
Master Thesis in ICT for Internet & Multimedia

Embarking on the Autonomous Journey: A
Strikingly Engineered Car Control System Design

Master Candidate Supervisor

Kristel Çoçoli Leonardo Badia

Date : 10 October
Academic Year

2022/2023

I dedicate this to my most inspirational professor, Leonardo,
to my love, Henri,

to my strength, my mommy,
to my family, Enxhi, Alisa, Oriana.

To the infinity and beyond.

Abstract

The evolution of autonomous cars represents a significant stride in modern
transportation, combining innovation with sustainability. Central to this thesis
is the development of an autonomous car control system with the Raspberry Pi
as its primary processing unit. Integrated into this system are two predictive
frameworks: a Convolutional Neural Network (CNN) for lane detection, and a
traffic signs detector. Within this construct, the Raspberry Pi module acts as the
center for a single car.

To cater to its immediate decision-making needs, a Proportional Integral
Derivative controller and web server were instituted to process data through the
trained neural networks. To enhance it visually, Unity and the Meta Quest 2 VR
headset have been used as a testing method.

This study not only illuminates the engineering dynamics behind autonomous
vehicles but also underscores the potential of augmented reality in automotive
testing.

ITALIANO: L’evoluzione dei veicoli autonomi rappresenta un significativo
passo avanti nel trasporto moderno, combinando l’innovazione con la sosteni-
bilità. Al centro di questa tesi vi è lo sviluppo di un sistema di controllo di auto
autonome con il Raspberry Pi come unità di elaborazione principale. In questo
sistema sono integrati due framework predittivi: una CNN per il rilevamento
delle corsie e un rilevatore di segnali stradali. All’interno di questa struttura, il
modulo Raspberry Pi agisce come centro per un’unica auto.

Per soddisfare le sue immediate esigenze decisionali, è stato istituito un
controllore Proportional Integral Derivative (PID) e un server web per elaborare
i dati attraverso le reti neurali addestrate. Per migliorarne l’aspetto visivo, sono
stati utilizzati Unity e il visore per la realtà virtuale Meta Quest 2, come strumenti
per il testing.

Questo studio non solo esplora le dinamiche ingegneristiche delle auto au-
tonome, ma sottolinea anche il potenziale della realtà aumentata nei test auto-
mobilistici.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1
1.1 Frame of reference . 1

1.1.1 Autonomous Vehicles . 1
1.1.2 Machine Learning Methods 2
1.1.3 Convolutional Neural Networks for Self-Driving Car Sys-

tems . 4
1.2 Our Proposal . 5

2 Related Work 7
2.1 Sensor Integration in Autonomous Driving Systems 7
2.2 Object Detection and Behavioral Impacts 8
2.3 Visualization and AR Integration 10
2.4 Challenges in Autonomous Driving Systems 10

3 Hardware Setup 13
3.1 Introduction . 13
3.2 The car components . 15

3.2.1 Raspberry Pi . 15
3.2.2 The motors . 16

vii

CONTENTS

3.2.3 The camera module . 16
3.2.4 The ultrasonic sensor . 16
3.2.5 The GPS module . 18
3.2.6 The IMU . 18
3.2.7 The assembled car . 20

4 Software Architecture 23
4.1 System Design and Implementation 24

4.1.1 Technology Stack . 24
4.1.2 System Implementation . 25

5 Data Collection and Processing 29
5.1 Data Collection and Processing for Lane Detection model 29

5.1.1 Data Collection . 29
5.1.2 Data Augmentation . 31
5.1.3 Data Processing . 32

5.2 Data Collection and Processing for Traffic Signs Recognition model 33
5.2.1 Dataset Collection . 33
5.2.2 Dataset Preprocessing . 34

6 Deep Learning Model 35
6.1 Lane Detection model . 35

6.1.1 Model Architecture . 35
6.1.2 Model Training . 35

6.2 Traffic Signs Detection model . 37
6.2.1 Model Architecture and Training 37
6.2.2 Results and Model Evaluation 38

7 GPS Localization 41
7.1 Implementation . 41

7.1.1 Choosing the mapping and communication system 41
7.1.2 Results . 42

8 System Control 45
8.1 The principle of PID control . 45

8.1.1 Challenges and Limitations 46
8.2 Implementing PID on Raspberry Pi 46

viii

CONTENTS

8.2.1 Hardware Configuration: PID Control with IMU Integration 46
8.2.2 A Comparative Analysis of Sensor Fusion Algorithms . . . 47

8.3 Experimental results . 51
8.4 Software . 55

8.4.1 PID Implementation . 56

9 AR & VR Headset 57
9.1 Implementation . 58

9.1.1 Unity Scene Setup . 58
9.1.2 Software Implementation 59

10 Conclusions and Future Works 61
10.1 Conclusive thoughts . 61
10.2 Future Works . 62
10.3 Closing Remarks . 62

References 65

Appendix 75
.1 Example codes developed for the project 75

ix

List of Figures

3.1 Car Control System on High Level 14
3.2 Car Control System on Low Level 15
3.3 Camera and Ultrasonic Sensor . 17
3.4 GPS Module . 19
3.5 Adafruit Internal Measurement Unit (IMU) Schema 20
3.6 The Assembled Car . 21

4.1 Software Architecture . 24
4.2 Data Flow . 26
4.3 RabbitMQ Pub/Sub Communication 28

5.1 Lane Edge Detection . 30
5.2 Training and Validation Dataset . 31
5.3 Image processing . 32
5.4 Image processing . 33
5.5 Processed Images for Nvidia architecture 34
5.6 Training Set Distribution . 34

6.1 Nvidia Model Architecture . 36
6.2 Training and Validation Loss . 37
6.3 ML Model Accuracy Values . 39
6.4 ML Model Loss Values . 40

7.1 RabbitMQ Pub/Sub Communication 43

8.1 Roll angle comparison of the filters with stationary IMU. 52
8.2 Pitch angle comparison of the filters for a stationary IMU. 52
8.3 Pitch angle comparison of the filters with moving IMU. 53
8.4 Roll angle comparison of the filters with moving IMU. 54

xi

LIST OF FIGURES

8.5 Comparing the processing time of the filters 55

9.1 Oculus Quest 2 . 58
9.2 Unity Scene Setup . 59
9.3 View from Oculus Quest 2 headset 60

xii

List of Tables

6.1 Results with increased epochs . 38

8.1 Steps of the Kalman Filter . 48
8.2 Average Processing Time . 55
8.3 Empirical choice of 𝐾𝑝 ,𝐾𝑑,𝐾𝑖 . 56

xiii

List of Algorithms

1 Mahony Filter Algorithm for IMU (Accelerometer and Gyroscope
Only) . 49

2 Madgwick Filter Algorithm for IMU (Accelerometer and Gyro-
scope Only) . 50

xvii

List of Code Snippets

1 Implemented code based on Nvidia Network Model 75
2 ProportionalIntegralDerivative Controller 75

xix

List of Acronyms

ML Machine Learning

CNN Convolutional Neural Network

IMU Internal Measurement Unit

VR Virtual Reality

AR Augmented Reality

SAE Society of Automotive Engineers

LiDAR Light Detection and Ranging

IoT Internet of Things

UUID Universal Unique Identifier

GPS Global Positioning System

ODD Operational Design Domains

I2C Inter-Integrated Circuit

YUV (Y) luma, or brightness, (U) blue projection, (V) red projection

HSV Hue, Saturation, Value

ROI Region of Interest

JSON JavaScript Object Notation

CSV Comma-Separated Values

TCP Transmission Control Protocol

xix

LIST OF CODE SNIPPETS

PID Proportional Integral Derivative

ReLU Rectified Linear Unit

GPIO General-purpose Input/Output

CSI Camera Serial Interface

DC Direct Current

SoC System on a Chip

PoE Power-over-Ethernet

DSI Display Serial Interface

LAN Local Area Network

PCI Peripheral Component Interconnect

ELU Exponential Linear Unit

ReLU Rectified Linear Unit

API Application Programming Interface

AI Artificial Intelligence

xx

1
Introduction

1.1 Frame of reference

1.1.1 Autonomous Vehicles

The 6 levels of Vehicle Autonomy

Autonomous cars are typically classified into different levels based on their
capability to perform driving tasks without human intervention. These levels are
defined by the Society of Automotive Engineers (SAE) in their J3016 standard.[1]

Level 0 (No Automation): At this level, the vehicle is entirely controlled by a
human driver, and there is no automation involved. Some basic driver assistance
systems may be present, such as warnings or momentary intervention, but the
overall control remains with the human driver.

Level 1 (Driver Assistance): Level 1 vehicles have systems that can assist the
driver with either steering or acceleration/deceleration tasks but not both simul-
taneously. Examples include adaptive cruise control or lane-keeping assistance.

Level 2 (Partial Automation): Level 2 vehicles have combined automated
functions for both steering and acceleration/deceleration simultaneously. [2]
However, the human driver must remain engaged and monitor the driving
environment at all times. Tesla’s Autopilot and some advanced driver assistance
systems fall into this category.

Level 3 (Conditional Automation): At this level, the vehicle can handle all
aspects of driving in specific conditions or scenarios, such as highway driving,

1

1.1. FRAME OF REFERENCE

without human intervention. The human driver must be available to take over
when the system encounters situations it cannot handle. [3] The handover time
for the driver to regain control is critical.

Level 4 (High Automation): Level 4 vehicles are fully autonomous within
specific Operational Design Domains (ODD). They can operate without human
intervention in predefined conditions and locations, such as within a geofenced
urban area. However, outside of these predefined conditions, human interven-
tion may be required.

Level 5 (Full Automation): Level 5 vehicles are fully autonomous in all
driving conditions and environments. They do not require human intervention
and can operate at the same level as a human driver in any situation.

It is important to note that the development and deployment of fully au-
tonomous Level 5 vehicles were still ongoing, and the technology’s widespread
adoption raised various legal, ethical, and technical challenges that required res-
olution. [4] Therefore, advancements in autonomous driving technology may
have occurred since my last update, and the levels might have evolved.

1.1.2 Machine Learning Methods

Machine Learning (ML) is a critical subfield of artificial intelligence that
focuses on the development of algorithms and statistical models enabling com-
puter systems to learn from data and improve their performance on specific
tasks. [5] Various ML paradigms exist, each catering to distinct learning sce-
narios and data types. This chapter provides an in-depth exploration of four
prominent machine learning paradigms: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning. [6]

Supervised Learning

Supervised learning is one of the most widely employed machine learning
paradigms, characterized by the presence of labelled training data. In this
approach, the algorithm learns to map input data to corresponding output
labels by generalizing patterns from the training set. The primary objective is
to build a predictive model that can accurately predict outputs for unseen input
data. Supervised learning involves two key components: [7]

• Training data: Consist of input-output pairs, where the algorithm learns
the mapping between inputs and their associated labels.

2

CHAPTER 1. INTRODUCTION

• Loss function: Measures the discrepancy between the predicted outputs
and the actual labels, guiding the model to minimize prediction errors
during training.

Unsupervised Learning

Unsupervised learning deals with datasets lacking labelled output data, re-
quiring the algorithm to identify patterns, structures, and relationships solely
based on the input data. [8] The objective is to discover hidden patterns and
group similar data points into clusters without explicit guidance. Key charac-
teristics of unsupervised learning:

• Lack of labels: Unsupervised learning operates on data without any pre-
defined output labels, making it suitable for exploratory data analysis and
pattern discovery.

• Clustering: A common unsupervised learning task, clustering aims to
group similar data points together, revealing underlying structures within
the data. [9]

Semi-Supervised Learning

Semi-supervised learning represents a hybrid approach that leverages both
labelled and unlabeled data for model training. [10] In many real-world sce-
narios, obtaining fully labelled datasets can be expensive and time-consuming.
Semi-supervised learning addresses this challenge by utilizing the abundance
of unlabeled data, combined with a limited amount of labeled data, to improve
the model’s performance. Key aspects of semi-supervised learning:

• Utilizing unlabeled data: Unlabeled data aids in capturing more compre-
hensive data distributions and enhancing model generalization.

• Label propagation: Semi-supervised learning methods propagate [11]

3

1.1. FRAME OF REFERENCE

Reinforcement Learning

Reinforcement learning differs significantly from the aforementioned paradigms,
as it revolves around training agents to make sequential decisions in an envi-
ronment to maximize a cumulative reward. [12] The agent interacts with the
environment, learning by trial and error through exploration and exploitation.
Key elements of reinforcement learning:

• Agent-Environment Interaction: The agent takes actions based on its pol-
icy, and the environment responds with rewards and new states.

• Policy: A strategy determining the agent’s actions in specific states to
maximize the expected cumulative reward.

• Exploration vs. Exploitation: The agent must balance between exploring
new actions and exploiting its current knowledge to optimize long-term
rewards. [13]

1.1.3 Convolutional Neural Networks for Self-Driving Car
Systems

In recent years, the field of self-driving cars has seen tremendous advance-
ments owing to breakthroughs in artificial intelligence and machine learning.
One of the fundamental technologies driving these developments is Convo-
lutional Neural Networks (CNN)s. [14] CNNs have revolutionized various
computer vision tasks, including object recognition, image segmentation, and
localization. In the context of self-driving cars, CNNs play a pivotal role in
understanding the surrounding environment, detecting obstacles, recognizing
traffic signs, and making critical decisions in real time.

Convolutional Neural Networks

Convolutional Neural Networks are a class of deep learning models inspired
by the human visual system. They are designed to process and analyze visual
data, such as images and videos, by effectively capturing hierarchical patterns
and features. The core building blocks of a CNN are convolutional layers,
pooling layers, and fully connected layers. The distinguishing feature of CNNs
is their ability to learn spatial hierarchies of patterns, [15] making them highly
suitable for tasks requiring local spatial understanding, like object detection and
localization.

4

CHAPTER 1. INTRODUCTION

CNN Architecture for Self-Driving Car Systems

In the context of self-driving car systems, CNNs are typically employed
as perception modules. The perception module is responsible for analyzing
the data from various sensors, such as cameras, Light Detection and Rang-
ing (LiDAR), and radar, to create a comprehensive understanding of the en-
vironment. [16] Convolutional Neural Networks process the visual input, i.e.,
camera images, and extract relevant information for decision-making processes.

Benefits of CNNs for Self-Driving Car Systems

• Feature Extraction: CNNs excel at automatically learning relevant features
from raw pixel data, reducing the need for manual feature engineering,
which can be a time-consuming process. [17]

• Spatial Understanding: CNNs inherently capture spatial hierarchies in
data, making them suitable for tasks that require understanding local
structures, such as detecting lane boundaries and other vehicles.

• Real-time Performance: CNNs can be optimized to achieve real-time per-
formance, allowing self-driving car systems to make instantaneous deci-
sions and react to dynamic driving environments.

• Adaptability: The flexibility of CNN architectures allows them to adapt to
different driving scenarios, weather conditions, and road layouts. [18]

1.2 Our Proposal

In this research-driven project, we introduce an advanced autonomous vehi-
cle system tailored to enhance road safety and navigation efficiency. The major
components and methodologies of our system are enumerated below:

• Machine Learning Integration:

– Lane Detection Model: A sophisticated ML model has been em-
ployed to accurately recognize lanes, ensuring that the car remains
correctly aligned with the roadways.

– Traffic Sign Detection Model: An additional ML model is incorpo-
rated to reliably detect and interpret traffic signs, allowing the vehicle
to respond in real-time to changing road conditions.

5

1.2. OUR PROPOSAL

• Sensor Fusion: By combining data from various onboard sensors, I utilize
sensor fusion algorithms. [19] This not only refines the computation of the
steering angle but also ensures a smoother vehicular motion, minimizing
abrupt movements and turns.

• GPS Integration: The inclusion of a Global Positioning System (GPS)
module serves a dual purpose. It facilitates real-time tracking of the vehi-
cle’s geolocation and assists in efficient route planning, positioning the car
accurately on digital maps.

• Augmented Reality Interface: As an innovative interface solution, I have
enabled visualization of the autonomous car’s journey via the Oculus
Quest headset. This provides a unique and immersive experience, allow-
ing observers to gain a first-person perspective of the vehicle’s behaviour.

• Physical Prototype: I have built a car prototype leveraging the compu-
tational capabilities of the Raspberry Pi. This project involved detailed
planning and assembly of key components essential for the vehicle’s op-
eration. Central to these components are the IMU and the GPS modules.
By effectively interfacing these modules with the Raspberry Pi, I have
been able to achieve a functional prototype with integrated navigation and
tracking capabilities.

The rest of this thesis is organized as follows: In Chapter 2, I have reviewed
the existing literature and studies pertinent to this subject, setting the founda-
tional context for subsequent discussions. Chapter 3 delves into the specific
hardware components utilized and their specifications, configurations, and the
logic behind their selection. In Chapter 4, it is presented the design and struc-
ture of the software components, illustrating the hierarchical design and how the
software complements the hardware. In Chapter 5, I discuss the methodologies
applied for data acquisition and preparation. Chapter 6 introduces the under-
lying deep learning frameworks, elucidating the architectural choices, training
paradigms, and outcomes. Chapter 7 emphasizes the implementation of GPS
for pinpoint vehicle localization and the challenges therein. In the following
chapter, I have explained the system’s control strategies, ensuring seamless op-
eration and functionality. The last chapter focuses on the integration of a Virtual
Reality (VR) headset, justifying its implementation and significance within the
system.

6

2
Related Work

The development and advancement of autonomous car systems have been a
pivotal focal point of modern engineering. This emphasis has been driven by
the desire to transform our transportation systems into a safer, more efficient
paradigm. As such, numerous research endeavours have taken centre stage, each
exploring a number of techniques to enhance system safety, performance, and
functionality. This chapter delves into prominent works that have addressed
different aspects of this domain, from the intricacies of sensor integration to
the nuanced mechanics of lane and object detection. One of the oldest papers
regarding this topic, dating back to 1984 [20], presents a groundbreaking per-
spective. Here, a new modular driver information system is proposed, offering
a glimpse into the early visions of autonomous systems. This design addressed
the challenge of hefty initial investments in road and railway infrastructures
by employing innovative two-way transmitters and receivers. As we trace the
historical timeline, it’s intriguing to observe how the thought paradigms from
decades past align with contemporary perspectives, sometimes eerily predicting
the trajectories we see unfolding today.

2.1 Sensor Integration in Autonomous Driving Sys-
tems

Ensuring the robustness and safety of autonomous vehicles poses challenges,
primarily because of the amalgamation of various sensors and computational

7

2.2. OBJECT DETECTION AND BEHAVIORAL IMPACTS

components sourced from different manufacturers. An insightful approach to
this complexity is discussed in previous research [21]. It introduces method-
ologies to determine the optimal blend of sensors, methods, and algorithms.
The paper explores the intricate system of sensors used by autonomous vehicles
to perceive their surroundings. Leveraging artificial intelligence, these vehicles
analyze vast amounts of data from these sensors to make decisions mirroring
human-like driving behaviour. Due to the data’s sheer volume, advanced ma-
chine learning and data-driven approaches become pivotal. Handling such
extensive data, especially onboard, poses challenges. The autonomous vehicle
sector lacks standardized practices but employs a known set of sensors including
cameras, radar, and LIDAR, which feed data to a central processing unit. Given
the complexity and risks associated with full-scale vehicles, model-sized self-
driving vehicles offer a cost-effective and safer avenue for development. Such
models, though scaled-down, are crucial for testing and simulation, ensuring
that learning is consistent across different platforms. The paper details the cre-
ation of a model autonomous vehicle equipped with various sensors, intending
to enhance its autonomous capabilities through collected data.

The use of sensor fusion algorithms, explored in numerous papers [22] [23],
improves output accuracy, ensuring safer and more precise driving. These works
analyse experimentally, the impact on the speed of calculation and precision that
Kalman, Madgwick and Mahony algorithms offer.

Another study [24] introduces a sensor fusion algorithm that combines data
from Inertial Measurement Units (IMU) and GPS to predict the vehicle’s next
position and orientation more accurately. While traditional navigation methods
predominantly rely on GPS alone, which doesn’t comprehensively scan the
environment, the fusion with IMU data addresses these shortcomings, striving
for greater accuracy, reliability, and overall safety in autonomous navigation.

2.2 Object Detection and Behavioral Impacts

Recognizing on-road objects, whether they are pedestrians, other vehicles, or
traffic signs, is imperative for safe and responsive autonomous driving. Several
papers [25] [26] dive deep into this domain, elaborating on techniques and
algorithms optimized for reliable object detection.

This study [27] underscores the criticality of ensuring safety, stability, and in-

8

CHAPTER 2. RELATED WORK

telligence in high-speed autonomous driving scenarios. One pivotal aspect is the
early detection and interpretation of pedestrian behaviours, especially in high-
way conditions, enabling the self-driving system to react correctly. However,
there is a noted lack of datasets geared towards behaviour recognition in such
scenarios. Addressing this gap, the paper introduces the THU-IntrudBehavior
dataset, a comprehensive collection of pedestrian lane intrusion behaviours rel-
evant to real-world highway situations. The dataset captures a broad spectrum
of pedestrian and cyclist behaviours across various urban settings and weather
conditions. Alongside a detailed annotation for each video entry, the paper
also presents baseline experimental results using this dataset. Ultimately, the
THU-IntrudBehavior dataset offers valuable resources for enhancing behaviour
recognition in high-speed autonomous driving environments. The consequen-
tial behaviours of the vehicle, post object detection, are contingent on these
research outcomes.

Another study [28], conducted on a Raspberry Pi, focuses on obstacle de-
tection, which impacts the driving process. This study zeroes in on the im-
plementation of obstacle detection and avoidance for autonomous cars using
the Convolutional Neural Network (CNN) for real-time video/image analysis
via an IoT device. A Raspberry Pi is utilized for vehicular control and on-the-
fly inference through the CNN based on instantaneous inputs. The developed
model showcases a commendable accuracy rate of 88.6 %, aligning well with the
anticipated performance benchmarks.

Some other studies use the principles of game theory to describe the be-
haviour of the vehicle when encountering obstacles or moving objects. In a pre-
vious study [29], it is evaluated an emergency scenario where two autonomous
vehicles encounter a randomly behaving road obstacle. Game theory is applied,
initially considering complete information about the obstacle and then incorpo-
rating incomplete information to formulate a Bayesian game. The autonomous
vehicles can either stay in their lane, swerve, or change lanes, leading to vari-
ous outcomes like driving unobstructed, colliding with the obstacle, or hitting
another vehicle. The research investigates the Nash equilibria and explores if
one vehicle’s knowledge about the obstacle benefits other road users, a crucial
consideration for connected vehicles.

9

2.3. VISUALIZATION AND AR INTEGRATION

2.3 Visualization and AR Integration

Venturing into the realm of augmented reality integration for visualization
purposes presents a unique challenge, especially when interfacing with com-
puting modules like Raspberry Pi. While literature in this niche area is scant,
this thesis showcases an innovative approach by bridging the Raspberry Pi car
system with a VR headset. This integration compensates for the inability to
execute real-car tests and provides a simulated environment for testing.

2.4 Challenges in Autonomous Driving Systems

Traffic safety concerns regarding interactions between pedestrians, cyclists,
and human-driven vehicles have grown over time. The advent of autonomous
vehicles introduces new challenges, questioning if they can prevent accidents
while ensuring harmonious road-sharing with human-driven cars and pedestri-
ans. A previous study [30] presents game-theoretical models that examine the
strategic interplay between pedestrians and autonomous vehicles. Simulations
support the theoretical findings, providing insights into potential urban traffic
regulations and communication systems needed to enhance traffic management
with the inclusion of autonomous vehicles.

Another previous research [31] provides a comprehensive understanding of
the early challenges faced in the realm of autonomous driving. A notable em-
phasis is laid on the quality of sensor data and its implications on the reliability
of self-driving algorithms, providing a comprehensive review of the advance-
ments and challenges in autonomous car technology. It charts the journey of the
automobile industry, emphasizing its impressive achievements over the last cen-
tury and noting how modern computation and communication breakthroughs
are propelling the shift towards autonomous vehicles. The paper acknowledges
the significant testing milestones and vast investments made by tech giants and
car manufacturers in this domain. Despite the advancements, there are recog-
nized challenges on both the technical front, like software design and real-time
data processing, and the nontechnical side, such as public acceptance and ethical
considerations. The study discusses these issues in depth, emphasizing the need
for solutions that meet the demands of consumers, the industry, and regulatory
bodies. The paper also sheds light on potential applications of autonomous cars

10

CHAPTER 2. RELATED WORK

beneficial to consumers and other sectors. The discussion concludes by present-
ing the challenges that need attention and offers constructive recommendations
to various stakeholders involved in the development and deployment of au-
tonomous cars.

Other studies [32] [33], which are conducted using a Raspberry Pi, focus
on the calculation of the steering angle while driving in the lane. This work-
in-progress paper [33] introduces "PyRoboCar", an affordable, neural network-
driven autonomous car initiative. PyRoboCar, functioning on a smaller scale,
mimics real self-driving car systems by utilizing a deep CNN that processes
images from a front-facing fisheye camera to determine steering directions. The
network structure parallels that of commercial autonomous vehicles. For real-
time operation, it integrates a camera, an auxiliary Tensor Processing Unit, and
a Raspberry Pi 4 platform.

Additional works [34] emphasize that a "zero-accident car" is one of the pri-
mary objectives of researching autonomous driving. As we progress towards
the vision of a "zero-accident car", the focus shifts to autonomous driving, en-
abled by intricate networks of advanced sensors, possibly even smart tires, and
sophisticated control algorithms processed on decentralized computing plat-
forms. Central to this evolution is the ongoing development of the car’s sensor
component. The paper discusses the challenges in designing and manufactur-
ing these sensors for autonomous vehicles. Despite technological advancements
supporting this vision, considerable integration and algorithmic challenges still
need to be addressed.

11

3
Hardware Setup

3.1 Introduction

The system I implemented consists of two main components: autonomous
cars and a centralized processing unit, which operates as a cloud-based Internet
of Things (IoT) system/server. The purpose of this system is to enable au-
tonomous driving by sending commands from the server to the individual cars.

Figure 3.2 illustrates the high-level communication flow. The cars communi-
cate with the server using an event bus, which requires an internet connection
for data exchange. The event bus allows the cars and the server to commu-
nicate without directly knowing the exact number of cars or servers involved,
promoting a flexible and scalable system.

To enable data collection, the cars are equipped with sensors that gather rele-
vant information. These sensors need to be appropriately configured, including
setting parameters such as unit of measurement, sensitivity, and power supply
management. Communication with the sensors is established using the Inter-
Integrated Circuit (I2C) protocol [35], and the collected data is then formatted
in a readable manner, using Protobuf, before being published to the event bus.

On the server side, it receives the data from the event bus and interprets it
to generate appropriate commands for each car. These commands are then sent
back to the cars via the event bus to implement the control system and enable
autonomous driving.

For the implementation of all these functionalities, I have chosen the Rasp-

13

3.1. INTRODUCTION

Figure 3.1: Car Control System on High Level

berry Pi 3B+ as the remote processing unit. [36] The decision to use Raspberry
Pi 3B+ was motivated by its powerful processing capabilities, energy efficiency,
and compact size, making it suitable for deployment in remote systems like the
cars in this setup.

By employing this cloud-based IoT system and Raspberry Pi 3B+ as the
processing unit, the goal is to achieve autonomous driving for cars while main-
taining a scalable and adaptable architecture. I have created a car model, to test
the system.

14

CHAPTER 3. HARDWARE SETUP

Figure 3.2: Car Control System on Low Level

3.2 The car components

3.2.1 Raspberry Pi

The Raspberry Pi 3 Model B+ represents the final version of the Raspberry
Pi 3 series and is of particular relevance for this study. It features a Broad-
com BCM2837B0, Cortex-A53 (ARMv8) 64-bit System on a Chip (System on a
Chip (SoC)) running at 1.4GHz. The device is equipped with 1GB LPDDR2
SDRAM, offering sufficient memory capacity for processing tasks. For wireless
communication, it supports both 2.4 GHz and 5 GHz IEEE 802.11.b/g/n/ac
wireless Local Area Network (LAN), as well as Bluetooth 4.2 and BLE, provid-
ing versatile connectivity options. In terms of connectivity, the Raspberry Pi 3
Model B+ includes Gigabit Ethernet over USB 2.0, with a maximum throughput
of 300 Mbps. It offers extensive input/output capabilities through an extended
40-pin General-purpose Input/Output (GPIO) header, 4 USB 2.0 ports, a Camera
Serial Interface (CSI) camera port, and a Display Serial Interface (DSI) display

15

3.2. THE CAR COMPONENTS

port. Moreover, it provides a full-size HDMI® port, a 4-pole stereo output,
and a composite video port for multimedia purposes. To load the operating
system and store data, the device features a Micro SD port. Power is supplied
via a 5V/2.5A Direct Current (DC) power input, and Power-over-Ethernet (PoE)
support is available. The Raspberry Pi 3 Model B+ offers a compact and capable
platform for this study.

3.2.2 The motors

I have used four brushed motors, to drive the wheels and enable movement
of the car. They have a straight-forward design, consisting of a rotating armature
(the rotor) and a fixed set of magnets (the stator), with brushes that come into
contact with the commutator to control the current direction in the motor

To power the motors, I have used lithium batteries with an external charging
system. These batteries provide a 5V DC output with a capacity of 3000 mAh
(battery capacitor) and can handle a discharge current of up to 20 A. This high
discharge current is necessary to accommodate the initial step response, over-
shoot, and subsequent stabilization (around 1-2 A) that occurs when the entire
system is initiated.

3.2.3 The camera module

Another reason behind the selection of the Raspberry Pi is its built-in Peripheral
Component Interconnect (PCI) socket designed specifically for the camera mod-
ule. The camera utilized in this setup, shown in figure 3.3a boasts a 30 frames
per second capability and offers a resolution of 1080p. These camera parameters
surpass the requirements for the machine learning algorithm since the photos’
resolution will be downscaled regardless.[37]

3.2.4 The ultrasonic sensor

While the car primarily follows commands from a machine learning-based
predictive model, in certain critical situations, hardcoded solutions take prece-
dence. When reading sensor data, it is important to evaluate an efficient Age of
Information and Value of Information management.[38] The ultrasonic sensor
is the sensor of interest, and the information it provides should be prioritised.
One such scenario is when the car detects an object within 5 centimetres of its

16

CHAPTER 3. HARDWARE SETUP

(a) Raspberry Camera (b) Ultrasonic Sensor

Figure 3.3: Camera and Ultrasonic Sensor

proximity, triggering an immediate stop command. This safety measure relies
on an ultrasonic sensor, which emits sound waves to measure distances from
nearby objects. The sensor’s real-time data ensures collision avoidance. Addi-
tionally, it enhances the accuracy of the predictive model by providing valuable
feedback for diverse scenarios. The integration of the ultrasonic sensor ensures
a balanced and adaptive autonomous driving experience.[39]

I have used a HC-SR04 ultrasonic sensor. It operates at a voltage of +5 V
and is designed to measure distances theoretically ranging from 2 cm to 450
cm. In practical terms, its effective measuring distance spans from 2cm to 80cm,
with an impressive accuracy level of 3 mm. The sensor covers a measuring
angle of less than 15°, making it suitable for precise distance measurements in a
specific direction. The sensor operates based on the formula: Distance = Speed
× Time. It works by transmitting an ultrasonic wave, which travels through
the air and reflects back when it encounters an object. The Ultrasonic receiver
module detects this reflected wave. To calculate the distance, we need to know
the speed and time. As we are using ultrasonic waves, the universal speed at
room conditions is 330 m/s. The module’s circuitry calculates the time taken
for the wave to return and activates its echo pin accordingly. By utilizing the
Raspberry Pi, the distance can be easily calculated.

17

3.2. THE CAR COMPONENTS

3.2.5 The GPS module

For this setup, I have employed a GPS module from Adafruit, a provider
of quality electronic components. To ensure reliable performance both indoors
and outdoors, I equipped our board with a small antenna. However, for optimal
indoor functionality, it became necessary to integrate a signal amplifier into the
system.

Signal amplifiers come in two types: active and passive. After careful con-
sideration, I decided to implement active amplifiers from Adafruit. Active am-
plifiers provide enhanced signal boosting capabilities, which is essential for
maintaining a strong and stable GPS signal even in challenging indoor environ-
ments.[40] [41]

Now I will dive into a brief explanation of how a GPS module works:
GPS, or Global Positioning System, relies on a network of satellites orbiting

the Earth. These satellites constantly transmit signals that are received by GPS
receivers, like the one from Adafruit. The GPS receiver calculates its position
based on the time it takes for the signals to travel from the satellites to the
receiver. [42] By triangulating signals from multiple satellites, the GPS module
determines the user’s precise latitude, longitude, and altitude.[43]

In our case, the Adafruit GPS module (3.4) processes the signals received
through the small antenna and amplified by the active signal amplifier. The
amplified signals provide a stronger and more accurate data feed to the GPS
module, enabling it to perform effectively both indoors and outdoors.

The integration of the Adafruit GPS module, along with the active signal
amplifier, ensures that our setup can confidently provide precise and reliable
location data, regardless of whether it operates inside buildings or in open
outdoor spaces.

3.2.6 The IMU

To ensure a robust and stable control system, relying solely on commands
from the server is insufficient; an IMU within the car is imperative to achieve
a smooth and coherent response to these commands. If an IMU is not used,
the car’s response to commands from the server would be less precise and
potentially erratic.

For effective control system implementation, real-world measurements of the

18

CHAPTER 3. HARDWARE SETUP

Figure 3.4: GPS Module
s

car’s state become essential. For instance, when aiming to rotate the car by a
specific angle, such as 30 degrees from its current orientation, a PID controller
algorithm [44] (discussed in Chapter 8) is employed in the negative feedback
loop. This controller necessitates two inputs: the command from the server and
the car’s current state. Without an IMU, these issues would probably occur:

• Loss of Orientation: The absence of IMU data would make it challenging
for the system to accurately determine the object’s orientation in three-
dimensional space. As a result, the vehicle may struggle to understand its
current heading, roll, and pitch angles, leading to difficulties in navigation
and maintaining stable movement. [45]

• Reduced Stability:IMUs play a crucial role in providing continuous mea-
surements of linear accelerations and angular velocities. Without this
data, the control system may lack the necessary feedback to maintain sta-
bility during manoeuvres, resulting in erratic movements or difficulty in
responding to dynamic changes in the environment. [46]

• Limited Motion Monitoring: IMUs continuously track an object’s motion,
providing valuable data on position, velocity, and acceleration. Without
this input, the control system would have to rely on other sensors or
estimation techniques, potentially leading to inaccuracies and reduced
precision in motion monitoring. [45]

• Impaired Control: In autonomous vehicles or robotics applications, precise
and real-time information about motion and orientation is essential for
making informed decisions. Without an IMU, the control system may not
be able to respond promptly to changing conditions, leading to suboptimal
performance and potentially unsafe operation. [47]

• Compromised Navigation: IMUs are crucial for aiding in navigation, espe-
cially in GPS-denied environments or when GPS signals are temporarily

19

3.2. THE CAR COMPONENTS

unavailable or inaccurate. Without an IMU, the vehicle may face chal-
lenges in accurately estimating its position and heading, affecting its ability
to navigate effectively.

To acquire the current state of the car accurately, a 9-axis IMU is employed.
This remarkable device measures the car’s three-dimensional orientation, utiliz-
ing Euler angles or quaternions, through the readings of three distinct sensors:
accelerometer, gyroscope, and magnetometer.

For this purpose, we have chosen the Adafruit 9-axis IMU 3.5, model TDK
InvenSense ICM-20948 IMU[48], a reliable and high-performance unit capable
of precisely determining the car’s orientation in real-time. By incorporating this
IMU into the control system, we can obtain the vital data required for seamless
and responsive manoeuvring of the car by the server’s commands, thus creating
a harmonious and efficient overall response.

Figure 3.5: Adafruit IMU Schema

3.2.7 The assembled car

Including all the elements mentioned above, the assembled car is shown in
figure 3.6. The goal is to create a system that will allow this, and every other car
of this built, to drive autonomously and to be observed during this process.

20

CHAPTER 3. HARDWARE SETUP

Figure 3.6: The Assembled Car

21

4
Software Architecture

Within the system architecture, shown in figure 4.1, the server does not know
the source of incoming data and does not recognize the individual autonomous
vehicles. It is a vehicular network [49] where the data transmission speed is a
priority. All the communication is done via an Event Bus as mediator. Each
autonomous vehicle is, theoretically, assigned a Universal Unique Identifier
(UUID) during its software installation. The vehicle’s onboard camera captures
the frame, which is subsequently transmitted to the event bus as a byte array.
[50] The server, connected to this event bus, then decodes the byte array in
preparation for the processing steps that follow:

1. Lane Detection: The first processing stream pertains to lane detection.
Based on the analysis, the system generates predictions related to the
required acceleration and steering commands for the vehicle.[51]

2. Traffic Sign Detection: The second stream focuses on detecting traffic
signs. The output of this processing is an array, detailing the identified traf-
fic signs and their respective coordinates. Given the potential for multiple
traffic signs within a single frame, this array format is essential. Notably,
the predictions derived from traffic sign detection can supersede those
from lane detection. For instance, if lane detection suggests a 20-degree
turn at 40 km/h, but a "Stop" sign is detected, the vehicle is instructed to
halt. [52]

These analyses leverage two distinct convolutional neural networks (CNNs)
for processing.

The final system output consists of steering and acceleration directives along
with the identification and coordinates of detected traffic objects.

23

4.1. SYSTEM DESIGN AND IMPLEMENTATION

Figure 4.1: Software Architecture

4.1 System Design and Implementation

4.1.1 Technology Stack

For the server component of the system, I chose .NET 7[53] due to its en-
hanced performance features, which have been optimized with each new ver-
sion. This makes it particularly suitable for high-throughput server applications
integral to autonomous vehicle management. Additionally, the cross-platform
compatibility that .NET 7 offers is indispensable, enabling deployment across
diverse platforms such as Windows, Linux, and macOS. This flexibility ensures
my server remains versatile across different deployment environments. Another
key advantage of .NET 7 is its integrated asynchronous programming model.

24

CHAPTER 4. SOFTWARE ARCHITECTURE

The Task-based asynchronous pattern, integral to .NET, is adept at handling
numerous simultaneous data streams from multiple vehicles without unduly
taxing server resources.

For the data storage, I used MongoDB, primarily due to its document-centric
schema which is flexible and highly performant. [54] This quality is important
for my system since it means that as the structure of the vehicle data evolves,
the database can readily adapt without extensive schema alterations.[55] Mon-
goDB’s design ensures each car is treated as a distinct document, facilitating
rapid read operations and minimizing performance overhead when scaling to
handle an influx of data entries.[56] Another significant aspect of MongoDB
is its capability for horizontal scalability, made possible through sharding.[57]
This ensures that the system remains adaptive to the growing demands of an
expanding fleet of vehicles.

Lastly, for the event bus, RabbitMQ [58] was the technology of choice. Its
reputation for memory efficiency in message queuing stands out, a quality that’s
crucial when handling data from a multitude of vehicles communicating in real
time. Any system lag resulting from memory overheads can be detrimental,
making RabbitMQ’s efficiency a pivotal asset. Furthermore, RabbitMQ offers a
robust framework for reliability, characterized by its message durability features.
This ensures that even in the face of system disruptions, there’s a minimal risk of
losing crucial vehicle data. Designed with high availability in mind, RabbitMQ
is equipped to handle a vast volume of simultaneous messages, a scenario likely
in environments teeming with autonomous vehicles.

4.1.2 System Implementation

In the context of this autonomous car system, each vehicle is uniquely identi-
fied using a UUID. In figure 4.2, is depicted as an example, to illustrate the data
flow. A car with the identifier "abc123" captures visual data from its camera.
This data is then sequentially processed frame-by-frame, converting each frame
into a JavaScript Object Notation (JSON) structure. Within this structure, the
image data is represented as a byte array, and the desired prediction type is
specified. I will be focusing on the CNN prediction.

Following the initial processing, the CNN model generates predictions de-
tailing the steering angle and acceleration values for the vehicle. Subsequently,
this frame undergoes analysis by a second model dedicated to traffic sign detec-

25

4.1. SYSTEM DESIGN AND IMPLEMENTATION

tion. This model identifies the traffic signs within the frame.
Based on the detected objects, the system formulates the final output, which

includes directives for acceleration, steering angle, and information about the
identified objects, their names and coordinates within the frame. It is worth
noting that the presence of specific traffic signs can influence the final recom-
mended acceleration and steering angle, adjusting them as per traffic regulations
and safety considerations. After the output is formulated, it is sent back to the
car through the RabbitMQ message broker, using its Pub/Sub communication.
[59][60]

Figure 4.2: Data Flow

RabbitMQ Pub/Sub Communication

In my car control system, I leveraged RabbitMQ’s publish-subscribe (pub-
/sub) 4.3 pattern to enable real-time communication between the car and the
control system. The pub/sub pattern in RabbitMQ works by sending messages

26

CHAPTER 4. SOFTWARE ARCHITECTURE

to exchanges, rather than specific queues. Subscribers express interest in spe-
cific types of messages, and RabbitMQ routes the messages to the appropriate
queues for these subscribers.[58] The primary components involved are:

• Publisher: Send messages to an exchange.

• Exchange: Routes the messages to one or more queues based on the rules
defined.

• Queues: Buffers that store messages until they are consumed.

• Consumers: Processes or tasks that consume messages from the queues.

Camera Frames Delivery

The autonomous car, acting as a publisher, captures frames from its onboard
camera and publishes these frames to an exchange named "CameraFramesEx-
change". In this step, the system acts as a consumer since multiple subsystems
(traffic signs detection and lane detection) are interested in these frames, they
each subscribe to this exchange. RabbitMQ, based on the binding rules, routes
these frames to relevant queues, ensuring that each subsystem gets the frame
data for further processing.

Control Commands Delivery

The control system processes the received frames, determines the optimal
steering angle and acceleration, and then publishes these commands to an ex-
change named "CarCommandsExchange". The car, acting as a consumer this
time, has a dedicated queue where it waits for these command messages. Once
the acceleration and steering angle arrive, it is consumed by the car’s onboard
computer to execute the respective driving action.

27

4.1. SYSTEM DESIGN AND IMPLEMENTATION

(a) Camera Frames Delivery

(b) Control Commands Delivery

Figure 4.3: RabbitMQ Pub/Sub Communication

28

5
Data Collection and Processing

5.1 Data Collection and Processing for Lane Detec-
tion model

5.1.1 Data Collection

To enable autonomous navigation of the self-driving vehicle, I need a rele-
vant dataset. This dataset should ideally reflect the real-world conditions of the
testing environment. To address this, I designed a basic manual driving setup
using the WASD keys, allowing me to navigate along road lines while record-
ing corresponding videos. Subsequently, I employed an OpenCV program to
process these videos as input. The outcome of this process was the creation of a
CSV file containing both the names of the video frames and their corresponding
steering angles. This was achieved through the utilization of a lane detection
algorithm[61] implemented in OpenCV.

The algorithm steps I have followed are:

1. Preprocessing: I converted the image to the Hue, Saturation, Value (HSV)
space to focus on blue lanes. [62] This colour filtering ensures that the
majority of the unwanted objects in the scene are excluded.

2. Edge Detection: I used the Canny edge detection method [63]. It identifies
the boundaries of objects within images, crucial for detecting the outlines
of lanes.

3. Region of Interest (ROI)) Extraction: To reduce computational load and
improve accuracy, the focus is on the bottom half of the image.

29

5.1. DATA COLLECTION AND PROCESSING FOR LANE DETECTION MODEL

4. Line Detection:The Hough transform identifies lines within the ROI. This
method transforms image points into a Hough space, making line identi-
fication straightforward.[64]

5. Line Averaging & Extrapolation: Multiple detected lines are combined
into two main lanes (left and right) by averaging their position and extrap-
olating their length.

6. Steering Angle Calculation: The deviation of the vehicle from the centre
of the lane is used to compute a steering angle, ensuring the vehicle remains
centred within its lane.

The results of one single frame are shown in figure 5.1. The green lines are
the detected edges and the red line suggests the steering degree. I saved the
frame names and steering degree in a Comma-Separated Values (CSV) file, and
this data will be used to train the ML model.

Figure 5.1: Lane Edge Detection

For the training, I used 224 images, and for the validation 65 images, as
shown in figure 5.2. The angles are mostly smaller than 90 degrees because, in
my training lane, the car turned mostly left. This data will be augmented with
further processes like image flips, therefore it does not pose a problem in terms
of training data quality.

30

CHAPTER 5. DATA COLLECTION AND PROCESSING

Figure 5.2: Training and Validation Dataset

5.1.2 Data Augmentation

Data processing is an integral part of machine learning and data analytics.
To diversify and increase my training dataset, I tried augmenting my data. I
have used multiple techniques:

1. Zoom: It was performed by cropping a smaller portion from the centre of
the original image. By doing so, I emphasized on the significant features
of the image while discarding the peripheral content. 5.3a

2. Pan (Offset Cropping): Panning involves cropping parts of the image from
varying sides, be it left, right, top, or bottom. Using this technique, I
simulated the effect of capturing images from different positions and an-
gles. Such augmentation helps my model understand scenarios where the
subject of interest is not perfectly centred, mimicking real-world camera
misalignments or dynamic scenes where the region of interest changes.
5.3b

3. Brightness Adjustment: Modifying the brightness of images simulates
different lighting conditions. This can range from underexposed (darker)
to overexposed (brighter) images. For autonomous driving systems, this is
crucial. Different times of the day (dawn, midday, dusk) or environmental
conditions (tunnels, shaded areas) present varying lighting conditions. A
robust model should recognize objects irrespective of these variations. 5.4a

4. Horizontal Flip: Flipping the image horizontally results in a mirror image
of the original. When applying this to autonomous driving, the associ-
ated steering angles must be inverted too. This is useful to double the
dataset size instantly and to train the model for scenarios where mirrored
or opposite scenarios might arise.

5. Gaussian Blur: Applying a Gaussian blur smoothens the image by aver-
aging pixel values within a local neighbourhood. [65] This can simulate

31

5.1. DATA COLLECTION AND PROCESSING FOR LANE DETECTION MODEL

(a) Zoomed Image

(b) Panned Image

Figure 5.3: Image processing

scenarios where the camera is out of focus or when environmental condi-
tions cause visual obscurity. This is important, especially in scenarios like
a dirty camera lens. Ensuring a model can decipher blurry images can be
the difference between detecting an object or missing it entirely. 5.4b

5.1.3 Data Processing

I have based the lane detection model on the Nvidia Model Architecture
[66], since it is a well-tested architecture. The model architecture is further
explained in chapter 6. The input planes are 66x200. In the Nvidia paper,
it is also suggested that (Y) luma, or brightness, (U) blue projection, (V) red
projection (YUV) colour space is recommended, therefore I did some further
processing shown in figure 5.5.

32

CHAPTER 5. DATA COLLECTION AND PROCESSING

(a) Increased Brightness

(b) Gaussian Blur

Figure 5.4: Image processing

5.2 Data Collection and Processing for Traffic Signs
Recognition model

The ability of autonomous vehicles to recognize and interpret street signs
is paramount to their safe and lawful operation. In this chapter, we present
a methodology for detecting and classifying four types of traffic signs: Stop,
No Entry, 30 km/h, and 50 km/h. The method is implemented using Python
libraries including Keras for evaluating the models [67], Pandas to analyse the
big data quantity [68], Numpy [69] for the mathematical operations, especially
on PID implementation, and OpenCV for the image detection algorithms. [70]

5.2.1 Dataset Collection

The dataset used to train the model is the DFG Traffic Sign Data Set. [71]. I
used the photos of four traffic signs: "Stop", "No Entry", 30 km/h and 50 km/h.
I labelled the data accordingly in a CSV file. To further enhance the dataset, I
incorporated additional images of miniature traffic signs that I took and had in
my possession.

33

5.2. DATA COLLECTION AND PROCESSING FOR TRAFFIC SIGNS RECOGNITION
MODEL

Figure 5.5: Processed Images for Nvidia architecture

5.2.2 Dataset Preprocessing

Figure 5.6: Training Set Distribution

• Image Importation: The images are imported and resized to 64x64 pixels.
The count of images per class is determined, and the dataset is split into
training (60%), validation (20%), and testing (20%) subsets.

• Data Visualization: The distribution of classes within the dataset is visu-
alized using Matplotlib, and sample images are displayed for each class.

• Image Preprocessing: The images are preprocessed by converting them
to grayscale and equalizing the histogram to improve contrast. These
preprocessed images are then normalized by dividing by 255, scaling the
pixel values between 0 and 1.

• Data Augmentation: Using the Keras image data generator, the training
set is augmented with variations of the original images, including random
shifts, zooms, shears, and rotations. This enhances the model’s ability to
generalize from the training data.

34

6
Deep Learning Model

6.1 Lane Detection model

6.1.1 Model Architecture

As I briefly mentioned in chapter 5, for the lane detection model, I have used
the Nvidia network architecture. Figure 6.1 depicts the network architecture,
comprising a total of 9 layers. These layers encompass a normalization layer,
5 convolutional layers, and 3 fully connected layers. The initial step involves
dividing the input image into YUV planes, which are subsequently fed into the
network.

Based on this model, I wrote the Python code to train my model. (see
Appendix, Code 2).

I have used the Exponential Linear Unit (ELU) activation [72], Differing from
Rectified Linear Unit (ReLU)s, ELUs incorporate negative values, enabling them
to shift the mean activations of units closer to zero. This property resembles
batch normalization, yet ELUs achieve it with reduced computational complex-
ity.

6.1.2 Model Training

I chose the number of epochs, steps per epoch and validation sets empirically.
Basically, after training my augmented dataset of around 50000 images, with
various combinations, I concluded that the best combination for my study, which

35

6.1. LANE DETECTION MODEL

Figure 6.1: Nvidia Model Architecture

performs well and avoids overfitting, is this combination: 150 steps per epoch,
10 epochs, a batch size of 200 and 100 validation steps:

Training Data Size: Each epoch consists of 150 steps, and for each step, a
batch of 200 samples is processed, therefore the total training samples = steps
per epoch x batch size = 150 x 200 = 30000 samples.

Validation Data Size: I have 100 validation steps, and for each step, I am
using a batch size of 200. Total Validation Samples = validation steps x batch
size = 100 x 200 = 20000 samples.

After the successful training of the model, I generated the graph in figure
6.2 with the training and validation loss. We see that after each epoch, the loss
decreases, up until the last epoch, where we reach a training loss of 74 and a
validation loss of 45.

36

CHAPTER 6. DEEP LEARNING MODEL

Figure 6.2: Training and Validation Loss

6.2 Traffic Signs Detection model

6.2.1 Model Architecture and Training

The model architecture, implemented with Keras[73] consists of several lay-
ers:

• Convolutional Layers: Two consecutive convolutional layers with 60 filters
of size 5x5 followed by two convolutional layers with 30 filters of size 3x3.
ReLU activation functions are used for these layers.

• Max-Pooling Layers: These layers follow each pair of convolutional layers
and help reduce the spatial dimensions of the feature maps, making the
detection of features invariant to scale and translation.

• Dropout Layers: Used after the convolutional layers to prevent overfitting,
these layers randomly set a fraction of the input units to 0 during training,
which helps to prevent overfitting.

• Flatten Layer: This layer is used to convert the 2D matrix data to a vector
before building the fully connected layers.

• Dense Layers: Includes one hidden layer with 500 nodes and a ReLU
activation function, followed by the output layer with a softmax activation
function to classify the four types of traffic signs.

The model is compiled using the Adam optimizer [74] with a learning rate
of 0.001 and a categorical cross-entropy loss function.

The training process uses 10 epochs, and the model’s performance is evalu-
ated using both the training and validation data. Training and validation loss
and accuracy are plotted to visualize the model’s performance over time.

37

6.2. TRAFFIC SIGNS DETECTION MODEL

6.2.2 Results and Model Evaluation

The trained model is evaluated on the test set, achieving a test accuracy of
score 98.7.

The model, including its weights and architecture, is then saved as a Pickle
object for future use in the traffic sign recognition task.

To get more accurate results, I increased the number of epochs [75]. The
training and validation loss in 6.1 decreases from 10 to 15 epochs, signifying
that the model is learning and minimizing the error in its predictions. This is
expected behaviour during the training process as the model adjusts its weights
to fit the data better. Correspondingly, the training and validation accuracy
increased from 10 to 15 epochs. This indicates that the model is making correct
predictions more often, not only on the training data but also on the unseen
validation data. An increase in accuracy alongside a decrease in loss suggests
that the model is becoming more generalized and is likely to perform well on
new, unseen data.

Epochs Train loss Train accuracy Validation loss Validation accuracy
10 0.2500 0.8600 0.220 0.8550
15 0.0801 0.9870 0.0623 0.9882

Table 6.1: Results with increased epochs

In Figure 6.3, the training and validation accuracy curves are depicted over
the training epochs. A notable observation from the plot is the concurrent
upward trend of both curves, which signifies a well-balanced learning process.
The training accuracy showcases the model’s proficiency on the training dataset,
progressively enhancing as the model learns the underlying patterns. Simul-
taneously, the validation accuracy’s consistent increase represents the model’s
ability to generalize the learned patterns to unseen data. The convergence of
the two curves towards similar values emphasizes the model’s robustness and
indicates the absence of overfitting, reflecting a harmonious balance between
bias and variance.

Figure 6.4 illustrates the trend of the training and validation loss through-
out the training epochs. Both curves display a consistent downward trajectory,
which is an affirmative indication of the model’s performance. The decreas-
ing training loss shows the model’s refinement in minimizing the error in the
training data. Concurrently, the decline in validation loss is indicative of the

38

CHAPTER 6. DEEP LEARNING MODEL

(a) Training Accuracy

(b) Validation Accuracy

Figure 6.3: ML Model Accuracy Values

model’s capacity to extend this refinement to unseen data, thus reducing pre-
diction errors on the validation set. The synchronized decrease in both training
and validation loss shows a well-tuned model.

39

6.2. TRAFFIC SIGNS DETECTION MODEL

(a) Training Loss

(b) Validation Loss

Figure 6.4: ML Model Loss Values

40

7
GPS Localization

To monitor the exact geographical location of autonomous vehicles on a
global scale, a system needs to incorporate the Global Positioning System (GPS).
[76] This can be considered an example of independent mobility [77], where each
vehicle has a certain memory. To ensure real-world applicability, I integrated a
GPS module into the system. Recognizing that a majority of my experimental
procedures were executed within indoor environments—where satellite signals
can be weak—I took the measure of testing the module with an active signal
amplifier to amplify the signal strength. Additionally, to ensure user-friendliness
and interoperability, I chose to implement the location visualization using the
Google Maps platform, [78] considering its ubiquity and familiarity. This was
facilitated through the Google Application Programming Interface (API), which
I integrated into our system.

7.1 Implementation

7.1.1 Choosing the mapping and communication system

I first set up a developer account with Google and enabled the requisite
permissions for Google Maps integration. By doing this, the system gained the
capability to forward the latitude and longitude coordinates, as sourced from
the GPS module, to the mapping API, in Fig. 7.1a. For this autonomous vehi-
cle solution to be effective, especially in dynamic environments, it is crucial to
have real-time data transmission. After evaluating several solutions, I settled on

41

7.1. IMPLEMENTATION

Pubnub—a state-of-the-art real-time communication platform. Notably, during
comparative testing, Pubnub displayed superior performance metrics compared
to alternatives like RabbitMQ. The configuration of Pubnub is streamlined, in-
volving a distinct publisher key and a subscriber key.[79] In my system’s con-
figuration, the autonomous car assumes the role of the publisher, broadcasting
the latitude and longitude data. In contrast, the web application, integrated
with the Google Maps API, acts as the subscriber, visualizing the vehicle’s live
location.

To ensure the reliability and integrity of data transmission, and to mitigate
the potential transmission of redundant or duplicated data, I incorporated a
system where each data transmission is appended with a unique token. This
serves as a checksum and can be visualized as depicted in Figure 7.1a.

7.1.2 Results

In the operational configuration, the system is designed to refresh and up-
date the location data at intervals of 1 second. This ensures a near real-time
representation of the vehicle’s movement and trajectory, providing users and
system administrators with accurate and timely location data.

42

CHAPTER 7. GPS LOCALIZATION

(a) Data being sent from the server

(b) Google Maps view of the location

Figure 7.1: RabbitMQ Pub/Sub Communication

43

8
System Control

Among the different control systems employed in the realm of robotics,
the Proportional-Integral-Derivative (PID) controller is a popular choice due to
its effectiveness and simplicity. [80] This chapter explains the formulation and
implementation of the PID controller to dictate the movement of my autonomous
vehicle.

8.1 The principle of PID control

A PID controller is an iterative control loop feedback mechanism (or con-
troller) that adjusts a process by calculating the difference between a measured
process variable and a desired setpoint.[81] It attempts to minimize the error
by adjusting the process control inputs in three distinct manners: Proportional,
Integral, and Derivative, hence the name PID.

1. Proportional Control (P): This component produces an output value that
is proportional to the current error. The proportional response can be ad-
justed by multiplying the error by a constant known as𝐾𝑝 , the proportional
gain constant.

2. Integral Control (I): This component is concerned with the accumulation
of past errors. If the error has been present for an extended period, it
will accumulate (integral of the error), and the controller will respond by
changing the control input about a constant 𝐾𝑖 , the integral gain.

3. Derivative Control (D): This predicts the future trend of the error by
understanding its rate of change. It provides a control output to counteract

45

8.2. IMPLEMENTING PID ON RASPBERRY PI

the rate of error change. The contribution of the derivative component to
the overall control action is termed the derivative gain, 𝐾𝑑.

8.1.1 Challenges and Limitations

Though PID controllers are efficient, they may be subject to errors:

• Noise in Derivative Term: A major limitation is the amplification of noise
in the derivative term, which can cause erratic movements.

• Steady-State Error: While the integral term ensures zero steady-state er-
ror for constant or slowly varying setpoints, rapid changes can introduce
overshoot and oscillations.

8.2 Implementing PID on Raspberry Pi

8.2.1 Hardware Configuration: PID Control with IMU Inte-
gration

The implementation of a PID controller in an autonomous vehicle requires
a feedback loop, where the actual state of the vehicle is consistently compared
to the desired state (setpoint). The desired state is the steering angle dictated
by the lane detection module, which the car will aim to achieve. The IMU
provides valuable data about the vehicle’s current state, such as orientation and
acceleration. By incorporating this feedback into the PID controller, one can
ensure precise control over the vehicle’s movements and stability.

IMU Choice and Placement

For my dissertation, I have used a 9-axis IMU that includes a magnetometer.
[82] I have positioned the IMU as close as possible to the centre of gravity of
my autonomous car. This minimizes inaccuracies in readings due to external
forces. The IMU is well-secured to avoid any vibrations, which can introduce
noise into the data. The use of this IMU provided real-time data regarding the
vehicle’s position, orientation, and velocity:

46

CHAPTER 8. SYSTEM CONTROL

• Orientation: The combination of an accelerometer (which provides tilt
sensing) and gyroscope (which provides rotational speed) helps the system
understand in which direction the vehicle is pointing and how it is oriented.

• Position and Navigation: Magnetometers assist in providing a reference to
the Earth’s magnetic north, which can be beneficial in navigation.

• Stabilization: The IMU’s rapid feedback help in systems like traction con-
trol and stability control.

To get accurate angle results, it is advised to use sensor fusion algorithms. The
most famous algorithms to perform this task are Kalman, Madgwick and Ma-
hony. I experimented with these algorithms and measured their behaviour. The
experiments were further analysed with the collaboration of Professor Leonardo
Badia. Our work, presented in the next segment of this chapter, was finalised
by a published paper in IEEE. [83].

8.2.2 A Comparative Analysis of Sensor Fusion Algorithms

Experiments and Methods

To ensure a fair assessment between the Kalman, Madgwick, and Mahony
filters, identical input data and integration periods are provided for each filter.
The integration period encompasses the duration of the dead time between
sensor readings, during which a timer initiates at the initial data capture and
concludes at the subsequent readout operation. This time span is used for
processing and is considered in the filter computations. Despite the sequential
operation of the filters, the same sensor readout data is maintained and sampled
until all the filters have processed the input to guarantee a just comparison of
their outputs.

Two thousand data recordings were captured for each filter, focusing on
pitch, roll, and time intervals. I explored two situations: (i) with the sensor at
rest and (ii) while it’s in movement, shifting the sensor. By analyzing the results
of the filters under the same input parameters and integration timeframe, the
effectiveness of each filter can be gauged and contrasted.

I assessed three diverse sensor fusion methodologies to identify the optimal
technique for our specific need. The primary approach we ventured into is
the classic trigonometry procedure detailed in the earlier section. This involves
consolidating the sensor readings without any extra filtration. Such a method
establishes a reference point for comparisons with subsequent methods.

47

8.2. IMPLEMENTING PID ON RASPBERRY PI

Kalman filter

The Kalman filter can be used to estimate the status of linear systems [84].
This filter algorithm consists of two stages: prediction and update, sometimes
[85] also referred to as “propagation” and “correction.” A synthetic version of
Kalman Filter Algorithm is reported in Table 8.1.

Table 8.1: Steps of the Kalman Filter

Description Equation
Kalman Gain 𝐾𝑘 = P′

𝑘
H𝑇(HP′

𝑘
H𝑇 + R)−1

Update Estimate x̂𝑘 = x′̂𝑘 + 𝐾𝑘(z𝑘 − Hx′̂𝑘)
Update Covariance P𝑘 = (I − 𝐾𝑘H)P′

𝑘

Project into 𝑘+1 x′̂𝑘+1 = Φx̂𝑘
P𝑘+1 = ΦP𝑘Φ𝑇 + Q

The first equation represents the expression for the Kalman gain in a Kalman
filter, where 𝐾𝑘 is the Kalman gain at time step 𝑘, P′

𝑘
is the predicted error

covariance matrix, H is the measurement matrix, and R is the measurement
noise covariance matrix [86]. The second equation represents the update step
in a Kalman filter, where x𝑘 is the updated state estimate at time step 𝑘, x′

𝑘
is

the predicted state estimate, z𝑘 is the measurement at time step 𝑘. The third
equation represents the update step for the error covariance matrix in a Kalman
filter, where P𝑘 is the updated error covariance matrix at time step 𝑘. The matrix
subtraction (I − 𝐾𝑘H) is often referred to as the Kalman gain update.

For the projection, the first equation, x′̂𝑘+1 = Φx̂𝑘 , predicts the state of the
system at the next time step based on the current state. Here, x̂𝑘 is the estimated
state of the system at time step 𝑘, and Φ is the state transition matrix, which
describes how the state of the system evolves over time. Multiplying x̂𝑘 by Φ
gives the predicted state of the system at time step 𝑘 + 1, denoted by x′̂𝑘+1.

The second equation, P𝑘+1 = ΦP𝑘Φ𝑇+Q, predicts the error covariance matrix
at the next step. Matrix ΦP𝑘Φ𝑇 represents the propagation of the uncertainty
in the estimated state to the next step. Matrix Q is the process noise covariance
matrix, which represents the uncertainty in the dynamics of the system that is
not accounted for by the state transition matrix. The sum of ΦP𝑘Φ𝑇 and Q gives
the predicted error covariance matrix at time step 𝑘+1, denoted by P𝑘+1.

48

CHAPTER 8. SYSTEM CONTROL

Mahony filter

The Mahony filter [87] tries to improve the estimates from low-quality mea-
surements through a quaternion-based approach, to represent the orientation of
the device in 3D space. It uses a proportional-integral-derivative (PID) control
algorithm to adjust the estimated orientation based on the difference between
the measured and estimated sensor readings. The algorithm is designed to
minimize errors over time by adjusting the gain parameters of the filter.

This filter is known for its ability to provide accurate and stable estimates of
orientation even in the presence of external disturbances such as vibration or
magnetic interference. It is used in a variety of applications, including robotics,
aerospace, and virtual reality [88, 89]. However, it requires cautious tuning of its
gain parameters to achieve the best performance. A pseudocode of the Mahony
filter, as was implemented in the sensor is reported in Algorithm 1.

Algorithm 1 Mahony Filter Algorithm for IMU (Accelerometer and Gyroscope
Only)

1. Set algorithm coefficients 𝐾𝑖 , 𝐾𝑝 and initialize quaternion 𝑞1 = 1, 𝑞2 = 𝑞3 =

𝑞4 = 0
while: sensor data is available

2. Read accelerometer measurements 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 and gyroscope measurements
𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧

3. Compute orientation error from accelerometer data, where 𝑒𝑖 ,𝑡 represents the
integral error of the measurements at time 𝑡.

e𝑡+1 =

[︃
𝑎𝑥,𝑡
𝑎𝑦,𝑡
𝑎𝑧,𝑡

]︃
×
[︄ 2 (𝑞2𝑞4 − 𝑞1𝑞3)

2 (𝑞1𝑞2 + 𝑞3𝑞4)(︁
𝑞2

1 − 𝑞
2
2 − 𝑞2

3 + 𝑞2
4
)︁]︄ (8.1)

e𝑖 ,𝑡+1 = e𝑖 ,𝑡 + e𝑡+1𝛥𝑡 (8.2)

4. Update angular velocity computed from gyroscope with the 𝐾𝑖 and 𝐾𝑝 terms
using feedback (fusion)

𝜔𝑡+1 = 𝜔𝑡 + 𝐾𝑝𝑒𝑡+1 + 𝐾𝑖𝑒𝑖 ,𝑡+1 (8.3)

5. Compute orientation increment from gyroscope measurements

�̇�𝜔,𝑡+1 =
1
2 �̂�𝑡 ⊗ [0, 𝜔𝑡+1]𝑇 (8.4)

6. Numerical integration
𝑞𝑡+1 = �̂�𝑡 + 𝛥𝑡 �̇�𝜔,𝑡+1 (8.5)

endwhile

49

8.2. IMPLEMENTING PID ON RASPBERRY PI

Madgwick filter

The Madgwick filter used in this paper[90] is relatively simple and can be
implemented in most programming languages. It involves calculating the error
between the predicted and measured quaternion values and then using that error
to update the quaternion estimate. The filter performance can be improved by
fine-tuning the algorithm parameters and adjusting the sensor fusion weights to
suit specific application requirements. Overall, the Madgwick filter is robust and
efficient for attitude estimation and can provide accurate orientation estimates
in real-time. The pseudocode of the Madgwick filter, as implemented in the
experiments, is shown in Algorithm 2.

Algorithm 2 Madgwick Filter Algorithm for IMU (Accelerometer and Gyro-
scope Only)

1. Set algorithm gain 𝛽 and initialize quaternion 𝑞1 = 1, 𝑞2 = 𝑞3 = 𝑞4 = 0
while: sensor data is available

2. Read accelerometer measurements 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 and gyroscope measurements
𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧

3. Normalize the accelerometer measurements
4. Calculate the Jacobian matrix and compute the gradient of the cost function

∇ 𝑓 = 𝐽𝑇 𝑓 (8.6)

𝑓 =

[︄2 (𝑞2𝑞4 − 𝑞1𝑞3) − 𝑎𝑥
2 (𝑞1𝑞2 + 𝑞3𝑞4) − 𝑎𝑦
2
(︁ 1

2 − 𝑞2
2 − 𝑞2

3
)︁
− 𝑎𝑧

]︄
(8.7)

𝐽 =

[︄
−2𝑞3 2𝑞4 −2𝑞1 2𝑞2
2𝑞2 2𝑞1 2𝑞4 2𝑞3
0 −4𝑞2 −4𝑞3 0

]︄
(8.8)

5. Update the quaternion using the gradient descent algorithm

𝑞∇,𝑡+1 = −𝛽
∇ 𝑓
| | 𝑓 | | (8.9)

6. Compute orientation increment from gyroscope measurements

�̇�𝜔,𝑡+1 =
1
2 �̂�𝑡 ⊗ [0, 𝜔𝑡+1]𝑇 (8.10)

7. Fuse measurements to obtain the estimated attitude
𝑞𝑡+1 = �̂�𝑡 + 𝛥𝑡(�̇�𝜔,𝑡+1 + 𝑞∇,𝑡+1) (8.11)

endwhile

50

CHAPTER 8. SYSTEM CONTROL

8.3 Experimental results

We performed data collection in two scenarios, referred to as ’stationary’ and
’in movement,’ where the setup is static and corresponding to being in a moving
vehicle, respectively [77]. In both setups, I compare the no-filter trigonometric
computation (referred to as the “Matrix” method in the plots) and the three
presented filtering methods. I evaluated pitch and roll angles, and the com-
putational complexity of the procedure. In our setup, for the Madgwick filter
implementation, I have chosen 𝛽 = 0.05. A low value of 𝛽, such as 0.05, results
in a smoother output by allowing slower convergence. This gives an advantage
in this scenario where the measured data contains noise or rapid fluctuations,
and a stable and less jittery output is desired. Mahony filter parameters 𝐾𝑝 and
𝐾𝑖 are 10 and 0, respectively. I noticed during the experiment that in our sce-
nario, 𝐾𝑖 did not significantly affect the quality of the measurement, therefore,
we set it to 0 for simplicity. This also avoids issues associated with integration,
such as overshoot, instability, or slow convergence, especially in scenarios with
negligible steady-state errors and gyroscope bias [91].

Stationary results

Figs. 8.2 and 8.1 present the results for the four compared methods in the
static scenario, where the sensor is in a resting state, showing the pitch and
roll angles, respectively. They show the ability of all techniques to converge
to a stable and consistent estimate of the state of the system over a period of
time when the inputs to the system are not changing, yet with different overall
performance. [92].

Since the device is static without any tilt, I expect the pitch and roll values to
be near 0. In Fig. 8.2, Madgwick’s behavior appears to have wider oscillations,
possibly caused by the acquisition of more noise. This depends on the coef-
ficient 𝛽, which tunes the memory from the previous state of the quaternion,
as described in (8.9). This implies that 𝛽 is implicitly related to the low-pass
pole of the system, and there exists a trade-off. If we are looking to achieve a
higher bandwidth of the filter, to respond to fast-changing angles, the cost is the
presence of more noise, acquired by the filter itself. This value of 𝛽 was chosen
because it allowed the Madgwick filter to respond as fast as the other filters,
but as we can see, we do acquire more noise compared to Kalman and Mahony

51

8.3. EXPERIMENTAL RESULTS

Figure 8.1: Roll angle comparison of the filters with stationary IMU.

Figure 8.2: Pitch angle comparison of the filters for a stationary IMU.

52

CHAPTER 8. SYSTEM CONTROL

Figure 8.3: Pitch angle comparison of the filters with moving IMU.

filters.
In Fig. 8.1, we notice oscillations around −0.1 degrees. In an ideal scenario,

in a stationary state, the roll value would be 0. This could be due to several
factors. One possible reason is that the sensor has a small bias or offset in its
measurements, which can cause it to read a non-zero value even at rest. Another
possibility is that the sensor is mounted on a surface that is not perfectly level. In
most cases, a small deviation such as -0.1 degrees of roll angle when the sensor
is not moving is not a significant concern, as it falls within the expected range
of error for many IMUs

Results in movement

It is also important to evaluate the ability of fusion filters to provide accurate
and reliable estimates of the system state as it moves. I intend to utilize this
IMU in self-driving vehicles [24], onboard of which the orientation of the device
can change. However, unless the car is flipping over, the values of pitch and roll
angles are expected to be less than 90 degrees, so I moved the device within that
extent.

Figs. 8.3 and 8.4 show that the recorded pitch and roll angles in the no-filter
scenario (Matrix) have more oscillations. It is interesting to note that the expected
behaviour of the traditional method would be with the presence of drifts. In
these graphs, I do not have drifts. This is possibly because we have graphed
data from only 50 integration steps over 2000 acquired integration steps. By

53

8.3. EXPERIMENTAL RESULTS

Figure 8.4: Roll angle comparison of the filters with moving IMU.

applying no-filtering action, it is expected that in the signal acquisition, the high
frequency component of the noise is present. The filters’ response is similar. It
is seen a small difference in Kalman filter’s response. Kalman filter exhibits a
better behaviour, with less oscillations than Madgwick filter and Mahony filter.

In Fig. 8.3, the pitch measurement is around the value −15 degrees, which
indicates that the sensor is tilted downwards, whereas in Fig. 8.4, the roll mea-
surement is around the value +15 degrees, implying that the sensor is tilted to
the right.

Complexity

In the moving state, when real-time analysis of the input data is valuable, I
computed the processing speed of the filters. Fig. 8.5 shows that the trigonome-
try method is the slowest, while the time is significantly reduced with the filter
implementations. Kalman and Madgwick exhibit similar behavior. Mahony
is the fastest, with the lowest computation time per integration step. Table 8.2
reports the average values.

The selected Sensor Fusion Algorithm

It is strongly advised to use a filter, the choice of which depends on the
specific requirements and limitations of the application, such as the sensor type,
noise level, computation power, and desired accuracy and stability. Based on

54

CHAPTER 8. SYSTEM CONTROL

Figure 8.5: Comparing the processing time of the filters

Table 8.2: Average Processing Time

Method Average processing time
Matrix 2477.4 µs
Kalman 1375.9 µs
Mahony 950.5 µs
Madgwick 1416.8 µs

our results, the Kalman filter would be the suggested option if accuracy is the
primary concern and computational resources and memory are not constraints.
If computational efficiency is a critical factor, the Mahony filter would be more
suitable due to its computational speed. In the case of autonomous cars, a
fast response is more important, therefore, I have used Mahony to conduct my
further research and experiments on the autonomous journey.

8.4 Software

After taking the steering angle from the lane detection module, as well as
the current car angle from the IMU, the difference of these data will be used as
input to the PID controller. The goal of the PID is to decrease this difference, by
changing the angle taken from the IMU (the real-time angle), until the difference
reaches zero. When the difference equals zero, that means the car motors have
moved, changing the IMU angle towards the angle it should be. (the angle
dictated from the lane detection module).

55

8.4. SOFTWARE

8.4.1 PID Implementation

I have written the PID code implementation with the help of MathWork’s
technical documentation on PID [93].

The proportional coefficient (𝐾𝑝) determines the car’s oscillation speed, while
the derivative coefficient (𝐾𝑑) is employed to fine-tune the extent of deviation
(or oscillation amplitude) from the desired trajectory. Over time, accumulated
errors in the steering angle, stemming from systematic biases, can eventually
take the car off its course. The integral component addresses this issue. Given its
influence on error accumulation over time, the integral coefficient (𝐾𝑖) must be
adjusted since it greatly affects the system’s overall behavior. Therefore,setting
the optimal gains for P, I and D can be complex, therefore I chose them empiri-
cally, based on which combination gave the best result for my system, as shown
on table 8.3

𝐾𝑝 𝐾𝑑 𝐾𝑖 Car Behaviour
1.2 0.030 14 Too many ocillations
1.4 0.06 17 More oscillations than before
1.15 0.020 10 Response very fast and too many oscilations
1.15 0.020 9 Response very fast and too many oscilations
0.9 0.010 4 Stepped over the lane
0.6 0.005 3 Stepped over the lane
0.55 0.005 3 Stepped over the lane
0.3 0.0025 2.2 Satisfying result

Table 8.3: Empirical choice of 𝐾𝑝 ,𝐾𝑑,𝐾𝑖

The final values are𝐾𝑝 = 0.3, 𝐾𝑑 = 0.0025 and𝐾𝑖 = 2.2. With this values, the au-
tonomous car drove smoothly through the test lanes, with gradual angle changes
and more stable reaction (see Appendix, code 1).

56

9
AR & VR Headset

Leading automobile brands like Tesla, Rivian, and Waymo have been testing
their vehicles on roads across various terrains and conditions. [94] The meticu-
lous and evolving nature of these tests emphasizes their vital importance to the
safe and efficient functioning of autonomous vehicles. Parallelly, the world of
Augmented Reality (AR) and VR has seen transformative advancements, with
tools such as the Apple Vision Pro revolutionizing how users interact with and
perceive digital content.

Given the confluence of these two realms, I was driven by an idea: Could
there be a more immersive way for individuals to engage with the autonomous
testing phase, transcending the conventional methods of screen observation or
third-party witnessing?

To explore this intersection, I embarked on integrating the feed from a Rasp-
berry Pi camera directly into the Oculus Quest 2 VR headset. While the ex-
periment was interesting in its approach, it was not without its limitations.
The hardware constraints of the Raspberry Pi camera constrained the immer-
sive experience to a 2D visual landscape, rather than the more encompassing
3D, primarily due to the camera’s inability to capture a 360-degree panorama.
Despite these limitations, the underlying technology is sound and stands as a
testament to the potential development of autonomous vehicular testing and
immersive VR experiences.

57

9.1. IMPLEMENTATION

Figure 9.1: Oculus Quest 2

9.1 Implementation

9.1.1 Unity Scene Setup

For interfacing with the VR headset, I used the Unity engine. The scene
configuration is depicted in Figure 9.2. Given that the primary objective was to
display the camera data, a solitary screen sufficed. The pink quadrilateral figure
represents the display screen, and for this screen, the YUY2 texture format was
utilized. This format uses the YUV colour space. [95]

YUV Color Space

• Luminance and Chrominance Separation: The Y component in YUV rep-
resents the luminance (brightness) of the colour, while the U and V com-
ponents represent the chrominance (colour information). This separation
can lead to efficient compression since the human eye is more sensitive to
luminance than chrominance. By storing or transmitting chrominance at a
reduced resolution, bandwidth can be saved without significant perceived
loss in image quality. [96]

58

CHAPTER 9. AR & VR HEADSET

Figure 9.2: Unity Scene Setup

• Compatibility with Black and White Displays: The Y component alone
can be used to represent black and white images, which ensures compati-
bility with monochrome displays and legacy systems.

• Reduced Bandwidth for Transmission: For broadcasting and streaming
applications, YUV allows for efficient chroma subsampling. Popular for-
mats like YUV 4:2:0 take advantage of this by storing fewer chrominance
values than luminance, leading to reduced data rates.

• Color Correction: The separation of luminance and chrominance also
facilitates colour correction without affecting the brightness of the image.

• Reduced Artifacts: When compressing video data, separating the colour
from luminance can result in fewer visual artefacts. This means that even if
there’s a loss in colour detail, the overall structure and clarity of the image
might remain intact.

9.1.2 Software Implementation

The simplest way to send data from the Raspberry Pi to a machine running
Unity in real-time is to use sockets, specifically Transmission Control Protocol
(TCP) Sockets [97]. They use the Transmission Control Protocol (TCP) for data
transmission and are reliable because they ensure the delivery of each packet of
data. If a data packet is lost during transmission, the protocol will retry until the

59

9.1. IMPLEMENTATION

packet is correctly received or until the connection is dropped. On the Raspberry
side, the ’sockets’ library is used. In the Unity site, ’System.net.sockets’ is used.

I noticed that the broadcast was not smooth enough. Especially in streaming
or real-time communication, data might be produced at a rate faster or slower
than it can be consumed or transmitted. This is caused by delivery delays. In
the literature, there are many interesting approaches on error control techniques
[98] when transmitting packets. My proposed solution to this specific problem
is a buffer that can temporarily hold this data, ensuring smooth and steady data
flow. Therefore I added a 4096 bytes buffer to my program.

The final results from the headset, taking into account the hardware limita-
tions, are shown in figure 9.3:

Figure 9.3: View from Oculus Quest 2 headset

60

10
Conclusions and Future Works

10.1 Conclusive thoughts

This autonomous car journey represents an approach to develop an au-
tonomous car system, focusing on real-time performance, efficiency, and safety.
[99] Two core machine learning modules, the lane detection and the traffic signs
detection through CNN, are the backbone of my solution.

The integration of an Inertial Measurement Unit to get the actual angle of
the vehicle in real-time is a significant enhancement over traditional methods.
The combination of lane detection, which provides the desired angle, and IMU,
offering real-time angles, aids in ensuring that the car remains stable and on
course. This is further refined by a PID controller, smoothing the vehicle’s
trajectory adjustments, and providing a more naturalistic driving experience.

Another achievement worth mentioning is the integration of the GPS module.
By offering real-time geolocation data, the system not only gains awareness about
its global position but also potentially supports functions like route planning
and geofencing in the future.

The Virtual Reality (VR) headset linkage presents a novel approach to vi-
sualizing the autonomous car’s perspective. This feature enhances the user’s
connection with the technology, potentially offering novel diagnostic, entertain-
ment, or even remote-control applications.

The compact nature of the Raspberry Pi, combined with its cost-effectiveness,
transforms our autonomous car system into a feasible option for scaled-down

61

10.2. FUTURE WORKS

models, educational purposes, and potential prototype development for larger
vehicles. With further refinement, it could also be explored for commercial
applications or even in sectors like agriculture for automated machinery.

The VR linkage might set the groundwork for teleoperated vehicles, where
operators can remotely control vehicles in environments where human access
might be dangerous or impractical.

10.2 Future Works

• Enhanced Machine Learning Models: As the field of Artificial Intelligence
(AI) continues to evolve, newer and more efficient architectures could be
explored. Transfer learning or fine-tuning with local datasets might boost
detection accuracy.

• Integration of Additional Sensors: Incorporating LiDAR or Radar could
aid in better obstacle detection and enhance overall system robustness.
[100] [101]

• Advanced Navigation Features: With the GPS module in place, developing
features like dynamic route planning, traffic congestion awareness, and
obstacle avoidance could be the next steps.

• User Experience (UX) Enhancements with VR: The usage of a 360-degree
camera [102] is compulsory to ensure immersiveness and to have a broader
field of view. The Raspberry Pi camera offered only a 2D view of the screen.
Improving the VR experience by integrating more sensory feedback, such
as haptic responses [103] could be an interesting avenue as well, consid-
ering that tacticle simuli can significantly improve the visual feedback.
[104] In addition, innovative approaches on the classification of grasping
tasks [105] like holding the wheel, could lead to an even more realistic
experience.

10.3 Closing Remarks

In conclusion, this thesis has marked a journey in creating an autonomous
car system leveraging the capabilities of a Raspberry Pi. It signifies the promise
and potential of affordable and accessible technology to shape the future of au-
tonomous mobility. The innovations introduced, from machine learning-driven
modules to VR integrations, form the basis upon which future research can
build, enhancing the boundaries of what’s possible in the realm of autonomous

62

CHAPTER 10. CONCLUSIONS AND FUTURE WORKS

driving. We anticipate that this work will not only inspire further advance-
ments in the field but also play a pivotal role in making autonomous systems
more accessible to the broader community.

63

References

[1] Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles. Standard. United States: The Society of Auto-
motive Engineers, 2021.

[2] Lee, M.S. et al. “Individual Stable Driving Pattern Analysis for Evaluat-
ing Driver Readiness at Autonomous Driving Levels 2 and 3”. In: 2018
International Conference on Information and Communication Technology Con-
vergence (ICTC). 2018, pp. 315–319.

[3] Min, K. et al. “SAE Level 3 Autonomous Driving Technology of the
ETRI”. In: 2019 International Conference on Information and Communication
Technology Convergence (ICTC). 2019, pp. 464–466.

[4] Arfini, S., Spinelli, D., and Chiffi, D. “Ethics of Self-driving Cars: A Nat-
uralistic Approach. Minds & Machines 32”. In: (2022), pp. 717–734.

[5] Drummond, C. “Machine learning as an experimental science (revis-
ited)”. In: AAAI workshop on evaluation methods for machine learning. AAAI
Press Menlo Park, CA, USA. 2006, pp. 1–5.

[6] H. Jhaveri, A.R. “A Review on Machine Learning Strategies for Real-
World Engineering Applications”. In: Mobile Information Systems 2022
(2022), p. 26.

[7] Wang, Q. et al. “A comprehensive survey of loss functions in machine
learning”. In: Annals of Data Science (2020), pp. 1–26.

[8] Dayan, P., Sahani, M., and Deback, G. “Unsupervised learning”. In: The
MIT encyclopedia of the cognitive sciences (1999), pp. 857–859.

[9] Omran, M.G., Engelbrecht, A.P., and Salman, A. “An overview of clus-
tering methods”. In: Intelligent Data Analysis 11.6 (2007), pp. 583–605.

65

REFERENCES

[10] Hady, M.F.A. and Schwenker, F. “Semi-supervised learning”. In: Hand-
book on Neural Information Processing (2013), pp. 215–239.

[11] Nukita, T. et al. “Damaged Lane Markings Detection Method with Label
Propagation”. In: 2018 IEEE 24th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). 2018, pp. 203–208.

[12] Sutton, R.S. and Barto, A.G. Reinforcement learning: An introduction. MIT
press, 2018.

[13] Coggan, M. “Exploration and exploitation in reinforcement learning”. In:
Research supervised by Prof. Doina Precup, CRA-W DMP Project at McGill
University (2004).

[14] Singh, M.K. and Singh, K.K. “A review of publicly available automatic
brain segmentation methodologies, machine learning models, recent ad-
vancements, and their comparison”. In: Annals of Neurosciences 28.1-2
(2021), pp. 82–93.

[15] Feng, F. et al. “Learning deep hierarchical spatial–spectral features for
hyperspectral image classification based on residual 3D-2D CNN”. In:
Sensors 19.23 (2019), p. 5276.

[16] Jiang, J. et al. “MultiBSP: multi-branch and multi-scale perception object
tracking framework based on siamese CNN”. In: Neural Computing and
Applications 34.21 (2022), pp. 18787–18803.

[17] Jogin, M. et al. “Feature extraction using convolution neural networks
(CNN) and deep learning”. In: 2018 3rd IEEE international conference on
recent trends in electronics, information & communication technology (RTE-
ICT). IEEE. 2018, pp. 2319–2323.

[18] Chandana, R. and Ramachandra, A. “Real time object detection system
with YOLO and CNN models: A review”. In: arXiv preprint arXiv:2208.00773
(2022).

[19] Sasiadek, J.Z. “Sensor fusion”. In: Annual Reviews in Control 26.2 (2002),
pp. 203–228.

[20] Zimdahl, W. “Guidelines and some developments for a new modular
driver information system”. In: 34th IEEE Vehicular Technology Conference.
Vol. 34. 1984, pp. 178–182.

66

REFERENCES

[21] Kovács, L. et al. “Sensor design and integration into small sized au-
tonomous vehicle”. In: 2022 IEEE 2nd Conference on Information Technology
and Data Science (CITDS). 2022, pp. 171–176.

[22] Wang, Y., Liu, D., and Matson, E. “Accurate Perception for Autonomous
Driving: Application of Kalman Filter for Sensor Fusion”. In: 2020 IEEE
Sensors Applications Symposium (SAS). 2020, pp. 1–6.

[23] Escamilla-Ambrosio, P. and Lieven, N. “Sensor fusion approaches to
guideway and obstacle detection in the autotaxi system”. In: 2005 7th
International Conference on Information Fusion. Vol. 2. 2005, 7 pp.-.

[24] Raveena, C. et al. “Sensor Fusion Module Using IMU and GPS Sensors
For Autonomous Car”. In: 2020 IEEE International Conference for Innovation
in Technology (INOCON). 2020, pp. 1–6.

[25] Suwattanapunkul, T. and Wang, L.-J. “The Efficient Traffic Sign Detec-
tion and Recognition for Taiwan Road Using YOLO Model with Hybrid
Dataset”. In: 2023 9th International Conference on Applied System Innovation
(ICASI). 2023, pp. 160–162.

[26] Fang, S., Xin, L., and Chen, Y. “Traffic sign detection based on co-training
method”. In: Proceedings of the 33rd Chinese Control Conference. 2014, pp. 4893–
4898.

[27] Lu, H., Deng, Z., and Zhang, R. “Lane Intrusion Behaviors Dataset: Action
Recognition in Real-world Highway Scenarios for Self-driving”. In: 2021
International Joint Conference on Neural Networks (ĲCNN). 2021, pp. 1–6.

[28] Sanil, N. et al. “Deep Learning Techniques for Obstacle Detection and
Avoidance in Driverless Cars”. In: 2020 International Conference on Artificial
Intelligence and Signal Processing (AISP). 2020, pp. 1–4.

[29] Vicini, M. et al. “Decision Making via Game Theory for Autonomous Ve-
hicles in the Presence of a Moving Obstacle”. In: Proc. IEEE COMNETSAT.
2022, pp. 393–398.

[30] Michieli, U. and Badia, L. “Game theoretic analysis of road user safety
scenarios involving autonomous vehicles”. In: Proc. IEEE PIMRC. 2018,
pp. 1377–1381.

[31] Hussain, R. and Zeadally, S. “Autonomous Cars: Research Results, Issues,
and Future Challenges”. In: IEEE Communications Surveys and Tutorials
21.2 (2019), pp. 1275–1313.

67

REFERENCES

[32] Paponpen, K. et al. “The Implementation of Steering Angle Estimation
on Miniature Raspberry Pi-based Autonomous Car”. In: 2022 IEEE 17th
Conference on Industrial Electronics and Applications (ICIEA). 2022, pp. 1037–
1042.

[33] Hendry, G. et al. “PyRoboCar: A Low-cost Deep Neural Network-based
Autonomous Car”. In: 2021 IEEE Frontiers in Education Conference (FIE).
2021, pp. 1–5.

[34] Sangiovanni Vincentelli, A.L. and Vigna, B. “Autonomous vehicles: A
playground for sensors”. In: 2017 7th IEEE International Workshop on Ad-
vances in Sensors and Interfaces (IWASI). 2017, pp. 2–2.

[35] Karbab, E. et al. “Car park management with networked wireless sensors
and active RFID”. In: 2015 IEEE International Conference on Electro/Infor-
mation Technology (EIT). 2015, pp. 373–378.

[36] Richardson, M. and Wallace, S. Getting started with raspberry PI. " O’Reilly
Media, Inc.", 2012.

[37] Rocha Rodrigues, E. et al. “DeepDownscale: A Deep Learning Strategy
for High-Resolution Weather Forecast”. In: 2018 IEEE 14th International
Conference on e-Science (e-Science). 2018, pp. 415–422.

[38] Zancanaro, A., Cisotto, G., and Badia, L. “Modeling value of informa-
tion in remote sensing from correlated sources”. In: Comp. Commun. 203
(2023), pp. 289–297.

[39] Ismail, M., Dhamodharan, R., and Sekar, G. “Smart Obstacle Recogni-
tion System using Raspberry Pi”. In: 2021 5th International Conference on
Computing Methodologies and Communication (ICCMC). 2021, pp. 672–675.

[40] Özsoy, K., Bozkurt, A., and Tekin, I. “2D Indoor positioning system using
GPS signals”. In: 2010 International Conference on Indoor Positioning and
Indoor Navigation. 2010, pp. 1–6.

[41] Özsoy, K., Bozkurt, A., and Tekin, I. “Indoor positioning based on global
positioning system signals”. In: Microwave and Optical Technology Letters
55.5 (2013), pp. 1091–1097.

[42] Thompson, R.B. “Global positioning system: the mathematics of GPS
receivers”. In: Mathematics magazine 71.4 (1998), pp. 260–269.

68

REFERENCES

[43] Bulusu, N., Heidemann, J., and Estrin, D. “GPS-less low-cost outdoor
localization for very small devices”. In: IEEE Personal Communications 7.5
(2000), pp. 28–34.

[44] Talebi Abatari, H. and Dehghani Tafti, A. “Using a fuzzy PID controller
for the path following of a car-like mobile robot”. In: 2013 First RSI/ISM In-
ternational Conference on Robotics and Mechatronics (ICRoM). 2013, pp. 189–
193.

[45] Scheiner, N. et al. “Automated ground truth estimation for automotive
radar tracking applications with portable GNSS and IMU devices”. In:
2019 20th International Radar Symposium (IRS). IEEE. 2019, pp. 1–10.

[46] Petrenko, D., Kryvenchuk, Y., and Yakovyna, V. “Enhancing Data Dis-
cretization for Smoother Drone Input Using GAN-Based IMU Data Aug-
mentation”. In: Drones 7.7 (2023), p. 463.

[47] Ahmad, N. et al. “Reviews on various inertial measurement unit (IMU)
sensor applications”. In: International Journal of Signal Processing Systems
1.2 (2013), pp. 256–262.

[48] Siepert, B. Adafruit TDK InvenSense ICM-20948 9- DoF IMU. TJA1043.
Adafruit Industries. Nov. 2021.

[49] Badia, L. and Scalabrin, M. “Stochastic analysis of delay statistics for
intermittently connected vehicular networks”. In: Proc. European Wireless.
2014.

[50] Cui, J. and Wu, C. “Design and implementation of directory service
network management system based on event bus pattern”. In: 2010 2nd
International Conference on Computer Engineering and Technology. Vol. 4.
IEEE. 2010, pp. V4–255.

[51] Viwatpinyo, S. and Phatchuay, S. “The Automatic Car to Implementation
of Lane Detective using Raspberry Pi 3 Model B on OpenCV”. In: 2022
International Conference on Cybernetics and Innovations (ICCI). 2022, pp. 1–
5.

[52] Tabernik, D. and Skočaj, D. “Deep learning for large-scale traffic-sign de-
tection and recognition”. In: IEEE transactions on intelligent transportation
systems 21.4 (2019), pp. 1427–1440.

[53] .NET documentation. 2023.

69

REFERENCES

[54] Patil, M.M. et al. “A qualitative analysis of the performance of MongoDB
vs MySQL database based on insertion and retriewal operations using a
web/android application to explore load balancing—Sharding in Mon-
goDB and its advantages”. In: 2017 International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud)(I-SMAC). IEEE. 2017, pp. 325–
330.

[55] Patil, M.M. et al. “A qualitative analysis of the performance of MongoDB
vs MySQL database based on insertion and retriewal operations using a
web/android application to explore load balancing — Sharding in Mon-
goDB and its advantages”. In: 2017 International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 2017, pp. 325–330.

[56] Jordaan, P.W. and Holm, J.E.W. “Reflection on MongoDB Database Log-
ical and Physical Modeling”. In: 2019 IEEE AFRICON. 2019, pp. 1–8.

[57] MongoDB Manual. 2023.

[58] RabbitMQ Server Documentation. 2023.

[59] Estrada, N. and Astudillo, H. “Comparing scalability of message queue
system: ZeroMQ vs RabbitMQ”. In: 2015 Latin American Computing Con-
ference (CLEI). 2015, pp. 1–6.

[60] Vandikas, K. and Tsiatsis, V. “Performance Evaluation of an IoT Platform”.
In: 2014 Eighth International Conference on Next Generation Mobile Apps,
Services and Technologies. 2014, pp. 141–146.

[61] Garg, M., Sehrawat, A., and Savaridassan., P. “Vehicle Lane Detection for
Accident Prevention and Smart Autodrive Using OpenCV”. In: 2023 In-
ternational Conference on Computer Communication and Informatics (ICCCI).
2023, pp. 1–5.

[62] Kim, J.-H. et al. “Lane recognition algorithm using lane shape and color
features for vehicle black box”. In: 2018 International Conference on Elec-
tronics, Information, and Communication (ICEIC). IEEE. 2018, pp. 1–2.

[63] Rong, W. et al. “An improved Canny edge detection algorithm”. In:
2014 IEEE International Conference on Mechatronics and Automation. 2014,
pp. 577–582.

[64] Sultana, S. et al. “Vision-Based Robust Lane Detection and Tracking in
Challenging Conditions”. In: IEEE Access 11 (2023), pp. 67938–67955.

70

REFERENCES

[65] Gedraite, E.S. and Hadad, M. “Investigation on the effect of a Gaussian
Blur in image filtering and segmentation”. In: Proceedings ELMAR-2011.
IEEE. 2011, pp. 393–396.

[66] Bojarski, M. et al. “End to End Learning for Self-Driving Cars”. In: (Apr.
2016).

[67] Pritt, M. and Chern, G. “Satellite Image Classification with Deep Learn-
ing”. In: 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).
2017, pp. 1–7.

[68] Stančin, I. and Jović, A. “An overview and comparison of free Python
libraries for data mining and big data analysis”. In: 2019 42nd International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). 2019, pp. 977–982.

[69] Walt, S. van der, Colbert, S.C., and Varoquaux, G. “The NumPy Array: A
Structure for Efficient Numerical Computation”. In: Computing in Science
and Engineering 13.2 (2011), pp. 22–30.

[70] Jain, H. et al. “DoodSearch - OpenCV with Image Recognition”. In: 2022
IEEE Conference on Interdisciplinary Approaches in Technology and Manage-
ment for Social Innovation (IATMSI). 2022, pp. 1–4.

[71] Tabernik, D. and Skočaj, D. “Deep Learning for Large-Scale Traffic-Sign
Detection and Recognition”. In: IEEE Transactions on Intelligent Transporta-
tion Systems (2019). issn: 1524-9050.

[72] Hao, W. et al. “The Role of Activation Function in CNN”. In: 2020 2nd
International Conference on Information Technology and Computer Application
(ITCA). 2020, pp. 429–432.

[73] Dell’Aversana, P. DEEP NEURAL NETWORKS WITH KERAS Testing dif-
ferent Deep Neural Network parameters for classification of rock data samples.
May 2019.

[74] Mehta, S., Paunwala, C., and Vaidya, B. “CNN based traffic sign classifica-
tion using Adam optimizer”. In: 2019 international conference on intelligent
computing and control systems (ICCS). IEEE. 2019, pp. 1293–1298.

[75] Chi, J. et al. “Performance Analysis of Three kinds of Neural Networks in
the Classification of Mask Images”. In: Journal of Physics: Conference Series
2181.1 (Jan. 2022), p. 012032.

71

REFERENCES

[76] Ceruzzi, P.E. GPS. MIT Press, 2018.

[77] Badia, L. and Bui, N. “A group mobility model based on nodes’ attraction
for next generation wireless networks”. In: Proc. ACM Mobility. 2006.

[78] Zhu, Y. “Introducing Google Chart Tools and Google Maps API in Data
Visualization Courses”. In: IEEE Computer Graphics and Applications 32.6
(2012), pp. 6–9.

[79] Pubnub. Pubnub Developers Documentation. Mar. 2023.

[80] Abdulameer, A. et al. “Tuning methods of PID controller for DC motor
speed control”. In: Indonesian Journal of Electrical Engineering and Computer
Science 3.2 (2016), pp. 343–349.

[81] Li, Z., Hu, J., and Huo, X. “PID control based on RBF neural network for
ship steering”. In: 2012 World Congress on Information and Communication
Technologies. 2012, pp. 1076–1080.

[82] Brunner, T. et al. “Magnetometer-augmented IMU simulator: In-depth
elaboration”. In: Sensors 15.3 (2015), pp. 5293–5310.

[83] Çoçoli, K. and Badia, L. “A Comparative Analysis of Sensor Fusion Algo-
rithms for Miniature IMU Measurements”. In: 2023 International Seminar
on Intelligent Technology and Its Applications (ISITIA). 2023, pp. 239–244.

[84] Li, Q. et al. “Kalman Filter and Its Application”. In: Proc. ICINIS. 2015,
pp. 74–77.

[85] Govaers, F. Introduction and Implementations of the Kalman Filter. Inte-
chOpen, May 2019. isbn: 978-1-83880-537-1.

[86] Song, S.Y., Pei, Y., and Hsiao-Wecksler, E.T. “Estimating Relative Angles
Using Two Inertial Measurement Units Without Magnetometers”. In:
22.20 (2022), pp. 19688–19699.

[87] Mahony, R., Hamel, T., and Pflimlin, J.-M. “Nonlinear Complementary
Filters on the Special Orthogonal Group”. In: 53.5 (2008), pp. 1203–1218.

[88] Barshan, B. and Durrant-Whyte, H. “Inertial navigation systems for mo-
bile robots”. In: 11.3 (1995), pp. 328–342.

[89] Ludwig, S.A. and Burnham, K.D. “Comparison of Euler Estimate using
Extended Kalman Filter, Madgwick and Mahony on Quadcopter Flight
Data”. In: Proc. ICUAS. 2018, pp. 1236–1241.

72

REFERENCES

[90] Madgwick, S., Harrison, A.J.L., and Vaidyanathan, R. “Estimation of IMU
and MARG orientation using a gradient descent algorithm”. In: Proc.
ICRR (2011).

[91] Ludwig, S.A. “Optimization of Control Parameter for Filter Algorithms
for Attitude and Heading Reference Systems”. In: Proc. IEEE CEC. 2018.

[92] Ricci, L. “On the Orientation Error of IMU: Investigating Static and Dy-
namic Accuracy Targeting Human Motion.” In: PLoS One 11 (2016).

[93] Inc., T.M. Optimization Toolbox version: 9.4 (R2022b). Natick, Massachusetts,
United States, 2022.

[94] Tang, L. et al. “Performance test of autonomous vehicle lidar sensors un-
der different weather conditions”. In: Transportation research record 2674.1
(2020), pp. 319–329.

[95] Technologies, U. TextureFormat YUY2. Unity Technologies. 2023.

[96] Ho, Y.-H. et al. “Learned Video Compression for YUV 4:2:0 Content Using
Flow-based Conditional Inter-frame Coding”. In: 2022 IEEE International
Symposium on Circuits and Systems (ISCAS). 2022, pp. 829–833.

[97] Thanh, V.T. and Urano, Y. “Mobile TCP socket for secure applications”.
In: 2010 The 12th International Conference on Advanced Communication Tech-
nology (ICACT). Vol. 2. 2010, pp. 971–974.

[98] Badia, L. “On the effect of feedback errors in Markov models for SR ARQ
packet delays”. In: Proc. IEEE Globecom. 2009.

[99] Hussain, R. and Zeadally, S. “Autonomous cars: Research results, issues,
and future challenges”. In: IEEE Communications Surveys & Tutorials 21.2
(2018), pp. 1275–1313.

[100] Lee, H. et al. “AVM/LiDAR sensor based lane marking detection method
for automated driving on complex urban roads”. In: 2017 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2017, pp. 1434–1439.

[101] Yoo, H.W. et al. “MEMS-based lidar for autonomous driving”. In: e & i
Elektrotechnik und Informationstechnik (2018).

[102] Huang, J. et al. “6-DOF VR videos with a single 360-camera”. In: 2017
IEEE Virtual Reality (VR). IEEE. 2017, pp. 37–44.

73

REFERENCES

[103] Kuchenbecker, K.J., Fiene, J., and Niemeyer, G. “Improving contact real-
ism through event-based haptic feedback”. In: IEEE transactions on visu-
alization and computer graphics 12.2 (2006), pp. 219–230.

[104] Caporusso, N., Mkrtchyan, L., and Badia, L. “A multimodal interface
device for online board games designed for sight-impaired people”. In:
IEEE Trans. Inf. Tech. Biomed. 14.2 (2010), pp. 248–254.

[105] Cisotto, G. et al. “Classification of grasping tasks based on EEG-EMG
coherence”. In: Proc. IEEE Healthcom. 2018.

74

Appendix

.1 Example codes developed for the project

1 def construct_autonomous_drive_model():

2 auto_drive_net = Sequential(name=’Autonomous_Drive_Net’)

3

4 auto_drive_net.add(Conv2D(24, (5, 5), strides=(2, 2), input_shape

=(66, 200, 3), activation=’elu’))

5 auto_drive_net.add(Conv2D(36, (5, 5), strides=(2, 2), activation=

’elu’))

6 auto_drive_net.add(Conv2D(48, (5, 5), strides=(2, 2), activation=

’elu’))

7 auto_drive_net.add(Conv2D(64, (3, 3), activation=’elu’))

8

9 auto_drive_net.add(Conv2D(64, (3, 3), activation=’elu’))

10 auto_drive_net.add(Flatten())

11 auto_drive_net.add(Dense(100, activation=’elu’))

12 auto_drive_net.add(Dense(50, activation=’elu’))

13 auto_drive_net.add(Dense(10, activation=’elu’))

14

15 auto_drive_net.add(Dense(1))

16 return auto_drive_net

Code 1: Implemented code based on Nvidia Network Model

1 class ProportionalIntegralDerivativeController:

2 def __init__(self, p_coeff=0.3, i_coeff=2.2, d_coeff=0.0025):

3 self.proportional = p_coeff

4 self.integral = i_coeff

5 self.derivative = d_coeff

6

7 self.measured_value = 0

8 self.iteration = 1

9

75

.1. EXAMPLE CODES DEVELOPED FOR THE PROJECT

10 self.err_value = 0

11 self.delta_err = 0

12

13 def proportional_term(self):

14 return round(self.proportional * self.err_value , 4)

15

16 def integral_term(self):

17 return round(self.integral * self.delta_err , 4)

18

19 def derivative_term(self, prev_error):

20 return round(self.derivative * prev_error , 4)

21

22 def pid_update(self, desired_val):

23 control_action = 0

24 self.err_value = desired_val - self.measured_value

25 control_action += self.proportional_term()

26

27 self.delta_err += self.err_value

28 control_action += self.integral_term()

29

30 temp_err_rate = self.delta_err / self.iteration

31 control_action += self.derivative_term(temp_err_rate)

32

33 self.measured_value += control_action

34 self.iteration += 1

35

36 def get_measured_value(self):

37 return self.measured_value

38

39 def __str__(self):

40 return "Measured Value = {}, Error Value = {}, Iteration = {}

".format(

41 self.measured_value , self.err_value , self.iteration

42)

Code 2: ProportionalIntegralDerivative Controller

76

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	Frame of reference
	Autonomous Vehicles
	Machine Learning Methods
	Convolutional Neural Networks for Self-Driving Car Systems

	Our Proposal

	Related Work
	Sensor Integration in Autonomous Driving Systems
	Object Detection and Behavioral Impacts
	Visualization and AR Integration
	Challenges in Autonomous Driving Systems

	Hardware Setup
	Introduction
	The car components
	Raspberry Pi
	The motors
	The camera module
	The ultrasonic sensor
	The GPS module
	The IMU
	The assembled car

	Software Architecture
	System Design and Implementation
	Technology Stack
	System Implementation

	Data Collection and Processing
	Data Collection and Processing for Lane Detection model
	Data Collection
	Data Augmentation
	Data Processing

	Data Collection and Processing for Traffic Signs Recognition model
	Dataset Collection
	Dataset Preprocessing

	Deep Learning Model
	Lane Detection model
	Model Architecture
	Model Training

	Traffic Signs Detection model
	Model Architecture and Training
	Results and Model Evaluation

	GPS Localization
	Implementation
	Choosing the mapping and communication system
	Results

	System Control
	The principle of PID control
	Challenges and Limitations

	Implementing PID on Raspberry Pi
	Hardware Configuration: PID Control with IMU Integration
	A Comparative Analysis of Sensor Fusion Algorithms

	Experimental results
	Software
	PID Implementation

	AR & VR Headset
	Implementation
	Unity Scene Setup
	Software Implementation

	Conclusions and Future Works
	Conclusive thoughts
	Future Works
	Closing Remarks

	References
	Appendix
	Example codes developed for the project

