
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

5-1-2012

Organizational Search in Email Systems
Sruthi Bhushan Pitla
Western Kentucky University, sruthibhushan.pitla698@topper.wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/theses
Part of the Databases and Information Systems Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact connie.foster@wku.edu.

Recommended Citation
Pitla, Sruthi Bhushan, "Organizational Search in Email Systems" (2012). Masters Theses & Specialist Projects. Paper 1161.
http://digitalcommons.wku.edu/theses/1161

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TopSCHOLAR

https://core.ac.uk/display/43627317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.wku.edu%2Ftheses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages

ORGANIZATIONAL SEARCH IN EMAIL SYSTEMS

A Thesis

Presented to

The Faculty of the Department of Mathematics and Computer Science

Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Sruthi Bhushan Pitla

May 2012

iii

ACKNOWLEDGMENTS

 It was a great pleasure working under my graduate advisor, Dr. Guangming Xing,

who provided me with everything I need to succeed. His inspiration and guidance at each

and every step made this Master of Science degree so rewarding and satisfactory. He

always encouraged my work in every possible way and also gave me the freedom to

express and implement my ideas without any restrictions. I feel very fortunate and proud

to have been his student and really think the experience which I gained working under

him is invaluable. I would like to whole heartedly thank Dr. Xing for the immense trust

and patience he has over me. He constantly supported and directed me in each and every

step. Without him this thesis would not have been so successful.

 I would like to thank Dr. Qi Li and Dr. Huanjing Wang for their valuable time and

suggestions that helped me improve this Thesis. I would like to thank all my friends at

Western Kentucky University, my friends in India and my family for the never-ending

support. I would like to specially thank my father Mr. Srihari Pitla and my mother Mrs.

Prabhavathi Pitla for their everlasting love and encouragement for me to succeed.

iv

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Approach to the problem .. 2

1.3 Some real world scenarios .. 3

1.4 Organizational search.. 4

1.5 Mozilla Thunderbird framework... 6

 1.5.1 Extension / add-on development on Thunderbird framework 7

1.6 Thesis structure ... 9

CHAPTER 2: ARCHITECTURE OF THE SYSTEM ... 10

2.1 Modules in the TESO architecture .. 11

CHAPTER 3: QUERY PROCESSING MECHANISM... 17

3.1 Different approaches used for the Query processing .. 17

3.2 Using the native file in extensible Markup Language (XML) 24

3.3 Twig pattern matching .. 34

CHAPTER 4: IMPLEMENTATION DETAILS .. 37

4.1 Add-on for Mozilla Thunderbird .. 37

4.2 User Interface: ... 37

CHAPTER 5: CONCLUSIONS ... 49

v

BIBLIOGRAPHY ... 50

vi

LIST OF FIGURES

Figure 1: Processing of Organizational information 6

Figure 2: Thunderbird Add-on Extension Framework 9

Figure 3: Architecture of TESO System 11

Figure 4 : RDBMS to Native XML file transformation 13

Figure 5: Integration of different tables with emails 21

Figure 6: Data represented as XML tree structure 27

Figure 7: XML Twig Query processing mechanism 28

Figure 8 : Structure of data in XML format 31

Figure 9 : DTD for XML data in the document 32

Figure 10 : XML tree structure with appropriate labeling of nodes 33

Figure 11 : Installation of add-on from a fil 37

Figure 12 : The developed add-on is shown after it is installed 38

Figure 13 : The user input is given which initiates query processing 39

Figure 14 : The relevant emails are retrieved and displayed after query processing 40

Figure 15 : Indexing mechanism in gloda database 42

Figure 16: Number of retrieved email results in case of normal and organizational

searches 46

Figure 17: Representation of expected count of irrelevant email results in normal search

 47

Figure 18: Representation of expected count of irrelevant email results in organizational

search 47

vii

 LIST OF TABLES

Table 1: Student table ... 22

Table 2: Section table.. 22

Table 3: Registration table .. 23

Table 4: Registration_section table ... 23

Table 5: Section_students table .. 23

Table 6: Expected results of normal text search ... 45

Table 7: Expected results of organizational search... 45

Table 8: Expected performance results ... 48

viii

ORGANIZATIONAL SEARCH IN EMAIL SYSTEMS

Sruthi Bhushan Pitla May 2012 52 Pages

Directed by: Guangming Xing, Qi Li, and Huanjing Wang

Department of Mathematics and Computer Science Western Kentucky University

The storage space for emails has been increasing at a rapid pace day by day.

Email systems still serve as very important data repositories for many users to store

different kinds of information which they use in their daily activities. Due to the rapidly

increasing volume of email data, there is a need to maintain the data in a most efficient

way. It is also very important to provide intuitive and flexible search utilities to provide

better access to the information in the email repositories, especially in an enterprise or

organizational setting. In order to implement the functionality, we are presenting a tool

name TESO. TESO is a tool for email searching using organizational information. This

tool is designed to improve the relevancy of the email search by integrating the data from

email servers and organizational information from directory services and other resources.

We implement this functionality as an add-on for the Mozilla Thunderbird framework,

which is an open source email client system developed by the Mozilla Foundation. The

results are evaluated using the SQLite and the XML data. This work will serve as a handy

tool in the area of existing information integration and keyword search on relational

databases techniques and also helps in efficient access of XML information.

1

CHAPTER 1: INTRODUCTION

1.1 Background

WWW (World Wide Web) has become an integral part of every person’s life in

performing their day-to-day activities, and many of us spend a significant amount of time

browsing different data and on social networking applications (Facebook, Google Plus,

Twitter, etc) . The users these days have plenty of options to communicate with each

other. Even though there are many ways of communication, the email still serves as the

most fundamental means for many of us to communicate [4]. We have known that social

networking applications definitely serve as a handy medium to communicate, but in order

to register or access the social networking service, we have to provide an email ID. This

process of registering to the social networks in turn leads to the generation of more

emails that make organizing the huge volume of emails a more complicated and a rather

challenging task. The storage media have become dramatically affordable over the past

years, which help in populating large scale archives of emails in the email systems. The

large scale storage of emails demands a very good maintenance and efficient monitoring

mechanism. Thus, it is very important that efficient data integration mechanism and

search tools are available to handle such a large volume of email collection. Many web-

based email services and email clients possess full text search support and many

companies offer desktop applications that can support indexing, searching the file

systems, emails and the browser caches and there are also many research prototypes

[11,9,1,2] which perform the search operation. All these mechanisms have followed the

2

same genre as the traditional information retrieval schemes and they do not possess the

capability of discovering and representing the entities and the relations among them.

They lack the capability of acquiring the relationships among the different entities and

the relationships from diverse and heterogeneous data sources. The work presented in this

thesis is focused primarily on how to deal with the email data in the enterprise email

systems or in the organizational setting and also on how to retrieve the related

organizational information which is readily available as per the search criterion.

1.2 Approach to the problem

As clearly stated in [1], the important goal in performing the information retrieval

is to perform the integrated search of the user’s personal information, coupled with the

organizational and the web information from diverse heterogeneous sources. This kind of

functionality especially plays a pivotal role in the enterprise setting. Although many of

the social networking applications provide the users with the privilege to register to the

circles or the different groups which serve as an abstract mechanism, organizing the

emails based on the similar method has not yet been studied. In the case of email

mechanism, it can be said that it has been successful in partially accomplishing the

method. Email lists can be created to make it easy for a user to reach a predefined group

of receivers rather than sending an email to each specific person which helps in reduction

of hectic work and saves a lot of time. This mechanism is adopted in many enterprise

systems to send emails to a predefined group of users very easily. However the problem

is that this convenience only resides on the sender’s side. This issue will be a particular

focus in this research.

3

1.3 Some real world scenarios

Scenario 1: Mailing list of all graduate students in a department (consider the Computer

Science Department at Western Kentucky University)

At WKU we maintain emails of all the Computer Science graduate students in a

separate mailing list cs.grads@lists.wku.edu. When there is a need to reach all the

Computer Science graduate students, this mailing list will be used to send out an email.

Thus this mailing list serves as a very handy thing and it also serves as an active

discussion forum where a student does have a privilege to take a lead in the discussion.

This allows very easy retrieval of the emails related to this well-defined group by

searching the mailing list name over the “to” field in the email client. The vice versa may

not work the same way, i.e.; when a student sends a well-related email to a specific

individual recipient, finding such an email by the recipient will not be that easy if the

recipient does not know anything about that specific email. This could be considered as a

concern when it is from the recipient’s perspective.

Scenario 2: Consider a search operation performed by a faculty member:

Search information on a new course proposal “CS570 Security in Computing” at WKU

At most of the universities before setting up a course they have to go through a

thorough review process and in this process it has to go through a review by several

committees at different levels within the university. The members involved in the course

proposal can be from different departments or disciplines. The Email communications

from members in different committees often indicates different aspects for the course

proposal according to their diversified perspectives. The following could be the different

4

possibilities:

1. Members from the same department are generally familiar with the course curriculum

and the course complexity, so they are more likely talking about the content of the

course.

2. Members from the other academic departments may talk about the interdisciplinary

features of the course and the kind of impacts the new course can cause on their

program.

3. The members of the library are most likely concerned about the required course

material that is necessary in order to support curriculum of the course.

After the process of course approval and the course has been offered, the emails from

different users in the organization are stored in different categories and so the emails

from the students will also be in a totally different category. So when a keyword “CS570”

is given as a search query it can result in emails from different categories based on the

way the organizational information is setup. The organizational information is always not

the same and it can evolve over time as there may be changes in the registration, student

enrollment and also can be due to the other organizational issues.

1.4 Organizational search

Organizational search is a mechanism where the search operation is performed on

the email system using information in the email system as well as the organizational

information from the other heterogeneous data sources. Organizational information

explains how organizations use information found within its environment to interpret and

on how to adjust to the changes in the organizational setting. The organizational

5

information can be present in many forms depending upon the following factors:

1. Organizational functionality

2. Type of organization

3. Scalability of organization

1.4.1 Types of organizational information

In general, the organizational information can be broadly classified into the following

two categories. The processing mechanism is illustrated in Figure 1.

1. Organizational information can be stored in different directory servers and other

structured data sources. The structured data sources are the data repositories which

store information in relational form or in the form of tables.

Examples:

 Active Directory

 Student enrollment records in Banner systems at many universities.

 Black board

2. Organizational information stored in unstructured data. The unstructured data sources

can be the data which is stored in the xml format and it can also be the data stored as a

plain text format.

The information can be in the form of

 signature text in emails

 Organizational information in word documents in shared directory.

6

Figure 1: Processing of Organizational information

1.5 Mozilla Thunderbird framework

Thunderbird is an open source email client developed by Mozilla Foundation. It is a

free open source program which is supervised and maintained by the Mozilla project. It

can be compared to several other email clients available in the market such as Outlook

Express, Eudora and Netscape communicator. It can run on a variety of operating system

platforms like Windows 95, 98, Me, 2000, XP, Linux, Mac OS X, OS/2, Solaris.

Thunderbird can manage emails and information from a variety of sources.

It has features [22] like

 Multiple email and newsgroup accounts

7

 POP and IMAP protocols

 HTML mail formatting

 Import and export email accounts and messages

 Spell check as you type

 Deleting and detaching file attachments

 Advanced message filtering

 Folder retention rules

 Customizable

 Email stored as plain text

Features not included are as follows:

 Calendar, notes, and task management

 Support for HTML email (e.g. Hotmail)

It allows any organization to build their add-on which best fits their needs. We are

focusing on the full text search, message filtering and add-on development features of the

Thunderbird to accomplish the desired functionality.

1.5.1 Extension / add-on development on Thunderbird framework

Extensions are the programs that help in addition of new features to the existing

Thunderbird framework through the installation of XPInstall modules which are known

as “XPI” or zippy installation which is similar to the zip archive which we use to

compressing/zipping the files for our daily use. They add new functionality [16] to

Mozilla applications such as Firefox, Sea Monkey and Thunderbird. They can add

http://en.wikipedia.org/wiki/XPInstall

8

anything from a toolbar button to a completely new feature to get the desired

functionality. They allow the application to be customized to fit the

personal/organizational needs of each user if they need additional features. This

customization feature serves as a very handy option in the implementation of our desired

needs to get the desired functionality. Once the add-on is ready to use it can be updated in

the future based on the contemporary version of the framework, this functionality is

provided by the Mozilla Foundation.

Extension framework

Extensions are packaged and distributed in ZIP files, with the XPI file extension.

The Hierarchy showing the contents in the typical XPI file is shown below.

Sample_extension.xpi // This is equal to the name of the working folder,

Sample_extension/

/install.rdf //It stores the general information about the extension;

/chrome.manifest // Registers the content in the files with the chrome engine;

/chrome/content // The contents of the extension such as the XUL and the JS files

are included in this section;

/chrome/icons/default/ // Contains the default icons of the extension;

/chrome/locale/ // Contains the information about the localization.

9

Figure 2: Thunderbird Add-on Extension Framework

1.6 Thesis structure

The remainder of the thesis is organized as follows. Chapter 2 presents the

architecture of the proposed system. Chapter 3 describes the query processing

mechanism. It reviews the recent developments in the area of the text search over

relational data, which is the theoretical foundation of the work presented in the thesis.

Implementation and basic experiments on the effectiveness of the system are discussed in

the Chapter 4 and conclusions are given in Chapter 5.

10

CHAPTER 2: ARCHITECTURE OF THE SYSTEM

TESO, a tool for email searching using organizational information is designed to

improve the relevancy of the email searching mechanism by integrating the data from the

email servers and the organizational information from directory services and other

heterogeneous sources. The data processed in the organizational system consists of

personal email data in the email system or the data which is stored in the local database

and the organizational information which is obtained from diversified data sources.

Typical architecture of the system in the case where a university is considered as an

organization can be illustrated as shown in the Figure 3

11

Figure 3: Architecture of TESO System

Modules in the TESO architecture

The TESO architecture consists of five modules

1. Data storage module:

This module deals with the aspect of how all forms of data (structured or unstructured) or

the information in the organization is properly organized in the enterprise setting. In our

case we need to consider user emails which are stored in the local archive/local database

and organizational data stored on various diversified heterogeneous servers. For each of

12

the organizational data storage, a data adapter is needed to pull the data from a variety of

data repositories into the email search utility to perform the desired functionality.

The data storage schemes which are supported are

 XML native format.[23]

 SQLite databases.[19]

XML native format:

The XML native format does not have the functionality of the databases and they

do not really store the information as contrary to the databases. The native format can

only be defined as a logical model or the logical architecture for an XML document. The

documents are retrieved according to the way the logical model is designed.

The model includes the following segments

 Elements

 Attributes

 PCDATA

 Document order

The native format contains an XML document as its fundamental unit of the logical

data storage which is just as the row in a table in the relational database is a fundamental

unit in the relational database. The Native XML databases can be relational, object-

oriented database structures and it can also be in the form of indexed files or the

compressed files.

Most of the XML databases support many querying methods to perform the querying

operation. But XPath is considered as the most commonly used mechanism to perform

13

the querying operation on the documents or collection of documents. XPath is used to

filter and identify the nodes that match the criterion to get the most specific or the

intended result. XSLT is another mechanism where it defines a set of XPath filters which

can transform diversified documents using the XML grammar syntax and semantics.

XQuery in association with XPath can also be used to filter the elements and the nodes.

Figure 4 illustrates the RDBMS to Native XML file transformation mechanism.

Figure 4 : RDBMS to Native XML file transformation

SQLite Data storage:

SQLite is a widely used storage mechanism for local/client storage on the web

browsers [19] and it is considered most widely as a deployed database engine. It is used

these days in browser application developments, in the embedded systems support and it

has become an integral part in building many applications Examples of the companies

which use SQLite support are Mozilla, Apple, Adobe, Google and also in mobile

application development. SQLite is compatible with the relational database management

system and its main advantage is it uses small size for data storage. It is compatible with

14

most of the SQL querying syntaxes. It is embedded in the client application, whereas the

other database management systems need a separate storage for the database.

Reasons why the SQLite is considered to be handy in the application development

A complete database is stored in a single-cross-platform disk file [19] which is

considered to be efficient as it does not require a separate back up mechanism to store the

data.

 It contains a small code base which ranges in between 200KB to 350KB

 It has a very simple and easy to use Application Programming Interface (API)

 It provides the feature of cross platform support [19] which helps in porting other

operating systems very easily.

 The SQLite database can be monitored and maintained using a Command Line

Interface (CLI) and there are also GUI’s available which can be used to monitor

SQLite databases.

 It is faster when compared client/server database paradigms.

The SQLite Manager add-on which is an add-on that can be installed on the Mozilla

Thunderbird framework is used in building the database structure for this implementation

and it can be used to populate different tables in the database.

2. Security controller module:

The security controller module deals with the aspects of providing the overall security

to the enterprise setting. The organizational information is comprised of different forms

of data. The different forms of data are accessed by different users at different levels of

15

the organization. Thus data abstraction mechanism must be enforced among the different

group of users i.e.; only the authorized users should be able to view the content related to

them which inevitably enforces a good security mechanism. The organizational data

storage may contain very sensitive information that should not be visible to a particular

set of users; the data pulled from the storage server must perform the process of filtering

before displaying the results to the end user. An ACL (access control list) which stores

the information about the access permissions for different sets of users is used in the

implementation to perform the process of filtering the data from the storage server before

rendering the relevant results. Another very good thing about this implementation is that

it also retrieves the results abiding to the security policy at the organization. This module

has to be implemented by the hosting organization.

3. Indexing module:

The search indexing operation performs the operations of collecting, storing and

parsing the data. This helps in faster and very efficient information retrieval as the

frequently used data is indexed and it just needs to be properly parsed in order to get the

most relevant search results. The organizational information pulled from the data storage

will be stored in a local relational SQLite database or XML file that can be accessed in

Mozilla. The emails and the organizational data are indexed. Email indexes in

Thunderbird framework will be augmented with indexes for organizational data. The

augmented indexes in the Thunderbird are stored in the Gloda (Global database) in the

default profile folder in the specific SQLite database called gloda-messages-db.SQLite.

The indexes in the Thunderbird framework are automatically generated which facilitates

16

an efficient and faster retrieval of the information from the email repository.

4. Query module:

The query module deals with the aspect of performing the operation of information

retrieval by accepting the search query from the user to satisfy his or her information

needs. The querying mechanism considers the user issued keyword as a search query,

interprets it and then performs the query processing to retrieve the most relevant emails

based on the input. In our case we use the existing email search utility and search over the

organizational data to carry out the query. The query would be considered as a refined

integrated query to perform very efficient and relevant information retrieval.

5. Clustering module:

Clustering module deals with the aspect of grouping the similar information into well-

formed groups/clusters. The search results are analyzed and clustered based on the

organizational information in the email i.e.; the emails from the different set of users can

be stored separately in the form of different clusters. We can consider an example where

if a search query is issued the results generated will be the aggregation of emails from

different set of users here. There is a scope to enforce clustering mechanism which does

the functionality of placing different set of users into different category. Thus combined

with existing email classification/clustering techniques, this definitely offers many

possibilities that can change how emails are organized in a more efficient manner in an

organizational setting.

17

CHAPTER 3: QUERY PROCESSING MECHANISM

 3.1 Different approaches used for the Query processing

The integration of databases and the Information Retrieval schemes provide

different ways for the users to query the information to get the desired results. The

relational databases provide users with the privilege to query the well-structured data

which are stored in the form of tables and the unstructured data does not require users to

understand the information and it does not require users to understand or have a clear

idea of the database schemas.

Integration of data in different tables using the candidate network generation

scheme

Candidate networks: A candidate network [21] is the process of generation of joining

expressions to get the joining network of tuples.

Minimal joining networks: A minimal joining network is the joining network of tuples

[20] that satisfy the following conditions

 Total

 Minimal

Total: This means that the each keyword which is typed in as search query must be

present in at least one of the tuple/record in the joining network of tuples.

Minimal: This means that it is not total it also inherits some properties. If any

tuple/record is removed from the joining network of tuples then it is said to have only the

minimal functionality.

The candidate networks can be of two types

18

 Complete

 Non redundant or no duplication

Complete: This means the collection of the candidate networks produces all the minimal

joining network of tuples which are possible during the process of integration of data in

different tables

Non redundant or no duplication: If any of the candidate networks are not considered

there may be data which may well be contained in the minimal joining network [21]

which was not discovered or which was not taken into consideration.

Different candidate network generation algorithms can be used to generate

different efficient candidate networks and to evaluate it in a most efficient way.

Addressing the main problem

The most important problem to address in the organizational system is to perform

the integrated search operation on different relational tables in the database with the

emails of different users to get the relevant results. A similar problem has been studied in

the database communities by many researches in the area of keyword search on

structured and semi-structured data [2], [3] where in the integration of data from different

tables or relations is performed based on the user issued keyword. In the traditional Web

searching, each page is viewed as an entity in the searching and ranking algorithms.

However the structured data must be properly integrated as they are fragmented in the

process of the normalization. The structured data must also be properly integrated

keeping in view of all the primary and foreign key relationships among the different

tables in order to retrieve the relevant entities of interest. The data used in this project can

19

be viewed as a relational database which is a SQLite database, where emails are stored in

one relation. The “rows” in the email “table” are connected with data in other tables

holding organizational information. When the search query is issued by the user the data

in different tables is first integrated according to the search criterion and then the rows in

the email table are referred and finally all the relevant emails are properly retrieved.

As shown in the Figure 5, let’s consider a case where a faculty table has to interact

with a student table. This operation can be done in two different ways or by following

two distinct paths as specified below

 A faculty can be related with a student through advising (Faculty↔Student)

 Through course enrollment (Faculty ↔ Section ↔ Enrollment ↔ Student)

Thus this forms a network with two distinct relations. In a relational database, this can

be built using foreign-key relationships where in the foreign keys in different tables refer

to the primary keys in related tables in order to establish the different relationships .

With the different indexing techniques for text data well developed, identifying the

aspect of how the information in different chunks to get to relate to each other is the most

important thing to consider. Let us consider the same example where the faculty table

tries to relate to the student table. In this particular example we can clearly see that two

networks can be generated out of all the possible networks to search for specific

information. In a typical relational database, the number of tables and foreign-key

relations are far more complicated than the example presented above. The process of

exploring all the foreign key relationships in order to build different paths or networks to

perform the search operation is far more expensive and it is considered to be cumbersome

20

in the practical sense. Thus in order to mitigate this complex possibility of routing the

tables various techniques have been proposed lately. The candidate network based

solution is considered to be the best possible approach in this kind of scenarios and they

are well received and evaluated in these kinds of cases. Here in our implementation a

candidate network based system provides an ideal dataset to perform and evaluate

different experiments of several candidate network based algorithms. In order to improve

the efficiency of the search utility the schema of the organizational information is also

used to control the generation of different candidate networks in different possible ways.

21

Figure 5: Integration of different tables with emails

22

Database Design: Five tables were used in the database design and they are listed below

 Student

 Section

 Registration

 Registration_section

 Section_students

Student table:

Attribute Type Primary key

name Varchar 0

wkuid Varchar 1

email Varchar 0

major Text 0

phone Text 0

Table 1: Student table

Section table:

Attribute Type Primary key

Section_id Integer 1

name Text 0

course Text 0

time Text 0

location Text 0

Table 2: Section table

23

Registration table:

Attribute Type Primary key

Registration_id Integer 1

name Text 0

Table 3: Registration table

Registration_section table:

Attribute Type Primary key

Registration_id Integer 0

Section_id Integer 0

Table 4: Registration_section table

Section_students table:

Attribute Type Primary key

Section_ID Integer 0

Student_ID Integer 0

Table 5: Section_students table

The registration_section and Section_students tables are not explicitly shown in the Figure

5 as their only functionality is to establish mapping between the registration, student and

section tables.

24

Candidate network generation scheme

The candidate networks share joint expressions between the data in different

relations/tables. This results in a set of intermediate results [20] which in turn helps in

using them in the computation of multiple candidate networks. The candidate network

generator inputs the set of keywords k1, k2, k3. . . km, the tuple sets which are not empty

and the maximum candidate networks’ size T and outputs a complete and non-redundant

set of the candidate networks. The key challenge is to avoid the generation of redundant

joining networks of tuple sets. For this the joining network of tuples must be non-

minimal. The minimal total joining network of tuples is produced as an output by the

candidate network algorithm [20]. The output does not contain any redundant candidate

networks

3.2 Using the native file in extensible Markup Language (XML)

Background details

XML is widely accepted as the most efficient standard scheme for the data

exchange in the Business to Business applications [11]. The data storage scheme is

different from the traditional relational databases as the data in the XML is a self-

describing and irregular and it is considered to be semi-structured data. The XML schema

structure facilitates the process of query evaluation and it helps in querying the schema

without the need to consider the original data. Most important feature of keyword search

is that it enables easy access to search information without having to know the complex

25

query structures in the querying mechanism or there is no need to have a prior knowledge

about the working of the queries or the querying mechanism. Since the data storage is not

the main concern in the XML scheme the data can be of potentially large sizes [11]. The

volume of data is not a major concern in the XML based processing.

Query languages and querying mechanism

The query languages used to query and process the semi-structured format of the

data for efficient XML processing are XQuery and XPATH [11]. In case of the structured

perspective to select the structural information the data needs to be explored and the

elements are identified which form the tree structure. The elements are selected as per the

desired requirement in the form of tree pattern queries which are also known as twigs or

twig queries. The twig queries select the elements very efficiently as per the specified

tree structures which help in retrieving the most relevant information. The query

processing mechanism is shown in Figure 7.

XML data storage mechanism

 The organizational information is stored using native file in eXtensible Markup

Language(XML) format [15]. XML is the standard format for data exchange over the

internet, providing interoperability between different business applications. XML data is

represented in tree structured fashion, and allows sophisticated data in the relations being

represented in XML format. In a business application there is definitely a need where one

has to exchange data between a database and diversified systems which can be other

applications or any other database, etc [23]. As the same information exchange

mechanism may not be used by everyone, XML serves as a language to capture all the

26

semantics kept intact. The most important feature about the XML is it is easily

understandable. A hierarchical format is perhaps the most structured format that is very

easily readable by humans. XML helps in interoperability between different platforms

and it is used in wide range of web applications as an exchange medium. In our

application considering the scenario of the same course registration information as shown

in Figure 5, it can be represented by the following XML segment as in Figure 6. In XML,

the internal nodes are the markups, providing structure and semantic information in an

application, and the real data are stored in the leaf node.

27

Figure 6: Data represented as XML tree structure

28

To perform a query “CS570”, the query mechanism is generated as shown in Figure 7

Figure 7: XML Twig Query processing mechanism

In this scenario, the query processing can also be thought of as the twig queries in XML

data processing [11].

29

XML Twig Query processing

There may be many twig patterns in an XML database. Finding all such

occurrences of twig patterns in an XML database is a considered as a major operation for

the efficient extraction and the evaluation of XML queries. Many algorithms have been

proposed to perform the process of finding different twig patterns. A Holistic Twig join

labeling scheme [17] is considered to be appropriate with our implementation. According

to this scheme only the labels of the lead nodes must be accessed which further yields to

the efficient scanning of large number of elements[17] in the tree and it also improves the

query processing and evaluation mechanisms. Below is the figure which illustrates the

document which contains the information in XML form

30

31

Figure 8 : Structure of data in XML format

32

The purpose of a DTD here is to define the structure of our XML document. It defines the

structure with a list of legal elements which point to different data.

Figure 9 : DTD for XML data in the document

33

Figure 10 : XML tree structure with appropriate labeling of nodes

34

Twig Join Labeling Scheme

A very good feature of this scheme is by using the label [17] value alone. The

names of all the corresponding elements in that particular path can be easily retrieved in

the top-down fashion which is the traversal from the root element to that corresponding

element. Considering Figure 10 which shows an XML document with all the elements

and the nodes properly labeled. For example, if label “2.4.1.3” is taken into consideration

then with this label value we can examine that the path from the root node to retrieve the

particular email is “registration/section/students/Student/email”. With this mechanism in

order to evaluate the twig patterns, the only requirement is to access the labels of

elements that only satisfy the leaf node condition in the query [17]. This also helps in

matching the patterns in the intermediate path like “//section/students”. This helps in very

good evaluation of the twig patterns, which are reliable and efficient.

3.3 Twig pattern matching

For performing the pattern matching in the twigs there is a need to know the

additional schema information from the proposed XML schema which will serve as a

clue to parsed the schema and better match the twig pattern. If we consider a particular

tag from our XML document, the clue [17] is the all possible and distinct names of

children which are descendants of that particular tag. These child elements can be easily

derived from the DTD or the schema. Let us denote all the possible names of children of

elements in a set CE. CE (t) denotes all the possible child elements which are direct

descendants of parent node (t) [17]. For example, consider the DTD in the figure here.

The tags of all possible children of a section are course, time, location and students are

35

author, title and chapter. So CE(section) = {course, time, location, students}. Using this

idea we can easily map the elements. This approach is a straight forward mechanism here

and we only need to scan the elements whose tags appear in leaf nodes of query [17]. If

an element gets visited, we use Finite state machine mechanism to convert its label into

element names along the path from the root to it and later perform the different string

matching operations on it. If the path from the root to this element matches with our

intended desired pattern, then the matching answers can be traced directly so this way we

can find our desired output result by scanning the whole document which can be treated

as an input list of strings, and sequentially the strings are matched till we find the exact

match.

How the target data for searching in this project different from traditional

relational data or XML data

 The data is extracted from diversified heterogeneous sources which are distributed on

the servers on the internet. The search operation here is to filter the emails and the

main focus is on searching the email system. The organizational information is

extracted from the other sources and as a result the format of data extracted is

significantly different from each other and as the data extracted is not uniform or not

of the similar format handling the query process is not very easy. There is no uniform

query language which handles all the different data sources efficiently and which

could be very effective in retrieving the relevant results.

 The other thing which must be effectively handled is the privacy and security issues

of the data of the organization. The organization may contain different levels and

36

each level may be assigned to a different sensitivity level and there is definitely a

need to protect the privacy of the organizational and personal data. Consider Figure 5

by taking the faculty member into perspective. The faculty member should be given

appropriate privileges to access the data segments related to him/her i.e.; he/she

should only be able to access the emails and email specific content which is private to

him/her. The access to student private emails and email specific information should

be denied, otherwise it is considered as a big privacy concern as the information is

considered to be disseminated to the unauthorized users. To address these critical

issues adapters can be used to pull the data from a variety of data sources to the

system. After the data becomes available in our target system, the candidate networks

can be generated in a similar way as the traditional search mechanism in the relational

database system.

37

CHAPTER 4: IMPLEMENTATION DETAILS

4.1 Add-on for Mozilla Thunderbird

Mozilla Thunderbird is an open source email client developed by the Mozilla

Foundation [14]. Thunderbird can manage emails and information from a variety of

sources. It has features like full text search, message filtering, message grouping and

labeling that help in managing and finding the messages. Mozilla also provides an open

mechanism to allow add-on development for the Mozilla family of applications like

Firefox and Thunderbird. It allows any organization to build their own extension which

best fits their needs.

4.2 User Interface:

Figure 11 : Installation of add-on from a file

38

A new text box for query input is created in the add-on tool . The search results

are returned in the same way as in a traditional search

Figure 12 : The developed add-on is shown after it is installed

Our Add-on can now be seen

and it is ready to use.

39

The user search query is given as input in the textbox as shown in the below

screenshot. The query processing operation is then initiated to retrieve the relevant

information.

Figure 13 : The user input is given which initiates query processing

A new text box is created on existing thunderbird

framework where user can issue a query which initiates

the query processing and retrieves the relevant emails

40

A particular Course number “CS530” is given as input and then the search button is

clicked which then initiates the integrated search and retrieves the relevant emails with

the content of the specific emails

Figure 14 : The relevant emails are retrieved and displayed after query processing

Search query “CS530” is
entered and search operation is

triggered

All the email ID’s of
students registered in

CS530 course are
displayed

2

41

Indexing and data storage

Gloda (Global database)

Gloda [13] is the indexing and search scheme in Thunderbird which serves as the

centralized data storage repository for the thunderbird email search client. It provides us

with the sophisticated full text search capabilities and also helps in the process of easy

search results categorization. The gloda indexes are stored in the same SQLite database.

The indexes are automatically generated and the auto indexes for each and every aspect

of the email database are properly organized using the gloda. This helps in the faster and

efficient access of the information that is stored in the email repository. The query

processing operation takes care of the generation of the different candidate networks

from the different entities in the SQLite database or from the data from the XML data

sources.

Data storage:

 The gloda database is a SQLite database named "global-messages-db.

SQLite"[13] and can currently be found in the user's Thunderbird profile directory. All

the email related data which can be sent messages, received messages, message content,

contact details, message headers and conversations are stored in this global repository.

The advantage of this database file is that it can be moved to another location in the

future so that it does not complicate backup procedures [13] and it is considered to be

very efficient.

1

42

Figure 15 : Indexing mechanism in gloda database

Gloda functionality as an index

Gloda functions as an index[13] to the stored data. It is important to carefully deal

with this index as it can cause inconsistency in the granularity of files stored at different

levels and it is not important to back it up and dealing with these indexes can cause

problems in the backup mechanisms which are related to granularity of the files. All the

indexes are also stored in the centralized global repository “global-messages-db.sqlite”

The gloda indexing is automatically

done using gloda indexer of

Thunderbird

43

Placing the SQLite database at the proper location in the Thunderbird default

profile folder

For the proper functioning of the add-on the following must be done

 The SQLite database must be placed in the thunderbird profile folder.

 The SQLite database used in our add-on implementation is western.sqlite

Procedure to be followed in the different operating systems

In Windows environment:

Profile folder [18] is located at the following location:

C:\Documents and Settings\<Windows user name>\Application

Data\Thunderbird\Profiles\<Profile name>

In Linux environment:

Profile folder [18] is located at the following location:

~/.thunderbird/<Profile name>/

For third party build from Debian or Ubuntu, those builds store the profile folder here:

~/.mozilla-thunderbird<Profile name>

In MAC OS X environment

Profile folders[18] are in one of these locations:

~/Library/Thunderbird/Profiles/<Profile name>/

~/Library/Application Support/Thunderbird/Profiles/<Profile name>/

44

Experimental evaluations:

The experimental results were taken based on the relevance of the query results.

Quality of search is very difficult to verify, and can vary significantly from one

application to another [11] depending on the different frameworks and methodologies. In

order to quantify the search results retrieved on the web the precision and the recall are

considered as important parameters to judge the efficiency of the retrieved search results.

But relevance ranking definitely plays a major role when compared to the above

mentioned parameters as most of the users expecting the relevant results to be retrieved

and will only look at the first few results which were retrieved in order to satisfy his

information needs. In the case of Email search, it is different when compared to web

search. In this case, the user will try to go through a good number of emails to find the

exact match or an almost correct match. In our experiment, we considered several

measures such as the count of the emails that are retrieved, count of the emails that are

relevant, count of the retrieved emails that are irrelevant, and the count of the relevant

emails.

The count of the number of relevant emails is unknown, as we did not have any

milestone set for the emails that are tagged already, however it is easier to find out the

irrelevant emails through our experiment. We can infer that a good search utility or the

search mechanism would be really handy in retrieving more relevant emails, which

inevitably minimizes the count of the irrelevant emails. We did use common queries that

conducted comparisons between normal text search and organizational search. The

relevancy here is not a simple match and an email with a word that matches the keyword

45

doesn’t mean that the email retrieved is relevant. Relevancy can only be determined by

the user to mean that the user would see the exact or the specific email which he intends

to see through the process of the information retrieval. Below is a table showing a rough

estimation of the comparison between the organizational search and the normal text

search

 Normal Text Search

Queries issued Retrieved Irrelevant

CS 549 160 30

Graduate Committee 80 16

Table 6: Expected results of normal text search

 Organizational Search

Queries issued Retrieved Irrelevant

CS 549 160 24

Graduate Committee 80 5

Table 7: Expected results of organizational search

46

Comparison of retrieved and irrelevant results in the case of normal search and the

organizational search:

We have considered 160 email results as a bench mark in case of both the normal and

organizational searches.

Figure 16: Number of retrieved email results in case of normal and organizational

searches

0

20

40

60

80

100

120

140

160

CS 549 Graduate Committee

Retrieved emails

Retrieved

47

Figure 17: Representation of expected count of irrelevant email results in normal search

Figure 18: Representation of expected count of irrelevant email results in organizational

search

0

5

10

15

20

25

30

CS 549 Graduate Committee

 Irrelevant emails

Irrelevant

0

5

10

15

20

25

CS 549 Graduate Committee

Irrelevant emails

Irrelevant

30

48

From the above comparison, it is clear that the organizational search is effective

in retrieving many more relevant emails than using normal text search. We did not intend

to use these limited experimental results that we have retrieved to show that the

organizational search proposed in this research is definitely more effective than the

normal text search in all the cases, but we believe that it definitely does offer an

important facet in the email search system.

Query issued Normal search Organizational search

Relevant

emails

Irrelevant

emails

Relevant

emails

Irrelevant emails

CS 549 81.25% 18.75% 85% 15%

Graduate

Committee

80% 20% 93.75% 6.25%

Table 8: Expected performance results

49

CHAPTER 5: CONCLUSIONS

With the recent advancement in the area of storage mechanism and storage

technologies, email collections or archives can definitely be considered as one of the

most important data repositories to serve different purposes for many users. Social

networking applications have been very successful by far on building online

communities, however it lacks a feature of utilizing the networking information in email

management, especially when the enterprise setting is considered. The information

utilization is not well handled and has not been well studied. Our study and the

experimental results have shown that using organizational information in the email

search can significantly improve the search quality by retrieving the more relevant

emails for the user. The organizational information thus provides a meaningful facet to

present the efficient search results to the users, and thus provides better information

navigation and inevitably provides a very good experience to the user. A common

framework which could push the information from different sources into our tool for

achieving better information integration would be the future prospect. The ranking and

order of relevancy of emails can also be implemented in order to make the tool more

user-friendly.

50

 BIBLIOGRAPHY

[1] Soumen Chakrabarti, Jeetendra Mirchandani and Arnab Nandi. Spin: searching

personal information networks. SIGIR, 674, 2005.

[2] Yu Xu, Yannis Papakonstantinou, Efficient LCA based keyword search in XML

data, EDBT’08: Advances in database technology, 535-546, 2008, Nantes,

France.

[3] Bhavana Bharat Dalvi, Meghana Kshirsagar, S. Sudarshan, Keyword search on

external memory data graphs, In Proceedings of the VLDB Endowment, 1(1),

1189-1204, August 2008.

[4] Luke McDowell, Oren Etzioni, Alon Y. Halevy: Semantic email: theory and

applications. J. Web Sem. 2(2): 153-183 (2004).

[5] CALO – Cognitive Assistant that Learns and Organizes. http://www.ai.sri.com

[6] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text

collections. In ICDL, 85–94. ACM, 2000.

[7] A. Cheyer, J. Park and R. Giuli. IRIS: Integrate. Relate. Infer. Share. In ISWC 2005

Workshop on The Semantic Desktop, 2005.

[8] X. Dong, A. Halevy and J. Madhavan. Reference reconciliation in complex

information spaces. In ACM SIGMOD Conference, 85–96, 2005.

[9] D.R. Karger and D. Quan. Haystack: A user interface for creating, browsing and

organizing arbitrary semi-structured information. In Human Factors in Computing

Systems (ACM CHI), 777–778, 2004

[10] P. Domingos. Multi relational record linkage. In Multi-Relational Data Mining

51

Workshop: collocated with ACM SIGKDD 2004, 31 – 48, (2004).

[11] Z Vagena, M. Moro and V.J. Tsotras. 2004. Twig query processing over graph-

structured XML data. In Proceedings of the 7th International Workshop on the

Web and Databases: collocated with ACM SIGMOD/PODS 2004 (Web DB

'04). ACM, New York, NY, USA, 43-48.

[12] David Hawking, Nick Craswell, Peter Bailey, Kathleen Griffiths: Measuring

Search Engine Quality. Information Retrieval 4(1): 33-59 (2001).

[13] Gloda, The search utility for thunderbird,

https://developer.mozilla.org/en/Thunderbird/Gloda

[14] Thunderbird, https://developer.mozilla.org/en/Thunderbird/

[15] C.M. Sperberg-McQueen and H. Thompson (2000). XML Schema, from

http://www.w3.org/XML/Schema.html

[16] Extension development https://developer.mozilla.org/en/Extensions

[17] TJFast: effective processing of XML twig pattern matching at proceedings

WWW '05 Special interest tracks and posters of the 14th international conference on

World Wide Web ACM New York, NY, USA 2005

[18] http://kb.mozillazine.org/Profile_folder_-_Thunderbird

[19] http://www.sqlite.org/features.html

[20] Vagelis Hristidis, Yannis Papakonstantinou DISCOVER: Keyword Search in

Relational Databases at Proceeding VLDB’02 Proceedings of 28
th

 international

conference on Very Large Data Bases

http://www.w3.org/XML/Schema.html
https://developer.mozilla.org/en/Extensions
http://kb.mozillazine.org/Profile_folder_-_Thunderbird
http://www.sqlite.org/features.html

52

[21] Jeffrey Xu Yu, Lu Qin, Lijun Chang , Keyword search in relational databases: A

survey

[22] Features of Thunderbird http://www.mozilla.org/en-GB/thunderbird/features/

[23] XML storage http://www.web-enable.com/business/XML_beyond_hype.asp

http://www.mozilla.org/en-GB/thunderbird/features/
http://www.web-enable.com/business/XML_beyond_hype.asp

	Western Kentucky University
	TopSCHOLAR®
	5-1-2012

	Organizational Search in Email Systems
	Sruthi Bhushan Pitla
	Recommended Citation

