7,210 research outputs found

    Integration of Cost andWork Breakdown Structures in the Management of Construction Projects

    Get PDF
    Scope management allows project managers to react when a project underperforms regarding schedule, budget, and/or quality at the execution stage. Scope management can also minimize project changes and budget omissions, as well as improve the accuracy of project cost estimates and risk responses. For scope management to be effective, though, it needs to rely on a robust work breakdown structure (WBS). A robust WBS hierarchically and faithfully reflects all project tasks and work packages so that projects are easier to manage. If done properly, the WBS also allows meeting the project objectives while delivering the project on time, on budget, and with the required quality. This paper analyzes whether the integration of a cost breakdown structure (CBS) can lead to the generation of more robust WBSs in construction projects. Over the last years, some international organizations have standardized and harmonized different cost classification systems (e.g., ISO 12006-2, ISO 81346-12, OmniClass, CoClass, UniClass). These cost databases have also been introduced into building information modeling (BIM) frameworks. We hypothesize that in BIM environments, if these CBSs are used to generate the project WBS, several advantages are gained such as sharper project definition. This enhanced project definition reduces project contradictions at both planning and execution stages, anticipates potential schedule and budget deviations, improves resource allocation, and overall it allows a better response to potential project risks. The hypothesis that the use of CBSs can generate more robust WBSs is tested by the response analysis of a questionnaire survey distributed among construction practitioners and project managers. By means of structural equation modeling (SEM), the correlation (agreement) and perception differences between two 250-respondent subsamples (technical project staff vs. project management staff) are also discussed. Results of this research support the use of CBSs by construction professionals as a basis to generate WBSs for enhanced project management (PM)

    Complete Equivalence Between Gluon Tree Amplitudes in Twistor String Theory and in Gauge Theory

    Get PDF
    The gluon tree amplitudes of open twistor string theory, defined as contour integrals over the ACCK link variables, are shown to satisfy the BCFW relations, thus confirming that they coincide with the corresponding amplitudes in gauge field theory. In this approach, the integration contours are specified as encircling the zeros of certain constraint functions that force the appropriate relation between the link variables and the twistor string world-sheet variables. To do this, methods for calculating the tree amplitudes using link variables are developed further including diagrammatic methods for organizing and performing the calculations.Comment: 38 page

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Dynamic Model-based Management of Service-Oriented Infrastructure.

    Get PDF
    Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation

    Actions for QCD-like strings

    Get PDF
    We introduce a random lattice corresponding to ordinary Feynman diagrams, with 1/p-squared propagators instead of the Gaussians used in the usual strings. The continuum limit defines a new type of string action with two worldsheet metrics, one Minkowskian and one Euclidean. The propagators correspond to curved lightlike paths with respect to the Minkowskian worldsheet metric. Spacetime dimensionality of four is implied not only as the usual critical dimension of renormalizable quantum field theory, but also from T-duality.Comment: 14 pg., plain tex, other formats available at http://insti.physics.sunysb.edu/~siegel/preprints or at ftp://max.physics.sunysb.edu/preprints/siege

    Synchronously-pumped OPO coherent Ising machine: benchmarking and prospects

    Get PDF
    The coherent Ising machine (CIM) is a network of optical parametric oscillators (OPOs) that solves for the ground state of Ising problems through OPO bifurcation dynamics. Here, we present experimental results comparing the performance of the CIM to quantum annealers (QAs) on two classes of NP-hard optimization problems: ground state calculation of the Sherrington-Kirkpatrick (SK) model and MAX-CUT. While the two machines perform comparably on sparsely-connected problems such as cubic MAX-CUT, on problems with dense connectivity, the QA shows an exponential performance penalty relative to CIMs. We attribute this to the embedding overhead required to map dense problems onto the sparse hardware architecture of the QA, a problem that can be overcome in photonic architectures such as the CIM

    On two-dimensional Bessel functions

    Get PDF
    The general properties of two-dimensional generalized Bessel functions are discussed. Various asymptotic approximations are derived and applied to analyze the basic structure of the two-dimensional Bessel functions as well as their nodal lines.Comment: 25 pages, 17 figure

    Rastall Cosmology and the \Lambda CDM Model

    Full text link
    Rastall's theory is based on the non-conservation of the energy-momentum tensor. We show that, in this theory, if we introduce a two-fluid model, one component representing vacuum energy whereas the other pressureless matter (e.g. baryons plus cold dark matter), the cosmological scenario is the same as for the \Lambda CDM model, both at background and linear perturbative levels, except for one aspect: now dark energy may cluster. We speculate that this can lead to a possibility of distinguishing the models at the non-linear perturbative level.Comment: 9 pages, 1 figure. Accepted for publication in Physical Review
    corecore