1,358 research outputs found

    SGGS theorem proving: an exposition

    Get PDF
    We present in expository style the main ideas in SGGS, which stands for Semantically-Guided Goal-Sensitive theorem proving. SGGS uses sequences of constrained clauses to represent models, instance generation to go from a candidate model to the next, and resolution as well as other inferences to repair the model. SGGS is refutationally complete for first-order logic, model based, semantically guided, proof confluent, and goal sensitive, which appears to be a rare combination of features. In this paper we describe the core of SGGS in a narrative style, emphasizing ideas and trying to keep technicalities to a minimum, in order to advertise it to builders and users of theorem provers

    SMT Solving Modulo Tableau and Rewriting Theories

    Get PDF
    International audienceWe propose an automated theorem prover that combines an SMT solver with tableau calculus and rewriting. Tableau inference rules are used to unfold propositional content into clauses while atomic formulas are handled using satisfiability decision procedures as in traditional SMT solvers. To deal with quantified first order formulas, we use metavariables and perform rigid unification modulo equalities and rewriting, for which we introduce an algorithm based on superposition, but where all clauses contain a single atomic formula. Rewriting is introduced along the lines of deduction modulo theory, where axioms are turned into rewrite rules over both terms and propositions. Finally, we assess our approach over a benchmark of problems in the set theory of the B method

    Deciding First-Order Satisfiability when Universal and Existential Variables are Separated

    Full text link
    We introduce a new decidable fragment of first-order logic with equality, which strictly generalizes two already well-known ones -- the Bernays-Sch\"onfinkel-Ramsey (BSR) Fragment and the Monadic Fragment. The defining principle is the syntactic separation of universally quantified variables from existentially quantified ones at the level of atoms. Thus, our classification neither rests on restrictions on quantifier prefixes (as in the BSR case) nor on restrictions on the arity of predicate symbols (as in the monadic case). We demonstrate that the new fragment exhibits the finite model property and derive a non-elementary upper bound on the computing time required for deciding satisfiability in the new fragment. For the subfragment of prenex sentences with the quantifier prefix ∃∗∀∗∃∗\exists^* \forall^* \exists^* the satisfiability problem is shown to be complete for NEXPTIME. Finally, we discuss how automated reasoning procedures can take advantage of our results.Comment: Extended version of our LICS 2016 conference paper, 23 page

    05431 Abstracts Collection -- Deduction and Applications

    Get PDF
    From 23.10.05 to 28.10.05, the Dagstuhl Seminar 05431 ``Deduction and Applications\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    The Model Evolution Calculus with Equality

    Full text link
    In many theorem proving applications, a proper treatment of equational theories or equality is mandatory. In this paper we show how to integrate a modern treatment of equality in the Model Evolution calculus (ME), a first-order version of the propositional DPLL procedure. The new calculus, MEE, is a proper extension of the ME calculus without equality. Like ME it maintains an explicit ``candidate model'', which is searched for by DPLL-style splitting. For equational reasoning MEE uses an adapted version of the ordered paramodulation inference rule, where equations used for paramodulation are drawn (only) from the candidate model. The calculus also features a generic, semantically justified simplification rule which covers many simplification techniques known from superposition-style theorem proving. Our main result is the refutational completeness of the MEE calculus

    Proof search without backtracking for free variable tableaux [online]

    Get PDF

    Instance-Based Hyper-Tableaux for Coherent Logic

    Get PDF
    We consider a fragment of first-order logic known as coherent logic or geometric logic. The essential difference to standard clausal form is that there may be existentially quantified variables in the positive literals of a clause, and only constants and variables are allowed as terms. Coherent logic is interesting because many problems naturally fall into the fragment. Furthermore, the simple term structure might allow for efficient implementations. We propose a calculus for this fragment that extends the `next-generation' hyper-tableaux calculus of Baumgartner, and prove it sound and complete. To our knowledge, this is the first instance-based method that works on a richer input than clause normal form

    Complete Issue 13, 1996

    Get PDF
    • …
    corecore