263 research outputs found

    Using Unified Personal Information in Workspaces

    Get PDF
    Knowledge workers (KWers) deal with personal information and use tools like, e.g., desktop workspaces to support their work. But KWer support is hindered by personal information fragmentation, i.e., applications keep a set of personal information while not interconnecting it. This thesis addresses this in the domains personal task management and meeting management by using a common unified personal information model as offered by the semantic desktop personal information management (PIM) system

    Lightweight information integration through partial mapping and query reformulation

    Get PDF
    [no abstract

    Organization and Usage of Learning Objects within Personal Computers

    Get PDF
    Research report of the ProLearn Network of Excellence (IST 507310), Deliverable 7.6To promote the integration of Desktop related Knowledge Management and Technology Enhanced Learning this deliverable aims at increasing the awareness of Desktop research within the Professional Learning community and at familiarizing the e-Learning researchers with the state-of-the-art in the relevant areas of Personal Information Management (PIM), as well as with the currently on-going activities and some of the regular PIM publication venues

    Organizational Search in Email Systems

    Get PDF
    The storage space for emails has been increasing at a rapid pace day by day. Email systems still serve as very important data repositories for many users to store different kinds of information which they use in their daily activities. Due to the rapidly increasing volume of email data, there is a need to maintain the data in a most efficient way. It is also very important to provide intuitive and flexible search utilities to provide better access to the information in the email repositories, especially in an enterprise or organizational setting. In order to implement the functionality, we are presenting a tool name TESO. TESO is a tool for email searching using organizational information. This tool is designed to improve the relevancy of the email search by integrating the data from email servers and organizational information from directory services and other resources. We implement this functionality as an add-on for the Mozilla Thunderbird framework, which is an open source email client system developed by the Mozilla Foundation. The results are evaluated using the SQLite and the XML data. This work will serve as a handy tool in the area of existing information integration and keyword search on relational databases techniques and also helps in efficient access of XML information

    Organizational search in email systems

    Full text link

    A FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

    Get PDF
    An important trend in modern medicine is towards individualisation of healthcare to tailor care to the needs of the individual. This makes it possible, for example, to personalise diagnosis and treatment to improve outcome. However, the benefits of this can only be fully realised if healthcare and ICT resources are exploited (e.g. to provide access to relevant data, analysis algorithms, knowledge and expertise). Potentially, grid can play an important role in this by allowing sharing of resources and expertise to improve the quality of care. The integration of grid and the new concept of bioprofile represents a new topic in the healthgrid for individualisation of healthcare. A bioprofile represents a personal dynamic "fingerprint" that fuses together a person's current and past bio-history, biopatterns and prognosis. It combines not just data, but also analysis and predictions of future or likely susceptibility to disease, such as brain diseases and cancer. The creation and use of bioprofile require the support of a number of healthcare and ICT technologies and techniques, such as medical imaging and electrophysiology and related facilities, analysis tools, data storage and computation clusters. The need to share clinical data, storage and computation resources between different bioprofile centres creates not only local problems, but also global problems. Existing ICT technologies are inappropriate for bioprofiling because of the difficulties in the use and management of heterogeneous IT resources at different bioprofile centres. Grid as an emerging resource sharing concept fulfils the needs of bioprofile in several aspects, including discovery, access, monitoring and allocation of distributed bioprofile databases, computation resoiuces, bioprofile knowledge bases, etc. However, the challenge of how to integrate the grid and bioprofile technologies together in order to offer an advanced distributed bioprofile environment to support individualized healthcare remains. The aim of this project is to develop a framework for one of the key meta-level bioprofile applications: bioprofile analysis over grid to support individualised healthcare. Bioprofile analysis is a critical part of bioprofiling (i.e. the creation, use and update of bioprofiles). Analysis makes it possible, for example, to extract markers from data for diagnosis and to assess individual's health status. The framework provides a basis for a "grid-based" solution to the challenge of "distributed bioprofile analysis" in bioprofiling. The main contributions of the thesis are fourfold: A. An architecture for bioprofile analysis over grid. The design of a suitable aichitecture is fundamental to the development of any ICT systems. The architecture creates a meaiis for categorisation, determination and organisation of core grid components to support the development and use of grid for bioprofile analysis; B. A service model for bioprofile analysis over grid. The service model proposes a service design principle, a service architecture for bioprofile analysis over grid, and a distributed EEG analysis service model. The service design principle addresses the main service design considerations behind the service model, in the aspects of usability, flexibility, extensibility, reusability, etc. The service architecture identifies the main categories of services and outlines an approach in organising services to realise certain functionalities required by distributed bioprofile analysis applications. The EEG analysis service model demonstrates the utilisation and development of services to enable bioprofile analysis over grid; C. Two grid test-beds and a practical implementation of EEG analysis over grid. The two grid test-beds: the BIOPATTERN grid and PlymGRID are built based on existing grid middleware tools. They provide essential experimental platforms for research in bioprofiling over grid. The work here demonstrates how resources, grid middleware and services can be utilised, organised and implemented to support distributed EEG analysis for early detection of dementia. The distributed Electroencephalography (EEG) analysis environment can be used to support a variety of research activities in EEG analysis; D. A scheme for organising multiple (heterogeneous) descriptions of individual grid entities for knowledge representation of grid. The scheme solves the compatibility and adaptability problems in managing heterogeneous descriptions (i.e. descriptions using different languages and schemas/ontologies) for collaborated representation of a grid environment in different scales. It underpins the concept of bioprofile analysis over grid in the aspect of knowledge-based global coordination between components of bioprofile analysis over grid

    A Semantic Approach to Supporting Users in the Selection of Visualizations in Business Intelligence Environments

    Get PDF
    The amount of data produced and stored in multiple types of distributed data sources is growing steadily. A crucial factor that determines whether data can be analyzed efficiently is the use of adequate visualizations. Almost simultaneously with the ongoing availability of data numerous types of visualization techniques have emerged. Since ordinary business intelligence users typically lack expert visualization knowledge, the selection and creation of visualizations can be a very time- and knowledge-consuming task. To encounter these problems an architecture that aims at supporting ordinary BI users in the selection of adequate visualizations is developed in this thesis. The basic idea is to automatically provide visualization recommendations based on the concrete BI scenario and formalized visualization knowledge. Ontologies that formalize all relevant knowledge play an important role in the developed architecture and are the key to make the knowledge machine-processable

    Proceedings of the 2005 IJCAI Workshop on AI and Autonomic Communications

    Get PDF
    corecore