A FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

PIN HU

A thesis submitted to the University of Plymouth

in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing, Communications and Electronics

Faculty of Technology

i J_anua_:y 2008

A Framework for Bioprofile Analysis over Grid
Pin Hu

Abstract

An important trend in modern medicine is towards individualisation of healthcare to tailor
care to the needs of the individual. This makes it possible, for example, to personalise
diagnosis and treatment to improve outcome. However, the benefits of this can only be fully
realised if healthcare and ICT resources are exploited (e.g. to provide access to relevant data,
analysis algorithms, knowledge and expertise). Potentially, grid can play an important role
in this by allowing sharing of resources and expertise to improve the quality of care. The
integration of grid and the new concept of bioprofile represents a new topic in the healthgrid
for individualisation of healthcare.

A bioprofile represents a personal dynamic “fingerprint” that fuses together a person’s
current and past bio-history, biopatterns and prognosis. It combines not just data, but also
analysis and predictions of future or likely susceptibility to disease, such as brain diseases
and cancer. The creation and use of bioprofile require the support of a nuinber of healthcare
and ICT technologies and techniques, such as medical imaging and electrophysiology and
related facilities, analysis tools, data storage and computation clusters. The need to share
clinical data, storage and computation resources between different bioprofile centres creates
not only local problems, but also global problems.

Existing ICT technologics are inappropriate for bioprofiling because of the difficulties in the
use and mnanagement of heterogeneous IT resources at different bioprofile centres. Grid as an
emerging resource sharing concept fulfils the needs of bioprofile in several aspects, including
discovery, access, monitoring and allocation of distributed bioprofile databases, cornputation
resources, bioprofile knowledge bases, etc. However, the challenge of how to integrate the
grid and bioprofile technologies together in order to offer an advanced distributed bioprofile
environment to support individualized healthcare remains.

The aim of this project is to develop a framework for one of the key meta-level bioprofile
applications: bioproﬁlc analysis over grid to support individualised hecalthcare. Bioprofile
analysis is a critical part of bioprofiling (i.e. the creation, use and update of bioprofiles).
Analysis makes it possible, for example, to extract markers from data for diagnosis and to
assess individual’s health status. The framework provides a basis for a “grid-based” solution
to the challenge of “distributed bioprofile analysis” in bioprofiling. The main contributions
of the thesis are fourfold:

A. An architecture for bioprofile analysis vver grid. The design of a suitable architecture
is fundamental to the development of any ICT systems. The architecture creates a

means for categorisation, determination and organisation of core grid components to
support the development and use of grid for bioprofile analysis;

. A service model for bioprofile analysis over grid. The service model propcses a
service design principle, a service architecture for bioprofile analysis over grid, and
a distributed EEG analysis service model. The service design principle addresses
the main service design considerations behind the service model, in the aspects of
usability, Hexibility, extensibility, reusability, etc. The service architecture identifies
the main categories of services and outlines an approach in organising services to
realise certain functionalities required by distributed bioprofile analysis applications.
The EEG analysis service model demonstrates the utilisation and development of
services to enable bioprofile analysis over grid;

. Two grid test-beds and a practical implementation of EEG analysis over grid. The two
grid test-beds: the BIOPATTERN grid and PlymGRID are built based on existing
grid middleware tools. They provide essential experimental platforms for research in
bioprofiling over grid. The work here demonstrates how resources, grid middleware
and services can be utilised, organised and implemented to support distributed EEG
analysis for early detection of dementia. The distributed Electroencephalography
(EEG) analysis environment can be used to support a variety of research activities in
EEG analysis;

. A scheme for organising multiple (heterogeneous) descriptions of individual grid
entities for knowledge representation of grid. The scheme solves the compatibility
and adaptability problems in managing heterogeneous descriptions (i.e. descriptions
using different languages and schemas/ontologies) for collaborated representation of
a grid environment in different scales. It underpins the concept of bioprofile analysis
over grid in the aspect of knowledge-based global coordination between components
of bioprofile analysis over grid.

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award.
This study was funded in part by the BIOPATTERN project.

Publications:

o P. Hu, L. Sun, C. Goh, B. Hamadicharef, E.Ifeachor, I. Barbounakis, M. Zervakis,
N. Nurminen, A. Varri, R. Fontanelli, S. Di Bona, D. Guerri, S. La Manna, K.
Cerbioni, E. Palanca and A. Starita, "The BIOPATTERN Grid: Implementation
and Applications”, Proceedings of the 5th All Hands Meeting 2006, September 18-21,
2006, Nottingham, UK.

e P. Hu, L. Sun and E. Ifeachor, “An Approach to Structured Knowledge Representation
of Service-oriented Grids”, Proceedings of UK e-Science Programme All Hands

Meeting 2007, September 10-13, 2007, Nottingham, UK.

e P. Hu, A. Anastasiou, L. Sun, E. C. Ifeachor, *A model for bioprofilec over Grid
in support of eHealthcare®, Proceeding of the 3rd International Conference on
Computational Intelligence in Medicine and Healthcare (CIMED2007), July 25-27,
2007, Plymouth, U.K.

ii

-
B /)

)

PR I N N e S B
QAT T

Ve f Ty TR e Y e N
S R R -

L. Sun, P. Hu, C. Goh, B. Hamadicharef, E. [feachor, 1. Barbounakis, M. Zervakis, N,
Nurminen, A. Varri, R. Fontanelli, S. Di Bona, D. Guerri, S. La Manna, K. Cerbioni,
E. Palanca, A. Starita, “Bioprofiling over Grid for eHealthcare”, Proceedings of the

HealthGRID 2006 , June 7-9 2006, Valencia, Spain.

L. Sun, P. Hu, C. Goh, B. Hamadicharef, M. Hess, E. Ifeachor, I. Barbounakis,
M. Zervakis, N. Nurminen, A. Varri, “Bioprofiling over Grid for Early Detection of
Dementia”, Proceedings of the First International Conference on Scalable Information

Systems (INFOSCALE 2006), May 30-June 1, 2006, Hong Kong.

P. Hu, Z. Qiao, L. Sun, and E. Ifeachor, “Runtime estiination of parallel applications
in computational grids®, Proceedings of the 2nd International Conference on Com-
putational Intelligence in Medicine and Healthcare (CIMED2005), June 29 - July 1,

2005, Lisbon, Portugal, pp. 472-479.

P. Hu, L. Sun and E. Ifeachor, “A Framework for Bioprofile Analysis over Grid”,

Submitted to the IEEE Systems Journal.

Word count: 42272

Acknowledgements

With a deep sense of gratitude, I wish to express my sincere thanks to my director of
study Professor Emmanuel [feachor for his professional guidance, advices, encouragement

and patience throughout this project.

I would like to thank my supervisor Dr. Lingfen Sun for her professional guidance, advices

and support, and Dr. Nicolas Outram for his support during the project.

1 would like to thank the BIOPATTERN project partners Dr. loannis Barbounakis and
Mr. Nicola Pavlov from Telecommunications Systems Institute of Crete (Greece), Ms.
Noora Nurminen from Tampere University OF Technology (Finland), and people from
Pisa University (Italy), Sysnapsis (Greece), and Institute for the Development of New
Technologies (Portugal) for their kindly collaboration in building the BIOPATTERN project
grid test-bed: BIOPATTERN grid.

I would like to thank Dr. Geoff Henderson, Dr. Cindy Goh and Ms. Peng Zhao from
Signal Processing and Multimedia Communication (SPMC) Research Group, University of
Plymouth for their support in providing EEG data and software implementations of EEG

analysis algorithms.

vi

I would like to thank Dr. Phil Richards, Mr. Michael Hess, Mr. John Horne, Dr. Gregory
Regan and Mr. Rob Douglass from Information and Cominunication Technology, University

of Plymouth for their efforts in building the Plymouth campus grid: PlymGRID.

1 would like to thank other members of SPMC: Dr Brahim Hamadicharef, Mr. Zizhi Qiao,
Mr. Athanasios Anastasiou, Dr. Zhuoqun Li, Mrs. Asiya Khan, and Mr. Paul Hopkins for

all the help, support and constructive discussions for this project.

I would like to thank Professor Anne Trefethen, Dr. David Wallom, Ms. Ruth Kirkham
and Mr. John Pybus from Oxford e-Research Centre (QeRC) for their support during the

late stage of my PhD study.

Finally, I sincerely thank my parents Yuliang Hu and Xinmei Fu, my girtfriend Ting Sun

and my sister Ying Hu for their continuous encouragement and support.

vii

Contents

1 Introduction

1.1 Motivation e
1.2 Research Questions e
1.3 Research Aim and Objectives
14 Contributions L L e e
1.5 ThesisOQutline
2 Background
21 Introduction e e
2.2 Middleware and Distributed Biomedical System
23 Grid e e e e
2.3.1 Open Grid Services Architecture
2.3.2 Web Service Resource Framework
2.3.3 Grid Middleware Tools
24 Healthgrid o
241 overview oL L. e e e e e
2.4.2 Healthgrid Requirements
2.4.3 Electronic Health Record and Healthgrid
2.5 Knowledge Representation L L

11
12

17
18
18
19
21
23

28
28
29
31

CONTENTS

2.5.1 Overview e e e e e
2.5.2 Semantic Web/Grid L Lo
2.6 Related Work L
2.6.1 HealthGrid projects
2.6.2 Knowledge Representationof Grid
2.7 SUmMmMAry e e e e e e e e e e e e e

Bioprofile Analysis over Grid

3.1 Imtroduction.

3.2 Bioprofile and Bioprofile Analysis 00000000
3.2.1 Overviewol Bioprofileo,
3.2.2 Characteristics of Bioprofile 0.
3.2.3 Bioprofile Analysis and Its Requircients

3.3 Framework for Bioprofile Analysis over Grid 0. .00

3.3.1 Basic Elcments of Biovprofile Analysis over Grid

3.3.2 Framework Overviewo o o
3.4 An Architecture for Bioprofile Analysis over Grid
35 Summary e e
A Service Model for Bioprofile Analysis over Grid
4.1 Introduction. L
4.2 Design Principle e

4.3 A Service Architecture for Bioprofile Analysis over Grid
4.3.1 Overview e e e e
4.3.2 The Role of Existing Grid Middleware Tools and Services
4.3.3 Application-specific Services Level Approach

4.4 Services for EEG AnalysisoverGrid o oL

63
64
64
66
66
67

71

CONTENTS

4.4.1 Application Requirements 76
4.42 A Service Model for EEG Analysisover Grid 77

4.5 Summary e e e e e e e 86
5 Implementation of A Grid-enabled EEG Analysis Platform 88
5.1 Introduction. 89
5.2 Scenario: EEG Analysis over Grid for Early Detection of Dementia 39
5.3 Grid Test-beds e 91
5.3.1 BIOPATTERN Grid 91
532 PlymGRID 93

5.4 Ilmplementation Architecture and Infrastructure 95
5.4.1 Overview 95
5.4.2 Physical Resources Layer 98
5.4.3 Grid Middleware Layer 100
5.4.4 Services and Virtual Resources Layer 100
5.4.5 Applications Layer 109
54.6 Security Layer e 110

5.5 Results and Evaluation. L 11
551 Utility . . oo [111
5.5.2 Collaborativity and Extensibility 113
5.5.3 Performance 113

5.6 Summary L. e e e 116
6 A Scheme for Knowledge Representation of Grids 117
6.1 Introduction. e e 118
6.2 A Service-oriented Grid Model oo L. 119

CONTENTS

6.3 A Schematic Multiplex Description Architecture for Knowledge Representa-

tionof Grids 122
6.4 A Kernel Ontology Skeleton 126
6.4.1 Class Definition and Hierarchy 127
6.4.2 Properties and Constraints, 130
6.5 An Implementation of the Schematic Multiplex Description Architecture . . . 135

6.5.1 An Implementation of SMDA-based Descriptions for EEG Analysis

over Grid for Early Detection of Dementia 135

6.5.2 Evaluation of the Implementation 137

6.6 Summary e e 139

7 Discussion, Suggestion for Future Work and Conclusion 141
7.1 Introduction 142
7.2 Contributions to Knowledge 143
7.3 Limitations of Current Work and Discussion 146
7.4 Suggestion for Future Worko L. 147
7.5 Conclusion e e 150

A Examples of Database Schema used in Description of Bioprofile Informa-

tion 165
A.l Patient InfoSchema 166
A2 EEGDataSchema e 167
A.3 EEG Analysis Algorithm Info Schema 168
A.4 EEG Analysis Software Implementations Info Schema 169
B An Example of an XML based Mapping Schema 170
C An Example of an XML based Mapping Schema Registry 173

xi

CONTENTS

D An Example of an OWL based Description of an Application

E Examples of XML based Descriptions of Partners

E.1 An Example of an XML based Description of a Grid Partner . . .

E.2 An Example of XML based Description of an Application Partner
F An Example of a WSDL based Description of Service

G An Example of an OWL based Grid Kernel Ontology

xii

204

List of Figures

2.1

2.2
23
24

3.1
3.2
3.3
34

4.1

OGSA concerned capabilities for the use and management of distributed,

heterogeneous resources [1]o o L 22
Relationship between Web services, OGSA, WSRF and GT4 26
The MaminoGrid Prototype 2 (P2) architecture (2} 38
Structural diagram of the BIRN system [3] 40
Overvicw of bioprofile 0 Lo 46
Overview of the framework for bioprofile analysis over grid 54
An architecture for bioprofile analysis over grid 59
Use and construction of services for applications 61
Categorising scrvices for bioprofile analysisover grid 63
Constructing services in support of bioprofile access 72
Constructing services for bioprofiling mctadata access and integration 73
Counstructing services for bioprofile analysis 75
An EEG analysis servicemodel 00 L. 78
A workflow example of distributed query of EEG analysis metadata 30

An example of using parallel job service for parallel job generation and

MANAZEMENL Lt et e e e e e e e e e e e e e e e e 83

xiil

LIST OF FIGURES

4.8 A workflow example of EEG analysis 85
5.1 Mike's life journeyo 91
5.2 The prototype of the BIOPATTERN grid 94
5.3 Overviewof PlymGRID 96
5.4 Overview of immplementation of EEG analysisover Grid 97
5.5 Implementing mapping schemas access service 102
5.6 Implementing distributed query service. L. 104
5.7 Implementing Parallel Job Service 106
5.8 Implementing EEG analysisservice 108
5.9 The BIOPATTERN Grid (Web) Portal _........ 110

5.10 Canonograms showing the distribution of FD values from EEG analysis for
patient ‘Mike’ L L e e 112
5.11 The distribution of Tsallis entropy values from EEG analysis for patient 'Mike'112

5.12 Speed-up comparison of running different jobs at different scales of Condor

POOL . . e e e e e e 113
6.1 A service-oriented grid model L L. 120
6.2 SMDA for knowledge representationof grids 123
6.3 Class hierarchy of the grid kernel ontology skeleton 129

xiv

List of Tables

5.1 Performance evaluation results for scalability (with execution time in minutes

and speed up factor compared with 1 PC)

6.1 Main/Abstract classes of the proposed grid kernel ontology skeleton

Chapter 1

Introduction

L1. MOTIVATION

This Chapter is organised as follows. Section 1.1 gives the research motivations behind the
project. Section 1.2 addresses the research questions. Section 1.3 presents the project aim
and objectives. Section 1.4 summarises the main contributions of this thesis. Section 1.5

gives the thesis outline.

1.1 Motivation

An important trend in modern medicine is towards individualisation of healthcare to tailor
care to the needs of the individual. This makes it possible, for example, to personalise
diagnosis and treatment to improve outcome (this is important given the problems of
heterogeneity of many diseases and differences in individual patients). However, the benefits
of individualisation of care can only be fully realised if healthcare and 1CT resources are
exploited (e.g. to provide access to relevant clinical data., and to algorithms to analyse
the vast amounts of data being generated by modern medicine, and access to expertise to
interpret and make use of the information derived therein). Potentially, grid can play an
important role in this by allowing sharing of resources and expertise to improve the quality

of care.

The integration of grid and healthcare has already formed a new exciting and specialist
area called Healthgrid. Great efforts, resources and funding have been put into national,
regional and international initiatives in developing healthgrid infrastructures, services
and applications to support hecalthcarc. Examples of resecarch in the field of healthgrid
include integration of distributed biomedical information for Paediatrics (e.g. the EU’s

Health-e-Child [4]. distributed mammography data retrieval and processing (e.g. the EU’s

1.1. MOTIVATION

MammoGrid (3] and the UK’s eDiaMoND [6] projects), and multicentre neuro-imaging (e.g.

the USA’s BIRN (7] and Japan’s BioGrid [8]).

The integration of grid and the new concept of bioprofile is cousidered as a new topic iu
the healthgrid community for the individualisation of healtheare. Conceptually, a bioprofile
represents a personal dynamic “fingerpring” that fuses together a citizen’s current and past
bio-history, biopatterns and prognosis. By biopattern, we mean basic information/pattern
which provides clues about the underlying clinical evidence necessary for diagnosis and
treatinent. It is typically derived from specific data types (e.g. genomic microarray, EEG
and PET) in a single medical investigation using techniques, such as statistical signal
processing, data mining and pattern recognition. Bioprofile combines not just data, but also
analysis and predictions of future or likely susceptibility to disease, such as brain diseases

and cancer [9].

The success of bioprofile depends on the support from Inforimation and Communications
Technologies (ICT). Bioprofile requires, for example, information from Electronic Health
Records (EHR) of subjects; multimodal data (i.e. data with various data modalities, such
as imaging, electrophysiology and genomics); and analysis of multimodal data in order to
obtain bhiomarkers. Bioprofile creates not only local problems, but also global problems.
This is because of the need to share clinical data between different bioprofile centres (e.g.
a GP surgery and hospital) due to, for example, mobility, as a person may live in different
regions so that his/her bioprofiles are distributed over different sites; insufficient and/or
inadequate local storage capacity; and lack of local computation power for analysis of a

large amount of data.

1.1. MOTIVATION

At a local level, most bioprofile requirements can be met by using established ICT
technologies, such as, file and database management systems, which offer storage for
today’s EHR, multimodal data, biomarkers, etc., as well as data models, which provide
functionalities to structure, organise and add semanticis to specific types of bioprofile data
and domain knowledge; computational clusters (e.g. high performance and high throughput

cluster), which supply computation power for analysis of bioprofile data; etc.

At a global level. established ICT technologies however do not provide solutions to the
bioprofile requircmients. This is mainly due to two rcasons. First, differeut bioprofile
centres are likely to be using heterogeneous 1T resources. For example, for data storage
and management, some sites may use MySQL [10] or PostgreSQL [11] and others may
use Xindice [12], where the data schemas used in each site may also be different to each
other. Because there is currently no existing, or more precisely, well-developed standards for
glabal federation of heterogencous resources, it is difficult to simultancously access multiple
distributed hetercgeneous resources without add-on mechanisms. Second, it is impractical to
access and manage distributed bioprofile resources only based on today’s Internet and static
resource information {c.g. IP address, port and data schemas). In theory, bioprofile should
benefit every citizen’s healthcare. This means that in the future there will be numerous
centres, which individually hold bioprofile data that belong to a number of citizens, or
computation power that can support analysis of bioprofile data. New resources may join in
to support the use of bioprofile at any time. The status of each resource may also change
from time to time. To realise the bioprofile concept, a set of additional techniques for
resource discovery, monitoring and allocation is required in order to manage and access

large amounts of bioprofile-related resources.

1.1. MOTIVATION

Grid as an emerging resource sharing technology offers possible solutions for the deployment
of a persistent, standards-based service infrastructure that supports the creation of, and
resource sharing within, distributed communities. It is built on top of existing ICT
technologies and sharing is under highly, but decentralised control. Resources to be
shared are heterogeneous in general, but inter-operated by standard. open, general-purpose
protocols and interfaces [13]. Grid fulfils the needs of bioprofile in several aspects, e.g.
discovery, access, monitoring and allocation of distributed bioprofile databases, computation
resources, bioprofile knowledge bases, etc. However, it is not clear how to integrate the
grid and bioprofile technologies together in order to offer advanced distributed bioprofile

environment to support individualised healthcare.

There are many issues which can be investigated, such as security and privacy for
bioprofile distribution, concurrent programming and workflows for bioprofile applications,
and (distributed) bioprofile data model. It is iinportant to research the gencral architecture
and infrastructure, which will benefit the management and continued development of the

bioprofiling over grid concept.

Bioprofile analysis is a critical part of bioprofiling. It concerns how to carry out analysis on
individual or a set of bioprofiles in order to refine abstractions for either clinical investigation
(e.g. diagnosis support) or research activities (e.g. the investigation of analysis algorithins
and fusion of biopatterns). The application usually requires the support of bioprofile

retrieval, on demand analysis computation and analysis-related knowledge provisioning.

To provide a basis for bioprofile analysis over grid, it is necessary to investigate 1) major
issues that are involved in delivering secure, reliable, seamless and efficient grid environment

- for bioprofile analysis;- 2) architecture for bioprofile analysis over grid; 3) service model for

1.2. RESEARCH QUESTIONS

classification and clarification of services to support various distributed bioprofile analysis
applications; 4) demonstration of grid envirommnent for bioprofile analysis; and 5) methods

of enhancing coordination between components of bioprofile analysis over grid.

There arc scveral research hypotheses behind these investigations. First, if grid offers
solutions for the deployment of a persistent, standards-based service infrastructure that
supports the creation of, and heterogeneous resource sharing, within distributed communi-
tics, then it will provide solutious for distributed bioprofile analysis. Sccond, the design of a
bioprofile analysis over grid architecture can contribute to the categorisation, determination
and organisation of core bioprofile analysis over grid commponents. Third, if some existing
services and/or tools provide generic grid functionalities, then these services and/or tools
can be dircctly utilised or be organised to support distributed bioprofile analysis. Fourth, if
the success of a grid service is related to the delivery of usability, flexibility, extensibility and
reusability, then the issues of “application-driven development”, “separation of concerns”,
“layered services” and “generic” will be important in the successful design of a grid service.
Fifth, if it is impractical to use a single ontological description to describe an entire grid

environment, then a group of organised multiple (heterogeneous) descriptions can be doable.

1.2 Research Questions

This thesis is intended to address the following questions:

A. What are the main components of bioprofile analysis over grid and what should their

relationships be?

=~

RESEARCH QUESTIONS

This is a fundamental question in the building of an environment for bioprofile
analysis over grid. It should provide an understanding of the general concept of
bioprofile analysis over grid, classification and clarification of main components of
bioprofile analysis over grid, and a basis for the long term extensible and collaborative
development of a distributed environment for bioprofile analysis in support of

individualised healthcare. The investigation will focus on:

(a) Determination of bioprofile characteristics and bioprofile analysis requirements.

(b) Identification of what the basic elements of bioprofile analysis over grid should

be.
(¢) How to build grid environment for bioprofile analysis?

(d) Determination of what the architecture ol bioprofile analysis over grid should

be.

Detailed discussion can be found in Chapter 3.

. How to develop and manage services to support distributed bioprofile analysis

applications?

This is a further investigation based on the proposed architecture of bioprofile
analysis over grid. Service is a core grid component. Normally, it provides platform-
independent protocols and standards used for exchanging data between clients and
resources. A service is developed to provide functions (e.g. query into relational
databases) required by one or more applications. This investigation should provide
the knowledge in construction and organisation of services to support distributed

bioprofile analysis applications. The main issucs that needed to be addressed include:

1.2. RESEARCH QUESTIONS

(a) How to design services to meet the requirements of collaboration, extensibility
and reusability?

(b) What should be the service architecture for bioprofile analysis over grid?

(¢c) How to utilise existing services and how to develop new services to meet
requirements defined by bioprofile analysis applications?

Detailed discussion can be found in Chapter 4.
C. How to develop a grid-enabled bioprofile analysis environinent to demonstrate the

bioprofile analysis over grid concept?

This development should lead to three deliverables: 1) Grid test-beds, which will
provide distributed platforms for current and future research in bioprofiling over grid;
2) A guidance in the implementation and integration of new (grid) mechanisms with
existing bioprofile analysis and ICT related techniques together to enable bioprofile
analysis over grid; 3) A grid-enabled bioprofile analysis environment, which can
be used to support biomedical research activities, clinical investigation, etc. The

development will focus on the following:
(a) How to build grid test-bed(s) in order to provide distributed platform(s) for
bioprofiling over grid research?

(b) What mechanisms can be utilised and/or should be implemented in order to

deliver the required distributed bioprofile analysis functionalities

(c) How existing and implemented mechanisms can be organised to provide

collaborated functions to realise bioprofile analysis over grid?

(d) What can be achieved and what is limited in the implementation?

1.2. RESEARCH QUESTIONS
Detailed discussion can be found in Chapter 5.
D. How to deliver knowledge support to strengthen global coordination between compo-

nents of bioprofile analysis over grid?

This is important in knowledge-based global coordination between different compo-
nents of bioprofile analysis over grid (e.g. resources, applications, security, quality of
service and users). However, hitherto only limited work has been done in utilising
and organising various knowledge representation languages and schemas/ontologies
to provide collaborated knowledge representation of grids. Addressing this research
question should lead to a knowledge representation scheme, which can offer a flexible
and extensible way to organise multiple (heterogeneous) descriptions of individual
grid entities together for knowledge representation of grid environments. The scheme
should benefit not only bioprofile analysis over grid, but also other kinds of grid

environments. Main issues that need to be addressed include:
(a) What major entities need to be considered in representing the bioprofile analysis
over grid concept?

(b) What should the architecture be for knowledge representation of grid-enabled

bioprofile analysis based on existing knowledge representation techniques?

(¢) How to design and implement mechanisms to support such knowledge represen-

tation?

Detailed discussion can be found in Chapter 6.

10

1.3. RESEARCH AIM AND OBJECTIVES

1.3 Research Aim and Objectives

The aim of this project is to develop a framework for bioprofile analysis over grid to support
individualised healthcare. Bioprofile analysis is a critical part of bioprofiling. Analysis
makes it possible, for example, to extract markers from data for diagnosis and to assess
individual’s health status. The framework provides a basis for a “grid-based” solution to
the challenge of “distributed bioprofile analysis” in bioprofiling. Specific objectives of the

research are to:

A. Propose an architecture for bioprofile analysis over grid that determines main
system/environment components, component relationships and overall structure of

bioprofile analysis over grid;

B. Develop a service model for bioprofile analysis over grid. The service model should
address service design principles, deliver a distributed bioprofile analysis service
architecture and provide an example of the approach that theoretically demonstrates

the utilisation and development of services to enable bioprofile analysis over grid;

C. Develop a grid-enabled bioprofile analysis environinent. This involves the development
of grid test-bed(s) to support long-term research in bioprofiling over grid. This should
also contribute to knowledge in the implementation and integration of new (grid)
mechanisms with existing bioprofile analysis and ICT related techniques together for

enabling of bioprofile analysis over grid;

D. Develop a knowledge representation scheme to semantically strengthen the global
coordination between different components of bioprofile analysis over grid. The

scheme should target the knowledge representation of the entire grid environment,

11

1.4. CONTRIBUTIONS

and focus on the utilisation and organization of various knowledge representation
languages and schemas/ontologies. The scheme should be generic, so applicable to

other sorts of grid environments.

1.4 Contributions

The contributions of this project are based on existing grid middleware tools, ICT,

bioprofile analysis, knowledge representation, and other assaciated technologies. The main

contributions are:

A

An architecture for bioprofile analysis over grid. The design of a suitable architecture
is fundamental to the development of any ICT systems. The architecture creates a
means for categorisation, determination and organisation of core grid components to

support the development and use of grid for bioprofile analysis;

(The associated publications are [14) [15] [16], and the paper submitted for the

publication is [17])

. A service model for bioprofile analysis over grid. The service model proposes a

service design principle, a service architecture for bioprofile analysis over grid, and
a distributed EEG analysis service model. The service design principle addresses
the main service design considerations behind the service model, in the aspects of
usability, flexibility, extensibility, reusability, etc. The service architecture identifies

main categories of services and outlines an-approach in organising services to realise

12

1.4

CONTRIBUTIONS

certain functionalities required by distributed bioprofile analysis applications. The
EEG analysis service model demonstrates the utilisation and developinent of services

to enable bioprofile analysis over grid;

(The paper submitted for the publication is [17])

. Two grid test-beds and a practical implementation of EEG analysis over grid. The

two grid test-beds: the BIOPATTERN grid and PlymGRID are built based on
existing grid middleware tools as well as other ICT technologies. They provide
essential experimental platforms for research in bioprofiling over grid. The practical
implementation demonstrates how resources, grid middleware and services can be
utilised, organised and implemented to support distributed EEG analysis for early
detection of dementia. The developed distributed EEG analysis environment can be

used to support a variety of research activities in EEG analysis;

(The associated publications are {14] [15] [16), and the paper submitted for the

publication is {17])

A scheme for organising multiple (heterogeneous) descriptions of individual grid
entities for knowledge representation of grid. The scheme can solve the compatibility
and adaptability problems in managing heterogeneous descriptions (i.e. descriptions
using different languages and schemas/ontologics) for collaborated representation of
a grid environment in different scales. It underpins the concept of bioprofile analysis
over grid in the aspect of knowledge-based global coordination between components

of bioprofile analysis over grid.

(The associated publication are (18] [19])

13

1.4. CONTRIBUTIONS

Since this work is a part of the BIOPATTERN project, it is important to note that the
contribution C: “two grid test-beds and a practical implementation of EEG analysis over
grid” is a collaborative contribution. The author of this thesis: Pin Hu was responsible
for building and testing the Plymouth part of the BIOPATTERN grid test-bed, and the
backend part of PlymGRID. The author also developed the BIOPATTERMN grid portal and
most of the bioprofile analysis-related services. Other project members have contributed
to the building and testing of non-Plymouth grid nodes, the EEG data and software

implementations of EEG analysis algorithins, as cited in the acknowledgements of this thesis.

14

1.5. THESIS OUTLINE

1.5 Thesis Outline

The outline of the thesis is described as follows:

e Chapter 2 gives brief background information about the state-of-the-art development

in the fields of grid, healthgrid and knowledge representation;

e Chapter 3 presents the general concept of bioprofile and bioprofile analysis, overviews
the framework for bioprofile analysis over grid, and propuses an architecture for

bioprofile analysis over grid;

Chapter 4 proposes a service model for bioprofile analysis over grid. Within this

chapter, a service design principle is discussed. A service architecture for bioprofile

analysis over grid is proposed. An EEG analysis service model is illustrated;

e Chapter 5 presents the implementation of a grid environment in support to EEG
analysis. Within this Chapter, an EEG analysis scenario is introduced. Two grid
test-bed(s) are presented. Details of utilisation, implementation and organisation of
individual EEG analysis, grid and other [CT mechanisms to enable EEG analysis over

grid are given. The achievements and limitations of the implementation are discussed;

e Chapter 6 proposes a knowledge representation scheme which offers a way to organise
multiple (heterogeneous) descriptions of individual grid entities together for knowledge
representation of grid. Within this Chapter, an extended model for bioprofile analysis
over grid is presented. A schematic multiplex description architecture for organising
heterogeneous descriptions of knowledge representation of grid are proposed. The
design of a kernel ontolegy skeleton (as a part of the description architecture) is

discussed. Associated implementations are presented;

15

1.5. THESIS OUTLINE

o Chapter 7 concludes the thesis and includes discussions of the main contributions of

this work, and the limitations and possible future work.

16

Chapter 2

Background

17

2.1. INTRODUCTION

2.1 Introduction

This chapter aims to give a background and an overview of the main technologies involved
in this project. It is organised as follows. Section 2.2 reviews early approachs in the use of
middleware for the development of distributed biomedical systems. Section 2.3 reviews the
up-to-date development of grid technology, including the current de facto grid architecture,
infrastructure and middleware tools. Section 2.4 overviews the healthgrid concept. Section
2.5 introduces the knowledge representation techniques and the Semantic grid concept.

Section 2.6 discusses the related work. Section 2.7 concludes this chapter.

2.2 Middleware and Distributed Biomedical Sys-

tem

Middleware is a common IT term today, which could be described as any computer software
that allows other software to interact [20]. It is mostly designed to help manage the
complexity and heterogeneity inherent in distributed systems [21]. It can be divided
into different categories, including message oriented iniddleware, object middleware, RPC

middleware, database middleware, transaction middleware and portals [20].

Between 5 and 15 years ago, the most popular type of middleware used to develop distributed
biomedical systems was the object middleware, which provided the abstraction of an object
that is remote yet whose methods could be invoked just like those of an object in the same

address space as the callers {21]. The studies of such systems can be found in many research

18

23. GRID

documents, such as distributed processing of large biomedical 3D images [22], telemedicine
system for medical image analysis and modelling [23], and bioinformatics on java distributed

systemn [24].

Java Remote Method Invocation (Java RMI) [25] and Common Object Requesting Broker
Architecture (CORBA) [26] are two major standards of object middleware used in many
object middleware-based distributed biomedical systems. The former is a Java application
programming interface for performing the object equivalent of remote procedure calls. The
latter is a standard defined by the Object Management Group (OMG) [26] that cnables
software components written in multiple computer languages and run on multiple computers

to working together.

Both Java RMI and CORBA use optimised connection-oriented communications protocols
that are either language specific. or have detailed rules defining how data-structures
and interfaces should be realised. This implies that the communicating objects are
tightly coupled. The feature may deliver efficient communications, but has less flexibility,
scalability, replaceability and fault tolerance, as compared with the Service Oriented
Architecture (SOA) [27]. This use of object middleware is therefore not suitable for large

and complex distributed biomedical systems or environments.

2.3 Grid

The term “Grid” was coined in the mid 1990s to denote a proposed distributed computing

infrastructure for advanced science and engineering [28].. The common definition of grid can

19

2.3 GRID

be found in [29), as “sharing environments implemented via the deployment of a persistent,
standards-based service infrastructure that supports the creation of, and rescurce sharing
within, distributed communities®. The notion of resource sharing may include direct access
to shared local or global computers, software, data, and other resources (e.g. earthquake
shake tables and x-ray research facilities). The sharing is under high, but decentralised
control. Resources to be shared are heterogeneous in general, but inter-operated by

standard, open, general-purpose protocols and interfaces [13].

With grid, organisations can optimise computing, data and other resources, pool them for
large capacity workload, share them across networks, and enable collaboration. It provides
scamless and interactive resource sharing environments. It offers large and remote software
operations. It allows users to access distributed data in a convenient and cffective manner. It
also utilises idled and distributed computation resources to offsct the shortage of computing
power for large amounts of computation-intensive applications with a flexible and cfficient

form.

Grid can support applications in a nunber of scientific and business fields, such as
biomedicine, geography, astrography, finance and ecommerce. In scientific area, grid-based
applications may include distributed computing (e.g. scientific simulation), high-throughput
applications (e.g. RSA keycracking), and data-intensive applications (e.g. digital library).

In business area, grid-enabled applications may include information sharing and trading.

Grid research has been widely spread all over the world. EGEE [30], CoreGRID [31],
and NextGRID [32] are just few examples of grid projects. In grid projects, certain key
problems of grids have been studied, which are grid flexibility, security. efficiency, resource

collaborativity and -connectivity, resource and service transparency, service availability, etc.

20

2.3. GRID

2.3.1 Open Grid Services Architecture

Open Grid Services Architecture (OGSA) [1] is a well-known service-oriented architecture,
which defines a set of core capabilitics and behaviours that address key concerns in grids
(e.g. security, resource/service discovery and management of virtual organisations). It aims
to facilitate the seamless use and management of distributed, heterogeneous resources by a

set of capabilities.

Figure 2.1 presents some of the capabilities concerned by OGSA. As can be seen, OGSA
classifies these capabilities into three major logical and abstract tiers, as base resources,
(higher level) virtualisation/abstraction and applications. It realises the logical middle layer
in terms of services, the interfaces these services expose, the individual and collective state
of resources belonging to these services, and the interaction between these services within a

service-oriented architecture. In OGSA, services are divided into 7 major categorises, as:

¢ Infrastructure services, which provide common components (e.g. naming, representing

state and notification) for service build-up;

¢ Execution management services for instantiating and managing, to completion, units
of work (i.e. Finding execution candidate locations; Selecting execution location;

Preparing for execution; Initiating the execution; Managing the execution);

e Data services for movement, access and update of data resources. They may also
provide the capabilities necessary to manage the metadata that describes OGSA data

services or other data, in particular the provenance of the data itself;

21

2.3. GRID

¢ Resource management services, which perform several forms of management on
resources in a grid, including management of the resources themselves, management

of the resources on grid, and management of the OGSA infrastructure;

o Security services to facilitate the enforcement of the security-related policy within a

virtual organisation;

¢ Self-management services, which provide several forms of self-management mecha-
nisms (e.g. self-configuring, self-healing and self-optimising) in helping reduce the

cost and complexity of owning and operating an IT infrastructure;

o Information services, which offer the ability to efficiently access and manipulate

information about applications, resources and services in grids.

OGSA does not address issues of programming models, programming languages, implemen-
tation tools, or execution environments. All these tasks are given to hosting environments
to deal with. In concept hosting environments provide either low levels of functionality
(e.g. native operating system processes), or superior functionalities (e.g. programmability,
manageability, Hexibility and safety). Host environments with superior functionalities are
normal container or component based. Examples of container/component-based hosting

environments are J2EE [33], WebSphere {34], and .NET [35].

2.3.2 Web Service Resource Framework

Web Service Resource Framework {(WSRF) [36] is a generic framework for modelling and

accessing persistent resources use Web services-to ease service definition, ‘implementation,

23

23. GRID

integration and management. It provides a solid infrastructure, which supports the
compostion of OGSA. WSRF is the replacement of Open Grid Services Infrastructure
(OGSI) [37} due to some criticisms on OGSI addressed by the Web service community
(e.g. too much in one specification; too object oriented; and incomnpatible with Web Service

Definition Language (WSDL) 1.1).

WSRF is concerned primarily with the creation, addressing, inspection, and lifetime
management of stateful resources. WSRF provides the means to express state as stateful
resources and codifies the relationship between Web services and stateful resources in
terms of the implied resource pattern, which is a set of conventions on Web services
technologics, particularly XML, WSDL, and WS-Addressing. WSRF is defined by five

normative specifications, as

¢ WGS-ResourceLifetime, which is a set of mechanisms for WS-Resource destruction,
including both time based (i.e. scheduled destruction) and message exchange based

destroying or termination of resources;

¢ WS-ResourceProperties, which defines type and value of WS-Resource state, and

includes mechanisms for retrieving, changing, and deleting WS-Resource properties;

e WG-RenewableReferences, which consists of mechanisms for retrieving and updating

an endpoint when it becoines invalid;

* WS-ServiceGroup, which is an interface for representing and managing heterogeneous

by-reference collections of Web services;

o WS-BaseFaults, which is a base fault XML type for use when returning faults in a

Web services message exchange;

24

2.3. GRID

e WS-Notification, in addition to WSRF, defines a general, topic based Web service

system for publish and subscribe interactions that build on WSRF.

2.3.3 Grid Middleware Tools

A. Globus Toolkit 4

Globus Toolkit (GT) is a software package, which contains a set of middleware
components to support the development of service-oriented distributed computing
applications and infrastructures [38]. It has been developed since the late 1990s and
has been delivered in three major versions, as pre-Web services based GT2, OGSI-

enabled GT3 and WSRF-enabled GT4.

GT4, as the latest version of Globus Toolkit to date. makes extensive use of Web
services mechanisms to define its interface and to structure its components. It
is a realisation of the OGSA requirements and a sort of de facto standard for
the Grid community. GT4 implements a set of (infrastructure) services on top of
WSRF [39]. These services address most concerns identified in OGSA, including
execution management, data access and movement, replica management, monitoring
and discovery, credential nanagement, and instrument management [38]. Figure 2.2

presents the relationship between Web services, OGSA, WSRF and GT4.

GT4 also contains three major containers for hosting user-developed services written
in Java, Python and C, respectively. These containers provide implementation of

security management, discovery, state management, and other mechanisms frequently

25

2.3. GRID

required when building services. GT4 client libraries are provided to allow client

programs to invoke operations on both GT4 and user-developed services [38].

B. OGSADAI

The Open Grid Services Architecture - Data Access and Integration (OGSADALI)
is a middleware product which allows data resources (e.g. relational and XML
databases) to be exposed on to grids. It offers various interfaces to support many
popular database management systems (e.g. MySQL [10], PostgreSQL [11] and Oracle
(40]). Additional functions OGSADAI can provide include querying, transforming and

delivering data over distributed data environments [41].

OGSADAI has three major products, as OGSADAI-WSRF, which is compatible
with the GT implementation of WSRF; OGSADAI-WSI, which is compatible with
the UK OMII’s implementation of Web Services Inter-operability (WS-1) [42]; and

OGSADQP, which supports distributed queries over OGSADAI data services.

C. Other Tools

Besides GT4 and OGSADALI, today, there are many other grid middleware tools. For
instance, Storage Resource Broker (SRB) [43] for support of sharing of distributed and
heterogeneous storage systems; UNICORE [44], which contains both client and server
software to make workflow-based access of distributed data and computing resources;
gLite [45], which integrates a set of grid middleware tools (including GT series) to

make easy building of grid applications.

24. HEALTHGRID

2.4 Healthgrid

2.4.1 overview

Healthgrid is the application of grid to healthcare. Today, a common definition of healthgrid
is stated as, A healthgrid is an environment in which data of medical interest can be stored
and made easily available to different actors in healthcare systems. such as physicians,
healthcare centres, patients and citizens in general” [46] [47]. In the definition, the notion of
data of medical interest may include five levels of biomedical information, as public health,
patient, tissue and organ, cell, and molecule. The sharing of such data must be guaranteed

in three aspects, as security, respect for ethics, observance of regulations [46].

The definition has covered most, but not all areas of healthgrid. There are many new
concepts of healthcare (e.g. bioprofile) coming out. Those new concepts are leading to the
healthgrid focusing not just on data sharing, but also distributed health data analysis and
other means of biomedical investigation, which are inseparable to the sharing of distributed
resources. One example of distributed health data analysis is the one we will discuss in this

thesis, as bioprofile analysis.

Healthgrid has many applications in biomedicine, bioinformatics, medical informatics,
primary/acute healthcare and social services. It can be applied to improve individualised
healthcare and to support studies, such as dementia, cancer and epidemiology. For
individualised healthcare, healthgrid can facilitate the access of relevant health information
of a patient regardless of where he/she has been to or where he/she is now; the use of the

-computer-aided tools for the specific data of the patient for theé détection and diagnosis of

28

24. HEALTHGRID

a disease to support physician’s decision-making; and the definition of the most suitable

therapy and treatment from the diagnosis.

The development of healthgrid is still in a very early stage [47] [48]. Mark, et al in
“SHARE Roadmap 17 [47] suggested two steps of technical road map in the aspects of
the development of computing, data and knowledge grid nodes in medical research centres,
and the production of a standard for the exchange of medical images as well as EHR
on grids. Other healthgrid research activities carried out by other projects include, for
example, integration of distributed biomedical information for Paediatrics (e.g. the EU’s
Health-e-Child [4], distributed mammography data retrieval and processing (e.g. the EU’s
MammoGrid [5] and the UK’s eDiaMoND [6] projects), and multicentre neuro-imaging (e.g.
the USA’s BIRN [7] and Japan's BioGrid [8]).The obtained outcomes of these researches, to
date, arc mainly healthgrid prototypes and tools for specific healthcare applications acquired

knowledge and experience in the delivery of healthgrids.

2.4.2 Healthgrid Requirements

Healthgrid is grid. It has many general requirements, as a normal grid does.

A. Data, computation and knowledge related.

Healthgrid needs to provide access to distributed biomedical data, computational
resources and knowledge bases. The provisioning should be transparent to users so

that users do not need to have knowledge about aspects, such as resource locations

29

2.4. HEALTHGRID

and how to use and integrate thein.

B. Networking.

Healthgrid requires reliable and efficient data transmission between distributed
resources. This is essential to, for example, access integrated and distributed analysis
of biomedical data. The requirements of transferring a set of data (e.g. bandwidth
and latency) and actual size of data are varied with different applications (e.g. MRI

analysis and access of personal information).

Grid is not healthgrid, as healthgrid has specific requirements compared with a normal grid.

C. Security

Healthgrid has more rigorous security requirements compare to other types of grid
(e.g- grid for high energy physics and geography). In general, healthgrid needs three
essential types of security enforcements, as authentication, authorization and auditing.
The nature of high sensitivity of biomedical information and personal data leads to
niore stringent secure mechanisms to be enforced in data access, transmission, storage

and processing.

D. Privacy and confidentiality

Personal biomedical data is confidential. In order to keep the privacy and protect
confidentiality of patients, biomedical data need to be anonymised (remove sensitive

patient data from file header), deidentified (e.g. face de-identification for a structural

30

HEALTHGRID

MRI scan of a head), or encrypted to guarantee its confidentiality and integrity.

. Legal and ethical issues

Fhe use of anonymised information needs to satisfy the requirements under the Data
Protection Act as well as gaining clearance from local ethics committee for research
involving just a local site, or to a multi-site ethics committee for clearance to use data

across many sites. The use of data normally needs explicit consent from the patients.

. Quality of Service

Quality of Service (QoS) requirements {e.g. required response time, required
audio/video/iinage quality) differ with biomedical applications. For example, remote
surgery requires real-time high quality audio/video quality transmission. Obstetrics
baby monitoring during labour also requires near-real-time response time if grid is

involved in case-based decision support.

2.4.3 Electronic Health Record and Healthgrid

Electronic Health Record (EHR) is a term referring to an individual’s medical record

information in digital format [49] [50]. The notion of information includes patient medical

record (as can be found in today’s EHR systems), multimodal data (e.g. electrophysiology

data and medical images), and biomarkers. It can aid clinicians’ decision-making by

providing access to patient health record information where and when they need it and by

incorporating evidence-based decision support. It plays many important roles in healthcare,

such as representation of a provider-based view of that patient’s health history; a method

31

24. HEALTHGRID

for clinical communication and care planning among the individual healthcare practitioners
serving the patient; a source of data for clinical, health services, outcomes research, and

public health; and a major resource for healthcare practitioner education [49].

EHR systems and associated standards and tools are being developed worldwide. In the UK,
the National Health Service (NHS) [51] has been planning since 1998 to develop a nationwide
Integrated Care Record Service (ICRS) providing health care providers and patients with
24 hour on-line access to EHRs on a central data-spine (52] [53]. EHR related projects, such
as HL7 [54] and OpenEHR [55], have also been contributing to EHR standards, open source

software and tools in the technical space for EHR systems.

With the development of the EHR technology, the interoperability between distributed
EHR systems has already been focused on by some healthgrid projects, such as the afore-
mentioned SHARE project [47] and the DELOS project [56]. The notion of interoperability
may include access to distributed EHR systems, and the transformation as well as the
integration of EHRs. The requirements of healthgrid applying to EHR are, in general,
similar to those requirements introduced above, but are even more stringent in the aspects
of security, privacy and confidentiality since most EHRs involve large amounts of personal

information.

2.5. KNOWLEDGE REPRESENTATION

2.5 Knowledge Representation

2.5.1 Overview

Knowledge representation is a term used in both cognitive science and artificial intelligence.
Its notion can be understood in terms of five distinct roles it plays, as a surrogate; a set
of ontological commitments; a fragmentary theory of intelligent reasoning; a medium for

pragmatically efficient computation; and a medium of human expression [57].

There are many techniques, which can be used to represent knowledge with specific interests.

Examples are [57](58][59]:

e Controlled vocabulary, which is a carefully selected list of terins for the tag of units

of information so that each term describes only one concept and vice versa;

¢ Taxonomy, which is a collection of controlled vocabulary terms, typically related by

parent-child relationships and so organised into a hierarchical structure;

e Thesaurus, which uses associative relationships in addition to parent-child relation-

ships for networking controlled vocabulary terms in a given domain of knowledge;

e Faceted classification, which allows the assignment of multiple classifications to an

object, enabling the classifications to be ordered in multiple ways;

¢ Ontology, which is a terin being used in many different ways, such as a glossary, data

dictionary, thesaurus, taxonomy, schema, and a data model. In computer science,

33

2.5. KNOWLEDGE REPRESENTATION

an ontology may be described as a model that represents a set of concepts within a

domain and the relationships between those concepts.

Knowledge can be presented in various ways, expressed using various languages, and stored

in various mediums. Main knowledge representation formalisms include [60](61]:

e Semantic networks, which are graphs where each graph contains nodes to represent

concepts and arcs/slots to represent relations between these concepts;

e Frames and scripts, which have similar structures for representing stereotypic
knowledge and expectations which would allow a system to impose coherence on

incoming information;

e Production (rule) systems, which allow for the simple and natural expression of “if-

then” rules;

e Logic, which employs the notions of constants, variables, functions, predicates, logical
connectives and quantifiers in order to represent known facts and deduce new facts in

logical formulas; etc.

There are many languages, which can be used for knowledge representation. For example, in
simple cases, knowledge may be represented as a set of related tables and stored in relational
databases; or described and held in plain XMLs [62]. In the Semantic Web society, several
languages for knowledge representation have been developed based on HTML (e.g. SHOE
(63]) and XML (e.g. RDF [64] and OWL [63]).

34

2.5. KNOWLEDGE REPRESENTATION

The Resource Description Framework (RDF) is a language recommended by the W3C [66]
standardisation body for representing information in the Web. It was originally designed as
a metadata model but it has come to be used as a general method of modelling information.
RDF can be used to represent information about just anything. It provides a general,
flexible method to decompose knowledge into small pieces, called triples (i.e. subject-
predicate-object), with some rules about the semantics of those pieces. RDF’s simple
data model and ability to model disparate, abstract concepts has also led to its increasing
use in knowledge management applications unrelated to Semantic Web activity. RDF
Schema (RDFS) in addition to RDF further facilitates the specification of application-
specific ontological vocabularies in the form of class and property hierarchies on top of RDF

resources.

The Web Ontology Language (OWL) is another W3C recommended language for knowledge
representation. It is designed for use by applications that need to process the information
content instead of just presenting information to humans. OWL provides additional
vocabulary along with a formal semantics to facilitate most advanced machine inter-
pretability of Web content than that supported by XML and RDF(S). It comes with three
different flavours, namely OWL-Lite, OWL-DI and OWL-Full, reflecting different degrees of
expressiveness. OWL-Lite and OWL-DL are Description Logic (67| like products to support
users who primarily need a classification hierarchy and simple constraints and who want the
maximum expressiveness while retaining computational completeness, respectively. OWL-

Full is designed to provide compatibility with RDF(S), in order words, for users who want

maximum expressiveness and syntactic freedom of RDF with no computational guarantees.

25. KNOWLEDGE REPRESENTATION

2.5.2 Semantic Web/Grid

The Semantic Web is an evolving extension of the current‘ Web in which Web content can
be expressed not only in natural language, but also in a format that can be read and used
by machines [68]. It makes the automation of finding, sharing and integrating information
simpler. Its development has alrcady had great contributions to both Web and artificial
intelligence communities, such as techniques for the merging of knowledge from different

sources, and advanced languages (e.g. RDF and OWL) for knowledge representation.

The Semantic Grid is known as an important part of grid technology, which deals with an
extension of the current grid where information and services are given well-defined meaning
through the use of machine-processable descriptions to maximize the potential for sharing
and reuse [69]. It utilises existing knowledge representation techniques (i.e. language, and
tools for query and reasoning). The current vision of the semantic grid can be considered as
the application of Semantic Web technologies both on and in grid due to the trend in using

the service-oriented architecture [70].

In current thinking [69], a semantic grid normally concerns issues in 12 aspects, including:

e Resource description, discovery and use;

Process description and enactment;

¢ Autonomic behaviour;

e Security and trust;

Annotation;

36

2.6. RELATED WORK

Information integration;

Synchronous information streams and fusion;

Context-aware decision support;

Communities;

Smart environments;

Integration with legacy IT systems.

2.6 Related Work

2.6.1 HealthGrid projects

A. MammoGrid

MammoGrid [5] is a project that aims to deliver a set of evolutionary prototypes
to demonstrate that “mammogram analysts™ (i.e. specialist radiologist working in
breast cancer screening) can use a grid information infrastructure to resolve common

image analysis problems.

The project concentrated on the delivery of a set of services that addresses user
requirements for distributed and collaborative mammogram analysis. The prototype
Pl of the project enables the simple query and retrieval of mammograms from
files distributed across different databases via “Grid-boxes” {i.e. grid nodes). The

prototype P2 offers furthet services to enable the information exchange between the

37

2.6. RELATED WORK

MammoGrid Services

83 G
@

-m:mm-
£ —
ey
| @™
%é @ C GRIDretalod calty

Figure 2.3: The MammoGrid Prototype 2 (P2) architecture (2]

clinician’s workstation and the Grid-boxes, and a more loose coupling between services

as compared with the prototype P1 (2].

The MammoGrid prototype P2 was built based on a Service-Oriented Architecture
with portals/gateway/interfaces both to external systems (e.g. the MammoGrid
image acquisition hardware) and to grid. Figure 2.3 shows the architecture of the
prototype P2. The architecture comprises a set of MammoGrid services, where
the DICOM Portal facilitates information exchange, application-level translation and
validation; the Data Manager Toolkit enables queries to data stores; and the OGSA

Gateway delivers security, look-up and file-catalogue services to grid networks.

38

RELATED WORK

The MammoGrid project provides a very good foundation to the development of
healthgrid. It addresses certain healthgrid requirements (i.e. data, networking
and security) and possible solutions to those requirements. The scope of the
project is limited to the store, query and retrieval of images. The architecture and
implementation of MaminoGrid is therefore specific to imaging applications, and may

not be applied to other healthcare applications.

. BIRN

Biomedical Informatics Research Network (BIRN) (7] is a project fostering distributed
collaborations in biomedical science by utilising information technology innovations.
It aims to address the needs of biomedical researchers to access, exchange and analyse

a variety of data from different research groups [3].

The project mainly focuses on brain research involving neuro-imaging to take
advantage of the highly advanced level of sophistication of this community. There

are three main components that deal with image and volume data in BIRN [3]:
o “Raw” volume and surface data (e.g. data that come out of the MRI scanner)
which are made available to all participating researchers;
e Analysis programs which are made available to all participating institutions;

e Raw data and the results of analysis which are stored in distributed databases

that can be queried by all researchers.

The BIRN project proposed a system, as presented in Figure 2.4, to facilitate

functionalitics which fulfil those needs in dealing with image and volume data {3).

39

26. RELATED WORK

SRB

BIRN BIRN BIRN-enabled semaatic BIRN
client clieat application mediator server
L AN

wrapper wrapper

database file system database file system

BIRXN site BIRN site

Figure 2.4: Structural diagram of the BIRN system [3]

The systemn consists of three main access pathways: the first gives fast access to the
data of all the participating groups; the second allows the use of remote applications
to process data; and the third allows searches of the datahases across different groups.
The system uses Storage Resource Broker (SRB) [43] to manage all remote data, a
workflow engine to deliver data to be processed to applications and to return results
of processing, and a mediator to collect data schema information from the various

databases and integrate them into single unified view.

The BIRN project initiates the development of a distributed system to universally
support biomedical research (i.e. management, upload, organisation, discovery,
access, analysis and publication of biomedical and research data). The system is
however “tightly coupled”, when the scale of the system grows, it will be difficult to

manage and coordinate distributed resources. It is thus necessary to introduce the

40

2.6. RELATED WORK

latest grid concept in order to improve the system.

2.6.2 Knowledge Representation of Grid

Knowledge representation of grid is important in delivering semantics to grid mechanisms
for automating information exchange, sharing and integration between grid entities. It is
not an easy task since the concept of grid covers many computing and communication areas,
such as virtualisation, data storage and management, distributed computation, networking

and security.

A number of studies related to knowledge representation of grid have been carried out
over the past five years. Most of the studies have focused on knowledge representation in
some specific sub-domains of grid, such as grid resources and services. However, there
is less research with regard to the description of multiple parts of, or even an entire,
grid environment that we believe is significant in knowledge-based global coordination
between different grid-related components, such as resources, applications, security, quality

of services and users.

Semantic matching for grid resources [71]), OntoGrid [72], Earth System Grid Semantics
[73), Semantic Grid Service Discovery [74], Semantic Grid Services [75] and ontologies
for Grid Service Discovery [76) arc examples of the efforts which have been made on the
knowledge representations of grid sub-domains to support different grid-related purposes,

such as the discovery and matching of grid services and resources. Most of the outputs of

41

2.7. SUMMARY

those researches are ontologies and/or schemas. They can potentially be utilised to support

large scale knowledge representation of grid.

Xing et al [77] proposed a method to describe grid environment as a whole in 2006. The
key idea of the method is to design a core grid ontology and then extend it by adding
additional classes, properties and constraints in order to cover comprehensive descriptions
of all required grid cutities. However, this mecthod is impractical since it makes it difficult
for developers to use description languages different to those used by the core ontology, to
collaboratively represent individual grid entities and their relationships. There are already
many scheinas and ontologies developed which can be used to represent certain scopes of a
grid environment. These representations are based on different description languages (e.g.
Dublin Core in plain XML and RDF (78], HL7 in plain XML [54] and OpenEHR ADL {33]).
If there is only one language used for representing a grid environment, this requires lots of
redesign and transformation work in order to achieve the representation. If these legacies
are used, in most cases it will result in massive work on developing mapping mechanisms in
order to deliver the interoperability between the core ontology and descriptions of individual
grid entities. It could be even worse since the changing nature of grid and knowledge
representation technologies may lead to frequent and excessive changes in “this solution

based” knowledge representation of a grid environment.

2.7 Summary

This chapter reviewed the traditional distributed biomedical systems, grid. healthgrid and

knowledge representation technologies, which provide. rational .and technical foundations

42

2.7. SUMMARY

for this project. For grid, an overview, a grid architecture: OGSA, a grid infrastructure:
WSRF, and two well-known grid middleware tools, Globus Toolkit and OGSADAI have
been introduced. For healthgrid, an overview and requirements and its relationship with
EHR have been presented and discussed. For knowledge representation, an overview and the

Semantic grid concept have been presented. Some important work related to this project

has also been discussed.

43

Chapter 3

Bioprofile Analysis over Grid

3.1. INTRODUCTION

3.1 Introduction

This chapter aims to discuss major issues involved in delivering a grid environment for
bioprofile analysis. It is organised as follows. Section 3.2 presents the concept of bioprofile,
clarifies the general characteristics that a bioprofile has and discusses the requirements of
bioprofile analysis. Section 3.3 overviews the framework for bioprofile analysis over grid.
Section 3.4 proposes an architecture for bioprofile analysis over grid. Section 3.5 summaries

this chapter.

3.2 Bioprofile and Bioprofile Analysis

3.2.1 Overview of Bioprofile

The concept of bioprofile is based on the idea of a lifelong sequence of information
concerning factual events and reports relevant to a citizen’s health. A bioprofile is a personal
‘fingerprint’ that fuses together a person’s current and past medical history, biopatterns and

prognosis. It combines data, analysis, and predictions of possible susceptibility to diseases.

Bioprofile is beyond the concept of today’s Electronic Health Record (EHR). Figure 3.1
presents the overview of bioprofile. As can be seen, bioprofile concerns certain data
categories. In general, a bioprofile may include today’s EHR, multimodal data, biomarkers
and other valuable information (e.g. travelling, habits and sports), where today’s EHR are

mainly replacements of those paper records of-individual patients’ medical information,-such

45

3.2. BIOPROFILE AND BIOPROFILE ANALYSIS

as, medical history, examination and progress reports of health and illnesses; multimodal
data mainly include radiology images (e.g. Computed Tomography (CT)), electrophysiology
(e.g. electroencephalography (EEG) and genomic data; and a biomarker can be considered
as a substance used as an indicator of biomedical state. [t is specific to a biomedical

measurement type or a kind of analysis based on specific analysis algorithins/methods.

Bioprofile requires data models to structure. organise and, in some cases, to add setnantics
to EHR, multimodal data and biomarkers so that such data can be stored, retrieved, used
and integrated in a standardised and manageable way. Besides these functionalities, some
data models may also be developed to clarify application requirements in the aspects of

clinical needs, security, ethics, quality of service, etc.

Bioprofile needs the support from ICT technologies. It requires storage facilities {(e.g. file
systems and relational databases) to hold EHR, multimodal data and biomarkers. It requires
computation facilities (e.g. high performance cluster or just standalone PCs) to provide
computation power for the analysis and the manipulation of bioprofile data. It may require
knowledge bases for storing and retrieving bioprofile-related knowledge (e.g. bioprofile
terminology and thesauri). It requires communication networks to provide data transmission
facilities between individual IT facilities. It also requires remote resource sharing technology,
such as grid, to fulfil its needs in the aspects of discovery, access, monitoring and allocation

of distributed and heterogeneous IT facilities.

3.2.2 Characteristics of Bioprofile

The concept of bioprofile has many characteristics, in particular:

47

BIOPROFILE AND BIOPROFILE ANALYSIS

A person’'s bioprofile may be distributed in different bioprofile centres (i.e. hospitals,
surgeries and other healthcare organisations). This might be because of the mobility of
a person, as the person may have lived in different regions and had health investigation

in different bioprofile centres;

Some contents of a person’s bioprofile may be duplicated over two or more bioprofile
centres. This can be a result of information exchange between different bioprofile
centres. For example, the exchange of patient records in order to provide coherent

investigation on a patient when inter-hospital transfer has to be taken place;

A person’s bioprofile contains different forms of contents. Conceptually, a bioprofile
includes a person’s current and past bio-history, biopatterns, diagnosis and prognosis.
A biopattern further categories bioprofile contents into different types of biomedical
data (e.g. genomic data, electrophysiological data and radiology images) and related

biomarkers;

Bioprofiles can be huge. A bioprofile covers all valuable data obtained fromn the whole
life of a person. It may contain volumes of large size biomedical data (e.g. medical
images). The storing of a group of bioprofiles normally requires enormous storage

space;

The same bioprofile content may be stored using diflerent data types and formats
over different. bioprofile centres. For example, clinical information can be stored in
either relational databases, or XML databases or text files; and Electroeucephalograph

(EEG) can be stored as binaries in either EDF or EEE format;

The access to bioprofiles is restricted. This concerns issues, such as privacy,
confidentiality and ethics. The restriction can have different requirements in different

countries/regions.

48

3.2. BIOPROFILE AND BIOPROFILE ANALYSIS

3.2.3 Bioprofile Analysis and Its Requirements

Bioprofile analysis is a critical part of bioprofiling. 1t is a process that observes changes
in biomarkers derived from raw health data (e.g. EEG, CT and MRI) based on analysis
algorithms/methods (e.g. Fractal Dimension [79] and Tsallis Entropy [80]). It supports
both long term health assessments (e.g. for early detection of the onset of diseases) and
short term health assessments (e.g. early detection of onset of events, such as epileptic

seizure and key changes in the depth of anaesthesia during surgery).

To carry out bioprofile analysis, there are several general requirements when considering the
characteristics of bioprofile as aforementioned. First, we need access to distributed resources.
The types of resources include bioprofiles, metadata for bioprofiling (i.e. the creation,
use and update of bioprofiles), software implementations of analysis algorithms/methods
and compute elements. In practice, metadata for bioprofiling can be further categorised
into (human) subject description, biopattern metadata (e.g. description of health data
and biomarkers), and metadata for analysis algorithms/methods and related software
implementations. All data, knowledge and analysis components can be stored in relational

databases, XML databases, binaries, text files, ontologies, etc.

There is also a requirement for federated search and integration of bioprofiling metadata. As
described before, the same bioprofile content may be stored using different data types and
formats. It is essential to use metadata to describe biaoprofile contents. However, existing
metadata used for bioprofile descriptions in different bioprofile centres are very likely to
be different to each other. The difference may be the result of the use of different storage
systems (e.g. XML and relational databases). It may also be due to the use of different

description schemes. For example, “date” may be described in either day-month-year or

49

3.2. BIOPROFILE AND BIOPROFILE ANALYSIS

year-mouth-day format; the definition of excessive blood pressure uses different terms, such
as high blood pressure or hypertension. If a user needs to access required health data from
different bioprofile centres, the metadata used in those centres must be integrated in order to
display information with uniformed format to the user and/or for other systems/mechanisms

for further process.

Users require different. interfaces in bioprofile analysis. There are two user groups who are
keen to use bioprofile analysis facilities: as clinical users and healtheare researchers. They
however have different interests in healthcare. The comparison between the two groups
in this aspect shows that clinical users (e.g. medical doctors) normally take more focus
on the health state of a subject, but healthcare researchers are concerned more about the
relationships between inputs, analysis algorithms/methods and outputs. That is to say, in
most cases, clinical users prefer to carry out bioprofile analysis only based on the information
of specified subject(s) (e.g. the ID of a patient). Healthcare researchers may like to give
information about specified health data and/or algorithims/methods and to see what results

they can get.

Security is always the most, important aspect in healthcare applications. Bioprofile analysis
requires access to and the processing of personal health data, which are sensitive to human
health, rights and freedoms. To analyze any bioprofiles, all required security functionalities
must be taken account of during the collection, the processing and the storage of any health

and related data to comply with current rules and legislation.

Quality of Service (QoS) is also essential to most bioprofile analysis applications. For
example, for long term bioprofile assessment, clinicians may require to carry out analysis

on tnonths or years of-patient bioprofiles in near-real-time in order-to get the-view-on the

50

3.3. FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

health state of a patient quickly; for short term bioprofile assessment, real-time nonlinear
processing of hours or days of patient health data may be necessary to derive the biomarkers

so that timely action can be taken.

3.3 Framework for Bioprofile Analysis over Grid

The framework is designed based on the consideration of the following basic bioprofile

analysis over grid elements and their characteristics.

3.3.1 Basic Elements of Bioprofile Analysis over Grid

A. Bioprofiling Applications and Requirements

Bioprofile analysis requires a number of bioprofiling functionalities, such as bioprofile
discovery, retrieval, integration, manipulation and analysis. The scale of a bioprofile
analysis application can be either large or small. There could be different levels
of bioprofile analysis applications. For example, if considering bioprofile analysis is
a meta-level bioprofiling application, underneath, we may have biosignals analysis,
medical image analysis, genomic data analysis, etc. Further down, we can have EEG

analysis, ECG analysis, MRI analysis, CT analysis, DNA sequence analysis, etc.

A bioprofile analysis application is the reflection of a single or a group of specific
needs determined by users. Such needs normally include issues in the aspects of user-

defined bioprofile analysis functionality, security, Quality of Service (QoS), ethics,

o1

3.3. FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

user interface, etc. To realise a bioprofile analysis application, specific needs will be
transforined into a number of application requirements, and finally be accomplished
by using appropriate mechanisms, which individually or collaboratively meet those
application requirements. The form of the transformation from the user-specific needs
to the requirements of a bioprofile analysis application mainly depends on application
characteristics and environments (e.g. local or remote, underlying bioprofiling and
ICT facilities). The requirements of a bioprofile analysis application will change when

there are any changes of user needs, bioprofiling, and ICT technologies and techniques.

B. Bioprofile analysis related Resources

Bioprofile analysis related resources are those to be used for bioprofile analysis.
They can be divided into two categories. One is bioprofile data. The other is
bioprofiling facilities, including analysis software/tools, bioprofile data management
software/tools, mechanisms of general ICT technologies (e.g. database management
system, high performance cluster, security enforcements), etc. Bioprofile data are
information, which can be used for analysis and integration, in order to provide
evidences for e.g. clinical investigation and biomedical research. They are cither
inputs or outputs of bioprofile analysis. Bioprofiling facilities provide various
functionalities, but are mainly used to generate, refine, retrieve, transfer and integrate

bioprofile data. Bioprofiling facilities are tools for bioprofile analysis.

Most bioprofile analysis related resources are existing, but heterogeneous across
different bioprofile centres. The rebuilding and/or the reorganisation of such resources
into homogeneous ones in order to realise the concept of sharing is possible (e.g.

build of new distributed databases with uniformed data schema to replace those

w
N

3.3.

FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

old ones with different data schemas in order to share distributed data). However,
in most cases, it is impractical since the rebuild and reorganisation will lead to a
series of changes in bioprofiling facilities, staff retraining and disruption of healthcare
services, which are time-consuming and also resource-wasting. To reach the resource
sharing concept for bioprofile analysis, it is recoimnmended to use add-on mechanisms
rather than the rebuilding and/or the reorganisation of any bioprofile analysis related

resources.

. Grid

Grid is a distributed resource sharing concept, which can address those bioprofile
analysis requirements resulting from distributed bioprofiles, lack of computation
resources, etc. At present, the concept of grid concerns many resource sharing aspects,
such as virtualisation of heterogeneous resources for sharing, resource discovery and
management, data movement and related management across distributed sites, service

composition and workflow management.

Many grid architectures, infrastructures and middleware tools have been proposed in
the last decade, such as the grid architecture: OGSA [1], the grid infrastructures:
OGSI [37] and its replacement WSRF {36], grid middleware tools: Globus Toolkit
series [81], OGSADAI [41], UNICORE [44], etc. However, today’s grid technology
is still far from the completeness. A number of major grid issues are still under
investigation, such as distributed data query, security and QoS provisioning over
distributed environments, resource broker, workflow, ete. More contributions are

required to realise the technology of grid.

3.3. FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

1) an architecture for bioprofile analysis over grid, which standardises the categorisation,
determination and organisation of the main components of bioprofile analysis over grid;
2} a service model for bioprofile analysis over grid , which classifies and clarifies the
main categories of services in bioprofile analysis over grid ; 3} implementation of a grid
environment for EEG analysis, which demonstrates how resources, grid middleware and
services can be utilised, organised and implemented to support bioprofile analysis over
grid; 4) a knowledge representation scheme, which semantically strengthens the global
coordination between components of bioprofile analysis over grid. The four areas of work

will be discussed in the remainder of this thesis.

The framework follows a general approach of building grid environment for bioprofile
analysis. The approach is expected to save development tiine, reduce development workload
and eliminate the disruption of daily healthcare services. [t considers three development

issucs applying to those basic elements of bioprofile analysis over grid.

A. Bioprofile analysis related resources oriented

As discussed in the previous section, the rebuilding and/or the reorganisation of
bioprofile analysis related resources for the realisation of the concept of sharing is
impractical since it is normally time-consuming and resource-wastful. It is thus
necessary to investigate each sharing-required bioprofile analysis related resource, and
to develop additional mechanism(s) (e.g. wrappers for data schema transformation)
on top of it in order to virtualise and/or transform it into a (set of) “standardised”
{i.e. a certain level of uniformisation} resource(s) for sharing. The virtualisation and

transformation of a bioprofile analysis related resource may have different approaches,

3.3. FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID
but should always be based on the characteristics of the resource.
B. Utilisation of developed grid middleware, service and any other appropriate techniques

Developing specific middleware and services, which fit into a specific distributed
environment is ideal but it is normally impractical since the development requires
long time and nurnerous human, financial and material resources. Therefore, the
utilisation of developed grid middleware, service and any other appropriate techniques

is important in the development of any grid environments for bioprofile analysis.

The utilisation may cover various grid-related mechanisms, such as those introduced
grid middleware tools and services, and other techniques (e.g. workflow, semantics,
security and QoS). The mechanisms to be utilised may be either generic or application-
specific. The generic grid-related mechanisms are mainly those contributions mace
by grid communities, such WS-GRANM, RFT and GSI [38]. The application-specific
mechanisms could be those outcomes made by any healthgrid related projects (e.g.

Health-e-Child [4] and BicinfoGRID [82]).

The utilisation is a step-by-step process. Using today’s grid technology it is
difficult to meet most distributed bioprofile analysis requirements since many grid-
related techniques are still under investigation. Moreover, some developed grid-
related techniques are improved day-by-day. The utilisation thus has to follow the
development of the grid technology. The introduction of any new or improved grid-
related techniques must also go through several steps, as 1) investigation of developed

grid-related techniques; 2) deployment of selected ones; 3) and evaluation of them.

3.3.

FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

Development of bioprofile analysis applications and associated services

The developed grid middleware and services can deliver a range of functionalities,
which can be used to support bioprofile analysis. The support is however not
comprehensive. Other functionalities/services. especially those bioprofile analysis-
specific ones, still need to be investigated and developed in order to support various

bioprofile analysis applications.

The development of a service can be either standalone or extentions of available grid
middleware and services. A service can hold one or more bioprofile analysis-required
functionalities. It may provide a (set of) new developed functionalities, or act as
an interface for the access of the composited functionalities offered by those already
available grid middleware and services. The development of a service must be driven
by bioprofile analysis applications. The development may need to consider a number
of issues, such as usability, flexibility, extensibility and reusability, in order to make
the service adaptable to different bioprofile analysis applications and the continuous

development of the bioprofile analysis over grid concept.

A bioprofile analysis application is the reflection of some user needs. The development
of a bioprofile analysis application requires the clarification of application requirements
based on user needs, making use of and/or developing bioprofile analysis-related
resources, grid middleware, services and other required mechanisms to meet those

clarified requirements, and also improve implementations based on user [eedbacks.

3.4. AN ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

3.4 An Architecture for Bioprofile Analysis over
Grid

In order to clarify the main grid components for bioprofile analysis and their relationships,
an architecture for bioprofile analysis over grid is proposed. The architecture contains
six layers of grid components, as shown in Figure 3.3. Each layer in the architecture is
a collection of related functions which delivers services/facilities to the tayer above and/or
other layers, and may also collect services/facilities from the layer below and/or other layers.
In reality, it is not necessary to fit every system into one of the layers. But it is also
not recommended to develop a closed system crossing several layers since this could cause

difficulties in maintenance and extension of the system.

In the architecture, the bottom is the physical resources layer, which holds all bioprofiling
facilities, including data, computation, knowledge, communication network resources, etc.
These kinds of resources exists in current Information and Communication Technology (1CT)
infrastructure, and have alrcady been used in, for example holding bioprofiles, providing
computation functionalities and intranet and internet connections. Example systems in this
layer are 1) hardware and operating systems, which provide low level host environments
for all other systems; 2) rclational databases, XML databases, file systems and other
storage mechanisius for storage of bioprofiles and related metadata; 3) knowledge bascs for
computerised collection, organisation and retrieval of bioprofile analysis related knowledge;
4) high performance clusters, high throughput clusters and middleware-enabled PCs for the
support of analysis and manipulation of bioprofiles; 5) and Local Area Networks (LAN) and

Wide Area Networks (WAN) for connecting all computing systems together.

3.4. AN ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

) ™~
Electrophysiology analysis J _ Image analysis J seen
_ Applications)
. N\
Application-specific services |
. Generic services ,
Data “Computational | [Knowledge g
,_ resources. resources resources >
.‘-é, Services and Virtual Resources §
2 . o
@ :) =
Q Globus Toolkit] “:L" OGSADA! Joe £
GridMiddleware Ko
Databases Knowledge-bases Networks
@ OO0 0000 =s<-=<
k Compute Element @m # # :
{e.g. HPC& HTC) ‘
- Physical Resources
__J —

Figure 3.3: An architecture for bioprofile analysis over grid

34. AN ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

The grid middleware layer provides functions to virtualise all real resources into virtual
resources in order to provide standard interfaces for the access of distributed and
heterogeneous resources. It also offers functions to, for example bridge virtualised resources
together, organise virtualised resources into Virtual Organisations (VQO), monitor and
manage resources, and along with security and Quality of Service (QoS) mechanisms to
deliver secure and application required QoS to users at grid level. Examples of grid

middleware (tools) are Globus Toolkit [81], OGSADALI [41] and UNICORE [44).

The services and virtual resources layer concerns all (grid) services and virtual resources.
In practice, services can be either interfaces to or representations of virtual resources.
They are built for specified purposes, for example, for distributed query of bioprofiles and
bioprofiling metadata or as interfaces for the access of functions provided by underlying
grid middleware (e.g. job management, resource brokerage, grid information access and data
transfer management). In the design, services are categorised into two levels, as application-
specific and generic level services. Practically, a service can access virtualised (physical)

resources either directly or indirectly (i.e. by the invocation of other services).

The applications layer contains all bioprofile analysis applications, such as Electrocardiog-
raphy (ECG) analysis and MRI analysis for clinical diagnosis support. In the architecture,
an application uses and constructs underlying services and virtual resources to deliver a
set of functions for a group of specified requests. For example, the application: bioprofile
analysis for Alzheimer’s disease research may use and construct EEG analysis, Positron
Emission Tomography (PET) analysis and service/resource discovery services to support its
required EEG and PET analysis functions. In practice, the use and construction of services

can be realised and packetised into, for example Web applications, embeddable tools and

60

3.5. SUMMARY

3.5 Summary

This chapter has presented the general concept and characteristics of bioprofile, discussed
bioprofile analysis requirements, overviewed the bioprofile analysis over grid fraimnework, and
proposed an architecture for bioprofile analysis over grid. The framework is designed based
on the consideration of three elements, as bioprofile analysis application and requirements,
bioprofile analysis related resources and grid. It focuses on four areas of work, and follows
a general approach of building a grid environment for bioprofile analysis. The proposed
architecture provides a standard for the categorisation, determination and organisation of
core components of bioprofile analysis over grid. It contains six layers of mechanisms,
which are essential in providing functionalities required by distributed bioprofile analysis

applications.

Chapter 4

A Service Model for Bioprofile

Analysis over Grid

63

4.1. INTRODUCTION

4.1 Introduction

Service is a core grid component. It normally provides platform-independent protocols and
standards used for exchanging data between application layer mechanisms and distributed
resources. In grid, services can be either stateful or stateless. They can be constructed with
various functionalities to support different applications on the access and to make use of

distributed and heterogeneous resources.

This chapter aims to present a service model for bioprofile analysis over grid, which clarifies
how services can be constructed and organised in order to support bioprofile analysis
over distributed environments. The work here focuses more on business level services,
as compared to those concerns addressed in OGSA. The chapter is organised as follows.
Section 4.2 illustrates the design principle used in this work. Section 4.3 proposes a service
architecture for bioprofile analysis over grid. Section 4.4 uses EEG analysis as an example
application to demonstrate how to build and organise services based on existing services
and grid middleware tools to support bioprofile analysis in details. Section 4.5 concludes

this chapter.

4.2 Design Principle

Services are functional mechanisms to applications. To design a set of services, which can
be used to support certain applications over grid, it is important to consider some issues,

such as usability, flexibility, extensibility, reusability and the strategy of development. The

64

4.2. DESIGN PRINCIPLE

building of services for bioprofile analysis over grid also follows several key principles, such

as

o Application-driven development. The purpose of developing services is to support
applications. The design of services for bioprofile analysis must be driven by those

bioprofile analysis requirements. as specified in Section 3.2.3;

e Separation of concerns and layered services. This is related to the issue of flexibility,
extensibility and the separation of development roles. As described before, bioprofile
analysis over grid is a cross-domain concept. To realise this concept, the support of
a number of functionalities is required for the access to distributed resources, data
integration and the delivery of security and QoS. It is thus necessary to break the
whole concept into pieces and layered structures, and to develop services with distinct
features in order to make services able to be developed in parallel, to make different
functions able to be updated or upgraded individually with minimum or without

inter-influencing, and to make additional {functions easier to be integrated;

e Generic. This is important in the issue of service reuse. In practice, a generic service
is more likely to be reused than a non-generic one. Since bioprofile is an ongoing
development concept, it is desirable to develop services with a generic manner so that
they can be easily reused and can adépt to changing conditions and requirements of

bioprofile analysis applications.

4.3. A SERVICE ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

4.3 A Service Architecture for Bioprofile Analysis

over Grid

4.3.1 Overview

The service architecture for bioprofile analysis over grid contains two major layers of services:
generic services and application-specific services, as shown in Figure 4.1. The generic
services layer contains all generic grid services, which provides grid functionalities to support
application-specific layer services. In general, we divide services in this layer into nine main

categorises. They are:

o Data and knowledge access services, which provide basic data query, update, transfer

and knowledge discovery functionalities;

» Computation services for the access of computational resources;

¢ Information services for the monitor and discovery of resources and services in VOs;

o Security services, which deliver security functionalities to applications;

o QoS services, which offer mechanisms to enforce specified QoS policies in order to

guarantee user required QoS;

¢ Distributed query services for query of data and knowledge from distributed data and

knowledge resources. These kinds of services are normally built on top of data and

knowledge access services;

Job services for the generation, submission and management of grid jobs;

66

4.3. A SERVICE ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

o Workflow services for the description and management of various application tasks to

support the delivery of automated business processes in grids;

+ Resource broker services for the selection and allocation of the “most appropriate”

resources and services.

The application-specific services layer provides “bioprofile analysis specific” reusable
functionalities to bioprofile analysis applications.The main categories of services in this

layer includes,

o Bioprofile access services, which provide functionalities for bioprofile retrieval, update

and integration;

¢ Bioprofiling metadata services, which offer bioprofiling metadata access and integra-

tion in order to support bioprofile access and analysis in an automatic manner;

e Bioprofile analysis services, which provide analysis functionalities to bioprofiles.

4.3.2 The Role of Existing Grid Middleware Tools and

Services

There are some existing services and tools, which can be used to support analysis of
bioprofiles over distributed environment. Most of them are low level mechanisms, which
are generic to most applications. The functionalities they can offer include, but are not
limited to, data access and transfer, execution management, monitor and discovery, and

security.

4.3. A SERVICE ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

A. Data Services

Bioprofile analysis applications often need to manage, provide access to, and aggregate
large quantities of data at one or many bioprofile centres and/or computation
resources. Examples of services and tools, which are existing with the potential to

support bioprofile movement, include Grid FTP, RFT and OGSADALI, where:

o GridFTP provides libraries and tools for reliable, secure, high-performance
memory-to-memory and disk-to-disk data transfers [83]. For bioprofile move-
ment, it can be used in transmission of those bioprofiles and analysis software,

which are formatted in text and binary files;

o Reliable File Transfer (RFT) service provides for the reliable management of
multiple GridFTP transfers [38]. For bioprofile movement, it can handle the
transmission of large numbers of bioprofile data files in a manageable and
recoverable way, especially to avoid any failure of movement due to some

unexpected faults occuring during transmissions;

e OGSADALI as described in Section 2.3.3, enables data resource exposition on to
grids. For bioprofile movement, it is a useful tool for the access, management
and integration of heterogencous bioprofile data resources, especially those data

stored in relational and XML databases.

B. Execution Management Services

Bioprofile analysis applications normally require deploying and managing analysis
executions on distributed computational resources. Grid Resource Allocation and
Management (GRAM) [38] as a relevant service, addresses some of these issues,

- - offering-a Web services interface for imitating, monitoring and managing the'execution

69

4.3. A SERVICE ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

of arbitrary computations on distributed computer elements. It can be integrated with
other execution-related mechanisimns, such as meta and local scheduler (e.g. Condor
[84]) to provide a comprehensive approach to management of distributed bioprofile

analysis.

C. Information Services

Most bioprofile analysis applications require mechanisins for resource/service discov-
ery and monitoring of analysis executions/jobs in order to find relevant resources
(e.g. bioprofiles, analysis software and computer elements) and to retrieve (up-to-the-
second) resource properties, respectively. Monitoring and Discovery System (MDS)
[85] is a tool, which realises part of these functionalities, and can be used to support
the publication and retrieval of various resource and service information in a grid
environment for bioprofile analysis. For instance, the use of MDS to publish database
schema information on an Index services in order to let users or other services know
how to access the database; and to retrieve information of registered services/resources
from an Index service in order to locate services/resources which can be used for a

specific analysis task, etc.

D. Security Services

Nearly all bioprofile analysis applications need sccurity mechanisms to support
the control of access to bioprofiles and softwarc implementations of analysis algo-
rithms/methods. There are some security tools nowadays which can be used to
enable some basic security functions, such as message protection, authentication,
delegation and authorisation. Grid Security Infrastructure (GSI) [38] is an example

of such a protocol, which uses grid-mapfile (38] for authorisation, WS-Security (86]

70

4.3. A SERVICE ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

for message-level protection and X.509 [87] for authentication and delegation. For
bioprofile analysis, it can be used to provide a solution to a certain level of access
control to bioprofiles, the protection of transmission of bioprofiles between remote

sites, and credential delegation for fetching data between distributed resources.

4.3.3 Application-specific Services Level Approach

A. Bioprofile Access Services

Services in this category decompose the bioprofile access problem into multiple,
replaceable components, which include but are not limited to: bioprofile query;
bioprofile update; bioprofile data transfer; bioprofile format transformation; and

bioprofile integration, as presented in Figure 4.2.

The query, update and transfer components can be implemented with the support
of underlying data access services, information services and/or distributed query
services. Some data access services are interfaces or representations of bioprofile
data resources. They work with grid middleware (tools) closely to provide direct or
indirect access to bioprofile datahases, which are built and managed by, for example,
relational and XML databases, and file systems. Other data access services may offer
data transmission functionality to generate and manage transfers of (large) bioprofile

data over distributed bioprofile data resources.

71

4.3. A SERVICE ARCHITECTURE FOR BIOPROFILE ANALYSIS OVER GRID

and distributed query services, which is similar with bioprofile access services.
The knowledge access here mainly includes access of the schemas/ontologies of the
bioprofile data model [88} and bioprofiling metadata mappings. In practice, the
knowledge access can be built on top of data access services with the support of

knowledge management and inference systems (e.g. Sesame [89] and Jena [90]).

Transformation and integration components are responsible for delivering integrated
and formalised bioprofiling metadata to users or bioprofile related services. In
practice, they can be implemented based on built-in transformation and integration
mechanisms and/or with query mechanisms, which can be used for retrieval of

mapping schemas/ontologies from distributed data and/or knowledge resources.

C. Bioprofile Analysis Services

Services in this category comprise mechanisms which compose and manage lower level
services {e.g. bioprofile access, bioprofiling metadata and job services) to offer generic
and/or specific functionalities to support bioprofile analysis applications. In general,
the main components in this service category include, but are not limited to, bioprofile
access management, analysis job generation and bioprofiling metadata retrieval and

matching.

The bioprofile access management component can be built on top of the bioprofile
access services as described earlier. It is responsible for bioprofile access management
in order to allocate the required bioprofile data (e.g. medical images and EEG)

between data resources, computational resources and client ends/services based on

74

4.4. SERVICES FOR EEG ANALYSIS OVER GRID

get the description of bioprofiles, analysis algorithms/iethods, etc. and to match
analysis requirements with conditions in order to support the allocation of relevant
resources {e.g. bioprofile data with applicable software implementations of analysis

algorithms/methods) for specified bioprofile analysis applications.

4.4 Services for EEG Analysis over Grid

4.4.1 Application Requirements

Electroencephalograph (EEG) analysis is an important application in bioprofile analysis.
Conceptually, Electroencephalograms are complex signals that represent the activity of the
brain. EEG can serve as an objective, first line of decision support tool to improve diagnosis

of most brain diseases, such as Alzheimer’s disease, brain injury and Epilepsy [91].

To carry out EEG analysis, there are two special requirements in addition to those general
bioprofile analysis requirements as described in Section 3.2.3. First, there is a need to match
EEG records with spccific impleinentations of EEG analysis algorithms/methods. This is
because EEG records are normally stored in binary files with different formats (c.g. EEE
and EDF), various numbers of channels (e.g. 21 and 25) and different lengths (e.g. 30
minutes). However, most existing EEG analysis algorithms/methods and/or their software
implementations can only work with certain formats, and/or numbers of channels and/or

lengths of EEG data.

4.4. SERVICES FOR EEG ANALYSIS OVER GRID

Second, EEG data are sensitive to human health, rights and freedoms. EEG data, especially
those EEG data files which contain patient information, may be restricted in their transfer
outside of some bioprofile centres for processing. This means that EEG analysis can
only be carried out within those restricted bioprofile centres. Moreover, the analysis and
manipulation of EEG data may also be constrained. That is to say, analysis of some EEG
data may be limited to certain agreed implementations of algorithms/imethods in order to

protect confidentiality.

4.4.2 A Service Model for EEG Analysis over Grid

Figure 4.5 shows a model we propose to develop services for EEG analysis based on existing
grid and other ICT technologies. This model intends to demonstrate a detailed service
example of bioprofile analysis, and decliver services with layered structure and certain
functionalitics to support EEG analysis over grid, including access of distributed bioprofiles,
bioprofiling metadata integration, concurrent processing, cte. The model addresses scrvices
mainly in business level. It is planned to be modified and extended when new and stable
grid techniques are introduced, such as technigues for grid security, QoS, workflow, resource

broker and knowledge access.

In the model, EEG analysis metadata services, subject information services, metadata for
EEG storage services and metadata. mapping services are interfaces to data and knowledge
resources. They can either connect to underlying databases and knowledge bases directly
or be built on top of other data and/or knowledge services. They can be accessed via

distributed query services in order to deliver relevant data and knowledge to bioprofile

77

4.4. SERVICES FOR EEG ANALYSIS OVER GRID

access services (e.g. subject information query services) and bioprofiling metadata services

(e.g. EEG analysis mmetadata query services and EEG metadata query services).

EEG analysis metadata query services deal with querying of descriptions of EEG analysis
algorithms/methods and related software implementations based on specified analysis tasks.
They deliver these kinds of descriptions to EEG analysis services in order to let EEG
analysis services know which analysis algoritluns/methods are appropriate for the specified
analysis requests; what relationships between specific analysis algorithins/methods and
related software implementations; what and how analysis software implementations can
be used for analysis to specified EEG data; what kind of results will be obtained after

analysis, etc.

The distributed query service copes with distributed data querying and integration. The
implementation of this category of services can be based on various approaches, such as
mediated query systems, data warehouses and workflow managetnent systems, as described
in [92]. Figure 4.6 shows a workflow example of a query of EEG analysis metadata from
distributed databases. In the example, a distributed query service first gets a query message
from a user .or a higher level service. Based on the message, it finds out information of
relevant data services and resources (e.g. the data service URIls, database schemas and
locations to obtain mapping schemas) from the information services. It then generates
distributed query messages based on mapping schemas queried from metadata mapping
services and sends those messages to distributed EEG analysis metadata services for
asynchronous parallel queries. Finally, it obtains and/or passes query results to users or
other services. If required, the query results will be transformed and/or integrated in order

to deliver query results with a uniform format.

79

4.4. SERVICES FOR EEG ANALYSIS OVER GRID

The model separates software implementations of analysis algorithms/methods from EEG
analysis services. In most cases, an EEG analysis service itself does not contain any
embedded codes of analysis algorithms/methods. It only manages standalone analysis
software and inputs to selected computational resources for EEG analysis. This enables
flexibility in the organisation of EEG analysis, especially when EEG data access is
restricted to certain locations; and/or EEG analysis is limited to certain analysis software

implementations.

In the design, the EEG analysis service may use the united job service to manage multiple
analysis jobs. In design, a united job scervice should offer siinple and standard interface for
users or higher level services to submit and manage analysis jobs. It should also be able
to hide the complexity of using lower level job services provided by different types of grid

middleware tools (e.g. gLite [45], GRAM and WS-GRAM [38]) to users.

If we take a parallel job service as a simple example of the united job service, a parallel job
service should not require users/services to write down complicated job descriptions, but
provide very simple information for job executions, such as the command line of running
a task, the stage in file locations (i.e. locations of input files and executables/classes) and
the stage out file locations (i.e. locations of output files). This kind of design may lose
some flexibility of workflow construction, but utilises the independent manner of individual
processes in a parallel job to maximise the usability for users and/or application developers
to build up higher level services/applications. To be able to run on different types of job
factory services, one solution for a parallel service is to add a layer of mechanisins to split
a parallel job into multiple sub-jobs, and dispatch them to different types of job factory
services for execution. Figure 4.7 illustrates a service example of using this solution for the

generalion and management of parallel jobs running on different sorts of grid platforms. In

81

4.4. SERVICES FOR EEG ANALYSIS OVER GRID

this example, the job splitting and sub-job generation component is the heart of the parallel
job service. [t provides mechanisms to get a job abstract fromn client API, handle the job
abstract into individual tasks, encapsulate tasks into multiple sub-jobs and manage sub-jobs
in order to complete the job offered by users or higher level services. The task encapsulation
is based on the match between the job abstract and the obtained computational service and
resource information. The sub-job description can use various job description languages for

different types of grid platforins.

Like all other kinds of bioprofile analysis service, the EEG analysis service also has two major
user groups, clinical users and healthcare researchers. This means that an EEG analysis
service will be more usable if it has a client API, which can serve both of the groups.
To achieve this, we believe it will be better to provide several levels of choice of analysis
specification in the client APIL For example, a user can specify a software implementation
of an algorithm for analysis if he/she wants to compare several versions of implementation
for performance and/or quality evaluation; or a user (e.g. healthcare researcher) may only
tell an EEG analysis service the name of an algorithm he/she wants to use and lets the
service decide which version of algorithm software can be used for analysis (e.g. latest and
random). Alternatively a user (e.g. clinician) knows nothing about analysis algorithm, but
wants EEG analysis service to help him/her to find out all available algorithms in order
to carry out analysis and give a comprehensive view on a set of specific EEG files. In this

model, we consider three use cases, as analysis based on a

¢ Known algorithm name;
o Known algorithm ID;
e Specific software implementation of EEG analysis algorithms/methods.

32

4.4. SERVICES FOR EEG ANALYSIS OVER GRID

Figure 4.8 presents a basic workflow example, which can be impleinented within an EEG
analysis service. In this example, the input parameters that must be given in order to provide
essential information for analysis include 1) one of the three use cases, 2) the specified EEG
file informnation (i.e. IDs to locate EEG files or descriptions of EEG files own by the user)
3) and the preferred locations for delivery of analysis results. The EEG analysis metadata
query service is responsible for supporting the querying of EEG analysis related information
(e.g. finding out analysis algorithm ID by given algorithm name, and the discovery of the
relevant analysis software by given algorithm ID and EEG file format). The EEG metadata
query service provides functions for the querying of EEG file descriptions by given the EEG
file ID. The parallel job service generates and manages parallel analysis job based on the
description (including locations) of the software implementation of the analysis algorithm,

EEG file and result storage.

To make the example more understandable, we assume an EEG analysis service obtains three
input parameters from client API for an analysis request: the name of an analysis algorithm,
the IDs of several EEG files and a location for the result storage. The corresponding workflow

for this analysis request might be described as,

a. Invoke the EEG analysis metadata query service to get the 1D of the latest stable
version of the name-given algorithm by default, at the same time asynchronously
invoke the EEG metadata query service to get the locations and the formats of those

EEG files based on the given file IDs;

b. Use the algorithm ID to find out the relevant software implementations of the
algorithm, and use the obtained EEG file format information to select the most

-suitable implementations;

84

4.5. SUMMARY

c. Generate an analysis job abstract, and send it to the parallel job service to realise the

analysis process on distributed computational resources;

d. Monitor and control analysis process by contacting parallel job service. When the
analysis process completes, results are delivered to the specific storage location. The

whole analysis process might be described and stored in specified locations.

4.5 Summary

In this Chapter, a service model for bioprofile analysis has been proposed. The service model
addresses a service design principle, a service architecture for a bioprofile analysis over grid,
and an EEG analysis service model. The service design principle discusses important issues
in developing and organising services in support of bioprofile analysis applications, such as

usability, flexibility, extensibility, reusability and the strategy of development.

The service architecture classifies and clarifies services required in grid-enabled bioprofile
analysis. The architecture has two layers: a generic services layer and an application-
specific services layer. It details how to utilise contributions made by the grid community
to provide a well-formed infrastructure in support of those generic functionalities {e.g. data
access, job management and security). The architecture also addresses the general approach
in building and managing bioprofile analysis specific services in the realisation of the concept

ol bioprofile analysis over grid.

To demonstrate the concept of the service architecture, an example application: EEG

analysis has been employed. An EEG analysis service model has then been proposed to

86

4.5 SUMMARY

show how to utilise existing services and grid middleware tools, and how 1o develop and
manage services based on those existing contributions in order to realise EEG analysis over

a distributed and heterogeneous environment.

Chapter 5

Implementation of A Grid-enabled
EEG Analysis Platform

88

5.1. INTRODUCTION

5.1 Introduction

To demonstrate the concept of bioprofile analysis over grid, a grid-enabled platforin has
been developed to support an immportant bioprofile analysis application: EEG analysis, over

a distributed and heterogeneous resource sharing enviromment.

This chapter presents how resources, grid middleware and services can be utilised, organised
and implemented to support distributed EEG analysis for early detection of dementia.
The chapter is organised as follows. Section 5.2 describes a scenario. which addresses
the need of using grid technology to support clinical investigation on a patient due to his
mobility and shortage of local computational power as well as analysis software. Section 5.3
presents two grid test-beds, which have been developed to provide essential experimental
platforms for research in bioprofiling over grid. Section 5.4 presents the implementation of
a grid environment, which realises the analysis scenario. The details of the implementation
architecture and infrastructure will be given. Section 5.5 presents obtained implementation
results and evaluates those results in the aspects of utility, collaborativity, extensibility and

performance. Section 5.6 concludes this chapter.

5.2 Scenario: EEG Analysis over Grid for Early

Detection of Dementia

Dementia is a neurodegenerative cognitive disorder that affects mainly elderly people [93].

At present, several acetyl cholinesterase inhibitors could be administered for dementia of the _

89

5.2. SCENARIQO: EEG ANALYSIS OVER GRID FOR EARLY DETECTION OF
DEMENTIA

Alzheimer’s type, but for inaximum benefits early diagnosis is important. Currently several
objective methods are available that may support early diagnosis of dementia. Amongst
others, the EEG which measures electrical activities of the brain offers the potential for
an acceptable and affordable method in the routine screening of dementia in the early
stages. Using current clinical criteria, delay between the actual onset and clinical diagnosis
of dementia is typically 3 to 5 years. A limitation of current objective methods is that
diagnosis is largely based on group comparisons, i.e. attempting to separate individuals
into groups (Normal, AD, Parkinson’s, etc.). An alternative to this is individualized care
through subject-specific biodata analysis. Such an approach would allow us, for example, to
compute biomarkers which over time would represent the subjects 'bioprofile’ for dementia,
and to look for trends in the ’bioprofile’ that arise over time to detect possible on-set of

dementia [79).

Figure 5.1 illustrates the life of a fictitious individual called Mike who was born and studied
in Finland, lived in Greece and has been working in the U.K for two decades. At the age
of 60, Mike is diagnosed with probable AD. To provide accurate diagnosis, his GP in the
UK requires his past and present medical information (bioprofiles) which could be located
in databases in several different countries {e.g. UK and Greece). Additionally, inforination
stored in the databases would be very large as these are Mike’s lifetime medical records such
as EEG, clinical information, etc. Furthermore, analysis of the data would usually entail
the use of complex algorithms which could take several hours to complete and could be
held at various bioprofile centres. Using grid, to provide seamless access to geographically
distributed data and high computational resources for complex analysis and data storage,

more accurate and efficient diagnosis may be achieved.

90

5.3. GRID TEST-BEDS

bioprofiling over grid. The BIOPATTERN grid is a collaborative research activity under
the BIOPATTERN project. Its development follows the 20-year bioprofile developinent plan
proposed by the BIOPATTERN project community [9].

The prototype of the BIOPATTERN Grid aims to provide a platform for clinical users
and healthcare rescarchiers within the BIOPATTERN Consortiumn to sharc bioprofile data,
computation and analysis resources to facilitate the analysis, diagnosis and care for brain

diseases and cancer.

Currently, the prototype connects five sites -the University of Plymouth (UoP), UK; the
Telecommunication System Institute (TSI), Technical University of Crete, Greece; the
University of Pisa (UNIPI), Italy; Synapsis S.r.l. (Synapsis), Italy, and Tampere University
of Technology (TUT), Finland (see Figure 5.2). Each site holds grid nodes and may also
hold bioprofile databases, high throughput cluster (e.g. Condor pool), high performance

cluster, algorithms pool, Web portal, or an interface to remote data acquisition networks.

In the prototype, bioprofile databases at present contain basic patient’s clinical inforination
(e.g. weight and the status of Alzheimer’s disease), EEG data (awake EEG at resting state)
for dementia, and EEG data (MVEP) for brain injuries. The data are distributed over
bioprofile databases at TUT, TSI, andfor UOP. The algorithins pool, which is located at
the UOP site, includes software implementations of bioprofile analysis algorithms for brain
diseases, such as the Fractal Dimension (FD) and Independent Component Analysis (ICA)
algorithms. In addition, UoP contains GT4-based grid nodes, a condor pool (PlymGRID
[93]) with up to 1,400 staff and student PCs and a Web server (i.e. the BIOPATTERN Grid

Portal {96]), which holds all iimplemented Web applications for end-users to seamlessly access

92

5.3. GRID TEST-BEDS

underlying grid services and resources in support of bioprofiling. Basic security mechanisms,

the Grid Security Infrastructure {GSI) (97], has been enabled in the prototype.

Between UQP, TSI and TUT, there are two demonstration applications, which have been
developed on the BIOPATTERN Grid for clinical diagnosis support of dementia and brain
injury. UNIPI and Syna.psis are connected to the BIOPATTERN Grid via a grid node
based on GT4. At UNIPI, the crawling services [98] are being adapted to the BIOPATTERN
Grid. Synapsis is developing an interface between the BIOPATT ERN grid and the (remote)

wireless acquisition network for automated remote data acquisition [99].

5.3.2 PlymGRID

PlymGRID [95] is a campus grid environment, which currently provides high throughput
computing facilities to support various research and teaching activities for all students and
staff at the University of Plymouth. To date, it has utilised up to 1,400 student and staff PCs
to provide computation power, and the university local network to distribute computational

jobs to any of available PCs.

Figure 5.3 presents the overview of PlymGRID. As can be seen in the figure, PlymGRID
uses Condor [84] as the main high throughput computing middleware solution to provide job
queuing mechanisms, scheduling policy, priority scheme, resource monitoring, and resource
management, for all computational jobs running on it. PlymGRID, at present, contains a job
manager for centralised job management and resource allocation and certain job submitters
for job generation and submission. Those job submitters are mainly used by advanced users,

where those users normally require running those jobs which have complex workflows. Some

93

5.3. GRID TEST-BEDS

University of Plymouth Tampere University
’ =A== of Technology
ST T Eghﬁ'lroum =L
[= F"_ l B G e Ay S
::Bﬁlog%ﬁe_ [__J cluster'll '_|
li_tla_)SLEi S ~. o
I AN ‘r E-A.lgorrthm«f
- < - S
Web La ,\.!‘I :'v’:(‘ » J,-.
portal {Grid
"nod §5)
___\L%
[y ey By Sy Ry S A J
‘Higiégfg?pan;e._ g Internet [@@Esgs" - Web
[T etasten :) L T, Lperal
N g ¢ S0 2 AN 3
Y LAN f ("Gﬁ- N ") AT :"B__.dfls} ';L-“_' ._-5_"
e {'E\f: iy Telecommunication
Pisa University Systems Institute
]
- [B s " \‘__’)
[dagbasgs | T2
B 1
3 LAN = VAT AT
ISP B > Wi[‘él\essécquisiﬁér}&
: T NY Ty Yty
. s, network, ‘%
Synapsis S.R.L Vo .

Figure 5.2: The prototype of the BIOPATTERN grid

94

5.4. IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

of them are also used to bridge PlymGRID with the BIOPATTERN grid. For any other
users, PlymGRID is accessible via a developed Web portal, which connects a dedicated
job submitter, and allows permitted users to submit parallel jobs via Web browsers to
PlymGRID and retrieve results from it. The supported program binaries currently include

C/C++ executables, Java classes and compiled Matlab (C) executables.

PlyinGRID is an important coutribution to bioprofiling over grid. lIts development is
not only to provide a high throughput computing resource, but also to deliver a campus
grid network with other institutes (i.e. connecting with other campus grids, such as
0XGrid, Reading Grid and Bristol Grid}, which can be used to support various bioprofiling
rescarch activities between different universitics. As the build-up is generic, it thus benefits
research in other ficlds as well, such as the comparison between coding algorithms for space

communications [100).

5.4 Implementation Architecture and Infrastruc-

ture

5.4.1 Overview

To realise the EEG analysis scenario (see Section 5.2), a distributed EEG analysis platform
has been developed based on the BIOPATTERN grid and PlymGRID. This platform
aims to deliver functionalities to clinical users for seamless access and use of distributed

“and heterogeneous EEG analysis related resources (e.g. EEG ~data, analysis software and

95

5.4. IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

5.4.2 Physical Resources Layer

This layer composes of scveral catcgories of resources, including EEG data, bioprofiling
metadata, software implementations of analysis algorithms, computation elements, net-

works, host environments, etc.

A. EEG Data

The EEG signals were stored in binary files with EEE format. Each EEG dataset
contains 21 channels, 4 minutes of recording. The size of an EEG dataset is around
1.3 Mbytes. The 400 EEG datasets were distributed to UoP (200 datasets), TUT (120
datasets) and TSI (120 datasets), respectively. Each site has 20 duplicated datasets.

All EEG datasets were stored in file systems.

B. Software Implementation of Analysis Algorithms

The Fractal Dimension (FD) [79}, Hjorth [94] and Tsallis Entropy [80] algorithms were
employed in experiments for EEG analysis. The FD algorithm was first implemented
using C and then compiled into a C executable with file size at 155 Kbytes. The
Hjorth algorithm was first implemented using Java and then compiled into a jar file
with file size at 7.7 Kbytes. The Tsallis Entropy algorithm was first implemented
using Matlab and then compiled into a C executable with file size at 10 Kbytes and a
Matlab library constructer with file size at 43 Kbytes. Corresponding Matlab Runtime

Library was deployed into all computation elements.

C. Bioprofiling Metadata

98

IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

The bioprofiling metadata include metadata for EEG data files, analysis algorithms
and related software implementations, and mapping schemas. Except mapping
schemnas, all bioprofiling metadata were stored in relational databases. Examples
of schemas used in experiments are presented in Appendix A. Mapping schemas were
implemented using XML, and stored in file systemns. In impleinentation, only different
attribute names were used to express different metadata schemas for the description
of the same type of object at the three sites for simplicity (e.g. the use of EEG
duration and EEG length for the expression of recorded EEG duration, respectively).
An example of used mapping schemas can be found in Appendix B. In addition,
those mapping schemas were registered in mapping schema registry(s), which is/are
XML documents linking head information of each mapping schema with corresponding
mapping schema. (file) location. An example of used mapping schemna registries can

be found in Appendix C.

. Computation Elements

There were two sets of aggregated Linux PCs (four P4-3GHz-CPU 1GB-RAM
machines at UoP and eight P4-3.2GHz-CPU 1GB-RAM machines at TUT) and a
Condor pool {up to fifty P4-2.8GHz-CPU 512M-RAM Windows machines at UoP)

used as computation elements in experiments.

Host environments

SuSE 9.x Linux operating systems (kernel 2.6.x) [101] were used in storing text and
binary files and holding all software. MySQL (v4.1 and v5.0) [10] and PostgreSQL

(v7.4) [11] databases were used in holding all bioprofiling metadata except mapping

schemas.

99

5.4. IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

5.4.3 Grid Middleware Layer

This laver contains two main grid toolkits, GT4 (v4.x) [38] and OGSADAI-WSRF (v2.x)
[41). For GT4, GridFTP and Reliable File Transfer (RFT) service were nsed for file transmis-
sion and related management, (Web Service) Grid Resource Allocation Management (WS-
GRAM) for execution management, WS Monitoring and Discovery System (WS-MDS) for
resource and service monitor discovery, and Grid Security Infrastructure (GSI) mechanisins
to provide basic security functionalities (e.g. authentication and authorisation). OGSADAI,
together with GT4 core, was used for exposition of data resources (e.g. relational databases

for storing of bioprofiling metadata) and the support of federated data discovery.

5.4.4 Services and Virtual Resources Layer

The services and virtual resources layer realises the EEG analysis service model for clients
to access those physical resources seamlessly. The service implementation focuses on how
to build additional services {e.g. the EEG analysis service and the parallel job service)
on top of existing services (e.g. the GT4 Managed Job Factory Service} to support EEG
analysis over grid. All services are implemented in the (Grid) Web service style. We use
Grid Development Tools (GDT) [102] for service implementation, and a Globus container

to hold all implemented as well as existing services.

A. GT4 Services

Three categories of GT4 services were used to support the implementation, where

Reliable File Transfer service, together with GridFTP, were used for managed

100

IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

transinission of text and binary files; WS-GRAM related services (e.g. Managed Job
Factory Service and Managed Job Service) were used for execution management; and
WS-MDS related services (e.g. Default Index Service) were used for service registry

and collection of resource property information.

. Relational Database Access Services

These kinds of services have been implemented to expose relational databases as a
sort of data resources on to grids, and also to provide interfaces for access to those
resources. They were built directly upon relational databases which hold bioprofile
information and bioprofiling metadata with the support of OGSADAI-WSRF and
GT4 Core. They include a:

e Subject Information Service for access to subject (e.g. patient) personal and
clinical information;

e EEG File Metadata Service for access to metadata which describe those dummy

EEG datasets;

o EEG Analysis Algorithin Metadata Service for access to metadata which

describe the three EEG analysis algorithms;
o EEG Analysis Software Metadata Service for access to metadata which describe

the software implementations of the three EEG analysis algorithms.

All these services were registered in GT4 Default Index Services. Related resource
properties published in those index services include data resource 1D and database

schema.

101

IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

This service was developed to provide distributed query functionality in a generic

way.

It was built upon relational database access services and a mapping schema

access service. Figure 5.6 shows its class diagram, which summaries how it works.

The corresponding service workflow is:

(a)

(b)

(c)

(d)

(F)

(g)

The DistributedQueryService class gets a query message from a client, where
the query message is SQL-like, e.g. “SELECT x FROM y WHERE 2”;
The DistributedQueryService class decomposes the query message into “selec-

tions”, “virtual table/catalog name”, and “conditions”;

The DistributedQueryService class employs the FindDatabaseResource class to
find out related data resources and services from one or mnore GT4 Default Index

Services in parallel based on the “virtual table/catalog name®;

The DistributedQueryService class employs the FindMappingSchema class to
find out related mapping schema resources and services from one or more GT4
Default Index Services in parallel based on both the “virtual table/catalog name”

and the discovered data resource 1Ds;

The DistributedQueryService class employs the QueryMessageGeneration class
to map the query message into certain distributed query messages. Those
distributed query messages follow the data schema defined by each data resource.
The LoadMappingSchema class is used to retrieve mapping schemas from those

mapping schema resources in parallel;

The DistributedQueryService class employs the Query class to query distributed
data resources in parallel based on those distributed query messages. The query

results are then returned to DistributedQueryService;

The DistributedQueryService class employs the ResultTFARdIG class to trans-

form those query results into an uniform forinat, then deletes those replicated

103

5.4. IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

+ DistributedQueryService + FindDatabaseResource
L. queryhiessage - generalDataResourcelDd
- generaDateResourcelD tindDERescurce, - distrirtedDataResowrceDAndServiceMaps
I — — —— —
;- distribitedDataResaurcelDAndServiceklaps - detaResowrcelndexServiceURls
- dataResourceind2xServiceURIs T s T — e -
- mappingSchemoReseurcendexServiceURls + FindDatabaseResowrceQ
- mappingSchemaDAndServiceMaps + call)
- distrindedQueryMessage
' - queryResuls | __ __ lindMappingSchema
I - formatted@ueryReswts I
' - mappingSchemaVector — - —W—— -
. —— - ' e FindMappingSchema
+ DistriutettQueryService() -
+ getFanmattedQueryResuds() « - generaiDataResourcelD
f - distrinutecDataResourceDAndServiceiaps
S—— ..I - mappingSchemaResourcetndexServiceURls
| - mappingSchemalDoct ocationAndServiceMaps
I " FindMappingSchema()
I I I * ca]]o
I | gemr&teﬁtéewlﬂemge
: : | [+ QuenytiessageGeneration
| | | - distrimdedQueryMessage
| I i - mappingSchemaDocl ocations
. - mappingSchemaServiceliRls
résranstomaonsnanieywon diitedouery | - meppingSehemavecter
: - querydlessage

"+ QueryMessageGeneration()
.+ generateDistrindedGueryMessage()

- mappingSchemaDoct ocationAndServiceMaps

I
| _oasimppinssenena

I
l
I
I
I
I
I
\.

T
J J
+ ResultTFAndIG - f ».Query” - +LoadlappingSchema -
- tarmattedQueryResulls - distrimtedDataResourceDAndServiceaps - mappingSchemaDoclLocsations
: - mappingSchemavettor - distrivtedGueryMessage - mappingSchemaServiceURIS
« queryResuls - qreeryResulls - mappingSchemas
« ResllFANAGO | + GuenyO) "+ LosdMappingSchema0
+ famsiQueryResutsG | | + gstQueryResuts)) + caf)

i

Figuré 5.6:_Implementing distributed query service

104

5.4.

IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

query results, and finally combines those query results together into an XML

document;

(h) The DistributedQueryService returns the XML document back to the client.

In addition, the GT4 Default Index Service was also used for the registry of this

service.

. Application Specific Query Services

These services were built up to provide application specific query interfaces and
mechanisms to transforin query requests into query messages, which are compatible
with underlying distributed query services. The implemented services include the
EEG metadata query service, the EEG analysis metadata query service, and the
subject information query service. GT4 Default Index Service was used for registry

of these services.

. Parallel Job Service

This service was developed to provide parallel job management functionality in a
generic way. It was built upon GT4 ManagedJobFactoryService and can be extended
to other job/execution services. Figure 5.7 shows its class diagram, which summaries

how it works. The corresponding service workflow is:

{a) The GridJobManagementService class gets three pieces of information from a
client. as “command lines” that the client uses to run each task, “stage in file
URIs"” (i.e. locations of input files and executables/classes), and “stage out file

URIs” (i.e. locations where output files will be delivered to);

105

5.4.

IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

" +GriddobManagementService "+ FindExecutionResource’
. commandLine " . executionServiceURVector
- stageinfieL ocation S - .
© . stageOufFileLocation - FindExecutionResource
- useriame 1\
- userGroup |
- localGridUserName findExecutionResource
' - locaPath
- serviceRegistryl ocation |
- cientDefineServiceRegistryLacation ~+:GriddobDescription’
. -jobEpFieName f coRew N
- serviceRegistryLocationString - clientDefineServiceRegistryl ocation
T - serviceRegistryUR]
- givenServiceRegistryLocetion | _generstelobDescriplion, . executionResowrceUR!
© . jobStatus . firstExecutionResowrceUR]
- destroyJob - jobDesFileName
- gelResource() - — - -
- jobSubAndRun + GriohDescription()
+ setServiceRegistryLocation)
|] [+ GetdobMansgementServiceURK)
I I I
I I R iobSuimission _ __ __ __ _ 1
| | |
Lot _sﬂi' L _GuerylobStatus I
l J,
l | [+ GrigJobSubmission
: I - johEprOutputfile
| | - GriddgbSubmission
A —
"+ GridJobDestroy '+ GridJobStatus
- destroyResut - jobStatusString
+ GridlobQestroy() G;nd.lobStatus

Figure 5.7: Implementing Parallel Job Service

106

5.4. IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

(b)

(d)

(e)

The GridJobManagementService class employs the Grid.JobGeneration class
to generate a job, which contains all the tasks the client wants to run.
The generation is based on those located execution resources (in this case
ManagedJobFactoryService) and the three pieces of information obtained from

the client;

The GridJobManagementService class employs the GridJobSubmission class to
submit the job to the distributed execution resources, obtains a job End-Point
Reference (EPR} as the reference to this job, and returns the job epr to the

client;

The client can use the job epr to get latest job status using the GridJobStatus

class via the GridJobManagementService class;

The client can use the job epr to destroy the job using the GridJobDestroy class

via the GridJobManagementService class.

In addition, the GT4 Default Index Service was also used for registry of this service.

G. EEG Analysis Service

This service was developed to support EEG analysis. It realises the EEG analysis

service example, as addressed in Section 4.4.2. Figure 5.8 presents its class diagram,

which outlines the major components of this service, where:

The QueryEEGAnalysisAlgorithmID class deals with when a client wants to
carry out EEG analysis, but he/she only knows the algorithm name(s). The
EEG analysis metadata query service was used to support its query on algorithm

1D(s);

5.4. IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE
+ FindEEGANalysistletadataQueryService |¢ -
. — + QueryEEGAnalysisAlgerithmiD - :
+_EEGAn§IyS|sSeMce eeo Metadatats _J
- EEGFEeFarmats - algoathmDs T T
- EEGFisfarmatsAndl ocationteps fm —— — 3 - algidhmiarnes
- EEGFelDs L — T T T T
- EEGFeaLotations + QueryEEGAnalysisAlgorthmD() |
. ebgorihmimpisLocation + gelletestVersionAlgordhdbs()
- ghgorthmiDs |
- eXgorinmimplementetionDs T ObwinEEGAalysisAlgorithmiD ¢~ —
, - agarthmiomes :
- resuliDeliverLocations

'+ EEGAnelysisService()
+» selResuliDeliverLecations(

+ SetFEGFEeDs0 r e
+ setAlorthaimplemenationDs0 ~ «FindEEGMetadataQueiyService |¢ =
+ setAlgorthmDsQ |
* setdlgorthaNamesQ o __)i\ + QueryEEGDataDescsiption: |
| .EEGFieFormats T]
| i - EEGFief ormetsAndL ocationtiaps -
| ! | . egcreems
| l ' .EEGFislLocations
| | .+ GueryEEGDetaDescrgtion) 1
| | |+ getEEGFizDescription() |
L—— | |
| \ - + ObtainEEGMetadata’ |<— —
| |
e e e e e
| 1
I |
we_ J
+JobSubmitAndManage © + QueryAlgorithmimplsLocation
- EEGFileLocations _eeGFieformats
- algorithmemplsLocations . algerithmimplsLocations
- resutDetiverLocations - algoithmiDs
+ destroydobQ) - algorthenimplementationiDs
+ getdobStatusQ . ge_tAlgo:im'nknptsLocmimo

+ submIFEGANalysisiob()

I
€

+ FindParallellobService

Figure 5.8: Implementing EEG analysis service

108

5.4. IMPLEMENTATION ARCHITECTURE AND INFRASTRUCTURE

e The QueryEEGDataDescription class is responsible for getting the metadata
of EEG files in order to provide location information to data access ser-
vices/mechanisins for file retrieval, and to provide EEG descriptive information
to this service for finding appropriate software implementations of analysis
algorithms, which can work with the format used by each specific EEG file.

EEG metadata query service was used to support its query on EEG metadata;

e The QueryAlgorithinlmplsLocation class is used to get location information
of software implementations of the EEG analysis algorithms based on either
algorithm 1Ds or algorithm implementation 1Ds. It was also supported by the

EEG analysis metadata service;

e The JobSubmitAndManage class interacts with the parallel job service for job
submission and management based on the obtained information of EEG files,

analysis algorithms and related software implementations.

5.4.5 Applications Layer

To support the EEG-based early detection of dementia application, several Web applications
have been developed, which compose specific services for end-users to use underlying grid
facilities via user friendly GUls. For instance, the application employs the GT4 Default
Index Service for the discovery of relevant application services; the Subject Information
Query Service (application service) to get information of a specific subject; and the EEG
analysis service (application service) for the analysis of all EEG data the subject has. In
the implementation, JSP (v2.0) {103] and HTML (v4.01) [104] are the main programming

language used at this layer. Tomcat (v5.0.17) [105] is the Serviet container employed for

109

5.5. RESULTS AND EVALUATION

5.5 Results and Evaluation

5.5.1 Utility

The implementation realises the EEG analysis scenario, as described in Section 5.2. Through
the Web portal, an end-user (e.g. Mike's GP) can find Mike's information and perform an
analysis on Mike’s EEG records using the analysis algorithms. Upon submission, Mike's
information, including his previous medical records which are at TSI and TUT is retrieved
and analysed. Results are then returned to the user under the implementation settings.
Obtained results can be visualised using, for example, the canonograms (see Figure 5.10)
and 2D expression of Tsallis entropy index (see Figure 5.11) to show changes in the EEGs
indicating Mike’s conditions. In Figure 5.10, the canonograms (from left to right) show the
FD value (or index) of Mike's EEG taken at time instances of 1 (data at TUT), 2 (data
at TSI) and 3 (data at UoP) respectively. The FD value for the left canonogram indicates
Mike in a normal condition with high brain activity, whereas the FD value for the right
canonogram indicates Mike in a probable Alzheimer Disease with low brain activity. The
middle one shows the stage in between. Similarly, in Figure 5.11, Tsallis entropy values
extracted from Mike's EEGs also show the disease progression and indicate abnormality at
the time instance 3. In summary, the changes (or trends) in the FD and Tsallis entropy
values provide some indication on the disease progression. This can help clinicians to detect

dementia at an early stage, to monitor its progression and its response to treatment.

i1

5.5. RESULTS AND EVALUATION

5.5.2 Collaborativity and Extensibility

A layered and componentised services development strategy enables the collaborative
development of grid environment for bioprofiling. The implementations of services and
Web applications are distributed over UoP, TSI and TUT. For instance, lower layer service
devclopers who arc familiar with GT4 and OGSADAI but not bioprofile applications
virtualise data and computational resources at UoP, TSI and TUT; higher layer service
developers at UoP compose lower layer services together into for example, the EEG analysis
service to support bioprofile applications; application layer developers at UoP and TSI make
use of services without knowing details of grid middleware tools and physical resources;
service developers can modify implemented (grid) Web services (except at client APls) at

any time without interference to other services/Web applications in most cases.

5.5.3 Performance

The use of today’s (grid) Web services techniques for service implementation with layered
and componentised services scheme may not be able to offer an efficient grid environment
for bioprofile analysis. Web services have certain advantages over other technologies (e.g.
CORBA [26] and Java RMI [25]), such as the platform and language independency. They
however still have some disadvantages nowadays, such as increased time for finding relevant
services/resources, the consumption of more bandwidth for data transfers, and the need
for more memory and CPU due to serialisation. This slows down the whole process for
dealing with a bioprofile analysis request. The solution to this problem may include the

improvement of Web services techniques. the use of other technologies and techniques, and

113

5.5. RESULTS AND EVALUATION

the inprovement of design strategy (e.g. finding trade-off between the process efficiency

and the ease of collaborative development and expansion of services).

Productivity can be low when employing a number of machines for an analysis job. To
investigate the scalability issue, a test was carried out on a Condor pool under PlymGRID
[95]. A total number of 1200 tasks were created based on the 400 subjects (each has
three EEG records). Four jobs were generated (each with 100, 400, 800 and 1200 tasks,
respectively) in order to investigate the performance of the Condor pool. The FD analysis
algorithm was used to compute the FD index for each synthetic EEG file. The munber of
Condor nodes was scaled from 6, 9, 12 up to 50 PCs. Table 5.1 shows the observed execution
time for running cach specified number of tasks on one machine and at different scales of
the Condor pool {(nodes from 6 to 50). Figure 3-12 illustrates the speed-up comparison of
running different jobs at different scales of the Condor pool. Preliminary results show that
the Condor peol with 50 nodes can speed the execution time more than 19 times when
compared with the time on a stand-alone PC. It is also observed that running a job with
more tasks is relatively more efficient than running a job with fewer tasks. This tnay be due
to the time saving for Condor to create and start a job and the time to transfer executables.
This work demonstrates the benefit of EEG analysis using high throughput computing (e.g.
by Condor Pool over Crid). However, it can be noticed that the payoff is low when executing

the EEG analysis on more than 18 PCs. This may be due to the following reasons:

o Waste of CPU time. The CPU tiine may be wasted due to the time required to create
and start a job, to transfer input files, output files and executables to each execute

node/PC, or due to some technical problems of Condor (e.g. preemption);

114

5.6. SUMAARY

o Lack of checkpoint services. Condor does not provide checkpoint services on Windows
machines to date, so that when a running task is interrupted by an unknown incident

or other programs on a machine, it requires a restart of the task;

o Processing and networking load of the Condor pool. The running of a Condor job

may be interfered by other applications on a processor or under the local network.

5.6 Summary

This chapter has presented the implementation of a distributed EEG analysis environment
to support the early detection of dementia. The implementation follows the proposed
architecture service model for bioprofile analysis over grid. It was performed in five layers
under the bioprofile analysis over grid architecture: from the bottom most databases and
compute elements, to the top most user interface. The implementation is based on an
EEG analysis scenario, which describes 1) the need for analysis of a patient: Mike, 2) how
his EEG data are distributed and 3) how grid may help in carrying out such analysis.
Two developed grid test-beds have been presented. The implementation architecture and

infrastructure have been illustrated. Immplementation details have been given.

Preliminary results show that the implemented grid environment gives supports to clinical
users in offering seamless access to distributed resources, and providing clinical evidences (i.e.
analysis results) during diagnosis. The results also show that a layered and componentised
services development strategy enhances collaborativity and extensibility in developing grid

environment for bioprofile analysis. The results reveal the performance issues which must

- be'considered in any future development.

116

Chapter 6

A Scheme for Knowledge

Representation of Grids

6.1. INTRODUCTION

6.1 Introduction

In grid, knowledge representation is important in delivering semantics to grid mechanisms
for automating information exchange, sharing and integration between grid entities. To
date, there are many efforts, which have focused on knowledge representation in somne
specific sub-domains of grid, such as ontologies for description of (grid) resources [71] [72]
[73] and that of (grid) services [74] (73] [76]. However, there is less research that has
been made in the aspect of organising multiple descriptions that represent individual grid
entities together to represent some parts of, or even an entire, grid environment. This we
believe is significant in knowledge-based global coordination between different grid-related

components (e.g. resources, applications, security, quality of service and users).

The knowledge representation of a grid environment is not an easy task since the concept of
grid covers many computing and communication areas, such as virtualisation, data storage
and management, distributed computation, networking, security and QoS. Xing et al [77]
proposed a solution to that in 2006, as discussed in Section 2.6.2. However, this solution
is not very practical since it makes difficult for developers to use description languages,
which are different to the language used by the core ontology, to collaboratively represeut

individual grid entities and their relationships.

This chapter aims to propose a scheme, which offers a way to organise multiple (heteroge-
neous) descriptions of individual grid entities together for knowledge representation of grid.
This scheme can solve the problem addressed above. It is intended to underpin the concept
of bioprofile analysis over grid in the aspect of knowledge-based global coordination between

components of bioprofile analysis over a grid.

118

6.2. A SERVICE-ORIENTED GRID MODEL

The chapter is organised as follows. Section 6.2 presents a service-oriented grid model,
which further classifies and clarifies grid into 13 components based on the bioprofile analysis
over a grid architecture. Section 6.3 proposes a schematic multiplex description architecture
for organising heterogeneous descriptions of individual grid entities together for knowledge
representation of grid. Section 6.4 proposes a kernel ontology skeleton, which can be used
as a framework for developing a kernel ontology, as a part of the description architecture.
Section 6.5 demonstrates an implementation example of the description architecture in order

to prove the concept. Finally, Section 6.6 concludes the chapter.

6.2 A Service-oriented Grid Model

The term service-oriented grid means a type of grid environment, which makes extensive use
of existing and emerging standards from all segments of the Web services community [27}.
In a service-oriented grid, services play key roles in the sharing of distributed resources.
In order to capture an abstract view of a service-oriented grid, we extend the bioprofile
analysis over a grid architecture (see Section 3.4), and consider a service-oriented grid from
two points of view - the provisioning and the use of services. Figure 6.1 presents an overview

of the proposed service-oriented grid model.

From a provisioning of services point of view, services are interfaces to or representations
of virtualised resources (e.g. data, computation, information and knowledge resources).
The virtualisations are carried out by grid middleware in a tightly-coupled manner with
underlying physical resources (e.g. databases, knowledge-bases and high performance or

throughput clusters). Services are held by service containers, which can be regarded as

119

6.2. A SERVICE-ORIENTED GRID MODEL

_______________________________ GridPartner . _____..
’ "\
H : Appadmin Appuser Appdeveloper]
E VO admin VOuser VOuser VOuser VOuser i
- :
Y, . U, S . S 2

Security Quality of Service Application
OO sz sls [oaaas) o
| | Grid Jobs Grid Jobs

T > O00O0 OO0

< 1

Virtual Organisation Virtual Organisation

!
P Grid Node _ Grl_d_Noda _ 2 ‘
[~ - Servicacontalner | | Gridaccess point ol Grid Conriection
: *Protocols -
Grid Services Virtual Resources N
sNetworks & Inner
EENYaVaValikele e “Networks
oEtc.
Grid Middleware
—>)L 2C 30 3L)
Physical resources

Databasaes Kﬁowledge—base’s

— 0000 0000 <S<<
e JUI)) T

<:ﬂ submitto €— bedeployedinto

Figure 6.1: A service-oriented grid model

120

6.2. A SERVICE-ORIENTED GRID MODEL

forins of nodes in a grid environment. Another major type of grid node is a grid access
point, which can provide interfaces for Virtual Organisation (VO) users or administrators
to use or control VOs. A group of grid nodes along with the connections between them can
then be organised into a VO for sharing resources within a specific community (Note that
a grid node might be held by multiple VOs). In order to provide security functionalities
(such as access control) and to deliver the user required Quality of Service (QoS), security
and QoS mechanisms and policies can be built into the aboveinentioned grid entities and/or

treated as resources to be accessed fromn services.

From a use of services point of view, a service-oriented grid is administrated by certain types
of VO administrators, and used by different kinds of VO users, who might be the user or the
developer of an application. The use of a grid is based on the pre-designed or automatically
configured (grid-cnabled) applications and via diverse grid jobs to solve specific problems.
When security or QoS functionalities provided by a VO do not reach the corresponding
requirements of an application (e.g. a VO cannot gnarantee a specific level of QoS required
by an application), additional security or QoS mechanisms will need to be deployed in the

VO.

Note that the interactions between some grid entities described above may have various
behaviours. For example, a VO may not have any QoS policies and implementations; and
in some cases, a virtual resource can be treated as a part of a grid service. Moreover, in the
model, services are only layered logically. That is to say, a group of services can be held by
the same type of service containers, but some services may be logically built on top of other

services and interact between them.

121

6.3. A SCHENMATIC MULTIPLEX DESCRIPTION ARCHITECTURE FOR
KNOWLEDGE REPRESENTATION OF GRIDS

6.3 A Schematic Multiplex Description Architec-

ture for Knowledge Representation of Grids

The knowledge representation of an entire grid environment is not an easy task since the
concept of grid covers many computing and communication areas, such as virtualisation,
data storage and management, distributed computation, networking, security and QoS.
Furthermore, to present such an environment, we may also face a heterogeneous description
environment, since the description of an instance of a defined grid entity can be based on
various techniques and/or languages. For example, a grid service can be described using only
WSDL [106], or with the support of OWL-S [107); a simple security management scheme

may be described using pure XML, and a more complex one may be described using OWL.

A Schematic Multiplex Description Architecture (SNMDA) is proposed to overcome the
aforementioned problems, and eventually to support knowledge representation of any grid
environment. By the term “multiplex description” here we mean two aspects of practice.
One aspect is the separation of concerns. That is to say, the description of the concept of an
entire grid environment should be based on separated descriptions of grid sub-domains
with distinct features, with their interoperation only relying on additional integration
schema/ontologics. Therefore, the knowledge of cach defined grid sub-domain can be
managed independently. Also, the change of the knowledge in a sub-dormain will not lead

to a series of changes in other sub-domains.

The other aspect of practice is the use of diverse description techniques and/or languages
(e.g. pure XML, RDF and OWL) for grid knowledge representation. This means that the

SMDA should be flexible enough. to work with different formats and types of description

6.3. A SCHEMATIC MULTIPLEX DESCRIPTION ARCHITECTURE FOR
KNOWLEDGE REPRESENTATION OF GRIDS

o Service Descriptions describe services in grids. A service can be either tightly-coupled
or loosely coupled to other services. For those loosely-coupled services, from an OWL-
S [107] point of view, the overall ontology structure for service descriptions should
contain three major parts, i.e. 1) the service profile for advertising and discovering
services; 2) the process model, which gives a detailed description of a service's
operation; and 3) the grounding, which provides details on how to interoperate with

a service, via messages [107];

Security Descriptions facilitate security depictions in providing a cornmon grid security
vocabulary, and the expression of grid security concepts and relationships between
such defined concepts. A well organised group of security descriptions must link the
top level of applications’” and users’ security requests with the bottom level of detailed

descriptions of security actions taken in grids;

QoS Descriptions mainly cover those knowledge representation areas, such as
descriptions of user and application QoS requests and the semantics of the monitoring
and the management of grid jobs, services and resources, which include ontologies for
resource and service matching, job scheduling, etc. Most QoS descriptions work closely

with descriptions of other grid entities, such as resources, services and applications;

Application Descriptions (semantically) describe any computing-related applications.
The description of an application may include the roles of the application users and
administrators, workflows of the application, what the sccurity and QoS requirements
of the application are, etc. The ontology representation of the aforementioned
application, the distributed EEG analysis, can be considered as an example of this

type of description;

124

6.3. A SCHEMATIC MULTIPLEX DESCRIPTION ARCHITECTURE FOR
KNOWLEDGE REPRESENTATION OF GRIDS

e Grid Kernel Ontologies are the heart of the whole architecture. This kind of (ontology)
description links different types of grid sub-domain description together, and defines
high-level relationships between them. For example, a grid kernel ontology may
bridge specified application and service descriptions to help users and/or systems
find out relevant services in grids based on the required functionalities offered by
applications (e.g. the analysis of medical images or retrieval of a patient’s historical
information). Moreover, the relationships between the grid kernel ontologies and
the above-described types of descriptions should, in our opinion, be loosely-coupled.
That is to say, in a grid kernel ontology, we may only define the description instance
and related description schema/ontology of a grid entity (e.g. service, resource, QoS
and security) instead of describing the grid entity in detail to maximally reduce the
work of interoperation between the grid kernel ontology and other grid sub-domain
descriptions (e.g. the mapping of different terms and semantically bridging different

concepts);

Integration schema/ontologies provide (semantic) additional integration functional-
ities between descriptions of different grid sub-domains when a single grid kernel
ontology is unable (e.g. it has unavoidable mappings between descriptions) or
inappropriate {e.g. low level interoperation between descriptions) to deliver. An
example of this kind of description can be the mappings between the functions a VO
can offer with application requirements in sub-domains like security, QoS, service,

partners, etc.;

Other grid-related descriptions mainly include descriptions of other grid entities,
such as the entity grid job, which may define semantics for job description formats,
relationships between grid jobs and application workflows and between grid jobs and

services, etc. . o i} _

6.4. A KERNEL ONTOLOGY SKELETON

6.4 A Kernel Ontology Skeleton

A grid kernel ontology skeleton is proposed to provide a framework for developing grid kernel
ontologies. It aims to define classes of main grid entities, fundainental relationships between
those classes and basic constraints to those classes, and means for the integration of grid
kernel ontologies with grid sub-domain descriptions. The design of the grid kernel ontology
skeleton is based on the proposed service-oriented grid model, as described in Section 6.2.
The ontology skeleton can be easily extended by adding additional classes, properties and
constraints. One important feature of the ontology skeleton is that it uses a loosely-coupled
manner for the integration with grid sub-domain descriptions. The feature is expected to
offer componentised developinent of descriptions in different grid domains and to maximally
reduce the interoperation work between those descriptions. [t can thus adapt to the rapid

development of grid technology.

In our grid kernel ontology skeleton development, the Webh Ontology Language (OWL) [63],
as a well known W3C recommendation, is used for the implementation. The selection of
OWL provides more facilities for expressing meaning and sernantics than XML, RDF, and
RDF-S, and makes the ontology easier to extend. Moreover, in the implementation, Protege
(108] is used as the ontology editor. OWLViz [109] is employed for ontology visualisation.
RacerPro [110] is used as the inference system. The latest version of the implemented grid

kernel ontology skeleton is downloadable at [111].

6.4. A KERNEL ONTOLOGY SKELETON

6.4.1 Class Definition and Hierarchy

In the proposed service-oriented grid model, we described a set of grid entities. The two
top-layer entities are VO and application. Others are the associated components, which
can be constructed to support them. For the design of the grid kernel ontology skeleton,
we map all the described grid entities into main abstract classes and their relationships
into properties and constraints. Table 6.1 presents the main (abstract) classes and their
descriptions as defined in the ontology skeleton. Soine lowerlevel sub-classes are shown in

Figure 6.3.

The ontology skeleton uses subclasses, as “Named***” (e.g. NamedService) / “***Instance”
(e.g. GridConnectionlnstance), ****Description” (e.g. ApplicationDescription) and
“***DescriptionSchema” (e.g. JobDescriptionSchema) to provide information of grid sub-
domain descriptions instead of directly defining specific grid sub-domain properties and/or
constraints to main grid entities to avoid, such as attribute overlapping with grid sub-domain
descriptions. For example, the class “Service” contains two subclasses, NamedService
and ServiceDescription. Each named service can be described by one or more service
description(s), and each service description is accompanied with a single or a set of
description schemas/ontologies. Thus, the functions offered by grid kernel ontologies and
service descriptions can be distinguished. A grid kernel ontology is then able to work
with various types and formats of service descriptions. The technical change of service
descriptions will thus not lead to intensive mappings between them. In other words, a user
or a system will be able to find a required service in a grid kernel ontology, but will obtain the
detailed descriptions of the various implementations of the service from service ontologies or

other knowledge representation techniques based on the instances of ServiceDescription and

6.4. A KERNEL ONTOLOGY SKELETON

Table 6.1: Main/Abstract classes of the proposed grid kernel ontology skeieton

Class

Description

PhysicalResource

Any computing-related resources, such as a PC, a high
performance computer, a binary file, a data storage and
communication networks.

GridMiddleware

Software stacks designed to virtualise and provide access
to physical resources.

VirtualResource | Logical representation of a/multiple physical resource(s).

Security The control of risks related to the access of a VO, a grid
service, data, etc.

QoS Quality measure and control in order to provide different

priority to different grid users, or to guarantee a certain
level of performance to grid applications.

Service (Grid
Service)

Software components, which provide platform-
independent protocols and standards used for exchanging
data between applications. They can be either stateful or
stateless, as compared with a typical Web service.

GridJob Paticular units of work to solve a/multiple problem(s)
defined by a grid application. They can be described either
abstractly or concretely.

GridNode Nodes in a grid environment, including service containers,
grid clients, etc.

GridConnection | Logical connections between grid nodes.

Partner A specified role in the access to resources and/or services
within a VO or a grid application.

GridVO A type of administrative domain for sharing resources
across different institutions and/or individuals in order to
achieve a specific goal.

Application A collection of work items that can carry out complex
computing tasks by using grid services and resources.

Support Additional entities which provide global support for

descriptions of grid components.

6.4. A KERNEL ONTOLOGY SKELETON

ServiceDescriptionSchema. When technical changes of service descriptions happen, we only
need to add or modify the instances of the above two subclasses in a grid kernel ontology.
This avoids a huge amount of work on attribute and element mapping and description

transformation.

Morcover, we divided “partners” into two categorics, and defined two (sub)classcs,
GridPartner and ApplicationPartner, under the class Partner. The GridPartner class
is for the descriptions of individual roles for using and managing grid facilities. The
ApplicationPartner class is for descriptions of the individual roles for using and managing
applicatious. For instance, for bioprofiling. we may have certain categories of users and

administrators, such as patient, researcher, administrator and clinician.

The proposed grid kernel ontology skeleton also contains two important (sub)classes:
QoSPolicy and SecurityPolicy, which are used to hold all “policy™ instances for other grid
entities to invoke. For example, a Named VO instance may have a NamedSecurityPolicy in-

stance for access control; and a NamedApplication instance may require a NamedQoSPolicy

instance for the statement of its QoS requirements.

6.4.2 Properties and Constraints

To represent relationships between and constraints to the determined classes, we have also

defined a set of propertics and constraints.

The defined properties include:

130

6.4.

A KERNEL ONTOLOGY SKELETON

“hasDescription”, which describes an one way “has description” relationship between

the object class “Named**** or “***[nstance” and the subject class “***Description”;

“useDescriptionSchema”, which describes an one way “use description schema”
relationship between the object class “***Description” and the subject class “***De-

scriptionSchema’”;

“hasPartner”, which describes an one way “has partner (i.e. user, administrator,

etc.)’ relationship between, such as the object class “NamedApplication” and the
subject class “NamedApplicationPartner”, and the object class “NamedVO” and the

subject class “NamedGridPartner”;

“requireService”, which describes an one way “require service” relationship between,

the object class, such as “Named Application”, and the subject class “NamedService”;

“hasService”, which describes an one way “has service” relationship between the

object class, such as “NamedVO?, and the subject class *NamedService”;

“hasGridMiddleware”, which describes an one way “has grid middleware” relationship
between the object class, such as “NamedVO” and the subject class *NamedGridMid-

dleware”;

“supportApplication”, which describes an one way “support application” relationship
between the object class, such as “NamedVO”, and the subject class “NamedAppli-

cation”;

“achieveByJob”, which describe an one way “achieved by job” relationship between

the object class *NamedApplication” and the subject class “NamedGridJob”;

131

6.4. A KERNEL ONTOLOGY SKELETON

“requireVirtualResource”, which describes an one way “require virtual resource”
relationship between the object class, such as “NamedApplication” and the subject

class “NamedVirtualResource”;

“hasVirtualResource”, which describes an one way “has virtual resource” relationship
between the object class, such as “NamedVQ” and the subject class “NamedVirtual-

Resource”;

“hasPhysicalResource”, which describes an one way “has physical resource” rela-
tionship between the object class “NamedVirtualResource” and “NamedPhysicalRe-

source”;

“hasContainer”, which describes an one way “has (service) container” relationship

hetween the object class “NamedVO” and the subject class “Containerlnstance”;

“hasClient”, which describes an one way “has {grid) client” relationship between the
Y gr p

object class “Named VO and the subject class “Clientlnstance”;

“implements”, which describes an one way “is the implementation of” relationship
between, such as the object class “NamedSecurityEnforcement” and the subject class

“NamedSecurityPolicy™;

“connects”, which describes an one way, but reversible “lias communicatory connec-
tion with” relationship between the object class “Containerlnstance” and the subject

class “ClientInstance” or vice versa;

“hasGridConnection”, which describes an one way “has communicatory connections
between” relationship between the object class, such as “NamedVO” and the subject

class “GridConnectionlnstance™;

6.4 A KERNEL ONTOLOGY SKELETON

o “isA”, which describes an one way “is a” relationship between, such as the object
class “NamedApplicationPartner” and the subject class *“NamedGridPartner” {e.g. a

bioprofile analysis application partner: clinician, is a normnal grid user);

e “hasSecurityPolicy”, which describes an one way “has security policy” relationship
between the object class, such as “NamedApplication”, and the subject class

“*NamedSecurityPolicy”;

e “hasSecurityEnforcement”, which describes an one way “has security enforcement”
relationship between the object class, such as *NamedVO” and the subject class

“NamedSecurityEnforcement”;

o “hasQoSPolicy”, which describes an one way *has QoS policy” relationship between

the object class, such as *NamedVQ” and the subject class “NamedQoSPolicy™;

o “hasQoSEnforcement”, which describes an one way “has QoS enforcement” re-
lationship between the object class, such as “NamedVO", and the subject class

“NamedQoSEnforcement™;

General constraints used in the design include:

o “owl:allValuesFrom”, which describes, for example, a NamedService instance that can

only have description instance(s) from the class ServiceDescription;

¢ “owl:minCardinality”, which describes, for example, a ServiceDescription instance
that must have at least one ServiceDescriptionSchema (so the indicated service
description can be automatically parsed by the support of a or a group of predefined

schemas).

133

6.4. A KERNEL ONTOLOGY SKELETON

Other constraints are defined specific to individual classes. Those constraints indicate the
relationships between a specific class with other classes. For example, for an application, we
may need to consider what its description is; what kinds of people can use this application;
what security and QoS policy it has defined; what services are required to deliver specific
functionalities (e.g. data query and computation) defined by the application; what virtual
resources are needed in order to provide facilities required by the application; and how to use
grid jobs to solve various problems defined by the application. So, for the NamedApplication

class, we may have constraints, such as the following:

¢ hasDescription only (i.e. owl:allValuesFrom) ApplicationDescription;
¢ hasPartner only NamedApplicationPartner;

¢ hasQoSPolicy only NamedQoSPolicy;

o hasSecurityPolicy only NamedSecurity Policy;

¢ requireService only NamedService;

¢ archieveByJob only Named.Joblnstance;

¢ requireVirtualResource only Named VirtualResource.

134

6.5. AN IMPLEMENTATION OF THE SCHEMATIC MULTIPLEX
DESCRIPTION ARCHITECTURE

6.5 An Implementation of the Schematic Multi-

plex Description Architecture

An example of the implementation of SMDA is performed in order to demonstrate the
SMDA approach in utilising existing description techniques and organising heterogeneous
descriptions of grid entities to support the knowledge-based global coordination between
different grid components. The implementation example is based on the implemented grid-
enabled application: EEG analysis over grid for early detéction of dementia, as described
in Chapter 5. The example considers related descriptions in three major grid entities (i.e.

application, partner and service) and a grid kernel ontology.

6.5.1 An Implementation of SMDA-based Descriptions for
EEG Analysis over Grid for Early Detection of Demen-

tia

A. The Description of an Application

A description of the application, EEG analysis for early detection of dementia, is
implemented based (partly) on the generic application ontology developed by the
K-WF Grid project [75). The application description semantically describes certain
important entities of an application, including name, version, text-based description,

involved functions (e.g. Fractal dimension and Tsallis entropy analysis), input, and

output of an application. Appendix D shows an example of the implementation using

6.5.

AN IMPLEMENTATION OF THE SCHEMATIC MULTIPLEX

DESCRIPTION ARCHITECTURE

the ontology language OWL.

B. The Description of a Partner

The descriptions of two types of partners: grid and application partners, are
implemented. The grid partner descriptions are implemented based on the person
(XML) schema developed by IeSE [112|. The important entities concerned in such
descriptions include personal information (e.g. person name, title and contact details),
a person’s role, and a person’s ability in a grid environment. An example of such a

description implemented in plain XML is presented in Appendix E.1.

The application partner descriptions are implemented with the consultation of the
person schema of the draft version of the bioprofiling data model [88]. Such
descriptions involve four types of application partners. as clinician, patient, researcher
and bioprofiling administrator. The important entities concerned include personal
information, a person’s role and a person’s ability in the EEG analysis application. An
example of a clinician’s description implemented in plain XML is shown in Appendix

E.2

The Description of a Service

For simplicity, the WSDL files used in the implementation of those services described
in Section 5.4.6 are directly used as the descriptions of services. An example of an

EEG analysis service is presented in Appendix F.

D. A Grid Kernel Ontology

136

6.5.

AN IMPLEMENTATION OF THE SCHEMATIC MULTIPLEX

DESCRIPTION ARCHITECTURE

A grid kernel ontology has been implemented based on the grid kernel ontology
skeleton. All the above introduced descriptions were registered as instances into
the grid kernel ontology, in terims of the name or ID of a grid entity instance,
its description name(s)/ID(s) and corresponding description schema(s) used. For
example, for an EEG analysis service, we register the name or 1D of the service,
EEG Analysis as a service instance into the NamedService class, one of its descriptions,
EEG Analysis.wsdl, as a service description instance into the ServiceDescription class,
and the description schema WSDL as a service description schema instance into the
ServiceDescriptionSchema class. The ontology also directly uses those properties and
constraints defined by the ontology skeleton to express the relationships between those
instances. For example, the use of the property requireService and related constraints
to the class NamedApplication to express the implemented EEG analysis application
requires the support from the EEG analysis service and the subject. information query
service. Appendix G shows an example of the implementation of the grid kernel

ontology using the ontology language OWL.

6.5.2 Evaluation of the Implementation

The above-described implementation has been evaluated in the aspects of the delivery

of knowledge-related functionalities in the support of global coordination between grid

components.

A. Find required description(s)

6.5.

AN IMPLEMENTATION OF THE SCHEMATIC MULTIPLEX

DESCRIPTION ARCHITECTURE

This is important in retrieving required descriptions of grid entity instances in order
to let either a human or a machine to understand, for example, what an instance is
about, its requirements and the functionalities it can deliver, so as to support the
use and management of appropriate grid components to meet specific requirements

defined by an application.

This functionality is achievable by querying the grid kernel ontology based on the
name/ID of an instance of one of those defined Nained*** or ***Instance classes. The
grid kernel ontology will then provide the names/IDs of all registered descriptions
of the instance and corresponding schemas used in formatting those descriptions,
respectively. The name(s}/ID(s) of the selected description{s) can then be used
as abstract information to locate (e.g. by querying index services) and retrieve
the selected description(s). The name(s)/ID(s) of related schemas can be used as
indication information to support the selection of the correct parser(s) for parsing

those description(s).

Interoperability between different grid entities

The implementation example also delivers certain functionalities for the interoper-

ability between different grid entities, including

e Finding appropriate services required by an application or a service by querying
the NamedService class based on the name/ID of the application and the

property requireService. This functionality is important in service composition;

e Finding application partner groups corresponding to an application by querying
the NamedApplicationPartner class based on the name/ID of the application and

‘the property hasPartner. This functionality is important in the understanding

138

6.6. SUMMARY

of partner roles in an application. It is expected to clarify application security

and QoS policies for different types of application partners;

e Mapping application partner groups to grid partner groups by querying the
NamedGridPartner class based on the name/ID of an application partner group
and the property isA. This functionality is important in the understanding of
the relationship between application partner groups and grid partner groups.
It is expected to map security and QoS policies for a specific application user

group to those for a grid user group;

6.6 Summary

This chapter has presented a scheme for the knowledge representation of grids. The scheme
mainly consists of a Schematic Multiplex Description Architecture (SMDA) and a grid
kernel ontology skeleton. The description architecture can be used to organise heterogeneous
descriptions of individual grid entities together for the knowledge representation of grids.
The grid kernel ontology skeleton, which has been developed based on the proposed service-
oriented grid model, can be used as a framework for developing a kernel ontology, as a part of
the description architecture. In this chapter, an i1111>1e111e1'1t;ati011 example of the description
archtecture has also been presented in order to demonstrate the architecture’s approach
in utilising existing description techniques and organising heterogeneous descriptions of
grid cntitics to support the knovwledge-based global coordination between different grid

components.

139

6.6. SUMMARY

Overall, the schieme can solve the problem of organising heterogeneous descriptions of
individual grid entities together for knowledge representation of grid enviromments either
partly or entirely. The scheime underpins the concept of bioprofile analysis over grid in the
aspect of the knowledge-based global coordination between components of bioprofile analysis

over grid. The scheme is generic, so is also applicable to other sorts of grid environments.

140

Chapter 7

Discussion, Suggestion for Future

Work and Conclusion

141

7.1. INTRODUCTION

7.1 Introduction

Existing TCT technologies are inappropriate for bioprofiling because of the difficulties in
the use and management of heterogenecus I'T resources at different bioprofile centres. Grid
as an emerging resource sharing concept fulfils the needs of bioprofiling in several aspects,
including the discovery, access, monitoring and allocation of distributed bioprofile databases,
computation resources, bioprofile knowledge bases, etc. However, the challenge of how
to integrate the grid and bioprofile technologies together in order to offer an advanced

distributed bioprofile environment to support individualized healthcare remains.

The aim of this project was to develop a framework for bioprofile analysis over grid to support
individualised healthcare. The framework provides a basis for a “grid-based” solution to

the challenge of “distributed bioprofile analysis™ in bioprofiling.

This chapter discusses the main contributions of this work, its limitations and possible future

work.

7.2. CONTRIBUTIONS TO KNOWLEDGE

7.2 Contributions to Knowledge

In summary, this thesis presents research that has achieved the following:

A. An Architecture for Bioprofile Analysis over Grid

The design of a suitable architecture is fundainental to the development of bioprofile
analysis over grid. The investigation of an architecture for bioprofile analysis
over grid was based on those questions addressed in “Research Question A”. An
investigation was undertaken into aspects of the general concept and characteristics of
bioprofiling, bioprofile analysis requirements, the main distributed bioprofile analysis
system/environment components and their relationships. and the overall structure of
bioprofile analysis over grid. The developed architecture provides an understanding
of bioprofile analysis over grid, and also creates a means for the categorisation,
determination and organisation of core grid components in order to support the
development and use of grid for bioprofile analysis. The developed architecture

delivers a possible answer to the second research hypothesis.

B. A Service Model for Bioprofile Analysis over Grid

Service is a core grid component. It normally provides platforin independent
protocols and standards used for exchanging data between clients and resources. Our
investigation of a service model for bioprofile analysis over grid is based on those
questions addressed in “Research Question B”. The investigation focused on the issues
of service collaboration, extensibility and reusability. [t also used EEG analysis as

an example of bioprofile analysis to address the utilisation of existing services and

143

=~

Al

CONTRIBUTIONS TO KNOWLEDGE

the developinent of new services in order to meet requirements defined by bioprofile

analysis appli_cations. The investigation has delivered a service design principle, a
service architecture for bioprofile analysis over grid, and an EEG analysis service
model. The developed service model provides the knowledge in construction and

organisation of services in support to distributed bioprofile analysis applications.

Two grid test-beds and a practical implementation of EEG analysis over grid.

The investigation of grid test-bed and grid environment for EEG analysis was
based on those questions addressed in “Research Question C". Grid test-beds are
fundamental to any practise-required grid-related projects. The development of the
BIOPATTERN grid has provided practical knowledge in utilising existing bioprofile,
grid and other ICT technologies to provide an essential experimental platform for
research in bioprofiling over grid. The building of PlymGRID offers knowledge in
the development of a campus grid environment. The implementation of an EEG
analysis over grid demonstrates how resources, grid middleware and services can be
utilised, organized and implemented to support EEG analysis for the early detection
of dementia. The result of implementation proves the third research hypothesis
that existing services and/or tools can be directly utilised or organised to support
distributed bioprofile analysis. The evaluation results show that the implemented
grid-enabled EEG analysis platform delivers support to clinical users in offering
seamless access to distributed resources, and providing clinical evidence (in terms of
biomarkers) during diagnosis. This partly proves the first research hypothesis that grid
can provide solutions for distributed bioprofile analysis. The results also show that a
layered and componentised service development strategy enhances collaboration and

extensibility in developing a grid environment for hioprofiling. This proves the fourth

144

~

CONTRIBUTIONS TO KNOWLEDGE

research hypothesis that the issues of *“application-driven development”, “separation
of concerns”, “layered services” and “generic” are important in the successful design
of a grid service. The developed distributed EEG analysis environinent can be used

to support a variety of research activities in EEG analysis.

. A Scheme for Knowledge Representation of Grids

Knowledge support is important in knowledge-based global coordination between
different grid components for any grid environments. However, hitherto only limited
work has been done in utilising and organising various knowledge representation
languages and schemas/ontologies to provide collaborative knowledge representation
of grids. The investigation of a knowledge representation scheme has thus been
undertaken based on those questions addressed in “Research Question D*. The
investigation has addressed the determination of major entities in representing the
bioprofile analysis over grid concept. 1t has delivered a flexible and extensible way
to organize multiple (heterogeneous) descriptions of individual grid entities together
for the knowledge representation of grids. It has also demonstrated an approach in
utilising existing description techniques and organising heterogeneous descriptions
of grid entities to support the knowledge representation of grids. The proposed
scheme is generic and so underpins the concept of bioprofile analysis over grid in
the aspects of knowledge-based global coordination between grid components. The
scheme offers a possible answer to the fifth research hypothesis that a group of multiple

(heterogeneous) descriptions can be organised to describe a grid environment.

7.3. LIMITATIONS OF CURRENT WORK AND DISCUSSION

7.3 Limitations of Current Work and Discussion

There are certain limitations in the project which should be addressed:

Al

Limited Development in Bioprofile, Grid and Knowledge Representation Technologies

As discussed in chapter 2 and 3, at present, none of bioprofile, grid and knowledge
representation is mature technology. Their concepts will obviously be extended.
Related new techniques will also be developed in the future. This could lead to
knowledge and development gaps in this work, especially on the issues of unforeseeable
service types, which nced to be defined in the proposed service model; under-
developing bioprofile, grid and other ICT techniques, which need to be further
clarificd before utilisation; new healthcarc-related legislations, which might change

requireinents of bioprofile in the aspects of privacy and security; etc.

Limited research resources

The practical part of this work is based on a number of bioprofile, knowledge
representation, grid middleware, and other ICT resources. However, there is far more
to representing a distributed bioprofile analysis environment in reality, especially in
the aspects of the use of real bioprofile data, the access of real clinical databases and

the limited scale of the grid test-beds.

Limited Demonstration and Validation of the Work

This thesis has presented a framework of bioprofile analysis over grid. Some

demonstrations and validations for the work have been carried out, however the

146

7.4. SUGGESTION FOR FUTURE WORK

limited development in bioprofile, grid and knowledge representation technologies
and limited research resources restrict those demonstrations and validations further
in every aspect. For example, the implementation of distributed EEG analysis
platforin only considers three analysis algorithins due to limited numbers of software
implementations of EEG analysis algorithms. There could be unseen issues (e.g.
special requirements on privacy and confidentiality in distributed environments) when
new analysis algorithms introduced into the grid; and there are absences of QoS
enforcement and weak security support from those basic security mechanisms in the
EEG analysis platform due to the lack of QoS and security contributions froin the

grid community.

7.4 Suggestion for Future Work

This project only delivers a foundation for the development of bioprofile analysis over grid.
In the future, the bioprofile analysis over grid research could lead to a number of topics,

which mainly include:

A. The Extension of the Service Model for Bioprofile Analysis over Grid

In the future, there will be plenty of new types of grid services coming out, such
as services for workflow management, and automatic security and QoS enforcements
based on predefined policies. It is necessary to address what roles those types of

services have and how to utilise thein to support bioprofile analysis over grid.

147

SUGGESTION FOR FUTURE WORK

. The Investigation and Development of Bioprofile Analysis Applications and Associ-

ated Services

There are a number of bioprofile analysis applications, such as the analysis and
fusion of medical images, genomic data and electrophysiological data. Each of those
applications has different characteristics and requirements. Therefore, it is essential
to investigate each user-required bioprofile analysis application, and Lo utilise as well

as to develop associated services to support those applications.

The Investigation of Bioprofiling Facilities

Bioprofiling requires many types of facilities, such as biomedical equipments, analysis
software/tools, and bioprofile data management software/tools. The investigation of
bioprofiling facilities is important in providing characteristic and interface inforination
of such facilities in order to build additional grid-related mechanisms for virtualisation

and interface transformation for sharing,.

The Utilisation of Tomorrow’s Grid Middleware and Services

This could relate to the future work of the service model extension. But it also
needs to improve and extend existing grid functionalities by updating and upgrading

existing grid middleware and services to advanced ones when it is necessary.

The Development of a Bioprofiling Data Model

The success of bioprofile analysis over grid is inseparable from a bioprofiling data
model. The development of such a model is essential in standardising federated data

access interfaces, the descriptions of hioprofile data-and facilities, security and QoS

148

SUGGESTION FOR FUTURE WORK

policies, etc.

. The Improvement of the Knowledge Representation Scheme

The proposed knowledge representation scheme is based on today’_s knowledge of grid
and knowledge representation. The scheme is flexible for any type of description
techniques, some parts of the scheme however still need to be improved in the future.
For example, it is necessary to extend the schematic multiplex description architecture

and the grid kernel ontology skeleton when new concepts of grid comne out.

. The Knowledge Representation of Grids

As discussed in Chapter 6, the knowledge representation of grids is important in
delivering knowledge support for global coordination between grid components. To
represent a grid environment based on the proposed knowledge representation scheme,
it is necessary to carry out two parts of work. One is to utilise Grid Sub-domain

Description Schemas/Ontologies. The other is to develop a grid kernel ontology.

There are a number of grid sub-domain description schemas/ontologies, which are
under development or will be developed, such as the introduced the service ontology
OWL-S [107] and those resource ontologies [71] [72] [73], and future security and QoS
related schemas/ontologies. They are utilisable in descriptions of grid sub-domain

entities.

A Grid Kernel ontology is essential in the knowledge representation scheme in order

to integrate descriptions of different grid entities together to support the knowledge

149

CONCLUSION

-~
ped

representation of grids. The development of a grid kernel ontology can rely on the
developed grid kernel ontology skeleton and should be based on a specified grid

environment.

H. The Utilisation of Knowledge Access Middleware and Services

There are some distributed knowledge access related middleware and services that are
under development, such as OGSADAI-RDF [113]. Those middleware and services
can provide appropriate support in the realisation of the knowledge representation
scheme in aspects of the access of distributed descriptions of grid entities. The
utilisation is a solution specific to the problem of knowledge representation of grids,
but can also be considered as a part of the future work of the *utilisation of tomorrow’s

grid Middleware and services”.

7.5 Conclusion

An importaut conclusion of this project is that it delivers a framework for bioprofile analysis
over grid. This provides a basis for a “grid-based” solution to the challenge of “distributed
bioprofile analysis™ in bioprofiling. The development of the framework covers four important
areas of research, including an architecture for bioprofile analysis over grid, a service model
for bioprofile analysis over grid, a demonstrative implementation of grid environment for
EEG analysis, and a knowledge representation scheme in support of global coordination
between components of bioprofile analysis over grid. The outcomes of this research have

been presented in this thesis. They have provided an understanding of the bioprofile analysis

150

7.5. CONCLUSION

over grid concept, and standardisations as well as approaches for building a grid environment

for bioprofile analysis.

Based on the results obtained from our design and implementation, we conclude as follows:

e Grid, as an emerging resource sharing concept can deliver the decentralised manage-
went and scamless access of distributed heterogeneous bioprofile analysis resources.

It can enhance the efficiency of healtheare.

e The existing grid services and/or middleware tools can be utilised to support the

implementation of grid cavironment for bioprofile analysis.

¢ The features of “application-driven development”, “separation of concerns”, “layered
services” and “generic® can enhance the collaborative nature of the grid service

development and deliver extensibility and reusability to services.

e The proposed Schematic Multiplex Description Architecture can be a solution to
the use of multiple heterogencous descriptions of grid entities for the knowledge

representation of grids.

e At present, bioprofile, grid and knowledge representation are not mature technologies.
The concept of bioprofile analysis over grid must be improved and/or extended with

the development of such technologies.

The outcomes of this research may be appropriate for other healthgrid and semantic
grid related projects. The proposed architecture and service model for bioprofile analysis
over grid can be referenced to the building of other healthgrid environments since most

parts of the architecture and the service model are generic to different healthgrids. The

151

7.5. CONCLUSION

implemented grid test-beds can be used or extended to support other types of distributed
data analysis. The proposed Schematic Multiplex Description Architecture is generic. It can
thus be referenced to other work on the development of semantic grids. The developed grid
kernel ontology can be used as a framework for the design and development of grid-related

ontologies.

The building of a grid environinent for bioprofile analysis is a long-term, step-by-step process.
In the future, developmeuts could focus on the investigation of real bioprofiling facilities;
the utilisation of future grid middleware and services; and the buildiug of bioprofiling data
model, as addressed in the “Suggestion for Future Work” section. The development must
follow users’ needs, and be driven by users’ feedbacks in order to deliver user-required
bioprofile analysis functionalities to clinicians and bioprofile researchers via secure, reliable,

seamless and efficient grid environments.

152

References

[1]

2]

3]

[4]

I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw, B. Horn, F. Maciel,
F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von Reich, *The Open Grid

Services Architecture (OGSA), version 1.5.7 GFD-1.080, July 2006.

S. R. Amendolia, F. Estrella, W. Hassan, T. Hauer, D. Manset, R. McClatchey,
D. Rogulinl, and T. Solomonides, “Mammogrid: A service oriented architecture
based medical grid application,” in Proceedings of the 3rd International Conference

on Grid and Cooperative Computing, pp. 939-942, 2004.

S. Santini and A. Gupta, “The role of internet imaging in the biomedical informatics

research network.,” in Proceedings of SPIE, p. 5018, 2003.

“Health-e-Child, a integrated platform for european paediatrics based on a

grid-enabled network of leading clinical centres.” http://www .health-e-child.org/.

S. R. Amendolia, F. Estrella, C. D. Frate, J. Galvez, \W. Hassan, T. Hauer,
D. Manset, R. McClatchey, M. Odeh, D. Rogulin, T. Solomonides, and R. Warren,
“Development of a grid-based medical imaging application,” in Proceedings of

Healthgrid 2005, from Grid to Healthgrid, pp. 59-69, 2005.

153

REFERENCES

[6)

(7]

(3]

[9]

[10]
(1]
[12]

[13]

[14]

S. Lloyd, M. Jirotka, A. C. Simpson, R. P. Highnam, D. J. Gavaghan, D. Watson,
and J. M. Brady, “Digital inammography: a world without ‘ﬁlm?,“ Methods of

Informalion in Medicine, vol. 44, no. 2, pp. 168-169, 2005.

J. S. Grethe, C. Baru, A. Gupta, M. James, B. Ludaescher, M. E. Martone, P. M.
Papadopoulos, S. T. Peltier, A. Rajasekar, and S. Santini, “Biomecdical informatics
research network: Building a national collaboratory to hasten the derivation of new
understanding and treatment of disease,” in Proceedings of Healthgrid 2005, from

Grid to Healthgrid, pp. 100-109, 2005.
“Biogrid, construction of a supercomputer network.” http://www.biogrid.jp/.

BIOPATTERN, “European network of excellence - computational intelligence for
biopattern analysis in support of ehealthcare (FP6-2002-1ST-1 No. 508803)."

2004-2008, www .biopattern.org.
MySQL, “The worlds most popular open source database.” http://www.mysql.com/.

PostgreSQL, “The worlds most advanced open source database.”

http://www.postgresql.org/.
“Apache Xindice.” http://xml.apache.org/xindice/.

1. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling scalable
virtual organizations,” International Journal of High Performance Compuling

Applications, vol. 15, no. 3, pp. 200-222, 2001.

L. Sun, P. Hu, C. Goh, B. Hamadicharef, M. Hess, E. C. Ifeachor, 1. Barbounakis,
M. Zervakis, N. Nurminen, and A. Varri, “Bioprofiling over grid for early detection
of dementia,” in Proceedings of the First International Conference on Scalable

Information Systems (INFOSCALE 2006), (Hong Kong), May 2006.

154

REFERENCES

[15] L. Sun, P. Hu, C. Goh, B. Hamadicharef, E. C. Ifeachor, 1. Barbounakis,
M. Zervakis, N. Nurminen, A. Varri, R. Fontanelli, S. Di Bona, S. Guerri,
S. La Manna, K. Cerbioni, E. Palanca, and A. Starita, “Bioprofiling over grid for

ehealthcare,” in Proceedings of the HealthGRID 2006, (Valencia, Spain), June 2006.

(16] P. Hu, L. Sun, C. Goh, B. Hamadicharef, E. C. Ifeachor, 1. Barbounakis,
M. Zervakis, N. Nurminen, A. Varri, R. Fontanelli, S. Di Bona, S. Guerri,
S. La Manna, K. Cerbioni, E. Palanca, and A. Starita, “The biopattern grid:
Implementation and applications,” in Proceedings of the 5th All Hands Meeting

2006, (Nottinghamn, UK), Sept. 2006.

(17] P. Hu, L. Sun, and E. C. Ifeachor, “A framework for bioprofile analysis over grid.”

Submitted to the [EEE System Journal.

[18] P. Hu, A. Anastasiou, L. Sun, and E. C. Ifeachor, “A model for bioprofile over grid
in support of chealthcare,” in Proceeding of the 3rd International Conference on
Computational Intelligence in Medicine and Healthcare (CIMED2007), (Plymouth,

UK), July 2007.

[19] P. Hu, L. Sun, and E. C. Ifeachor, “An approach to structured knowledge
representation of service-oriented grids,” in Proceedings of UK e-Science Programme

All Hands Meeting 2007, (Nottingham, UK), Sept. 2007.
[20] *What is middleware.” http://www.middleware.org/whatis.html.
[21] D. Bakken, “middleware.” Washington State University.

(22] K. Liakos, A. Burger, and R. Baldock, “Distributed processing of large biomedical

3d images.” Lecture Notes in Computer Science 3402, 2005.

REFERENCES

(23] J. Chun and J. Son, “A corba-based telemedicine system for medical image analysis
and modelling.” 14th IEEE Symposium on Computer-Based Medical Systems

(CMBS’01), 2001.

[24] A. Page, T. Keane, and T. Naughton, “Bioinformatics on a heterogenecous java
distributed system.” 19th IEEE International Parallel and Distributed Processing

Symposium (IPDPS’05), 2005.

[25] “Java Remote Method Invocation (Java-RMI).”

http:/ /java.sun.com/javase/technologies/core/basic/rmi/index.jsp.
[26] “CORBA: Conunon Object Request Broker Architecture.” http://www.omg.org/.

[27] L. Srinivasan and J. Treadwell, “An overview of service-oriented architecture, web

services and grid computing.” HP Software Global Business Unit, Nov. 2005.

(28] I. Foster, A. Roy, and V. Sander, “The grid: Blueprint for a new computing

infrastructure.” Morgan Kaufmann, 1999.

[29] 1. Foster and A. Tamnitchi, “On death, taxes, and the convergence of peer-to-peer
and grid computing.” 2nd International Workshop on Peer-to-Peer System

(IPTPS03), Feb. 2003.
[30] “Enabling Grids for E-sciencE (EGEE).” http://www.eu-egeec.org/.
[31] *The CoreGRID network of excellence.” http://www.coregrid.net/.
[32] “NextGRID: Architecture for next generation grids.” http://www.nextgrid.org/.
(33] #Java enterprise platform, Java EE/J2EE." http://java.sun.com/javaee/.

[34] “WebSphere, integration and application infrastructure software.”

http://www-306.ibm.coin/software/websphere/.

156

REFERENCES

[35] #The .NET framework.”

http://msdn2.microsoft.com/en-us/netframework /default.aspx.

[36] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, [. Sedukhin,
D. Snelling, S. Tuecke, and W. Vambenepe, “The WS-Resource Framework

(WSRF), version 1.0.” White paper, Mar. 2004.

[37] S. Tuecke, K. Czajkowski, 1. Foster, .J. Frey, S. Graham, C. Kesselman, T. Maguire,
T. Sandholm, P. Vanderbilt, and D. Snelling, “*Open Grid Services Infrastructure

(OGSI) version 1.0.” Global Grid Forum, GWD-R,, June 2003.

[38] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,” in
Proceedings of 1FIP Inlernational Conference on Network and Parallel Computing,

pp. 2-13, 2005.

[39] B. Sotomayor, “The Globus toolkit 4 programmers tutorial.” University of Chicago,

2005.
[40] “Oracle Database.” http://www.oracle.com/database/.

[41] M. Antonioletti, M. P. Atkinson, R. Baxter, A. Borley, N. P. Chue Hong, B. Collins,
N. Hardman, A. Hume, A. Knox, M. Jackson, A. Krause, S. Laws, J. Magowan,
N. W. Paton, D. Pearson, T. Sugden, P. Watson, and M. Westhead, “The design
and implementation of grid database services in QGSA-DAIL” Concurrency and

Computation: Practice and Ezperience, vol. 17, pp. 357-376, Feb. 2005.

[42] “Open Middleware Infrastructure Institute UK (OMII-UK).”

http://www.omii.ac.uk/.
(43] “Storage Resource Broker (SRB).” http://www.sdsc.edu/srb/index.php/Main _Page.
~ [44] “UNICORE: Distributed computing and data resources.” http://www.unicore.eu/.

157

REFERENCES

45| “glite, a lightweight middleware for grid computing.” http://glite.web.cern.ch/glite/.

[46] V. Breton, A. E. Solomonides, and R. H. McClatchey, “A perspective on the
healthgrid initiative,” in Proceedings of Cluster Computing and the Grid (CCGrid)
2004, pp- 434-439, Apr. 2004.

[47] V. Breton, L. Blanquer, V. Hernandez, N. Jacq, Y. Legr, M. Olive, T. Solomonides,
H. Rahmouni, |. Andoulsi, J. Herveg, and P. Wilson, “SHARE roadmap 1: Towards

a debate,” in Proceedings of Healthgrid 2007 conference, 2007.

[48] V. Hernandez and 1. Blanquer, “The grid as a healthcare provision tool,” Methods of

Information in Medicine, vol. 44, pp. 144-148, 2005.

[49] C. P. Waegemann, “Electronic health record.” Status report 2002, Medical Record

Institute.

[50] T. Handler, R. Holtmerier. J. Metzger, M. Overhage. S. Taylor, and Underwood,

“HIMSS electronic health record. definitional model version 1.0.” 2003.
[51] #NHS choices - your health, your choices.” http://www.nhs.uk.

[52] “Information for health: an information strategy for the modern NHS 1998-2005.”

National HEALTH Service, UK, 1998.
[33] “Building the information core: Implementing the nhs plan.” 2001.
[54) “Health Level Seven (HL7).” http://www.hl7.org/.
[35] “Open Electronic Health Records (OpenEHR}).” http://www.openehr.org/.
[56) “DELOS: A network of excellence in digital libraries.” http://www.delos.info.

[57) R. Davis, H. Shrobe, and P. Szolovits, “What is a knowledge representation?.” A/

Magazine, vol. 14(1), p. 1733, 1993.

158

REFERENCES

(58]

(59]

(60]

(61]

(62

[63]

[64]
[65]
(66]

[67)

[68]

C. Brewster and W. Yorick, “Ontol(‘Jgies, taxonomies, thesauri: Learning from
texts,” in Proceedings of The Use of Computational Linguistics in the Eztraction of
Keyword Mmformation from Digitel Library Content Workshop, (Kings College,
London, UK), 2004.

L. M. Garshol, “Metadata? thesauri? taxonomies? topic maps! making sense of it

all,” Journal of Information Science, vol. 30(4), pp. 378-391, 2004.

S. Grimm, P. Hitzler, and A. Andreas, “Knowledge representation and ontologies,”

Semantic Web Services: Concept, Technology and Application, pp. 51-106, 2007.

C. A. Welty, “An integrated representation for software development and discovery.”

PhD Thesis, Rensselaer Polytechnic Institute, 1995.
“Extensible Markup Language (XML).” http://www.w3.org/XML/.

“Simple HTML Ontology Extensions (SHOE).”
http://www.cs.umnd.edu/projects/plus/SHOE/.

“Resource Description Framework (RDF).” http://www.w3.org/RDF/.
“Web Ontology Language (OWL).” http://www.w3.0org/2004/OWL/.
*W3C: World Wide Web Consortium.” http://www.w3.org/.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
“The description logic handbook: Theory, implementation, applications,” Gambridge

University Press, 2003. ISBN 0-521-78176-0.

T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific American

Magazine, May 2001.

159

REFERENCES

[69]

[70]

(73]

[74]

[76)

D. D. Roure, N. R. Jennings, and N. R. Shadbolt, “The semantic grid: Past,
present, and future,” in Proceedings of the IFEE, vol. 93, p. 669681, Mar. 2005.

C. A. Goble, D. D. Roure, N. R. Shadbolt, and A. A. A. Fernandes, Enhancing

Services and Applications with Knowledge and Sernantics. 2004.

J. Brooke, K. Garwood, and C. Goble, “Semantic matching of grid resource
descriptions,” in Proceedings of Second European Across Grids Conference (AXGrids

2004), (Nicosia, Cyprus), p. 240249, 2004. LNCS 3165.

P. Alper, O. Corcho, I. Kotsiopoulos, P. Missier, S. Bechhofer, D. Kuo, and
C. Goble, “S5-OGSA as a reference architecture for OntoGrid and for the semantic

grid.” The 3rd GGF Semantic Grid Workshop, GGF16, 2006.

L. Pouchard, L. Cinquini, and G. Strand, “The earth system grid discovery and
semantic web technologies.” Semantic Web Technologies for Searching and

Retrieving Scientific Data (ISWCII), Oct. 2003.

S. Mliles, J. Papay, V. Dialani, M. Luck, K. Decker, T. Payne, and L. Moreau,
“Personalised grid service discovery,” in IEE Proceedings Software: Special Issue on

Performance Engineering. vol. 150, 2003.

M. Babik. E. Gatial, O. Habala, E. Hluchy, M. Laclavik, and M. Maliska, *Semantic
grid services in k-wf grid.” Second International Conference on Semantics,

Knowledge and Grid, Nov. 2006.

C. Zhu, Z. Liu, W. M. Zhang, W. D. Xiao, and .J. C. Huang, “An efficient
decentralized grid service discovery approach based on service ontology,” in

Proceedings of IEEE/WIC/ACM International Conference, vol. 20-24, Sept. 2004.

160

REFERENCES

[77]

(78]

(79]

(80]

(81]

82]

[83]

(84]

[85]

[86)

W. Xing, M. D. Dikaiakos, and R. Sakellarion, “A core grid ontology for the
semantic grid,” in Sizth IEEE International Symposium on Cluster Computing and

the Grid (CCGRID06), pp. 178-184, 2006.
“Dublin core metadata initiative.” http://dublincore.org/.

G. T. Henderson, E. C. Ifeachor, H. S. K. Wimalartna, A. E., and N. R. Hudson,
“Prospects for routine detection of dementia using the fractal dimension of the

human electroencephalogram,” pp. 284-289, 2000.

P. Zhao, P. Van Eetvelt, C. Goh, N. Hudson, S. Wimalaratna, and E. C. Ifeachor,
“EEG markers of azheimers disease using tsallis entropy,” in 3rd International
Conference on Computational Intelligence in Medicine and Healthcare

(CIMED2007), (Plymouth, U.K), July 2007.
“The Globus alliance.” http://www.globus.org.

“*BioinfoGRID, bioinformatics grid application [or life science.”

http:/ /www.bioinfogrid.eu/.

B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, 1. Raicu, and

1. Foster, “The Globus striped GridFTP framework and server.” SC2005, 2005.
Condor Project http://www.cs.wisc.edu/condor/.

J. M. Schopf, 1. Raicu, L. Pearlman, N. Miller, C. Kesselman, and I. Foster,
“NMonitoring and discovery in a web services framework: Functionality and

performance of the Globus toolkits MDS4.” ANL/NMCS-P1248-0405.

A. Nadalin, C. Kaler, P. H. Baker, and R. Monzillo, “Web service security: SOAP

message security 1.0 {WS-Security 2004)." Mar. 2004.

161

REFERENCES

[87]

[88]

(89}

[90]

[91]

(92]

(93]

“Information technology open systems interconnection - the directory:
Authentication framework.” Series X: Data Networks and Open System

Communications, ITU Recommendation X.509, Aug. 1997.

E. C. lfeachor, A. Anastasiou, C. Goh, N. Qutram, M. Zervakis, S. V. Huffel,
D. Timmerman, P. Lisboa, A. Taktak, A. Starita, K. Cerbiono, F. Ferreira, and
G. Balls, “A data model to support bioprofiling.” White Paper, BIOPATTERN

Project, Jan. 2007.

J. Broekstra, A. Kampman, and F. V. Harmelen, “Sesame, a generic architecture for
storing and querying RDF and RDF schema,” in Inlernational Semantic Web

Conference 2002, (Sardinia, Italy).
“Jena: A semantic web framework for java.” http://jena.sourceforge.net/.

P. Zhao, P. Van-Eevelt, C. Goh, N. Hudson, 5. Wimalaratna, and E. C. Ifeachor,
“Characterization of EEGs in Alzheimers disease using information theoretic
methods,” in Proceedings of the 29th IEEE EMBS Annual International Conference,

(Cit Internationale, Lyon, France), Aug. 2007.

P. Ziegler and K. R. Dittrich, “Three decades of data integration all problems
solved?.” 18th IFIP World Computer Congress (WCC2004), vol. 12, pp. 3-12, Aug.
2004.

D. S. Knopman, S. T. DeKosky, J. L. Cummings, H. Chui, J. Corey-Bloom,

N. Relkin, G. W. Small, B. Miller, and J. C. Stevens, *Practice parameter: diagnosis
of dementia (an evidence-based review): report of the quality standards
subcommittee of the american academy of neurology.” vol. 56, no. 9, pp. 1143-1153,

2001.

REFERENCES

[94]

[95]

[96]

[97]

(98]

[99]

(100]

[101]

[102)

B. Hjorth, “Eeg analysis based on time domain properties,” Electroencephalography

and Clinical Neurophysiology, vol. 29, p. 306310, Sept. 1970.

“Plymgrid, a campus grid at the university of plymouth.”

hittp:/ /ilsd13.uopnet.plymouth.ac.uk/.
“The BIOPATTERN grid portal.” https://141.163.121.185:8080.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A security architecture for
computational grids,” in Proceedings of the 5th ACM Conference on Compuler and

Communications Security, pp. 83-92, Nov. 1998.

M. Aldinucci, M. Danelutto, A. Paternesi, R. Ravazzolo, and M. Vanneschi,
“Building interoperable grid-aware assist applications via web services,” in Parallel

Computing Conference, Sept. 2005.

M. Lettere, D. Guerri, and R. Fontanelli, *Prototypal ambient intelligence
framework for assessment of food quality and safety,” in 9th Int. Congress of the
Ttalian Association for Artificial Intelligence (AI*IA 2005) Advances in artificial

Intelligence, (Milan, ltaly), pp. 442-453, Sept. 2005.

C. J. Tjhai, M. Tonlinson, R. Horan, M. Ahmed, and M. Ambroze, “On the efficient
codewords counting algorithm and the weight distributions of the binary quadratic
double circulant codes,” in Proceedings of IEEE Information Theory Workshop,

(Chengdu, China), Oct. 2006.
“SuSE Linux operating systems.” http://www.noveli.com/linux/.

T. Friese, S. G., and B. Freisleben, “GDT: A toolkit for grid service developinent,”

in Proceeding of the 3rg International Conference on Grid Service Fngineering and

- Management, pp. 131-148, 2006.

163

REFERENCES

[103]

[104]

[103]

(106)

[107]

[108]

[109)

(110]

[111]

[112]

[113]

“JavaServer Pages (JSP) technology.” http://java.sun.com/products/jsp/.
“HyperText Markup Language (html).” http://www.w3.org/MarkUp/.
“Apache Tomcat project.” http://tomcat.apache.org/.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. “Web Service
Description Language (WSDL} 1.1.” W3C Note, http://www.w3.org/TR/wsdl, Mar.
2001.

“OWL-8: Semantic markup for web services.” The OWL Services Coalition,

Technical Report, http://www.daml.org/services/owl-s/1.0/owl-s.html, Dec. 2003.

“The Protege ontology editor and knowledge acquisition system.”

http://protege.stanford.edu/.

“OWLViz: A visnalisation plugin for the Protg OWL plugin.”

http://www.co-ode.org/downloads/owlviz/co-ode-index.php.

“RacerPro: An OWL reasoner and inference server for the semantic web.”

http://www.racer-systems.com/.

“A grid kernel ontology skeleton for service-oriented grids.”

https://141.163.121.185:8080/download /grid KernelOntoSkeleton.owl.

R. Allan, X. D. Wang, A. Richards, and D. Chohan, *XML schema for-e-science
projects, grid users, applications and resources.” IeSE Developers’ Notes (1eSE-3),

Apr. 2007.

[. Kojima, “Design and implementation of OGSADAI-RDF.* GCF16 Semantic Grid

Workshop.

164

Appendix A

Examples of Database Schema used
in Description of Bioprofile

Information

165

Al

PATIENT INFO SCHEAMA

A.1 Patient Info Schema

The patient information schema contains 11 attributes of contents to describe a patient,

including patient’s ID: patient.id, first name: first_name, middle and last name: mid-

dle_last_name, date of birth: date_of_birth, gender: gender, ethnic origin: ethnic_origin, city

and country of birth: city_origin and country_origin, city and country of current resident:

city _origin and country_origin, and nationality: nationality.

CREATE TABLE patient

(

patient.id
first_name
middle_last_name
date_of_birth
gender
ethnic_origin
city_origin

country _origin

city of resident
country _of resident

nationality

VARCHAR(250)
VARCHAR(250)
VARCHAR(250)
DATE,
CHAR(1)
VARCHAR(250)
VARCHAR(250)

H

1

VARCHAR(250),
VARCHAR(250),
VARCHAR(250),

VARCHAR(250),

166

PRIMARY KEY,

CHECK ((gender IN (*M*, 'F')),

A.2. EEG DATA SCHEMA

A.2 EEG Data Schema

The EEG data schema contains 10 attributes of contents to describe an EEG data file,
including EEG data file ID: dataset_ic, which patient an EEG data file belongs to: belong_to,
EEG data file size: dataset_size, recorded length of an EEG data file (sec.): eeg_length,
number of channel used in recording of an EEG data file: nuber_of_channel, what format
of an EEG data file is: dataset_format, the location of an EEG data file: location, date of
the creation of an EEG data file: create.date, date of the modification of an EEG data file:

modify_date, text description to an EEG data file: description.

CREATE TABLE eeg.datasets
(

dataset_id VARCHAR(250) PRIMARY KEY,
belong_-to VARCHAR(250),

dataset size INTEGER,

eeg_length INTEGER,

number_of_channel INTEGER,

dataset_format VARCHAR(50),
location VARCHAR(250),
create_date DATE,
modify_date DATE
description VARCHAR(250),

A.3. EEG ANALYSIS ALGORITHM INFO SCHEMA

A.3 EEG Analysis Algorithm Info Schema

The EEG analysis algorithm information schema contains 6 attributes of contents to describe
an EEG analysis algorithm, including the 1D of an algorithm: algorithm_id, the name of an
algorithm: algorithm_name, analysis type (e.g. fractal dimension and Tsallis entropy) of an
algorithm: algorithm_type, the version of an algorithm: algorithm_version, the reference(s)
(e.g. research paper and thesis) of an algorithm: algorithm_reference, text description of an

algorithm: description.

CREATE TABLE algorithmns

(
algorithm_id VARCHAR(250) PRIMARY KEY,
algorithm_name VARCHAR(250),
algorithm_type VARCHAR(250),
algorithin_version VARCHAR(250),
algorithm_reference VARCHAR(250),
description VARCHAR(250),
);

168

A4, EEG ANALYSIS SOFTWARE IMPLEMENTATIONS INFO SCHEMA

A.4 EEG Analysis Software Implementations Info

Schema

The EEG analysis software implementations information schema contains 8 attributes of
contents to describe a software implementation of an EEG analysis algorithm, including
the ID of an implementation: implementation_id, the 1D of the reference algorithm of
an implementation: algorithm.d, the implementation type (e.g. C executable and java
classes): implementation_type, the version of an implementation: implementation_version,
the location of an implementation: location, date of creation of an implementation:
create_date, date of modification of an implementation: nodify_date, and text description

of an implementation: description.

CREATE TABLE algorithm_implementations

(
implementation_id VARCHAR(250) PRIMARY KEY,
algorithm_id VARCHAR(250),
implementation_type VARCHAR/(250),
implementation.version VARCHAR(250),
location VARCHAR(250),
create_date DATE,
modify_date DATE,
description VARCHAR/(250),
)

169

Appendix B

An Example of an XML based

Mapping Schema

170

This example of a mapping schema shows the attribute mapping information between a
standard EEG data schema and a legacy EEG data schema used at a bioprofile centre. In
the mapping schema, the element “domain_map” is considered as the head information of
mapping. 1t contains two sub-elements “src.domain® and “target_domain”, which describe
the legacy EEG data schema as the source schema needed to be mapped into the standard
EEG data schema as the target schema, and the URIs of them. The elements “field_map” are
considered as the body information. Each element “field_map” contains two sub-elements
“src.field” and “target_field”, which describe the mapping between an attribute name of the

source schema and an attributed name of the target schema.

<?xmlversion="1.0" encoding="UTF-8"? >
<bg:mapping xmlns="http://www.w3.org/2001 /XMLSchema”
xmlns:bg="http://www.tech.plymouth.ac.uk/spmc/biopatternGrid /” >
<bg:map>
<bg:domain_map>
<bg:src_domain>
http://biopatternGrid.com/TSI/bioprofile/
clinical/metadataftdatasets
< /bg:src.domain>
<bg:target_domain>
http://biopatternGrid.com/standard /bioprofile/
electrophysiology /EEG/metadata#eeg_datasets
< /bg:target_domain>
</bg:domain_map>
<bg:field_map>

<bhg:srefield>eeg length< /bg:src_feld>

171

<bg:target_field >eeg_duration< /bg:target_field >
< /bg:field.map>
<bg:field_map>
< bg:src_field >number_of_channel< /bg:src_field >
<bg:target_field >total_channel< /bg:target_field >
< /bg:field map>
<bg:field_.map>
<bg:src_field >dataset size< /bg:src_field >
<bg:target_field>eeg_file_size< /bg:target_field>
< /bg:field _map>
</bg:map>

< /bg:mapping>

Appendix C

An Example of an XML based

Mapping Schema Registry

173

This example of a mapping schema registry is an XML document, which can be published,
for example, via the GT4 default index services. The registry shows “domain_map”
information, which is the same as those contained in each mapping schema in order to
let users query for the specific mapping schema they want from index services. The registry
also uses the element “location”, which comes with each “domain_map” element, to present
the location of each mapping schema to users. Therefore, users will be able to retrieve

required mapping schemas based on the obtained location information.

<?xmlversion="1.0" encoding="UTF-87 >
<bg:mapping_registry xmlns="http://www.w3.org/2001/XN LSchema”
xmlins:bg="http://www.tech.plymouth.ac.uk/spmc/biopatternGrid/* >
<bg:map>
<bg:domain_map>
<bg:src.domain>
http://biopatternGrid.comn /TSI /bioprofile/
clinical/metadata#datasets
< /bg:src_domain>
<bg:target_domain>
http://biopatternGrid.com/standard /bioprofile/
electrophysiology /EEG /metadata#eeg_datasets
< /bg:target_domain>
</bg:domain_map>
<bg:location>
gsiftp://141.163.121.40:2811/home/globus/mappings/
eeg_tsiZbgstanrdard.xml

< /bg:location>

174

</bg:map>
<bg:map>
<bg:domain.map>
<bg:src_.domain>
http://biopatternGrid.com/TUT /bioprofile
/medical/metadataftdatasets
< /bg:src_domain>
<bg:target_domain>
http://biopatternGrid.com/standard /bioprofile/
clectrophysiology /EEG /mmetadata#teeg.datasets
< /bg:target_domain>
< /bg:domain_map>
<bg:location>
gsiftp://141.163.121.40:2811 /home/globus/mappings/
eeg_tut2bgstanrdard.xml
</bg:location>
< /bg:map>

<bg:mapping_registry>

Appendix D

An Example of an OWL based

Description of an Application

176

This example of a description of an application is implemented based on the K-WF
grid project. The example contains certain major classes to represent main entities
of an application, including “Description”, “Process” and “ApplD”. The “Description”
class contains two sub-classes “Name” and “Version™ to describe application name and
version information. The Process class contains four sub-classes “Input®, *Output®,
“Requirements” and “Function” to describe information of application input (e.g. ID of
a specific analysis algorithm), output (e.g. a type of analysis result). requirements, and
functions (e.g. Hjorth algorithm based EEG analysis and subject information query).

respectively.

<?xunl version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns# "
xmlns:xsd="http://www.w3.0rg/2001 /XMLSchema# ”
xmins:owltime="http://www.isi.edu/ pan/damltime/time-entry.owl# ”
smins:rdfs="http://www.w3.org/2000/01 /rdf-schema ”
xmins:owl="http://www.w3.0org/2002/07 fowl#
xmlns:de="http://purl.org/dc/elements/1.1/"
xmins="http://gom.kwfgrid.net/ontology/ApplicationOntology+#
xml:base="http://gom.kwigrid.net/ontology/ApplicationOntology” >
<owl:Ontology rdf:about="">

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XMLSchema# string” >
Application generic K-Wf Grid ontology. </rdfs:comment>
<owl:imports rdf:resource="http://gom kwigrid.net/ontology/
public/time/time-entry.owl# * />

< /owl:Ontology >

<owl:Class rdf:ID="Cost” >

177

<rdfs:subClassQf>

<owl:Class rdf:ID=" ComparisonCriteria” />

< /rdfs:subClassOf>

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
The concept of abstract Cost (it can be Time, Money, etc.)</rdfs:comment>
</owl:Class>

<owl:Class rdf:1D=" Transformation” >

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XMLSchema# string”

>

An activity that performs transformation. </rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:ID=" Activity” />

< frdfs:subClassOf >

< fowl:Class>

<owl:Class rdf:ID="Description” />

<owl:Class rdf:ID="Prediction” >

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001 /XMLSchema# string”™ >
An activity that performs prediction. </rdfs:comment >

<rdfs:subClassOf>

<owl:Class rdf:about="# Activity” />

< /rdfs:subClassOf>

< Jowl:Class>

<owl:Class rdf:1D="SimulationParameter’ >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/ XN LSchema# string” >
The parameter of simulation activity</rdfs:comment>

<rdfs:subClassOf>

178

<owl:Class rdf:1D=" ActivityParameter” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:1D="URL" />

<owl:Class rdf:1D="Reliability™ >

<rdfs:comment rdf:datatype="htip://www w3.org/2001 /XMLSchema# string® >
< /rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="# ComparisonCriteria” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:ID="ApplD" />

<owl:Class rdf:ID="Simulation” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
An activity that performs simulation.</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="# Activity® />

< frdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:ID=" Version” >

<rdfs:subClassOf rdf:resource="# Description” />

< fowl:Class>

<owl:Class rdf:about="# ActivityParameter” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XNMLSchema## string” >

An abstract concept representing parameters of the activity

. The subclasses or individuals of this concept could be later reused

179

as parameters of services invocations. < /rdfs:comment >
< fowl:Class>

<owl:Class rdf:ID="Requirements” >
<rdfs:subClassOf>

<owl:Class rdf:1D="Process” />

< frdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:iD="Output” >

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:!1D="isResultOf' />

< fowl:onProperty >

<owl:allValuesFrom>

<owl:Class rdf:ID="Input” />

< Jowl:allValuesFrom>

< Jowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# Process™ />

< fowl:Class>

<owl:Class rdf:ID="UserRating” >
<rdfs:subClassOf>

<owl:Class rdf:about="# ComparisonCriteria” />
< /rdfs:subClassOf>

<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >

The average rating of users of some entity

180

{e.g. a service, workflow. ..} < /rdfs:comment>

</owl:Class>

<owl:Class rdf:about="# Activity” >

<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >
An abstract concept for representing activities.</rdfs:comment>

< /owl:Class>

<owl:Class rdf:1D="Function” >

<rdfs:subClassOf rdf:resource="# Process” />

< /owl:Class>

<owl:Class rdf:1D=" Actuation” >

<rdfs:subClassOf rdf:resource="# Activity” />

<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchemna# string*® >
An activity that performs actuation of some value,

e.g. an update of control. < /rdfs:comment>

< fowl:Class>

<owl:Class rdf:1D="Speed” >

<rdfs:subClassOf>

<ow!:Class rdf:about="# ComparisonCriteria” />

< /rdfs:subClassOf>

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
< /rdfs:comment>

< fowl:Class>

<owl:Class rdf:1D="Menitoring” >

<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >
An activity that performs monitoring.</rdfs:comment>

<rdfs:subClassOf rdf:resource="# Activity” />

181

< fowl:Class>

<owl:Class rdf:about="# ComparisonCriteria® >

<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >
An abstract concept of an Comparison Criterium. These are

usually set by users and possibly adress both

services as well as workflows< /rdfs:comment>

< fowl:Class>

<owl:Class rdf:about="# Input” >

<rdfs:subClassOf rdf:resource="# Process” />

< fowl:Class>

<owl:Class rdf:1D="Name" >

<rdfs:subClassOf rdfiresource="# Description” />

<fowl:Class>

<owl:Class rdf:ID=" Analysis” >

<rdfs:subClassOf rdf:resource="# Activity” />

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XNLSchema# string” >
An activity that performs analysis. < /rdfs:comment>

< fowl:Class>

<owl:ObjectProperty rdf:ID="hasDivision” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
A ation of aggregation between and Organization and Division</rdfs:comment>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:1D="isPartOf’ >

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XMLSchema# string® >
A ation between a UserGroup and Virtual Organization to

which it belongs</rdfs:comnient>

< fowl:ObjectProperty >

<owl:ObjectProperty rdf:ID="hasAuthor” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Author of the text note.</rdfs:comment>

< /ow!l:ObjectProperty >

<owl:ObjectProperty rdf:1D="involvesPerson” >

<rdfs:domain rdf:resource="# Activity” />

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
An abstract property for ating users involved in activities.<

/rdfs:comment >

< /owl:ObjectProperty >

<owl:ObjectProperty rdf:ID="hasParameter” >

<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XNILSchema# string” >
An abstract property for ating parameters with activities<

/rdfs:comment >

<rdfs:range rdf:resource="# ActivityParameter” />

<rdfs:domain rdf:resource="# Activity” />

< /owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isMemberOf’ >

<rdfs:comment rdf:datatype="http://www.w3.org/2001 /XN LSchema# string” >
Relates people to various groups</rdfs:comment>

< fowl:ObjectProperty>

<owl:ObjectProperty rdf:1D="hasComparisonCriterium” >

<rdfs:domain rdf:resource="# Activity” />

<rdfs:comment rdf:datatype="hstp://www.w3.0org/2001/XMLSchema# string” >

The criterium associated with the activity, e.g. a Cost or UserRating<

183

/rdfs:comment>
<rdfs:range rdf:resource="# ComparisonCriteria” />
< fowl:ObjectProperty>
<owl:ObjectProperty rdf:ID="inRegion” >
<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >
ates the location with a region.</rdfs:comment>
< fowl:ObjectProperty>
<owl:ObjectProperty rdf:ID="involvesOrganization” >
<rdfs:domain rdfresource="# Activity” />
<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XMLSchema# string” >
An abstract property for ating organizations involved in
activities. < /rdfs:comment>
< fowl:ObjectProperty>
<owl:ObjectProperty rdf:ID="participatesln” >
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
A ation of aggregation between VirtualOrganization and Organization<
Jrdfs:comment>
< fowl:ObjectProperty>
<owl:ObjectProperty rdf:ID="administeredBy" >
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
The administrator/person responsible for the Virtual Organization<
/rdfs:comment>
< /owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasDescription” />
<owl:DatatypeProperty rdf:ID="url”>
-~ — —<rdfsrrange rdf:resource="http://www.w3.org/2001/XMLSchema# anyURI" />

184

<rdfs:comment rdf:datatype="http://www.w3.0org/2001 /XN LSchema# string” >
Person’s website with possibly additional information.</rdfs:comment>

< fowl:DatatypeProperty >

<owl:DatatypeProperty rdf:]ID="hasNationality” >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema# string” />
<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >
Person’s nationality. < /rdfs:comment>

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:1D="name” >

<rdfs:range rdf:resource="http://www.w3.0org/2001/XMLSchema# string” />
<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XNMLSchema# string” >
The name of the Virtual Organization</rdfs:comment>>

< /fowl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasEmail” >

<rdfs:range rdf.resource="http://www.w3.0rg/2001/XMLSchema# string” />
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Person’s preffered contact e-mail. < /rdfs:comment >

< /owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasPhoneNumber” >

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XMLSchema# string® >
Person’s preferred contact phone.</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema# string” />

< fowl:DatatypeProperty >

<owl:DatatypeProperty rdf:1D="hasFirstName" >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >

—Person’s first name.</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.0org/2001/XMLSchema# string” />

< fowl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="text” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XNLSchema# string” >
The free text contained in the Note</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema# string” />

< fowl:DatatypeProperty>

<owl:DatatypeProperty rdf:1D="description” >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema# string” />
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Short textual description of the Virtual Organization,

e.g. purpose, domain, etc.</rdfs:comment>

< /owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="unitRating” >

<rdfs:domain rdf:resource="+# UserRating” />

<rdfs:range rdf:resource="http://www.w3.0org/2001/XMLSchema# float” />
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XNMLSchema# string” >
Rating expressed as a float value between 0.0 and 1.0</rdfs:comment>

< /owl:DatatypeProperty>

<owl:DatatypeProperty rdf:1D="hasLastName” >

<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema# string” />
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XNMLSchema# string” >
Person’s last name.</rdfs:comment>

< /owl:DatatypeProperty >

<owl:DatatypeProperty rdf:1D="hasTitle” >

— <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >

186

Persons’s title - e.g. PhD</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema# string” />

< fowl:DatatypeProperty >

<Input rdf:ID="SubjectID” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XNMLSchema# string” >
ID of a subject (e.g. patient)</rdfs:comment>

</Input>

<AppID rdf:ID="EA4EDD _01435" />

<owl: AnnotationProperty rdf:1D="htmlForm" />

<Input rdf:1D="SpecificAnalysisAlgorithmID” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
The 1D(s) of user-required analysis algorithm(s)/method(s)<

/rdfs:comment>>

</Input>

<Function rdf:ID="SublnfoAccess” >

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XMLSchema# string” >
Access to subject information</rdfs:comment>

< /Function>

<Function rdf:1D="EEG_FD_Analysis” >

<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >
EEG analysis based on fractal dimension algorithm< /rdfs:comment>

< /Function>

<Function rdf:ID="EEG _Hjorth_Analysis” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001 /XN LSchema# string” >
EEG analysis based on Hjorth algorithm< /rdfs:comment>

</Function>

187

<Output rdf:ID="SubDescription™ >

<isResultOf rdf:resource="# SubjectID" />

< /Output>

< Version rdf:1ID="EA4EDD _alfa” >

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XMLSchema# string” >
Alfa version of EEG analysis for early detection of dementia<

/rdfs:comment >

< /Version>

<Function rdf:1D="EEG.TE_Analysis” >

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XNMLSchema# string” >
EEG Analysis based on Tsallis Entropy </rdfs:comment>

< /Function>

<owl:AnnotationProperty rdi:about="http://purl.org/dc/elements/1.1/identifier” />
<Output rdf:ID="AnalysisResults” >

<isResultOf rdf:iresource="# SpecificAnalysisAlgorithmlD” />

</Output>

<Name rdf:1D="EEGAnalysisForEarly DetectionOfDementia” >

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001 /XMLSchema# string” >
EEG analysis for early detection of dementia< /rdfs:comment>

< /Name>

</rdfRDF >

188

Appendix E

Examples of XML based

Descriptions of Partners

189

E.1. AN EXAMPLE OF AN XML BASED DESCRIPTION OF A GRID
PARTNER

E.1 An Example of an XML based Description of

a Grid Partner

This example of a description of a grid partner is implemented based on the leSE person
schema. The example describes a grid partner (in this case, a grid user account) in
two aspects, as personal information and as the partner’s role in a grid environment.
The personal information is described by the element “personName” and “personDesc”.
The element “personDesc” further uses sub-elements “personKey”, “shortDescription”,
“contactEMail” and “contactAddress” to describe the partner’s identification/reference,
text description, email and address used for contact, respectively. The partner’s role
is described by the element “roleKey”, *voName” and “roleDescription” to indicate the
identification/reference of the role that the grid partner plays, the text description to the

role, and which VO the grid partner belongs to, respectively.

<?xmlversion="1.0" encoding="UTF-8"7 >
<person xmins="http://www.w3.org/2001/XMLSchema” >
< personName>>
EEG analysis clinician group user
< /personName>
<personDesc>
< personKey>clinician.0137532< /personKey>
<shortDescription>
permitted clinicians for the use of distributed EEG analysis

< [shortDescription>

190

E.1. AN EXAMPLE OF AN XML BASED DESCRIPTION OF A GRID
PARTNER

<contactEMail>
eeganalysisapplicationadmin@biopattern.org
< [contactEMail>
<contactAddress>Biopattern
Network of Excellence, University of Plymouth,
Plymouth, UK
< fcontactAddress>
< /personDesc>
<personrole>
<roleKey>clinicianEEGAnalysisBGVO1</roleKey>
<voName>BIOPATTERNGridVO1l< /voName>
<roleDescription>
a shared user account for clinicians to carry out
EEG analysis over grid
< [roleDescription>
< [personrole>

< /person>

191

E.2. AN EXAMPLE OF XML BASED DESCRIPTION OF AN APPLICATION
PARTNER

E.2 An Example of XML based Description of an

Application Partner

This example of a description of an application partner is implemented partly based on the
draft of bioprofiling data model. It includes three main elements: “personID”, “personDes”
and “personRole”, which describes the ID of an application partner, the application partner,
and his/her role(s) in application(s), respectively. The element “personDes” composes
of certain elements, such as “surname”, “firstname”, “title”, “employer”, “position”,
“staffed”, “contactAddress”, and “contactEmail”, which describe the name and title of
the application partner, his/her employer, occupational position, employer 1D and contact
details, respectively. The element “personRole” consists of two elements, “role]D” and
“roleDes” to indicate the reference of the role in an application the partner plays, and the

text description of his/her role in the application, respectively.

<?xmlversion="1.0" encoding="UTF-8"7 >
<bg:person xmlns="http://www.w3.org/2001/XMLSchema”
xmlns:bg="http:/ /www.tech.plymouth.ac.uk/spmc/biopatternGrid/" >
<bg:personlD>bg_uop_007< /bg:personlD>
<bg:personDes>
<bg:surname>Bond </bg:surname>
<bg:firstname>James< /bg:firstname>
<bg:title>Dr< /bg:title>
<bg:employer>

<bg:employerName> Derriford Hospital</bg:employerName>

192

E.2. AN EXAMPLE OF XML BASED DESCRIPTION OF AN APPLICATION
PARTNER

<bg:employerAddress>
Plymouth Hospitals NHS Trust,
Derriford Road,
Crownhill,
Plymouth,
Devon,
UK,
PL6 8DH
< /bg:employerAddress>
< /bg:employer>
<bg:position>
Resident physician
< /bg:position>
<staffID>13579< /staffID>
<bg:contact Address>
PO Box 1300, Londen, UK, SE1 1BD
< /bg:contact Address>
<bg:contactEmail>james.bond@mi6.gov.uk < /bg:contact Email >
< /bg:personDes>
<bg:personRole>
<bg:rolelD>clinician_uk_sw_groupdc< /bg:rolelD>
<bg:roleDes>
A member of the clinician group 5c in south west of the UK.
< /bg:roleDes>

< /bg:personRole>

</bg:person>

E.2. AN EXAMPLE OF XML BASED DESCRIPTION OF AN APPLICATION
PARTNER

194

Appendix F

An Example of a WSDL based

Description of Service

195

This example of service description is implemented based on WSDL. It describes certain
Client API accessible operations of a parallel job service and related message exchange
interfaces. The operations include “jobSubAndRun” for submission and running of a parallel
job, “jobStatus” for the query of status of a submitted job, “desctoryJob” for job destroy,
and “givenServiceRegistryLocation” for the indication of client-preferred index services for

the discovery of computational resources.

<7xml version="1.0" encoding="UTF-§8"7 >

<wsdl:definitions name="“GridJobManagementService”
targetNamespace="http://tech.plym.ac.uk/phu/grid/services/
jobManagement/GridJobManagement”
xmlns="“http://schemas.xmlsoap.org/wsdl/*
xmins:apachesoap=“http://xml.apache.org/xml-soap”
xmlns:impl="“http://tech.plym.ac.uk/phu/grid /services/
jobManagement/GridJobManagement”
xmlins:intf=“http://tech.plym.ac.uk/phu/grid/services/
jobManagement/GridJobManagement”
xmlns:tns=“http://tech.plym.ac.uk/phu/grid/services/
jobManagement/GridJobManagement”
xmlns:tnsl=*http:/ /beans.service.grid.phu”
xmlns:wsa=“http://schemas.xmlsoap.org/ws/2004/03/addressing”
xmlns:wsdl=*http://schemas.xmlsoap.org/wsdl/”
xmlns:wsdlpp=“http://www.globus.org/namespaces/2004/10/
WSDLPreprocessor”
xmlns: wsdlsoap=“http:/ /schemas.xmlsoap.org/wsdl/soap /*

xmlns:wsntw=“http://docs.oasis-open.org/wsn/2004/06/

196

wsn-\WS-BaseNotification-1.2-draft-01.wsdl”
xmlns:wsrp="“http://docs.oasis-open.org/wsrf/2004/06/
wsrf-WS-ResourceProperties-1.2-draft-01.xsd”
xmlns:wsrpw="“http://docs.oasis-open.org/wsrf/2004,/06/
wsrf-WS-ResourceProperties-1.2-draft-01.wsdl”
xmlins:xsd="“http://www.w3.0rg/2001/XMLSchema” >
<wsdl:import location="../../wsrf/properties/WS-ResourceProperties.wsdl”
namespace= “http://docs.oasis-open.org/wsrf/2004,/06/
wsrf-WS-ResourceProperties-1.2-draft-01.wsdl” / >
<wsdl:import location="../../wsrf/notification/WS-BaseN.wsd|"
namespace= “http://docs.oasis-open.org/wsn/2004/06/
wsn-WS-BaseNotification-1.2-draft-01.wsdl” />
<wsdl:types>
<schema elementFormDefault=“qualified”
targetNamespace= “http://tech.plym.ac.uk/phu/grid/services/
jobManagement/GridJobManagement”
xmlns="http://www.w3.org/2001/XMLSchema”
xmins:rpns=“http://docs.oasis-open.org/wsn/2004/06 /
wsn-\WS-BaseNotification-1.2-draft-01.xsd”
xmlns:tns=“http://tech.plym.ac.uk/phu/grid /services/
jobManagement/GridJobManagement”
xmins:xsd=*http://www.w3.0org/2001/XMLSchema” >
<xsd:import namespace="“http://schemas.xmlsoap.org/
ws/2004/03/addressing”
schemaLocation="../../ws/addressing/WS-Addressing.xsd” />

<import namespace= “http://beans:service.grid.phu” />

197

<element name=“jobSubAndRun” >
<complexType>
<sequence>
<element maxQccurs=*“unbounded*
name="“stagelnFileLocation”
type="“impl:ArrayOf.tnsl_ArrayBean” />
<element maxQccurs=“unbounded”
name="“stageOutFileLocation”
type="“impl:ArrayOf_tnsl_ArrayBean” />
<element maxQOccurs=“unbounded”
name=“commandLine” type="“impl:ArrayOf_tnsl_ArrayBean” />
<element name=“userName” type=“xsd:string” />
<element name="“userGroup” type=*“xsd:string” />
< /sequence>
< /complexType>
< /element>
<complexType name="ArrayOf_tnsl_ArrayBean” >
<sequence>
<element maxQOccurs=“unbounded” minOccurs=*0"
name=“item” type=“tnsl:ArrayBean” />
< fsequence>
< [complexType>
<element name=“jobSubAndRunResponse” >
<complexType>
<sequence>

<element name=“jobSubAndRunReturn” type=“xsd:string” />

198

< /sequence>
< /complexType>
< [element>
<element name=“jobStatus” >
<complexType>
<sequence>
<element name=*jobEprFileName” type=“xsd:string" />
< /sequence>
< /complexType>
</element>
<element name="“jobStatusResponse” >
<complexType>
<sequence>>
<element name="“jobStatusReturn” type=-“xsd:string” />
</sequence>
< /complexType>
< /element>
<element name="“destroyJob” >
<complexType>
<sequence>
<element name="jobEprFileName” type=‘xsd:string” />
< /sequence>
< /complexType>
< /element>

<element name="“destroyJobResponse” >

<complexType>

<sequence>
<element name=“destroyJobReturn” type=“xsd:string” />
< /sequence>
</complexType>
< /element>
<element name="“givenServiceRegistryLocation” >
<complexType>
<sequence>
<element maxOccurs=“unbounded” name="serviceRegistryLocation®
type=“impl: ArrayOf_tns1_ArrayBean” />
< /sequence>
</complexType>
< felement>
<element name="*“givenServiceRegistryLocationResponse” >
<complexType>
<sequence>
<element name=“givenServiceRegistryLocationReturn”
type="“xsd:string” />
< [sequence>
< /complexType>
< felement>
<xsd:element name="totalJobSubmitted” type="xsd:int* />
<element name="“GridJobManagementResourceProperties” >
<complexType>
<sequence>

<element maxOccurs="1" minOccurs=%1"

200

ref="tns:totalJobSubmitted” />
< /sequence>
< /complexType>
< felement>
< /schema>
<schema elementFormDefault="“qualified”
targetNamespace= “http://beans.service.grid.phu”
xmlns=“http://www.w3.0rg/2001/XMLSchema” >
<import namespace=“http://tech.plym.ac.uk/phu/grid/
services/jobManagement/GridJobManagement” />
<complexType name="ArrayBean” >
<sequence>>
<element name=“doubleContext” type=“xsd:double” />
<element name="floatContext” type=*"xsd:foat” />
<element name="intContext” type=“xsd:int” />
<element name="stringContext” nillable="“true” type=*xsd:string” />
< /sequence>
< fcomplexType>
</schema>
< /wsdl:types>
<wsdl:message name="johStatusResponse” >
<wsdl:part element="impl:jobStatusResponse” name=“parameters”/>
< /wsdl:message>
<wsdl:message name=“givenServiceRegistryLocationResponse® >
<wsdl:part element="impl:givenServiceRegistryLocationResponse”

name= “parameters” />

201

< /wsdl:message>
<wsdl:message name=“destroy.JobResponse” >

<wsdl:part element="“impl:destroyJobResponse” name= “parameters” />
< /wsdl:message>
<wsdl:message name="“jobStatusRequest” >

<wsdl:part element="impl:jobStatus” name=“parameters” />
< /wsdl:message>
<wsdl:message name="“destroyJobRequest” >

<wsdl:part element=“impl:destroyJob” name=“parameters” />
< /wsdl:message>
<wsdl:message name="“givenServiceRegistryLocationRequest” >

<wsdl:part element="impl:givenServiceRegistryLocation” name=“parameters”/>
< /wsdl:message>
<wsdl:message name=“jobSubAndRunRequest” >

<wsdl:part element=*impl:jobSubAndRun” name="parameters” />
< /wsdl:message>
<wsdl:message name=“jobSubAndRunResponse” >

<wsdl:part element="“impl:jobSubAndRunResponse” name=“parameters” />
</wsdl:message>
<wsdl:portType name="*GridJobManagementPortType”
wsdlpp:extends="“wsrpw:GetResourceProperty wsntw:NotificationProducer
wsntw:NotificationProducer”
wsrp:ResourceProperties=“tns:GridJobManagementResourceProperties” >

<wsdl:operation name="jobSubAndRun” >

<wsdl:input message="“impl:jobSubAndRunRequest”

name= “jobSubAndRunRequest” />

202

<wsdl:output message="“impl:jobSubAndRunResponse”

name="“jobSubAndRunResponse” />

< /wsdl:operation>

<wsdl:operation name="%jobStatus” >
<wsdl:input message="“impl:jobStatusRequest”
name="“jobStatusRequest” />
<wsdl:output message="“impl:;jobStatusResponse”
name="“jobStatusResponse” / >

< /wsdl:operation>

<wsdl:operation name=*destroyJob” >
<wsdl:input message="impl:destroyJobRequest”
name= “destroyJobRequest” />
<wsdl:output message="“impl:destroyJobResponse”
name="“destroyJobResponse” />

< /wsdl:operation>

<wsdl:operation name="“givenServiceRegistryLocation" >
<wsdl:input message="impl:givenServiceRegistryLocationRequest”
name="“givenServiceRegistryLocationRequest” />
<wsdl:output message="“impl:givenServiceRegistryLocationResponse”
name= “givenServiceRegistryLocationResponse” />

< /wsdl:operation>

< /wsdl:portType>

< /wsdl:definitions>

203

Appendix G

An Example of an OWL based

Grid Kernel Ontology

204

This example of a grid kernel ontology is implemented based on the proposed grid kernel
ontology skeleton. It registers all implemented descriptions of those grid entities defined
by the grid kernel ontology skeleton. It also directly uses those properties and constraints
defined by the ontology skeleton to describe necessary relationships between those grid

entities. The main functions delivered by this example are described in Section 6.4 and 6.5.

<?xml version="1.0"7>

<rdf:RDF

xmins="http://www.biopattern.org/sp3-2/grid/ontology /kernelontoskeleton.owl# *
xmins:rdf="http://www.w3.0org/1999/02/22-rdf-syntax-ns# *
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema# *
xmlns:rdfs="http://www.w3.0rg/2000/01 /rdf-schema# *
xmlns:owl="http://www.w3.0rg/2002/07 /owl# ”
xml:base="http://www.biopattern.org/sp3_2/grid /ontology/kernelontoskeleton.owl” >
<owl:Ontology rdf:about=""/>

<owl:Class rdFID=" ApplicationPartner” >

<owl:disjoint With>

<owl:Class rdf:ID="GridPartner” />

< fowl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:ID="Partner” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:1D="QoSPolicy” >

<rdfs:subClassOf>

<owl:Class rdf:ID="QoS" />

< /rdfs:subClassOf>

<owl:disjoint With>

<owl:Class rdf:ID="QoSEnforcement” />

< /owl:disjoint With>

< fowl:Class>

<owl:Class rdf:ID=" ApplicationDescription” >
<owl:disjoint With>

<owl:Class rdf:1D=" ApplicationDescriptionSchema” / >

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:ID="NamedApplication” />

< fowl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.0org/2001/XMLSchema# int” >
1< /owl:minCardinality >

<owl:onProperty>

<owl:ObjectProperty rdf:ID="useDescriptionSchema” />
< Jowl:onProperty>

< Jowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:allValuesFrom>

<owl:Class rdf:about="# ApplicationDescriptionSchema” />

206

< fowl:allValuesFrom>

< fowl:Restriction>

< frdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:1D=" Application” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:ID="VQDescription” >
<owl:disjoint With>

<owl:Class rdf:ID="NamedVO” />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:1D="VQDescriptionSchema” />
< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.0rg/2001/XMLSchema# int” >
1< /owl:minCardinality>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdfiresource="# useDescriptionSchema” />
<owl:allValuesFrom>

<owl:Class rdf:about="# VODescriptionSchema” />

(]
o
-1

< fowl:allValuesFrom>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:ID="VQ? />

< frdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:about="# QoSEnforcement”>
<rdfs:subClassOf>

<owl:Class rdf:about="# QoS” />

< /rdfs:subClassOf>

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Implemented mechanisms, which realise individual or
a set of QoS policies.</rdfs:comment>
<owl:disjoint With rdf:resource="# QoSPolicy” />

< /owl:Class>

<owl:Class rdf:ID="GridJob" >

<owl:disjoint With>

<owl:Class rdf:ID="GridMiddleware” />
</owl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:1ID="VirtualResource” />

< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Class rdf:1D="kernelOntoSkeleton” />

< frdfs:subClassOf>

<owl:disjoint With>

<owl:Class rdf:ID="Security” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# Partner”/>

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:ID="GridConnection” />

< /owl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# VO’ />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:ID="GridNode” />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:1D="Service” />

< fowl:disjoint With>

<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >

The abstraction of a paticular unit of work, which can solve

a/multiple problem(s) defined by a grid application.</rdfs:comment>

<owl:disjoint With>

<owl:Class rdf:about="# QoS" />

< Jowl:disjoint With>
— <owl:disjoint With>

<owl:Class rdf:about="# Application”/>

209

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:1D="PhysicalResource” />

< fowl:disjoint With>

<owl:disjoint With>

<-0wl:CIass rdf:ID="Support” />

< fowl:disjoint With>

<fowl:Class>

<owl:Class rdf:-ID="ContainerDescriptionSchema” >
<rdfs:subClassOf>

<owl:Class rdf:1D="Container” />

< /rdfs:subClassOf>

<owl:disjoint With>

<owl:Class rdf:1D="ContainerDescription” />
< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:1D=" Containerlnstance” />

< /owl:disjoint With>

< fowl:Class>

<owl:Class rdf:1D="GMDescriptionSchema” >
<owl:disjoint With>

<owl:Class rdf:ID="GMDescription® />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:ID="NamedGridMiddleware” / >

< fowl:disjointWith >

<rdfs:subClassOf>
<owl:Class rdf:about="# GridMiddleware” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:ID="QEDescriptionSchema” >
<owl:disjoint With>

<owl:Class rdf:ID="NamedQoSEnforcement” />

< Jowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:ID="QEDescription” />

< fowl:disjoint With>

<rdfs:subClassOf rdf:resource="# QoSEnforcement” />

< fowl:Class>

<owl:Class rdf:about="# Support” >

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With rdf:resource="# GridJob” />
<owl:disjoint With>

<owl:Class rdf:about="# QoS” />

< fowl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="+4 Partner”/>

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# GridConnection” />
</0wl:di§ioi_nt‘i\’ith>

<owl:disjoint With>

<owl:Class rdf:about="# VO’ />

< fowl:disjoint With>

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Additional entities which provide global support for
descriptions of grid components, such as user-defined datatypes.</rdfs:comment>
<owl:disjoint With>

<owl:Class rdf:about="# GridNode” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# VirtualResource” />

< /owl.disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# Security” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="+# Service”/>

< /owl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# Application” />

< /owl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# PhysicalResource”/>

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# GridMiddleware” />

< fowl:disjoint With>

212

< fowl:Class>

<owl:Class rdf:1D="GCDescriptionSchema” >

<rdfs:subClassOf>

<owl:Class rdf:about="# GridConnection” />

< /rdfs:subClassOf>

<owl:disjoint With>

<owl:Class rdf:1D="GCDescription” />

< /owl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:ID="GridConnectionlnstance” />

</owl:disjoint With>

</owl:Class>

<owl:Class rdf:about="# ContainerDescription” >

<owl:disjoint With rdf:resource="# ContainerDescriptionSchema” />

<owl:disjoint With>

<owl:Class rdf:about="# ContainerInstance”® />

< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema# int” >

1< /owl:minCardinality>

<owl:onProperty rdf:resource="# useDescriptionSchema” />

< /owl:Restriction>

< /rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>

213

<owl:all ValuesFrom rdf:resource="# ContainerDescriptionSchema” />
<owl:onProperty rdf:resource="#t useDescriptionSchema” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# Container” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:1D="NamedSecurity Policy” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:1D="hasDescription” />

< fowl:onProperty >

<owl:allValuesFrom>

<owl:Class rdf:1D="SPDescription” />

< /owl:allValuesFrom>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:ID="SecurityPolicy” / >

< /rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="# SPDescription” />

< fowl:disjoint With>

<owl:disjointWith>

214

<owl:Class rdf:1D="SPDescriptionSchema” />
< fowl:disjointWith>

< fowl:Class>

<owl:Class rdf:ID=" NamedPhysicalResource” >
<owl:disjoint With>

<owl:Class rdf:1D=" PRDescription” />

< Jowl:disjoint With>

<owl:disjointWith>

<owl:Class rdf:1D="PRDescriptionSchema” />
< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasQoSEnforcement” />
< fowl:onProperty >

<owl:allValuesFrom>

<owl:Class rdf:about="# NamedQoSEnforcement” />
< fowl:allValuesFrom>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:ID="NamedQoSPolicy” />

< /owl:allValuesFrom>

<owl:onProperty >

<owl:ObjectProperty rdf:ID="hasQoSPolicy” />
</owl:onProperty>

< fowl:Restriction>

< [rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSecurityEnforcement” />
< /owl:onProperty>

<owl:allValuesFrom>

<owl:Class rdf:1D="NamedSecurityEnforcement” />
< fowl:allValuesFrom>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedSecurityPolicy” />
<owl:onProperty>

<owl:ObjectProperty rdf:1D="hasSecuritypolicy” />
</owl:onProperty>

< Jowl:Restriction>

< [rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:about="# PRDescription” />

216

< fowl:allValuesFrom>

<owl:onProperty rdf:resource="# hasDescription” />
< fowl:Restriction>

< [rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# PhysicalResource”/>

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:1D="VRDescription” >

<owl:disjoint With>

<owl:Class rdf:ID=" NamedVirtualResource” />

< fowl:disjoint With>

<owl:disjointWith>

<owl:Class rdf:1D=" VR DescriptionSchema” / >

< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:minCardinality rdf:datatype="http://www.w3.0org/2001/XMLSchema# int” >
1</owl:minCardinality>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:all ValuesFrom>

<owl:Class rdf:about="4# VRDescriptionSchema”/>

217

< fowl:allValuesFrom>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
< /owl:Restriction>

< frdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# VirtualResource” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:1ID="NamedService” >
<owl:disjointWith>

<owl:Class rdf:1D="ServiceDescription” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:ID="ServiceDescriptionSchema® />
< fowl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedService” />
<owl:onProperty>

<owl:ObjectProperty rdf:ID="requireService” />
< fowl:onProperty>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasQoSEnforcement” />

218

<owl:allValuesFrom>

<owl:Class rdf:about="# NamedQoSEnforcement” />
< fowl:allValuesFrom>

< Jowl:Restriction>

< frdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdfiresource="# hasSecurity Enforcement” />
<owl:allValuesFrom>

<owl:Class rdf:abohut="# NamedSecurity Enforcement” />
< /owl:allValuesFrom>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:about="# ServiceDescription” />

< fowl:allValuesFrom>

<owl:onProperty rdf:resource="# hasDescription” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# Service” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:about="# VRDescriptionSchema” >

219

<rdfs:subClassOf>

<owl:Class rdf:about="# VirtualResource® />

< /rdfs:subClassOf>

<owl:disjoint With>

<owl:Class rdf:about="# NamedVirtualResource” />

< /owl:disjoint With>

<owl:disjoint With rdfiresource="# VRDescription® />

< fowl:Class>

<owl:Class rdf:1D=" APDescription” >

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:minCardinality rdf:datatype="http://www.w3.0rg/2001/XMLSchema# int” >
1< /owl:minCardinality>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:allValuesFrom>

<owl:Class rdf:ID=" APDescriptionSchema®” />

< fowl:allValuesFrom>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# ApplicationPartner”/>

<owl:disjoint With>

220

<owl:Class rdf:about="+# APDescriptionSchema” />
< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:ID="NamedApplicationPartner” />

< fowl:disjoint With>

< fowl:Class>

<owl:Class rdf:about="# NamedQoSPolicy” >
<owl:disjoint With>

<owl:Class rdf:1ID="QPDescription” />

< /owl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:ID="QPDescriptionSchema” />

< Jowl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasDescription” />
<owl:allValuesFrom>

<owl:Class rdf:about="# QPD_escripl:ion”/>

< fowl:allValuesFrom>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# QoSPolicy” />

< fowl:Class>

<owl:Class rdf:1D="SEDescriptionSchema” >
<rdfs:subClassOf>

<owl:Class rdf:1D="SecurityEnforcement” />

221

< /rdfs:subClassOf>
<owl:disjoint With>
<owl:Class rdf:about="# NamedSecurityEnforcement” />

< fowldisjoint With>

<owl:disjoint With>

<owl:Class rdf:ID="SEDescription” />

< fowl:disjointWith>

< /owl:Class>

<owl:Class rdf:about="# QPDescriptionSchema” >

<owl:disjointWith rdf:resource="# NamedQoSPolicy” />

<owl:disjoint With>

<owl:Class rdf:about="# QPDescription” />

< fowl:disjoint With>

<rdfs:subClassOf rdf:resource="# QoSPolicy” />

< fowl:Class>

<owl:Class rdf:about="# GMDescription” >

<owl:disjoint With rdf:resource="# GMDescriptionSchema” />

<owl:disjoint With>

<owl:Class rdf:about="# NamedGridMiddleware” />

< /owl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />

<owl:minCardinality rdf:datatype="http://www.w3.0org/2001/XMLSchema# int” >
1< /owl:minCardinality>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# GMDescriptionSchema” />
<owl:onProperty rdf:resource="# useDescriptionSchema’ />

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# GridMiddleware” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:about="# QEDescription” >

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema# int” >
1< /owl:minCardinality>

<owl:onProperty rdf:resource="# useDescriptionSchema” />

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:allValuesFrom rdf:resource="# QEDescriptionSchema” />
< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# QoSEnforcement” />

223

_ <owl:disjoint With>

<owl:Class rdf:about="# NamedQoSEnforcement” />

< /owlkdisjointWith >

<owl:disjointWith rdfiresource="# QEDescriptionSchema” />
< /owl:Class>

<owl:Class rdf:about="# SPDescription” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:minCardinality rdf:datatype="http://www.w3.0org/2001/XNMLSchema# int” >
1< /owl:minCardinality>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasDescription” />
<owl:allValuesFrom>

<owl:Class rdf:about="# SPDescriptionSchema” />

< /owl:allValuesFrom>

< /owl:Restriction>

< [rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# SecurityPolicy” />

< [rdfs:subClassOf>

<owl:disjointWith rdf:resource="# NamedSecurityPolicy” />

<owl:disjoint With>

<owl:Class rdf:about="# SPDescriptionSchema” />

< /owl:disjoint With>

< fowl:Class>

<owl:Class rdf:about="# ServiceDescription” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema# int” >
1</owl:minCardinality>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:about="# ServiceDescriptionSchema” />

< fowl:allValuesFrom>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="+# Service” />

< /rdfs:subClassOf>

<owl:disjoint With rdf:resource="# NamedService’ />
<owl:disjoint With>

<owl:Class rdf:about="# ServiceDescriptionSchema” />

< fowl:disjoint With>

< /owl:Class>

<owl:Class rdf:about="# QPDescription” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema# int* >
1< /owl:minCardinality >

< Jowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:all ValuesFrom rdf:resource="# QP DescriptionSchema” />
<owl:onProperty rdf:resource="+# useDescriptionSchema” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# QoSPolicy” />
<owl:disjoint With rdf:resource="# NamedQoSPolicy” />
<owl:disjoint With rdf:resource="# QPDescriptionSchema” />
< fowl:Class>

<owl:Class rdf:about="# Container” >

<owl:disjoint With>

<owl:Class rdf:ID="Client” />

< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Class rdf:about="# GridNode™ />

< /rdfs:subClassOf >

N
N
(7]

</owl:Class>

<owl:Class rdf:about="# Application” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
A collection of work items that can carry out complex computing
tasks by using grid services and resources.</rdfs:comment>
<owl:disjoint With>

<owl:Class rdf:about="# QoS*/>

< fowl.disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# GridConnection” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# VirtualResource” />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# GridNode” />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# Service” />

< /owldisjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# PhysicalResource” />

< fowl:disjoint With>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton”/>
<owl:disjoint With rdfiresource="+# GridJob” />

<owl:disjoint With>

227

<owl:Class rdf:about="# Partner”/>

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# Security” />

< /owl:disjoint With>

<owl:disjointWith rdf:resource="# Support” />
<owl:disjoint With>

<owl:Class rdf:about="# GridMiddleware” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# VO" />

< /owl:disjointWith>

< fowl:Class>

<owl:Class rdf:about="# NamedApplicationPartner” >
<owl:disjointWith rdf:resource="# AP Description” />
<owl:disjoint With>

<owl:Class rdf:about="# APDescriptionSchema” />
< /owldisjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty >

<owl:ObjectProperty rdf:1D="isA" />

< /owl:onProperty>

<owl:allValuesFrom>

<owl:Class rdf:1D="NamedGridPartner” />

< /owl:allValuesFrom>

228

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# APDescription”/>
<owl:onProperty rdf:resource="# hasDescription™ />

< /owl:Restriction>

< frdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# ApplicationPartner”/>
< fowl:Class>

<owl:Class rdf:about="# NamedApplication” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasSecuritypolicy” />
<owl:allValuesFrom rdf:resource="# NamedSecurityPolicy” />
< /owl:Restriction>

< /rdfs:subClassOf>

<owl:disjoint With rdf:resource="# ApplicationDescription” />
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="requireVirtualResource” />
< /owl:onProperty>

<owl:allValuesFrom>

<owl:Class rdf:about="# NamedVirtualResource” />

< fowl:allValuesFrom>

229

< fowl:Restriction>

< [rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedApplicationPartner” />
<owl:onProperty>

<owl:ObjectProperty rdf:1D="hasPartner” />

< /owl:onProperty>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# requireService” />
<owl:allValuesFrom rdf:resource="# NamedService” />

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasDescription” />
<owl:allValuesFrom rdf:iresource="# ApplicationDescription”/>
< fowl:Restriction>

< frdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="# ApplicationDescriptionSchema” />
< fowldisjointWith>

<r;lfs:5l;bCla,ssOf>

230

<owl:Restriction>

<owl:onProperty rdf:resource="# hasQoSPolicy* />
<owl:allValuesFrom rdf:resource="# NamedQoSPolicy”/>
< /owl:Restriction>

< frdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdl:ID="NamedJoblnstance” />

< /owl:allValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:1D="archievedByJob” />
< fowl:onProperty>

< /owl:Restriction>

< frdfs:subClassOf >

<rdfs:subClassOf rdf:resource="# Application” />
< /owl:Class>

<owl:Class rdf:about="# PhysicalResource” >
<owl:disjoint With rdf:resource="# Support” />
<owl:disjoint With>

<owl:Class rdf:about="# GridConnection” />

< fowl:disjoint With>

<owl:disjointWith rdf:resource="# GridJob” />
<owl:disjoint With>

<owl:Class rdf:about="# VirtualResource” />

< fowl:disjointWith>

231

<owl:disjoint With>

<owl:Class rdf:about="4# GridNode" />

< /owl:disjoint With>

<owl:disjoint With rdf:resource="# Application”/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string® >
Any computing-related resources, such as a PC, a HPC,

a binary file, a data storage and communication networks.< /rdfs:comment>
<owl:disjoint With>

<owl:Class rdf:about="# Service” />

< fowl:disjoint With>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With>

<owl:Class rdf:about="# Gridl\'liddlewz'Lre”/>

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# VO" />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:about="4# Partner”/>

< Jowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# QoS" />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf-about="# Security” />

< fowl:disjoint With>

232

< fowl:Class>

<owl:Class rdf:1D="ClientDescription™ >

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema# int” >
1< /owl:minCardinality>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:ID="ClientDescriptionSchema” />

< /owl:allValuesFrom>

<owl:onProperty rdfiresource="# useDescriptionSchema” />
< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# Client” />

< /rdfs:subClassOf>

<owl:disjoint With>

<owl:Class rdf:about="# ClientDescriptionSchema”/>

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:ID="ClientInstance” />

< /owl:disjoint With>

< /owl:Class>

<owl:Class rdf:about="# Clientlnstance”>
<owl:disjointWith rdf:resource="# ClientDescription” />
<owl:disjoint With>

<owl:Class rdf:about="# ClientDescriptionSchema” />

< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasDescription” />
<owl:allValuesFrom rdf:resource="# ClientDescription” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# Client” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:about="# NamedSecurityEnforcement” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="implements” />
</owl:onProperty>

<owl:allValuesFrom rdf:resource="# NamedSecurityPolicy” />
< fowl:Restriction>

< [rdfs:subClassOf>

<rdfs:subClassOf>

234

<owl:Restriction>
<owl:onProperty rdf:resource="# hasDescription™ />
<owl:allValuesFrom>

<owl:Class rdf:about="# SEDescription” />

< /owl:allValuesFrom>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf >

<owl:Class rdf:about="# SecurityEnforcement” />

< frdfs:subClassOf>

<owl:disjoint With>

<owl:Class rdf:about="4# SEDescription” />

< fowl:disjoint With>

<owl:disjointWith rdf:resource="# SEDescriptionSchema” />
< fowl:Class>

<owl:Class rdf:about="# VirtualResource” >
<owl:disjointWith>

<owl:Class rdf:about="# GridConnection” />

< fowldisjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# VO”/>

< Jowl:disjoint With>

<owl:disjointWith rdfiresource="# Application”/>
<owl:disjoint With rdf:resource="# PhysicalResource” />
<_0wl:disj9in_t.“{it.h>_

<owl:Class rdf:about="# Service’ />

2
[
o

< fowl:disjoint With>

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Logical representation of a/multiple physical resource(s).</rdfs:comment>
<owl:disjoint With>

<owl:Class rdf:about="# GridNode” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# GridMiddleware” />

< /owl:disjoint With>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With>

<owl:Class rdf:about="# Partner” />

< fowl:disjointWith>

<owl:disjoint With rdf:resource="# Support” />
<owl:disjointWith>

<owl:Class rdf:about="# QoS" />

< fowl:disjoint With>

<owl:disjointWith>

<owl:Class rdf:about="# Security” />

< /owl:disjoint With>

<owl:disjointWith rdf:resource="# GridJob”/>
</owl:Class>

<owl:Class rdf:about="# PRDescriptionSchema” >
<rdfs:subClassOf rdf:resource="# PhysicalResource” />

<owl:disjoint With rdf:resource="# NamedPhysicalResource” />

<owl:disjoint With>

<owl:Class rdf:about="# PRDescription”/>

< fowl:disjoint With>

< /owl:Class>

<owl:Class rdf:about="# SPDescriptionSchema” >
<rdfs:subClassOf>

<owl:Class rdf:about="# SecurityPolicy” />

< frdfs:subClassOf>

<owl:disjoint With rdf:resource="# NamedSecurityPolicy” />
<owl:disjoint With rdf:resource="# SPDescription” />

< /owl:Class>

<owl:Class rdf:about="# GridMiddleware” >
<owl:disjoint With rdf:resource="# Support” />
<owl:disjoint With rdf:resource="# VirtualResource” />
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Software stacks designed to virtualise and provide access to
physical resources. < /rdfs:comment>

<owl:disjoint With>

<owl:Class rdf:about="# QoS"/>

< fowl:disjoint With>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With>

<owl:Class rdf:about="# VO />

< fowl:disjoint With>

<owl:disjoint With rdf:resource="# GridJob" />
<owl:disjoint With>

~ <owl:Class rdf:about="# GridNode” />

237

< fowl:disjoint With>

<owl:disjoint With rdf:resource="# PhysicalResource” />
<owl:disjoint With>

<owl:Class rdf:about="# Partner” />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# Security” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# Service” />

< fowl:disjoint With>

<owl:disjoint With rdf:resource="# Application” />
<owl:disjoint With>

<owl:Class rdf:about="+# GridConnection” />

< fowl:disjoint With>

< /owl:Class>

<owl:Class rdf:about="# Client" >

<owl:disjointWith rdf:resource="# Container”/>
<rdfs:subClassOf>

<owl:Class rdf:about="4# GridNode” />

< /rdfs:subClassOf>

< /owl:Class>

<owl:Class rdf:about="# ApplicationDescriptionSchema” >
<rdfs:subClassOf rdf:resource="# Application” />
<owl:disjoint With rdf:resource="# ApplicationDescription” />

<owl:disjointWith rdf:resource="# NamedApplication” />

238

< fowl:Class>

<owl:Class rdf:about="# GCDescription” >

<owl:disjoint With rdf:resource="# GCDescriptionSchema” />
<owl:disjoint With>

<owl:Class rdf:about="# GridConnectionlnstance” />

< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#t useDescriptionSchema” />
<owl:minCardinality rdi:datatype="http://www.w3.0rg/2001/XMLSchema# int” >
1< fowl:minCardinality>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:allValuesFrom rdf:resource="# GCDescriptionSchema” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# GridConnection” />

< /rdfs:subClassOf>

< /owl:Class>

<owl:Class rdf:about="# NamedQoSEnforcement” >
<rdfs:subClassOf>

<owl:Restriction>

239

<owl:allValuesFrom rdf:resource="# NamedQoSPolicy” />
<owl:onProperty rdf:resource="# implements” />

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasDescription” />
<owl:allValuesFrom rdf:resource="+# QEDescription” />
< fow!l:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="+# QoSEnforcement” />
<owl:disjointWith rdf:resource="# QEDescription” />
<owl:disjoint With rdf:resource="# QEDescriptionSchema® />
< fowl:Class>

<owl:Class rdf:about="# NamedGridPartner” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasDescription” />
<owl:allValuesFrom>

<owl:Class rdf:ID="GPDescription” />
</owl:allValuesFrom>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# GridPartner” />

< [rdfs:subClassOf>

240

<owl:disjoint With>

<owl:Class rdf:about="# GPDescription” />

< fowl:disjoint With>

<owl:disjointWith>

<owl:Class rdf:1ID="GPDescriptionSchema® />

< fowl:disjoint With>

< /owk:Class>

<owl:Class rdf:about="# QoS5" >

<owl:disjoint With rdf:resource="# Support” />
<owl:disjoint With rdf:resource="# VirtualResource” />
<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With rdf:resource="# PhysicalResource” />
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Quality measure and control in order to provide different
priority to different grid users, or guarantee a certain level of
performance to grid applications.</rdfs:comment>
<owl:disjoint With>

<owl:Class rdf:about="# VO” />

< /owl:disjoint With>

<owl:disjoint With>

<ow!:Class rdf:about="# GridNode” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# Security”/>

< Jowl:disjoint With>

<owl:disjoint With rdf:resource="# GridMiddleware” />

241

<owl:disjoint With>

<owl:Class rdf:about="+# GridConnection” />

< fowl:disjointWith>

<owl:disjoint With rdf:resource="# GridJob" />

<owl:disjoint With>

<owl:Class rdf:about="# Partner” />

< fowl:disjointWith>

<owl:disjoint With>

<owl:Class rdf:about="# Service” />

< fowl:disjointWith>

<owl:disjoint With rdf:resource="# Application” />

< fowl:Class>

<owl:Class rdf:about="# PRDescription”>

<owl:disjoint With rdf:resource="# NamedPhysicalResource” />
<owl:disjoint With rdf:resource="# PRDescriptionSchema® />
<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema# int” >
1< /owl:minCardinality>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
< fowl:Restriction>

< [rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:r_esoinr_ce="’ # useDescriptionSchema” />

<owl:allValuesFrom rdf:resource="# PRDescriptionSchema” />

242

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# PhysicalResource” />
< fowl:Class>

<owl:Class rdl:about="# GridConnectionInstance” >
<owl:disjoint With rdf:resource="# GCDescription” />
<owl:disjoint With rdf:resource="# GCDescriptionSchema” />
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:1D="connects” />

< /owl:onProperty>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType=" Collection” >
<owl:Class rdf:about="# Containerlnstance” />
<owl:Class rdf:about="# ClientInstance” />

< fowl:intersectionOf>

< fowl:Class>

< fowl:allValuesFrom>

< fowl:Restriction>

< frdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf: resource:” # hasDescription™ />

<owl:allValuesFrom rdf:resource="# GCDescription” />

243

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# GridConnection” />

< /rdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:about="# GridConnection” >
<owl:disjoint With rdf:resource="# Application”/>
<owl:disjoint With>

<owl:Class rdf:about="# VO” />

< fowl:disjointWith>

<owl:disjoint With rdf:resource=”# Support” />
<owl:disjoint With>

<owl:Class rdf:about="# Partner”/>

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="# GridNode” />

< fowl:disjoint With>

<rdfs:comment rdf:datatype="http://www.w3.0rg/2001/XNMLSchema# string” >
Logical connections between grid nodes.</rdfs:comment>
<owl:disjoint With rdf:resource="# QoS" />
<owl:disjoint With rdf:resource="# GridJob” />
<owl:disjoint With>

<owl:Class rdf:about="# Security” />
</owl:disjoint With>

<owl:disjoint With rdf:resource="# VirtualResource” />

244

<owl:disjoint With rdf:resource="# PhysicalResource” />
<owl:disjoint With>

<owl:Class rdf:about="# Service” />

< fowl:disjoint With>

<owl:disjointWith rdf:resource="# GridMiddleware” />
<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<fowl:Class>

<owl:Class rdf:about="# Security” >

<owl:disjoint With>

<owl:Class rdf:about="# GridNode” />

< fowl:disjoint With>

<owl:disjoint With>

<owl:Class rdf:about="4 Partner” />

< /owl:disjoint With>

<owl:disjoint With rdf:resource="# VirtualResource” />
<owl:disjointWith rdf:resource="# GridMiddieware” />
<owl:disjointWith rdf:resource="# Support” />
<owl:disjoint With rdf:resource="# PhysicalResource”/>
<rdfs:comment rdf:datatype="http://www.w3.0org/2001 /X MLSchema# string” >
The control of risks related to the access of a VO,

a grid service, data, etc.</rdfs:comment>
<owl:disjointWith rdf:resource="# GridConnection” />
<owl:disjointWith rdf:resource="# GridJob” />
<owl:disjointWith rdf:resource="# Application” />
<0wl:d§sjoint.\“\r ith rdf:resource="# QoS" />

<owl:disjoint With>

<owl:Class rdf:about="# VO*/>

< fowl:disjointWith>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With>

<owl:Class rdf:about="# Service” />

< fowl:disjoint With>

< fowl:Class>

<owl:Class rdf:about="# Partner” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001 /XMLSchema# string” >
Specified role in the access to resources and/or services
within a VO or a grid application.</rdfs:comment>
<owl:disjoint With rdf:resource="# VirtualResource” />
<owl:disjoint With>

<owl:Class rdf:about="# VO” />

< fowl:disjoint With>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjointWith rdf:resource="# Support” />
<owl:disjoint With>

<owl:Class rdf:about="# Service” />

< fowl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="+# GridNode” />

< fowl:disjoint With>

<owl:disjoint With rdf:resource="# GridJob” />
<owl:disjoint With rdf:resource="# GridMiddleware” />

<owl:disjoint With rdf:resource="# PhysicalResource” />

246

<owl:disjointWith rdf:resource="# Security” />
<owl:disjoint With rdf:resource="# Application” />
<owl:disjoint With rdf:resource="# QoS* />
<owl:disjoint With rdf:resource="# GridConnection” />
</owl:Class>

<owl:Class rdf:about="# NamedJoblnstance” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:ID="JobDescription” />

< /owl:allValuesFrom>

<owl:onProperty rdf:resource="# hasDescription” />

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedSecurityPolicy” />
<owl:onProperty rdf:resource="# hasSecuritypolicy” />
< fowl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf rdf:resource="# GridJob" />
<owl:disjoint With>

<owl:Class rdf:about="# JobDescription”/>

< fowl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

247

<owl:onProperty >

<owl:ObjectProperty rdf:ID="hasClient” />

< /owl:onProperty>

<owl:allValuesFrom rdf:resource="# Clientlnstance” />
< fowl:Restriction>

< /rdfs:subClassOf>

<owl:disjoint With>

<owl:Class rdf:ID="JobDescriptionSchema” />

< fowl:disjoint With>

<rdfs:subClassQf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasVirtualResource” />
< /owl:onProperty >

<owl:allValuesFrom>

<owl:Class rdf:about="+# NamedVirtualResource’ />
< fowl:allValuesFrom>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedService" />
<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasService” />

< /owl:onProperty >

< /owl:Restriction>

248

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedQoSPolicy” />
<owl:onProperty rdf:resource="# hasQoSPolicy” />
< /owl:Restriction> .

< frdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:about="# Containerlnstance”/>

< fowl:allValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasContainer” />

< fowl:onProperty>

< /owl:Restriction>

< /rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="# NamedV(Q”’ >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasVirtualResource” />
<owl:allValuesFrom>

<owl:Class rdf:about="+# NamedVirtualResource” />
</owl:allValuesFrom>

< /owl:Restriction>

249

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasContainer” />
<owl:allValuesFrom>

<owl:Class rdf:about="# Containerlnstance” />

< fowl:allValuesFrom>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdfiresource="# NamedService” />
<owl:onProperty rdf:resource="# hasService” />

< fowl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:about="# NamedGridMiddleware” />
< /owl:allValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasGridMiddleware” />
< fowl:onProperty>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:sub_ClassOf>

250

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# GridConnectionlnstance” />
<owl:onProperty>

<owl:ObjectProperty rdf:1D="hasGridConnection” />

< /owl:onProperty>

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasClient” />
<owl:allValuesFrom rdf:resource="# ClientInstance” />

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:1D="supportApplication” />

< /owl:onProperty>

<owl:allValuesFrom rdf:resource="# NamedApplication™/>
< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasQoSPolicy” />
<owl:allValuesFrom rdf:resource="# NamedQoSPolicy” />

< /owl:Restriction>

251

< /rdfs:subClassOf>
<owl:disjoint With rdf:resource="# VODescription” />
<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedSecurityPolicy” />
<owl:onProperty rdf:resource="# hasSecuritypolicy” />

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasSecurityEnforcement” />
<owl:allValuesFrom rdf:resource="# NamedSecurityEnforcement” />
< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedQoSEnforcement” />
<owl:onProperty rdf:resource="# hasQoSEnforcement” />

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="# hasPartner” />

< fowl.onProperty >

<owl:allValuesFrom rdf:resource="# NamedGridPartner” />

252

< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf>

<owl:Class rdf:about="# VO’ />

< /rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="# VODescriptionSchema” />

< fowl:disjoint With>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# VODescription™ />
<owl:onProperty rdf:resource="# hasDescription™ />
< fowl:Restriction>

< /rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="# SecurityPolicy” >
<rdfs:subClassOf rdf:resource="# Security” />
<owl:disjoint With>

<owl:Class rdf:about="+# SecurityEnforcement” />

< fowl:disjoint With>

< /owl:Class>

<owl:Class rdf:about="# ServiceDescriptionSchema” >
<owl:disjoint With rdf:resource="# NamedService” />
<owl:disjoint With rdf:resource="# ServiceDescription®™ />
<rdfs:subClassOf>

<owl:Class rdf:about="4# Service” />

253

< /rdfs:subClassOf>
<fowl:Class>
<owl:Class rdf:about="# JobDescription”>
<owl:disjoint With>
<owl:Class rdf:about="# JobDescriptionSchema” />
< fowl:disjoint With>
<owl:disjoint With rdf:resource="# NamedJoblnstance” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:minCardinality rdf:datatype="http://www.w3.0org/2001/XMLSchema# int” >
1< /owl:minCardinality >
<owl:onProperty rdf:resource="# useDescriptionSchema” />
< fowl:Restriction>
< frdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="# JobDescriptionSchema” />
< fowlallValuesFrom>
<owl:onProperty rdf:resource="# useDescriptionSchema” />
< fowl:Restriction>
< /rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="# GridJob” />
< fowl:Class>
_<owl:Class rdf:about="4# ClientDescription?ichema" >

<rdfs:subClassOf rdf:resource="# Client” />

254

<owl:disjoint With rdf:resource="# ClientDescription” />
<owl:disjoint With rdf:resource="# ClientInstance” />

< fowl:Class>

<owl:Class rdf:about="# SEDescription” >

<owl:disjoint With rdf:resource="# NamedSecurity Enforcement” />
<owl:disjoint With rdf:resource="# SEDescriptionSchema” />
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema# int” >
1</owl:minCardinality >

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema” />
<owl:allValuesFrom rdf:resource="# SEDescriptionSchema” />
< fowl:Restriction>

< /rdis:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="# SecurityEnforcement” />

< frdfs:subClassOf>

< fowl:Class>

<owl:Class rdf:about="# VO’ >

<owl:disjoint With>

<owl:Class rdf:about="# Service” />

< fowl:disjoint With>

<owl:disjoint With rdf:resource="# GridMiddleware” />
<owl:disjoint With rdf:resource="# Application”/>
<owl:disjoint With rdf:resource="# GridJob” />
<owl:disjoint With rdf:resource="# PhysicalResource” />
<owl:disjoint With>

<owl:Class rdf:about="# GridNode” />

< fowl:disjoint With>

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
A type of administrative domain for sharing resources across
different institutions and/or individuals in order to achieve a specific goal.
< /rdfs:comment>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With rdf:resource="# Security® />

<owl:disjoint With rdf:resource="# VirtualResource” />
<owl:disjoint With rdf:resource="# Partner” />

<owl:disjoint With rdf:resource="# GridConnection” />
<owl:disjoint With rdf:resource="# QoS” />

<owl:disjoint With rdf:resource="# Support” />

</owl:Class>

<owl:Class rdf:about="# APDescriptionSchema” >
<rdfs:subClassOf rdf:resource="# ApplicationPartner” />
<owl:disjointWith rdf:resource="# APDescription™ />
<owl:disjoint With rdf:resource="# NamedApplicationPartner” />
< fowl:Class>

<owl:Class rdf:about="# ContainerInstance’>

256

<owl:disjoint With rdf:resource="# ContainerDescription” />
<owl:disjoint With rdf:resource="# ContainerDescriptionSchema” />
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasDescription” />
<owl:allValuesFrom rdf:resource="# ContainerDescription” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# Container” />

< fowk:Class>

<owl:Class rdf:about="# GridNode” >

<owl:disjoint With rdf:iresource="# GridMiddleware” />
<owl:disjoint With rdf:resource="# Support” />
<owl:disjoint With rdf:resource="# GridConnection” />
<owl:disjoint With rdf:resource="# Application®/>
<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema# string” >
Nodes in a grid environment, including service containers,

grid clients, etc.</rdfs:comment>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With rdf:resource="# GridJob” />
<owl:disjointWith rdfiresource="# VirtualResource” />
<owl:disjoint With rdf:resource="# PhysicalResource” />
<owkdisjoint With rdf:resource="# Partner”/>
<owl:disjoint With rdf:resource="# VO />

-<owl:disjoint With>

<owl:Class rdf:about="# Service” />

o
ot
=1

< fowl:disjoint With>

<owl:disjoint With rdf:resource="# QoS” />
<owl:disjoint With rdf:resource="# Security” />

< fowl:Class>

<owl:Class rdf:about="# GridPartner” >
<rdfs:subClassOf rdf:resource="# Partner” />
<owl:disjoint With rdf:resource="# ApplicationPartner” />
< fowl:Class>

<owl:Class rdf:about="# VQODescriptionSchema” >
<owl:disjoint With rdf:resource="# NamedVOQ" />
<owl:disjoint With rdf:resource="# VODescription” />
<rdfs:subClassOf rdf:resource="# VO’ />

< fowl:Class>

<owl:Class rdf:about="# GPDescriptionSchema” >
<owl:disjoint With>

<owl:Class rdf:about="# GPDescription” />

< fowl:disjoint With>

<owl:disjoint With rdf:resource="# NamedGridPartner”/>
<rdfs:subClassOf rdf:resource="# GridPartner” />
</owl:Class>

<owl:Class rdf:about="# NamedVirtualResource’ >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# hasSecuritypolicy” />
<owl:allValuesFrom rdf:resource="# NamedSecurityPolicy” />

< /owl:Restriction>

258

< /rdfs:subClassQf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedQoSPolicy” />
<owl:onProperty rdf:resource="# hasQoSPolicy” />

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedPhysicalResource” />
<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPhysicalResource” />
'</owl:onPropert.y>

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:about="# NamedGridMiddleware” />

< fowl:allValuesFrom>

<owl:onProperty rdf:resource="# hasGridMiddleware” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdfiresource="# hasDescription” />

259

<owl:allValuesFrom rdf:resource="# VRDescription” />

< fowl:Restriction>

< frdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# VirtualResource” />
<owl:disjoint With rdfrresource="# VRDescription” />
<owl:disjoint With rdf:resource="# VRDescriptionSchema” />

< fowl:Class>

<owl:Class rdf:about="# Service” >

<owl:disjoint With rdf:resource="# GridJob” />

<owl:disjointWith rdf:resource="# GridNode" />
<owl:disjoint With rdf:resource="# VirtualResource” />
<owl:disjoint With rdf:resource="# QoS" />

<owl:disjoint With rdf:resource="# GridMiddleware” />
<owl:disjoint With rdf:resource="# Application” />

<rdfs:comment rdf:datatype=”ht.t.p://www.wS.org/2001/XMLSchema# string” >
Software component, which provides platform-independent
protocols and standards used for exchanging data between applications.
It can be either stateful or stateless, as compared with a traditional
Web service.</rdfs:comment>

<rdfs:subClassOf rdf:resource="# kernelOntoSkeleton” />
<owl:disjoint With rdf:resource="# Security” />

<owl:disjoint With rdf:resource="# GridConnection” />
<owl:disjoint With rdf:resource="# PhysicalResource” />
<owl:disjoint With rdf:resource="# Partner” />

<owl:disjoint With rdf:resource="# VO” />

<owl:disjoint With rdf:resource="# Support” />

260

< fowl:Class>

<owl:Class rdf:about="# SecurityEnforcement” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema# string” >
Implemented mechanisms, which realise individual or a set

of security policies. < /rdfs:comment>

<owl:disjoint With rdf:resource="# SecurityPolicy” />
<rdfs:subClassOf rdf:resource="# Security” />

< /owl:Class>

<owl:Class rdf:about="# NamedGridMiddleware” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdfl:resource="# NamedSecurityPolicy” />
<owl:onProperty rdf:resource="# hasSecuritypolicy” />

< /owl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="+# hasSecurityEnforcement” />
<owl:allValuesFrom rdf:resource="# NamedSecurityEnforcement” />
< /owl:Restriction>

< frdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# NamedQoSEnforcement” />
<owl:onProperty rdf:resource="# hasQoSEnforcement” />

< /owl:Restriction>

261

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdfiresource="# hasQoSPolicy” />
<owl:allValuesFrom rdf:resource="# NamedQoSPolicy” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# GMDescription” />
<owl:onProperty rdf:resource="# hasDescription” />

< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# GridMiddleware” />
<owl:disjoint With rdf:resource="# GMDescription” />
<owl:disjoint With rdf:resource="# GMDescriptionSchema” />
< /owl:Class>

<owl:Class rdf:about="# GPDescription” >
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="# useDescriptionSchema™ />
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema# int" >
1< /owl:minCardinality >

< fowl:Restriction>

- </rdfs:subClassOf>

<rdfs:subClassOf>

262

<owl:Restriction>

<owl:allValuesFrom rdf:resource="# GPDescriptionSchema” />
<owl:onProperty rdfiresource="# useDescriptionSchema” />
< fowl:Restriction>

< /rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="# GridPartner” />
<owl:disjoint With rdf:resource="# GPDescriptionSchema® />
<owl:disjoint With rdf:resource="# NamedGridPartner” />

< Jowl:Class>

<owl:Class rdf:about="# JobDescriptionSchema” >
<rdfs:subClassOf rdf:resource="# GridJob” />
<owl:disjoint With rdf:resource="# JobDescription” />
<owl:disjoint With rdfiresource="# NamedJoblnstance” />

< fowl:Class>

<owl:ObjectProperty rdf:about="# hasPartner” >

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XNLSchema# string” >

< /rdfs:comment>

< fowl:Object Property >

<NamedApplicationPartner rdf:1D="bg_uop_008" >
<hasDescription>

< APDescription rdf:1D="Des_0bglUop008_1" >
<useDescriptionSchema>

<APDescriptionSchema rdfi:ID="bioprofilePersonSchema™ />
< /useDescriptionSchema>

< /APDescription>.

< fhasDescription>

263

<isA>

<NamedGridPartner rdf:ID="patient_9817235" >
<hasDescription>

<GPDescription rdf:ID="Des_0Patient3817235.1" >
<useDescriptionSchema>>

<GPDescriptionSchema rdf:1D="1eSEPersonSchema” />
< /useDescriptionSchema>

< /GPDescription>

< fhasDescription>

< /NamedGridPartner>

</fisA>

< /NamedApplicationPartner>

<ServiceDescription rdf:ID="Des.GT4DIS_1" >
<useDescriptionSchema>

<ServiceDescriptionSchema rdf:ID="_1.2" />

< /useDescriptionSchema>

< /ServiceDescription>

<ServiceDescription rdf:1D="Des_UoPSIAS_001_1" >
<useDescriptionSchema rdf:resource="# _1.2" />

< /ServiceDescription>

<NamedService rdf:ID="UoP_EEGMetadataAccessService_ 0017 >
<hasDescription>

<ServiceDescription rdf:ID="Des_UoPEMAS_001_1" >
<useDescriptionSchema rdf:resource="# _1.2"/>

< /ServiceDescription>

< /hasDescription>

264

< /NamedService>

<NamedService rdf:1D=""TS] SublnfoAccessService_127" >
<hasDescription>

<ServiceDescription rdf:1D="Des_TSISIAS_127_1" >
<useDescriptionSchema rdf:resource="# _1.2" />

< /ServiceDescription>

< /hasDescription>

< /NamedService>

<ServiceDescription rdf:1D="Des 0EMQS_89712_1" >
<useDescriptionSchema rdf:resource="# _1.2" />

< /ServiceDescription>

<APDescription rdf:ID="Des.0bglUop010_1" >
<useDescriptionSchema rdf:resource="# bioprofilePersonSchema” />
< /APDescription>

<APDescription rdf:ID="Des.0bgUop006_1" >
<useDescriptionSchema rdf:resource="# bioprofilePersonSchema” />
</APDescription>

<NamedService rdf:1D="GT4_DefaultIndexService” >
<hasDescription rdf:resource="# Des .GT4DIS_1" />

< /NamedService>

<NamedService rdf:ID="TUT_EEGMetadataAccessService_ 06743" >
<hasDescription>

<ServiceDescription rdf:ID="Des TUTEMAS_(06743_1" >
<useDescriptionSchema rdf:resource="# _1.2" />

< /ServiceDescription>

< fhasDescription>

< /NamedService>

<NamedService rdf:1D="TUT SublnfoAccessService_91286” >
<hasDescription>

<ServiceDescription rdf:ID="Des. TUTSIAS_91286_1" >
<useDescriptionSchema rdf:resource="# _1.2" />

< /ServiceDescription>

< fhasDescription>

< /NamedService>

<APDescription rdf:1D="Des_0bgUop004_1" >
<useDescriptionSchema rdf:resource="# bioprofilePersonSchema” />
</APDescription>

<NamedService rdf:ID="TSI.EEGMetadataAccessService 098" >
<hasDescription>

<ServiceDescription rdf:1D="Des TSIEMAS_098_1" >
<useDescriptionSchema rdf:resource="4# _1.2" />

< /ServiceDescription>

< /hasDescription>

< /NamedService>

<NamedApplicationPartner rdf:1D="bg_uop_004* >
<hasDescription rdf:resource="# Des_ObgUop004.1" />

<isA>

<NamedGridPartner rdf:1D="clinician_0137532" >
<hasDescription>

<GPDescription rdf:ID="Des_0Clinician0137532_1" >
<useDescriptionScheina rdfiresource="# leSEPersonSchema’ / >

< /GPDescription>

266

< /hasDescription>

< /NamedGridPartner>

</[isA>

< /NamedApplicationPartner>

<ServiceDescription rdf:ID="Des.GT4MJFS.1">
<useDescriptionSchema rdf:resource="# _1.2% />

< /ServiceDescription>

<NamedApplicationPartner rdf:ID="bg_uop_006" >

<isA rdf:resource="+# clinician.0137532" />
<hasDescription rdf:resource="# Des_0bgUop006.1" />

< /NamedApplicationPartner>

<NamedService rdf:1D="UoP_EEG AnalysisMetadataAccessService 001" >
<hasDescription> |
<ServiceDescription rdf:1D="Des_UoPEAMAS_001_1">
<useDescriptionSchema rdf:resource="# _1.2" />

< /ServiceDescription>

< /hasDescription>

< /NamedService>

<NamedService rdf:1D="DistributedQueryService_39458" >
<requireService rdf:resource="# GT4_DefaultIndexService” />
<hasDescription>

<ServiceDescription rdf:1D="Des 0DQS_39458_1" >
<useDescriptionSchema rdf:resource="# _1.2" />

< /ServiceDescription>

</hasDescription>

< /NamedService>

267

<NamedService rdf:1D="EEGAnalysishetadataQueryService_12413" >
<requireService rdf:resource="# GT4_DefaultIndexService” />
<requireService rdfiresource="# DistributedQueryService_39458" />
<hasDescription>

<ServiceDescription rdf:ID="Des . 0EAMQS_12413_1" >
<useDescriptionSchema rdf:resource="# _1.2"/>

< /ServiceDescription>

< fhasDescription>

< /NamedService>

<ServiceDescription rdf:ID="Des 0PJ5_23478_1" >
<useDescriptionSchema rdf:resource="# _1.2"/>

< /ServiceDescription>

<NamedService rdf:1D="EEG AnalysisService_01023" >
<hasDescription>

<ServiceDescription rdf:ID="Des 0EAS_.01023.1">
<useDescriptionSchema rdf:resource="# _1.2"/>

< /ServiceDescription>

< /hasDescription>

<requireService rdf:resource="# GT4_DefaultIndexService” />
<requireService>

<NamedService rdf:ID=" EEGMetadataQueryService 897127 >
<hasDescription rdf:resource="# Des_ 0EMQS_89712_1" />
<requireService rdf:resource="# GT4_DefaultIndexService” />
<requireService rdf:resource="# DistributedQueryService_-39458" />
< /NamedService>

< /requireService>

268

<requireService rdf:resource="# EEGAnalysishMetadataQueryService_12413" />
< /NamedService>

<NamedService rdf:1D="GT4_ManagedJobFactoryService” >
<hasDescription rdf:resource="# Des.GT4MJFS_1"/>

< /NamedService>

<GPDescription rdf:1D="Des_0BioprofileResearcher_2734623" >
<useDescriptionSchema rdf:resource="# IeSEPersonSchema” />

< /GPDescription>

<APDescription rdf:ID="Des_0bglUop003.1" >
<useDescriptionSchema rdf:resource="# bioprofilePersonSchema” />
< /APDescription>

<GPDescription rdf:ID="Des_0Patient1273691_1" >
<useDescriptionSchema rdf:resource="# IeSEPersonSchema” />

< /GPDescription>

<NamedService rdf:1D=" UoP SublnfoAccessService 001" >
<hasDescription rdf:resource="# Des_UoPSIAS_001.1"/>

< /NamedService>

<NamedApplicationPartner rdf:1D="bg.uop.002" >
<hasDescription>

< APDescription rdf:1D="Des_0bgUop002_1" >
<useDescriptionSchema rdf:resource="# bioprofilePersonSchemna” />
< /APDescription>

< /hasDescription>

<isA>

<NamedGridPartner rdi:1ID="bioprofileResearcher.2734623" >

<hasDescription rdf:resource="# Des_0BioprofileRescarcher_2734623" />

269

< /NamedGridPartner>

</JisA>

< /NamedApplicationPartner>
<NamedApplicationPartner rdf:ID="bg_uop_007" >
<isA rdf:resource="# clinician.0137532" />
<hasDescription>

<APDescription rdf:1D="Des_0bgUop007_1* >
<useDescriptionSchema rdf:resource="# bioprofilePersonSchema” />
< /APDescription>

< fhasDescription>

< /NamedApplicationPartner>
<NamedApplicationPartner rdf:ID="bg_uop.009” >
<isA rdl:resource="# bioprofileResearcher_2734623" />
<hasDescription>

<APDescription rdf:ID="Des_0bglUop009_1" >
<useDescriptionSchema rdl:resource="# bioprofilePersonSchema” />
< /APDescription>

< fhasDescription>

< /NamedApplicationPartner>

<ServiceDescription rdf:ID="Des_MMAS_27962.1" >
<useDescriptionSchema rdf:resource="# .1.2" />

< /ServiceDescription>

<ServiceDescription rdf:1D="Des_0S1QS_26578_1" >
<useDescriptionSchema rdf:resource="# _1.2"/>

< /ServiceDescription>

<APDescription rdf:1D="Des_0bgUop005_1" >

270

<useDescriptionScheina rdf:resource="# bioprofilePersonSchema” />
</APDescription>

<NamedService rdf:ID=" MetadataMappingAccessService.27962” >
<hasDescription rdf:resource="# Des MMAS_27962_1" />

< /NamedService>

<NamedService rdf:ID="ParallelJobService 23478" >
<hasDescription rdf:resource="# Des 0PJS.23478.1 />
<requireService rdf:resource="# GT4_DefaultlndexService” />
<requireService rdf:resource="# GT4 _ManagedJobFactoryService” />
< /NamedService>

<ApplicationDescriptionSchema rdf:ID="KWFGridAppOnto” />
<NamedApplicationPartner rdf:1D="bg_uop_001" >

<isA rdf:resource="# clinician_0137532" />

<hasDescription>

<APDescription rdf:1D="Des_0bgUop001_1" >
<useDescriptionSchema rdf:resource="# bioprofilePersonSchema” />
< /APDescription>

< /hasDescription>

< /NamedApplicationPartner>

<NamedApplication rdf:1D=" EEGAanlysisForDementiaDetection” >
<hasPartner rdf:resource="# bg_uop_001"/>

<hasPartner rdf:resource="# bg.uop-007" />

<hasPartner rdf:resource="# bg_-uop_006”/>

<hasPartner>

<NamedApplicationPartner rdf:1D="bg_uop_005" >

<isA>

<NamedGridPartner rdf:1D="patient_1273691" >
<hasDescription rdf:resource="# Des.0Patient1273691.17 />

< /NamedGridPartner>

</isA>

<hasDescription rdf:resource="# Des_0bgUop005.1" />

< /NamedApplicationPartner>

< /hasPartner>

<hasDescription>

<ApplicationDescription rdf:ID="Des_OEEG AanlysisForDementiaDetection_1” >
<useDescriptionSchema rdf:resource="# KWFGridAppOnto” />
< /ApplicationDescription>

< /hasDescription>

<requireService>

<NamedService rdf:ID="SubjectInfoQueryService_26578" >
<requireService rdf:resource="# GT4 DefaultIndexService” />
<requireService rdf:resource="# DistributedQueryService.39458* />
<hasDescription rdf:resource="# Des_0S1QS_26578_1" />

< /NamedService>

< [requireService>

<hasPartner rdf:resource="# bg.uop.009" />

<requireService rdf:resource="# EEGAnalysisService 01023 />
<hasPartner rdf:resource="# bg_uop_004" />

<hasPartner rdf:resource="+# bg-uop-008” />

<hasPartner>

<NamedApplicationPartner rdf:ID="bg_uop_010" >

<isA rdf:resource="# bioprofilcRescarcher.2734623" />

Q]
=]
ro

<hasDescription rdf:resource="# Des_ObgUop010.1”7 />
< /NamedApplicationPartner>

< /hasPartner>

<hasPartner rdf:resource="# bg uop_002" />
<hasPartner>

<NamedApplicationPartner rdf:1D="bg_uop_063" >
<hasDescription rdf:resource="# Des_ObgUop003.1" />
<isA rdf:resource="# clinician.0137532” />

< /NamedApplicationPartner>

</hasPartner>

< /NamedApplication>

</rdf:RDF>

<!- Created with Protege (with OWL Plugin 3.3.1, Build 430)

http://protege.stanford.edu —>

273

