a basis for
higher-level conceptualization [232].

Representing uncertainty in the belief state is crucial for the robot to make
informed decisions in the real-world, including planning for epistemic actions and
anticipating future uncertainty. In this context, decision-theoretic planning algo-
rithms rely on probabilistic representations of uncertainty, therefore, it is desirable
for a knowledge representation to also have a probabilistic formulation.

Once the spatial representation is formalized, our goal is to design a robotic agent
able to exploit such a representation and deliberate decisions. The agent, in fact,
must be able to acquire new information, update its beliefs and use such a knowledge
to leverage its actions. We consider such a capability to connect perception to actions
as the central focus of our dissertation, and to be typical of “intelligent robots”.

1.1.4. Desired Robot Capabilities
In this section, we sketch how the behavior of an agent is influenced by the type of
knowledge that it owns [74, 196]. The relation between knowledge representation
and actions, is indeed the one that we pursue in this thesis, and that we investigate
through SK4R. Generally, while robotics mainly focuses on motions and perceptions,
the mission of AI is to interpret observations and map them to actions [188], in order
to generate goal-oriented behaviors [11]. In this thesis, we adopt this view and aim
at enabling intelligent behaviors in robotics. Our goal is to provide robots with the
ability to semantically interpret the environment, and with specific abilities that are
needed to overcome everyday challenges and scenarios. We focus on robots that are
expected to handle situations with human-level skills and interpret the world in a
human-compatible manner. Motivated by previous work in the field [46, 56, 232, 93],
we present different skills that we want to analyze and embed in intelligent agents.
A spatial-knowledge aware robot should be able to:

• acquire knowledge during its operation. It is not possible to assume that the
agent can be pre-programmed with all the knowledge that it will need during
its life-time. Hence, instead of attempting to encode this general information,
we have to endow robots with the ability to acquire new knowledge as required;

• reason about experience. This ability is also referred to as “reflection” [22, 131].
It is defined as the ability of the agent to self organize its past experience and
generalize from it to new situations. This is an important skill that enables
the reuse of knowledge and forces the agent to organize it effectively;

• feature multi-modal perception schemes. There is not a single source of
knowledge and we need to enable robots to exploit everything that their
sensors can perceive. A intelligent agent, in fact, has to be able to fuse
information coming from different sources in order to generate a complete
awareness of its surroundings;

1.2 Contributions 7

• anticipate and interpret others actions and intentions in order to cooperate
and coexist. Hence, when planning for its actions, the robot has to both take
into account its objectives and consider other agents;

• interpret the environment in a human compatible manner. This to enable
grounded interactions with humans and other non-homogeneous agents. It
needs to represent the environment and reason at an higher level of abstraction
that allows semantic representation of entities and their relation.

Our aim is to enable effective and practical capabilities through spatial knowledge
and to show that SK4R, indeed, improves the performance of a robotic system in
task execution. Our goal is to contribute in enabling robots to behave in complex
environments and achieve a human-level understanding about the environment and
task related information.

1.2. Contributions
This section describes the main achievements of this thesis and highlights its specific
research contributions:

1. a representation of spatial knowledge designed and implemented to support
decision making for robots. The representation allows the robot to interpret
the environment at different levels of abstraction, thus enabling it to focus on
important aspects of the world and to perform decision-making. Independently
of the scenario of deployment, SK4R allows the robot to deliberate an action
plan by relying on the chosen model to represent the environment;

2. dynamic knowledge acquisition and update based on sensory information. The
SK4R representation enables the robot to gather new knowledge and integrate
it into the current belief of the agent. This is an important feature which
is usually achieved by updating a world model both in the case of explicit
representations (e.g. grid world of the 2D space, semantic maps) and implicit
representations (e.g. neural networks)1;

3. in social robotics, robots have to interpret the social context in which they
operate. We investigate how SK4RE can be used to represent such a context,
and which features of the environment are important to represent in order to
socially interact with humans. To this extent, we frame our contribution within
the paradigm of symbiotic autonomy [183]. We enable SK4R to represent
environmental factors that favor human-robot interactions and contribute to
improve a more natural coexistence.

4. SK4R is a general representation that can be implemented in different robotic
applications. We show-case its effectiveness in different robot coordina-
tion/cooperation task. Multi-robot scenarios are one of the most challenging

1Explicit representations describe the environment through a model which exposes spatial entities
and their features. Implicit representations, conversely, update an internal belief of the environment
which is usually not accessed by external users.

8 1. Introduction

research area in robotics, where behavior learning and decision-making ap-
proaches are often too specific and overfit the application of deployment. In this
setting, we contribute to a generalization of SK4R to the multi-robot scenario,
which enables distributed robot control. We propose a novel representation
that allows for distributed belief update, world modeling and task assignment
in adversarial and cooperative scenarios [179, 175];

5. SK4R enables practical robotic planning applications by attacking the “curse-
of-dimensionality” with a combination of Monte Carlo Tree Search (MCTS)
methods and Q-learning. The curse-of-dimensionality, in fact, is a hard
problem that needs to be tackled every time a decision theoretic algorithm
is employed. Such a problem is contributed by several factors that heavily
influence the complexity of used solutions. Those factors – such as the number
of environmental features (landmarks), their dimensionality, the complexity
of the problem and the structure of the environment – exponentially increase
the dimension of the state-space. To alleviate this problem, SK4R enables
robots to learn directly from the interaction with the environment, as well as
to implicitly represent, and act in it [175, 177]. Our representation allows for
focused exploration of the search space and permits the robot to (1) iteratively
improve its action policy, and (2) generalize to unseen states of the environment;

6. we extend the formalization of SK4R to perform hierarchical optimistic
planning to address task decomposition, and further alleviate the “curse-of-
dimensionality”. To this extent, our contribution borrows the concept of
Hierarchical Task Networks (HTNs) [60] to generate a hierarchy of robot
actions that is used to (1) guide exploration during policy refinement [35], use
reflection [131], (3) and improve robot performance in addressing composite
tasks.

7. SK4R contributes to enable deep learning in robotics applications. Deep
learning shows remarkable results in the field of reinforcement learning with
virtual agents [134]. However, since it requires a significant number of training
samples, it remains challenging in robotics. SK4R contributes in this direction
by introducing a novel technique that combines policy improvement and DNN-
based function approximators in order to allow for generalization and learning
of competitive policies with (i) few training samples and (ii) few iterations of
the learning algorithmic;

1.3. Thesis Organization and Publications

The thesis is organized in three main parts: the preliminary Part I which introduces
the theoretic background, and the related work upon which we build our research.
Part II which describes SK4R as well as its components and applications, and
the final Part III which summarizes the thesis, discusses it and points toward new
research directions. Each part is then organized as follows

1.3 Thesis Organization and Publications 9

1.3.1. Part I: Preliminaries

Chapter 2: Background

The background chapter introduces and describes the basic theoretic concepts and
notions that we rely on throughout this work. The chapter illustrates basic concepts
about knowledge representation and reasoning, with a particular focus on Markov
Decision Processes. Then, it covers the main notions of robot learning and planning,
in the context of reinforcement learning. Finally, the chapter introduces building
the elements of convolutional neural networks and deep learning.

Chapter 3: Related Work

This chapter surveys current state-of-the-art approaches that relate to this thesis.
It presents and categorizes current approaches to spatial knowledge representation
both for single and multi-robot applications. Accordingly, it describes reasoning and
planning methods that exploit such spatial representations. The chapter introduces
state-of-the-art techniques in robot learning and planning, by analyzing their strength
and limitations. Then, it describes recent advances in deep robot learning and
discusses their applicability to robotic scenarios. The chapter details the relation
and connection of the reported literature to SK4R. Part of the approaches reported
in this chapter have been analyzed in published survey papers

• Riccio, F., Lázaro, M.T., Gemignani, G. and Nardi, D., 2015. Multi
Robot Perception and Action: World Modeling and Task Allocation. In RSS
Workshop on Principle of multirobot systems ([178]).

• Bloisi, D.D., Nardi, D., Riccio, F. and Trapani, F., 2016. Context in
robotics and information fusion. In Context-Enhanced Information Fusion (pp.
675-699), Springer ([19]).

1.3.2. Part II: Spatial Knowledge for Robots

Chapter 4: SK4R: Spatial Knowledge for Robots

This aim of this chapter is to introduce SK4R and its components. Its core part is
the description of the adopted spatial representation and the implementation in an
exemplar robotic scenario. The chapter describes the general SK4R representation
along with an evaluation on a people following task. Published papers related to
this chapter are

• Riccio, F., Capobianco, R., Hanheide, M. and Nardi, D., 2016, June.
STAM: A framework for spatio-temporal affordance maps. In International
Workshop on Modelling and Simulation for Autonomous Systems (pp. 271-280),
Springer ([171]).

• Riccio, F., Capobianco, R., Nardi, D., Using Spatio-Temporal Affordances
to Represent Robot Action Semantics, In Machine Learning Methods for High-
Level Cognitive Capabilities in Robotics Workshop@IROS 2016 ([179]).

10 1. Introduction

Chapter 5: SK4R for Indoor Robots

This chapter presents the result of implementing SK4R over an explicit hierarchical
representation. It details the implementation of SK4R in a indoor office environment
by analyzing and evaluating the benefits of SK4R in this complex scenario. Published
papers related to this chapter are

• Pronobis, A., Riccio, F. and Rao, R.P., 2017, June. Deep spatial affor-
dance hierarchy: Spatial knowledge representation for planning in large-scale
environments. In ICAPS 2017 Workshop on Planning and Robotics, Pitts-
burgh, PA, USA ([158]). The paper has been also presented at the RSS 2017
Workshop on Spatial-Semantic Representations in Robotics, Boston, MA, USA
([159]).

Chapter 6: SK4R for Social Interactions

This chapter presents the results of a user-study where SK4R is used to represent
social environmental features. The goal of this contribution is to highlight social
factors that may, or may, not influence social interactions. Published papers related
to this chapter are

• Riccio, F., Vanzo, A., Mirabella, V., Catarci, T. and Nardi, D.,
Enabling Symbiotic Autonomy in Short-Term Interactions: A User Study, In
Social Robotics - 8th International Conference, ICSR 2016, Kansas City, MO,
USA, November 1-3, 2016, Proceedings, Springer International Publishing, vol.
9979, Kansas City, MO, USA, pp. 796-807, 2016 ([174]).

• Vanzo, A., Riccio, F., Sharf, M., Mirabella, V., Catarci, T. and
Nardi, D., Who is Willing to Help Robots? A User Study on Collaboration
Attitude, journal paper submitted, 2018 ([1]).

• Capobianco, R., Gemignani, G., Iocchi, L., Nardi, D., Riccio, F.
and Vanzo, A., 2016, March. Contexts for Symbiotic Autonomy: Semantic
Mapping, Task Teaching and Social Robotics. In AAAI Workshop: Symbiotic
Cognitive Systems ([34]).

Chapter 7: SK4R for Multi-Robot Search

In this chapter, we show the implementation of SK4R in very challenging and
complex scenarios, where a team of robots is involved in a active search for an object.
The chapter describes the proposed approaches and reports the results and benefits
of using SK4R to improve the overall performance of a team of robots in both
(1) a cooperative and adversarial setting and (2) a coordination task in an office
environment. Published papers related to this chapter are

• Riccio, F., Borzi, E., Gemignani, G. and Nardi, D., 2015, July. Context-
based coordination for a multi-robot soccer team. In Robot Soccer World Cup
(pp. 276-289), RoboCup Symposium 2015, Springer ([169]).

1.3 Thesis Organization and Publications 11

• Riccio, F., Borzi, E., Gemignani, G. and Nardi, D., 2016, October.
Multi-robot search for a moving target: Integrating world modeling, task assign-
ment and context. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on (pp. 1879-1886), IEEE ([170]).

Chapter 8: SK4R for Optimistic Planning

This chapter provides a detailed description of a novel approach for robot planning
in the context of reinforcement learning. The chapter discusses the contribution
to the current state-of-the-art and reports an extensive experimental evaluation in
different robotic tasks and environments. Published papers related to this chapter
are

• Riccio, F., Capobianco, R. and Nardi, D., 2016, June. Using monte
carlo search with data aggregation to improve robot soccer policies. In Robot
World Cup (pp. 256-267), RoboCup Symposium 2016, Springer ([173]).

• Riccio, F., Capobianco, R. and Nardi, D., 2016, November. Learning
human-robot handovers through π-STAM: Policy improvement with spatio-
temporal affordance maps. In Humanoid Robots (Humanoids), 2016 IEEE-RAS
16th International Conference on (pp. 857-863), IEEE ([172]).

• Riccio, F., Capobianco, R., Nardi, D. Q-CP: Learning Action Values for
Cooperative Planning, In proceedings of 2018 IEEE International Conference
on Robotics and Automation (ICRA) 2018 ([175]).

• Riccio, F., Capobianco, R., Nardi, D., DOP: Deep Optimistic Planning
with Approximate Value Function Evaluation, In proceedings of the 2018
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS) 2018 ([177]).

• Riccio, F., Capobianco, R., Nardi, D., LoOP: Iterative Learning for
Optimistic Planning on Robots, submitted to journal paper, ([176]).

Chapter 9: SK4R for Hierarchical Optimistic Planning

This chapter extends the formulation presented in Chapter 8 to the case of hierarchical
optimistic planning. It describes the building concepts of the proposed algorithm and
reports an experimental evaluation on two robotic applications. Published papers
related to this chapter are

• Capobianco, R., Riccio, F., Nardi, D., Hi-Val: Iterative Learning of
Hierarchical Value Functions for Policy Generation, In proceedings of 2018
fifteenth International Conference on Intelligent Autonomous Systems IAS-15,
([35]).

12 1. Introduction

1.3.3. Part III: Conclusion

Chapter 10: Conclusions

This chapter concludes the thesis by summarizing it and recalling its main contribu-
tions and achievements. It then discusses the thesis work and criticize its current
limitations to point out towards new research directions.

13

Part I

Preliminaries

15

Chapter 2

Background

D ifferent research studies, in both the fields of Robotics and AI, contribute to the
background and basic notions of our dissertation. We recall common techniques

to represent and encode knowledge into artificial agents, as well as methodologies and
techniques to specifically encode spatial knowledge into robotic systems. The chapter
then describes models of reasoning by focusing on Markov Decision Processes [163]
both for single and multi-agent configuration. Finally, we recall elements of robot
reinforcement learning, Monte-Carlo Tree Search planning and deep learning.

2.1. Knowledge for Robots
It is important to understand which aspects of the world we want to represent, and
what kind of knowledge the agent has to consider in order to efficiently act [13].
Autonomous robots should be aware of three major aspects, that enable reasoning
about (i) the external world of operation, (ii) mission and task-related information
(iii) and internal status of the agent itself. To better understand these three aspects Example
of knowledge, let us consider the scenario in which a team of robots has to complete
a coverage task. This is a widely used task in robotics [80], where a team of robots
has to visit every area of a scenario, and update its belief about the environment.
The coverage task can be implemented to address various applications such as
surveillance [195], search [170] and house-cleaning [218]. To describe a coverage task,
let r = {rj}Rj=0 be the set of R robots, and g = {cg}Gg=0 is the set of G cells in which
the environment has been discretized; Figure 2.1 illustrates the robots (red), their
field of view (yellow), the world representation (black lattice) and the current status
of the task (the gray color represents areas still to be visited). Each cell cg can
be represented by a binary variable being 1 if it has been visited (by at least one
robot), and 0 otherwise. In a basic implementation of the coverage problem, each
cell needs to be visited once, and both dynamics of the world and robot actions are
deterministic.

In this setting, we can highlight the types of knowledge that the team has to
consider to succeed. The teams needs to interpret the environment, detect relevant
features and understand their relations. For example, if the robots are tasked to
cover particular areas, (e.g. bedrooms) then they have to know how to characterize
those areas and their constituting elements (e.g. beds, wardrobe). In other words,

16 2. Background

𝑹𝟎

𝑹𝟏

𝑹𝟐

𝑹𝟑

Figure 2.1. Coverage task with a team of aerial robots. The robots are represented as
red dots and their field of view is in yellow. The scenario has been discretized with a
grid-map (black lattice) and the status of the coverage task is highlighted in gray for
cells not visited yet, while white visited ones.

the robots need to know how to represent important features of the environment
and how to relate them.

Moreover, in order to operate efficiently, the robots need to share and update the
current status of the task: which areas are not visited yet; which agent is assigned to
cover an area; which are the operational constraints and requirements of the mission
(e.g. timing, number of agents, communication overload). This is key to formalize
information related to the ongoing task, and to guarantees an effective and correct
advancement towards its completion.

Each robot has to be able to analyze itself and understand how to behave in
accordance with its internal state (e.g. battery level, malfunctioning). For example,
if a robot is running out of charge, it has to notify the rest of the team. In this way,
the teammates can reassemble their formation and adapt to the new scenario.

These three knowledge perspectives are crucially important for an autonomous
robot and have to considered to enable effective and efficient behaviors. In fact,
this is a well-known categorization of knowledge, introduced in the late ’90s by
Turner [219], which describes contextual knowledge as the sum of environmental,Contextual

knowledge task-related and self-knowledge:

- Environmental knowledge. This kind of contextual information formalizes
data that is environment-dependent and that does not directly depend on the
robot actions. The robot perceives the world through its sensors and it infers
the current status of the scenario (e.g., presence of obstacles or people). In a
navigation system, for example, the robot can tune its parameters depending

2.1 Knowledge for Robots 17

on the terrain conditions. Equivalently, the information about the illumination
conditions can be used to improve the perception or to discern the saliency of
information as related to the task. In the case of a coordinated team of robots
– such as unmanned aerial vehicles (UAVs) [195] – performing a coverage task,
the robots may adapt their navigation parameters according to the detected
conditions of the environment (e.g., terrain type).

- Task-related knowledge. Task-related information is generally defined by
the mission specifications. Depending on the operating conditions and on the
task constraints (e.g., time constraints, priorities, and locations), the robot
adapts its execution plan in order to increase robustness and efficiency. It is
worth noting that the knowledge about a task does not modify its outcome or
requirements, but it is exploited to influence the execution of the task with
the aim of improving the performance. Using the previous example, the team
of robots can accomplish its mission in different modalities by considering: (i)
the current day time; (ii) the location to cover; (iii) the information processed
by teammates; (iv) additional information gathered during the mission (e.g.,
paused teammates or already visited areas).

- Self-knowledge. In this case the robot infers context knowledge by relying
on its own status and on the internal representation of the surrounding envi-
ronment. This type of knowledge is fundamental to provide the robot with
the ability of self analyzing its performance, and dyagnose its components.
In our example, one of the teammates could self recognize a malfunctioning
and communicate its status to the team. Consequently, the team can consider
unreliable the information coming from that particular robot. It is worth
noting that, discarding information coming from a malfunctioning robot can
prevent the system from poor performance, or even to fail in completing the
task (e.g. areas not covered by any teammate).

In accordance with this taxonomy, knowledge can be categorized in three classes
that cover different aspects required by a cognitive robot to demonstrate “awareness”
about environmental, task-related and self- knowledge. Once contextual knowledge is
gathered, a common representation is usually employed to reason about the collected
knowledge. A context representation has to provide a uniform view of the collected Context

representationdata and a robust reasoning process for state estimations, behaviors specialization,
and task execution evaluations. We analyze existing approaches by emphasizing
the differences between representation criteria by grouping them into three classes:
Embedded, Logic, Probabilistic.

Systems using Embedded Context Representation represent context as sets of Embedded
meaningful sensory features that characterize particular situations and trigger par-
ticular routines of the system. Context classification with different sets of features
is used for robots relying on visual perception such as scouting robots, and more
generally, on systems performing visual recognition. Narayanan et al. [138] model
reactive behaviors for a mobile robot according to a set of scenarios – each of which,
consists of traces of visual frames with the respective desired movements. During the
execution of its tasks, the robot scans the environment and tries to build correlations
between the sensed world and the demonstrated scenario frames. Once a correlation

18 2. Background

is established, the current situation is identified and the robot actuators execute the
requested motion law. When image classification (or scene recognition) techniques
are involved, a priori knowledge about the geometrical and visual properties of
known classes of objects can be gathered and used to direct the recognition process
more efficiently [123]. These properties can be encoded explicitly as desired values
for functions representing particular visual features; or implicitly, as collections of
frames displaying the desired features. Similarly, Buch et al. [27] and Costante et al.
[44] exploit specific features in the image reference frame to evaluate the alignment
pose between objects in an image [27], and to define a visual classifier that clusters
a target image with a normalized-cut based approach [44]. In order to increase the
efficiency of the system, a measure of similarity with respect to the other previously
labeled sets of images is computed before the classification step. Here, contextual
information is represented as a set of labeled images, without any further abstraction
about the classes they symbolize.

In some of these systems, causal relationship between current context and con-
sequent behavior is modeled with rules in simple declarative formalisms. In these
cases, the classification is performed through inference rules. These rules mostly
represent fixed geometrical or physical constraints, and are not expanded by any
cognitive learning process. Therefore, this solution can be assumed as a compromise
between strategies based on symbolic knowledge approaches and the methodologies
based on raw sensory data [124].

The most common choice in modeling contextual information is the use ofLogic-based
declarative knowledge representation languages. Logic-based representations range
from rule-based ontologies to first order logic. The main advantage in using such a
representation is that a symbolic framework implicitly provides inference tools, which
supports planning and reasoning. In Laird and Mohan [118] cognitive architectures
integrate sensory data and descriptive knowledge with contextual rules, directly into
the decision making process of the system. The decision procedure aims at modeling
the current symbolic knowledge of the system, named symbolic working memory.
The Symbolic Working Memory communicates to the perception layer and to the
permanent memory modules, and it provides relational representations of recent
sensory data, current goals, and long term memories. Contextual information is
structurally defined within the permanent memory modules.

The challenging problem for this type of architectures is to develop context
modules able to dynamically update and increment their knowledge. Indeed, turning
experience into structured logical assertions requires a high level of abstraction,
which is often difficult to achieve. Logic-based models need an accurate grounding
of semantics into the sensed world. Karapinar and Sariel [99] describe a learning
method for expanding and correcting contextual knowledge in robotics systems.
The authors represent knowledge by means of linear temporal logic formulas, which
allow the system to analyze episodes of failures occurred in past experiences and
to adjust its internal knowledge. Whenever a failure occurs, the system identifies
the related configuration of risks of failures. Therefore, the system learns how to
connect possible failures to a risk of failure scenario, which can anticipate the failure
itself. A system based on formal representation languages can be easily understood
by human operators, which is the main advantage. Nonetheless, these techniques,

2.1 Knowledge for Robots 19

require a high level of abstraction of raw observations. Scalmato et al. [191] exploit
human users to easy this task and provide a system with situation awareness. The
use the human input to represent Concepts in the form of T-Boxes, while contingent
knowledge (A-Boxes) is gathered during operation. This kind of representation
is highly flexible, since a knowledge base building upon representation languages
does not depend neither on the internal structure of the system nor on its domain.
Therefore, it can be shared and adapted in different systems.

A robotic system is affected at all levels by uncertainty in the agent observa- Probabilistic-
basedtion and action execution. Hence, several approaches exploit probabilistic-based

representations (e.g. Bayesian Networks) to address non determinism and dynamic
settings. Witzig et al. [230] describe a collaborative human-robot system that pro-
vides contextual knowledge to enable more effective robotic manipulation. Contexts
are represented by probability density functions, covering task specifications, known
object properties or manipulator poses. The contextual knowledge is then used
to assess the internal Bayesian Network, in order to model the grasp poses of the
manipulator. Differently, Held et al. [82] exploit a probabilistic representation for
object classification. To recognize other cars on the roadway, they allow the system
to estimate the likelihood of membership of a particular element with respect to
each category present in the learning process.

Knowledge representation methods strongly influence the architecture of the
robotic system, and more in particular, reasoning and execution of actions. Indeed,
each approach has its own strengths and weaknesses and multiple approaches can
be combined to improve performance. Logic and probabilistic representations both
supply effective structures for describing characteristics of environments, the former
focusing on the expressiveness of the language and the latter on the reliability of
the estimates. However, logic representations alone are not efficient to scale to huge
state-spaces. On the other hand, a probabilistic encoding lacks descriptive power
for modeling complex environments. Embedded representations, instead, rely on
sub-symbolic structures for an effective mapping between the sensory data in input
and the estimates for the contextual variables, but do not represent knowledge in a
easily interpretable manner.

The research challenge objective in developing knowledge-based systems is, in
fact, to design a framework and a suitable representation able to cover all the benefits
that proposed approaches carry. Accordingly, our goal is to generate a knowledge
representation able to provide a robotic platform with meaningful information and
support action execution. To this end, in robotic settings, spatial knowledge is
mandatory in order to represent and store world observations and reason about
them. Different approaches exists to represent spatial knowledge at different levels
of abstractions, each of which, focused on formalizing particular aspects of the
environments.

In fact, for an autonomous robot, spatial knowledge is the core of a knowledge
representation and its correct formalization is the primary problem to be tackled in
order to enable robots to behave. In fact, depending on its formalization, spatial
knowledge can encode (1) environmental features [70]; (2) task-related informa-
tion [79]; and (3) self-awareness [158]. In line with this perspective, throughout our

20 2. Background

Figure 2.2. 2D metric map of the Deutsches Museum.

work we aim at designing a spatial knowledge representation that details meaningful
aspects of the world which are key to support task execution.

2.2. Spatial Knowledge Representation
Representing the environment as a proxy to encode task-related information and
self-knowledge, is a key issue to develop autonomous robots. In fact, in order to
enable effective planning, the model of the environment is key to reason at different
levels of abstraction: from long-term (more abstract) plans to short-term (more
reactive) local behaviors. Existing techniques represent different aspects of spatial
knowledge that can be arranged over three layers of spatial abstraction: metric,
topologic and semantic.

Within the metric layer, the objective is to represent the environment by means
of its geometry and accurate measurements. The first effort towards autonomyMetric layer
was centered in enabling the agent to represent the space of the environment by
annotating navigable areas. These are usually modeled as grid-maps [76] that are
obtained by relying on the on-board sensors of the robotic platform. A grid-map is
a flexible representation adopted to model the environment as accurate as needed.
Most importantly, it can represent any environment without any assumption on its
structure (see Figure 2.2). More recently, the research in this areas, is focusing on
more complex and accurate representations that allow to model the 3D nature of
the environment. The most common approach is to represent the space as a dense
cloud of points (Figure 2.3) that are able to capture every geometrical aspect of the
environment [193].

These approaches, however, bound the spatial knowledge to geometrical fea-
tures and mainly focus on representing the environment as accurately as possible.
Nonetheless, reasoning at this layer of abstraction is difficult and computationally

2.2 Spatial Knowledge Representation 21

Figure 2.3. 3D point cloud of a church.

Figure 2.4. Topological map of an indoor office environments. The graph represents the
topology of the building while node colors different areas (image from [161]).

expensive. Unfortunately, these representations do not provide any structure to
support decision making. For this reasons, spatial knowledge has been enhanced
to better understand the general topology and structure of the environment – and
express it in a compact manner. This is generally referred to as a topological map
of the space. Topological maps allow to represent the connectivity of areas and Topological layer
their relations (i.e. space topology). Generally, such a representation is built on
top of the metric layer in order to ground areas to sensory observations, Figure 2.4.
Given a metric representation of the environment, a node of the topological map
can be added according to preferred criteria – usually navigability and relevance
– and edges can be added to highlight traversability between nodes [158]. Such a
layer of abstraction encodes sufficient information to accomplish different tasks. For
instance, nodes can be placed to highlight objects locations to address fetching
and finding tasks, and edges can depend on the actual embodiment of the robot in

22 2. Background

Figure 2.5. Semantic map of and indoor office. Objects have been labeled and anchored in
the metric representation of the environment (image from [33])

order to encode the affordability of an action with respect to the platform used –
traversability may vary depending the robot deployed.

Topological maps can be generated offline given a metric map as input [112, 38],
or they can be generated by the robot during exploration [158]. This latter setting
is however more appealing for an autonomous robot. In fact, even though it requires
to simultaneously handle (1) incoming sensory information, (2) determine robot
movements and (3) managing the state of the current topological graph, it allows
to have an adaptable representation of spatial knowledge that can be structured in
order to support the current mission.

This layer provides a better model of the structure of the environment but
still, it remains related to the topology of the space, which mainly supports robot
motions and task-oriented navigation. Hence, to provide a “human-compatible”
understanding of the space, robots need to ground high-level semantic concept to
their sensory observations and annotate spatial knowledge with a more rich meaning.
This is generally referred to as the problem of semantic mapping. The semanticSemantic layer
layer is key to enable robots to operate in human populated environment. It provides
the information needed to understand and interact with humans. Such a layer
is usually used to semantically label spatial entities (e.g. objects) and to express
their attributes and relations. Different approaches provide various solutions to
the semantic mapping problem. For instance, many techniques exploit ontologies
to represent high-level concepts [168, 213]. Generally, these approaches are robust
and reliable, but it is difficult to use them when there is not a complete knowledge
about the environment before robot deployment. Differently, other approaches
automatically discover such semantic properties at running time, either by relying

2.2 Spatial Knowledge Representation 23

Figure 2.6. A hierarchical representation of spatial knowledge in an indoor environment.
The representation spans different layers of abstractions and highlights relations among
objects and places (image from [155]).

upon on-board sensors [18] or by assuming the so-called “man-in-the-loop” [70].
Nevertheless, despite the methodology to acquire new knowledge, such a layer is
generally build on top the metric and topological ones. Thus, even if it provides
human-level understanding of spatial knowledge, the first issue to be tackled is
to ground and anchor semantic concepts back to the lower layers. For example,
Figure 2.5 illustrates the result of back-projecting semantic labels of objects to a
point cloud collected with robot sensors.

2.2.1. SK4R Representation Goal

Our contribution to spatial knowledge representation is to push towards a more
holistic model of the environment, that is able to abstract perceptions into high-
level semantic information, and to ground knowledge directly into the physical
world [15, 161, 79]. Generally, existing frameworks represent the environment on a
hierarchical structure that exposes the level of abstraction where the focus is [49, 155].
The goal, thus, is to build a general purpose multi-layered representation of knowledge
that is expected to be used during mission by the agent. In [155] (see Figure 2.6), for
example, the authors propose a four layers architecture, whose layers can be exploited
to perform navigation, recognition and reasoning about entities and their relations.

24 2. Background

The hierarchy analyzes the raw sensory information on the lower layer which detects
important landmarks and ensure safe navigation. Higher in the hierarchy, the place
and categorical layers support reasoning about object instances and how to navigate
within the environment. Then, the top is represented by the conceptual layer that
associates object instances, attributes and relations to the environment. Such a
layer represent objects relations probabilistically in order to deal with uncertainty
and partial observability. This structure is designed to enable robots to interpret
the environment as humans do, in order to enable similar behaviors. However, the
aim of such a representation is to represent the environment as it is, rather than
modeling spatial knowledge to explicitly support robot actions.

Our approach follows this holistic view of spatial knowledge, but rather than
focusing on modeling every aspect of the environment, we want to achieve a more
compact and practical representation that is specifically designed to support decision
making for robots in complex environments. Hence, as described in Chapter 4, we
define the SK4R representation to demonstrate how an explicit representation of
robot actions can improve performance in accomplishing various tasks.

2.3. Reasoning and Decision Making

An autonomous robot has to interpret the stream of sensory data, update its world
representation, and behave in accordance with its goal specification. To this end,
many researchers focus on the problem of generating complex behaviors by relaying
on the current belief of robot. Often, this is achieved by employing graphical models
for behavior generation. Depending on the problem requirements and environment
characteristics, different models can be used to guarantee system performance. For
example, finite state machines [64] have been largely used to model behaviors in
environment with low uncertainty and relatively small state-spaces. However, in
robotics this is a hard condition to satisfy, and the approach is rather based upon
probabilistic models of reasoning, and lately, with models learned directly from
robot experience. In particular, in the following chapters of this thesis, we rely upon
the theoretical background of a specific graphical model, namely Markov Decision
Processes (MDPs).

2.3.1. Markov Decision Processes

MDPs are a widely used mathematical framework designed to support planning
and decision making. They are used to model processes where each state of the
environment is the result of the dynamics of the environment itself, and the effect
of robot actions. Within such a framework, agents behaviors are represented as a
graph whose nodes are states of the system, and edges denote the agents’ actions.
MDPs exploit an important property referred to as the Markov assumption. Such an
assumption formalizes the next state of the system s′ to depend only on the current
state s and the action a performed by the agent – and not an history of actions
and states. The model is completed by associating to each state and action both a
reward signal r(s, a) and a transition model T . The former is used to quantify the
“goodness” of performing an action a in s, while the latter determines the effects of

2.3 Reasoning and Decision Making 25

applying a in s. Formally, and MDP is a tuple of six elements

MDP = 〈S,A,R, T , γ〉, (2.1)

where:

- S denotes the state space that includes each possible state of the systems s
such as s ∈ S;

- A is the set of discrete actions that includes all the actions a that the robot
can perform such as a ∈ A;

- R(·) ∈ R is the reward function which can be usually implemented in three
configurations depending on the desired reward signal. Namely, the reward
value r (or return) can be computed by considering only the current state
R(s), the current state and the action performed R(s, a) (most common use),
and the complete transition R(s, a, s′) with s′ representing the next state;

- T is the transition model governing the dynamics of the agent environment.
It is usually expressed as a function T : S ×A× S −→ [0, 1] representing the
probability of a given transition to happen;

- γ is the the discount factor taking values in γ ∈ (0, 1].

Moreover, rewards are also Markovian as they do not depend on the history of
states traversed by the agent, and the selection of an action is taken in accordance
with a action policy π, that is represented as a function π : S −→ A mapping states to
actions. In this thesis, we rely on stochastic policies that, given a state s, they generate
the probability distribution over actions in s such that π(a | s) ∈ [0, 1], ∀a ∈ A.
To characterize such a distribution, we let the agent explore its state-space and
to generate a dataset of state-action pairs ζ = (st, at)Tt=0, where T is the timestep
horizon of each episode. Then the cumulative reward collected for each episode it
defined as R(ζ) = ∑T

t=0 γ
tR(st, at) representing the sum of rewards that the agent

collects by executing a sequence of actions. The discounted policy π is then computed
as the function that, given a distribution of states, finds the sequence of actions
that maximizes the expected cumulative reward Eζ∼π[R(ζ)] over T . Accordingly, the
state-value function is formalized to represent this problem as:

V π(st) ≡ rt + γ · rt+1 + γ2 · rt+2 + . . . ≡
∞∑
i=0

γi · ri+1 (2.2)

where r is the reward collected at each visited state and the γ is the discount factor
as previously introduced. The discount factor weights the importance of future
rewards when evaluating the the current state of the system s at time t. Intuitively,
when γ ≈ 1 then future rewards weights equally as the immediate reward while, in
the case γ ≈ 0, only the immediate reward significantly influences the value function
V π at t. The value is used to evaluate the “goodness” of states traversed by the
agent when executing an action policy π. Eq. 2.3, in fact, explicitly expresses the
value function to depend on both the current policy and the transition model of

26 2. Background

the environment. It represents the state-value as the return of the state s and the
expected value of the next state s′ reached by following the policy π:

V π(s) =
∑
a

π(a | s){R(s, a) + γ
∑
s′

T (s, a, s′)V π(s′)} (2.3)

Such equation exposes the action policy and allows us to compute the optimal
action policy as the one that greedily maximizes the state-value function such as

π∗ = arg max
a
{R(s, a) + γ

∑
s′

T (s, a, s′)V π(s′)} (2.4)

2.3.2. Action-state Value Function
The goal of the agent is, therefore, to learn an optimal mapping from states to
actions. This, however, is a very difficult problem because the environment does not
provide state-action pairs 〈s, a〉 to the agent, but rather rewards it with a return
signal of the form rt = R(si, ai). Hence, it is easier to learn a probability distribution
in the joint state-action space and generate an optimal policy from it. To this end,
the Q action-value function is defined so that its value depends on the cumulative
reward obtained by applying action a in a state s and the discounted value of the
next state, such as

Q(s, a) ≡ R(s, a) + γ
∑
s′

T (s, a, s′)V π(s′)

where s′ is the state reached by executing a in s, according to the transition model T .
It is important to notice that the action-value faction has the same form of Eq. 2.4
which, by solving their Bellman optimality equations [207], allows us to express the
value function in terms of the action function as

V ∗(s) = max
a
{R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)} = max
a
{Q∗(s, a)}, (2.5)

Q∗(s, a) =R(s, a) + γ
∑
s′

T (s, a, s′)Q∗(s′, a′) (2.6)

and find the optimal policy by means of the action-value function

π∗ = arg max
a
{Q∗(s, a)} (2.7)

Eq. 2.7 enables the agent to choose among actions and not states. Intuitively, this is
crucially important since the agent cannot decide in which state to be – especially in
stochastic settings – while it can always deliberate which action to perform. In fact,
such an equation makes possible to learn a policy π even if there is no knowledge
about the transition model, and only the reward signal is available.

Partially Observable Markov Decision Process

In countless applications, especially in robotics, it is not possible to fully observe the
true state of the world and the agent needs to behave by considering state-dependent
observations. As an extension of the MDP, Partially Observable Markov Decision

2.3 Reasoning and Decision Making 27

Processes POMDPs are used to model partially observable environments so defined
when a complete knowledge of the state of the world is not available. Similarly to
Eq. 2.1, POMDPs are defined as a 8 element tuple

〈S,A,O,R, T , Z, γ〉, (2.8)

where S,A,R, T , γ are defined as in Eq. 2.1, while O is the set of observations, and
Z is the set of observation dynamics that model the probability of observing o ∈ O
in a given state s ∈ S. It is worth remarking that under the assumptions of partial
observability the agent cannot have a complete understanding of the state of the
environment. Thus this framework needs to exploit the notion of belief state and
belief space. The former is a probability distribution over a set of states b(s), while
the latter is the set of all possible distributions. On the one hand, such a formulation
allows to take into account the error and uncertainty in perceiving the current state
of the world – which is a mandatory in robotic settings. While on the other hand,
the problem to solve is more difficult as the belief space is significantly larger. The
agent updates its beliefs as

b′(s) = ηZ(s, o)
∑
s′

T (s, a, s′)b′(s) (2.9)

where η is the normalization factor, Z(s, o) is the observation update rule and
T (s, a, s′)b′(s) is the action update rule.

Stochastic Multi-agent Games

Throughout this thesis we will present different environments and applications where
more than one robot have to cooperate and coordinate to achieve a common goal.
To this end, we recall the mathematical framework of the stochastic game as an
extension of Markov Decision Processes to the multi-agent scenario. A stochastic
game is a tuple

〈n,S,A1:n,R1:n, T , γ〉 (2.10)

where n is the number of agents, S is the set of states of the environment, Aj
represents the set of discrete actions of agent j, T : S×A×S → [0, 1] is the stochastic
transition function that models the probabilities of transitioning from state s ∈ S
to s′ ∈ S when an action is taken from the joint action space A : A1 × · · · × An,
and Rj : S ×A → R is the reward function of agent i. In this setting, decisions are
represented through agent policies πj , that define the behavior of each agent j by
mapping states to actions. Given a stochastic game, the goal of each agent consists
in finding a policy πj(s) that maximizes its future reward with a discount factor γ,
along the collective cumulative reward of the team. The agents in fact, collectively
attempt to learn a policy that allows to converge to the Nash equilibrium [139]. This
is an important concept whose applicability span different research fields. The Nash
equilibrium is named after John Nash who, in one of his economics study introduces
it as the configuration of the agents strategies such that, each agent has not incentive
to change its policy regardless the actions of the other agents in the environment.

28 2. Background

Selection Expansion Rollout
Back-

propagation

The selection function is
applied recursively until a

leaf node is reached

One or more nodes
are created from the

selected ones

iteration i

Different rollouts are
ran from the

expanded nodes

Each rollout result is
backpropagated

in the tree

Figure 2.7. Four phases of the Monte-Carlo Tree search algorithm: (1) selection, (2)
expansion, (3) simulation (rollout) and (4) backpropagation.

2.3.3. Monte-Carlo Tree Search Planning
Due to the complexity and the dimensionality of various applications, it is not always
possible to address a decision problem by solving the optimality Bellman equation.
For these reasons, several approaches that approximate state-action values with
random sampling have been introduced. Among them, we report the Monte-Carlo
Tree Search (MCTS) methods due to their recent successes in addressing decision
theoretical planning in huge state-spaces [199].

MCTS methods work by iteratively construct a partial search tree whose estimates
are improved after each visit. At each iteration, the algorithm goes through four
phases that expand and evaluate each branch of the search tree. Figure 2.7 illustrates
each of the algorithmic steps which are summarized as

1. Selection. In accordance with a selection policy, the agent decides which
action to execute at each level of the tree, starting from the root until a leaf is
reached.

2. Expansion. Each time a leaf node is reach, the algorithm has to check whether
the leaf represents a terminal state. If it is the case, the algorithm does not
expand that branch any deeper. Conversely, if the leaf is non-terminal then,
it is expanded by evaluating all the actions that can be applied in that state,
and by selecting one of them.

3. Rollout. During this phase, the algorithm follows a rollout policy that evolves
the state of system until a termination condition is met. It is important to
notice that such a policy can be arbitrarily chosen to balance exploration and
exploitation.

4. Backpropagation. When a rollout policy reaches an ending state it is possible
to evaluate the path followed by agent and the set of visited states along with.

2.3 Reasoning and Decision Making 29

This is done by collecting the outcome of the ending state, and propagating
it back to the root by retracing the followed path. To guarantee statistical
significance, the rollout and backpropagation steps can be executed a several
times.

Iteratively, the MCTS algorithm builds a tree that is balanced toward nodes that
backpropagate the best values up to the root. This allows the algorithm to explore
portion of the state-space that are expected to lead towards more rewarding states
and improve exploration [26]. Eventually, the algorithm performance depends upon
how the nodes outcome are evaluated, and how they are propagated throughout the
tree. In this thesis, we exploit a particular MCTS algorithm, the Upper Confidence
Bound for Trees (UCT), that applies the UCB1 rule in the backpropagation phase. UCT algorithm
In detail, the UCB1 rule computes – for each action applicable in a given state –
the lower and the upper bound of expected reward. It is important to notice that,
the UCB1 rule supports optimistic planning [28], since the algorithms only the
actions with the best expected return to be expanded. Every time UCT finishes
the backpropagation phase, it pairs an action to the current state which is used to
update UCB1 values. UCB1 defines the confidence bound strategy [9] by balancing UCB1 update rule
between exploration and exploitation. For each step h ∈ [1, H] of the algorithm, and
until the horizon is met, the algorithm selects the best action a∗ to execute in the
state sh by means of the following equation

E = c ·
√

log∑a n(sh, a)
n(sh, a) (2.11)

a∗h = arg max
a

Q(sh, a) + E (2.12)

where c is a constant controlling the exploration term, n(sh, a) is a function counting
the number of times the action a has been selected in the state sh and Q(sh, a) is
the action value function. Intuitively, the exploration term promotes action that
have been recently evaluated sh while the Q value estimate favors actions that have
backpropagated “good” estimates.

2.3.4. Deep learning
Recent advances in hardware technology have promoted and enabled a broad use
neural networks, whose computational costs were earlier a prohibitive condition
for any application. The improved scenario allowed for the development of a novel
architecture able to capture and use a huge amount of information altogether, the so-
called Convolutional Neural Network (CNN) or Deep Neural Network (DNN). DNNs
represent a major breakthrough that significantly improved the overall performance
of state-of-the-art techniques in the field computer vision and image processing [211,
114]. Lately, DNNs has been adopted in the field of reinforcement learning and
decision making [134], by demonstrating a remarkable improvement in different
applications.

In this thesis, we exploit such a methodology and to generate action policies for
different robotic applications. Thus, the following section recalls and summarizes its
theoretical basis and introduces its formalization to address reinforcement learning
settings.

30 2. Background

(a) Reference image

(b) 2D convolutional filter

2D convolutional
filter

(c) Convolution (d) Convolution output

Figure 2.8. White squares detector with a handcrafted 2D convolutional filter. The filter
is convolved through the image to detect white squares in the image. The out put is a
distribution over the image highlighting sections where the filter fired.

Elements of Deep Neural Networks

CNNs are able to extract information contained in an image and to elaborate features
at different levels of abstraction. CNNs are represented as a hierarchical structure
whose layers perform different mathematical operations on the input image. CNNs
rely upon the concept of convolving a set of 2D filters over the image whose outputs
are stacked and passed out to next layers of the network. To better understandExample
how CNNs process images, let us consider the following example. Imagine that our
goal is to spot white squares in a black image, Figure 2.8a. We can achieve such a
goal, by manually tuning a convolutional 2D filter as in Figure 2.8b – where gray
weights allow for uncertainty in the detection. Then, if we convolve the filter over
the image (Figure 2.8c), we can spot white squares in the image (Figure 2.8d). What
a CNN does is to learn those weights within the filters in a hierarchical manner. In
particular, CNNs encode information with a more abstract meaning as in-depth the
networks grows. For example, if a three layers network is used so solve the square
example, it first leans how to detect simple descriptors at layer 0, such as edges,
corners, plain colors (Figure 2.9a). Then it will use the output of the first layer to

2.3 Reasoning and Decision Making 31

(a) first layer features (b) second layer features (c) third layer features

Figure 2.9. Features detected at different layers of the DNN. Lower layers detect more
simple features of the image (e.g. colors, edges), while top layers can detect complex
features with a significant semantic meaning (e.g. complete squares).

learn, at layer 1, specific spatial relations of descriptors extracted by the previous
layer (e.g. relations among edges and corners, Figure 2.9b). In the last layer, it will
receive these descriptors (corners and edge) and learn spatial relations of those. For
example, as shown in Figure 2.9c, it might learn a filter that fires only when a set
of four descriptors are paired and symmetrically displaced. This particular filter is
highlighted with a blue square in the figure.

CNNs learn these features by analyzing a gigantic amount of data. They grow
in depth to add more and more semantic meaning to features, and to be able to
improve their generalization capabilities. Since CNNs can grow very rapidly, they Structure
are not solely composed of convoltutional layers, but also by pooling and non-linear
activation layers. The former is used to reduce image dimensionality and limit the
number of filters used, as long as the network grows in depth. The latter instead, is
used to model non linearity of the dataset, usually implemented as a ReLu activation
functions. Finally, each CNN terminates with a fully connected layer that performs
the actual classification by receiving as input the output of the last “deep layer”,
which encodes the highest level of semantic knowledge extracted by the network. To Learning
learn the weights of the convolutional filters a backpropagation algorithm is generally
used. The algorithm propagates the gradient error in classification from the output
layer back to the input one, and adjusts weights of the network iteratively.

Deep Reinforcement Learning

Lately, the reinforcement learning community adopted CNNs to deal with pro-
hibitively large state-spaces and solve many complex tasks. It this setting, the first
success of deep reinforcement learning (DRL) is owned by DQN, a deep learning
architecture introduced by Mnih et al. [134], in DeepMind research group 1. The
authors first challenged their approach on different Atari-2600 games (Figure 2.10
illustrates the structure of the network used), and then implemented a CNN to
challenge the human expert of – what is known as – the most difficult game ever

1https://deepmind.com/

https://deepmind.com/

32 2. Background

Figure 2.10. A visual representation of the DQN used to learn an action policy in an
Atari-2600 game, image from [134].

d:

distance to the
goal state

Figure 2.11. The goal is to overlap the filter with one of the squares in the image. The
system can observe the current state (i.e., distance to the target square), and the reward
signal with respect to the current state.

invented by humans, the game of GO. This was a huge achievement where the deep
agent shown, for the first time, the ability to reason about next moves, and not just
to select an action among a set of available ones. In this context, the input of CNNs
as in the image classification scenario, but instead of classifying objects in an image,

2.3 Reasoning and Decision Making 33

their goal is to determine which action to perform in order to maximize a cumulative
reward (Eq. 2.7). To better frame this shift in the objective, let us recall the previous
example of finding the square in an image. This time the error is produced by the
“distance” from the current state to the goal state in the form of a reward signal. For
instance, if the task of the agent is to overlap its reference frame to the square (e.g.
a tracking task), then we can express the distance to the goal state as an Euclidean
distance in the image reference frame, see Figure 2.11. The goal of the agent is to
select an action that maximizes the reward signal by reducing the current distance to
the goal. At learning time, if an action is wrongly chosen then, the error computed
with the reward signal is propagated throughout the network to update the weights
and penalize that action for next learning episodes.

DRL represents one of the most promising techniques that can handle huge
state-spaces and solve complex tasks. However, different research questions still
need to be better understood, and approaches have to be improved in order to
guarantee satisfactory performance in robotic settings. In this thesis, we address
these problems and attempt to push the current research toward the realization of
a framework that can exploit CNNs in a practical way and that enables robots to
take advantage of it.

35

Chapter 3

Related Work

M anifold approaches contribute to the state-of-the-art to advance our understand-
ing in knowledge representation and robot behavior generation. In this chapter,

we analyze existing techniques by discussing their strength and limitations. Sec-
tion 3.1 introduces existing frameworks to knowledge representation for autonomous
robots. Then, Section 3.2 details approaches to behavior generation in the settings
of both robot planning and learning. The section presents recent advances in deep
reinforcement learning and introduces approaches in the field of multi-robot systems,
which represent one of the major target application of this thesis. Finally, Section 3.3
relates our work to existing approaches, motivates our approach and highlights our
contribution to the current state-of-the-art. It is important highlighting that this
chapter serves to provide a global view of the research fields investigated through
our dissertation. Then, for each of the research topics addressed in Part II, each
chapter discusses state-of-the-art approaches more in detail.

3.1. Knowledge Representation

The goal of an effective “representation” is to play a set of roles (Section 1.1.2) to
enable reasoning and action execution. We discuss method considering knowledge rep-
resentation techniques and focus more on holistic frameworks attempting to provide
the robot with general knowledge comprehending different spatial abstractions.

3.1.1. Spatial Representation in Robotics

We recognize the representation of spatial knowledge as one of the primary problem
to tackle when developing a cognitive robot. In fact, these representation (1)
inherently characterize the environment [70], (2) can be designed to encode task-
related information [79], and (3) encode self-awareness [158]. Existing approaches
detail the environment at different levels of spatial abstraction, by exposing important
features (i.e. landmarks) that are key to aid the robot in different tasks. It is
important remarking that different levels of abstraction extract features to support
tasks requiring different cognition skills – spanning from localization to complex
service tasks [38]. We categorize existing approaches to spatial representation in
three major classes with different spatial scope: metric, topological and semantic.

36 3. Related Work

When designing an autonomous mobile robot, the first issue to consider is how toMetric Maps
represent navigable space and obstacles. Intuitively, this problem has been addressed
by proving accurate measurements and geometry of the space. First by engineering
the representation of the space with respect to navigable areas – in a 2D setting –
and then, by enhancing these representations to the 3D nature of the environment.
This to allow the deployment of more complex robots such as aerial ones, and robot
with the ability to manipulate objects. The problem of metrically mapping the
environment and localizing in it, is known Simultaneous Localization and Mapping
(SLAM). The SLAM problem is usually approached using a probabilistic formulation,
due to the different sources of errors present in the sensors used during the map
acquisition process – e.g. distortion errors in the camera sensor [50]. Over the
years, different techniques have been proposed in the framework of Bayesian filtering,
such as Extended Kalman Filters (EKFs), Extended Information Filters (EIFs) and
Particle Filters leading to different kind of maps, from feature-based stochastic maps
to dense maps like occupancy grid maps [216, 10]. To allow real-time execution of
mapping algorithms, several methods rely on the early study of Lu and Milios [126]
to represent the SLAM problem as a graph of spatial relationships between poses
(i.e., nodes) of the complete robot trajectory [96, 117, 193].

A topological spatial representation provides a more direct understanding on theTopological Maps
structure of the environments, it highlights important areas and their connectivity.
Specifically, topological maps provide a more coarse discretization of the continuous
space that alleviates the computational and space demand of approaches employing
metric maps. These maps allows for a more compact representation of spatial
knowledge that can be more easily used to reason about navigation on global paths
and local movements [215]. To generate topological maps, existing techniques rely
upon a metric representation of the environment [122]. Usually, these approaches
extract a Voronoi diagram encoding distance measurements from obstacles, both
in the 2D and 3D settings [20]. However, as recent advances moved the focus on
a more robot-centric point of view, the generation of topological maps is not only
depending on the structure of the map itself, but also on robot perceptions. More
recent approaches, in fact, focus on placing nodes of the graph in accordance with
important landmarks determined from images of the robot camera [65, 222]. An
important advantage of using topological maps is the possibility to bridge abstract
concepts to nodes anchored in the metric world. This allows to support more
complex behaviors and action planning, as well as reasoning about presence of
objects, navigability, unexplored areas of the environment [158]. For example, Chung
et al. [38] present a service robot capable of storing past observations into a pre-
computed topological map in order to answer questions like “Is there pizza in the
kitchen?” and “Is the professor in his office?”. Alternatively, in Zheng et al. [234]
the authors learn the structure of the environment directly from its topology and
robot observation. This allows the robot to generate a suitable representation built
upon direct experience.

However, in order to build a functional robot systems able to operate and shareSemantic Maps
environments designed for humans, we need to provide them with the ability to
represent high-level spatial semantic concepts. This is known as the semantic
mapping problem [113]. The semantic map serves to ground high-level semantic
concepts into robot perceptions. To this end, existing frameworks span several spatial

3.1 Knowledge Representation 37

abstractions [66] to formalize semantic knowledge and generate semantic maps [142].
In literature, two approaches are mainly employed: fully automatic and user supported
map generation. The former solely relies on information extracted from robot sensors.
The latter, also known as human augmented semantic mapping, exploits information
from external users that actively supports the robot in acquiring knowledge about
the environment. Even though the robot is able to autonomously recognize objects,
the user help is exploited in grounding the corresponding symbols [15]. For example,
the work by Zender et al. [232] proposes a system which is able to create conceptual
representations of indoor environments. They consider a robotic platform which
owns a built-in knowledge. In this case, the user role is to support the robot in
place labeling. In [155], a multi-layered semantic mapping algorithm is presented.
The algorithm combines information about the presence of objects and semantic
properties related to the space, such as room size, shape and appearance. Whenever
an user input is provided, it is combined as additional property about existing objects
into the system. Differently, approaches that are explicitly supported by the user
input have to feature multi-modal interaction scheme to conduct the interaction. In
example, Kruijff et al. [115] present a system that aims at improving the mapping
process by clarification dialogues between human and robot using natural language is
introduced. Similarly, Gemignani et al. [70] introduce a system to generate semantic
maps through multi-modal interactions. In this scenario, they use spoken languages
to command the robot, and a vision system to enable the robot to perceive the objects
that the user wants to identify, and label. They formalize the acquired environmental
knowledge for enabling robots to ground high-level motion and navigation commands
to a structured representation of a metric map enriched with user specifications [32].

Affordance-based Representation

Despite the particular spatial scope that the aforementioned representations have,
their goal is to represent the environment in order to be compliant with how
humans perceive space and act in it. However, for an autonomous robot these
representation may result incomplete as they do not explicitly aid action planning.
To “complete” these representations, we assume, and add, a different perspective to
spatial knowledge. Our goal is to encode in a spatial representation what an agent
can do with a spatial entity (e.g. open areas, objects), rather then the entity itself.
In other words, its affordance.

Affordances have been originally defined as action opportunities that objects
offer to agents [73] and, in robotics, they have been adopted to better represent
objects and their related actions. This concept has also been recently extended
to describe environments as a combination of spatial affordances to adapt robot
behaviors. For example, in [59] and [127], the authors use spatial affordances to
support robot movements in a navigation task and to improve the performance of a
tracking system respectively. In Kapadia et al. [97] affordances are used for collision
avoidance, while in Diego and Arras [53] they are used to navigate in crowded areas.
However, these contributions only represent spatial affordances to improve robot
navigation skills. Their approach cannot be generalized to action planning in a more
broad sense nor implemented to support different tasks.

Moreover, the idea of improving robot policies based on object affordances [125,

38 3. Related Work

100], or discovering object affordances given an initial policy [226] has been already
investigated in recent works. For example, in [226] the authors exploit a simple
policy to learn the affordance of an object to be pushed. In [125] and [100], instead,
affordances have been respectively exploited to learn action primitives for the imi-
tation of humans and for autonomous pile manipulation. Still, spatial knowledge
representations in robotic either are focused on a detail representation of the envi-
ronment, or, they are chained to aid the execution of specific target task. Motivated
by this discussion, and by the need of a spatial knowledge representation to support
general action planning, our goal is to design SK4R (Chapter 4) to overcome these
limitations. We formalize SK4R to represent spatial concepts – traversing different
levels of abstraction – along with spatial affordances in order to support general
action planning. This is indeed our goal, we improve the formalization of spatio-
temporal affordances proposed in Riccio et al. [171] in order to support general action
planning [170], and policy improvement in various robotic applications [172, 177].

Akin to our use of affordance representation, Semantic labeling techniques [67]
have the goal of annotating sensor images representing the environment. Usually,
the output of these techniques is a segmented image, in which, each pixel has been
assigned to a given semantic class [110, 42, 236]. For example, in the case of self-
driven cars these classes can be road, building, car, etc. However, these methods are
solely focused on representing spatial entities in the environment, and, they do not
couple the representation of the external world with an explicit representation of
the robot actions. Conversely, such a combined representation is the goal of SK4R
and constitutes one of the main contributions of this thesis.

3.2. Robot Planning and Learning

A large body of work has been developed in the research field of decision making and
behavior generation. The goal is to create an agent able to deliberate the right action
in the right moment in accordance with its current belief of the world. Depending on
the application and the task requirements, different techniques have been proposed
to shape robot behaviors. In our setting, robot policy generation becomes a much
harder problem to deal with, due to uncertainty, partial observability and dynamic
environments [55]. Several works have been proposed that rely upon a probabilistic
model of the robot acting in the environment. For example, Simmons and Koenig
[201] address the problem of indoor corridor navigation by modeling an MDP in
a partially observable setting, while in [202], the authors challenge a small team
of robots, to perform a cooperative exploration by relying on spatial probability
distributions mapped into the environment with the aid of a fine-granularity grid
map. Alternatively, Raza et al. [165] provide a framework to model robot behaviors
with First Order Bayesian Networks in order to deliberate robot decisions in a
cooperative scenario. However, this class of approaches models specific dynamics and
addresses particular robot applications with a “bounded” state-space dimensionality.

For these reasons, Monte-Carlo Tree Search methods [26] have been investigated toMonte-Carlo
Tree Search exploit model-based planning and learning in more complex scenarios [197, 199, 140].

In an exemplar application, Karaman et al. [98] introduce RRT* to improve the
quality of the solution found by standard RRT algorithm in motion planning tasks.

3.2 Robot Planning and Learning 39

In a different setting, Nguyen et al. [140] exploit MCTS to localize sources of sound
and guide the robot throughout the environment. The work by Gelly and Silver
[69] represents the first success in the challenging game of Go. These approaches
have proven to be able to achieve remarkable results in modeling challenging tasks
and perform effective planning [199]. However, MCTS has to visit each node of the
partial search tree a significant number of times in order to iteratively generate action
policies. Unfortunately, in robotics this is not a condition that can be always satisfied.
Especially in large, complex scenarios characterized by a huge state-dimensionality,
e.g. multi-robot scenarios. In fact, even though MCTS methods can be used to
encode prior-knowledge [145, 61], they lack generalization capabilities as they are
not able to relate similar nodes of the search tree.

Reinforcement learning approaches show a much more effective generalization Robot Learning
capability [95] in robotic applications [106, 14]. In this setting, unstructured envi-
ronments and uncertain dynamics [224] are difficult to handle through handcrafted
policies, that typically fail or must be refined [108]. Although designing effective
policies is impractical in most of these scenarios, and learning techniques are typically
demanding and time consuming [106] for problems with large state spaces. The
computational demand can be alleviated by initializing a policy with expert demon-
strations, that restrict the learning process to a promising hypothesis space [185].
For example, Kober and Peters [105] learn a ball-in-a-cup task by first initializing
motion primitives through imitation, and then improving robot policies via episodic
learning. Similarly, Argall et al. [8] take advantage of user tactile feedbacks to
influence the learning process and refine a demonstrated policy. Konidaris et al. [109]
initialize skill trees from human demonstrations, improving them over time through
different learning episodes. Nikolaidis et al. [141] use model-based reinforcement
learning and expert demonstrations to enable robots and humans to collaborate in a
different object manipulation tasks. The robot shapes its policy in accordance with
person characteristics in order to maximize their reward in the collaborative task.
Kim and Pineau [102] propose an inverse reinforcement learning approach to learn
socially-acceptable navigation skills of a robot in human crowds. The goal of their
agent, is not to minimize the traveled distance, rather to increase humans’ comfort
when robot is reaching its destination. In a different scenario, Jun and Kenji [94]
apply policy learning to solve a 2-DOF stand-up task for a robotic arm. They exploit
Q-learning and actor-critic methods to learn both task decompositions and local
trajectories that solve specific sub-tasks. However, also their procedure is not easily
scalable to more complex scenarios. To apply these learning techniques in complex
domains, a large dataset of good-quality expert demonstrations is generally required,
that has to be efficiently mapped to the agent’s action space. Unfortunately, this
is not always possible due to the lack of (1) domain experts, (2) practical ways
of providing demonstrations, and (3) action mappings from experts to agents (e.g.
hyper-redundant robots).

Recent trends in reinforcement learning have shown improved generalization ca- Deep RL
pabilities, by exploiting deep reinforcement learning (DRL) techniques. We recognize
the first remarkable contribution of these techniques in the work of Mnih et al. [134].
The authors use a deep Q-network to learn directly from high-dimensional visual
sensory inputs on Atari 2600 games. Similarly, Silver et al. [200] use deep value
networks and policy networks to respectively evaluate board positions and select

40 3. Related Work

moves to achieve “superhuman” performance in Go. In [135], instead, the authors
execute multiple agents in parallel, on several instances of the same environment,
to learn a variety of tasks using actor-critic with asynchronous gradient descent.
Similar advancements have been shown in the robotics domain. For instance, Levine
et al. [120] represent policies through deep convolutional neural networks, and train
them using a partially observed guided policy search method on real-world ma-
nipulation tasks. Moreover, Rusu et al. [189] use deep learning in simulation, and
propose progressive networks to bridge the reality gap and transfer learned policies
from simulation to the real world. Currently, DRL methods represent the most
promising technique in addressing complex applications with sparse rewards where
state-of-the-art methods have been struggling in the past years. In this thesis, we
exploit deep learning to make the robot able to generalize its behaviors to unseen
and new situations. Unfortunately, planning and learning with deep networks is
computationally demanding as it requires a huge number of heavy simulations.
Hence, in order to apply such a technique to our scenarios, we contribute a novel
approach to address such a limitation, and present a more practical approach in
robotic settings.

3.2.1. Multi-Robot Cooperation and Coordination

When deploying a robot in general purpose applications (especially the ones con-
sidered here, e.g. domestic, industrial, health-care), we cannot assume that it will
not communicate and interact with others – both humans and robots. Moreover,
a carefully engineered cooperation among multiple operating agents has proven to
improve both performance and success guarantees [233, 170]. For this reason, we
consider the investigation of new techniques involving multiple agents to be crucial
for future robot generations. Thus, we consider multi-robot scenarios one of the
major target application of this thesis.

Such applications, however, constitute a complex scenario where multiple robots
may exponentially increase the state space. In this thesis, we often refer to multi-
robot domains as a complex environment, that represents a difficult challenge for
existing techniques. Proposed approaches to Multi-Robot Systems (MRSs) have
been analyzed in different survey papers. For instance, Dudek et al. [57] give a first
taxonomy based on communication and computation aspects. Cao et al. [30] provide
a categorization of multi-robot coordination frameworks. Following, Parker et al.
[147] highlights the issues and research topics related to MRS systems, while Stone
and Veloso [204] discuss the relation of MRSs and machine learning techniques.
In [62] the authors provide a classification of multi-robot approaches focusing on
coordination issues of a MRS, while in [170] the authors highlight differences in
current MRS approaches from a new point of view. They categorize existing work in
accordance with their assumptions on Distributed World Modeling and Distributed
Task Assignment. We refer at distributed world model reconstruction (DWM), when
the focus is on exchanging information that allows for building a global model of
the world that integrates information that cannot be acquired locally by each robot
(e.g. reconstructing a map of the environment). While, we refer at distributed task
allocation (DTA), when the application is focusing on generating and optimizing the
coordination criteria governing the team of robots.

3.3 Contributions to the state-of-the-art 41

Approaches to distributed world modeling, typically rely on a metric representa-
tion of the surrounding scenario. For example, Zhou and Roumeliotis [235] match World modeling
relative reconstructed maps with an EKF-based SLAM approach. Howard [90]
employs particle filters to merge several maps carried out by each unit in the team.
Roumeliotis and Bekey [187] consider a multi-robot localization scenario, where
agents update their world state through mutual detection. Differently, Pereira et al.
[152] exploit a team of robots to perform efficient exploration by representing the
environment as a topological map. Similarly, in [80] the authors accomplish a coop-
erative coverage task by using a stochastic multi-objective optimization algorithm in
an industrial setting.

The problem of distributed task allocation is expressed as the problem of relating
a set of tasks to a set of robots. Many approaches in the literature consider the world Task assignment
model as “given” and suitably represented to run and evaluate the coordination
algorithm. For instance, both in Okamoto et al. [144] and Corrêa [43], the authors
use distributed constraint optimization methods to coordinate a team of robots in
simulated grid world. Different approaches make use of decentralized POMDPs to
accomplish cooperative navigation in simple grid worlds [4, 77], the two agent-tiger
and a box pushing problems [17], and prey vs. predator games [162]. Similarly,
Capitan et al. [31] formalize decentralized POMDP based on auctions in order to
perform cooperative surveillance. Furthermore, Market-based techniques are well
established approaches to optimize coordination algorithms, even without an explicit
formalization of the surrounding world. Dias et al. [51], in fact, enable a team
of robots to bid for a given set of tasks in a fully distributed way without any
representation of the environment of the robots. The team of robots self-organizes
in sub-groups and bids for resources. More recently, Luo et al. [128] introduce an
iterative greedy auction algorithm to allocate task among the team. MacAlpine
et al. [129] adopt market-based utility estimation to coordinate a team of robots in
a cooperative-adversarial scenario. In a similar configuration, [194] adopt a path
planning algorithm to preserve team formation among different teams of robots. The
goal of the teams is to go through each other by maintain their respective formation
and minimizing the risk of being damaged.

Multi-robot scenarios represent a complex environment where to challenge robotic
systems. To this extent, we propose a complete coordination system [170], that
distributively reconstructs the DWM, and adapts the coordination strategy to the
current objective of the team with a DTA approach.

3.3. Contributions to the state-of-the-art

Generating effective robot policies in end-to-end systems is a challenging problem
that requires knowledge and expertise in various research fields. In this work, we aim
at presenting a spatial knowledge representation for robots, SK4R, that is designed to
adhere different important features required to implement an efficient robotic system.

SK4R provides a semantic abstraction of spatial entities to support decision Contribution to
spatial knowledge
representations

making. Many of the existing frameworks do not explicitly support action planning
and focus on a detailed representation of the environment – decoupled from the

42 3. Related Work

robotic agent. We recognize the importance of representing spatial entities at dif-
ferent levels of abstractions [70, 155], and we build on top of existing frameworks
to add a different perspective which exposes spatial affordances of the environment.
Our contribution introduces a more “functional” point of view in representing the
environment. Our work mostly relates to affordance-based representation of the
space [97], however, we enhance proposed architecture by introducing a spatial
representation intended to aid general task formalization and execution.

In multi-robot system (MRS), approaches can be grouped in two classes withContribution to
multi-robot
systems

different scopes: approaches to improve accuracy world modeling & reconstruction
and efficiency in agents behavior coordination. Within the scope of the former, MRSs
are used to improve efficiency in collecting data and modeling the environment where
the robots are operating [187]. This class of MRS applications often is deployed
either with an implicit coordination protocols, or robots perform independent tasks
by neglecting teammates. Within the latter class of MRSs, research contributes in
developing coordination algorithm and optimize the collective coexistence of the
whole system [144]. Conversely, these methods usually assume the world model
to be static and/or fully known to the agents. In this context, we combine a
dynamic distributed world model with a distributed market-based techniques for
role assignment to improve the overall performance of the team. We also rely on
a distributed world model, but we adopt a more abstract representation of the
environment which is adapted according to the robotic application, thus offering a
much lighter and generalizable level of environmental representation. We exploit
such a representation to adapt the coordination system to the current situation
and select the best team strategy. We contribute state-of-the-art approaches by
proposing a flexible framework for robot coordination based upon dynamic and
distributed world modeling. We formalize contextual knowledge through SK4R, in
order to enable robots to recognize configurations of the environment as context and
respond to them adaptively.

In addressing the problem of policy generation in robotics, generalization isContribution to
robot planning typically addressed with function approximators [8] (e.g. gaussian mixture models,

non-linear approximators). However, they do not allow for the use of prior knowledge,
which can be inefficient and lead to dangerous situations. To overcome this issue,
decision theoretical planning techniques, such as Monte-Carlo tree search, have been
used to embed prior knowledge in learning problems. Nevertheless, they show diffi-
culties in relating similar states [69] (i.e. nodes of the search tree). To this extent, we
contribute by proposing a novel methodology that attacks the generalization problem
in policy generation by enhancing the Upper Confidence Tree (UCT) algorithm with
an external action-value function approximator that, is learned over-time and, selects
admissible actions. While the UCT algorithm drives the robot in the exploration of
the state-space, the external action-value function aids UCT in expanding only states
with a significant return. After each UCT iteration, new training samples are used
to update both the UCB1 values of the search tree and action-value estimates. We
contribute by introducing such an algorithm which improves tractability of planning
techniques in robotic settings.

3.3 Contributions to the state-of-the-art 43

Task decomposition and hierarchical planning is key to enable efficient robot Contribution to
robot hierarchical
planning

behaviors. Especially, in complex scenarios, where unpredictabilities and environ-
ment constraints prevent the generation of a satisfactory action policy due to a
large state-space. To tackle this issue, we contribute a novel hierarchical optimistic
planning approach to improve the exploration of the state-space at learning time,
and alleviate the “curse-of-dimensionality”. The proposed approach borrows the
concept of Hierarchical Task Networks (HTNs) [60] to learn, and exploit, high-level
representation of the robot actions, that are used to perform focused exploration
during the expansion phase of the UCT algorithm (see Section 2.3.3 in Chapter 2
for major detail about the UCT algorithm).

As recently proposed methods in the field of DRL show remarkable results, our Contribution to
Deep RLgoal is to favor the implementation of Deep RL techniques in robotic applications [135].

In this setting DRL techniques still have a limited application as they require
considerable number of iterations and a big number of “good” training samples [200].
We propose a method to overcome this issue by means of a focused exploration that
allows the agent to achieve competitive policies since first iterations of the algorithm.
In particular, we combine DNNs with model-based planning techniques – which have
shown the best results in field of robotics [61]. Similarly to existing methods, we
capture the state of the environment as an image which is then used as input of the
DNNs. However, we use those states to also construct a Monte-Carlo search tree
that is used to generate model-based exploration of the state-space.

45

Part II

Spatial Knowledge for Robots

47

Chapter 4

SK4R: Spatial Knowledge for
Robots

A fundamental cognitive skill that robots must have is the ability to interpret
and represent the environment in order react to its stimuli and achieve their

objective(s). However, this is a very complex problem that exploits the efforts of
research communities both in the field of robotics and AI. The theoretical background
of these research areas, as well as, the survey of related work in this thesis, give as an
understanding of promising research directions – that have to be further investigated
– and open our minds to new perspectives in representing the physical world of the
robot. In fact, we assume a novel point of view in robot knowledge representation
that enables effective planning by relying on a functional representation of the robot
environment. Such a representation is designed to explicitly encode robot actions,
support their execution and goal-oriented behaviors. To this end, we present SK4R
by introducing its building concepts and key components (Section 4.1). Section 4.2
illustrates how SK4R can be implemented to learn the spatial representation of
a following tasks and guide a robot in planning next moves. Finally, Section 4.3
analyzes and discusses the benefits of the SK4R representation.

4.1. Spatial Knowledge for Robots
Given a configuration of the environment, robots should have the ability to un-
derstand which actions can be performed and, most importantly, to which extent
they can lead toward task completion. In other words, autonomous robots have
to feature the ability to interpret the scenario also with respect to what it offers,
rather than just what it is. Humans, subconsciously exploit this ability every time
they plan for their actions. For example, a cup can be held differently depending on
whether it is filled or not. Equivalently, in order to walk through a door, we place
ourselves differently depending on (i) where the handle is, (ii) which side the door
opens, (iii) if there is anybody traversing in the opposite direction. We shape our
behavior in accordance with the state of the environment in order to understand
which is the action that allows for task completion and that best supports the
current configuration of the environment. This way of perceiving the external world
gives the possibility to interpret the environment with respect to its functionality

48 4. SK4R: Spatial Knowledge for Robots

rather that just represent its features as static entities.
In literature, this concept has been introduced in a psychological study by Gibson

[73] as the affordance that objects carry with and provide to agents. To quote
Gibson’s work

“The affordances of the environment are what it offers the animal, what it provides
or furnishes, either for good or ill. The verb to afford is found in the dictionary, the
noun affordance is not. I have made it up. I mean by it something that refers to

both the environment and the animal in a way that no existing term does. It implies
the complementarity of the animal and the environment – Gibson,’79.”

In his study, Gibson proposes a new point of view in perceiving objects and the
environments itself. His goal is to describe the environment through functionally
meaningful features that detail the opportunities that it offers to an agent. This
notion has been accordingly adopted in robotics to provide a new representation of
objects and the actions that they enable [103, 111, 146]. However, when considering
the affordances of an environment, methods proposed in literature cannot be directly
applied. Differently from normal objects, the state of the environment is highly
dynamic and contains the state of the robot and other dynamic entities, such as
humans. This inevitably leads to a more complex problem that requires a more
flexible representation to support general action execution. To tackle this problem,
we extend the concept of object affordance, to the case in which the entity to
characterize is the environment itself. The goal is to provide the robot with an
efficient representation that connects actions – and their affordances – directly to
the operational environment. To this end, we exploit spatial knowledge (SK) to
which we refer to as a functional representation of the environment of the robot.
SK, in fact, is used to (i) provide an understanding about important aspects of the
environment and (ii) the definition of particular configurations of it that support
action execution and planning.

In the literature, several approaches address separately the formalization of
accurate environmental representations [70, 115] and the generation of robot behav-
iors [59, 226, 55]. Conversely, by adopting Gibson’s view [73], we assume a novel
point of view in spatial knowledge representation. In fact, we enable the robot to
posses a functional representation of the environment by means of affordances, which
is explicitly intended to support effective planning. The spatial knowledge represen-
tation that we propose is designed to explicitly encode robot actions and support
both their local execution and goal-oriented behaviors. To this end, we present
SK4R, a spatial knowledge representation for robots operating in complex scenarios.
Precisely, the goal of SK4R is two-fold: (1) it has to provide a representation of
meaningful landmarks of the operational environment and (2) explicitly represent
spatial affordances of robot actions in order to support action planning. Such features
are key to the goal of this thesis, and to define SK4R as a representation of spatial
knowledge that can be learned, updated and used by an autonomous agent to modify
its own behavior.

In order for SK4R to feature these capabilities, we design it to collect (as input)
observations from the environment E – or a representation of them – and generate
affordance semantics (AS) of robot actions. Precisely, we define the affordance
semantics of an action a as a representation of the environment, that highlights areas

4.1 Spatial Knowledge for Robots 49

of E affording the execution of a. In general, a representation of an environment
inherently imposes constraints on important features of E. The domain in which
these features take values is referred to the state-space S of E. Then, we define more
formally affordance semantics of a as portions of the state-space S̄ that afford the
execution of a in E. Where S̄ has to necessarily belong to the complete state-space
S of the robot application as S̄ ⊆ S. Throughout this thesis we refer as to AS as
introduced by Definition 4.1:

Definition 4.1. Affodance Semantics (AS) of an action a is defined as areas
of the environment E that support the execution of a. Given a representation of the
state of the environment s ∈ S and S its state-space, AS defines particular values of
s, S̄ ⊆ S, that enable the execution of a and allow for the completion of a task τ .

ASs are designed to annotate the environment and ground spatial knowledge
directly into the workspace of the robot. To this end, we need to define a mapping
that, receiving the current state of environment st at time t, can generate the ASs of
robot actions – or a composition of them. Hence, we define the affordance function
κ, as a function that maps observations about the state of the environment st to
ASs of robot actions. However, in order to let the robot learn, or simply influence,
how affordance functions shape AS in E, we need to expose structural parameters
of these κ-functions that can be used to directly influence their output. We refer to
these fundamental parameters as the κ-function parameters θ ∈ Θ taking value in
the parameters space Θ, which depends of the specific implementation of κ. These
parameters are considered as an input of the κ-functions as their configuration
actively influences the affordance semantics of a robot actions, and their study is an
important contribution of this thesis. We define affordance functions as follows

Definition 4.2. κ is a function

κa,τ : S ×Θ→ ASa,τ . (4.1)

κa,τ depends on the environment E, an action a and a task τt to be performed at
time t. It takes as input a current observation of the state of the environment st ∈ S,
and a set of structural parameters θ ∈ Θ characterizing the function. It outputs a
representation of affordance semantics ASa,τ that evaluates the likelihood of each
area of E to afford a to complete τt in st.

The function κa,τ characterizes affordance semantics by evaluating areas of E
where the tasks τ can be afforded. It generates, at each time t, a spatial distribution
of AS that supports the completion of τ . Throughout this thesis, we often write
κ to intend the general mapping from observation to AS for a given action a and
task τ , κτ to express the AS of the complete task and κa to intend the output of a
function κa,τ related to a particular action a

Figure 4.1 illustrates the SK4R representation. In blue, it highlights the set
of parameters θ while in red, the state of the environment s ∈ S. In green, the
illustration of the κ-functions. Each κa takes as input the state of the environment
and its set of parameters in order to generate an ASa for a particular action a. The
representation composes a series of κa to highlight the individual contribution of an
action to the task completion. Accordingly, the κτ function defining the AS of the

50 4. SK4R: Spatial Knowledge for Robots

κ𝑎0,𝜏(𝑠𝑡, 𝜃)

𝜓
κ𝑎1,𝜏(𝑠𝑡, 𝜃)

κ𝑎𝐴−1,𝜏(𝑠𝑡 , 𝜃)

κ-function
parameters

𝒔𝒕 ∈ 𝑺
…state of E

κ𝜏(𝑠𝑡, 𝜽)

AS𝑎0

AS𝜏
AS𝑎1

AS𝑎𝐴−1

𝜽 ∈𝛩

Figure 4.1. A representation for spatial knowledge for robots – SK4R.

complete task τ , is generated by considering the output of the different κ-functions
unified by means of a function Ψ. The Ψ function, accordingly, assumes as input a
set of ASa, one for each κa function, and generates the ASτ of the complete task that
is expected to satisfy all its constraints and support its execution. The Ψ function
can be chosen according to the specific of the application, nevertheless it has to
ensure a mapping from a set of {ASa}Aa=0 to the affordance semantics in E of the
whole task τ (where A defines the set of actions considered for a robotic platform).

It is important to highlight that we explicitly assume SK4R inputs to be
(sub)modules of the representation as they are subjects of study of this thesis.
Specifically, we refer to the module providing the current state of the environment
as the SK4R environmental module (SK4RE), and to the module maintaining
the parameters of the affordance functions as the κ-function parameters module
(SK4RP). Their implementation – and adaptation to different scenarios – is for-
malized and detailed in following chapters of this dissertation. The study of these
modules is fundamental to our aims. In fact, SK4RE is key to investigate how
to structure the state of the environment and generate effective domain specific
representations. SK4RP , instead, represents the most direct way of influencing the
affordance semantics. By explicitly connecting the generation of AS to structural
parameters of κ-functions (i.e. θ), the agent can use them to learn and update
affordance semantics, and to support the execution of its actions.

An important feature of a κ-agent is the ability to recognize particular states of
the environment, and reuse acquired knowledge to address new, similar and more
complex tasks – in the literature this is known as the ability of the agent to use
“reflection” [22, 131]. We refer as to a κ-agent as an agent (e.g. a robot) that adopts
the SK4R representation.

The modular representation of affordance semantics of SK4R inherently provides
the possibility to do reflection. In fact, each individual κa function can be hierar-

4.1 Spatial Knowledge for Robots 51

𝛩 κ𝑎0,𝜏(𝑠𝑡, 𝜃)

𝜓
κ𝑎1,𝜏(𝑠𝑡, 𝜃)

κ𝑎𝐴−1,𝜏(𝑠𝑡 , 𝜃)

κ-function
parameters

𝑺

…state of E

κ𝜏(𝑠𝑡, 𝜽)

AS𝑎0

AS𝜏
AS𝒂𝟏

AS𝑎𝐴−1

κ𝑎2,𝜏(𝑠𝑡, 𝜃)

𝜓
κ𝑎3,𝜏(𝑠𝑡, 𝜃)

κ𝑎6,𝜏(𝑠𝑡, 𝜃)

…

κ𝑎1(𝑠𝑡 , 𝜽)

AS𝑎2

AS𝑎3

AS𝑎6

AS𝒂𝟏

Figure 4.2. A representation for spatial knowledge for robots – SK4R. The representation
is expanded to highlight its possibility to address complex task composition and reuse
action semantics in different tasks.

chically represented by means of other κ-functions. Figure 4.2 frames this concept
by visualizing the hierarchical representation of SK4R. Note that for each layer of
SK4R the scheme is preserved, being the state representation and the parameters
of the κ-function the inputs of the representation. It is worth remarking that this
structure resembles the representation of Hierarchical Task Networks (HTNs) [60],
where a task is arranged over a hierarchical structure, where, each layer represents
the task at a different level of abstraction. From a more general representation of
the task (top layers) to primitive actions (bottom layers). In HTN, at each layer,
each action can be represented either as an high-level action (a set of primitive
actions and other high-level actions) or a primitive action which enables to address
re-usability and reflection. This property is key to our objectives and allows a
κ-agent to rearrange and reuse κ-functions to generate composite tasks and their

52 4. SK4R: Spatial Knowledge for Robots

κ𝑟𝑒𝑠𝑡(, 𝜃) κ𝑚𝑜𝑣𝑒(, 𝜃)

κ𝑟𝑖𝑔ℎ𝑡(, 𝜃)

κ𝑙𝑒𝑓𝑡(, 𝜃)

κ𝑇−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛(, 𝜃)

κ𝑑𝑜𝑢𝑏𝑙𝑒−𝑏𝑒𝑛𝑑(, 𝜃)

𝜓

𝜓
κ𝑟𝑖𝑔ℎ𝑡(, 𝜃)

κ𝑙𝑒𝑓𝑡(, 𝜃)

𝜓
κ𝑟𝑖𝑔ℎ𝑡(, 𝜃)

κ𝑙𝑒𝑓𝑡(, 𝜃)

(a)

(b) (c)

F

S

Figure 4.3. SK4R representation for a maze task.

rest move right

left T-junction double-bend

κ𝑎:
not-executable

κ𝑎:
executable

κ𝑎,𝑚𝑎𝑧𝑒:
executable

and task-oriented

Figure 4.4. Spatial affordance semantics generate by SK4R to address the maze task.
Each (sub-)figure highlights the output of each individual κ-function. In order from
top to bottom and left to right, actions are rest, move (forward and backward), left,
right, traverse-T-junction, traverse-dobule-bends.

affordance semantics.
To better understand how learned AS can be rearranged through the hierarchy,

let us imagine a κ-agent that has to navigate a maze from Start (S) to Finish (F),
as illustrated in Figure 4.3a. Let us also assume that the set of agent primitives
is composed by motor torques that allow to turn left and right, move forwards
and backwards, and stay still. As shown in Figure 4.3b, the environment features
left and right corners as well as T-junctions and double-bends. Note that each

4.1 Spatial Knowledge for Robots 53

state in Figure 4.3b represents all the states in the scenario where a particular
action can be executed. For example, the state s illustrating a right corner (left
most state in figure) is pointing toward est, but it is used to also represent right
corners pointing to north, south, and west. Equivalently, the other states represent
all the configurations of E where their pattern can be recognized. This example
allows us to highlight how κ-functions can be composed to address more complex
actions. For example, both T-junctions and double-bends configurations can be
addressed by composing the left and right actions. Accordingly, Figure 4.3c shows
how primitives can be composed through the SK4R representation to generate
composite actions and their ASs. The lower layer contains only the left and right
actions that are necessary to compose both the traverse-T-junction (green) and
traverse-dobule-bends (yellow). The top layer, instead, features the complete set
of primitive actions plus the two composite actions generated from the low level.
Such a structure allows to generate more complex actions whose execution can result
to be more effective given the current state of the environment, and thus being a
preferable option. Figure 4.4, conversely, shows the output of the six κ-function
designed for this task. The top row highlights the AS of the rest, move-straight
(forward and backward) and turn-right actions, while the bottom row the AS
of the turn-left, traverse-T-junction andtraverse-dobule-bends. The figure
uses different colors to indicate through the AS where a particular state s of the
environment E (in this case a grid of the maze) supports the execution of an action
a – green if it does blue otherwise. Moreover, the AS supporting the execution
of the navigation task is colored in yellow to explicitly highlight portions of the
state-space where the execution of the action a leads to task completion. Finally, the
κ-agent can exploit ASτ to navigate the environment and perform situated decisions
in accordance to the current state of the task, e.g. whether it is facing a right turn
or a double-bend.

4.1.1. Generating Affordance Semantics

SK4R generates AS a representation of the operational environment that evaluates
E with respect to the current state of the world and encodes areas of E where a
particular task can be afforded. For instance, in the previous example, where the
environment is represented as a grid-map, ASτ encodes in each cell the likelihood of
a given area to afford an action Figure 4.4. Nevertheless, according to Definition 4.2,
the generation of ASτ directly depends on a set of parameters θ that modify how the
κ-functions model the space. Hence, θ constitute the main vehicle to shape spatial
affordance semantics, and need to be carefully “designed” or “learned”. In the first
case, accurate understanding of environment and the task to address is required
to shape the robot behaviors. While this approach is more direct and guarantees
immediate performances in more constrained scenarios, it requires knowledge of
a domain expert and the possibility to pre-schedule events of the environment.
Conversely in the latter case, parameters of the κ-functions can be learned directly
from observation. This is a more challenging scenario for general purpose applications,
but it guarantees that the generated affordance semantics is shaped over the robot
actions and characterized by direct experience with the environment.

The definition of AS and the way in which SK4R generates and exploits them

54 4. SK4R: Spatial Knowledge for Robots

connects to the concept of semantic-driven action selection (SDAS) [3]. However, the
semantic content exploited in existing SDAS techniques is not explicitly represented,
and it remains hidden in latent variables of the system [184]. Moreover, semantic
priors are usually defined before robot deployment and, they are not updated (nor
improved) once given to the system [229]. Instead, SK4R features θ to overcome this
issue and allows the robotic agent to improve semantic representations over-time and
through direct interaction with the environment. Chapter 8 illustrates how affordance
semantics representations (ASs) can be learned and improved during robot operation.
Throughout the following chapters, moreover, we analyze several approaches that
differently implement the SK4R modules as well as various methodologies to design
and learn the parameters of θ the κ-functions.

In order to illustrate the benefits of the SK4RE representation, next section
details its implementation to address a following task (motivated in Chapter 1): an
implementation of a generic κτ function that has to learn the AS of a following task.

4.2. Following Task

Despite the simplicity that it may suggest, a following task is a complex challenge
to tackle where different environmental features have to be taken into consideration.
In robotics such a task is used in different applications such as guidance [93],
escorting [16] and support [83]. To correctly interpret such a task, the research
community focuses on improving the detection of the target [12], or in generating
recovering-behaviors in case of missing target [84], by preserving a safety distance
when target is localized and tracked. In contrast, we propose to shape the robot
behavior through ASτ in accordance with the requirements of the task τ and the
observation of the environment st at time t.

Hence, we perform an analysis of the learned AS to show the ability of SK4R
to generate desired behaviors and influence them in accordance with st. In this
exemplar case, we use expert demonstrations to teach a robot how to correctly
interpret the environment. We evaluate the learned model by implementing the
κfollow function as a regression function, and by reporting the generated spatial
action semantics of the following task ASfollow. Here, we consider two important
aspects to characterize the environment, such as (i) the position of the person to
follow and (ii) risk areas, i.e. areas near obstacles or behind a door. According to
the representation of SK4R and Definition 4.2, we can generate ASfollow as the
composition of two κ-functions. These functions first generate the AS of the two
sub-tasks, namely keep a desired distance from the target and stay away from risk
ares, and then, contribute to the generation of ASfollow by means of the Ψ function.
In this scenario, we choose to implement Ψ as an intersection operator that includes
in ASfollow only portions of E that simultaneously support the two sub-tasks.

We encode in the state st the pose of the target to follow and the position of the
nearest risk area. We use Gaussian Mixture Models (GMMs) and Gaussian Mixture
Regression to represent and implement the function κ. The set of parameters θ of
the function is hence composed as a tuple θ = 〈π1, µ1,Σ1, . . . , πN , µN ,ΣN 〉, where
πi is the prior, µi the mean vector and Σi the covariance matrix of a mixture of N
Gaussians.

4.2 Following Task 55

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 1st demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 2nd demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 3rd demonstration (top view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 1st demonstration (side view)

−2.5m

−2.5m

−1.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 2nd demonstration (side view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 3rd demonstration (side view)

(a) first demonstration (top view).

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 1st demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 2nd demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 3rd demonstration (top view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 1st demonstration (side view)

−2.5m

−2.5m

−1.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 2nd demonstration (side view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 3rd demonstration (side view)

(b) first demonstration (side view).

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 1st demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 2nd demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 3rd demonstration (top view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 1st demonstration (side view)

−2.5m

−2.5m

−1.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 2nd demonstration (side view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 3rd demonstration (side view)

(c) second demonstration (top view).

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 1st demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 2nd demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 3rd demonstration (top view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 1st demonstration (side view)

−2.5m

−2.5m

−1.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 2nd demonstration (side view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 3rd demonstration (side view)

(d) second demonstration (side view).

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 1st demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 2nd demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 3rd demonstration (top view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 1st demonstration (side view)

−2.5m

−2.5m

−1.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 2nd demonstration (side view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 3rd demonstration (side view)

(e) third demonstration (top view).

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 1st demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 2nd demonstration (top view)

−2.5m −1.5m −0.5m 0.5m 1.5m 2.5m

0.5m

0.0m

−0.5m

−1.0m

−1.5m

−2.0m

Affordance model after
 3rd demonstration (top view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 1st demonstration (side view)

−2.5m

−2.5m

−1.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 2nd demonstration (side view)

−2.5m

−1.5m

−0.5m

0.5m0.0m−0.5m−1.0m−1.5m−2.0m

 0

0.001

0.002

 0

Affordance model after
 3rd demonstration (side view)

(f) third demonstration (side view).

Figure 4.5. AS of a following task learned with increasing number of expert demonstrations.
From top to bottom, the figures represent the side and top view of the model after
the first, second and third demonstration. The target is located at the origin and the
plots represent the probability density function of a pose to afford the task. The plots,
whose coordinates are expressed in meters, show that the model is able to represent
both minimum and maximum distances from the target, in accordance with the data
provided as demonstrations.

The θ is learned from demonstration of different experts. To collect expert data
we setup two robots in a simulated environment – one randomly navigates, the
other is controlled by an expert through a joystick and follows the target robot
by always moving between a minimum and maximum distance from it. During
these sessions, the state st, as defined above, is recorded at each time instant

56 4. SK4R: Spatial Knowledge for Robots

Figure 4.6. Spatial affordance semantics of two κ-functions to satisfy the task constraints.

together with the pose 〈xF , yF , αF 〉 of the follower. The collected measurements
are provided as input to the GMM and, by using Expectation Maximization, the
tuple θ = 〈π1, µ1,Σ1, . . . , πN , µN ,ΣN 〉 that best fits the data is determined. In our
experiments, prior to Expectation Maximization, the model has been initialized
with k-means and a set of candidate GMMs has been computed with up to 8
components; the number of components has then been selected to minimize the
Bayesian Information Criterion.

The learned model is used by the follower to determine, through Gaussian
Mixture Regression, areas of E that enable the robot to execute the task and, hence,
to generate ASfollow. In particular, the output of the regression consists of a mean
vector and covariance matrix that enable us to infer the probability distribution
(shown in Figure 4.5) of the follower pose, given the task τ . In this example, the
κ-agent places itself to the desired distance while preserving a safe distance to risk
areas, as required from task specifications. As shown in Figure 4.6, the ASfollow
distribution explicitly captures the desired behavior that we want the robot to
acquire. In fact, the distribution promotes areas that are behind the target to follow,
and penalizes areas right behind a closed door which forbids the robot to navigate
them. The learned model also encodes the preference of the expert demonstrations
to follow a target from behind and on its left side (see Figure 4.5e-f). This is worth
mentioning as it highlights also the possibility to embed prior knowledge into the
design of the κ-function by relying upon social clues.

Finally, we report an analysis of the prediction error of the model generated by
SK4R. To this end, we use expert data collected in three different demonstrations in
an incremental fashion – after each demonstration we append new training examples
to the previous dataset [185]. Then, we generate the model by splitting the dataset
into two distinct parts. One is used to learn the κ-function, while the other is used
to compute the error of the best pose, selected according to the learned model –
against the expert behavior (i.e., the ground-truth). To evaluate our model, we ran
the experiment 20 times. Figure 4.7 shows the mean and standard deviation of the

4.3 Discussion 57

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3

M
ea

n
 (

m
)

Demonstrations

Distance error

0

20

40

60

80

1 2 3

M
ea

n
 (

d
e

g)

Demonstrations

Orientation error

Figure 4.7. Error of the best pose, selected according to the learned model, against the
expert behavior. On the left we report (a) the mean and standard deviation of relative
distance error between the follower and the target, while on the right (b) the mean and
standard deviation of the relative orientation error are shown. These values have been
obtained by running 20 experiments and incrementally using three expert demonstrations
(arranged on the x-axis).

prediction errors of the relative distance Figure 4.7a and orientation Figure 4.7b
between the target and the follower position. It is worth remarking that, as soon
as the model becomes more accurate (Figure 4.5), the prediction errors of both the
distance and orientation decay.

4.3. Discussion

In the context of this thesis, we introduced spatial knowledge and defined affordance
semantics (AS). We base our work upon these two concepts that we use to formalize
SK4R, a novel representation for autonomous robots that are aware of their sur-
roundings from a functional point of view. In fact, we design SK4R to preserve a
canonical representations of the environment (e.g. metric, topological and semantic),
but, we enhance such representations with knowledge about the functionality that
characterizes the environment itself. This is a significant new perspective for an
autonomous robot. In fact, by providing a connection between the environment and
its functionality, spatial knowledge leads to a proper interpretation of it, and thus,
to more efficiency in accomplishing a robotic task. To confirm the ability of SK4R
to capture affordance semantics, we show-cased its implementation in a following
task and validate the learned κ-function in terms of pose accuracy of the following
robot. We set up a simulated environment where human experts could teach the
robot how to correctly interpret the environment when performing a the task. After
training, we let our system infer the best position to be with respect to the target
and risk areas. Results show that (1) the mapping between the space and its AS is
qualitatively valid and (2) the error generated by the use of our model decreases
through the use of a larger number of expert demonstrations.

However, despite the promising results in the following task, different research
aspects are left to be addressed during the description of SK4R. SK4R is intended

58 4. SK4R: Spatial Knowledge for Robots

κ-function
parameters
𝑺𝑲𝟒𝑹𝑷

𝒔𝒕 ∈ 𝑺state of E
𝑺𝑲𝟒𝑹𝑬

κ𝝉(𝒔𝒕, 𝜽)

AS𝑎0

AS𝜏
AS𝑎1

AS𝑎𝐴−1

κ𝑎0,𝜏(𝑠𝑡, 𝜃)

κ𝑎1,𝜏(𝑠𝑡, 𝜃)

κ𝑎𝐴−1,𝜏(𝑠𝑡 , 𝜃)

…
𝜓

𝜽 ∈𝛩

𝑺𝑲𝟒𝑹

Chapter 4
[171, 179]

Chapter 5
[158]

Chapter 6
[1, 34, 174]

Chapter 7
[169, 170]

Chapter 8
[172, 173, 175]
[176, 177]

Chapter 9
[35]

Figure 4.8. A representation for spatial knowledge for robots – SK4R. The working
domain of each of the technical chapters is highlighted with different balloons and colors.
References to chapters and related publications are added to provide a classification of
the work of this thesis.

to be and end-to-end representation to support general action execution. Thus, its
representation allows to traverse different research areas relating to robotics. In fact,
as a result of the analysis and the formalization of our work, we focus our efforts on
the realization of a working implementation of SK4R and its components. To this
end, we face the realization of SK4R by highlight the benefits of a domain-specific
representation capable of supporting action planning. Hence, we recognize the
following set of research questions to be key to the implementation of SK4R:

1. Is it possible to define a domain-specific representation of the environment
that allows the robot to encode affordance semantics at different levels of
abstraction of spatial knowledge?

2. Can we use SK4RE to characterize social configurations of E? Robots operat-
ing in human-populated environments have to feature the ability to represent
features not directly observable through robot sensors. Hence, it is often
necessary to investigate how to formalize such social configurations.

3. The robot behavior is actively adapted to the state of E, however, is it

4.3 Discussion 59

possible that the robot behavior influences how the state of the environment is
generated? How can such a mutual dependency be implemented in a robotic
system? Is it possible, for the robotic system, to feature an active interaction
of the SK4RE and SK4RP components?

4. Given a representation of the state of the environment, can the robot improve
its behavior over-time? In other words, is it possible to update (or learn) θ
parameters to improve the expressiveness of the AS representations?

5. We illustrated how SK4R can hierarchical define κ-functions to address reflec-
tion [131]. This lead us to investigate whether it is possible to learn hierarchies
of κ-functions to support task decomposition by reusing ASs of primitive
actions?

Each of the following chapters takes over one of these questions, and thus, it
focuses on a particular research aspect related to the implementation of SK4R.
Figure 4.8 associates each chapter – thus each of the previous questions – to its
working domain within the SK4R representation. Additionally, the figure also
highlights our individual contributions related to each chapter. Note that the
interaction among SK4RE and the κ-functions excludes the SK4RP module. Thus,
we consider that interaction to be out of the scope of this dissertation. In fact, without
the θ parameters the robot is not able to influence affordance semantics. Conversely,
the study of the κ-functions can be interesting to understand the scalability of
SK4R to different numbers of affordance functions and/or size of the state-space
of the robot application. However, while we consider such a problem to be worth
investigating, it is not key to a first formalization of SK4R. Hence, we remind its
study to future work.

Nevertheless, despite the different research questions addressed by each chap-
ter, our mission is to demonstrate the flexibility of SK4R in various and different
applications. In fact, each of the following applications implement both the environ-
mental module and the κ-function parameters module depending on the scenario
requirements. Our goal is to demonstrate that an accurate connection between
spatial knowledge and robot actions can improve the efficiency of a robotic system,
and thus, push the current state-of-the-art towards more sophisticated skills for
autonomous robots.

61

Chapter 5

SK4R for Indoor Robots

I n this chapter, we investigate how to define a domain-specific state representations
that allows to encode affordance semantics at different levels of spatial knowledge

abstraction. An efficient state representation is a fundamental component for an
autonomous robot to enable planning in unstructured human environments. In
case of mobile robots, moreover, spatial knowledge that constitutes the core of
the state, and directly affects the performance of the planning algorithm. In this
chapter, we describe a spatial hierarchy to formalize the environmental module
of SK4R (SK4RE), which is used to provide the robot with the state of the
environment st ∈ S. In particular, we propose, a probabilistic representation
of spatial knowledge, spanning multiple levels of abstraction from geometry and
appearance to semantics, and leveraging a deep model of generic spatial concepts.
We design the implementation of SK4RE in order to represent space from the
perspective of a mobile robot executing complex behaviors in the environment. In
Section 5.1 we explain the principles behind this domain-specific implementation
for indoor robots, and present its initial realization for a robot equipped with
laser-range sensor (Section 5.2). Finally, Section 5.3 validates our implementation
and demonstrates that SK4RE successfully builds a representation of large-scale
environments, and leverages the deep model of generic spatial concepts to infer latent
and missing information at all abstraction levels. 1

5.1. Spatial Representation for Indoor Environments

Recent advancements in robotics have been driven by the ultimate goal of creating
artificial agents able to perform service tasks in real environments in collaboration
with humans [11, 79]. While significant progress has been made in the area of
robot control, also thanks to the success of deep learning [120], we are still far
from solving more complex scenarios that require forming plans spanning over large
spatio-temporal horizons.

In such scenarios, domain-specific state representations play a crucial role in
determining the capabilities of the agent and the tractability of the solution of

1The work contained in this chapter has been subject of study during my visiting period abroad
at the University of Washington, Seattle (WA), USA.

62 5. SK4R for Indoor Robots

𝒔𝒕 ∈ 𝑺

κ𝜏(𝑠𝑡, 𝜽)

AS𝜏

𝜽 ∈𝛩

κ-function
parameters
𝑺𝑲𝟒𝑹𝑷

state of E
𝑺𝑲𝟒𝑹𝑬

κ𝑎0,𝜏(𝑠𝑡, 𝜃)

𝜓
κ𝑎1,𝜏(𝑠𝑡, 𝜃)

κ𝑎𝐴−1,𝜏(𝑠𝑡 , 𝜃)

…

AS𝑎0

AS𝑎1

AS𝑎𝐴−1

Figure 5.1. SK4R environmental module – SK4RE .

planning algorithm. In fact, in case of mobile robots operating in large-scale environ-
ments, the way in which spatial knowledge is represented directly affects the actions
the robot can plan for, the performance of the planning algorithm, and ultimately,
the ability of the robot to successfully reach the goal. For complex tasks involving
interaction with humans, the relevant spatial knowledge spans multiple levels of
abstraction and spatial resolutions, including detailed geometry and appearance,
global environment structure, and high-level semantic concepts. Representing such
knowledge is a difficult task given uncertainty and partial observability governing
real applications in human environments.

We propose a domain-specific implementation of SK4RE for an autonomous
robot operating in an indoor scenario. Figure 5.1 recalls the overall SK4R scheme and
highlights (in red) the subject of study of this chapter – SK4RE . In detail, we propose
a probabilistic representation of spatial knowledge designed to provide practical
access to the world state st ∈ S and to facilitate planning and execution of complex
behaviors. Thus, SK4RE encodes the belief about the state of the world. However,
more importantly, it also provides the feature to store and maintain information
about spatial affordances. It does so by leveraging a hierarchy of sub-representations
(layers) where, each layer, represents multiple spatial knowledge abstractions (from
geometry and appearance to semantic concepts), using different spatial resolutions
(from voxels to places), frames of reference (allo- or ego-centric), and spatial scopes
(from local to global). The goal is to represent the environment – in accordance
with Definition 4.1 – in a way that directly corresponds to how it will be utilized
by the robot and its planning algorithms. The complete representation of SK4RE

for indoor autonomous robots is illustrated in Figure 5.2. Specifically, SK4RE for
indoor large environments is arrange on a four layers architecture. The perceptual
layer is the lower layer of the representation and elaborates sensors readings. The
peripersonal layer represents spatial landmark information and affordances in the
space immediately surrounding the robot. The topological layer builds upon the
previous two layers and is used to represent global topology of the environment and
navigation-related affordance semantics. Finally, the semantic layer relates instance
knowledge, processed through the lower layers, to human semantic concepts. Finally,
the four layers communicate by means of the probabilistic deep default knowledge
model (shaded purple columns), which provides definitions of generic spatial concepts

5.1 Spatial Representation for Indoor Environments 63

Semantic

Topological

Peripersonal

Perceptual

Figure 5.2. Multi-layered architecture of SK4RE . The perceptual layer integrates per-
ceptual information from the robot sensors. The peripersonal layer represents object
and landmark information and affordances in the space immediately surrounding the
robot. The topological layer encodes global topology and coarse geometry and navigation
action affordances. Finally, the semantic layer relates the internal instance knowledge
to human semantic concepts. The four layers are connected by the probabilistic deep
default knowledge model (shaded purple columns), which provides definitions of generic
spatial concepts and their relations across all levels of abstraction.

and their relations across all levels of abstraction.
SK4RE comprises both instance knowledge – knowledge about a specific environ-

ment (e.g. there are two tables in this kitchen) – as well as, default knowledge about
generic human environments (e.g. the kitchen is used to cook food). The latter is

64 5. SK4R for Indoor Robots

modeled using a recently proposed Deep Generative Spatial Model (DGSM) [160].
Specifically, DGSM leverages recent developments in deep learning, by providing
fully probabilistic, generative model of spatial concepts learned directly from raw
sensory data. DGSM connects the layers of our representation, enabling upwards and
downwards inferences about spatial concepts defined at different levels of abstraction.
For example, in the following sections, we show-case how the DGSM connects the
different layers of SK4RE to infer the room type of a large indoor environments
directly from sensor readings. Vice versa, we also show how such a connection is
bi-directional and can be used to infer missing information from semantic labels
of objects. In fact, such an implementation of SK4RE is designed to explicitly
represent and fill gaps in spatial knowledge due to uncertainty, unknown concepts,
missing observations or unexplored space. This brings the possibility of using the
representation in open-world scenarios, involving active exploration and learning.

In this chapter, we first describe the general architecture of the SK4RE and
present a realization of it for a mobile robot equipped with a laser range sensor. We
then perform a series of experiments demonstrating the ability of the representation to
perform different types of inferences, including bottom-up inferences about semantic
spatial concepts and top-down inferences about geometry of the environment. We
showcase its ability to build semantic representations of large-scale environments
(e.g. floors of an office building).

5.1.1. Domain-specific Representation for Indoor Scenarios
Figure 5.2 illustrates the general overview of the SK4RE architecture. It represents
the robot environment using four sub-representations (layers) focusing on different
aspects of the world, encoding knowledge at different levels of abstraction and spatial
resolutions as well as in different frames of reference of different spatial scope. The
characteristics of the layers were chosen to simultaneously support both action
planning and spatial understanding for the purpose of localization and human-robot
interaction. In particular, the former objective is realized by directly encode spatial
affordances.

SK4RE is organized as a hierarchy of spatial concepts, with higher-level layers
providing a coarse, global representation comprised of more abstract symbols, and
lower-level layers providing a more fine-grained representation of parts of the envi-
ronment anchored to the higher-level entities. The layers are connected by a crucial
component of the representation, the probabilistic deep default knowledge model
(highlighted in purple in Figure 5.2), which provides definitions of generic spatial
concepts and their relations across all levels of abstraction. The aim of SK4RE

is to provide a practical representation of the world state that can be exploited
to support robot operation. Therefore, it is worth highlighting that the hierarchy
directly relates to a similar, hierarchical decomposition of the planning problem.
A global planner can derive a navigation plan relying only on the top layers for
representing its beliefs, a local planner can be used to plan specific manipulation
actions using intermediate layers, with a controller realizing them base on knowledge
in the lowest-level representation. Following a description of each component of
SK4RE :

• Perceptual Layer. The layer maintains an accurate representation of the

5.1 Spatial Representation for Indoor Environments 65

geometry and appearance of the local environment obtained by short-term
spatio-temporal integration of perceptual information from sensors with finite
horizon. Spatial information in perceptual layer is represented in an metric
reference frame, which facilitates integration of perception from multiple
viewpoints and sensors. However, the representation is always centered at
the current location of the robot, and its range depends on the robot sensors
(essentially a sliding window). Information outside the spatial scope is forgotten,
which makes the layer akin to a working memory, and enables consistent large-
scale higher-level representations without the need to maintain low-level global
consistency. The layer provides a more complete input for further abstractions.

• Peripersonal Layer. Above the perceptual layer is the peripersonal layer,
which captures spatial information related to object and landmark instances
from the perspective of the robot. To support planning, the layer represents
object affordances related to actions that can be performed by the robot.
This includes manipulation (e.g. possibility of reaching/grasping an object
or pressing a button), interaction in relation to objects (e.g. possibility of
pointing to objects), and epistemic affordances (e.g. possibility of observing
an object). Furthermore, the layer serves as an intermediate layer of the deep
default knowledge model, used to generate descriptions of locations in terms
of higher-level concepts (e.g. room categories or place affordances). While
recent results from neuropsychology suggest existence of local, body-centered
representations in animals and humans [88], our motivation for such a layer is
to provide the robot with the ability to reason about its immediate surrounding
and support local behaviors.

• Topological Layer. The topological layer provides an efficient representation
of large-scale space, including coarse geometry and topology, and serves several
key roles in SK4RE . First, it provides a way to express the global pose of
the robot. Second, it captures navigation and exploration action affordances
associated with locations in the environment. Third, it is a global counterpart
to the local peripersonal representations and anchors them in the large-scale
space. Finally, it captures internal descriptors of places and serves as an
intermediate layer of the deep default knowledge model used to derive semantic
place descriptions. To this end, the layer performs a bottom-up discretization
of continuous space into a set of locations called places. Places correspond to
locations in the environment previously visited by the robot, and are meant to
represent space at a resolution sufficient for action execution, while maintaining
efficiency and robustness to dynamic changes. In other words, the resolution
is selected to ensure that high-level navigation can be planned using the
topological layer only, with local behaviors planned using the knowledge in
the peripersonal layer at the destination. Places are spatially related to other,
neighboring places, which encodes coarse global geometry of the environment
and allows for path integration. For each place, the topological layer maintains
a set of discrete headings, called views. Together with places, views can be
used to represent a coarse pose of the robot – both topological positions and
headings. Besides places and views, the layer also defines paths connecting

66 5. SK4R for Indoor Robots

neighboring places into a topological graph. The semantics of a path between
two places is the possibility of navigating directly from one place to the other
(i.e. affordance semantics of navigation actions). Existence of a path in the
graph, however, does not necessarily imply that it has previously been traveled
by the robot. In fact, a path can indicate the possibility of navigating towards
unexplored space. To this end, the topological layer utilizes the concept of
“placeholders” [157], which can be seen as candidate places, and are used
to explicitly represent unexplored space. As a result, paths that lead to
placeholders express the possibility of epistemic exploration actions. This
can be used to address open world problems [79] in the continual planning
paradigm [143].

• Semantic Layer. On top of SK4RE is the semantic layer, a probabilistic
relational representation relating the spatial entities in the other layers to
human semantic spatial concepts defined in the deep default knowledge model.
This includes such concepts as object categories and attributes, place attributes,
room categories, or the concept of a room itself. It is the semantic layer that
captures the knowledge that an object is likely to be a cup, or that certain
places are likely to be located in a kitchen. Furthermore, the layer plays an
important role in planning complex tasks, by representing place affordances
related to human interaction as well as actions characterized in terms of human
concepts. For instance, it is the sensory layer that defines the affordance
expressing the possibility of asking a person for help with making coffee or
the possibility of finding a cup at a certain place. Finally, the layer enables
transfer of knowledge from humans to the robot (e.g. capturing object category
information provided by the user). Such knowledge can be utilized by the
default knowledge model to generate lower-level information stored in other
layers.

• Deep Default Knowledge. The four layers representing knowledge about
the specific robot environment are linked by the deep default knowledge model.
The model provides definitions of generic spatial concepts, valid for typical
human environments, and their relations across all levels of abstraction (from
sensory input to high-level concepts). This includes robot-internal models
of objects in terms of low-level perception, places in terms of objects, place
and object affordances, or models of semantic categories and attributes of
objects and places. In other words, the four layers can be seen as defining
the traditional ABox of our spatial knowledge base, while the deep default
knowledge model represents its TBox. The role of the default knowledge model
is to permit inferences about missing or latent aspects of the environment in
each layer, based on the knowledge available in other layers. This includes
bottom-up inferences (e.g. about semantic descriptions based on perception)
and top-down inferences (e.g. about object presence or place affordances based
on semantic descriptions). The resulting knowledge base constitutes a more
complete (albeit uncertain) belief state for the planner. In this work, we
implement this component using a deep generative probabilistic model based
on Sum-Product Networks (see Section 5.2.5).

5.2 Implementation of SK4RE for Laser-Range Data 67

(a) Corridor (b) Doorway

(c) Small Office (d) Large Office

Figure 5.3. Visualization of spatial knowledge represented in the peripersonal layer for
sample places of different semantic categories, expressed as both Cartesian and polar
occupancy grids.

5.2. Implementation of SK4RE for Laser-Range Data

In order to evaluate the architecture of SK4RE in practice, we provide its initial real-
ization for a mobile robot equipped with a laser-range sensor. We utilize laser-range
data to simplify the initial implementation, however the proposed representation
can be easily extended to include 3D and visual information.

5.2.1. Perceptual Layer

To integrate local laser-range observations in the perceptual layer, we use a common
occupancy grid representation. Specifically, we utilized a grid mapping approach
based on Rao-Blackwellized particle filters [76]. We crop the resulting grid map to
only retain a rectangular fragment of size 10x10m, centered at the current position
of the robot. Consequently, we do not require global consistency of the grid map,
as long as the local environment is mapped correctly. This will still result in
partial maps (especially when the robot enters a new room), but it will help to
accumulate observations over time. During our experiments, the robot was exploring
the environment driving with a constant speed, while continuously gathering data
and performing inferences based on the current state of the perceptual layer.

68 5. SK4R for Indoor Robots

5.2.2. Peripersonal Layer

The peripersonal representation for each place is constructed from the current local
occupancy grid in the perceptual layer. However, since the scope of the peripersonal
representation is limited to the space immediately surrounding the robot and relevant
context, we only retain information about the parts of the environment visible from
the robot (e.g. grid cells that can be raytraced from the robot location). As a result,
walls occlude the view and the resulting occupancy grid will mostly contain objects
present in a single room. Examples of such local occupancy grids can be seen in
Figure 5.3.

Next, every local grid map is transformed into an ego-centric polar representation
(compare polar and Cartesian grids in Figure 5.3). This encodes high-resolution
information about the geometry and objects nearby, and complements it with less-
detailed context further away from the robot. Encoding spatial knowledge closer
to the robot in more detail is important for understanding the semantics of the
exact robot location (for instance when the robot is in a doorway). However, it also
relates to how spatial information is used by a robot when planning and executing
actions. It is in the vicinity of the robot that higher accuracy of spatial information
is required. The polar grids in our implementation assumed radius of 5m, with angle
step of 6.4 degrees and resolution decreasing with the distance from the robot.

5.2.3. Topological Layer

The topological layer is maintained by a mapping algorithm discretizing continuous
space into sets of places, placeholders, views, and paths. The goal is to generate
an efficient discretization, which supports all the roles of the topological layer,
including expression of the global robot pose, representation of affordances related
to navigation and exploration, and anchoring of local spatial knowledge to the global
space.

The mapping algorithm expands the topological layer incrementally, adding
placeholders at neighboring unexplored locations, and connecting them with paths
to existing places. Then, once the robot performs an exploration action associated
with a specific path, a new place is generated to which a peripersonal representation,
as well as place and view descriptors are anchored. At this point, the path between
the two places signifies navigation affordance, and is associated with probability
based on current, up-to-date information. In order to choose the location for a new
placeholder, the algorithm relies upon information contained in the perceptual layer,
including detailed local geometry and obstacles.

Similarly to [38], we formulate the problem of finding placeholder locations using a
probability distribution that models their relevance and suitability. However, instead
of sampling locations of all places in the environment at once, we incrementally add
placeholders as the robot explores the environment, within the scope of the perceptual
layer. Specifically, the probability distribution is modeled as a combination of two
components:

P (E | G) = 1
Z

∏
i

φI(Ei)φN (E), (5.1)

5.2 Implementation of SK4RE for Laser-Range Data 69

where Ei ∈ {0, 1} determines the existence of a place at a location i in the perceptual
layer, G is the perceptual occupancy grid, and E is a set of locations of all existing
places within the scope of the perceptual representation.

The potential function φI models suitability of a specific location, and is defined
in terms of three potentials calculated from G:

φI(Ei) = φO(Ei)(φV (Ei) + φP (Ei)− φV (Ei)φP (Ei)), (5.2)

where:

• φO ensures that placeholders are created in areas that are safe from collisions
with obstacles. It depends on the distance do to the nearest obstacle and
is calculated similarly to the cost map used on our robot for obstacle avoid-
ance [132]. φo equals 0 for distance smaller than the radius r of the robot base
and 1− exp(−α(do − r)) otherwise.

• φV = exp(−γdc) depends on the distance dc to the nearest node of a Voronoi
graph of the 2D map. This promotes centrally located places that are often
preferred for navigation.

• φP promotes places inside narrow passages (e.g. doors). The potential is
generated by convolving the local map with a circular 2D filter of a radius
corresponding to an average width of a door.

Overall, φI ensures that placeholders are located only in areas that are safe and
preferred for navigation, and constitute useful anchors for information stored in
other layers of the representation. The potential φN , models the neighborhood of a
place and guarantees that places are evenly spread throughout the environment. To
this end, the potential function promotes positions at a certain distance dn from
existing places:

φN (Ei) =
∑
p∈E

e−
(d(i,p)−dn)2

2σ2 ,

where d(i, p) is a Euclidean distance between the potential new place and an existing
place.

Final location of new placeholders is chosen through MPE inference in P (E | G).
However, before adding a new placeholder to the map it is important to verify
whether the robot will be able to navigate to it. To this end, we perform an A*
search directly over the potential function, and quantify the navigability based
on the accumulated potential. Only then, a path is created between an existing
place and a placeholder. Similarly, the accumulated potential is used to quantify
navigability of paths between existing places. In order to incorporate knowledge
about coarse global geometry into the topological representation, we further relate
placeholders and places to a global low-resolution lattice (0.8m distance between
points in our experiments), as illustrated in Figure 5.4. As the robot moves through
the environment, the lattice is extended, while preserving consistency with existing
points. We assume that a place must be associated with a point of the lattice,
and each lattice point can be associated with only one place. As a result, when
performing MPE inference using P (E | G), we assume that only one place might

70 5. SK4R for Indoor Robots

Figure 5.4. Visualization of generated places and paths on top of the knowledge in the
perceptual layer. The highlighted region corresponds to the spatial scope of the perceptual
representation and displays the value of the potential φI . The low-resolution lattice is
illustrated using yellow points, and red points indicate the final, optimized locations of
places. Paths highlighted in green afford navigability throughout the environment.

exist in a cell of a Voronoi tessellation established by the points of the lattice. The
resulting set of placeholders (and eventually places) will uniquely correspond to
lattice points, yet be created only in locations which are suitable, and can serve as
navigation goals for the lower-level controller. For each place that is created from a
placeholder, we generate a set of eight views. The views are a discrete representation
of the heading of the robot when located at a place, and are assumed to be vectors
pointing from a point of the lattice to the eight immediately neighboring points.
Since, places are associated uniquely with lattice points, each view will naturally
point in the direction of only one neighboring place. As a result, each path connecting
a place to another place or placeholder will be associated with a specific view.

5.2.4. Semantic Layer

In our initial implementation, the semantic layer captures the information about
semantic categories of places in the topological map. This includes categories
of rooms in which places are located, such as an office or a corridor, but also a
functional place category corresponding to places located in a doorway. The layer
is implemented as a simple relational data structure assigning place instances to
semantic categories in the ontology of the deep default knowledge model. Each such
relation is associated with probability value. Additionally, for each place, the layer
captures the likelihood of the peripersonal representation of the place being observed
for any of the semantic categories. That likelihood is used to detect and explicitly
represent that a place belongs to a novel category, i.e. one that is not recognized by
the default knowledge model.

5.2 Implementation of SK4RE for Laser-Range Data 71

5.2.5. Representing Default Knowledge
In our implementation, default knowledge is modeled using a recently proposed
Deep Generative Spatial Model (DGSM) [159], a probabilistic deep model which
learns a joint distribution over spatial knowledge represented at multiple levels of
abstraction For example, DGSM represents the likelihood to associate a table to a
kitchen (within the topological layer), or equivalently, the likelihood of a table to
have particular geometrical features characterizing a table as a category of objects
(within the perceptual layer). We apply the deep model to capture generic spatial
concepts and relations between knowledge represented in peripersonal, topological,
and semantic layers. Once learned, it enables a wide range of probabilistic inferences.
First, based on the knowledge in the peripersonal layer, it can infer descriptors of
views and places, as well as semantic categories of places. Moreover, it can detect
that a place belongs to a novel category, not known during training. Inference
can also be performed over the contents of the peripersonal representation. The
model can infer missing geometry information resulting from partial observations and
generate prototypical peripersonal representations based on semantic information.

To this end, DGSM leverages Sum-Product Networks (SPNs), a novel probabilistic
deep architecture [153, 150], and a unique structure matching the hierarchy of
representations in SK4RE . Below, we give a primer on Sum-Product Networks and
describe the details of the architecture of the DGSM model.

Sum-Product Networks

Sum-product networks are a recently proposed probabilistic deep architecture with
several appealing properties and solid theoretical foundations [150, 153, 71]. SPNs
represent probability distributions with partition functions that are guaranteed
to be tractable, involve a polynomial number of sums and product operations,
permitting exact inference. While not all probability distributions can be encoded
by polynomial-sized SPNs, recent experiments in several domains show that the
class of distributions modeled by SPNs is sufficient for many real-world problems,
offering real-time efficiency.

SPNs model a joint or conditional probability distribution and can be learned
both generatively [153] and discriminatively [71] using Expectation Maximization
(EM) or gradient descent. They are a deep, hierarchical representation, capable
of representing context-specific independence. As shown in Figure 5.5 on a simple
example of a naive Bayes mixture model, the network is a generalized directed
acyclic graph of alternating layers of weighted sum and product nodes. The sum
nodes can be seen as mixture models, over components defined using product nodes,
with weights of each sum representing mixture priors. The latent variables of such
mixtures can be made explicit and their values inferred. This technique is often used
for classification models, where the root sum is a mixture of sub-SPNs representing
multiple classes. The bottom layers effectively define features reacting to certain
values of indicators for the input variables. Not all possible architectures consisting of
sums and products will result in a valid probability distribution. However, following
simple constraints on the structure of an SPN will guarantee validity (see [153, 150]
for details).

Inference in SPNs is accomplished by an upward pass through the network.

72 5. SK4R for Indoor Robots

Figure 5.5. An SPN for a naive Bayes mixture model P (X1, X2), with three components
over two binary variables. The bottom layer consists of indicators for each of the two
variables. Weights are attached to inputs of sums. Y1 represents a latent variable
marginalized out by the top sum node.

Once the indicators are set to represent the evidence, the upward pass will yield
the probability of the evidence as the value of the root node. Partial evidence (or
missing data) can easily be expressed by setting all indicators for a variable to 1.
Moreover, it can be shown [153] that MPE inference can be performed by replacing
all sum nodes with max nodes. Then, the indicators of the variables for which the
MPE state is inferred are all set to 1 and a standard upward pass is performed. A
downward pass then follows which recursively selects the highest valued child of each
sum (max) node, and all children of a product node. The indicators selected by this
process indicate the MPE state of the variables.

In this work, we learn the SPN using hard EM, which was shown to work well for
generative learning [153] and overcomes the diminishing gradient problem. Major
details of the learning procedure are provided in [159].

Architecture of DGSM

The architecture of DGSM is based on a generative SPN illustrated in Figure 5.6. The
model learns a probability distribution P (C,DP

1 , . . . , D
P
Np
, DV1

1 , . . . , DV8
Nv
, X1, . . . , XNx),

where C represents the semantic category of a place, DP
1 , . . . , D

P
Np

constitute an
internal descriptor of the place, DV1

1 , . . . , DV8
Nv

are descriptors of eight views, and
X1, . . . , XC are input variables representing the occupancy in each cell of the polar
grid of the peripersonal layer. Each occupancy cell is represented by three indicators
in the SPN (for empty, occupied and unknown space). These indicators constitute
the bottom of the network (orange nodes).

The structure of the model, as in [160] is randomly generated with a random

5.2 Implementation of SK4RE for Laser-Range Data 73

…

Polar cell

View i

… ……

…

…

…

Le
ve

l 1

R
an

d
o

m
 V

ie
w

 D
ec

o
m

p
o

si
ti

o
n

s

…

Polar cell

View j

… ……

…

…

…

Le
ve

l 2

R
an

d
o

m
 P

la
ce

 C
la

ss
 D

ec
o

m
p

o
si

ti
o

n
s

…

…

… ……

…

…

… ……

Door

Large Office

Corridor
Small Office

C

View jView i

Polar Cells

λe λo λu λe λo λu λe λo λu λe λo λu

Le
ve

l 3

DVi

DP

DVj

Figure 5.6. The structure of the SPN implementing our spatial model. The bottom images
illustrate a robot in an environment and a robocentric polar grid formed around the
robot. The SPN is built on top of the variables representing the occupancy in the polar
grid.

74 5. SK4R for Indoor Robots

forest approach. The advantage of such an approach is its ability to represent a
remarkable number of probability distributions. In particular, the random structure
is generated by recursively re-partitioning the random variables, and associating new
partitions to nodes of the SPN. The process ends when each partition contains only
a single variable. Moreover, to simplify the SPN structure, if randomly generated
branches are not meaningful to the modeled distribution, they can be pruned after
parameters learning.

In this work, the resulting model is a single SPN, which is assembled from three
levels of sub-SPNs. First, we begin by splitting the polar grid of the peripersonal
layer equally into eight 45 degree parts, corresponding to the views defined in
the topological layer. For each view, we randomly generate a sub-SPN over the
subset of Xi representing the occupancy within the view, as well as latent variables
DVi

1 , . . . , D
Vi
Nv

serving as an internal view descriptor. The sub-SPN can be seen as a
mixture model consisting of 14 components in our implementation. In the second
level, we use the distributions defining the components from each view (8∗14 in total)
as inputs, and generate random SPNs representing each of the semantic place classes
in the ontology. Each of such SPNs is itself a mixture model with the latent variable
DP
i being part of the place descriptor. Finally, in the third level, the sub-SPNs for

place classes are combined by a sum node (mixture) forming the root of the whole
network. The latent variable associated with the root node is C and is set to the
appropriate class label during learning. Overall, such decomposition allows us to use
networks of different complexity for representing lower-level features of each view
and for modeling the top composition of views into place classes.

5.3. Experimental Evaluation
Our experimental evaluation consists of two parts. First, we evaluated the ability
of the deep default knowledge model implemented with DGSM to perform both
top-down and bottom-up inferences across the layers of the representation. Then, we
deployed our complete implementation of SK4RE in order to build representations
of large-scale environments.

5.3.1. Experimental Setup

Our experiments were performed on laser range data from the COLD-Stockholm
database [155]. The database contains multiple data sequences captured using a
mobile robot navigating with constant speed through four different floors of an office
building. On each floor, the robot navigates through rooms of different semantic
categories. Four of the room categories contain multiple room instances, evenly
distributed across floors. There are 9 different large offices, 8 different small offices, 4
long corridors (1 per floor, with varying appearance in different parts), and multiple
examples of observations captured when the robot was moving through doorways.
The dataset features several other room categories: an elevator, a living room, a
meeting room, a large meeting room, and a kitchen. However, with only one or
two room instances in each. Therefore, we decided to use the four categories with
multiple room instances for the majority of the experiments and designated the
remaining classes as novel when testing novelty detection.

5.3 Experimental Evaluation 75

(a) Confusion Matrix (b) Novelty ROC curve

Figure 5.7. Results of experiments with bottom-up inference: (a) normalized confusion
matrices for semantic place categorization; (b) ROC curves for novelty detection (inliers
are considered positive, while novel samples are negative).

To ensure variability between the training and testing sets, we split the samples
from the four room categories four times, each time training the model on samples
from three floors and leaving one floor out for testing. The presented results are
averaged over the four splits.

5.3.2. Bottom-up Inference

First, we evaluated the ability of DGSM to infer semantic place categories given
information in the peripersonal layer. As a comparison, we used a well-established
model based on an SVM and geometric features [136, 156]. The features were
extracted from laser scans raytraced in the same local Cartesian grid maps used to
form polar grids of the peripersonal layer. We raytraced the scans in high-resolution
maps (2cm/pixel), to obtain 362 beams around the robot. To ensure the best SVM
result, we used an RBF kernel and selected the kernel and learning parameters
directly on the test sets. The models were trained with peripersonal representations
obtained for locations on three floors in places belonging to four place categories,
and evaluated on the fourth floor or using data from rooms designated as novel. The
classification rate averaged over all classes (giving equal importance to each class)
and data splits was 85.9%± 5.4 for SVM and 92.7%± 6.2 for DGSM, with DGSM
outperforming SVM for every split. The normalized confusion matrix for DGSM
is shown in Figure 5.7a. Most of the confusion exists between the small and large
office classes. Offices in the dataset often have complex geometry that varies greatly
between room instances.

Additionally, we evaluated the quality of the uncertainty measure produced by
DGSM and its applicability to detecting novel concepts. To this end, we thresholded
the likelihood of the test peripersonal representations produced by DGSM to decide
whether the robot is located in a place belonging to a class known during training.
We compared to a one-class SVM with an RBF kernel trained on the geometric
features. The cumulative ROC curve for the novelty detection experiments over all

76 5. SK4R for Indoor Robots

Corridor Doorway Small Office Large Office

Figure 5.8. Prototypical peripersonal representations inferred from semantic place category.

(a) Corridor (b) Doorway

(c) Small Office (d) Large Office

Figure 5.9. Examples of completions of peripersonal representations with missing data
grouped by true semantic category.

data splits is shown in Figure 5.7b. We see that DGSM offers a significantly more
reliable novelty signal, with AUC of 0.81 compared to 0.76 for SVM.

5.3.3. Top-down Inference

In the second experiment, we used DGSM to perform inference in the opposite
direction, and infer values of cells in the peripersonal representation. First, we
inferred complete, prototypical peripersonal representations of places knowing only
place semantic categories. The generated polar occupancy grids are shown in
Figure 5.8a-d. We can compare the plots to the true examples depicted in Figure 5.3.
We can see that each polar grid is very characteristic of the class from which it was
generated. The corridor is an elongated structure with walls on either side, and the
doorway is depicted as a narrow structure with empty space on both sides. Despite
the fact that, as shown in Figure 5.3, large variability exists between the instances
of offices within the same category, the generated observations of small and large
offices clearly indicate a distinctive size and shape.

Then, we used DGSM to generate missing values in partial observations of
places. To this end, we masked a random 90-degree view in each test polar grid

5.3 Experimental Evaluation 77

(a) Run #1. (b) Run #2.

Figure 5.10. Contents of the topological and semantic layers after two different runs over
5-th floor. Gray nodes represent placeholders, while blank nodes indicate places detected
as belonging to novel categories. Colors indicate recognized semantic place categories:
blue for a corridor, green for a doorway, yellow for a small office, and magenta for a
large office. The two large bottom rooms belong to a novel category: “meeting room”.

(25% of the grid cells). All indicators for the masked polar cells were set to 1 to
indicate missing evidence and MPE inference followed. Figure 5.9 shows examples
of peripersonal representations filled with predicted information to replace the
missing values. Overall, when averaged over all test examples and data splits,
DGSM correctly reconstructed 77.14%± 1.04 of masked cells. This demonstrates its
generative potential.

5.3.4. Representing Large-Scale Space
In our final experiment, we deployed the complete implementation of SK4RE and
evaluated its ability to build comprehensive, multi-layered representations of large-
scale space. Specifically, we tasked it with representing the 5-th and 7-th floor of
the office building in the COLD-dataset, which measure respectively 298 and 435
square meters. In each case, we incrementally built the representation based on
the sensory data captured as the robot navigated through the environment. We
relied on the perceptual layer to perform low-level integration of observed laser scans,
on peripersonal layer to capture local place information, the topological layer to
maintain a consistent topological graph expressing navigability and knowledge gaps
related to unexplored space, and finally on the semantic layer to encode information

78 5. SK4R for Indoor Robots

Figure 5.11. Contents of the topological and semantic layers after a single run over the
7-th floor. Gray nodes represent placeholders, while blank nodes indicate places detected
as belonging to novel categories. Colors indicate recognized semantic place categories:
blue for a corridor, green for a doorway, yellow for a small office, and magenta for a large
office. The rooms marked with letters A and B belong to novel categories: “living-room”
and “elevator”.

about semantic categories of places, including detections of novel semantic categories.

Figure 5.10 illustrates the state of the representation after two completed runs
over the 5-th floor. The figure presents the final topological graph of places visited
by the robot, paths expressing navigability between them, as well as paths leading
to placeholders representing possibility of further exploration. For each place, we
use color to illustrate the inferred semantic category, or detection of a novel category.
First, we can observe that places are evenly distributed across the environment
and exist in locations which are relevant for navigation or significant due to their
semantics (e.g. in doorways). Moreover, the graphs created during different runs
are similar and largely consistent. Second, the semantic place categories inferred by
DGSM agree with the ground truth when the category of the place was recognized as
known. To detect novel classes, we again thresholded the estimates of the likelihood
of the peripersonal representations provided by DGSM. On the 5-th floor, the novel
category was “meeting room” and two meeting rooms are shown in the bottom part
of the map. Although both false positives and false negatives exist, places in both
meeting rooms are largely correctly classified as belonging to novel categories.

Figure 5.11 shows results for a different environment, the 7-th floor. Similar
observations can be made as for the 5-th floor. However, here the novelty detection
is less accurate. DGSM correctly detects the places in the elevator as novel (marked
with “B” in the figure), but it fails to detect novelty in the living room (“A” in
the figure), which instead is misclassified as “large office”. While not a desirable
outcome, it is not surprising, given the similarity between the living room and large
offices in the dataset when observed solely using laser range sensors.

5.4 Concluding Remarks 79

5.4. Concluding Remarks
We center the study in this chapter around an important aspect of the SK4R
representation. We investigated whether it is possible to formalize SK4RE to
support action planning by taking in exam the following question

1. Is it possible to define a domain-specific representation of the environment that
allows the robot to encode affordance semantics at different levels of abstraction
of spatial knowledge?

Our solution gave us the opportunity to better understand how to structure
the state of complex environments for an autonomous robot. A suitable state
representation is crucial to make the robot aware of its physical surroundings and
guarantee task completion. Hence, we formalized SK4RE to provide a practical
state of the operational environmental st to the robot, by representing meaningful
spatial landmarks across different levels of abstractions.

To this end, we designed SK4RE specifically to represent the belief about the state
of the world and encode spatial affordances on a mobile robot. We demonstrated that
an implementation following the principles described in this chapter can successfully
represent general spatial concepts at multiple levels of abstraction, and utilize them
to obtain a complete and comprehensive model of the robot environment E – even for
a relatively simple sensory input. The experimental evaluation shows that SK4RE

can effectively label particular areas of the environment and infer missing knowledge
by performing top-down inference. Then, it is able to encode the state of large
environments in order to support action execution of indoor service robots. It is
important remarking that the SK4RE architecture supports planning at different
levels. It enables long-term action planning and epistemic actions, and also, more
reactive behaviors in the peripersonal domain of the robot.

Finally, the current implementation of SK4RE can be further improved in
different ways. For example, we can include more complex perceptions provided
by visual and depth sensors. Additionally, we can train the deep model of default
knowledge to directly predict complex place affordances related to human-robot
interaction.

81

Chapter 6

SK4R for Social Interactions

O perating in human-populated environments is a key and a very challenging task
for robots. They, in fact, have to understand and interpret social cues in a

human compatible manner. On the one hand, social behaviors are mandatory to
enable human-robot cooperation. The social configuration of the environment is
an important component of the state of the robot. This is especially important in
applications running in the context of service robotics, education and health-care.
On the other hand, the “social state” of the environment is not usually observable
through robot sensors and needs to be encoded in an initial representation of the robot
beliefs. To this end, we dedicate this chapter to the study of environmental factors
enabling a more natural social interaction among human and robots. In particular,
we investigate (i) how to represent social features in SK4RE , (ii) how to design
those features and discuss (iii) how the robot should behave accordingly. Section 6.1
contextualizes our work and formalizes its underlying concepts. Then, Section 6.2
analyzes the methodology used to collect knowledge about social components of the
environment and reports the experimental evaluation of two user studies conducted
in our department. Finally, Section 6.3 summarizes the chapter and discusses its
findings.

6.1. SK4RE for Social Interactions
In social scenarios, robots are expected to cooperate with humans and, therefore,
to interact with them by showing safe and acceptable behaviors [101, 164]. Hence,
as an active component of the state of the environment st ∈ S, robots have to be
able to understand their social working context. Our goal, in this chapter, is to
include social factors into the robot understanding of the world, and then let it
shape its behaviors upon selected social cues. More precisely, we extend the problem
of characterizing the state of the environment st ∈ S, for a κ-agent, to include
social components in its belief. As in the previous chapter, we focus on SK4RE ,
the environmental module of SK4R (see Figure 5.1, Page 62), and we extend the
state of the environment to include social factors that we analyze through two user
studies.

In particular, we study social factors in human-robot interactions where the
embodiment of the robot is not sufficient to execute tasks usually carried out by

82 6. SK4R for Social Interactions

humans. For example, as a variety of robots (especially low-cost mobile robots) do
not feature a manipulator, they are not able to grasp an object, open a door or simply
push a button. In literature, to overcome limitations due to the robot embodiment
(and succeed in these kind of tasks), the research community has introduced and
investigated the concept of Symbiotic Autonomy [183] or Symbiotic Robotics [41],
where robots perform service tasks for humans, while humans help them to achieve
their goals. Generally in Human-Robot Interaction (HRI) studies, research addresses
the case of humans asking for help [63, 141]. In such a scenario, interactions are
triggered by humans in order to take advantage of robots’ services. Instead, we
study the configuration of a different social context, that wants to evaluate which are
the component of st that (1) allow the robot to ask humans’ help and (2) maximize
its likelihood to be helped. By relying upon previous work [174, 1], we study this
particular configuration of the Symbiotic Autonomy through two user studies. Such
an evaluation of social components – that extend the social understanding of st of the
robot – constitute the major contribution of this chapter. In particular, we analyze
which factors influence human attitude to help the robot. We hypothesize that
such attitude has not a constant value as it depends on several factors imposed by
human physiology and by the context in which they are currently in – i.e. elements
of st. To this end, we introduce the novel concept of Collaboration Attitude (CA)
as a quantitative measure to characterize such an inclination. To evaluate CA, we
conduct two independent user studies with the aim to socially characterize the state
of the environment, and thus, to generate behavioral guidelines for social robots.
In both user studies, we take into exam specific environmental components that
influence CA. In the former study we analyze “Proxemics” (i.e., relative pose of the
interactive partners), “Gender” and “Height” of the experimenters and “Context”
(i.e., operational environment of the interaction). While, in the latter, we investigate
how the effects of the “Activity” that the experimenter is performing, influences
their attitude in helping the robot.

Throughout this chapter we provide a formalization of Collaboration Attitude
and define our working hypotheses for the two user studies. Then, we present (i)
our system, (ii) the setup of the experiments and (iii) the statistical evaluation of
the collected results. Finally, we conclude the chapter by discussing the findings
of our study and proposing new factors that might aid the representation of social
environmental features into the state of SK4R.

6.2. Collaboration Attitude

In order to highlight important components of the environment state st ∈ S that
can influence the behavior of the robot, we propose the study and evaluation of
the Collaboration Attitude (CA). CA, in fact, framed in the context of Symbiotic
Autonomy [182], aims at highlighting environmental social components of the en-
vironment to be included in the state of SK4Rst. In particular, we characterize
features of st that may or may not favor humans’ attitude in helping the robot.
Hence, to study the collaborative inclination of humans toward robots, we need
a quantitative measure that captures the concept of Collaboration Attitude. To
this end, the Collaboration Attitude has been modeled as a N-point Likert scale as

6.2 Collaboration Attitude 83

(d) Context

(a) Proxemics setting (b) Gender (c) Height

(e) Activity

Figure 6.1. Social factor analyzed to contextualize the social configuration of the state
of the environment. Top to bottom and from left to right, the factors are “Proxemics
Settings”(a), “Gender”(b), “Height”(c), “Context”(d) and “Activity”(e).

follows:

Definition 6.1 (Collaboration Attitude). The Collaboration Attitude measures
the attitude of humans toward the requests for help of the robot in a Symbiotic
Autonomy framework. Formally, it is quantified according to metrics defined on a
scale of N points, where N is the number of tasks that the human is requested to
accomplish. Precisely, the Collaboration Attitude assumes values in [0, . . . , N − 1],
where 0 represents lowest level of collaboration, i.e., the human is not willing to help
at all, while N − 1 represents the highest one, i.e., the human is willing to help the
robot in all the tasks.

Accordingly, we formalize our working hypotheses of the two user studies. The
hypotheses are formalized in order to highlight possible factors (i.e. components of
st ∈ S illustrated in Figure 6.1) that influence the CA of humans when a human-robot
social interaction is conducted. In particular, we focus on “Proxemics Settings”(a),
“Gender”(b), “Height”(c), “Context”(d) and “Activity”(e). “Proxemics Settings”
models the relative distance and orientation of the two interactive partners. “Gender”
and “Height”, instead, are attributes of the experimenters. Conversely, “Context”
and “Activity” model factors relating to the situation in which the interaction happen.
The former highlights the type the scenario of interaction, whether it is carried out in
a relaxing or working context (e.g. vending machine vs. library). The latter, instead,
pinpoints the activity performed by the user before robot interruption. Whether the
user was standing and drinking a coffee or sitting studying for a class/exam.

6.2.1. User Study 1: Proxemics, Gender, Height and Context
In this user study, the robot asks people for help in different Contexts (namely,
Relaxing andWorking), with different Proxemics settings (namely, Intimate, Personal

84 6. SK4R for Social Interactions

and Social). The analysis of such factors generates a model of interaction that defines:
(i) whether they actually influence the Collaboration Attitude, and (ii) the values
that maximize it. In particular, we analyze four hypotheses which relate to the
factors illustrated in Figure 6.1.

Definition 6.2. Collaboration Attitude is subject to different Proxemics settings

It is well known that among humans and robots, Proxemics has a key role in the
interaction. Therefore, experiments aim at highlighting the importance of respecting
the personal space in social interactions, even in the case where the interactive
partner is a robot. Specifically, we want to estimate whether different settings of
Proxemics (see Figure 6.1a) might vary the Collaboration Attitude that the human
shows, ranging from an intimate distance to a social one.

Definition 6.3. Collaboration Attitude is subject to the gender of the human

Humans’ physical and social characteristics affect how they behave in different
situations. Gender is one of the major features to be considered. Such factor is
usually considered in HRI studies, as males and females show different responses to
equal stimuli.

Definition 6.4. Collaboration Attitude is subject to the height of the human

Robot appearance – and more precisely, humans’ perception of the robot –
constitutes a key factor to be investigated, when studying humans response to robot
behaviors. Our intuition is that shorter people perceive the robot differently than
taller people and their Collaboration Attitude varies depending on such a perception.
The outcomes of the statistical analysis over the collected data confirm that the
Collaboration Attitude has a not constant value when different factors are changing.

Definition 6.5. Collaboration Attitude is subject to different Contexts

The environmental context of the interaction plays a central part in social
interactions. Humans behave differently, depending on where they are and the
contexts they are in. Consequently, a robot needs to consider these social elements.

6.2.2. User Study 2: Human Activity
In this second user study, we setup a robot that interrupts people and asks for help.
The agent approaches people that are involved in different activities and thus might
respond to the evaluation differently. We are interested in analyzing the following
hypothesis.

Definition 6.6. Collaboration Attitude is subject to different human activities

The activity in which the person is involved when the robot asks for help affects
the level of collaboration toward the human. Specifically, we consider users to be in a
Standing activity, if they stand at a location or are walking – for example, whenever
they are going to a meeting or attending a class, or equivalently, if they are having
a coffee. We consider users to be in the Sitting activity, instead, if they are sitting
in the open areas, for example taking a break, having lunch or studying.

6.2 Collaboration Attitude 85

Figure 6.2. Modified Turtlebot robot. The platform deployed is higher than the standart
version, and features a tablet which is used to carry out interactions with users.

6.2.3. User Study Methodology

The degree of Collaboration Attitude in changes to the dependent factors has been
analyzed through two subsequent user studies. Moreover, to guarantee validity of
the experimental evaluation, the subjects selection policy, apparatus, procedure and
questionnaire have been preserved. For each user study, we executed different runs
of the same experiment by interrupting users in different contexts and activities by
varying our population according to the studied factors. This section (1) introduces
our subject population, and (2) provides a detailed description of the tools and the
procedure used into the experimentation. Accordingly, it presents the questionnaire
used to collect users’ data.

Subjects

All the experiments have been conducted in a department of our university. In such
an environment, the users have been randomly selected from a set of students with
homogeneous characteristics, all of them between 20 and 30 years old. Moreover, in
both user studies, the experiment is completed in a “between group” design, so that
every user participated only once and the data collected is not biased by repetitions
of the experiments by the same user. Participants have not been compensated, nor
have they provided any consensus for taking part to the experiment. Otherwise,
either a consensus or a reward, would have biased the attitude of the users and
invalidate the whole experiment.

86 6. SK4R for Social Interactions

Apparatus

In both user studies, the deployed the same modified version of the Turtlebot Robot
(see Figure 6.2). While the base remains unaltered, the structure on top of it has
been customized, in order to make the robot taller with respect to the standard
version. In fact, it is 98 cm high and it features a tablet on top as an interface for
spoken interactions. We allow users to have short-term dialogues with the robot, to
support the estimation of the attitude of the human to help the robot in performing
its tasks. Our short-term dialogue system is composed of two main modules: (i)
an Automatic Speech Recognizer (ASR), that processes the acoustic signal of the
users’ speech and generates a set of possible transcriptions; (ii) a Dialogue Manager
(DM) that manages the dialogic interaction. The ASR module has been realized
through the Google Speech APIs, available within the Android environment, in an
ad-hoc mobile application. The app is also in charge of managing the questionnaire
presented to the user at the end of the interaction, through a touch-based Graphical
User Interface (GUI). The dialogue flow is managed through an Artificial Intelligence
Markup Language (AIML) Knowledge Base.

Procedure

We conducted our studies both in closed and open areas of a department in our
university, where the heterogeneity of both environment and population gives the
opportunity to collect data for each value of the considered factors. The whole
experiment is conducted in a Wizard-of-Oz fashion [180] and includes a predefined set
of four phases, namely Approach, Dialogue, Questionnaire and Homing. During the
Approach phase, the robot approaches the user that is not aware of being involved in
the study until the questionnaire is displayed. Given the purpose of the study, only
this phase slightly differs depending on the factors and their value. In fact, once we
select the next user, we let the robot notify its presence and seek for help. The robot
asks the experimenter to keep his/her position. Afterwards, the robot approaches
the user within the “Personal” Proxemics setting – kept constant for each user. We
did not vary the orientation of the robot during the experiments, as other works
[104, 217] focused on the relative orientation of the robot with respect to the user.
In the case of the sitting activity, the robot goes towards the user by respecting the
same social distance [78, 217], while in the standing setting, it intercepts the human
which is passing by or standing still. After that the user attention is gained, the
Dialogue phase is triggered and the robot asks to be helped in a particular task.
After this short interaction, the robot displays the Questionnaire on the table aiming
at completing the evaluation of CA and collecting users’ information. Once the
questionnaire has been completely filled in, the Homing phase is executed, where
the robot thanks the user and is guided toward its original position. It is worth
emphasizing that the chosen characterizations of Context and Activity are done by
taking into account the actual abilities of the robot perception.

Questionnaire

During the two user studies, we collected, with the same methodology, data by asking
the user to fill in a questionnaire that the robot displays on the tablet. We divided

6.2 Collaboration Attitude 87

My batteries are
running low. Can
you please plug

the power cable?

Once I will be fully
charged, would
you unplug my
power cable?

And then, would
you help me to

get off the stairs?

and if I need it,
would you escort
me to the Ph.D.
room upstairs?

no: 3

CA: 0 CA: 1 CA: 2 CA: 3 CA: 4

no: 27 no: 27

yes: 4

no: 10

Dialogue Questionnaire

yes: 48 yes: 21yes: 75

#1 User study

Figure 6.3. Collaboration Attitude estimation through questionnaire for the first User
study. Users’answers are highlighted in the figure.

My batteries are
running low. Can
you please plug

the power cable?

Once I will be fully
charged, would
you unplug my
power cable?

And then, would
you help me to

get off the stairs?

and if I need it,
would you escort
me to the Ph.D.
room upstairs?

yes: 175

no: 31

CA: 0 CA: 1 CA: 2 CA: 3 CA: 4

yes: 136

no: 39

yes: 97

no: 39

yes: 81

no: 16

Dialogue Questionnaire

#2 User study

Figure 6.4. Collaboration Attitude estimation through questionnaire for the second User
study. Users’answers are highlighted in the figure.

the questionnaire into two sections aiming at (i) quantifying the Collaboration
Attitude, and (ii) collecting information about the user. Specifically, we characterize
users by gathering information about gender, height and acquaintance toward
robotics. The Collaboration Attitude is mapped into a 5-point scale, measuring the
amount of positive responses of the experimenters to the robot requests, according to
Definition 6.1. Hence, if we consider also the initial request (in the Dialogue phase),
this variable takes values in {0, ..., 4}, where 0 is the case where the human is not
willing to help the robot in any task and 4 the opposite situation. Figure 6.3 and
Figure 6.4 show the requests posed to the experimenters. While the first request is
part of the dialogic interaction, the remaining three are both uttered by the robot
and displayed as part of the questionnaire. In both figures, the number on each
edge refers to the occurrences of a particular answer of the second user study, i.e.,
yes or no. In particular, arcs labelled with no represent users giving up in helping
the robot at a particular CA request, while arcs labelled with yes count users that
advanced through the different questions. For instance, in the second user study, the
31 users neglecting the initial request achieved a CA of 0, while the 81 users – that
satisfied all the robot requests – obtained a CA score of 4. As one might expect,
in both user studies, the engagement decreases as the requests become more and

88 6. SK4R for Social Interactions

 Intimate Personal Social0.0

0.5

1.0

1.5

2.0

2.5

3.0

Collaboration Attitude

(a) Proxemics setting
 Male Female0.0

0.5

1.0

1.5

2.0

2.5

3.0
Collaboration Attitude

(b) Gender

 Taller than 1.75 Shorter than 1.750.0

0.5

1.0

1.5

2.0

2.5 Collaboration Attitude

(c) Height
 Relaxing Working0.0

0.5

1.0

1.5

2.0

Collaboration Attitude

(d) Context

Figure 6.5. Collaboration Attitude means and standard errors of the first user study [174]

more demanding. In fact, while in the second study, at each question (except for the
fourth request), 36 users on average abandoned the robot, for the first user study
this is even more remarked. In fact, only 4 users positively reached the last stage.

6.2.4. User Study 1: Experimental Results

This section reports the results obtained in the first user study [174]. In Figure 6.5,
the Collaboration Attitude means and standard errors are plotted.

The Proxemics setting that maximizes the Collaboration Attitude is when the
robot approaches the human with a Personal distance (Figure 6.5a). This result is in
line with other user studies conducted in Human-Robot Proxemics [212, 137, 133],
stating that humans’ comfort is maximized within the Personal setting. The Intimate
and Social distances give lower values of Collaboration Attitude.

When looking at the gender of the experimenters (Figure 6.5b), the mean of the
Collaboration Attitude obtained by females is strikingly higher than the males’ one.
This represents a first indication that females are more inclined to help robots than
males. The study of this factor is interesting, as it is known that males and females
have different social behaviors.

Conversely, Figure 6.5c shows statistics of the Collaboration Attitude means to
changes in height of the experimenters. It seems that shorter experimenters are

6.2 Collaboration Attitude 89

more inclined in collaborating with respect to taller ones.
Despite the Relaxing context seems to maximize the collaborative intentions of

the experimenters (Figure 6.5d), the Collaboration Attitude is rather stable when
different contexts are tested. As a consequence, the Context does not appear to be
a perturbing factor for the Collaboration Attitude.

In order to search for significant variations and test our operational hypotheses,
we performed One-Way ANOVA over the different datasets. In the left part of
Table 6.1, a sketch of the sample under consideration is shown. The populations of
Proxemics and Context factors are completely balanced, with a population of 26
elements for each Proxemics setting and 39 experimenters for both the Relaxing
and Working groups. Conversely, the samples of the Gender factor are not balanced,
with a majority of males with respect to females, i.e., 62% vs. 38% and a prevalence
of shorter experimenters, i.e., 56% shorter vs. 44% taller.

Table 6.1. One-Way ANOVA results

Groups Count Sum Avg Var
Intimate 26 37 1.42 0.49
Personal 26 81 3.12 0.83
Social 26 37 1.42 0.41
Male 48 69 1.44 0.59
Female 30 86 2.87 0.95
Taller 1.75m 34 57 1.68 1.13
Shorter 1.75m 44 98 2.23 1.16
Relaxing 39 81 2.08 0.97
Working 39 74 1.9 1.46

Src of Var SS df MS F p-val F crit
Proxemics

Btw. Groups 49.64 2 24.82 42.95 3.71·10−13 3.12
Wtn. Groups 43.35 75 0.58
Total 92.99 77

Gender
Btw. Groups 37.71 1 37.71 51.84 3.7·10−13 3.967
Wtn. Groups 55.28 76 0.73
Total 92.99 77

Height
Btw. Groups 5.82 1 5.82 5.07 0.027 3.97
Wtn. Groups 87.17 76 1.15
Total 92.99 77

Context
Btw. Groups 0.63 1 0.63 0.52 0.47 3.97
Wtn. Groups 92.36 76 1.22
Total 92.99 77

The right part of Table 6.1 shows the ANOVA results by reporting the P-value,
the sum of squares (SS), the degrees of freedom (df), the mean squares (MS), the
ratio of the two mean squares values (F) and the F critical value (F crit). The

90 6. SK4R for Social Interactions

 CA lv.0 CA lv.1 CA lv.2 CA lv.3 CA lv.4
CA Levels

0

5

10

15

20

25

30

35

40
Co

lla
bo

ra
tio

n
At

tit
ud

e

19
16

22

7

39

12

23

17

9

42
Collaboration Attitude Levels

Sitting, #users:103
Standing, #users:103

(a) Users’ Collaboration Attitude levels di-
vided with respect to the “Activity” fac-
tor

 Sitting Standing
Activity

0.0

0.5

1.0

1.5

2.0

2.5
Collaboration Attitude

(b) Collaboration Attitude means and stan-
dard errors with respect to the “Activity
factor”

Figure 6.6. Collaboration Attitude analysis of the second user study

Collaboration Attitude depends on the Proxemics setting chosen for the experiment
(p-value < 0.05). In order to confirm the ANOVA results, we performed a post-hoc
test through three t-tests, aimed at comparing each pair of groups. Table 6.2 shows

Table 6.2. t-Test: Two-Sample Assuming Equal Variances

Intimate vs. Personal Intimate vs. Social Personal vs Social
df 50 50 50
P(T<=t) two-tail 9.6 · 10−10 1 4.1 · 10−10

the result of this additional analysis. As suggested by the means histogram, in the
Personal distance humans act differently w.r.t. Intimate and Social settings (the
two-tailed p values are lower than 0.05), whereas users seem to behave similarly in
their Intimate and Social spaces. Also the Gender seems to be a significant factor
for the Collaboration Attitude. In fact, in the right part, the One-Way ANOVA
results allow to reject the null hypothesis (p-value < 0.05). By looking at the results,
there is a significant variation among the different clusters of Height. In fact, the
p-value is lower than 0.05 and we reject the null hypothesis with 95% of confidence.
Regarding the Context, the outcomes confirm our previous observations, with a
p-value significantly greater than 0.05.

6.2.5. User Study 2: Experimental Results

In this section, we report and discuss the results of the second user study. Again, in
order to analyze the collected data, we performed a One-Way ANOVA test. Here we
focus on a more fine-grained discretization of the “Activity” that users are performing
at the moment of the interaction.

Figure 6.6a shows the number of users grouped with respect to the CA value
that they achieve and divided according to the two values of the activity factor.
Figure 6.6b, instead, reports means and standard errors of the Collaboration Attitude.

6.3 Concluding Remarks 91

Table 6.3. Activity: One-Way ANOVA results

Groups Count Sum Avg Var
Sitting 103 237 2.30 1.54
Standing 103 252 2.45 1.49

Src of Var SS df MS F p-val F crit
Activity

Btw. Groups 1 1.09 1.09 0.47 0.49 3.89
Wtn. Groups 204 473.13 2.32
Total 205 474.22

Interestingly, the plots show that “standing” users are slightly more inclined in
collaborating with the robot, even though the statistical analysis (Table 6.3) confirms
that the CA values are firmly stable, when different activities are compared. Thus,
the Activity performed by the human does not appear to be a perturbing factor.
The populations for the two values of the activity factor are balanced as 103 users
participated for each of the configuration.

Right block of Table 6.3 reports the ANOVA results by highlighting the p-value,
the ratio of the two mean squares values (F) and the critical value (F crit), the sum
of squares (SS), the degrees of freedom (df) and the mean square (MS) for the given
experiment. Instead, Table 6.3 reports on the left for each of the considered settings,
the number of users, the sum of CA values, its average and variance.

6.3. Concluding Remarks
The aim of this chapter is to study how to include in SK4RE characteristics of
the environment which are not directly observable through robot sensors. More
precisely,

2. Can we use SK4RE to characterize social configurations of E? Robots operating
in human-populated environments have to feature the ability to represent features
not directly observable through robot sensors. Hence, it is often necessary to
investigate how to formalize such social configurations.

Our response is positive and gives us the opportunity to asses that, the social
configuration in which the robot is operating matters, and can significantly affect
the robot chances to accomplish a task. Hence, it is important to provide the robot
with the ability to recognize its social context and act accordingly.

In particular, our investigation identified which factors may influence the interac-
tion between robot and human in the context of Symbiotic Autonomy, namely when
is the robot that approaches the human to ask for help. We have characterized the
Collaboration Attitude and performed two user studies to identify which factors may
help the robot in improving its social skills and be included as “social landmarks”

92 6. SK4R for Social Interactions

in the robot state of the environment st ∈ S. These landmarks, for instance, can
be maintained in a knowledge based, and can trigger particular robot behaviors
anytime they are recognized in the current configuration of the environment.

Not surprisingly, and in line with the findings of several works that address
proxemics as a key factor in human robot interaction, proxemics indeed plays a role.
More specifically, this finding could be explained by two elements: the control that
humans exercise in their Intimate space and the robot size. In fact, the presence
of the robot seems to be not relevant, when the interaction takes place at longer
distances. These results are particularly interesting in the framework of Symbiotic
Autonomy: they suggest that a robot asking for help should approach the user in
his personal space, as this distance seems to be the most comfortable for humans.

The results obtained over the Gender factor are supported by the work in [137].
In their user study, in fact, male users are more diffident and place themselves
significantly further from the robot than females. These results are also confirmed in
the work in [209]. Specifically, they report a considerable difference of the comfort
level within the intimate area when varying the gender of the users. Their results
support that males impose a dominant territory that the robot is violating, if it
is positioned in their intimate areas. In Human-Human interactions, manifold
psychological studies address this particular behavior. For instance, the difference
in cooperating between males and females has been pointed out in [58], where this
evaluation is made upon the well known Dictator Game. A further confirmation is
provided by [203], where the gender dimension is analyzed within an experimental
study of team performance. In conclusion, our results in the setting of Symbiotic
Autonomy report that female experimenters show more interest in exploring a
new collaboration with a robotic partner. Therefore, the robot behavior could be
leveraged by allowing the robot to seek for help first by female subjects.

The height of the experimenters is another interesting feature that deserves
a better investigation. In fact, few works consider the height of the robot as a
dependent variable in their controlled studies [212, 225]. However, they do not state
or highlight any empirical result on the influence of relative heights of the robot
and users onto the interaction. Conversely, in our work, we noticed an interesting
behavior, when classifying our users by their heights. Such a categorization has
been made by considering the average among the subjects’ height of our population
and the 1.75m value has been chosen as unbiased discriminant factor. However, the
outcomes of such analysis (right part of Table 6.1) could be influenced by the females
which are usually shorter than males, and much more inclined to a human-robot
collaboration. In fact, in our population, 70% of the female experimenters are shorter
than 1.75m, while the remaining 30% are taller than 1.75m. Conversely, the male
population is almost completely balanced. Hence, with the available data we are
not able to clearly state whether the height of the experimenters plays a key role
in a human-robot collaboration. In our opinion, this particular aspect deserves an
additional analysis, by increasing the variability and the size of the sample, as well
as the height of the robot.

While this is an interesting confirmation that space and physical approach of the
robot must be carefully considered in designing also symbiotic robots, our aim was
also to understand whether what the user is doing is also relevant. In other words, we
intended to test whether it is worth trying to characterize the situations where it is

6.3 Concluding Remarks 93

more effective for the robot to ask humans for help. In our first study, we studied the
Context (Working vs. Relaxing) and our initial hypothesis relied upon the intuition
that humans in a relaxing context are more inclined to a collaborative behavior. The
results of the experiment show that there are not statistically significant differences
when changing the operational context. This finding could be explained by a strong
focus on the social interaction with other humans in a relaxing domain and it may
suggest that robots are not yet considered “social” partners. This factor trades off
the nature of the working context, where people are usually busy in their tasks.

As our first user study did not provide a clear answer to our question, we
implemented a second user study trying to provide a better characterization of the
situation in terms of the activity performed by the human (Standing vs Sitting).
However, somewhat unexpectedly, the analysis of the data collected in the experiment
indicates that humans do not show a different attitude depending upon the activity
variable. As a consequence, it seems that the analysis of the situation where the
symbiotic interaction takes place, does not have a significant impact on the design of
robots’ behavior when asking humans for help. It is worth remarking that “activities”
have been determined in accordance with elements that are recognizable through
robot perception capabilities. In other words, we identified activities that the robot
will be able to detect through its own sensors. Such an outcome can have several
justifications that we address in the following. First, the embodiment of the robot
prevents the establishment of an interaction between the robot and the user at the
emphatic level. Second, as a direct consequence of the previous remark, robots are
not yet considered as social partners and their presence within the environment is
still seen as a novelty factor. Finally, humans may consider the robot requests not
plausible as they were expecting to act as operators commanding the robot. In fact,
the way humans interact is strongly related to how the social partner is considered
and perceived. This seems to strongly bias interactions and collaborations [47]
and surely needs to be the subject of further investigation. However, by looking
at our findings, we still consider that Collaboration Attitude needs to be better
evaluated, including additional elements that will become available to the robot as
its perception capabilities improve. Discovering new enabling factors for CA will
help increasing robot’s chances to be considered a social partner, when shaping social
behaviors in everyday scenarios spanning from guidance in museums to assistance in
shopping malls. In fact, as soon as robots will operate more frequently in human
populated environments, symbiotic autonomy will play a key role in achieving a
productive coexistence and thus, collaboration will become essential.

Nevertheless, we believe that a vast plethora of other factors are expected to
trigger an impact on the Collaboration Attitude of the robot and influence the robot
perception of social environmental features. This is an important concept and it is
mandatory to be included in the robot state of the world in order to support its
action planning and execution. This is key, not only from an efficiency and safety
perspective, but also, to show socially acceptable behaviors in different working
applications.

95

Chapter 7

SK4R for Multi-Robot Search

R obots exploit domain-specific representation to support action execution and
long-term behaviors. Especially in multi-robot domains, such representations

are fundamental as they implicitly encode a communication protocol among team-
mates. This chapter provides an implementation of SK4R to address multi-robot
cooperation. To this end, we focus on both the implementation of environmental
module SK4RE , and the κ-function parameter module SK4RP . In particular, the
former is implemented as a distributed world model, while the latter as a set of
parameters of the coordination system “designed” by an expert. We evaluate SK4R
by addressing the problem of coordination within a team of cooperative autonomous
robots that need to accomplish a common goal. We show how the state of the team
can be distributively reconstructed, and how the parameters of the coordination
system can be designed to generate collective and individual behaviors. Section 7.1
introduces and describes the proposed coordination approach based on the skar
representation. Section 7.2 formalizes the used methodology and describes the
implementation of SK4R in two application scenarios (Section 7.3) by reporting
the obtained results in RoboCup soccer competitions [169] and in a indoor office
application [170]. Finally, Section 7.4 summarizes the proposed approach and its
contributions.

7.1. Multi-Robot Search for a Moving Target

Multi-Robot System (MRS) have been deeply studied during the past few years to
develop effective solutions for multi-robot task execution, distributed world repre-
sentation, and robust coordination. Such techniques for Multi-Robot Systems have
shown to successfully handle several requirements in different environmental setups.
Moreover, proposed approaches have been evaluated against varying conditions
(e.g. communication bandwidth) and shown to be scalable and possibly adaptive.
However, there are specific configurations of the environment (S̄ ⊆ S, as defined in
Definition 4.1) in which the team strategy needs to be to dramatically adapted to
the current world state st. In this chapter, we address the problem of multi-robot
coordination by proposing a distributed domain-specific implementation of SK4R.
We realize the environmental module (SK4RE) by designing a distributed world
modeling (DWM) approach updated through exchanged information among the

96 7. SK4R for Multi-Robot Search

𝒔𝒕 ∈ 𝑺

κ𝜏(𝑠𝑡, 𝜽)

AS𝜏

𝜽 ∈𝛩

κ-function
parameters
𝑺𝑲𝟒𝑹𝑷

state of E
𝑺𝑲𝟒𝑹𝑬

κ𝑎0,𝜏(𝑠𝑡, 𝜃)

𝜓
κ𝑎1,𝜏(𝑠𝑡, 𝜃)

κ𝑎𝐴−1,𝜏(𝑠𝑡 , 𝜃)
…

AS𝑎0

AS𝑎1

AS𝑎𝐴−1

Figure 7.1. SK4R components formalized and implemented to address Multi-Robot search
for a non-adversarial target.

teammates. Then, through the κ-function parameter module (SK4RP), we expose
some of the parameters of the coordination system that are designed to influence
the distributed task assignment (DTA). Figure 7.1 recalls the overall SK4R scheme
and highlights (in purple) the two modules of SK4R which are active subject of
study of this chapter.

Specifically, we propose a novel approach to distributed multi-robot search which
(1) reconstructs the state of the environment st by relying upon individual robot
perceptions, and (2) influences the team task assignment process by means of
algorithmic parameters. To this end, we enable the team to recognize contexts of
operation used to select particular values of the κ-function parameters (κ-parameters
for short) and influence the team actions depending on the current task τ . Our
analysis of the literature shows that the proposed approaches to coordination are
developed along two main directions [62, 205]. On the one hand, there is a significant
body of work that can be characterized as distributed world modeling, where the
aim is to share information so that each robot can make decisions on which action
to take, based on a world model that is built through the exchange of the local
views of each robot in the team [90, 235, 187]. On the other hand, methods such as
distributed task assignment exchange information (i.e. utilities [129]) to allow each
robot to choose the task that is most appropriate, considering the preferences of the
teammates [144, 128, 31].

While there are sometimes applications where sharing the world model is not
advisable, either because of communication constraints or because of implementation
requirements [87], a suitable approach to distributed world modeling can substantially
improve the coordination via task assignment. Hence, we design SK4RE as a
distributed world model, that is specific to the chosen application domain, and is
updated based on the information received by the teammates. In order to avoid
heavy requirements on the network, our SK4RE relies upon (1) an domain-specific
representation of the environment, and (2) a limited exchange of information. Taking
into account the distributed world model, the system assigns the set of active tasks
and coordinates the robots via distributed task assignment by highlighting areas of

7.1 Multi-Robot Search for a Moving Target 97

Figure 7.2. Picture of the Turtlebot, Erratic and Nao robots coordinated with the proposed
approach.

the environment where a particular collective (and individual) behavior supports
the accomplishment of a collective task goal.

To handle the changes in the environment that might require a complete change
in the strategy, we categorize any identifiable configuration of the environment as
contexts. More specifically, we allow robots to detect events which are used to
determine contexts. Such events can be received from the network, or perceived by
the robots. Then, we exploit the high level representation of their distributed world
model to encode contextual information, and adapt the team strategy dynamically
by means of the κ-parameters. We represent contexts as a combination of two
components, namely environmental and task-related knowledge [219]. Contexts can
be triggered by specific events related to the operational environment and support
the selection of the best team strategy. A distinguishing feature of the proposed
approach, is the explicit modeling of contexts, which allows for a context switching
depending on the environment monitoring (e.g. network bandwidth)

The result of this implementation of SK4R is a coordination algorithm that
contributes in (1) combining a dynamic distributed world model with a distributed
market-based techniques for role assignment, (2) integrating Contextual Knowledge
in a multi-robot system to improve the overall performance of the team. We
deploy the coordination system in two different case studies for locating a moving,
non-adversarial target: we consider the problem of locating an unseen ball in a
RoboCup soccer game [169] and the problem of finding a moving person in an office
environment [170]. The system has been deployed on several simulated and real
robots, including a team of Turtlebot and Erratic robots and a team of humanoid
NAOs. Figure 7.2 shows a picture of the robots coordinated through our proposed
technique. We carried out a substantial set of experiments in a simulated environment
that show the effectiveness of our approach.

98 7. SK4R for Multi-Robot Search

7.2. Distributed Implementation of SK4R
In this section, we describe our approach to multi-robot coordination combining
Distributed Task Assignment and Distributed World Modeling through SK4R. The
idea is to simultaneously exploit the robustness of DWM approaches and the effi-
ciency of DTA techniques. Here, we use the former to implement SK4RE and to
distributively reconstruct the state of the environment st ∈ S, while the latter to
coordinate robots in order to achieve a task objective. The coordination approach
is then enhanced by leveraging the contextual-knowledge of the scenario. In this
section, we provide a formal setting which embraces all these elements.

7.2.1. Task Assignment
The core of our coordination algorithm relies upon a Distributed Task Assignment
(DTA), based on utility estimations. DTA is an instance of market-based coordi-
nation [52]: at each step, the algorithm evaluates the possibility of a given robot
to perform a given task according to its utility value. Given a set of M tasks
T = {τ1, τ2, ..., τm} for a team of N robots R = {r1, r2, ..., rn}, a utility estimation
vector (UEV) can be seen as the estimation of “how good” a particular robot is for
each task τi at a given time t. If one denotes, with bi,j(t), the estimation that the
robot ri computes for the task τj at time t, its UEV can be expressed as:

UEVi(t) =
[
b(i,1)(t), ... , b(i,m)(t)

]
with b(1,j) ∈ R (7.1)

The utility estimation matrix (UEM) represents the utilities of all the members
in the team, since each row i is the UEV corresponding to each robot ri. This matrix
is computed individually by each robot and it is built by gathering the vectors sent
by the teammates and transposing them:

UEMi(t) = [UEV1(t), ... , UEVn(t)]T . (7.2)

Given such a representation, the task assignment can be computed by evaluating
each task of the UEM(t) column-wise. Thus, by considering the scores of each
robot ri, we assign to a given task τj the robot with the highest score b(i,j)(t). This
mapping is performed by the coordination mapping function Φi of the robot i-th:

Φi : R→ T. (7.3)

7.2.2. Distributed SK4RE

Since we want to exploit the high level formalization of the surrounding scenario
modeled through domain-specific SK4RE implementation, we allow the UEM to be
modified based on a distributed world model. In order to build a reliable distributed
representation of the current world state st, we need to synchronize our robots on a
common representation of the environment and keep it updated over time. Hence,
we define our distributed world model (DWM), which represents the knowledge of the
world reconstructed from a set of partial local models. We refer to the DWMj as the
distributed world model locally reconstructed by the robot j-th. In our case studies

7.2 Distributed Implementation of SK4R 99

a robot’s local model represents the probability of finding the target in a specific
section of the environment, estimated through a limited and partial knowledge of
the scenario. More in detail, in this distributed setting, we refer as to the state of
the environment st as the state reconstructed from the local perception of the j-th
robot and information about local models received from teammates, i.e. DWMj .

Given a set of robots R = {r1, r2, ..., rn} and their corresponding local models
LMj(t) at a given time t, we are able to reconstruct the distributed world model for
the robot j-th as

DWMj(t) = f(LM, t) (7.4)

where f is a specific distributed model update function and LM represents the set
of all the local models {LMj}Nj=1. The function f needs to be specified for each
case scenario, as we will see in Section 7.3. To successfully apply Eq.7.4, SK4RE

has to rely on a robust algorithm for reconstructing the DWM. Hence, we adopt
an event-based system to efficiently manage the robot internal representations of
the world. This system is based on the notion of event. These events can be either
sensed by a single robot or they can be told by an external agent to the entire team.
For example, an event may be represented by a door being opened or by a person
telling the team that the target was previously seen in a particular location of the
environment. We use these events to change the world representation. Formally, we
define model update a function Γ that takes in input an event e ∈ Ev and a local
model LMj(t) and outputs a modified local representation of the world. Thus, the
local model of each robot will be modified in the following way:

LM j(t) = Γ(e(t), LMj(t)). (7.5)

When the model update function and the event system are implemented and
initialized in the same way on all the robots, they can share only local events,
instead of communicating their entire local model. This considerably reduces the
communication overhead. Finally, the distributed state of the environment st –
generated by this implementation of SK4RE – is the DWMi which is defined as
a collection of N local models LM j(t) reconstructed in accordance with Eq. 7.5.
The algorithmic formalization of the distributed model update and dynamic task
assignment is shown at the end of the next section.

7.2.3. Implementation of SK4RP – Context System
We provide an implementation of the SK4R κ-function parameter module (SK4RP)
as a contextual system. Accordingly, we show how contextual knowledge can increase
the robot performance in the tasks to be accomplished. In fact, by detecting the
current configuration of the environment, we can dynamically change the team
strategy. In our approach, we use contexts to allow the robots to represent situations
that require a different coordination strategy The Context System gathers contextual
knowledge and outputs the best strategy to adopt during the execution of the team
mission. Such strategy carries out high-level information directly represented as
κ-parameters Θ of the underlying coordination system. These parameters are used
to select the proper strategy. Formally, we characterize SK4RP as a function CS

100 7. SK4R for Multi-Robot Search

I

D

𝛩

Contextual system
N

et
w

o
rk

R Event-based
system

U
EM ᶲ

‹ri, tj›
ij b(i,j)∀

𝑺𝑲𝟒𝑹𝑷

80

E

𝜞 f
LM DWM

𝑺𝑲𝟒𝑹𝑬

Figure 7.3. Sketch of our coordination system. The contextual system informs the team
about the current context formalizing the most suitable strategy. The coordination
system coordinates the robots based on the contextual information: it first updates
the local models through Γ, then reconstructs the distributed world model through f .
Finally, it computes the UEM outputting a mapping from robots to tasks.

which takes as input the set of sensory data D and external input events I, and,
generates a coordination strategy Θ for each different context:

CS : [D × I]→ Θ (7.6)

The information flow of our framework is shown in Figure 7.3. The context
system influences the regular execution of the coordination system by means of
different strategies encoded in Θ parameters. More formally, at any given time
t, the coordination strategy influences the mapping function expressed by Eq. 7.3
by modifying the structure of the utility matrix and/or the utility estimations of
the UEMi(t) (Eq. 7.2). We refer as UEMi to the utility matrix which has been
dynamically adapted to through Θ. As shown in Section 7.3, the adaptation of the
utility function is extremely effective, when the requirements of operational scenario
are substantially changing.

The overall coordination protocol locally run by the single robot is reported in
Algorithm 1. Specifically, the robot i-th detects the current context by evaluating
data sources and external input events (line 1). Then, it retrieves the information
needed from the other teammates (line 2) to locally reconstruct their local models
(line 3). The robot is now able to estimate a global model DWMi by considering
the reconstructed local models LMj of each connected teammate (line 4). At this
point, the robot can compute the set of reference tasks according to the current state
of the world (line 5) and its utility vector UEVi (line 6). The robot multicasts its
utility vector, and waits for the estimations of the other teammates (line 8) Finally,
by means of Eq. 7.2, the robot calculates the utility matrix UEMi (line 9); Then,
the procedure locally computes and returns the most suitable task for the robot i-th.

7.3 Application Scenarios 101

Input: sensory data D, input events I, teammates R
Data: set of local models LM , reconstructed distributed world model DWM ,

context system CS, teammate j state TSj , κ-parameters Θ, set of
Task to assign T , robot i utility estimation vector UEVi, teammate j
utility estimation vector UEVj , utility estimation matrix UEMi

Output: Task for the robot i-th Ti
begin

1 Θ ← updateContext(CS, I, D);
// For each teammate j receive its updated state

2 { TSj}Nj=1 ← getTeammateUpdate(R);
3 {LM j}Nj=1 ← updateLM({ TSj}Nj=1);
4 DWMi ← reconstructDWM({LM j}Nj=1);
5 T ← computeTasks(DWMi);
6 UEVi ← computeUEV(T, Θ);

// send the utility vector to teammates
7 sendUEV(UEVi)

// For each teammate j receive utility estimation by other teammates
8 { UEVj}Nj=1 ← getUtilityVectors(R);
9 UEMi ← computeUEM({ UEVj}Nj=1);

return Ti ← mapping(UEMi);
end

Algorithm 1: Context-Coordination

7.3. Application Scenarios
To prove the effectiveness of our approach, we address two settings: a soccer game
during which the robots need to search for a moving ball and coordinate in order to
score against an opposite team (Section 7.3.1), and an office environment, where a
team needs to locate a person in a non-adversarial setting (Section 7.3.2).

7.3.1. RoboCup Soccer Competitions
Our approach to coordination has been first deployed on a team of NAOs. NAOs
are commercial, autonomous, 25-DOF humanoid robots. They are equipped with
a wide variety of sensors and actuators, including two CMOS cameras, multiple
proximity sensors, four microphones, and two speakers. In this setting, a team of
robots plays in a 9×6 meters soccer field of the RoboCup Standard Platform League.
In our coordination algorithm this field is represented as an occupancy grid. Each
cell in this grid features a score, representing how likely it is to find the ball inside
it. Figure 7.4 shows the DWM reconstructed by a team of NAOs in a simulated
environment.

In this setting, we arrange possible configurations of the state space (i.e. working
contexts of the system) on a tree structure composed by two main branches, namely
the task-related and the environmental branches, shown in Figure 7.5. Each of
the branch is composed by two layers determining specific configurations of the

102 7. SK4R for Multi-Robot Search

Figure 7.4. Distributed World Model for the soccer scenario. The model assigns a score to
each cell encoding likelihood to contain the ball (orange in the picture).

environment. In the task branch, we encode a set of three basic contexts called
task-related contexts (CT):

• Playing: the robots know the current location of the ball, and the robot
coordinate according to the default task-space comprising the common task in
a soccer scenario, i.e. striker, defender, supporter and second supporter;

• Ball-Lost: the robots do not know the ball position and cooperate in order
to minimize the time in locating the ball;

• Throw-in: the robots are searching for the ball in which the ball has rolled out
of the field. Hence, they can modify the search strategy by exploiting particular
rules governing the soccer scenario. In fact, such a context is triggered by an
external Game Controller 1

In the environmental branch, we instead characterize the world depending on the
network reliability that allows us to define another two contexts, called environmental
contexts CE :

• Network up: the robots are in a suitable network condition, i.e. the messages
exchanged among the robots are received in a fixed amount of time;

• Network delayed: the current network condition does not allow a reliable
communication among the robots.

When a context is recognized the robots start coordinating and sharing informa-
tion. In the soccer scenario, the robots share the outcome of two actions as events,
namely clear area and ball found, which are associated with the centroid of a visited

1The Game controller is an external electronic referee used to communicate with the playing
robots during a regular match.

7.3 Application Scenarios 103

Soccer

Ball-LostThrow-inPlaying
Network
delayed

Network
up

𝑪𝑻 𝑪𝑬

Task-related contexts Environmental contexts

Figure 7.5. Context hierarchy to model configurations of the environment for a team of
humanoid NAO robots during RoboCup soccer competitions.

areas. Specifically, such events are locally detected by each robot. Upon detection
the agent sends a message to the teammates, which when received it is used to
update the distributed model of the robots according to the event type (Eq. 7.5). For
instance, a “ball clear” event has the effect of reducing the probability of finding the
ball in a given area. In particular, while searching for the ball, the robots exchange
the centroids of controlled areas. When the robot i-th receives an event messages
by the robot j-th and updates its model, then it merges the new information in the
global distributed model DWM. To this end, Eq. 7.7 shows how the reconstruction
function f (Eq. 7.4) is implemented in this case. This function is defined as the
union of the score of each cell, updated as:

DWMi : ∀x, y cell〈x,y〉i = arg min
cellj∈LMj

{score(cell〈x,y〉j)} (7.7)

where the score of the 〈x, y〉 cell in the overall representation of the robot i-th is
the minimum score among all the local models LMj of each robot. Intuitively, it
informs the i-th that one of its teammate has recently controlled a given area and
the search can be directed elsewhere.

When the events are received from the team, the Context System determines
the current context outputting a set of parameters Θ used to leverage the team
strategy. In this specific scenario, κ-parameters are used to activate the set of tasks
that are related to the detected context in accordance with Eq. 7.2. We define a
utility function that given a robot and a task, it returns a score b(i,j) in Eq. 7.1
representing how suitable the robot i-th is for the j-th task. Depending on the current
configuration of the environment, the utility function exploits different κ-parameters
θ ∈ Θ designed before robots deployment. It yields the utility function implemented
as

104 7. SK4R for Multi-Robot Search

b(i,j) = θ0 · distance-to-ball
+ θ1 · distance-to-taskj-position
+ θ2 · orientation-to-task-position
+ θ3 · time-since-role-taken
+ θ4 · role-bias
+ θ5 · battery-level
+ θ6 · distance-to-search-area1
+ θ7 · distance-to-search-area2
+ θ8 · distance-to-search-area3
+ θ9 · distance-to-search-area4

(7.8)

where each κ-parameter θp is chosen empirically and regulates the different compo-
nents of the utility function. In this case, Eq. 7.8 takes into account the euclidean
distance between the ball and the robot; the distance between the robot and a
target position; the elapsed time since the current role was assigned; and a bias term
for each robot (such bias is used to solve ambiguous situations); the robot battery
level; and the distance to the centroid of search areas generated by Eq. 7.7. It is
important to remark, that θ are adapted upon contexts detection, and leverage the
robots behavior to fulfill the requirements of the current team task τ . For example,
let us consider the setting in which the robots are searching for the ball. In the
“Search” configuration, while SK4RE reconstructs the DWM for each robot, the
task assignment routine is adapted by means of the SK4RP output, i.e. the θ
parameters. Such parameters are used to weight components of the utility function
that are significant to address the current working context. Operationally, to adapt
the system to the “Search” configuration, we set θ to be

θ = {0.0, 0.0, 0.0, 0.05, 0.1, 0.05, 0.2, 0.2, 0.2, 0.2}.

Intuitively, in the “Search” context, both distances to the ball and default playing
positions, are not relevant to the task and can be discarded when computing the
utility values. It is important to remark that, while Θ are retrieved by SK4RP , the
world model is instead reconstructed dynamically from individual robot perceptions.

Network Monitoring. In real applications, the robot communication is one of
the main problems and it is not typically monitored at any time to adapt the
coordination. In RoboCup, network reliability is one of the main issues to be tackled
in order to design a workable coordination framework. In this perspective, multiple
proposed approaches evaluate their performance against unstable network conditions
and limited band-width. Several solutions adjust the team displacement in order to
maintain connectivity [166] or periodically share information to bound the network
overload [85]. However, to the best of our knowledge, there is no approach that
continuously performs an on-line analysis of the network bandwidth to select the
most appropriate coordination strategy according to the current network reliability.

7.3 Application Scenarios 105

The network condition is detected directly by the team of robots by evaluating the
Round Trip Time (RTT) of the packages shared among the team. Such evaluation is
useful to detect the current network context that can assume three different values,
namely, unreliable network and reliable network. Hence, the recognized context is
used to select the best configuration of the Θ parameters. In this case, the parameters
influence the system on two levels. First, one of the parameters is used to regulates
rate of sending network packages to other teammates. Such a parameters is set to
10 packages/second when the network is reliable, and 1 packages/second otherwise.
Second, the κ-parameters influence the utility estimation by assigning more value to
the role-bias term weighted by θ4 in Eq. 7.8. In critical network conditions, such a
bias has the effect to decrease reactiveness of the system, but provides robustness
and stability in selecting robot roles – which is critical in hostile network settings.
Next section will show the effectiveness of adapting the κ-parameters to the current
working context.

Experimental Evaluation

The virtual environment where experiments are carried out is part of the B-Human
architecture, which provides a RoboCup-dedicated simulation platform entirely writ-
ten in C++2, that features a rather accurate model of the behavior and capabilities
of the humanoid robot in the field. In the soccer case study, our goal is to show
the effectiveness of the system in preserving team performance despite adversarial
working context. For example, when none of the teammates perceives the ball in
this highly changing environment. Accordingly, we first compared our context-aware
coordination against a team that cannot distinguish between a “Throw-in” and
a “Ball Lost” context. Both teams implement the same distributed world model
(DWM), and share the same combined coordination model; however, the red team is
not equipped with a contextual system. We measured the cumulative time during
which the ball was not seen by the team in a game (i.e., 10 minutes). Figure 7.6
reports the results averaged over 100 runs for the two different contexts considered.

Our algorithm was able to recognize the contexts and specialize the search, thus
resulting in an overall better performance. It is worth noticing the effects of the
different levels of information available in the two contexts. In fact, when more
detailed information was provided (e.g., in the “Throw-In” context), an increase in
performance is noticeable. Instead, in both contexts the red team was not able to
exploit the available information, always performing an uninformed search in all of
the different contexts.

In a second experiment we measured different strategies while varying the
reliability of network communication. More specifically, we developed an external
tool for artificially introducing network delays in the simulations. We allow our
team to detect the unreliable network context when the delays were above a certain
thresholds. As in the previous test, in this setting the red team implements the same
underlying coordination system, but, it is not able to detect network contexts. In
this scenario, we adjust the strategy of our team to have a more aggressive formation,
send a restricted number of packages to reduce the network overload of the team,
and assume more static behaviors in order to reduce errors in the transmission of

2https://www.b-human.de

106 7. SK4R for Multi-Robot Search

0

50

100

150

200

250

300

Throw-In Search

se
c

Blue Team Red Team

Figure 7.6. Cumulative time during which the ball was not seen in a 10 minutes game for
the two contexts “Throw-In” and “Ball-Lost”. The results were averaged over 100 runs.

processed data. As we do not gave a specific task to test, we can only verify the
quality of the role assignment by considering the scores of the games. Table 7.1
reports the results obtained in 173 runs of the experiments.

Table 7.1. Game results of the blue team over 173 runs of a soccer match (i.e. 10 minutes).

wins losts ties games

blue 95 36 42 173

The results show a considerable difference in the number of won matches for the
blue team that were able to categorize network contexts and adjust its coordination
strategy dynamically. The scores prove that an adaptation on the operational
scenario is always preferable when possible. Our coordination algorithm has been
firstly validated on extensive testing sessions, and then implemented on real NAOs
to allow the team of robots to compete during RoboCup matches. To the best of our
knowledge, this is the first example of coordination that is adapted by a continuous
monitoring of the network performance.

7.3.2. Indoor Office Scenario

In this subsection, we instantiate our framework to the problem of multi-robot target
localization by applying our system to different operational scenarios. Several works
address the problem of pursuit evasion [2]. Here, we focus on non-adversarial target
localization [86, 72]. However, proposed solutions do not formalize a distributed
world model which, is given to the team before operation and, remains known
and static. Most importantly, none of the existing approaches adapt the searching
strategy depending on the current world state. Hence, we consider a complex setting,
where the robots in the team coordinate to find a person in a given scenario. As
shown in Figure 7.7, we discretize the office environment through a topological graph,
thus showing the effectiveness of the approach in a completely different representation

7.3 Application Scenarios 107

Figure 7.7. Distributed World Model for the indoor office scenario.

of the environment.
The Context System is implemented as a search on a decision tree and a knowledge

base is used to recognize the set of contexts {Meeting,Lunch,Morning,Afternoon}.
This knowledge base includes information about the scenario, such as scheduled
meetings, habits, or room and object positions. We exploit contexts to assign
different weights to promising nodes to look at, and influence the search accordingly.
To this end, we pair to each node of the graph a θ parameter that modifies the
likelihood of node to contain the search target, and thus, can guide the search
strategy of the team. Additionally, we semantically label the environment where the
robots operate. In this way, we are able to perform spatial reasoning about objects
and rooms, which helps carrying out the task.

In this case, even though the set of task-related context are determined by the
daytime or daily meetings, the set of action outcomes to share among the teammates
is wider due to the more complex nature of the environment. In this scenario, the
robots share the following events target near location, door opened, door closed, clear
area, and person found. Specifically, target near location is multicasted if one of the
robots is informed that the target has been seen near a particular location. Instead,
door opened and door closed are communicated whether a robot perceived the status
of a door has changed. Finally, clear area and person found are respectively shared
when a node has been visited and when the target is found. These information
are associated with a set of nodes of the topological graph. Thus, the team can
reconstruct the DWM by applying:

DWMi : ∀n nodeni = arg min
nodej∈LMj

{score(nodenj)} (7.9)

which states that for each node n in the distribute world model of the i-th, the
associated score is the minimum found in all the local models.

According to Eq. 7.2, we coordinate the robots based on their utility values, with
respect to a given set of most-likely nodes. The utility score of each pair 〈ri, τj〉 (i.e.

108 7. SK4R for Multi-Robot Search

40%
20%

20%

30%
20%

10%

0%
0%

0%
0

50

100

150

200

250

300

1 2 3

se
c

Number of Robots

Random walk Coverage Context

Figure 7.8. Average time needed to locate the target for the considered algorithms. The
percentages represent the ratio of failed tasks.

〈roboti,nodej〉) is computed according to the cost of the path connecting the robot
i-th and the node j-th. We use the Dijkstra algorithm for searching the optimal path
p∗ between two given nodes and to evaluate the best mapping from robot to nodes.
In this case, contexts are used to prioritize the areas to look at according to the
scheduling of the searched subject. For instance, if the team is within a meeting
context, then the nodes that are associated to the person’s office are reranked as the
most promising areas to look at.

The office experiments are carried out in the STAGE simulator by implementing
our coordination system within the ROS framework. In this case, a team of mobile
bases had to search for a person in the office environment. In this setting, we varied
the number of robots performing the search, comparing our approach with other
algorithms for exploration. Specifically, we compared it with two search strategies:
a random walk, where the robots randomly explore the environment without coordi-
nating; and a coverage search, where the team uses a DTA to coordinate, by keeping
track of the visited nodes and randomly choosing the next ones to be explored.
Figure 7.8 illustrates the average time in seconds needed to find the moving target.
This measure has been averaged over 10 runs for each configuration. The experiment
was recorded as a failure, if the team needed more than 300s to complete the search.

The results of the experiments reported in Figure 7.8 show that with the proposed
approach the performance improves as the number of robots grows and the infor-
mation shared increases. Indeed, contextual information helps to properly evaluate
the dynamics of the environment – through κ-parameters – and to rerank areas to
look at in accordance with the current context. The results confirm our hypothesis,
as the average time in locating the target considerably decreases, when different
search strategy can be properly exploited. Overall, our approach performed better
in all of the considered configurations in terms of both time needed to complete the
algorithm and percentage of successful tasks.

7.4 Concluding Remarks 109

7.4. Concluding Remarks
In this chapter, we considered the problem of coordinating a team of autonomous
robots capable of identifying configurations of the environment (i.e. contexts) they
operate in. The work proposed helped us in addressing one of our research question
listed in Section 4.3 in Chapter 4:

3. The robot behavior is actively adapted to the state of E, however, is it possible
that the robot behavior influences how the state of the environment is generated?
How can such a mutual dependency be implemented in a robotic system? Is it
possible, for the robotic system, to feature an active interaction of the SK4RE

and SK4RP components?

To this end, we contributed an approach that allows for a distributed modeling of
the environment – as domain-specific representation of SK4RE for the multi-robot
scenario. Such a model is then used to adapt the coordination system to dynamic
changes of the scenario by means of the κ-function parameters. Accordingly, we
exploit contextual knowledge to categorize the state of the environment and improve
the team effectiveness of the team by exploiting different configuration of the κ-
parameters. The contents of this chapter confirm that the behavior of the robot can
influence what may (or may not) be included in the current state representation
of the team. This is a crucial point for κ-agents and suggests that interactions
between SK4RE and SK4RP have to be carefully engineered. For example, in our
scenario, different strategies, triggered by the contextual system, influence how the
team explores the environment, and thus, actively change how they reconstruct their
distributed world models.

To demonstrate the benefits of such an active interaction between the two
modules of SK4R, our coordination algorithm has been applied to the problem of
locating a moving, non-adversarial target in two different settings. We successfully
deployed our coordination system on multiple robots: specifically, our experiments
report the performance of our contribution on a team of NAO robots in a soccer
scenario and on a team of mobile bases in an office environment. In both scenarios,
we found a significant reduction in the time needed to find the target, underlining
the effectiveness of the approach. More specifically, as opposed to previous work
aiming at developing methods that can scale up with respect to varying factors (e.g.
communication bandwidth, delays), we propose an approach where the system can
handle the changes in the operational scenario and select the best strategy online.

We have focused on the formalization and implementation of two modules of the
SK4R representation. Namely, a distributed world model and the contextual system
used to generate different strategies of the team encoded as κ-parameters. As a
future work in this field, we are investigating the problem of representing contexts
that need multiple and non-deterministic perceptions to be recognized, and to allow
the team of robots to handle situations where the construction of the world model
became more challenging. In fact, in the proposed scenarios, the coordination system
assumes both contexts and events as pre-defined by an expert user. However, in
unknown and unstructured environments they cannot always foreseen. To overcome
this issue we want to investigate methodologies to discover contexts and events

110 7. SK4R for Multi-Robot Search

during robot mission by adapting the team strategies to the current scenario and
robot mission.

111

Chapter 8

SK4R for Optimistic Planning

A domain-specific representation is key to enable effective robot behaviors and
succeed in different applications. However, in order to simplify the planning

process, robot actions are often considered as atomic actions, and their affordance
semantics is usually pre-defined by experts of the domain of application. Hence, to
generalize to more complex and dynamic applications, we investigate the problem
of enabling a robot to understand the effects of its actions on the environment.
In this chapter, we focus on the SK4RP module and investigate the problem of
incrementally update the κ-parameters (i.e. θ) in order to learn affordance semantics.
More in detail, Section 8.1 contextualize the contribution of this chapter within
the current state-of-the-art. Section 8.2 introduces LoOP, our iterative learning
algorithm for optimistic planning. We describe its building blocks and present its
components in detail. Section 8.3 demonstrates the robustness and flexibility of
LoOP in different robotic domains and presents an extensive experimental evaluation.
Finally, Section 8.4 concludes the chapter by discussing contributions of LoOP and
future directions.

8.1. Robot Policy Learning
Robots have to show robust behaviors to complete cognitive tasks in different
scenarios, such as service robotics and uncontrolled industrial environments. However,
deciding the best action to perform, is a complex task due to unpredictabilities of
the physical world, uncertainties in the observations, continuous state spaces and
rapid explosions of the state dimensionality. Moreover, the task objectives, the
structure of the environment and the robot embodiment can heavily affect both the
applicability of decision-making techniques and their overall performance. In this
setting, reinforcement learning (RL) approaches have successfully applied to enable
robots to act and improve their performance over-time. Hence, in this chapter,
we address the problem of learning effective robot behaviors by exposing specific
parameters of the learning process, which are used to learn and encode the affordance
semantics of robot actions. We build upon the SK4RE representation and dedicate
this chapter to the study of the κ-functions parameters module – SK4RP . To this
end, we assume state of the environment st generated by SK4RE , and tackle the
problem of learning κ-parameters (i.e. θ) through direct robot experience, in the

112 8. SK4R for Optimistic Planning

𝒔𝒕 ∈ 𝑺

κ𝜏(𝑠𝑡, 𝜽)

AS𝜏

𝜽 ∈𝛩

κ-function
parameters
𝑺𝑲𝟒𝑹𝑷

state of E
𝑺𝑲𝟒𝑹𝑬

κ𝑎0,𝜏(𝑠𝑡, 𝜃)

𝜓
κ𝑎1,𝜏(𝑠𝑡, 𝜃)

κ𝑎𝐴−1,𝜏(𝑠𝑡 , 𝜃)

…

AS𝑎0

AS𝑎1

AS𝑎𝐴−1

Figure 8.1. SK4R κ-function parameters module – SK4RP .

context of reinforcement learning. Figure 8.1 recalls the overall SK4R representation
and highlights (in blue) the subject of study of this chapter: SK4RP .

The applicability of RL methods in robotics, however, is not straightforward and
may suffer from several factors related to partial observability and high-dimensionality
of the state-space. In fact, in order to handle the “curse-of-dimensionality” and
to guarantee effective behaviors in complex scenarios (e.g. hyper-redundant robot,
multi-robot settings), we need to face several issues: (1) state generalization, (2)
exploitation of prior knowledge and (3) exploration of the state-space.

To solve generalization and policy generation, several methods take advantages
from recent success of deep neural networks (DNNs) (or in general by employing
function approximators) both in RL [134, 121, 135] and robot planning [120, 119].
Alternatively, other approaches run different simulation in parallel to collect multiple
robot expirience in a reasonable amount of time [189]. Still, these techniques require
the agent to explore its vast state-space, and need a remarkable amount of “good”
training samples to synthesize competitive action policies. Moreover, it is difficult
to encode prior knowledge through function approximators. This, instead, is usually
achieved with learning from demonstration techniques [29, 223, 151], but too often
with little performance guarantees when demonstrations are not properly transferred
in the robot action-space. To address this issue, in fact, planning techniques such as
Monte-Carlo Tree Search (MCTS) have bee used [26]. However, these approaches
suffer the generalization problem not being effective in relating similar states [198].

Most importantly, in robotics, the lack of a big number of training sample, and
the sparsity of good ones, are limiting conditions that do not allow state-of-the-
art approaches to be also effective and practical. In fact in robotics applications,
generating competitive policies with few training samples is an extremely appealing
challenge. In this chapter, we contribute a solution to address such a problem.
We introduce LoOP, an iterative reinforcement learning algorithm for optimistic
planning, where actions are chosen optimistically and the robot learns a policy
directly from experience and interactions with the external world. To this end,
we base our presentation of LoOP upon previous work [175, 177, 35, 172, 173].
We attack the generalization problem in policy generation by pairing the Upper
Confidence Tree (UCT) algorithm [107] with an external action-value function

8.1 Robot Policy Learning 113

𝑼𝑪𝑻𝑳𝒐𝑶𝑷

𝑫𝒊 = 𝒔𝒕+𝒉, 𝒂𝒕+𝒉
∗

Direct
experience

𝝅𝒊 = max
𝒂

𝑸(𝒔, 𝒂)

𝝅𝒊

𝑎1

𝑎3 𝑎5

𝑎0 𝑎1 𝑎2 𝑎𝐴−1…

…
𝑄0
𝜙

𝑄1
𝜙

𝑄2
𝜙 𝑄𝐴−1

𝜙

Q-value
estimates

𝝓𝜽

Figure 8.2. Affordance semantics learned by LoOP in a door-passing scenario with
two humanoids NAO robots. The scheme illustrates how the algorithm collects direct
experience with the environment, runs the Monte-Carlo search and updates Q-values
estimates to generate an action policy.

approximator. Such an approximator is used in the expansion phase of the MCTS
standard procedure to select “admissible” actions, and drive exploration during
episode simulation. Figure 8.2 shows how LoOP (1) evaluates the current state
of the world and (2) generates θ parameters, in order to provide the robot(s) with
actions that are expected to drive towards task completion. The algorithm promotes
actions with a significant affordance semantics (AS) in the current state st by means
of the function approximator (Φ(·)), which outputs a set of Q-values that are used
for robot planning. Such a structure enables LoOP to be a general algorithm
that is independent from to robot platform, the environment of deployment and
function approximator used. We show its applicability in different use-cases and its
flexibility with respect to two types of function approximators, namely Gaussian
Mixture Models (GMMs) and Deep Neural Networks (DNNs). While, GMMs have
successfully been employed to model non-linearities in manifold applications [186],
recent advancement in deep reinforcement learning [220, 200] show remarkable

114 8. SK4R for Optimistic Planning

improvement in generalizing unseen states and generate action policies robustly.
Hence, we formalize LoOP to be modular and we leave the choice of the approximator
to depend on the problem at-hand. Nevertheless, the comparison between the two
approximators remarks the better generalization capabilities of DNNs, and their
ability to easily address high dimensional problems. Thus, representing a better
solution to the “curse-of-dimensionality”.

In particular, LoOP uses UCT to explore the state space and exploits both
Q-learning and a generic function approximator to model action values, which are
iteratively refined by aggregating [186] samples collected at every timestep. Our goal,
in this chapter, is to demonstrate that LoOP can efficiently be used to generate
policies and restrict the search space in order to support action planning. We
evaluate LoOP on a set of tasks involving different platforms, such as an hand-over
with a fetching task with a light weight 7 DOF Kuka arm; a humanoid NAO robot; a
door-passing task with two mobile robots; a navigation task; and in learning effective
positioning for a defending robot in RoboCup soccer competitions. The experimental
evaluation shows the effectiveness of LoOP to represent action values and boost
the exploration phase. Such important features make LoOP a practical solution
for robotic applications – especially when DNNs are used. Our main contributions
consist in (1) the introduction and the generalization of the LoOP algorithm based
on previous work, (2) and extensive experimental evaluation in both simulated and
real environments.

The reminder of the chapter is as follows. Section 8.2 introduces theoretical
background and describes the LoOP algorithm in detail. Then, Section 8.3 presents
the experimental evaluation in simulated environments, and shows the robustness
of the generated policy when transferred to the real platforms. Finally, Section 8.4
concludes the chapter with final remarks, analyzes current limitations of the approach,
and points toward future directions.

8.2. LoOP: Iterative Learning for Optimistic Planning

Through LoOP, we address the problem of making planning and learning in robotics
practical and usable. Our goal is to combine state-of-the-art techniques and alleviate
their computational time and complexity in order to guarantee competitive action
policies with few training samples.

To this end, we combine Monte Carlo Tree Search and Q-learning. Monte
Carlo planning has been widely used in different simulated scenarios including
complex games. For example, The UCT algorithm achieved the first success in
competing in the game of Go [227]. We refer to MCTS approaches and UCT
algorithm as introduced in Section 2.3.3 in Chapter 2. However, in order to generate
accurate estimations, UCT needs to evaluate state-action pairs multiple times. This,
unfortunately, forbids the naive use of UCT in robotic scenarios. Hence, we enable
the use of UCT by exploiting learned action values directly in the expansion phase.
We use such values to crop out branches of the search tree (i.e. actions) that
are not expected to lead to a good ending states, which result in a remarkable
reduction of the number of state-action evaluations. Then, every time UCT finishes
the backpropagation phase it pairs an action to the current state which is used to

8.2 LoOP: Iterative Learning for Optimistic Planning 115

simultaneously update UCB1 values and refine Q-values for next iterations. Finally,
in order to generalize to unseen states we make use of function approximators that
enable the agent to take decision when the system is in a newly discovered portions
of the state space.

We frame LoOP as a Markov Decision Process (MDP) (as introduced in Sec-
tion 2.3.1 in Chapter 2), where decision-making is expressed as a tuple

MDP = 〈S,A,R, T , γ〉, (8.1)

where S is the set of discrete states of the environment, A represents the set of
discrete actions, T : S × A × S → [0, 1] is a stochastic transition function that
models the probabilities of transitioning from state s ∈ S to s′ ∈ S when taking
action a ∈ A, R : S ×A→ R is the reward function, and γ is the discount factor in
[0, 1). In this setting, transitions and rewards are assumed to be Markovian – i.e.,
a function of the current state – and decisions are represented through a policy π,
that defines the behavior of an agent. Given an MDP, the goal consists in finding
a policy π(s) that maximizes its expected cumulative reward Eπ[∑T

t=0 γ
tR(st, at)]

over a finite or infinite time horizon T . This can be obtained by using the notion of
action-value function Qπ(s, a) and by solving its corresponding Bellman optimality
equations [208]

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′) max
a′

Q∗(s′, a′).

Intuitively, the action-value function represents the value of the expected return
when taking action a in state s and then following policy π. It is important to
highlight that, given the formalization of the action-value function Q(·, cot), we
can use Q-values estimate to encode the affordance semantics of robot actions. In
fact, Q-values adhere to the definition of affordance semantics as referred to in
Definition 4.1 in Chapter 4. Hence, we use Q-values to annotate portion of the
state-space that support task completion, and to suggest actions to execute in a
particular state of the environment s.

8.2.1. LoOP
The information flow traversing the LoOP algorithm is illustrated in Figure 8.3. It
is composed by three blocks which elaborate the three main steps of the algorithm:
the roll-in, the UCTLoOP search and the Q-values update through the function
approximator. The first step serves to initialize the state of the system si and provides
a set of samples from which the Monte Carlo search is started. The algorithm lets
the system roll-in an ending state st by following a desired policy π(roll−in) that
can be arbitrarily chosen. It our implementation we make use of πi−1 the policy
generated at the previous iteration – being π0 randomly initialized. The second step
runs the UCT search enhanced by the Q-values estimate. The algorithm assumes
as root of the search tree the state resulting by the roll-in phase st and starts the
search from it. The UCT selects admissible actions and expands only those ones.
Then, after the UCT backpropagation phase, the algorithm pairs to the root state
the action resulting with the best UCB1 value. We will refer to this modified version

116 8. SK4R for Optimistic Planning

𝑈𝐶𝑇𝐿𝑜𝑂𝑃

𝜙𝜃

𝜋𝑖

𝑅𝑜𝑙𝑙 − 𝑖𝑛(𝜋𝑖−1)Robot

Task

𝑠𝑖

𝑠𝑡

𝑠𝑡+ℎ, 𝑎𝑡+ℎ
∗

𝑄𝜃(𝑠, 𝑎)

Figure 8.3. Information flow at each iteration of LoOP. The algorithm assumes an
initial state of the environment si which depends on the robot (orange) and the task
to accomplish (green). LoOP (i) evolves the system, with πi−1, for Troll−in timesteps
until state st, in which the UCTLoOP search is ran; (ii) uses the MC search to generate a
set of H transitions that associates, to each visited state st+h, the action a∗t+h explored
by UCTLoOP; (iii) then, these transitions are (1) aggregated to the original dataset and
(2) used to update the θ parameters of Φθ. Finally, the policy πi, generated at iteration
i, guides the robot to select an action in the environment and proceed towards task
completion.

of the vanilla UCT algorithm as UCTLoOP. During the last step, LoOP uses the
generated pairs to update the Q-values estimate and retrain the policy. After this, a
refined policy πi is generated and exploited by the agent in the following iteration.

To accumulate new experience and make use of training samples, the algorithm
performs an aggregation [186] procedure. Specifically, at each iteration, LoOP
maintains a dataset Di = {d} of transitions that are aggregate as

D0:i = {∪ Dj | j = 0 . . . i}, (8.2)

and used during learning. Despite the function approximator Φ employed, the
dataset Di is used to generate a new policy by minimizing the `2-loss:

`2(rt+1 + γmax
a′

Qθ(st+1, a
′), Qθ(st, at)), (8.3)

where θ are the parameters of the generic function approximator. Thus, they
constitute the main vehicle to influence the output of the function approximator,
and to update the AS of an action. For example, they are represented as the mean,
covariance and prior in the case of GMM, or equivalently, the network weights in
the case of DNNs. in the following sections, we describe more in detail how the
θ parameters are learned – both in the case of ΦGMM and ΦDNN . We refer as to
ΦGMM as the function approximator implemented with Gaussian Mixture Models,
and as to ΦDNN as the one implemented with Deep Neural Networks.

8.2 LoOP: Iterative Learning for Optimistic Planning 117

admissible
actions

𝑎1

𝑠ℎ

𝑎𝐴𝑎2

𝑠ℎ+1𝑠ℎ−1

𝑠𝑇−𝐻

𝑠1

𝑠2

𝑠𝑇−𝐻

𝑠1

𝑠2

𝑠𝑇−𝐻

𝑠1

𝑠2

𝑎ℎ
∗

𝑎ℎ
∗𝑎ℎ−1

∗

K rollouts

(T-H) execution
timesteps

𝑎ℎ
∗ = max

𝑎
𝑄 (𝑠ℎ, 𝑎) + 𝑒

𝑄 (𝑠ℎ , 𝑎1)
𝑄 (𝑠ℎ , 𝑎2) 𝑄 (𝑠ℎ , 𝑎𝐴)

Figure 8.4. UCT execution at a state sh generated by following the policy πi−1 (roll-in).
The state is expanded by the algorithm for H iterations. Admissible actions are selected
in accordance with their relative expected return Q. UCT, then, expands the promising
actions by running a number K of different roll-outs, and selects the best action a∗h such
as a∗h = maxa Q̂(sh, a) + e.

Algorithm

A key contribution of LoOP is the combination of MC planning and Q-learning
that allows to (1) improve a policy π iteratively, and (2) learn action values used to
achieve focused exploration. Algorithm 2 presents the LoOP procedure in detail.
The algorithm takes as input an initial policy π0 and, for I iterations, computes the
following algorithmic steps:

1. Roll-in. The agent evolves the policy πi−1 for T timesteps, which terminates
in a given state {st} ∈ S;

2. UCTLoOP. At the end of each roll-in, the agent runs a modified UCT
search [107] – that we refer to as UCTLoOP – for H steps, where H is the UCT
search horizon. As represented in Figure 8.4 the UCT algorithm performs a
set of K roll-outs for each admissible actions and returns its expected value.
More in detail:

(a) UCTLoOP evaluates and generates the set Ãs of admissible actions in
st+(h−1). Actions are evaluated according to their Q-value estimate
Qθ(st+(h−1), a), and only actions that score a sufficient Q-value are se-
lected to be expanded. In particular, a threshold upon the Q-values is
set and all the actions that have a lower Q-value are disregarded

QΦ(st+(h−1), a) >=
λ ∗max

a
QΦ(st+(h−1), a) + εÃs

(8.4)

118 8. SK4R for Optimistic Planning

where λ is typically initialized to 0.5 and increases with the number
of iterations as the Q-value estimate becomes more confident, and QΦ
represents the Q-estimation through the chosen function approximator
Φ. Nevertheless, a certain amount of exploration is guaranteed by an
exploration term εÃs that accepts action with an epsilon probability;

(b) When Ãs is computed, UCTLoOP expands all the actions ãinÃs and
evolves the policy forK monte carlo roll-outs by following a ε-greedy policy
based on πi−1. When a termination state is reached, it backpropagates
their expected reward in order to calculate their UCB1 value. The best
action a∗h ∈ Ãs is then chosen according to

E = c ·

√
log(

∑
a η(st+(h−1), a))

η(st+(h−1), a)
a∗h = arg max

a
Qθ(st+(h−1), a) + E,

(8.5)

where c is a constant that controls the exploration term E, and η(st+(h−1), a)
is the number times that the action a is selected in st+(h−1).

(c) At each h ∈ H, UCTLoOP generates a state-action pair 〈st+h, a∗t+h〉 that
is aggregated as a new transition dt+h in the dataset Di−1.

3. Aggregation. In order to collect training samples, LoOP exploits UCTLoOP
as an expert which – after each search – provides new transitions {d}t+Hh=t
composing the Di dataset. Such a dataset is aggregated into D0:i = Di∪D0:i−1

as in [186, 185], and then, used to update the function approximator parameters
θ.

4. Estimate update. The θ parameters are used to update the QΦ value
estimates. Then, the policy is generated in such a way that it maximizes
πi(s) = arg maxaQΦ(s, a).

Following, the next sections introduces two possible implementations of the
Q-values function approximator Φ. However, it has to be highlighted, that the
algorithm is designed to embrace any other implementation of Φ.

Function Approximator with Gaussian Mixture Model

To implement the function approximation ΦGMM , we rely on previous literature [37]
and we model Q-values using probability densities in the form of a mixture of G
Gaussians [5]. GMMs provide the system with the flexibility, expressiveness and
generality of non-parametric function approximators, while maintaining the benefit
of estimating the uncertainty in the prediction. To update the Q-value estimates, we
combine the approach in [5] with a data aggregation [186] procedure that exploits
the dataset D0:i collected at each iteration of LoOP in accordance with the following
update rule

Qi(s, a) = Qi−1(s, a)
+ α(r + γmax

a′
Qi−1(s′, a′)−Qi−1(s, a)), (8.6)

8.2 LoOP: Iterative Learning for Optimistic Planning 119

Data: I the number of iterations; ∆ initial state distribution; H UCT horizon; T
policy execution timesteps, λ0 initial max. Q threshold multiplier for
admissible actions, εÃ probability for the UCT exploration term, α learning
rate, γ discount factor.

Input: π0 initial policy of the agent.
Output: πI policy learned after I iterations.

begin
for i = 1 to I do

s0 ← random state from ∆.
for t = 1 to T do

1) Get state st by executing πi−1(st−1).
2) Di ← UCTLoOP(st, λ0, εÃ).
3) D0:i ← Di ∪ D0:i−1.

QΦ ← UPDATE(D0:i, α, γ).
4) πi(s)← arg maxaQΦ(s, a).

end
end
return πI

end

Algorithm 2: LoOP

where s′ and a′ are respectively the state reached by applying a in s, and the action
maximizing Qi−1 in s′. Qi−1 are the Q-values at previous iteration being Q0 = 0.
More in detail, the dataset is used to estimate a probability density function in the
joint space of states and actions and Q-values.

The pdf depends on the set of parameters

θ = {π1, µ1,Σ1, . . . , πG, µG,ΣG}, (8.7)

where πi is the prior, µi the mean and Σi the covariance matrix of a Gaussians
of dimensionality D in the canonical form

N (x, µ,Σ) = 1√
(2π)D|Σ|

e−
1
2 (x−µ)TΣ−1(x−µ). (8.8)

The parameters θ are estimated over the dataset D0:i, and they are obtained as
the result of a standard Expectation-Maximization [48] procedure, initialized using
the k-means algorithm [130] to avoid bad local optima. The number of components
K of the GMMs is selected to minimize the Bayesian Information Criterion over
testing portion of the dataset. Using θ, the pdf of a sample can be computed as

p(xi; θ) =
K∑
g=1

πgN (xi, µg,Σg), (8.9)

120 8. SK4R for Optimistic Planning

Samples

RELU Q-values

5x5 Convolution

2x2 MaxPooling,
stride=2

Fully connected Fully connected

Figure 8.5. Deep convolutional neural network adopted in LoOP. The network is imple-
mented within the MXNet environment.

while the value Q̂(s, a) ≈ Q(s, a) is obtained as Q̂(s, a) = E[Q|s, a] = µ(Q|s, a). The
approximated Q-value is the result of a Gaussian Mixture Regression

Q̂(s, a) = µ(Q|s, a) =
K∑
g=1

β(s, a)gµg(Q|s, a) (8.10)

σ2(Q|s, a) =
K∑
g=1

β(s, a)gyg(s, a)− µ2(Q|s, a), (8.11)

that originates from the decomposition of each µg and Σg into

µg =
(
µ

(s,a)
g

µQg

)
Σg =

(
Σ(s,a)(s,a)
g Σ(s,a),Q

g

ΣQ,(s,a)
g ΣQ,Q

g

)
, (8.12)

where µg(Q|s, a), σ ∗ 2g(Q|s, a), yg(s, a) and βg(s, a) are respectively

µg(Q|s, a) = µQg + ΣQ,(s,a)
g (Σ(s,a)

g)−1((s, a)− µ(s,a)
g) (8.13)

σ2
g(Q|s, a) = ΣQ,Q

g − ΣQ,(s,a)
g (Σ(s,a)

g)−1Σ(s,a),Q
g (8.14)

yg(s, a) = (σ2
g(Q|s, a) + µ2

g(Q|s, a)) (8.15)

βg(s, a) = N (s, a;µ(s,a)
g ,Σ(s,a),(s,a)

g)∑K
i=1N (s, a;µ(s,a)

i ,Σ(s,a),(s,a)
i)

. (8.16)

Function Approximator with Deep Neural Networks

Deep learning shown a remarkable performance in learning effective policies in various
Atari games [134, 135], where large state spaces and generalization made complex
problems to be considered intractable. Motivated by recent advances achieved by
DNNs, we choose to provide LoOP with the possibility to exploit different function
approximators. This section presents the implementation of the Φ function as a
deep neural networks.

In image classification [210] and RL applications [135], used DNNs feature a
big number of layers, and thus, a tremendoues number of weights within. These
models require a huge dataset of “good” training samples in order to converge

8.2 LoOP: Iterative Learning for Optimistic Planning 121

to acceptable solutions. However, in robotics, we do not dispose of such a huge
dataset, and existing DNN models cannot apply. For this reason, as illustrated
in Figure 8.5, we designed a minimal deep neural network (within the MXNet
framework1), which has been implemented by stacking a convolutional layer and a
max pooling layer with two fully connected layers, the former with ReLU activations
while the latter with linears activations. The small and compact structure of the
network adheres to our assumptions. In fact, it allows to efficiently compute reliable
Q-value estimates even in robotic environment with few of training samples. In
this configuration, θ parameters of the function approximator are represented by
the weights of the convolutional layers which are learned with the standard back-
propagation algorithm [181, 75].

The ΦDNN function assumes as input an image capturing the current state of
the environment and generates a vector of Q-values, one for each action that the
robot agent can perform. It is important to highlight that, we consider a sigle frame
to contain all the information needed in a state s, and that we collect a dataset of
transitions D0:i where each element d is of the form d = 〈st, at, rt+1, st+1〉. Such a
dataset is collected iteratively by aggregating new samples, using Eq. 8.2, during
the robot operation [186]. Equivalently to replay buffer [134], iterative aggregation
and random batch sampling, provide data decorrelation and facilitates learning
and robustness. Operationally, batches are sampled until the dataset D0:i is fully
convered. Also in this case the dataset is used to minimize the loss-function (Eq. 8.3)
and updates the Q-values estimates of the function approximator as in the GMM
case

Qi(s, a) = Qi−1(s, a)
+ α(r + γmax

a′
Qi−1(s′, a′)−Qi−1(s, a)), (8.17)

8.2.2. Multi-agent planning

LoOP provides a flexible methodology that allows to learn action plans in complex
environment such as in multi-agent settings. In this section, we show how LoOP nat-
urally extends multi-agent scenarios, and in particular, we show its implementation
in a set of fully collaborative games. To this end, we avoid to avoid to model joint
actions [23, 40], thus, explosition of the state-space (and the UCT search complexity)
by explicitly addressing problems where each agent has the same reward function,
and that can achieve a common goal only by operating in cooperation. Our aim is
to demonstrate that LoOP can learn competitive policies and constraint the search
space both at the individual and collective level.

We extend the LoOP formulation under the stochastic game framework, as
an extension of MDPs to multiple agent. In detail, it is represented as a tuple
(N,S,A1:N , T , R1:m), where N is the number of agents, A1:N is the cross product of
the N agents’ actions, and the other elements remain consistent to Eq. 8.1. Moreover,
each agent j determines its actions in accordance with its policies πj that defines
its behaviors. Hence, each agent aims at improving its policy by maximizing the
collective future reward. LoOP preserves the same procedural routine as introduced

1https://mxnet.apache.org/

https://mxnet.apache.org/

122 8. SK4R for Optimistic Planning

Data: N number of agents; I the number of iterations; ∆ initial state distribution; H
UCT horizon; T policy execution timesteps, λ0 initial max. Q threshold
multiplier for admissible actions, εÃ probability for the UCT exploration term,
α learning rate, γ discount factor.

Input: π0
j initial policy for each agent j

Output: πIj policy learned after I iterations

begin
for i = 1 to I do

s0 ← random state from ∆.
for t = 1 to T do

1) Get state st by executing πi−1
j (st−1) for each agent j.

for j = 1 . . . N do
2) Dij ← UCTLoOP(st, λ0, εÃ).
3) D0:i

j ← Dij ∪ D
0:i−1
j .

Qj,Φ ← UPDATE(D0:i
j , α, γ).

4) πij(s)← arg maxaQj,Φ(s, a).
end

end
end

return πIj
end

Algorithm 3: LoOP - Cooperative

in Alg. 2. However, it extends to the multi-agent scenario by modifying two steps of
the algorithm. It iteratively runs UCT for each agent, and it allows for simultaneous
action execution whenever a policy roll-out is requested.

As detailed in Alg. 3 At each iteration i and timestep t, LoOP (1) runs – for
each agent – an UCTLoOP search, by expanding actions according to their current
Q-value estimates, and (2) collects new transitions dj that are used to improve the
Q-values of each agent. It stores agents sample separately (3) in order to allow
for individual beahavior which is not effected by other experiences, and then, (4)
maximizes Q-value estimates to generate an improved policy πij .

It is worth highlighting that in the case N = 1, the algorithm presented in this
section simplyfies to Alg. 2 as each of the LoOP features persist. Hence, in the rest
of the chapter, we refer to as LoOP to the more general algorithm presented to
address and represent multi-agent scenarios.

8.3. Optimistic Planning in Robotic Domains

The goal of this section is to validate our contribution over a set of different robotic
applications. The experimental evaluation serves to highlight the main contributions5
of LoOP, namely focused exploration and policy generalization. The latter evaluated
through different function approximators. Moreover, we demonstrate the robustness

8.3 Optimistic Planning in Robotic Domains 123

of LoOP through the evaluation of its meta-parameters. The aim is to highlight the
effectiveness of the algorithm, as well as its application to other robotic applications.
Finally, we setup an experiment in a challenging scenario demonstrating that LoOP
can be used to optimize local movements of complex behaviors. To this end, we task
LoOP to learn the best position to assume for a defending robot in a multi-robot
adversarial scenario. We evaluate the learned behaviors in RoboCup soccer games
and report the performance improvement in terms of recovered balls.

All the experiments have been conducted using the V-REP simulator running
on a single Intel Core i7-5700HQ core, with CPU@2.70GHz and 16GB of RAM.
For all the scenarios, unless otherwise specified, the algorithm was configured with
the same meta-parameters. The UCT horizon is set to H = 4 to trade-off between
usability and performance of the search algorithm; the number of roll-outs is set
to be M = 3, while admissible actions are evaluated with an initial λ = 0.5, and
εÃ = 0.3, guaranteeing good amounts of exploration. The C constant in Eq. 8.5
is set to 0.707. The state space, the set of actions and the reward functions are
finally chosen and implemented depending on the robots and applications. In each
of the proposed applications, stochastic actions are obtained by randomizing their
outcomes with a 5% probability. We adopt a shaped reward function, thus providing
a reward to the agent(s) at each of the visited states.

Throughout the experimental evaluation, we compare our approach against two
baseline and two state-of-the-art algorithms. We compare LoOP with vanilla-UCT
and random-UCT algorithms to show the improvements with respect to the policies
generated by these standard routines. We refer to as vanilla-UCT as the standard
UCT algorithm where each action is expanded at each execution of the MC search.
Instead, we refer to as random-UCT as the UCT algorithm that selects an action at
each time-step randomly. Then, we compare LoOP against TD-search [198] and
DQN [134] – even though, a comparison with DQN can be done only in the case
of Φ implemented as a DNNs. The experiments have been configured to highlight
the performance improvement of LoOP, by comparing, for each of the evaluated
algorithms, the cumulative average reward against the number of explored states.

8.3.1. Focused Exploration

The aim of this experiment is to show the benefits of a focused exploration, and
thus, the effectiveness of LoOP in generating competitive policies already at first
iterations. This is a key feature of our approach. It confirms that LoOP is practical,
and can be exploited in robotics. To this end, a 7-DOF KUKA lightweight arm
is tasked to learn to fetch an object (e.g. a glass, Figure 8.6) while avoiding an
obstacle (e.g. a plant). In this scenario, the function approximator has been
implemented as a DNN. Thus, the state is represented through an image collected
by an overlooking camera, and the discretization of the state space is realized
as described in Section 8.2.1. The robot can perform 10 actions: A = 〈arm-up,
arm-down, arm-forward, arm-backward, arm-right, arm-left, pitch-turn-left,
pitch-turn-right, yaw-turn-left, yaw-turn-left〉. Rotations on the roll angle
have been removed as they do not influence the desired orientation of the fetched
object. The reward function is in [0, 1] and it is computed as a weighted sum of
four components: the first is inversely proportional to the Euclidean distance of

124 8. SK4R for Optimistic Planning

Figure 8.6. Bird-view (on the left) and top-view (on the right) of fetching task environment.
The figure illustrates the position of the robot (7 DOF KUKA LBRiiwa arm), the obstacle
(plant) and the target position of the object to fetch (red circle).

1 2 3 4 5 6 7

Iteration N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

LoOP

vanilla-UCT

random-UCT

TD-search

DQN

(a) Fetching task avg. cumulative reward

1 2 3 4 5 6 7

Iteration N

0

1000

2000

3000

4000

5000

6000
N

um
.

of
ex

pl
or

ed
st

at
es

Exploration
LoOP

vanilla-UCT

random-UCT

TD-search

DQN

(b) Fetching task number of explored states

(c) Ending state after a roll-out of the LoOP
policy at iteration 1

(d) Ending state after a roll-out of the DQN
policy at iteration 1

Figure 8.7. Average cumulative reward and number of explored states obtained by
LoOP, DQN, TD-search, random-UCT and vanilla-UCT in 7 iterations in the Kuka
fetching scenario. For each of them, the reward is averaged over 10 runs. The function
approximator has been implemented with DNN.

8.3 Optimistic Planning in Robotic Domains 125

the end-effector to the target, the second it proportional to the distance to the
virtual center of the obstacle, the third and the fourth are inversely proportional
to the pitch and yaw angle respectively. In this way the reward function promotes
states that are near the target, far from the obstacle, and with the end-effector
oriented upwards. This is implemented to succeed in the fetching task of objects
that are to be carried with a preferred orientation (e.g. a glass full of water). Finally,
the function approximator is implemented (and learned) by using the deep neural
network described in Section 4.

Figure 8.7a and Figure 8.7b show the performance of LoOP, DQN, TD-search,
random-UCT and vanilla-UCT. For each of the iterations and for each algorithm,
the continuous lines represent average cumulative rewards while the line width their
standard deviation. In the explored state plots, the width of the lines highlights
the amount of states expanded during i with respect to the total number of states
explored until i − 1. This scenario is key to our evaluation. In fact, since first
iterations, and with a reduced set of training samples, LoOP is able to outperform
other algorithms that need a huge dataset to learn competitive policies, e.g. DQN.
Still, vanilla-UCT shows comparable rewards, but the number of explored states
for this algorithm is ∼65% larger than LoOP. To provide a qualitative feedback
on the benefits of the focused exploration, Figure 8.7c and Figure 8.7d show the
end states reached by executing the policies learned by LoOP (Figure 8.7c) and
DQN (Figure 8.7d) at the 1-st iteration of the algorithms. In particular, while the
DQN policy initially explores portions of the state-space which do not lead to task
completion, LoOP is able to “focus” the learning process since first iterations, and
quickly achieve a good reward value. Such a result highlights that LoOP is more
practical and thus a preferable solution in this setting.

8.3.2. Policy Generalization

The second evaluation shows the performance of LoOP in learning an handover
task with an hyper-redundant humanoid NAO robot. The aim is to show the ability
of LoOP in generating competitive policy with a much complex platform, and its ro-
bustness in executing the learned policy on real platforms. We propose an evaluation
of the reward signal by comparing (1) the two function approximators introduced in
Section 8.2 – ΦDNN and ΦGMM , and (2) their performance on a real platform. The
scenario is characterized by two agents performing a human-robot interaction. The
robot has to complete an handover by receiving an object which is held by a human.
As depicted in Figure 8.8a, we learn the action policy in the simulated environment,
and then, we execute it on a real platform. Figure 8.8b qualitatively illustrates the
affordance semantic distribution of the right-arm-forward action when following
πi in a state st, on the real platform.

In this experiment, the agent can perform a set of 25 actions:
A = 〈 body-noop, body-forward, body-backward, body-turn-left,
body-turn-right, head-up,head-down, head-right, head-left, right-arm-up,
right-arm-down, right-arm-left, right-arm-right, right-arm-forward,
right-arm-backward, left-arm-up, left-arm-down, left-arm-left,
left-arm-right, left-arm-forward, left-arm-backward, open-right-hand,
open-left-hand, close-right-hand, close-left-hand 〉.

126 8. SK4R for Optimistic Planning

(a) Simulated environment for the Handover
application (b) Affordance semantics distribution of the

right-arm-forward action in st

1 2 3

Iteration N

0

5

10

15

20

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

ΦDNN

vanilla-UCTDNN

ΦDNN − real

ΦGMM

vanilla-UCTGMM

ΦGMM − real

(c) Handover task avg. cumulative reward

1 2 3

Iteration N

0

1000

2000

3000

4000
N

um
.

of
ex

pl
or

ed
st

at
es

Exploration
ΦDNN

vanilla-UCTDNN

ΦGMM

vanilla-UCTGMM

(d) Handover task number of explored states

Figure 8.8. TEST DONE WITH DNNs.

The (shaped) reward function is in [0, 1] and it is implemented as a weighted sum
of 6 components: the first component is inversely proportional to the distance between
the robot and the handed object, the second and third are inversely proportional
to the distance from the object to the left and right hand respectively, the fourth
component is inversely proportional to the distance between the ball and the center
of the robot camera computed directly in the image frame, and the fifth and sixth
components model the desired status of the hands, promoting states that with open
hands near the handed object. Operationally, the state is represented differently
depending on the implementation of the function approximator Φ. In the case of
DNNs (ΦDNN) the state is represented through the images collected by the cameras
of the robot. Conversely, in the case of GMMs (ΦGMM) the state is represented
as a feature vector composed by the Cartesian pose (position and angles) of the
robot kinematic chains corresponding to the head and the two arms, together with
the state of the hands (opened/closed). Moreover, the state includes the relative
distance between the robot and object poses, the position of the target in the image
frame of the cameras. Additional, a last feature element is included, the “attention
bit”, indicating if the human is looking towards the NAO. The “attention bit” is

8.3 Optimistic Planning in Robotic Domains 127

(a) body-forward (b) body-right (c) head-right (d) head-up

Figure 8.9. Affordance semantics distribution over the state-space.

used to show-case the possibility to embed social rules into the robot behaviors.
Similarly to the previous experiments, Figure 8.8 shows the evaluation of the

reward signal (Figure 8.8c) against the number of explored states (Figure 8.8d)
for each function approximator. In the explored state plots, the gray top of each
bar highlights the amount of states expanded during i with respect to the total
number of states explored until i− 1. As expected, LoOP preserves an improvement
over the vanilla-UCT and, also in this case, our algorithm generates an effective
policy with a remarkably reduced number of training examples. Differently, when
comparing ΦDNN against ΦGMM , we notice a similar number of explored states.
However, ΦDNN obtains higher cumulative rewards. This shows the improved
generalization capabilities of the DNN representation, that is able to significantly
improve performance while preserving sample complexity of the original algorithm.
Finally, ΦDNN -real and ΦGMM -real show the rewards obtained by transferring and
rolling out the policy in real settings. In both cases, the reward values show that,
even though the robot does not perform as well as in their simulated counterparts,
it is still able to complete the task being robust to the noise of the real-world
deployment. In fact, we consider the reduced cumulative reward values to be mostly
due to noise in both the perception pipeline and motor encoders of the real NAO
robot.

In addition to the learned policy, in the case of ΦGMM , we qualitatively evaluate
the obtained affordance semantics models. Figure 8.9 shows the heat-map – with
a 5cm granularity – corresponding to the affordance semantics distribution of four
actions: body forward (Figure 8.9a), body right (Figure 8.9b), head right (Figure 8.9c)
and head up (Figure 8.9d). These have been generated from the model learned after
3 iterations of LoOP with a small initial distribution composed of states located at
a distance between 45cm and 60cm in front of a the target object. From the figures it
can be observed that the learned distribution accurately models the need of the robot
to (1) go forward when it is far from the target and stop at a distance of 20-25cm
(from which the target is reachable with the arms), (2) turn the head right when
it reaches positions on the left of the target, (3) increase the head pitch when it is
close to the target (located at a position higher than the robot). Finally, Figure 8.10
shows the Q-values of each action when implementing an “eye contact” social rule.
Such rule states that the robot should wait for eye contact with the human partner
to start the handover. In this test, we simply assume to have eye contact when the
(Aldebaran) tracker of the NAO detects a face that is oriented towards the robot. As
shown by the chart, when the human is not paying attention (red bars), the highest

128 8. SK4R for Optimistic Planning

Figure 8.10. Q-value estimates for all the actions when the “eye contact” social rule is not
respected and viceversa. The red bars corresponds to the Q-values estimates when the
human does not pay attention to the robot, while the blue in the opposite case. Each
action is labeled on the x-axis while on the y-axis its Q-value estimate.

(a) View of the door passing environment (b) View of the navigation environment

Figure 8.11. Environments used in the meta-parameters experimental evaluation for the
two function approximators.

Q-value corresponds to the “null” action body-noop. Additionally, head movements
are allowed to search for eye contact. Conversely, when the partner looks at the
NAO (blue bars), the right-arm-forward action has the highest Q-value, and other
arm-related actions are enabled. To embed this social behavior in the robot policy,
we initialize the θ0 parameters of the GMM learned from a dataset where (1) all the
actions are enabled when the “attention bit” is on and (2) only the head rotations
and “null” actions are allowed when the “attention bit” is off.

8.3.3. Meta-parameters Evaluation

This set of experiments aims at validating the procedural routine of LoOP and
its robustness. We propose a meta-parameters evaluation in two simulated robotic
tasks implemented as grid worlds. The evaluation challenges LoOP in learning
(1) a door-passing task – with a GMM-based function approximator – and (2) a

8.3 Optimistic Planning in Robotic Domains 129

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Iteration N

0

2

4

6

8

10

12

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

0.01 α

0.001 α

0.0001 α

(a) Door passing learning rate α with GMMs

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Iteration N

0

2

4

6

8

10

12

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

0.95 γ

0.55 γ

0.25 γ

(b) Door passing discount factot γ with
GMMs

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Iteration N

0

2

4

6

8

10

12

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

2K

4 K

16 K

(c) Door passing number of components
GMMs K

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Iteration N

0

2

4

6

8

10

12

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

0.6 ε (#states 333935)

0.3 ε (#states 240109)

0.1 ε (#states 132112)

(d) Door passing ε-probability in the
UCTLoOP expansion phase

Figure 8.12. LoOP performance in the door passing scenario.

path-finding task – with a DNN-based function approximator. Figure 8.11 illustrates
the environments used to perform the meta-parameters evaluation, both in the
case of GMMs (Figure 8.11a) and DNNs (Figure 8.11b). Equivalently, for the two
scenarios, the robots can perform a discrete set of five actions A = 〈 noop, up,
down, right, left 〉 to move within the grid. The reward function is normalized
between [0, 1] and is shaped to be inversely proportional to the sum of the minimum
path steps from the robot positions and targets. Differently, in the GMM case,
the state is a feature vector composed by the current position of the robot and its
assigned target. In the DNNs case, instead, the state is represented through an image
collected from the top by an overlooking camera (i.e., all the robots are visible). To
complete the evaluation, we vary the key meta-parameters of the algorithm such
as the learning rate α; discount factor γ; ε-probability of the UCTLoOP expansion
phase; the number of GMMs components K; and number of the training runs of the
DNN for each iteration tr. tr refers to the number of re-training refinements done
at each iteration over the dataset Di. We report the results of executing the learned
policies on a Pioneer P3-DX robot.

130 8. SK4R for Optimistic Planning

Evaluation of the GMM Function Approximator

Specifically, in the case of the GMMs, the set of parameters is the learning rate
α, discount factor γ, number of GMM components K and the ε-probability in
the UCTLoOP expansion phase. Throughout the experiments in Figure 8.12, the
meta-parameters configuration is set to α = 0.001, γ = 0.55, K = 4 and ε = 0.3.
Then, for each testing sessions, only one meta-parameter is changed at a time.

Figure 8.12a reports the learning curves by varying the learning rate α of Eq. 8.6.
All the evaluated configuration are able to learn the task, however, with a different
number of iterations. Noticeably, for the learning rate α = 0.01 (purple), the reward
signals significantly oscillates showing instability during training. Instead, α = 0.01
(orange) presents the best trade-off between performances and stability of the learned
values.

Similarly, Figure 8.12b reports the learning curves by varying the discount factor
γ of Eq. 8.6. Both γ = 0.55 and γ = 0.95 are able to learn the task however,
the latter configuration presents oscillations of the reward signals. For γ = 0.25
instead, the learner “forgets” the progress made at the beginning. This highlights
the importance of the discount factor that weights expected future rewards. In fact,
with small values of γ the robot is induced to show a more greedy exploration policy
which favors local improvements rather than a competitive global solution for the
task. Often, as reported here, this is the cause of a poor performance of the agent.

Figure 8.12c reports the learning curves by varying the number of GMM com-
ponents. The figure shows that LoOP has the best performances with K = 16.
Nevertheless, with a greater number of components the reward signal oscillates
significantly, while with a lower values it poorly performs. This evaluation suggests
the importance of choosing the K in accordance to the problem addressed. In fact,
on the one hand, a bigger number of components can model complex non-linearities.
But, it is also true that many components require a larger number of training samples
to stabilize the reward signal. Moreover, the training time significantly increases
with the number of components.

Finally, Figure 8.12d shows the learning curves by varying the ε-probability in
the UCTLoOP expansion phase (Eq. 8.4). It is worth highlighting that both with
ε = 0.6 and ε = 0.1 the algorithm poorly performs, however, for different reasons.
In fact, ε = 0.1 significantly restricts the exploration of the algorithm and it is not
able to visit valid portions of the state-space. ε = 0.6, instead, allows for a more
in-breadth exploration and requires the algorithm to visit a bigger number of times
each state in order to generate satisfying reward values. Note that for ε = 1.0 the
algorithm shows the same exact routine of vanilla-UCT. For ε = 0.3 the algorithm
reports its best configuration and highlights the importance of a focused exploration
also in this setting. In fact, in order to compare the configurations, the number of
explored states is paired to the ε values in the figure. ε = 0.3 shows the best trade-off
between reward signals and number of explored states, and thus, computational
time.

Figure 8.13 shows how the affordance semantics supports action planning of the
blue robot in the critical state of the task. In the figures, the actions suggested by
the policy are marked in yellow, while actions with small or zero Q-values are marked
in green and blue respectively. Figure 8.13a in fact, shows that, when the robots

8.3 Optimistic Planning in Robotic Domains 131

no-op: 0.0

up: 0.0

down: 0.05177

left: 0.0023

right: 0.00023

(a) Door passing state A

no-op: 0.00061

up: 0.23516

down: 0.0

left: 0.0

right: 0.0

(b) Door passing state B

Figure 8.13. Q-value estimate for different configurations of the state st for the blue robot.
Actions, selected in accordance with the learned policy, are marked in yellow while
actions with small or zero Q-values are marked in green and blue respectively.

encounter an impasse, then the blue robot has converged to a less eager behavior
and backtracks in order to let the red robot go first. Conversely, Figure 8.13b shows
that, once the red robot has traversed the narrow passage, then the blue robot can
proceed and complete the task. Both figures report the Q-values of each action in the
two different configurations and show the correctness of the affordances semantics
learned by LoOP.

Evaluation of the DNN Function Approximator

As in the case of ΦGMM , the experiments in this section aim at evaluating the
robustness of the proposed approach when varying the meta-parameters of the
algorithm. In the case of the DNNs function approximator, the set of parameters is
the learning rate α, discount factor γ, number of training runs for each iteration tr and
the ε-probability in the UCTLoOP expansion phase. In the experiments reported in
Figure 8.14, the default meta-parameters configuration is set to α = 0.005, γ = 0.99,
tr = 10 and ε = 0.3. For each testing session, then, only one meta-parameter is
changed at a time.

Equivalently to the GMMs case, a similar analysis of the meta-parameters can
be described. Figure 8.14a shows the learning curves by varying the learning rate in
Eq. 8.17. The plot shows that the higher the learning rate the quicker the learner
reaches competitive values, even though the reward signal of bigger α values reports
larger oscillations. Figure 8.14b illustrates the evaluation of the discount factor (in
Eq. 8.17) which, again, remarks the importance of the discount factor. In fact, also
in this scenario, the learning curve of γ = 0.11 features drops in the task performance
(e.g. around iteration ∼121 and ∼421).

Figure 8.14c and Figure 8.14d report the learning curves by varying the number
of training runs, and the ε-probability of Eq. 8.4. Additionally, the figures report
the number of explored states paired with a specific value of the meta-parameters.
It is worth noticing that, for lower values of the parameters the learner is not able to
complete the task as it does not explores valid portions of the state-space. For higher
values of the ε parameter, instead, the learner quickly reaches competitive values at
the cost of training time – as shown by the number of explored states. Conversely,
higher values of the tr parameters seems to support focused exploration and allows
the agent to learn satisfying reward values before other the configurations.

132 8. SK4R for Optimistic Planning

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481

Iteration N

6

7

8

9

10

11

12

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

0.01 α 0.005 α 0.001 α

(a) Gridworld navigation learning rate
α with DNNs

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481

Iteration N

6

7

8

9

10

11

12

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

0.11 γ 0.55 γ 0.99 γ

(b) Gridworld navigation discount fac-
tot γ with DNNs

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481

Iteration N

6

7

8

9

10

11

12

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

1 tr (#states 258105)

5 tr (#states 248023)

10 tr (#states 209962)

(c) Gridworld navigation number of
train runs tr per iteration DNNs

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481

Iteration N

6

7

8

9

10

11

12

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

0.6 ε (#states 351733)

0.3 ε (#states 209962)

0.1 ε (#states 127817)

(d) Gridworld navigation ε-probability
in the UCTLoOP expansion phase

Figure 8.14. LoOP performance in the door passing scenario.

no-op: 0.00245

up: 0.10058

down: 0.005

left: 0.41313

right: 0.00527

(a) Gridworld navigation state C (b) Gridworld learned policy πi

Figure 8.15. Q-value estimate for different configurations of the state st for the navigation
task. Actions with a significant affordance semantics are marked in yellow, while actions
with smallQ-values are marked in green.

Finally, it is important to remark that DNNs are able to learn more stable
policies and feature better generalization properties. In fact, their learning curves
– despite the meta-parameters configuration – preserve a more stable and smooth
profile, with smaller oscillations of the reward signal.

Figure 8.15 shows the correctness of the learned affordance semantics in the
proposed task. Figure 8.15b illustrates the policy learned by the agent, while
Figure 8.15a highlights a particular state of the task and the associated Q-values
estimates. The Q-values show that, even if, the policy selects the left action to

8.3 Optimistic Planning in Robotic Domains 133

Figure 8.16. Example of a full iteration of the Monte Carlo roll-outs: the robot evaluates
all its actions, and selects the best one to maximize Q(st, a). In this example, the top-left
figure shows the world state at a given time st, and the rollout policy commands the
robot to execute the move-left action. Accordingly, the other sub-figures show the
evolution of the system after each roll-out extending the current policy until the horizon
H = 3. The robot evaluates all the 5 actions: stand (top-center), move-up (top-right);
move-down (bottom-left); move-left (bottom-center); move-right (bottom-right). In
these figures, the blue arrow represents the chosen action for the current roll-out, while
the purple arrows represent the movements of the robot according to the current policy.
The yellow circle represents the position of the ball.

move the agent, the other admissible action for LoOP is the up action. Such an
action, in fact, equivalently supports task completion.

The meta-parameters evaluation conducted in this section highlights the robust-
ness of LoOP with different algorithmic configurations and show-cases other two
robotic applications where it applies. The stability of the reward signal varies upon
parameters settings, however, LoOP can learn the a policy with a wide spectrum of
such meta-parameters. This is an important result which enables the deployment of
LoOP in different environments. For example, we can increase the learning rate
α, and learn satisfying policies, when, in a particular scenario, the lack of training
samples is a limiting condition.

8.3.4. Local Optimization of High-level Behaviors

LoOP can improve robot performance by optimizing local movements of of com-
plex behaviors. In dynamic multi-agent adversarial scenarios, such as RoboCup
competitions, robots have to feature the ability to perform long-term plans – to
support team strategies – as well as short-term movements – to quickly react to
environmental stimuli. In order to demonstrate the benefits of a local optimization
of robot behaviors, we learn the positioning policy of a defending robot in soccer
games. In this setting, we configure the state of the environment with the position
of the robot and the position of the ball and its velocity vector. Then, the set of
discrete robot actions is stand (the robot does not move), move-up (the robot moves

134 8. SK4R for Optimistic Planning

0,0
0,2
0,4
0,6
0,8
1,0
1,2

100 200 300 400 500

N
or
m
al
ize

d	
av
g	
re
w
ar
d

Iteration

Policy	Improvements

Learner Baseline

(a) Normalized avg. reward

7

3

0

2

4

6

8

In
te
rc
ep
tio

ns

Number	of	Interceptions	over	5	games

Ball	Interceptions

Learner Baseline

(b) Interceptions

Figure 8.17. On the right, the normalized average reward of the learner (blue) and baseline
(orange) after different iterations. On the left, the sum of intercepted ball over five
matches.

forwards), move-down (the robot moves backwards), move-left, move-right. The
reward function is a weighted sum of two components. The former is the inverse of
the Euclidean distance between the robot and the ball, while the latter is the inverse
of the Euclidean distance between the robot and the line connecting the ball and the
closest goal post. In this scenario, it is important to say that, LoOP learns Q-values
without influencing the UCT expansion phase. To clarify the algorithmic procedure
in this setting, Figure 8.16 shows the rollouts of the Monte-Carlo search for each
actions. The top-left figure shows the world state at a given time st, and the rollout
policy commands the robot to execute the move-left action. Accordingly, the other
sub-figures show the evolution of the system after each rollout extending the current
policy until the horizon H = 3. The robot evaluates all the 5 actions: stand (top-
center), move-up (top-right); move-down (bottom-left); move-left (bottom-center);
move-right (bottom-right).

The goal of our learner is to improve its performance while playing against
opponent robots and to decrease the number of opponent scores while intercepting as
many balls as possible. We can evaluate each action of our learner by considering the
reward that the robot obtains during a match. Such a measurement expresses how
good the learner is positioned within the field with respect to the ball. Therefore, we
analyze the average reward of our agent as well as the number of ball interceptions
and the final score of each match. Figure 8.17a reports the normalized average
reward obtained by the learner during five regular games. On the y-axis is reported
the obtained average reward.

Specifically, the learning defender features LoOP, while the non-learning defender
has a fixed policy initialized at iteration zero. Such a baseline is a suitable comparison
that allows us to quantify the improvements of our robot in terms of positioning with
respect a baseline policy. The plot shows a constant improvement with respect to our
baseline and over previous configuration of its trained policy. It is worth remarking
that the drop in performance between game 3 and 4 can be due to different factors
affecting the game, such as player penalization and ball positioning rules. However,
such drop has a marginal impact with respect to the previous improvements, and

8.4 Concluding Remarks 135

Table 8.1. The table reports the final scores of five matches after different MCSDA
iterations.

LoOP iterations
Teams 100 200 300 400 500
Learning 2 3 0 1 1

Non-learning 3 2 1 1 1

the performance of consequent matches remains constant.
Additionally, thanks to the nature of our testing environment, we are able to

report more direct evaluation indices for our approach. To this end, we report
the number of intercepted balls and the number of opponent scores. In particular,
Figure 8.17b shows the sum of intercepted balls of the two teams (learning and
non-learning) on the same set of games as before, and Table 8.1 reports their final
scores.

It is worth noticing that the number of intercepted balls of our agent (green) is
more than twice the number of the opponent defender (yellow). Furthermore, the
final results of the different matches promises an interesting profile: even though the
learner does not win all of the matches, the number of opponent scores decreases
as the learner refines its policy. Since LoOP is applied only on defense robots, we
do not achieve any improvement on the number of goals of our team. However, as
expected, by increasing the number of iterations of our algorithm, the number of
goals of the opponent team decreases.

8.4. Concluding Remarks
In this chapter, we focus our efforts on an important component of the SK4R
representation. We analyzed whether it is possible, for robots, to improve the repre-
sentation of affordance semantics based on direct interaction with the environment.
More precisely, we address the question:

4. Given a representation of the state of the environment, can the robot improve
its behavior over-time? In other words, is it possible to update (or learn) θ
parameters to improve the expressiveness of the AS representations?

Our study confirms that it is possible to learn, and improve, the affordance
semantics of actions through direct interactions with the environment – even in
challenging robotic domains. In fact, our findings show that a functional represen-
tation of the environment can efficiently aid the robot in action execution. Hence,
explicitly representing θ parameters is beneficial, and it provides the robot with the
opportunity to shape AS in accordance with the situation at hand.

To provide a efficient and practical example on the expressiveness of θ parameters
in representing ASs, we introduced LoOP, an iterative policy generation algorithm
that uses action values to guide and reduce the exploration of the state space in
different robotic applications. We have described its theoretical background and
algorithmic procedure. We demonstrated its implementation through Gaussian
Mixture Models and Deep Neural Networks, which exploit recent advances in deep

136 8. SK4R for Optimistic Planning

learning. We evaluated our approach over an extensive set of experiments which
confirms the potential of LoOP in robotic applications.

Our key contribution is the combination of a Monte-Carlo tree search algorithm
with Q-learning, which demonstrates a remarkable reduction of the computational
load of the algorithm without loss in the performance. Such an improvement makes
our approach more practical and suitable in difficult robotics applications, where the
lack of training examples is often a limiting condition. We have shown the benefits
of a focused exploration and of an effective policy generalization, which adds value
to our solution. Additionally, we contribute to a modular algorithmic procedure that
has been demonstrated to be flexible and practical in different scenarios.

However, LoOP presents several limitations that give the opportunity to further
improve our solution. The major problem is the massive use of simulation calls,
that make the algorithm less appealing. Hence, we are working on a online version
by relying on online and offline knowledge as in [68]. Moreover, LoOP still needs
a predefined simulation environment. This is not always available, and does not
properly capture the dynamics of the world, making our algorithm less appealing in
highly interactive scenarios. To address this issue, we aim at learning the dynamics
of the world at robot operation time, and simultaneously improving its policy based
on the learned model [228]. Finally, our solutions exploits discrete set of atomic
actions. Hence, we want to extend our formulation to learn policies in the continuous
action space [135] in order to address a broader set of robotic tasks.

137

Chapter 9

SK4R for Hierarchical
Optimistic Planning

F or a cognitive robot, task decomposition is key to guarantee effectiveness in
various applications where the global complexity of a problem makes planning

and decision-making too demanding. This is true, for example, in different domains,
where unpredictabilities and modeling limitations typically prevent (1) the design of
robust behaviors, and (2) learning effective action policies. To tackle this problem,
we enhance the formulation of LoOP, of the previous chapter, to hierarchical
optimistic planning. We borrow the concept of Hierarchical Task Networks (HTNs)
to decompose the learning procedure, and we exploit Upper Confidence Tree (UCT)
search to introduce h-LoOP, an iterative algorithm for hierarchical optimistic
planning with learned value functions. h-LoOP relies upon the same working
principles of LoOP but, instead of focusing on the κ-function parameters module
(SK4RP), it is also used to learn the hierarchical structure of the κ-function within
the SK4R representation. In this chapter, we describe the h-LoOP algorithm by
highlighting the key algorithmic differences with respect to LoOP (Section 9.1).
Then, Section 9.2 describes two robotic applications that we use to setup the
experimental evaluation of a fetching task using a simulated 7 DOF KUKA arm
and, on a pick and delivery task with a Pioneer P3-DX robot. Finally, Section 9.3
concludes the chapter by discussing its key features.

9.1. Hierarchical Optimistic Planning
As in Chapter 8, here, we focus on the problem of robot planning by combining
UCT Monte-Carlo search with Q-learning. However, we enhance LoOP by formaliz-
ing a hierarchical algorithm that decomposes complex tasks and further improves
exploration at learning time.

In literature, multiple authors exploit the notions of skills and semi Markov
Decision Processes (semi-MDPs), and define hierarchical representations such as
options [208] and MAX-Q decompositions [54]. Unfortunately, applications of these
methods in complex domains like robotics are limited, and prior knowledge has
to be enforced in the learning process by means of expert demonstrations. In
fact, although hierarchical learning and value function approximations techniques

138 9. SK4R for Hierarchical Optimistic Planning

𝒔𝒕 ∈ 𝑺

κ𝜏(𝑠𝑡, 𝜽)

AS𝜏

𝜽 ∈𝛩

κ-function
parameters
𝑺𝑲𝟒𝑹𝑷

state of E
𝑺𝑲𝟒𝑹𝑬

κ𝑎0,𝜏(𝑠𝑡, 𝜃)

𝜓
κ𝑎1,𝜏(𝑠𝑡, 𝜃)

κ𝑎𝐴−1,𝜏(𝑠𝑡 , 𝜃)

…

AS𝑎0

AS𝑎1

AS𝑎𝐴−1

Figure 9.1. The κ-function parameters module SK4RP and the κ-functions.

have been adopted in several applications, state-of-the-art approaches still show
considerable margin of improvement. For example, [192] provide a better policy
generalization by exploiting the concept of Generalized Value Functions, to improve
value function approximation.In a different settings, [39] use expert demonstrations
to learn high-level tasks as a combination of action-primitives. Unfortunately, these
approaches only learn specific hierarchical structures, that poorly generalize and
cannot profit from the expressiveness of value functions. Similarly, [206] apply
hierarchical learning to sequences of motion primitives on a pick-and-place task with
a hyper-redundant robotic arm. [109] initialize skill trees from human demonstrations,
improving them over time. However, their representations use expert demonstrations
and do not represent action on higher levels of abstractions. Conversely, [94] apply
hierarchical policy learning to solve a 2-DOF stand-up task for a robotic arm. They
exploit Q-learning and actor-critic methods to learn both task decompositions and
local trajectories that solve specific sub-goals. Alternatively, [89] and [6] formalize
action hierarchies to represent actions at different levels of abstraction. However,
these procedures are not easily scalable to higher dimensionality problems.

In contrast in this chapter, we adopt a hierarchy of actions to make state-of-
the-art planning algorithms practical in robotic settings. To this end, we introduce
h-LoOP [35], an iterative algorithm for learning hierarchical value functions, that
are used to (1) capture multi-layered affordance semantics, (2) generate policies
by scaffolding the acquired knowledge, and (3) guide the exploration of the state
space. As in the case of LoOP, the goal of h-LoOP is to learn κ-parameters (i.e. θ)
to shape affordance semantics of robot actions, however, it also learns hierarchical
relations among κ-functions. It is worth remarking that, in previous chapters, the
design of κ-function relations and interactions is decided before robots deployment.
Accordingly, Figure 9.1 recalls the overall SK4R representation and highlights (in
yellow) the subject of study of this chapter: (1) how to learn θ parameters for robot
planning and (2) how to learn a hierarchical representation of robot actions to enable
task decompositions.

More in detail, h-LoOP improves LoOP by building upon concepts from previ-
ous literature, such as Hierarchical Task Networks (HTNs) [60], semi-MDPs [208] and

9.1 Hierarchical Optimistic Planning 139

𝑠1, 𝑎2

𝑠2, 𝑎3

𝑠3, 𝑎1

𝑠4, 𝑎4

Ƹ𝑠1
2

ො𝑎1
2

Ƹ𝑠1
1 Ƹ𝑠2

1
ො𝑎1
1 ො𝑎2

1

A
S

12 3
4

1
2

3

4

Figure 9.2. h-LoOP generates high-level representations of actions, that are used to
improve the exploration of the search space. In this figure, we show the action hierarchy
generated for a fetching task using a redundant KUKA light weight arm.

MAX-Q decompositions [54], to decompose the learning procedure and to generate
both action abstractions and search space constraints. The action hierarchy formal-
ized by h-LoOP is learned iteratively by evaluating state-actions pairs generated by
UCT after each episode. Figure 9.2 shows an example of such a hierarchy where
states and actions are associated at different layers of abstraction. h-LoOP assigns
states and actions to different clusters scl and acl by evaluating the similarity of
successor states that the agent can reach, by applying the actions in acl in the states
contained in scl . Intuitively, similar successor states have similar reward values and
can be evaluated altogether when exploring the search space. Different layers provide
different granularity of affordance semantics (the higher the more coarse) and help
the learning process to evaluate states hierarchically. h-LoOP runs UCT to explore
the environment by sampling the joint distribution of rewards and state-action pairs.
Each sample is continuously aggregated into a dataset, that is used to estimate –
by means of Q-learning – the value function Qλ of each layer λ in the hierarchy.
Specifically, at each layer, Monte Carlo search is ran for a subset of actions that are
evaluated according to their Q-value, thus driving the node-expansion phase during
episode simulation.

In this chapter, our aim is to demonstrate that Q-values can be learned hierar-
chically to influence exploration, and to represent affordance semantics at different
levels of abstraction, thus linking learning techniques to low-level agent controls. The
main contributions of h-LoOP consists in: (1) a novel integration of Monte-Carlo
tree search, hierarchical decision-theoretic planning and Q-learning, that enables

140 9. SK4R for Hierarchical Optimistic Planning

good performance with selective state exploration and improved generalization capa-
bilities; in (2) a two-sided extension of TD-search, that not only executes on multiple
hierarchy layers, but also constructs upper confidence bounds on the value functions
– and selects actions optimistically with respect to those; and in (3) a reduction of
the curse-of-dimensionality that is obtained by means of focused exploration. We
evaluated the h-LoOP performance in two different scenarios, an fetching task with
a 7-DOF KUKA light weight arm (as in Chapter 8) and, a pick and delivery task
with a Pioneer P3-DX robot, where the agent has to collect an item and delivering
it. The results show a reduction in the number of states explored – which makes the
method more practical in robotics – and, the ability of h-LoOP to learn affordance
semantics of robot actions and their hierarchical relations.

9.1.1. h-LoOP

In respect to the LoOP formulation, we describe h-LoOP by adopting the Markov
Decision Process (MDP) notation, in which the decision-making problem is repre-
sented as a tuple MDP = (S,A, T , R, γ), where S is the set of discrete states of the
environment, A represents the set of discrete actions, T : S × A× S → [0, 1] is a
stochastic transition function that models the probabilities of transitioning from
state s ∈ S to s′ ∈ S when taking action a ∈ A, R : S × A → R is the reward
function, and γ is a discount factor in [0, 1). Transitions and rewards are assumed
to be Markovian – i.e., a function of the current state only – and decisions are
represented through a policy π, that defines the behavior of an agent by mapping
states to actions.

Given an MDP, the goal consists in finding a policy π(s) that maximizes its
expected cumulative reward Eπ[∑T

t=0 γ
tR(st, at)] over a finite or infinite time horizon

T . This can be obtained by using the notion of action-value function Qπ(s, a) and
by solving its corresponding Bellman optimality equations [208]

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′) max
a′

Q∗(s′, a′).

In this chapter, we address the generalization problem with ΦGMM by approximating
the Q function using probability densities in the form of a mixture of K Gaussians
(i.e., Gaussian Mixture Models – GMMs), with K determined in an adaptive man-
ner [5]. However, nothing prevents the implementation of h-LoOP with DNN, or an
equivalent function approximator. Accordingly, θ parameters are learned and used
as described in Section 4 in Chapter 8 (Page 118).

h-LoOP is an iterative algorithm that, at each iteration i, generates a new policy
πi which improves πi−1. To obtain an improved πi, our algorithm leverages (1)
data aggregation [186], and (2) UCT [26] for balancing between exploration and
exploitation on the tree.

Exploration and Sample Collection

At every step h, for h = 1 . . . H, UCT simulates the execution of all the actions
Ãs ⊆ A that are “admissible” in sh, as detailed in next section. Each simulation
executes an action a ∈ Ãs, followed by K roll-outs, that run an ε-greedy policy based

9.1 Hierarchical Optimistic Planning 141

on πi−1 until a terminal state is reached. The best action ah is selected according to

e = C ·
√

log(∑a η(sh, a))
η(sh, a)

a∗h = arg max
a

Q̂(sh, a) + e,

(9.1)

where C is a constant that multiplies and controls the exploration term e, and
η(sh, a) is the number of occurrences of a in sh. Since we assume a discrete state
space S, for continuous problems we define a similarity operator that informs the
algorithm whether the difference of two states is smaller than a given threshold ξ –
thus discretizing the space.
During each roll-out:

• a dataset Di of samples x = (s, a,Qi(s, a)) is collected to improve our estimate
Q̂, as detailed in Section 4 in Chapter 8;

• h-LoOP uses UCT as an expert and collects a dataset Di of H samples
x = (sh, a∗h, s′h) that are selected by the tree search

• similarly to DAgger [186], Di is aggregated into a dataset D0:i = D0:i−1 ∪ Di.

When H UCT steps are run, the complete dataset D0:i is used to generate hierarchy
clusters – as detailed in the next section – and learn a new policy πi.

9.1.2. Hierarchical Action Selection
The hierarchical model adopted in h-LoOP builds upon the concepts of High-Level
Actions (HLAs) and Reachable Sets (RSs) in HTNs [60].

• HLAs are defined recursively as a sequence of action primitives and/or other
HLAs. When a HLA is composed by only primitives, such sequence is called
“implementation”.

• RSs model preconditions and effects of HLAs. They are defined as the union of
possible states reachable by the the different implementations of HLAs. A RS is
bounded by a pessimistic RS− and optimistic RS+ set. RS− represents the set
of states that are reached independently from the chosen implementation, while
RS+ represents the set of states reached by all the possible implementations.
Reachable sets describe interesting properties: (1) if RS− intersects the set
of goal states, then a sequence of admissible actions leading to the goal is
found; (2) if, instead, RS+ intersects the set of goal states, a plan exists but
its implementations do not reach the goal yet.

Using similar concepts, we allow h-LoOP to evaluate actions at multiple levels of
abstraction. In order to better describe the action hierarchy generated by h-LoOP,
Figure 9.3 illustrates a simplistic example. Specifically, a hierarchy of actions is
obtained using an agglomerative clustering algorithm, which is ran on the set of
next states {s′} present in the D0:i. Our key assumption is that similar s′ encode
information about actions with similar effects and thus can be clusterized altogether.

142 9. SK4R for Hierarchical Optimistic Planning

𝐷0:𝑖 = 𝑠, 𝑎, 𝑠′ 0, 𝑠, 𝑎, 𝑠′ 1, 𝑠, 𝑎, 𝑠′ 2, 𝑠, 𝑎, 𝑠′ 3, 𝑠, 𝑎, 𝑠′ 4, … , 𝑠, 𝑎, 𝑠′ 𝑑

𝑠′0
𝑠′4

𝑠′1
𝑠′3

𝑠′𝑑
𝑠′2

next states

𝑠′

𝑠′0
𝑠′1

𝑠′2

Agglomerative
clustering

ො𝑎

ො𝑎0

ො𝑎1

ො𝑎2

𝑎1
𝑎3
𝑎𝑑

𝑎2

𝑎0
𝑎4

Action
hierarchy

Figure 9.3. Simplistic example of action clusters generated by h-LoOP. The next states
s′ existing in the complete dataset D0:i (at iteration i) are agglomerated in a predefined
number of clusters. The structure of the generated hierarchy of states is preserved to
define a second hierarchy H dedicated to actions. In fact, actions a, associated to s′ in
D0:i, are arranged along H by retracing actions of D0:i, whose next states s′ have been
clustered together.

Particularly, we refer to H as the set of layers in the action hierarchy generated
by the clustering algorithm. The clustering routine organizes {s′} in clusters ŝ′
over a predefined number of layers, which are then tranferred into the action space,
generating a set of action clusters â organized along the same structure. Such a
mapping is realized by evaluating each element contained in the ŝ′ clusters and
backpropagated to the original dataset D0:i in order to retrieve the set of actions
generating the transitions to the {s′} states. In fact, dataset elements are a tuple of
three components encoding a transition from the current state s to the next state s′
by means of the action a.

It is important to highlight that, in this setting, it is no possible to clusterize
actions directly, since actions are referred to at the symbolic level (e.g. move-arm,
turn-body). Conversely, states are represented as feature vectors and it is possible
to define a distance operator to run the clustering algorithm. Moreover, the learner
cannot observe similarity among actions by means of their symbolic label. It is
intuitive, instead, to compare similarities of the effects of robot actions by observing
the next states within the dataset D0:i.

In our formulation, each action cluster â corresponds to a HLA in the layer
λ ∈ H, and each layer has an associated Qλ function, approximated as Q̂λ. The
result of choosing an action â consists of selecting a cluster of lower level actions
with a similar expectation to reach a desired cluster ŝ′. Noticeably, such a model
intrinsically connects to the concept of reachable sets. Clusters ŝ′ are in fact an
approximation of optimistic sets RS+, and they evaluate actions â that lead to more
rewarding states altogether.

h-LoOP uses each Qλ in s to select the set Ãs of admissible actions for UCT.

9.1 Hierarchical Optimistic Planning 143

Intuitively, a primitive action a is admissible in s if, for each layer λ, a belongs to
the cluster âλ selected according to Qλ. More formally:

Ãs =
⋃
a∈A

{
a | ∀λ ∈ H : a ∈ âλ

}
(9.2)

âλ = arg max
â

Qλ(s, â) + δλs,â (9.3)

δλs,â ∼ N (0, σ2(Qλ | s, â)),

where σ2 is the standard deviation of the regression approximation [5].
Through δλs,â, the prediction error for each action abstraction is captured, leading

to a more directed exploration of the action hierarchy. Action primitives are finally
chosen and executed by UCT according to the lowest-level Q̂, as detailed in previous
section. To obtain a less biased exploration and avoid value function over-fitting,
“inadmissible” actions are anyway expanded and selected by UCT with a 30%
probability.

9.1.3. h-LoOP Algorithm
The goal of h-LoOP consists of iteratively updating each layer’s value function
approximation Q̂λ, to generate a policy πi that maximizes the expected reward of
the agent. The underlying insight of h-LoOP is that, while exploring the search
space, collected state-action pairs are used at each iteration i to (1) update the
approximated Q functions for refining the policy πi−1 into a policy πi, and (2) use
Q-values to influence UCT exploration in accordance with Eq. 9.2. The complete
h-LoOP algorithm – described in Alg. 4 – adopts a procedure similar to LoOP,
however it enhances it as follows:

1. Roll-in. The agent follows the previous policy πi−1 and generates a set of st
states for T timesteps.

2. UCT search. For each of the generated states st, h-LoOP runs an UCT
search with horizon H. At each step h, UCT simulates the execution of every
admissible action in the set Ãs, computed according to Eq. 9.2. For each
action a ∈ Ãs, a simulation consists of the execution of a, followed by K
ε-greedy roll-outs based on πi−1, which are used to estimate the Q-values of
each visited state. Finally, for each step, the best action a∗h is (1) chosen
according to Eq. 9.1 and (2) aggregated into a dataset Di together with sh and
sh+1. It is worth remarking that a vanilla implementation of the UCT search
evaluates all possible actions and explores a significant amount of states to
generate an effective policy. Our approach, instead, leverages the hierarchical
structure of H to generate a restricted subset of admissible actions, with high
estimated Q-value. This efficiently reduces the exploration phase by guiding
the algorithm to discard actions that are not expected to improve πi−1.

3. Hierarchical data aggregation and Q̂ update. After UCT, new data
Di = {(st+h, a∗t+h, s′t+h+1) | h = 1 . . . H} is available to be aggregated into a
larger dataset Dπ,i. This dataset is used to generate clusters ŝ, â, and ŝ′ in
two steps: first, the sets of states {s} and {s′} in Dπ,i are separately clustered

144 9. SK4R for Hierarchical Optimistic Planning

Input: D0 dataset of random state action pairs {(s, a, s′)}.
Output: πN policy learned after N iterations of the algorithm.
Data: A set of primitive actions, N number of iterations of the algorithm, ∆ initial

state distribution, H UCT horizon, K ε-greedy roll-outs, T policy execution
timesteps, H set of layers.

begin
Initialize Q̂0 to predict 0.
Train classifier π0 on D0.
for i = 1 to N do

s0 ← random state from ∆
for t = 1 to T do

Get state st by executing πi−1(st−1).
Di ← UCT(H, st)
D0:i ← D0:i−1 ∪ Di
ŝ, ŝ′ ←agglomerativeClustering(Di)
â ← mapping(ŝ′)
foreach λ ∈ H do

// update estimated Q-values
R̄(ŝ, â)← 1

|(ŝ,â)|
∑
s∈ŝ,a∗∈âR(s, a∗)

Dλ,i ← getSamples(Di, R̄(ŝ, â))
Dλ,0:i ← Dλ,0:i−1 ∪ Dλ,i

Train Q̂λ,i(ŝ, â) on Dλ,0:i

end
end
Train classifier πi on Di

end
return πN

end

Algorithm 4: h-LoOP

within λ layers; then, the hierarchy of next state clusters ŝ′ is transferred into
the action space to generate the action clusters â, each of them corresponding
to high-level actions. In order to correctly update the Q̂λ estimation for
every â, samples of the form xλ = (ŝ, â, Qλ(s, â)) are generated for each
layer λ, with Qλ(s, â) determined through ΦGMM . Such samples are then
(1) aggregated into a dataset Dλ,0:i and (2) used to improve the estimate Q̂λ,
as described in previous sections. Specifically, Q̂λ is updated for each (ŝ, â)
containing the state-action pairs (st+h, a∗t+h) ∈ Duct, by using the averaged
reward R(st+h, a∗t+h) of the corresponding state-action pairs in the clusters
(ŝ, â).

4. Training. Once data aggregation has been performed, a new policy πi is
trained from the dataset Di.

9.2 h-LoOP Experimental Evaluation 145

1 2 3 4 5 6 7 8 9 10

Iteration N

0

2

4

6

8

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d
Policy Reward Values

h-LoOP2L

LoOP

vanilla-UCT

TD-search

random-UCT

(a) avg. cumulative reward

1 2 3 4 5 6 7 8 9 10

Iteration N

0

500

1000

1500

2000

2500

N
um

.
of

ex
pl

or
ed

st
at

es

Exploration
h-LoOP2L

LoOP

vanilla-UCT

TD-search

random-UCT

(b) number of explored states

Figure 9.4. Average cumulative reward and number of explored states obtained by h-
LoOP2L, LoOP, TD-search, random-UCT and vanilla-UCT in 10 iterations in the
Kuka fetching scenario. For each of them, the reward is averaged over 10 runs. The
function approximator has been implemented with GMMs.

9.2. h-LoOP Experimental Evaluation
We evaluate our approach in learning an effective policy for executing a fetching task,
and a pick and delivery task in a simple environment [54], with a reduced number of
state-action pairs. We compare our results with a random-UCT and vanilla-UCT
implementations, the TD-search [198] algorithm and different configurations of the
h-LoOP action hierarchy. We will refer to as LoOP as a basic implementation
of the action hierarchy composed solely by a single layer of the primitive actions.
Then, the random-UCT algorithm selects a random action at each h step of the
Monte Carlo search, while in the vanilla-UCT the algorithm expands all the robot
actions at each step. In all algorithms, we implement a shaped reward function that
computes reward values at each visited state. We deploy these algorithms within a
simulated environment on a 7 DOF KUKA arm and, on a Pioneer robot.

Experiments have been conducted within the V-REP simulation environment,
using a single Intel i7-5700HQ core, with CPU@2.70GHz and 16GB of RAM. For
both the scenarios, the UCT search has been configured as follows: (1) search horizon
H = 4; (2) exploration constant C = 0.707; (3) K = 3 roll-outs. The number of
components of the GMMs is evaluated according to the BIC criterion, which has
been tested using up to 6 Gaussians. Q-values are updated with a learning rate
α = 0.01, and a discounted factor γ = 0.8. The algorithm is ran for T = 15 timesteps
at each iteration. Moreover, stochastic actions are induced by randomizing the
outcome of an action with a 5% probability.

9.2.1. Fetching task

In this scenario the state of the problem is represented as a 7-feature vector, where
3 components represent the distance of the robot end-effector to the target, 3
components encode the distance to an obstacle introduced in the scene, and the
last component is the angle difference between the end-effector and world axis Z.
We include such component to bias the agent in learning to fetch an object with a

146 9. SK4R for Hierarchical Optimistic Planning

preferable orientation. The reward function is a weighted sum of such components,
and it is designed to promote states that are far from the obstacle, and close to the
target position. Additionally, it penalizes states in which the end-effector does not
point upwards, to simulate objects that have to be held with a preferred orientation
(e.g. a glass full of water). The robot explores an action space composed by 13 actions:
6 translation actions to move the arm back and forth along the Cartesian axes, and
6 rotation actions to move the arm counter-/clockwise on the Roll, Pitch and Yaw
angles. A no-op action is introduced to let the robot in its state. Figure 9.4a and
Figure 9.4b illustrate obtained results by reporting the average cumulative reward
and the number of explored states obtained during 10 iterations. In detail, reward
values are averaged over 10 simulated fetching trials for each of the iterations and
for each algorithm, the continuous lines represent average cumulative rewards while
the line width their standard deviation. In the explored state plots, the width of the
lines highlights the amount of states expanded during i with respect to the total
number of states explored until i− 1. While baseline algorithms perform worse in
terms of obtained rewards (random-UCT, TD-search), only the vanilla-UCT shows
results that are comparable to h-LoOP. However, the number of explored states of
vanilla-UCT is significantly higher. Specifically, the naive implementation of UCT
evaluates more than two times the number of states that h-LoOP (∼55%). In fact,
h-LoOP approximates the optimistic set of a HTN by evaluating only admissible
actions that are expected to lead the search towards states with high reward. This is
achieved by exploiting the action hierarchy updated at each iteration. To this extent,
the results compare two different configurations of h-LoOP. The first, LoOP, is
organized as a single layer structure, where the number of clusters within the layer is
equal to the number of primitive actions, while the latter configuration, h-LoOP, is
organized over 2 layers where the first layer also contains the set of primitive actions
and, the second layer groups actions in 5 clusters. Again h-LoOP further reduces
the number of explored states and confirms that a hierarchical evaluation of the
search space improves the learning process. However, we do not notice a significant
improvement between h-LoOP and LoOP. We associate cause of the comparable
reward signals to the task complexity of the proposed scenario. In fact, differently
from the “pick and delivery” task, the structure of “fetching” is not hierarchical
and a hierarchical representation of Q-values may not be necessary. Still, we can
observe that increasing the number of layers in the representation, even when that is
not needed, does not damage the obtained performance and, still, slightly decreases
the number of visited states. Additionally, it can be ran different evaluations to
determine the optimal number of clusters within layers, however, for these scenarios,
such a number is empirically chosen.

9.2.2. Pick and delivery task

Here the environment is represented as a 5x5 grid-world where the Pioneer has
to collect an object at a random location and, carry it to an operator Figure 9.5.
The scenario resembles the one addressed by the “taxi-agent” in [54], however a
comparison with max-Q would not be proper since our reward is implemented to be
shaped and not sparse; and we implement our approach in a robotic context where
the reduced number of samples and iterations are limiting constraints. Here, the

9.2 h-LoOP Experimental Evaluation 147

Figure 9.5. “Pick and delivery” scenario, the environment is composed by 4 working
stations, the robot has to collect one item and delivery it to the operator (blue station).

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration N

0

2

4

6

8

10

12

14

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

h-LoOP3L

h-LoOP2L

LoOP

vanilla-UCT

TD-search

random-UCT

(a) avg. cumulative reward

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration N

0

10000

20000

30000

40000

N
um

.
of

ex
pl

or
ed

st
at

es

Exploration
h-LoOP3L

h-LoOP2L

LoOP

vanilla-UCT

TD-search

random-UCT

(b) number of explored states

Figure 9.6. Average cumulative reward and number of explored states obtained by LoOP,
h-LoOP2L, h-LoOP3L, TD-search, random-UCT and vanilla-UCT in 10 iterations in
the Kuka fetching scenario. For each of them, the reward is averaged over 50 runs. The
function approximator has been implemented with GMMs.

state is a 9-feature vector where the first two components represent the position of
the robot, the following two encode the current target of the robot (either the object
station or the delivery one), the fifth component indicates whether the object is
picked, and the last four components indicate whether there is an obstacle in one of
the four possible directions (e.g. wall). The action space of the agent in composed by
6 actions, four to move through cells, and two to pick and drop the object. Moreover,
we assume that a robot is helped to collect and drop the objects by an external
operator. The reward function is a weighted sum of two components encoding the
distance of the robot to the target object and the distance of the object to its delivery
station. This task represents a more complex scenario due to temporal constraints
imposed by the status of the object, however, as in the previous scenario, a similar
analysis of the results can be observed. Figure 9.6a and Figure 9.6b illustrate the
average cumulative reward and the number of explored states obtained during 50
iterations. Vanilla-UCT has comparable reward values, but the number of explored

148 9. SK4R for Hierarchical Optimistic Planning

states is still significantly higher than each configuration of h-LoOP. The action
hierarchy of h-LoOP, in fact, improves the overall performance showing the best
results with a 3 layered structure. Particularly in these complex scenarios – where
ordering constraints exist and the task can be decomposed – h-LoOP performs
better and confirms that a multi-layered representation of affordance semantics
improves the exploration of the search space.

9.3. Concluding Remarks

In this chapter, we extended the formulation of LoOP to hierarchical optimistic
planning. The work described here aims at analyzing the correlation between κ-
parameters and relations among κ-functions. In particular, whether it is possible to
learn hierarchies of κ-functions. Hence, we centered our work around the question:

5. We illustrated how SK4R can hierarchical define κ-functions to address reflec-
tion [131]. This lead us to investigate whether it is possible to learn hierarchies
of κ-functions to support task decomposition by reusing ASs of primitive ac-
tions?

This is an important feature of the SK4R representation that enables the
κ-agent to reuse learned AS to represent compositions of actions and sub-tasks.
Therefore, it is key to our goal of designing a practical and functional representation
to support general purpose tasks, for an autonomous robot. To this end, we focused
on the interaction of SK4RP and the composition of κ-functions representing
primitive robot actions, and, we introduced h-LoOP, an iterative learning algorithm
of hierarchical value functions for optimistic planning. We described how (1) it
determines hierarchies of affordance semantics within the SK4R representations
by clustering actions at different levels of abstraction and how (2) it improves
search space exploration in order to generate efficient policies. The experimental
evaluation shows the efficacy of h-LoOP in enabling the agent to learn a good
policy by evaluating a significant lower number of states. However, the reported
results suggest that the benefits of applying the h-LoOP algorithm may vary in
accordance with the application addressed. In fact, as we have seen in the fetching
task scenario, if the structure of the problem is inherently not hierarchical, then
the improvement of h-LoOP is not significantly higher with respect to LoOP.
But, as expected the, even if the improvement is not remarkable, the algorithm
does not damage the overall performance. Hence, such a result proves h-LoOP
to have a better generalization capability. Conversely, in the case in which the
problem addressed allows for a hierarchical formulation, the benefits demonstrated
by h-LoOP are significant. As observed in the pick and place scenario. Still, the
improvement carried out by different configurations of the actions hierarchies is not
constant to the number of layers. This suggests that, in order to obtain a significant
improvement, the configuration of h-LoOP has to be done carefully, and its design
choices have to take into consideration the structure of the problem at hand.

However, h-LoOP can be used to solve several tasks in multiple domains.
Moreover, as a future work strictly related to this chapter, we want to explore the

9.3 Concluding Remarks 149

possibility of transferring hierarchical value functions among learning agents in order
to take advantage of abstract actions and their semantics in different tasks.

151

Part III

Conclusion

153

Chapter 10

Conclusions

R ealizing autonomous agents able properly to interpret the external world and
operate in it is the ultimate goal of this thesis. In previous chapters, we

motivated our work, conxtetualized it within the state-of-the-art and found different
research aspects that, have demonstrated the validity of our contribution. Finally,
this chapter concludes our dissertation by summarizing its content and highlighting
its contributions. Throughout this chapter we will retrace the research problems
addressed by this thesis, and outline the major findings along with. Then, a discussion
is presented about further improvements and new directions for future work:

10.1. Summary and Contributions
The goal of this thesis is to investigate how a proper representation contributing
spatial knowledge and knowledge about affordances can improve robot behaviors
and aid action planning for general purpose tasks. Specifically, we centered our
work around two questions that originated the research presented and motivate this
thesis.

1. How can the robot represent and highlight important features of the environ-
ment to support actions execution?

2. How can the robot use spatial knowledge and knowledge about spatial affor-
dances to design and learn goal-oriented behaviors to support general purpose
tasks?

Hence, we find the motivations of our work in the need of deploying robotic
agents able to (1) refer to the environment at different levels of abstractions – in
order to interact with humans and plan actions for both local and global behaviors;
(2) understand where and when an action supports task completion. The latter
is key for an autonomous agent. It enables the robot to reason about the effects
that its own actions have on the external world. In fact, the agent will no longer
execute an action by means of a mere hand-crafted behavioral routine, rather, it
will execute an action because it “knows” that the resulting state leads it one step
closer to success in its task.

We studied how to enable effective behaviors by relying upon a proper rep-
resentation of the operational environment, its current state and the task to be

154 10. Conclusions

κ-function
parameters
𝑺𝑲𝟒𝑹𝑷

𝒔𝒕 ∈ 𝑺state of E
𝑺𝑲𝟒𝑹𝑬

κ𝝉(𝒔𝒕, 𝜽)

AS𝑎0

AS𝜏
AS𝑎1

AS𝑎𝐴−1

κ𝑎0,𝜏(𝑠𝑡, 𝜃)

κ𝑎1,𝜏(𝑠𝑡, 𝜃)

κ𝑎𝐴−1,𝜏(𝑠𝑡 , 𝜃)

…
𝜓

𝜽 ∈𝛩

𝑺𝑲𝟒𝑹

Chapter 4
[171, 179]

Chapter 5
[158]

Chapter 6
[1, 34, 174]

Chapter 7
[169, 170]

Chapter 8
[172, 173, 175]
[176, 177]

Chapter 9
[35]

Figure 10.1. A representation for spatial knowledge for robots – SK4R. The working
domain of each of the technical chapters is highlighted with different balloons and colors.
References to chapters and related publications are added to provide a classification of
the work of this thesis.

accomplished by the robot. To pursue such a goal, we have taken into consideration
different research areas related to different robotic applications.

The first aspect addressed in this thesis has been the design of a spatial knowledge
representation that could embrace a functional point of view about the environment
and explicitly model robot actions. To this end, Chapter 4, introduces and describes
the SK4R representation by highlighting its main features and by demonstrating
how it can be exploited to encode affordance semantics. Figure 10.1 recalls the
SK4R representation, and associates, the contribution of each chapter to a particular
SK4R component. In each chapter, we investigated a different research topic that
contributes to the formalization of SK4R, and thus, to dig into the manifold
opportunities and challenges brought by the chosen representation:

• Chapter 5 is focused on the implementation of a spatial knowledge represen-
tation for an indoor service robot. The goal is to provide an implementation
of the environmental module of SK4R (SK4RE , red in Figure 10.1) able to
generate a detailed representation of the state of the environment. To this end,
we defined a hierarchical representation of spatial knowledge, whose layers

10.1 Summary and Contributions 155

interact by means of a novel deep learning architecture, namely SPNs. The
experimental evaluation shows that the proposed implementation of SK4RE

can effectively label particular areas of the environment and infer missing
knowledge by performing top-down inference. Additionally, such an imple-
mentation of SK4RE is able to encode the state of large environments and
support action execution of indoor service robots. In particular, such an
implementation enables long-term planning, and more reactive behaviors in
the peripersonal domain of the robot.

• Chapter 6 further investigates the formalization of SK4RE . In this case,
however, we frame our contribution in the context of social robotics. We
characterize the state of the environment through several social factors that
may, or may not, enable acceptable behaviors when a human-robot social
interaction has to be conducted. We evaluate different social factors in two user
studies. The reported findings highlight which is the best social configuration
that favors a more natural interaction. The goal of this chapter is to generate
a set of guidelines for an autonomous robot that has to feature a social
understanding of its operational environment.

• Chapter 7 investigates both how to define a domain-specific representation
for multi-robot systems, and how to design κ-function parameters (i.e. θ) to
support collective and individual behaviors. To this extent, this chapter imple-
ments both the environmental module SK4RE , and the κ-function parameters
module SK4RP (highlighted in red and in blue in Figure 10.1, respectively).
The chapter contributes to a novel distributed coordination system able to
adapt the team strategy to current configuration of the environment (e.g. poor
network conditions). We introduced a context-aware coordination system
that shares events in order to distributively reconstruct an approximate world
model. Such a model is then used by each robot to deliberate the next action
to execute. The experimental evaluation shows the benefits of a dynamic coor-
dination strategy that, via κ-function parameters, can influence the behavior
of the team and preserve a satisfying performance.

• Chapter 8 is dedicated to the SK4RP parameter module. This module is key to
our representation as it exposes important parameters of the κ-functions that
can be learned and exploited to influence affordance semantics of robot actions
(in blue in Figure 10.1). Hence, SK4RP represents the main vehicle to shape
and influence robot behaviors. To this end, the chapter introduces and describes
LoOP, a novel iterative algorithm for optimistic planning with learned value
functions. LoOP works as combination of MC planning and Q-learning, and
makes robot planning practical in complex and different applications. The
experimental evaluation shows that LoOP leads to a remarkable improvement
in the computational load of the algorithm (with respect to other baseline
algorithm) without loss in the performance. Such a feature makes our approach
more practical in difficult robotics applications, where the lack of training
examples is often a limiting condition.

• Chapter 9 extends the formulation of LoOP to a hierarchical formalization

156 10. Conclusions

of affordance semantics in order to allow for task decomposition. The study
in this chapter is centered on two parts of the SK4R representation, namely
the κ-function parameters module and the κ-functions (highlighted in blue
and in green in Figure 10.1 respectively). To this end, we introduced h-LoOP,
an iterative learning algorithm of hierarchical value functions for optimistic
planning. h-LoOP is used to determine hierarchies among affordance semantics
and guide the exploration at planning time. In fact, the experimental evaluation
shows the effectiveness of h-LoOP in enabling the agent to learn a good policy
by evaluating a significant lower number of states.

Finally, we recall that our dissertation investigates a spatial knowledge repre-
sentation, by showing its benefits for several robotic applications and on different
robotic platform. In each of the addressed scenarios, a proper formulation of spa-
tial knowledge shows an improvement in the robot(s) performance and to support
goal-oriented behaviors. In fact, the manifold experimental evaluations confirm that
spatial knowledge can be used to better represent what the robot “knows” and how
it should properly act in the external world.

In fact, a part from the important achievements of the applications in each chapter,
our main contributions lie in the formalization of a new functional perspective
in representing spatial knowledge and in the formalization of SK4R. We have
demonstrated that having a representation explicitly modeling robot actions is key
to adapt robot behaviors to complex environments. The paradigm proposed by
the SK4R representation provides the robot with the possibility to structure and
maintain (1) information about the environment and (2) knowledge about its own
actions. These two aspects of SK4R enable to perform effective planning and
provide the robot with the ability to highlight relevant aspects of the world with
respect to what the it is capable of. This is extremely important, in fact, SK4R
only represents aspects of the world relevant to characterize the task of the robot,
and to support its actions. The contribution brought by SK4R constitutes a novel
perspective in knowledge representation for an autonomous robot in unstructured
environments. Such a perspective, in fact, is key to model what the robot can do in
an environment, rather than, modeling the the environment as an entity separated
from the robot itself.

10.2. Open Questions and Future Work
SK4R is a spatial knowledge representation ranging from world state representations
to high-level action planning. To assess its effectiveness , we had the opportunity to
traverse different research topics related to robotics, each of which can be further
investigated more in depth. Hence, a considerable amount of open questions and
new research directions might be suggested. To provide few examples:

1. In the contributions focusing on the formalization of the environment, key
landmarks are selected by an expert before deployment. In contrast, it would
be very interesting to let the robot discover important landmarks of the
environment by itself. In general, once learned, the robot knowledge does not
change. This leaves space to the study of an interesting aspect. How does

10.2 Open Questions and Future Work 157

robot knowledge should continually be updated? Can the robot recognize
knowledge which is actual meaningful to its scope? Humans always update
their belief through continuous experience on daily basis. Is it possible to
mimic such a skill? Is it beneficial in robotics?

2. Under which circumstances does spatial knowledge have to be updated? How
can dynamic changes of the environment be addressed? Is it possible to select
deprecated knowledge existing in SK4RE , and erase it from the general state
representation?

3. Specific to the multi-robot scenarios in Chapter 7, can contexts and events be
discovered dynamically depending on the configuration of the robots environ-
ment? Can κ-parameters be learned in this scenario?

4. The discussion in Chapter 8 and Chapter 9 arise different new open questions.
How policies learned to address a single task, can be combined to tackle
compositions of them? To what extent is it possible to transfer policies among
different agents? If yes, how does it change the affordance semantics with
respect to the new platform?

Summarizing, by developing an end-to-end knowledge representation, this thesis
faces interesting problems related to robotics and AI. Its goal is to determine
important features of the operational environment in order to shape and support
robots behaviors. In fact, the goal, pursued throughout this entire work, is to enable
a robotic agent to exploit spatial knowledge in order to feature effective and practical
capabilities. SK4R, indeed, can improve the performance of a robotic system in
different application scenarios and in accomplishing various tasks.

After an evaluation of the research conducted within the context of this thesis,
we can confirm that a proper representation of spatial knowledge and affordance
semantics can enable robots to behave in complex environments and achieve a
human-compatible understanding of the perceived world. This thesis develops an
novel approach to model spatial knowledge and investigates different aspects where it
can be effectively employed. Our objective was to validate the overall representation,
and its individual components, by demonstrating their benefits and improvement to
each considered robotic scenario.

But our dissertation achieves more. It defines new research questions that aim at
better investigating new perspectives in representing spatial knowledge affordance
semantics. Each of the future directions, defined by a more in-depth investigation of
each SK4R components, requires a considerable effort that – along this thesis – we
demonstrated to be worth investigating.

159

Bibliography

[1] Vanzo A., Riccio F., Sharf M., Mirabella V., Catarci T., and Nardi D. Who is willing
to help robots? a user study on collaboration attitude. journal paper under review,
Feb 2018. (Cited on pages 10, 58, 82, and 154.)

[2] Michal Abaffy, Tomáš Brázdil, Vojtěch Řehák, Branislav Bošanskỳ, Antonín Kučera,
and Jan Krčál. Solving adversarial patrolling games with bounded error. In Proceedings
of the 2014 international conference on Autonomous agents and multi-agent systems,
pages 1617–1618. International Foundation for Autonomous Agents and Multiagent
Systems, 2014. (Cited on page 106.)

[3] David Abel, D. Ellis Hershkowitz, Gabriel Barth-Maron, Stephen Brawner, Kevin
O’Farrell, James MacGlashan, and Stefanie Tellex. Goal-based action priors. In
Twenty-Fifth International Conference on Automated Planning and Scheduling, 2015.
(Cited on page 54.)

[4] F. Abtahi and M. R. Meybodi. Solving multi-agent markov decision processes using
learning automata. In 2008 6th International Symposium on Intelligent Systems
and Informatics, pages 1–6, Sept 2008. doi: 10.1109/SISY.2008.4664909. (Cited on
page 41.)

[5] A. Agostini and E. Celaya. Reinforcement learning with a gaussian mixture model. In
The 2010 International Joint Conference on Neural Networks, pages 1–8, July 2010.
doi: 10.1109/IJCNN.2010.5596306. (Cited on pages 118, 140, and 143.)

[6] Ankit Anand, Aditya Grover, Mausam Mausam, and Parag Singla. Asap-uct: Abstrac-
tion of state-action pairs in uct. In Proceedings of the 24th International Conference
on Artificial Intelligence, IJCAI’15, pages 1509–1515. AAAI Press, 2015. ISBN 978-1-
57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832415.2832459. (Cited
on page 138.)

[7] D. Anguelov, D. Koller, E. Parker, and S. Thrun. Detecting and modeling doors
with mobile robots. In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004
IEEE International Conference on, volume 4, pages 3777–3784 Vol.4, April 2004. doi:
10.1109/ROBOT.2004.1308857. (Cited on page 3.)

[8] B. D. Argall, E. L. Sauser, and A. G. Billard. Tactile guidance for policy refinement
and reuse. In 2010 IEEE 9th International Conference on Development and Learning,
pages 7–12, Aug 2010. doi: 10.1109/DEVLRN.2010.5578872. (Cited on pages 39
and 42.)

[9] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2-3):235–256, May 2002. ISSN
0885-6125. doi: 10.1023/A:1013689704352. (Cited on page 29.)

[10] J. Aulinas, Y.R. Petillot, J. Salvi, and X. Lladó. The slam problem: a survey. Frontiers
in Artificial Intelligence and Applications, 184:363–371, Oct. 22-24 2008. (Cited on
page 36.)

http://dl.acm.org/citation.cfm?id=2832415.2832459

160 Bibliography

[11] A. Aydemir, A. Pronobis, M. Göbelbecker, and P. Jensfelt. Active visual object search
in unknown environments using uncertain semantics. IEEE Transactions on Robotics,
29(4):986–1002, Aug 2013. ISSN 1552-3098. doi: 10.1109/TRO.2013.2256686. (Cited
on pages 6 and 61.)

[12] E. Babaians, N. Khazaee Korghond, A. Ahmadi, M. Karimi, and S. S. Ghidary.
Skeleton and visual tracking fusion for human following task of service robots. In
2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), pages
761–766, Oct 2015. doi: 10.1109/ICRoM.2015.7367878. (Cited on page 54.)

[13] Usman Babawuro and Zou Beiji. Knowledge representation: a general survey and
techniques for sound knowledge based systems. Int J Intell Inf Process, 2(4):16–22,
2011. (Cited on page 15.)

[14] J. A. Bagnell and J. G. Schneider. Autonomous helicopter control using reinforcement
learning policy search methods. In 2001 IEEE International Conference on Robotics and
Automation, volume 2, pages 1615–1620 vol.2, 2001. doi: 10.1109/ROBOT.2001.932842.
(Cited on page 39.)

[15] E Bastianelli, DD Bloisi, R Capobianco, F Cossu, G Gemignani, L Iocchi, and D Nardi.
On-line semantic mapping. In Advanced Robotics (ICAR), 2013 16th International
Conference on, pages 1–6. IEEE, 2013. doi: 10.1109/ICAR.2013.6766501. (Cited on
pages 23 and 37.)

[16] M. R. Batista, A. H. M. Pinto, and R. A. F. Romero. Addressing escorting by behavior
combining using multiple differential drive robots. In 2015 12th Latin American
Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR),
pages 187–191, Oct 2015. doi: 10.1109/LARS-SBR.2015.55. (Cited on page 54.)

[17] Daniel S. Bernstein, Christopher Amato, Eric A. Hansen, and Shlomo Zilberstein.
Policy iteration for decentralized control of markov decision processes. CoRR,
abs/1401.3460, 2014. URL http://arxiv.org/abs/1401.3460. (Cited on page 41.)

[18] N. Blodow, L. C. Goron, Z. C. Marton, D. Pangercic, T. Rühr, M. Tenorth, and
M. Beetz. Autonomous semantic mapping for robots performing everyday manipulation
tasks in kitchen environments. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4263–4270, Sept 2011. doi: 10.1109/IROS.2011.
6094665. (Cited on page 23.)

[19] Domenico D. Bloisi, D. Nardi, F. Riccio, and F. Trapani. Context in Robotics and
Information Fusion, pages 675–699. Springer International Publishing, 2016. ISBN
978-3-319-28971-7. doi: 10.1007/978-3-319-28971-7_25. (Cited on page 9.)

[20] T. M. Bonanni, B. Della Corte, and G. Grisetti. 3-d map merging on pose graphs.
IEEE Robotics and Automation Letters, 2(2):1031–1038, April 2017. doi: 10.1109/
LRA.2017.2655139. (Cited on page 36.)

[21] Alejandro Bordallo, Fabio Previtali, Nantas Nardelli, and Subramanian Ramamoorthy.
Counterfactual reasoning about intent for interactive navigation in dynamic environ-
ments. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2943–2950, 2015. doi: 978-1-4799-9993-4. (Cited on pages 2 and 3.)

[22] D. Boud, R. Keogh, and D. Walker. Reflection: Turning Experience Into Learning.
Kogan Page, 1985. ISBN 9780850388640. (Cited on pages 6 and 50.)

[23] Michael Bowling. Convergence problems of general-sum multiagent reinforcement
learning. In In Proceedings of the Seventeenth International Conference on Machine
Learning, pages 89–94. Morgan Kaufmann, 2000. (Cited on page 121.)

http://arxiv.org/abs/1401.3460

Bibliography 161

[24] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. V. Gool. Robust
tracking-by-detection using a detector confidence particle filter. In 2009 IEEE 12th
International Conference on Computer Vision, pages 1515–1522, Sept 2009. doi:
10.1109/ICCV.2009.5459278. (Cited on page 3.)

[25] E. Broadbent, R. Stafford, and B. MacDonald. Acceptance of healthcare robots for
the older population: Review and future directions. International Journal of Social
Robotics, 1(4):319, Oct 2009. ISSN 1875-4805. doi: 10.1007/s12369-009-0030-6. URL
https://doi.org/10.1007/s12369-009-0030-6. (Cited on page 1.)

[26] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in Games,
4(1):1–43, March 2012. ISSN 1943-068X. doi: 10.1109/TCIAIG.2012.2186810. (Cited
on pages 29, 38, 112, and 140.)

[27] Anders Glent Buch, Dirk Kraft, Joni-Kristian Kämr̈äinen, Henrik Gordon Petersen, and
Norbert Krüger. Pose Estimation using Local Structure-Specific Shape and Appearance
Context, pages 2080–2087. IEEE, United States, 2013. ISBN 978-1-4673-5641-1. doi:
10.1109/ICRA.2013.6630856. (Cited on page 18.)

[28] Lucian Busoniu and Remi Munos. Optimistic Planning for Markov Decision Processes.
In 15th International Conference on Artificial Intelligence and Statistics, AISTATS-
12, volume 22 of Journal of Machine Learning Research: Workshop and Conference
Proceedings, pages 182–189, La Palma, Canary Islands, Spain, April 2012. URL
https://hal.archives-ouvertes.fr/hal-00756736. (Cited on page 29.)

[29] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard. Learning
and reproduction of gestures by imitation. IEEE Robotics Automation Magazine, 17
(2):44–54, June 2010. ISSN 1070-9932. doi: 10.1109/MRA.2010.936947. (Cited on
page 112.)

[30] Y. Uny Cao, Alex S. Fukunaga, and Andrew Kahng. Cooperative mobile robotics:
Antecedents and directions. Autonomous Robots, 4(1):7–27, Mar 1997. ISSN 1573-7527.
doi: 10.1023/A:1008855018923. URL https://doi.org/10.1023/A:1008855018923.
(Cited on page 40.)

[31] J. Capitan, M. T. J. Spaan, L. Merino, and A. Ollero. Decentralized multi-robot
cooperation with auctioned pomdps. In 2012 IEEE International Conference on
Robotics and Automation, pages 3323–3328, May 2012. doi: 10.1109/ICRA.2012.
6224917. (Cited on pages 41 and 96.)

[32] R. Capobianco, Guglielmo Gemignani, Domenico Bloisi, D. Nardi, and L. Iocchi.
Automatic extraction of structural representations of environments. In Intelligent
Autonomous Systems 13, pages 721–733. Springer International Publishing, 2014. ISBN
978-3-319-08337-7. doi: 10.1007/978-3-319-08338-4_52. (Cited on page 37.)

[33] R. Capobianco, J. Serafin, J. Dichtl, G. Grisetti, L. Iocchi, and D. Nardi. A proposal
for semantic map representation and evaluation. In 2015 European Conference on
Mobile Robots, pages 1–6. IEEE, 2015. doi: 10.1109/ECMR.2015.7324198. (Cited on
pages ix and 22.)

[34] R. Capobianco, Guglielmo Gemignani, L. Iocchi, D. Nardi, F. Riccio, and A. Vanzo.
Contexts for symbiotic autonomy: Semantic mapping, task teaching and social robotics.
In Jeffrey O. Kephart, Stephanie Rosenthal, Manuela M. Veloso, and Alex Rudnicky,
editors, Symbiotic Cognitive Systems, Papers from the 2016 AAAI Workshop, Phoenix,
Arizona, USA, February 13, 2016., volume WS-16-14 of AAAI Workshops, pages
733–736, Phoenix, Arizona, USA, February 2016. AAAI Press. (Cited on pages 10, 58,
and 154.)

https://doi.org/10.1007/s12369-009-0030-6
https://hal.archives-ouvertes.fr/hal-00756736
https://doi.org/10.1023/A:1008855018923

162 Bibliography

[35] R. Capobianco, F. Riccio, and D. Nardi. Hi-val: Iterative learning of hierarchical
value functions for policy generation. In Proceedings of the 2018 fifteenth International
Conference on Intelligent Autonomous Systems IAS-15, pages –, Feb 2018. (Cited on
pages 8, 11, 58, 112, 138, and 154.)

[36] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: discrete
bayesian models for mobile-robot navigation. In Intelligent Robots and Systems ’96,
IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on, volume 2,
pages 963–972 vol.2, Nov 1996. doi: 10.1109/IROS.1996.571080. (Cited on page 2.)

[37] Girish Chowdhary, Miao Liu, Robert Grande, Thomas Walsh, Jonathan How, and
Lawrence Carin. Off-policy reinforcement learning with gaussian processes. IEEE/CAA
Journal of Automatica Sinica, 1(3):227–238, 2014. (Cited on page 118.)

[38] Michael Jae-Yoon Chung, Andrzej Pronobis, Maya Cakmak, Dieter Fox, and Ra-
jesh P. N. Rao. Autonomous question answering with mobile robots in human-
populated environments. In Proceedings of the 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Daejeon, Korea, October 2016.
doi: 10.1109/IROS.2016.7759146. URL http://www.pronobis.pro/publications/
chung2016iros. (Cited on pages 22, 35, 36, and 68.)

[39] Aaron St Clair, Carl Saldanha, Adrian Boteanu, and Sonia Chernova. Interactive
hierarchical task learning via crowdsourcing for robot adaptability. In Refereed
workshop Planning for Human-Robot Interaction: Shared Autonomy and Collaborative
Robotics at Robotics: Science and Systems, Ann Arbor, Michigan. RSS, 2016. (Cited
on page 138.)

[40] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. In Proceedings of the Fifteenth National/Tenth
Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence,
AAAI ’98/IAAI ’98, pages 746–752, Menlo Park, CA, USA, 1998. American Association
for Artificial Intelligence. ISBN 0-262-51098-7. URL http://dl.acm.org/citation.
cfm?id=295240.295800. (Cited on page 121.)

[41] S. Coradeschi and A. Saffiotti. Symbiotic robotic systems: Humans, robots, and smart
environments. IEEE Intelligent Systems, 21(3):82–84, 2006. (Cited on page 82.)

[42] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. (Cited on page 38.)

[43] A. Corrêa. Distributed team formation in urban disaster environments. In 2014 IEEE
Symposium on Intelligent Agents (IA), pages 57–64, Dec 2014. doi: 10.1109/IA.2014.
7009459. (Cited on page 41.)

[44] G. Costante, T. A. Ciarfuglia, P. Valigi, and E. Ricci. A transfer learning approach
for multi-cue semantic place recognition. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2122–2129, Nov 2013. doi: 10.1109/IROS.
2013.6696653. (Cited on page 18.)

[45] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowledge representa-
tion. AI Magazine, 14(1), 1993. (Cited on page 5.)

[46] G De Giacomo, L Iocchi, D Nardi, and R Rosati. A theory and implementation
of cognitive mobile robots. Journal of Logic and Computation, 9(5):759–785, 1999.
doi: 10.1093/logcom/9.5.759. URL http://dx.doi.org/10.1093/logcom/9.5.759.
(Cited on pages 1 and 6.)

http://www.pronobis.pro/publications/chung2016iros
http://www.pronobis.pro/publications/chung2016iros
http://dl.acm.org/citation.cfm?id=295240.295800
http://dl.acm.org/citation.cfm?id=295240.295800
http://dx.doi.org/10.1093/logcom/9.5.759

Bibliography 163

[47] Maartje M.A. de Graaf and Somaya Ben Allouch. Expectation setting and personality
attribution in hri. In Proceedings of the 2014 ACM/IEEE International Conference on
Human-robot Interaction, HRI ’14, pages 144–145, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2658-2. doi: 10.1145/2559636.2559796. URL http://doi.acm.org/
10.1145/2559636.2559796. (Cited on page 93.)

[48] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977. ISSN 00359246. doi: 10.2307/2984875. (Cited on
page 119.)

[49] S. Dhelim, H. Ning, and T. Zhu. Stlf: Spatial-temporal-logical knowledge representation
and object mapping framework. In 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 001550–001554, Oct 2016. doi: 10.1109/SMC.
2016.7844459. (Cited on page 23.)

[50] Maurilio Di Cicco, Luca Iocchi, and Giorgio Grisetti. Nonparametric calibration for
depth sensors. In Emanuele Menegatti, Nathan Michael, Karsten Berns, and Hiroaki
Yamaguchi, editors, Intelligent Autonomous Systems 13, pages 923–935. Springer
International Publishing, 2016. ISBN 978-3-319-08338-4. (Cited on page 36.)

[51] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coordination:
A survey and analysis. Proceedings of the IEEE, 94(7):1257–1270, July 2006. ISSN
0018-9219. doi: 10.1109/JPROC.2006.876939. (Cited on page 41.)

[52] M. Bernrdine Dias and Anthony (Tony) Stentz. Traderbots: A market-based approach
for resource, role, and task allocation in multirobot coordination. Technical report, In
Technical report, CMU-RI, 2003. (Cited on page 98.)

[53] G. Diego and T. K. O. Arras. Please do not disturb! minimum interference coverage
for social robots. In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1968–1973, Sept 2011. doi: 10.1109/IROS.2011.6094867. (Cited
on page 37.)

[54] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research (JAIR), 13:227–303, 2000.
(Cited on pages 137, 139, 145, and 146.)

[55] Christian Dondrup, Marc Hanheide, Nicola Bellotto, et al. A probabilistic model of
human-robot spatial interaction using a qualitative trajectory calculus. AAAI Spring
Symposium, 2014. (Cited on pages 38 and 48.)

[56] Yong Duan, Qiang Liu, and XinHe Xu. Application of reinforcement learning in robot
soccer. Engineering Applications of Artificial Intelligence, 20(7):936 – 950, 2007. ISSN
0952-1976. doi: 10.1016/j.engappai.2007.01.003. (Cited on page 6.)

[57] Gregory Dudek, Michael R. M. Jenkin, Evangelos Milios, and David Wilkes. A
taxonomy for multi-agent robotics. Autonomous Robots, 3(4):375–397, Dec 1996. ISSN
1573-7527. doi: 10.1007/BF00240651. URL https://doi.org/10.1007/BF00240651.
(Cited on page 40.)

[58] Christoph Engel. Dictator games: a meta study. Experimental Economics, 14:583–610,
2011. (Cited on page 92.)

[59] Susan L. Epstein, Anoop Aroor, Matthew Evanusa, Elizabeth Sklar, and Simon
Parsons. Navigation with learned spatial affordances. In Proceedings of the 37th
Annual Meeting of the Cognitive Science Society. cognitivesciencesociety.org, 2015.
ISBN 978-0-9911967-2-2. (Cited on pages 37 and 48.)

http://doi.acm.org/10.1145/2559636.2559796
http://doi.acm.org/10.1145/2559636.2559796
https://doi.org/10.1007/BF00240651

164 Bibliography

[60] Kutluhan Erol, James Hendler, and Dana S. Nau. Htn planning: Complexity and
expressivity. In the Twelfth National Conference on Artificial Intelligence (Vol. 2),
AAAI’94, pages 1123–1128, Menlo Park, CA, USA, 1994. American Association for
Artificial Intelligence. ISBN 0-262-61102-3. URL http://dl.acm.org/citation.
cfm?id=199480.199459. (Cited on pages 8, 43, 51, 138, and 141.)

[61] A. Fabbri, F. Armetta, É. Duchêne, and S. Hassas. Knowledge complement for
monte carlo tree search: An application to combinatorial games. In 2014 IEEE 26th
International Conference on Tools with Artificial Intelligence, pages 997–1003, Nov
2014. doi: 10.1109/ICTAI.2014.151. (Cited on pages 39 and 43.)

[62] A. Farinelli, L. Iocchi, and D. Nardi. Multirobot systems: a classification focused
on coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 34(5):2015–2028, Oct 2004. ISSN 1083-4419. doi: 10.1109/TSMCB.
2004.832155. (Cited on pages 40 and 96.)

[63] Kerstin Fischer, Stephen Yang, Brian Mok, Rohan Maheshwari, David Sirkin, and
Wendy Ju. Initiating interactions and negotiating approach: A robotic trash can in
the field. In AAAI Symposium on Turn-taking and Coordination in Human-Machine
Interaction, pages 10–16, 2015. (Cited on page 82.)

[64] Michalis Foukarakis, Asterios Leonidis, Margherita Antona, and Constantine Stephani-
dis. Combining finite state machine and decision-making tools for adaptable robot
behavior. In Constantine Stephanidis and Margherita Antona, editors, Universal
Access in Human-Computer Interaction. Aging and Assistive Environments, pages
625–635, Cham, 2014. Springer International Publishing. ISBN 978-3-319-07446-7.
(Cited on page 24.)

[65] F. Fraundorfer, C. Engels, and D. Nister. Topological mapping, localization and
navigation using image collections. In 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3872–3877, Oct 2007. doi: 10.1109/IROS.2007.
4399123. (Cited on page 36.)

[66] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. A. Fernandez-Madrigal, and
J. Gonzalez. Multi-hierarchical semantic maps for mobile robotics. In 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2278–2283, Aug
2005. doi: 10.1109/IROS.2005.1545511. (Cited on page 37.)

[67] Alberto Garcia-Garcia, Sergio Orts, Sergiu Oprea, Victor Villena-Martinez, and
José García Rodríguez. A review on deep learning techniques applied to semantic
segmentation. CoRR, abs/1704.06857, 2017. (Cited on page 38.)

[68] Sylvain Gelly and David Silver. Combining online and offline knowledge in uct. In
Proceedings of the 24th international conference on Machine learning, pages 273–280.
ACM, 2007. (Cited on page 136.)

[69] Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action value
estimation in computer go. Artificial Intelligence, 175(11):1856 – 1875, 2011.
ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2011.03.007. URL http:
//www.sciencedirect.com/science/article/pii/S000437021100052X. (Cited on
pages 39 and 42.)

[70] Guglielmo Gemignani, Roberto Capobianco, Emanuele Bastianelli, Domenico Daniele
Bloisi, Luca Iocchi, and Daniele Nardi. Living with robots: Interactive environ-
mental knowledge acquisition. Robotics and Autonomous Systems, 78:1 – 16, 2016.
ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2015.11.001. URL http:
//www.sciencedirect.com/science/article/pii/S0921889015002468. (Cited on
pages 19, 23, 35, 37, 42, and 48.)

http://dl.acm.org/citation.cfm?id=199480.199459
http://dl.acm.org/citation.cfm?id=199480.199459
http://www.sciencedirect.com/science/article/pii/S000437021100052X
http://www.sciencedirect.com/science/article/pii/S000437021100052X
http://www.sciencedirect.com/science/article/pii/S0921889015002468
http://www.sciencedirect.com/science/article/pii/S0921889015002468

Bibliography 165

[71] Robert Gens and Pedro Domingos. Discriminative learning of sum-product networks.
In Proceedings of the 25th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’12, pages 3239–3247, USA, 2012. Curran Associates Inc.
URL http://dl.acm.org/citation.cfm?id=2999325.2999496. (Cited on page 71.)

[72] Christopher Geyer. Active target search from uavs in urban environments. In Robotics
and Automation, 2008. ICRA 2008. IEEE International Conference on, pages 2366–
2371. IEEE, 2008. (Cited on page 106.)

[73] James Jerome Gibson. The Ecological Approach to Visual Perception. Houghton
Mifflin, Boston, 1979. ISBN 0-395-27049-9. Includes indexes. (Cited on pages 37
and 48.)

[74] Robert Glaser. Education and thinking: The role of knowledge. American psychologist,
39(2):93, 1984. (Cited on page 6.)

[75] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org. (Cited on page 121.)

[76] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46, Feb
2007. ISSN 1552-3098. doi: 10.1109/TRO.2006.889486. (Cited on pages 20 and 67.)

[77] Dylan Hadfield-Menell, Anca D. Dragan, Pieter Abbeel, and Stuart J. Russell.
Cooperative inverse reinforcement learning. CoRR, abs/1606.03137, 2016. URL
http://arxiv.org/abs/1606.03137. (Cited on page 41.)

[78] E. T. Hall. The Hidden Dimension: Man’s Use of Space in Public and Private. The
Bodley Head Ltd, 1966. (Cited on page 86.)

[79] Marc Hanheide, Moritz Göbelbecker, Graham S. Horn, A. Pronobis, Kristoffer Sjöö,
Alper Aydemir, Patric Jensfelt, Charles Gretton, Richard Dearden, Miroslav Janicek,
Hendrik Zender, Geert-Jan Kruijff, Nick Hawes, and Jeremy L. Wyatt. Robot task
planning and explanation in open and uncertain worlds. Artificial Intelligence, 2016.
doi: 10.1016/j.artint.2015.08.008. (Cited on pages 5, 6, 19, 23, 35, 61, and 66.)

[80] M. Hassan, D. Liu, and G. Paul. Modeling and stochastic optimization of complete
coverage under uncertainties in multi-robot base placements. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2978–2984,
Oct 2016. doi: 10.1109/IROS.2016.7759461. (Cited on pages 15 and 41.)

[81] Nick Hawes, Hendrik Zender, Kristoffer Sjöö, Michael Brenner, Geert-Jan Kruijff, and
Patric Jensfelt. Planning and acting with an integrated sense of space. In Proc. of the
International Workshop on Hybrid Control of Autonomous Systems, 7 2009. (Cited on
page 6.)

[82] D. Held, J. Levinson, and S. Thrun. A probabilistic framework for car detection in
images using context and scale. In 2012 IEEE International Conference on Robotics
and Automation, pages 1628–1634, May 2012. doi: 10.1109/ICRA.2012.6224722. (Cited
on page 19.)

[83] N. Hirose, R. Tajima, and K. Sukigara. Personal robot assisting transportation
to support active human life: Human-following method based on model predictive
control for adjacency without collision. In 2015 IEEE International Conference on
Mechatronics (ICM), pages 76–81, March 2015. doi: 10.1109/ICMECH.2015.7083951.
(Cited on page 54.)

[84] M. D. Hoang, S. S. Yun, and J. S. Choi. The reliable recovery mechanism for person-
following robot in case of missing target. In 2017 14th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI), pages 800–803, June 2017. doi:
10.1109/URAI.2017.7992828. (Cited on page 54.)

http://dl.acm.org/citation.cfm?id=2999325.2999496
http://www.deeplearningbook.org
http://arxiv.org/abs/1606.03137

166 Bibliography

[85] G. Hollinger and S. Singh. Multi-robot coordination with periodic connectivity. In
2010 IEEE International Conference on Robotics and Automation, pages 4457–4462,
May 2010. doi: 10.1109/ROBOT.2010.5509175. (Cited on page 104.)

[86] Geoffrey Hollinger, Sanjiv Singh, Joseph Djugash, and Athanasios Kehagias. Efficient
multi-robot search for a moving target. The International Journal of Robotics Research,
28(2):201–219, 2009. (Cited on page 106.)

[87] Geoffrey Hollinger, Srinivas Yerramalli, Sanjiv Singh, Urbashi Mitra, Gaurav S
Sukhatme, et al. Distributed coordination and data fusion for underwater search. In
Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages
349–355. IEEE, 2011. (Cited on page 96.)

[88] Nicholas P Holmes and Charles Spence. The body schema and multisensory rep-
resentation(s) of peripersonal space. Cognitive processing, 5(2), 2004. (Cited on
page 65.)

[89] Jesse Hostetler, Alan Fern, and Thomas G. Dietterich. Sample-based tree search with
fixed and adaptive state abstractions. J. Artif. Intell. Res., 60:717–777, 2017. doi:
10.1613/jair.5483. URL https://doi.org/10.1613/jair.5483. (Cited on page 138.)

[90] Andrew Howard. Multi-robot simultaneous localization and mapping using particle
filters. The International Journal of Robotics Research, 25(12):1243–1256, 2006. doi:
10.1177/0278364906072250. URL https://doi.org/10.1177/0278364906072250.
(Cited on pages 41 and 96.)

[91] D. Jain, L. Mosenlechner, and M. Beetz. Equipping robot control programs with
first-order probabilistic reasoning capabilities. In 2009 IEEE International Conference
on Robotics and Automation, pages 3626–3631, May 2009. doi: 10.1109/ROBOT.2009.
5152676. (Cited on page 5.)

[92] Sang-Wook Jeon, Doo-Sung Ahn, Hyo-Jeong Bae, and Chang-Woo Hong. Object
contour following task based on integrated information of vision and force sensor. In
2007 International Conference on Control, Automation and Systems, pages 1040–1045,
Oct 2007. doi: 10.1109/ICCAS.2007.4407051. (Cited on page 2.)

[93] A. Jevtić, G. Doisy, Y. Parmet, and Y. Edan. Comparison of interaction modalities
for mobile indoor robot guidance: Direct physical interaction, person following, and
pointing control. IEEE Transactions on Human-Machine Systems, 45(6):653–663, Dec
2015. ISSN 2168-2291. doi: 10.1109/THMS.2015.2461683. (Cited on pages 6 and 54.)

[94] Morimoto Jun and Doya Kenji. Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. Robotics and Autonomous Systems, 36(1):37 – 51,
2001. ISSN 0921-8890. doi: http://dx.doi.org/10.1016/S0921-8890(01)00113-0. (Cited
on pages 39 and 138.)

[95] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996. (Cited
on page 39.)

[96] M. Kaess, A. Ranganathan, and F. Dellaert. isam: Incremental smoothing and
mapping. IEEE Transactions on Robotics, 24(6):1365–1378, Dec 2008. ISSN 1552-3098.
doi: 10.1109/TRO.2008.2006706. (Cited on page 36.)

[97] Mubbasir Kapadia, Shawn Singh, William Hewlett, and Petros Faloutsos. Egocentric
affordance fields in pedestrian steering. In Proceedings of the 2009 Symposium on
Interactive 3D Graphics and Games, I3D ’09, pages 215–223, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-429-4. doi: 10.1145/1507149.1507185. (Cited on pages
37 and 42.)

https://doi.org/10.1613/jair.5483
https://doi.org/10.1177/0278364906072250

Bibliography 167

[98] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion
planning using the rrt*. In 2011 IEEE International Conference on Robotics and
Automation, pages 1478–1483, May 2011. doi: 10.1109/ICRA.2011.5980479. (Cited on
page 38.)

[99] Sertac Karapinar and Sanem Sariel. Cognitive robots learning failure contexts through
real-world experimentation. Auton. Robots, 39(4):469–485, December 2015. ISSN
0929-5593. doi: 10.1007/s10514-015-9471-y. URL http://dx.doi.org/10.1007/
s10514-015-9471-y. (Cited on page 18.)

[100] Dov Katz, Arun Venkatraman , Moslem Kazemi, J. Andrew (Drew) Bagnell, and
Anthony (Tony) Stentz. Perceiving, learning, and exploiting object affordances for
autonomous pile manipulation. In Robotics: Science and Systems Conference, June
2013. (Cited on page 38.)

[101] Harmish Khambhaita and Rachid Alami. Assessing the Social Criteria for Human-
Robot Collaborative Navigation: A Comparison of Human-Aware Navigation Plan-
ners. In Proc. IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), page 6p., Lisbonne, Portugal, August 2017. URL
https://hal.laas.fr/hal-01568841. (Cited on page 81.)

[102] Beomjoon Kim and Joelle Pineau. Socially adaptive path planning in human environ-
ments using inverse reinforcement learning. International Journal of Social Robotics, 8
(1):51–66, 2016. ISSN 1875-4805". doi: 10.1007/s12369-015-0310-2. (Cited on page 39.)

[103] D. I. Kim and G. S. Sukhatme. Interactive affordance map building for a robotic task.
In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
4581–4586, Sept 2015. doi: 10.1109/IROS.2015.7354029. (Cited on page 48.)

[104] Kheng Lee Koay, Dag Sverre Syrdal, Mohammadreza Ashgari-Oskoei, Michael L.
Walters, and Kerstin Dautenhahn. Social roles and baseline proxemic preferences for
a domestic service robot. International Journal of Social Robotics, 6:469–488, 2014.
(Cited on page 86.)

[105] Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In
Advances in neural information processing systems, pages 849–856, 2009. (Cited on
page 39.)

[106] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal Of Robotics Research, 32(11):1238–1274, 2013.
doi: 10.1177/0278364913495721. (Cited on page 39.)

[107] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. Machine
learning: ECML 2006, pages 282–293, 2006. (Cited on pages 112 and 117.)

[108] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal
locomotion. In 2004 IEEE International Conference on Robotics and Automation,
volume 3, pages 2619–2624 Vol.3, April 2004. doi: 10.1109/ROBOT.2004.1307456.
(Cited on page 39.)

[109] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot
learning from demonstration by constructing skill trees. International Journal of
Robotics Research, 31(3):360–375, March 2012. ISSN 0278-3649. doi: 10.1177/
0278364911428653. (Cited on pages 39 and 138.)

[110] Hema Swetha Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh Saxena.
Semantic labeling of 3d point clouds for indoor scenes. In Proceedings of the 24th
International Conference on Neural Information Processing Systems, NIPS’11, pages
244–252, USA, 2011. Curran Associates Inc. ISBN 978-1-61839-599-3. URL http:
//dl.acm.org/citation.cfm?id=2986459.2986487. (Cited on page 38.)

http://dx.doi.org/10.1007/s10514-015-9471-y
http://dx.doi.org/10.1007/s10514-015-9471-y
https://hal.laas.fr/hal-01568841
http://dl.acm.org/citation.cfm?id=2986459.2986487
http://dl.acm.org/citation.cfm?id=2986459.2986487

168 Bibliography

[111] Hema Swetha Koppula, Rudhir Gupta, and Ashutosh Saxena. Learning human
activities and object affordances from RGB-D videos. The International Journal
of Robotics Research, 32(8):951–970, July 2013. ISSN 0278-3649. doi: 10.1177/
0278364913478446. (Cited on page 48.)

[112] Dimitrios Kosmopoulos, Ilias Maglogiannis, and Fillia Makedon. Robust offline
topological map estimation using visual loop closures. In Proceedings of the 6th
International Conference on PErvasive Technologies Related to Assistive Environments,
PETRA ’13, pages 29:1–29:8, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1973-7. doi: 10.1145/2504335.2504366. URL http://doi.acm.org/10.1145/2504335.
2504366. (Cited on page 22.)

[113] Ioannis Kostavelis and Antonios Gasteratos. Semantic mapping for mobile robotics
tasks: A survey. Robotics and Autonomous Systems, 66:86 – 103, 2015. ISSN 0921-8890.
doi: https://doi.org/10.1016/j.robot.2014.12.006. (Cited on page 36.)

[114] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pages
1097–1105, USA, 2012. Curran Associates Inc. URL http://dl.acm.org/citation.
cfm?id=2999134.2999257. (Cited on page 29.)

[115] Geert-Jan M. Kruijff, Hendrik Zender, Patric Jensfelt, and Henrik I. Christensen.
Clarification dialogues in human-augmented mapping. In Proceedings of the 1st ACM
SIGCHI/SIGART Conference on Human-robot Interaction, HRI ’06, pages 282–289,
New York, NY, USA, 2006. ACM. ISBN 1-59593-294-1. doi: 10.1145/1121241.1121290.
(Cited on pages 37 and 48.)

[116] Benjamin Kuipers. The spatial semantic hierarchy. Artificial Intelligence, 119(1-2):
191–233, May 2000. ISSN 0004-3702. doi: 10.1016/S0004-3702(00)00017-5. (Cited on
page 5.)

[117] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. G2o: A general
framework for graph optimization. In 2011 IEEE International Conference on Robotics
and Automation, pages 3607–3613, May 2011. doi: 10.1109/ICRA.2011.5979949. (Cited
on page 36.)

[118] John E. Laird and Shiwali Mohan. A case study of knowledge integration across
multiple memories in soar. Biologically Inspired Cognitive Architectures, 8:93 – 99,
2014. ISSN 2212-683X. doi: https://doi.org/10.1016/j.bica.2014.03.006. (Cited on
page 18.)

[119] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.
ISSN 1532-4435. (Cited on page 112.)

[120] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection.
In International Symposium on Experimental Robotics, 2016. (Cited on pages 40, 61,
and 112.)

[121] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015. (Cited on page 112.)

[122] Ming Liu, Francis Colas, Luc Oth, and Roland Siegwart. Incremental topological
segmentation for semi-structured environments using discretized gvg. Autonomous
Robots, 38(2):143–160, Feb 2015. ISSN 1573-7527. doi: 10.1007/s10514-014-9398-8.
URL https://doi.org/10.1007/s10514-014-9398-8. (Cited on page 36.)

http://doi.acm.org/10.1145/2504335.2504366
http://doi.acm.org/10.1145/2504335.2504366
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1007/s10514-014-9398-8

Bibliography 169

[123] Z. Liu, E. Blasch, Z. Xue, J. Zhao, R. Laganiere, and W. Wu. Objective assessment of
multiresolution image fusion algorithms for context enhancement in night vision: A
comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(1):94–109, Jan 2012. ISSN 0162-8828. doi: 10.1109/TPAMI.2011.109. (Cited on
page 18.)

[124] Z. Liu, D. Chen, K. M. Wurm, and G. von Wichert. Using rule-based context knowledge
to model table-top scenes. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 2646–2651, May 2014. doi: 10.1109/ICRA.2014.6907238.
(Cited on page 18.)

[125] M. Lopes, F. S. Melo, L. Montesano, F. Guenter, and A. G. Billard. Affordance-based
imitation learning in robots. In 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1015–1021, Oct 2007. doi: 10.1109/IROS.2007.4399517.
(Cited on pages 37 and 38.)

[126] F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4(4):333–349, Oct 1997. ISSN 1573-7527. doi: 10.
1023/A:1008854305733. URL https://doi.org/10.1023/A:1008854305733. (Cited
on page 36.)

[127] Matthias Luber, Gian Diego Tipaldi, and Kai O Arras. Place-dependent people
tracking. The International Journal of Robotics Research, 30(3):280–293, March 2011.
ISSN 0278-3649. doi: 10.1177/0278364910393538. (Cited on page 37.)

[128] L. Luo, N. Chakraborty, and K. Sycara. Competitive analysis of repeated greedy
auction algorithm for online multi-robot task assignment. In 2012 IEEE International
Conference on Robotics and Automation, pages 4792–4799, May 2012. doi: 10.1109/
ICRA.2012.6225195. (Cited on pages 41 and 96.)

[129] Patrick MacAlpine, Francisco Barrera, and Peter Stone. Positioning to win: A dynamic
role assignment and formation positioning system. In Xiaoping Chen, Peter Stone,
Luis Enrique Sucar, and Tijn van der Zant, editors, RoboCup 2012: Robot Soccer
World Cup XVI, pages 190–201, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
ISBN 978-3-642-39250-4. (Cited on pages 41 and 96.)

[130] J. MacQueen. Some methods for classification and analysis of multivariate observations.
In L. M. Le Cam and J. Neyman, editors, Proceedings of the 5th Berkeley Symposium
on Mathematical Statistics and Probability - Vol. 1, pages 281–297. University of
California Press, Berkeley, CA, USA, 1967. (Cited on page 119.)

[131] Pattie Maes and D. Nardi. Meta-Level Architectures and Reflection. Elsevier Science
Inc., New York, NY, USA, 1988. ISBN 0444703438. (Cited on pages 6, 8, 50, 59,
and 148.)

[132] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt Konolige.
The office marathon: Robust navigation in an indoor office environment. In Proc. of
ICRA, 2010. (Cited on pages 3, 5, 6, and 69.)

[133] N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, and N. Hagita. Adapting robot
behavior for human–robot interaction. IEEE Transactions on Robotics, 24(4):911–916,
Aug 2008. ISSN 1552-3098. doi: 10.1109/TRO.2008.926867. (Cited on pages 2 and 88.)

[134] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 02 2015.
URL http://dx.doi.org/10.1038/nature14236. (Cited on pages x, 8, 29, 31, 32,
39, 112, 120, 121, and 123.)

https://doi.org/10.1023/A:1008854305733
http://dx.doi.org/10.1038/nature14236

170 Bibliography

[135] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International Conference on Machine Learning,
pages 1928–1937, 2016. (Cited on pages 40, 43, 112, 120, and 136.)

[136] O. M. Mozos, C. Stachniss, and W. Burgard. Supervised learning of places from range
data using adaboost. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pages 1730–1735, April 2005. doi: 10.1109/ROBOT.2005.
1570363. (Cited on page 75.)

[137] Jonathan Mumm and Bilge Mutlu. Human-robot proxemics: Physical and psycholog-
ical distancing in human-robot interaction. In Proceedings of the 6th International
Conference on Human-robot Interaction, HRI ’11, pages 331–338. ACM, 2011. (Cited
on pages 88 and 92.)

[138] Krishna Kumar Narayanan, Luis-Felipe Posada, Frank Hoffmann, and Torsten Bertram.
Situated learning of visual robot behaviors. In Sabina Jeschke, Honghai Liu, and
Daniel Schilberg, editors, Intelligent Robotics and Applications, pages 172–182, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-25486-4. (Cited on
page 17.)

[139] John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36(1):48–49, 1950. ISSN 0027-8424. doi: 10.1073/pnas.36.1.48.
URL http://www.pnas.org/content/36/1/48. (Cited on page 27.)

[140] Q. V. Nguyen, F. Colas, E. Vincent, and F. Charpillet. Long-term robot motion
planning for active sound source localization with monte carlo tree search. In 2017
Hands-free Speech Communications and Microphone Arrays (HSCMA), pages 61–65,
March 2017. doi: 10.1109/HSCMA.2017.7895562. (Cited on pages 38 and 39.)

[141] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. Efficient model
learning from joint-action demonstrations for human-robot collaborative tasks. In
Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-
Robot Interaction, HRI ’15, pages 189–196, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-2883-8. doi: 10.1145/2696454.2696455. URL http://doi.acm.org/10.
1145/2696454.2696455. (Cited on pages 39 and 82.)

[142] Andreas Nüchter and Joachim Hertzberg. Towards semantic maps for mobile robots.
Robotics and Autonomous Systems, 56(11):915 – 926, 2008. ISSN 0921-8890. doi:
https://doi.org/10.1016/j.robot.2008.08.001. URL http://www.sciencedirect.com/
science/article/pii/S0921889008001127. Semantic Knowledge in Robotics. (Cited
on page 37.)

[143] Dominik Off and Jianwei Zhang. Continual htn robot task planning in open-ended
domains: A case study. Workshops at the Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011. (Cited on page 66.)

[144] Steven Okamoto, Nathan Brooks, Sean Owens, Katia Sycara, and Paul Scerri. Al-
locating spatially distributed tasks in large, dynamic robot teams. In The 10th
International Conference on Autonomous Agents and Multiagent Systems - Volume
3, AAMAS ’11, pages 1245–1246, Richland, SC, 2011. International Foundation for
Autonomous Agents and Multiagent Systems. ISBN 0-9826571-7-X, 978-0-9826571-7-1.
URL http://dl.acm.org/citation.cfm?id=2034396.2034508. (Cited on pages 41,
42, and 96.)

[145] S. Ontañón. Informed monte carlo tree search for real-time strategy games. In 2016
IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8, Sept
2016. doi: 10.1109/CIG.2016.7860394. (Cited on page 39.)

http://www.pnas.org/content/36/1/48
http://doi.acm.org/10.1145/2696454.2696455
http://doi.acm.org/10.1145/2696454.2696455
http://www.sciencedirect.com/science/article/pii/S0921889008001127
http://www.sciencedirect.com/science/article/pii/S0921889008001127
http://dl.acm.org/citation.cfm?id=2034396.2034508

Bibliography 171

[146] A.K. Pandey and R. Alami. Taskability graph: Towards analyzing effort based agent-
agent affordances. In The 21st IEEE International Symposium on Robot and Human
Interactive Communication, pages 791–796, Sept 2012. doi: 10.1109/ROMAN.2012.
6343848. (Cited on page 48.)

[147] Lynne E. Parker, George Bekey, and Jacob Barhen. Current State of the Art in
Distributed Autonomous Mobile Robotics, pages 3–12. Springer Japan, Tokyo, 2000.
ISBN 978-4-431-67919-6. doi: 10.1007/978-4-431-67919-6_1. URL https://doi.org/
10.1007/978-4-431-67919-6_1. (Cited on page 40.)

[148] Rohan Paul, Jacob Arkin, Nicholas Roy, and Thomas M. Howard. Grounding abstract
spatial concepts for language interaction with robots. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, pages 4929–4933,
2017. doi: 10.24963/ijcai.2017/696. URL https://doi.org/10.24963/ijcai.2017/
696. (Cited on page 1.)

[149] Mikkel Rath Pedersen, Lazaros Nalpantidis, Rasmus Skovgaard Andersen, Casper
Schou, Simon Bøgh, Volker Krüger, and Ole Madsen. Robot skills for manufac-
turing: From concept to industrial deployment. Robotics and Computer-Integrated
Manufacturing, 37:282 – 291, 2016. ISSN 0736-5845. doi: https://doi.org/10.1016/
j.rcim.2015.04.002. URL http://www.sciencedirect.com/science/article/pii/
S0736584515000575. (Cited on page 1.)

[150] Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On
theoretical properties of sum-product networks. Journal of Machine Learning Research,
38:744–752, 2015. ISSN 1532-4435. (Cited on page 71.)

[151] Svetlin Penkov, Alejandro Bordallo, and Subramanian Ramamoorthy. Physical symbol
grounding and instance learning through demonstration and eye tracking. In Robotics
and Automation, 2017 IEEE International Conference on, Singapore, June 2017.
(Cited on page 112.)

[152] Tiago Pereira, António Paulo Moreira, and Manuela Veloso. Coordination for multi-
robot exploration using topological maps. In António Paulo Moreira, Aníbal Matos,
and Germano Veiga, editors, CONTROLO’2014 – Proceedings of the 11th Portuguese
Conference on Automatic Control, pages 515–524, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-10380-8. (Cited on page 41.)

[153] H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops),
pages 689–690, Nov 2011. doi: 10.1109/ICCVW.2011.6130310. (Cited on pages 71
and 72.)

[154] Erwin Prassler, Rainer Bischoff, Wolfram Burgard, Robert Haschke, Martin H. Gele,
Gisbert Lawitzky, Bernhard Nebel, Paul Pl Ger, Ulrich Reiser, Marius Z. Llner,
Martin Hagele, Paul Ploger, and Marius Zollner. Towards Service Robots for Everyday
Environments: Recent Advances in Designing Service Robots for Complex Tasks in
Everyday Environments. Springer Publishing Company, Incorporated, 2016. ISBN
3662508583, 9783662508589. (Cited on page 1.)

[155] A. Pronobis and Patric Jensfelt. Large-scale semantic mapping and reasoning with
heterogeneous modalities. In 2012 IEEE International Conference on Robotics and
Automation, pages 3515–3522. IEEE, 2012. doi: 10.1109/ICRA.2012.6224637. (Cited
on pages ix, 1, 23, 37, 42, and 74.)

[156] A. Pronobis, O. Martínez Mozos, B. Caputo, and P. Jensfelt. Multi-modal seman-
tic place classification. Int. J. Rob. Res., 29(2-3):298–320, February 2010. ISSN
0278-3649. doi: 10.1177/0278364909356483. URL http://dx.doi.org/10.1177/
0278364909356483. (Cited on page 75.)

https://doi.org/10.1007/978-4-431-67919-6_1
https://doi.org/10.1007/978-4-431-67919-6_1
https://doi.org/10.24963/ijcai.2017/696
https://doi.org/10.24963/ijcai.2017/696
http://www.sciencedirect.com/science/article/pii/S0736584515000575
http://www.sciencedirect.com/science/article/pii/S0736584515000575
http://dx.doi.org/10.1177/0278364909356483
http://dx.doi.org/10.1177/0278364909356483

172 Bibliography

[157] A. Pronobis, Kristoffer Sjöö, Alper Aydemir, Adrian N. Bishop, and Patric Jensfelt.
Representing spatial knowledge in mobile cognitive systems. In Proc. of the Interna-
tional Conference on Intelligent Autonomous Systems (IAS-11), August 2010. (Cited
on pages 5 and 66.)

[158] A. Pronobis, F. Riccio, and R. P. N. Rao. Deep spatial affordance hierarchy: Spatial
knowledge representation for planning in large-scale environments. In ICAPS 2017
Workshop on Planning and Robotics, Pittsburgh, PA, USA, jun 2017. (Cited on pages
2, 10, 19, 21, 22, 35, 36, 58, and 154.)

[159] A. Pronobis, F. Riccio, and R. P. N. Rao. Deep Spatial Affordance Hierarchy: Spatial
knowledge representation for planning in large-scale environments. In RSS 2017
Workshop on Spatial-Semantic Representations in Robotics, Boston, MA, USA, jul
2017. (Cited on pages 10, 71, and 72.)

[160] Andrzej Pronobis and Rajesh P. N. Rao. Learning deep generative spatial models for
mobile robots. In Proceedings of the 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, September 2017. doi:
10.1109/IROS.2017.8202235. (Cited on pages 64 and 72.)

[161] Andrzej Pronobis, Patric Jensfelt, Kristoffer Sjöö, Hendrik Zender, Geert-Jan M.
Kruijff, Oscar M. Mozos, and Wolfram Burgard. Semantic modelling of space. In
Henrik I. Christensen, Geert-Jan M. Kruijff, and Jeremy L. Wyatt, editors, Cognitive
Systems, volume 8 of Cognitive Systems Monographs, pages 165–221. Springer Berlin
Heidelberg, 2010. ISBN 978-3-642-11694-0. doi: 10.1007/978-3-642-11694-0_5. (Cited
on pages ix, 21, and 23.)

[162] Scott Proper and Prasad Tadepalli. Solving multiagent assignment markov decision
processes. In Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems - Volume 1, AAMAS ’09, pages 681–688, Richland, SC, 2009.
International Foundation for Autonomous Agents and Multiagent Systems. ISBN
978-0-9817381-6-1. (Cited on page 41.)

[163] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994. ISBN
0471619779. doi: 10.1002/9780470316887. (Cited on page 15.)

[164] O. A. I. Ramírez, H. Khambhaita, R. Chatila, M. Chetouani, and R. Alami. Robots
learning how and where to approach people. In 2016 25th IEEE International Sympo-
sium on Robot and Human Interactive Communication (RO-MAN), pages 347–353,
Aug 2016. doi: 10.1109/ROMAN.2016.7745154. (Cited on page 81.)

[165] Saleha Raza, Sajjad Haider, and Mary-Anne Williams. Robot reasoning using first
order bayesian networks. In Zengchang Qin and Van-Nam Huynh, editors, Inte-
grated Uncertainty in Knowledge Modelling and Decision Making, pages 1–12, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-39515-4. (Cited on
page 38.)

[166] Joshua Reich, Vishal Misra, Dan Rubenstein, and Gil Zussman. Connectivity main-
tenance in mobile wireless networks via constrained mobility. Selected Areas in
Communications, IEEE Journal on, 30(5):935–950, 2012. (Cited on page 104.)

[167] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. IEEE Trans. Pattern Anal.
Mach. Intell., 39(6):1137–1149, June 2017. ISSN 0162-8828. doi: 10.1109/TPAMI.2016.
2577031. URL https://doi.org/10.1109/TPAMI.2016.2577031. (Cited on page 3.)

https://doi.org/10.1109/TPAMI.2016.2577031

Bibliography 173

[168] L. Riazuelo, M. Tenorth, D. Di Marco, M. Salas, D. Gálvez-López, L. Mösenlechner,
L. Kunze, M. Beetz, J. D. Tardós, L. Montano, and J. M. M. Montiel. Roboearth
semantic mapping: A cloud enabled knowledge-based approach. IEEE Transactions
on Automation Science and Engineering, 12(2):432–443, April 2015. ISSN 1545-5955.
doi: 10.1109/TASE.2014.2377791. (Cited on page 22.)

[169] F. Riccio, E. Borzi, G. Gemignani, and D. Nardi. Context-based coordination for
a multi-robot soccer team. In Luis Almeida, Jianmin Ji, Gerald Steinbauer, and
Sean Luke, editors, RoboCup 2015: Robot World Cup XIX, pages 276–289. Springer
International Publishing, 2015. ISBN 978-3-319-29339-4. (Cited on pages 10, 58, 95,
97, and 154.)

[170] F. Riccio, E. Borzi, G. Gemignani, and D. Nardi. Multi-robot search for a moving
target: Integrating world modeling, task assignment and context. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1879–1886,
Oct 2016. doi: 10.1109/IROS.2016.7759298. (Cited on pages 11, 15, 38, 40, 41, 58, 95,
97, and 154.)

[171] F. Riccio, R. Capobianco, Marc Hanheide, and D. Nardi. STAM: A Framework for
Spatio-Temporal Affordance Maps, pages 271–280. Springer International Publishing,
Cham, 2016. ISBN 978-3-319-47605-6. doi: 10.1007/978-3-319-47605-6_22. (Cited on
pages 2, 9, 38, 58, and 154.)

[172] F. Riccio, R. Capobianco, and D. Nardi. Learning human-robot handovers through
π-stam: Policy improvement with spatio-temporal affordance maps. In International
Conference on Humanoid Robots (HUMANOIDS16), 2016. (Cited on pages 11, 38, 58,
112, and 154.)

[173] F. Riccio, R. Capobianco, and D. Nardi. Using monte carlo search with data aggregation
to improve robot soccer policies. In Proceedings of the 20th International RoboCup
Symposium, 2016. (Cited on pages 11, 58, 112, and 154.)

[174] F. Riccio, A. Vanzo, V. Mirabella, T. Catarci, and D. Nardi. Enabling symbiotic
autonomy in short-term interactions: A user study. In Arvin Agah, John-John
Cabibihan, Ayanna M. Howard, Miguel A. Salichs, and Hongsheng He, editors, Social
Robotics - 8th International Conference, ICSR 2016, Kansas City, MO, USA, November
1-3, 2016, Proceedings, volume 9979 of Lecture Notes in Computer Science, pages
796–807, Kansas City, MO, USA, November 2016. Springer International Publishing.
ISBN 978-3-319-47437-3. doi: 10.1007/978-3-319-47437-3_78. (Cited on pages xii, 10,
58, 82, 88, and 154.)

[175] F. Riccio, R. Capobianco, and D. Nardi. Q-CP: Learning action values for cooperative
planning. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages –, 2018. (Cited on pages 8, 11, 58, 112, and 154.)

[176] F. Riccio, R. Capobianco, and D. Nardi. LoOP: Iterative learning for optimistic
planning on robots. submitted to journal paper, April 2018. (Cited on pages 11, 58,
and 154.)

[177] F. Riccio, R. Capobianco, and D. Nardi. DOP: Deep optimistic planning with
approximate value function evaluation. In Proceedings of the 2018 International
Conference on Autonomous Agents and Multiagent Systems, pages –, 2018. (Cited on
pages 8, 11, 38, 58, 112, and 154.)

[178] Francesco Riccio, Maria T. Lázaro, Guglielmo Gemignani, and Daniele Nardi. Multi
robot perception and action: World modeling and task allocation. In RSS Workshop
on Principle of multi-robot systems, 2015. (Cited on page 9.)

174 Bibliography

[179] Francesco Riccio, Roberto Capobianco, and Daniele Nardi. Using spatio-temporal
affordances to represent robot action semantics. In Machine Learning Methods for
High-Level Cognitive Capabilities in Robotics Workshop, Workshop@IROS 2016, 2016.
(Cited on pages 8, 9, 58, and 154.)

[180] Laurel D. Riek. Wizard of oz studies in hri: A systematic review and new reporting
guidelines. J. Hum.-Robot Interact., 1(1):119–136, july 2012. ISSN 2163-0364. doi:
10.5898/JHRI.1.1.Riek. (Cited on page 86.)

[181] Raúl Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag New York,
Inc., New York, NY, USA, 1996. ISBN 3-540-60505-3. (Cited on page 121.)

[182] Stephanie Rosenthal and Manuela Veloso. Mobile robot planning to seek help with
spatially-situated tasks. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, AAAI’12, pages 2067–2073. AAAI Press, 2012. (Cited on
page 82.)

[183] Stephanie Rosenthal, Joydeep Biswas, and Manuela M. Veloso. An effective personal
mobile robot agent through symbiotic human-robot interaction. In 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto,
Canada, May 10-14, 2010, Volume 1-3, pages 915–922, 2010. doi: 10.1145/1838206.
1838329. URL http://doi.acm.org/10.1145/1838206.1838329. (Cited on pages 7
and 82.)

[184] B. Rosman and S. Ramamoorthy. Action priors for learning domain invariances. IEEE
Transactions on Autonomous Mental Development, 7(2):107–118, June 2015. ISSN
1943-0604. doi: 10.1109/TAMD.2015.2419715. (Cited on page 54.)

[185] Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via
interactive no-regret learning. arXiv preprint arXiv:1406.5979, 2014. (Cited on pages
39, 56, and 118.)

[186] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, pages
627–635, 2011. (Cited on pages 113, 114, 116, 118, 121, 140, and 141.)

[187] S. I. Roumeliotis and G. A. Bekey. Distributed multirobot localization. IEEE
Transactions on Robotics and Automation, 18(5):781–795, Oct 2002. ISSN 1042-296X.
doi: 10.1109/TRA.2002.803461. (Cited on pages 41, 42, and 96.)

[188] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education, 2010. ISBN 978-0-13-207148-2. (Cited on page 6.)

[189] Andrei A Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and
Raia Hadsell. Sim-to-real robot learning from pixels with progressive nets. arXiv
preprint arXiv:1610.04286, 2016. (Cited on pages 40 and 112.)

[190] H.G. Sage, M.F. De Mathelin, and E. Ostertag. Robust control of robot manipulators:
A survey. International Journal of Control, 72(16):1498–1522, 1999. doi: 10.1080/
002071799220137. URL https://doi.org/10.1080/002071799220137. (Cited on
page 1.)

[191] A. Scalmato, A. Sgorbissa, and R. Zaccaria. Describing and classifying spatial and
temporal contexts with owl dl in ubiquitous robotics. In 2012 IEEE International
Conference on Robotics and Automation, pages 237–244, May 2012. doi: 10.1109/
ICRA.2012.6224835. (Cited on page 19.)

http://doi.acm.org/10.1145/1838206.1838329
https://doi.org/10.1080/002071799220137

Bibliography 175

[192] Tom Schaul and Mark B Ring. Better generalization with forecasts. In Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
2013. (Cited on page 138.)

[193] J. Serafin and G. Grisetti. NICP: Dense normal based point cloud registration. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
742–749. IEEE, 12 2015. ISBN 9781479999941. doi: 10.1109/IROS.2015.7353455.
(Cited on pages 20 and 36.)

[194] Y. Shapira and N. Agmon. Path planning for optimizing survivability of multi-robot
formation in adversarial environments. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4544–4549, Sept 2015. doi: 10.1109/
IROS.2015.7354023. (Cited on page 41.)

[195] D. Shen, G. Chen, J. B. Cruz, and E. Blasch. A game theoretic data fusion aided path
planning approach for cooperative uav isr. In 2008 IEEE Aerospace Conference, pages
1–9, March 2008. doi: 10.1109/AERO.2008.4526563. (Cited on pages 15 and 17.)

[196] Thomas J. Shuell. Cognitive conceptions of learning. Review of Educational Research,
56(4):411–436, 1986. doi: 10.3102/00346543056004411. URL https://doi.org/10.
3102/00346543056004411. (Cited on page 6.)

[197] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In
J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Cu-
lotta, editors, Advances in Neural Information Processing Systems 23, pages
2164–2172. Curran Associates, Inc., 2010. URL http://papers.nips.cc/paper/
4031-monte-carlo-planning-in-large-pomdps.pdf. (Cited on page 38.)

[198] David Silver, Richard S Sutton, and Martin Müller. Temporal-difference search in
computer go. Machine learning, 87(2):183–219, 2012. (Cited on pages 112, 123,
and 145.)

[199] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, 529:484–503, 2016. doi: 10.1038/nature16961. (Cited on pages 28, 38,
and 39.)

[200] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.
(Cited on pages 39, 43, and 113.)

[201] Reid Simmons and Sven Koenig. Probabilistic robot navigation in partially observable
environments. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’95, pages 1080–1087, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-363-8. URL http://dl.acm.org/
citation.cfm?id=1643031.1643040. (Cited on pages 5 and 38.)

[202] Reid G. Simmons, David Apfelbaum, Wolfram Burgard, Dieter Fox, Mark Moors,
Sebastian Thrun, and Håkan L. S. Younes. Coordination for multi-robot exploration
and mapping. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 852–858. AAAI Press, 2000. ISBN 0-262-51112-6. URL http://dl.acm.org/
citation.cfm?id=647288.723404. (Cited on page 38.)

https://doi.org/10.3102/00346543056004411
https://doi.org/10.3102/00346543056004411
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps.pdf
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps.pdf
http://dl.acm.org/citation.cfm?id=1643031.1643040
http://dl.acm.org/citation.cfm?id=1643031.1643040
http://dl.acm.org/citation.cfm?id=647288.723404
http://dl.acm.org/citation.cfm?id=647288.723404

176 Bibliography

[203] Hyang-gi Song, Michael Restivo, Arnout van de Rijt, Lori L. Scarlatos, David Tonjes,
and Alex Orlov. The hidden gender effect in online collaboration: An experimental
study of team performance under anonymity. Computers in Human Behavior, 50:
274–282, 2015. (Cited on page 92.)

[204] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345–383, Jun 2000. ISSN 1573-7527.
doi: 10.1023/A:1008942012299. URL https://doi.org/10.1023/A:1008942012299.
(Cited on page 40.)

[205] Peter Stone and Manuela Veloso. Robot teams: From diversity to polymorphism. A
Survey of Multiagent and Multirobot System, 2002. (Cited on page 96.)

[206] F. Stulp and S. Schaal. Hierarchical reinforcement learning with movement primitives.
In 2011 IEEE-RAS International Conference on Humanoid Robots, pages 231–238,
Oct 2011. doi: 10.1109/Humanoids.2011.6100841. (Cited on page 138.)

[207] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981. (Cited on
page 26.)

[208] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999. (Cited on pages 115, 137, 138, and 140.)

[209] D. S. Syrdal, K. Lee Koay, M. L. Walters, and K. Dautenhahn. A personalized robot
companion? - the role of individual differences on spatial preferences in hri scenarios.
In Robot and Human interactive Communication, 2007. RO-MAN 2007. The 16th
IEEE International Symposium on, pages 1143–1148, Aug 2007. (Cited on page 92.)

[210] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet
and the impact of residual connections on learning. CoRR, abs/1602.07261, 2016.
URL http://arxiv.org/abs/1602.07261. (Cited on page 120.)

[211] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. In AAAI,
2017. (Cited on page 29.)

[212] L. Takayama and C. Pantofaru. Influences on proxemic behaviors in human-robot inter-
action. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, pages 5495–5502, Oct 2009. (Cited on pages 88 and 92.)

[213] Moritz Tenorth and Michael Beetz. KnowRob – A Knowledge Processing Infrastructure
for Cognition-enabled Robots. Part 1: The KnowRob System. International Journal
of Robotics Research (IJRR), 32(5):566 – 590, April 2013. (Cited on page 22.)

[214] Sebastian Thrun. An approach to learning mobile robot navigation. Robotics and
Autonomous Systems, 15(4):301–319, 1995. doi: 10.1016/0921-8890(95)00022-8. (Cited
on page 5.)

[215] Sebastian Thrun. Learning metric-topological maps for indoor mobile robot navigation.
Artificial Intelligence, 99(1):21 – 71, 1998. ISSN 0004-3702. doi: https://doi.org/
10.1016/S0004-3702(97)00078-7. URL http://www.sciencedirect.com/science/
article/pii/S0004370297000787. (Cited on page 36.)

[216] Sebastian Thrun. Robotic mapping: A survey. In Gerhard Lakemeyer and Bernhard
Nebel, editors, Exploring Artificial Intelligence in the New Millennium, chapter Robotic
Mapping: A Survey, pages 1–35. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003. ISBN 1-55860-811-7. (Cited on page 36.)

https://doi.org/10.1023/A:1008942012299
http://arxiv.org/abs/1602.07261
http://www.sciencedirect.com/science/article/pii/S0004370297000787
http://www.sciencedirect.com/science/article/pii/S0004370297000787

Bibliography 177

[217] Elena Torta, Raymond H. Cuijpers, and James F. Juola. A model of the user’s
proximity for bayesian inference. In Proceedings of the 6th International Conference on
Human-robot Interaction, HRI ’11, pages 273–274, New York, NY, USA, 2011. ACM.
(Cited on page 86.)

[218] B. Tribelhorn and Z. Dodds. Evaluating the roomba: A low-cost, ubiquitous platform
for robotics research and education. In Proceedings 2007 IEEE International Conference
on Robotics and Automation, pages 1393–1399, April 2007. doi: 10.1109/ROBOT.
2007.363179. (Cited on pages 1 and 15.)

[219] Roy M. Turner. Context-mediated behavior for intelligent agents. Int. J. Hum.-Comput.
Stud., 48(3):307–330, March 1998. ISSN 1071-5819. doi: 10.1006/ijhc.1997.0173. URL
http://dx.doi.org/10.1006/ijhc.1997.0173. (Cited on pages 16 and 97.)

[220] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pages 2094–2100. AAAI Press, 2016. (Cited on page 113.)

[221] Andrea Vanzo, Danilo Croce, Roberto Basili, and Daniele Nardi. Structured learning
for context-aware spoken language understanding of robotic commands. In Mohit
Bansal, Cynthia Matuszek, Jacob Andreas, Yoav Artzi, and Yonatan Bisk, editors,
Proceedings of the First Workshop on Language Grounding for Robotics, Vancouver,
Canada, August 3, 2017., pages 25–34, Vancouver, Canada, August 2017. Association
for Computational Linguistics. doi: 10.18653/v1/W17-2804. URL http://www.
aclweb.org/anthology/W17-2804. (Cited on page 1.)

[222] R. Vazquez-Martin, P. Nunez, A. Bandera, and F. Sandoval. Spectral clustering for
feature-based metric maps partitioning in a hybrid mapping framework. In 2009 IEEE
International Conference on Robotics and Automation, pages 4175–4181, May 2009.
doi: 10.1109/ROBOT.2009.5152476. (Cited on page 36.)

[223] Matej Večerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot,
Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging
demonstrations for deep reinforcement learning on robotics problems with sparse
rewards. arXiv preprint arXiv:1707.08817, 2017. (Cited on page 112.)

[224] Arun Venkatraman, Roberto Capobianco, Lerrel Pinto, Martial Hebert, Daniele Nardi,
and James A. Bagnell. Improved learning of dynamics models for control. In 2016
International Symposium on Experimental Robotics, 2016. (Cited on page 39.)

[225] Michael L Walters, Kerstin Dautenhahn, René Te Boekhorst, Kheng Lee Koay,
Dag Sverre Syrdal, and Chrystopher L Nehaniv. An empirical framework for human-
robot proxemics. In Proceedings of the Symposium on New Frontiers in Human-Robot
Interaction, pages 144–149, Edinburgh, Scottland, 2009. (Cited on page 92.)

[226] C. Wang, K. V. Hindriks, and R. Babuska. Active learning of affordances for robot use
of household objects. In IEEE-RAS International Conference on Humanoid Robots,
pages 566–572, Nov 2014. doi: 10.1109/HUMANOIDS.2014.7041419. (Cited on pages
38 and 48.)

[227] Yizao Wang and Sylvain Gelly. Modifications of UCT and sequence-like simulations
for monte-carlo go. In 2007 IEEE Symposium on Computational Intelligence and
Games. IEEE, 2007. doi: 10.1109/cig.2007.368095. URL https://doi.org/10.1109%
2Fcig.2007.368095. (Cited on page 114.)

[228] Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess,
Yujia Li, et al. Imagination-augmented agents for deep reinforcement learning. arXiv
preprint arXiv:1707.06203, 2017. (Cited on page 136.)

http://dx.doi.org/10.1006/ijhc.1997.0173
http://www.aclweb.org/anthology/W17-2804
http://www.aclweb.org/anthology/W17-2804
https://doi.org/10.1109%2Fcig.2007.368095
https://doi.org/10.1109%2Fcig.2007.368095

178 Bibliography

[229] David Wingate, Noah D Goodman, Daniel M Roy, Leslie P Kaelbling, and Joshua B
Tenenbaum. Bayesian policy search with policy priors. In IJCAI Proceedings-
International Joint Conference on Artificial Intelligence, volume 22, page 1565, 2011.
(Cited on page 54.)

[230] T. Witzig, J. M. Zöllner, D. Pangercic, S. Osentoski, R. Jäkel, and R. Dillmann.
Context aware shared autonomy for robotic manipulation tasks. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 5686–5693, Nov
2013. doi: 10.1109/IROS.2013.6697180. (Cited on page 19.)

[231] Jay Young, Valerio Basile, Markus Suchi, Lars Kunze, Nick Hawes, Markus Vincze,
and Barbara Caputo. Making sense of indoor spaces using semantic web mining and
situated robot perception. In Eva Blomqvist, Katja Hose, Heiko Paulheim, Agnieszka
Ławrynowicz, Fabio Ciravegna, and Olaf Hartig, editors, The Semantic Web: ESWC
2017 Satellite Events, pages 299–313. Springer International Publishing, 2017. ISBN
978-3-319-70407-4. (Cited on page 1.)

[232] Hendrik Zender, O Martínez Mozos, Patric Jensfelt, G-JM Kruijff, and Wolfram
Burgard. Conceptual spatial representations for indoor mobile robots. Robotics and
Autonomous Systems, 56(6):493–502, 2008. doi: 10.1016/j.robot.2008.03.007. (Cited
on pages 3, 6, and 37.)

[233] Bin Zhao, Yongqiang Guan, and Long Wang. Controllability improvement for multi-
agent systems: leader selection and weight adjustment. International Journal of
Control, 89(10):2008–2018, 2016. doi: 10.1080/00207179.2016.1146970. URL https:
//doi.org/10.1080/00207179.2016.1146970. (Cited on page 40.)

[234] Kaiyu Zheng, Andrzej Pronobis, and Rajesh P. N. Rao. Learning Graph-Structured
Sum-Product Networks for probabilistic semantic maps. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI), New Orleans, LA, USA, February
2018. URL http://www.pronobis.pro/publications/zheng2018aaai. (Cited on
page 36.)

[235] X. S. Zhou and S. I. Roumeliotis. Multi-robot slam with unknown initial correspondence:
The robot rendezvous case. In 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1785–1792, Oct 2006. doi: 10.1109/IROS.2006.282219.
(Cited on pages 41 and 96.)

[236] Yan Zuo and Tom Drummond. Fast residual forests: Rapid ensemble learning for
semantic segmentation. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg,
editors, Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of
Proceedings of Machine Learning Research, pages 27–36. PMLR, 13–15 Nov 2017. URL
http://proceedings.mlr.press/v78/zuo17a.html. (Cited on page 38.)

https://doi.org/10.1080/00207179.2016.1146970
https://doi.org/10.1080/00207179.2016.1146970
http://www.pronobis.pro/publications/zheng2018aaai
http://proceedings.mlr.press/v78/zuo17a.html

	Introduction
	Motivations
	Motivating Example
	Role of a Spatial Knowledge Representation
	Desired Properties of the Representation
	Desired Robot Capabilities

	Contributions
	Thesis Organization and Publications
	Part I: Preliminaries
	Part II: Spatial Knowledge for Robots
	Part III: Conclusion

	I Preliminaries
	Background
	Knowledge for Robots
	Spatial Knowledge Representation
	SK4R Representation Goal

	Reasoning and Decision Making
	Markov Decision Processes
	Action-state Value Function
	Monte-Carlo Tree Search Planning
	Deep learning

	Related Work
	Knowledge Representation
	Spatial Representation in Robotics

	Robot Planning and Learning
	Multi-Robot Cooperation and Coordination

	Contributions to the state-of-the-art

	II Spatial Knowledge for Robots
	SK4R: Spatial Knowledge for Robots
	Spatial Knowledge for Robots
	Generating Affordance Semantics

	Following Task
	Discussion

	SK4R for Indoor Robots
	Spatial Representation for Indoor Environments
	Domain-specific Representation for Indoor Scenarios

	Implementation of SK4RE for Laser-Range Data
	Perceptual Layer
	Peripersonal Layer
	Topological Layer
	Semantic Layer
	Representing Default Knowledge

	Experimental Evaluation
	Experimental Setup
	Bottom-up Inference
	Top-down Inference
	Representing Large-Scale Space

	Concluding Remarks

	SK4R for Social Interactions
	SK4RE for Social Interactions
	Collaboration Attitude
	User Study 1: Proxemics, Gender, Height and Context
	User Study 2: Human Activity
	User Study Methodology
	User Study 1: Experimental Results
	User Study 2: Experimental Results

	Concluding Remarks

	SK4R for Multi-Robot Search
	Multi-Robot Search for a Moving Target
	Distributed Implementation of SK4R
	Task Assignment
	Distributed SK4RE
	Implementation of SK4RP – Context System

	Application Scenarios
	RoboCup Soccer Competitions
	Indoor Office Scenario

	Concluding Remarks

	SK4R for Optimistic Planning
	Robot Policy Learning
	LoOP: Iterative Learning for Optimistic Planning
	LoOP
	Multi-agent planning

	Optimistic Planning in Robotic Domains
	Focused Exploration
	Policy Generalization
	Meta-parameters Evaluation
	Local Optimization of High-level Behaviors

	Concluding Remarks

	SK4R for Hierarchical Optimistic Planning
	Hierarchical Optimistic Planning
	h-LoOP
	Hierarchical Action Selection
	h-LoOP Algorithm

	h-LoOP Experimental Evaluation
	Fetching task
	Pick and delivery task

	Concluding Remarks

	III Conclusion
	Conclusions
	Summary and Contributions
	Open Questions and Future Work

