
UNIVERSITY OF OSLO
Department of Informatics

Instance-Based
Hyper-Tableaux
for Coherent Logic

Master Thesis

Evgenij Thorstensen

May 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30826932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Contents 1

Acknowledgments 3

1 Introduction 5
1.1 Chapter guide . 6
1.2 Scientific contributions . 7

2 Related calculi 9
2.1 Hyper Tableaux . 9
2.2 CL calculus . 11
2.3 Instance-based methods . 12

2.3.1 Inst-Gen . 14
2.3.2 Hyper-Linking . 15
2.3.3 Disconnection . 16
2.3.4 Next-Generation Hyper Tableaux 17
2.3.5 FDPLL . 18
2.3.6 Model Evolution . 19
2.3.7 Summary . 20

3 Preliminaries 21
3.1 First-order logic . 21

3.1.1 First-order semantics 22
3.2 Clause logic . 23

3.2.1 Clausal typed-variable semantics 25
3.2.2 Substitutions and relations 29

4 The calculus 33
4.1 Example and usage . 33
4.2 Formal definitions . 36

4.2.1 Rules . 38

1

2 CONTENTS

4.3 Possible and impossible rule applications 40
4.3.1 Ext application 2 . 41
4.3.2 Link applications . 42

4.4 Discussion . 43

5 Soundness 47

6 Completeness 51
6.1 Completeness notes . 57

7 Odds and ends 59

8 Summary and future work 63

Bibliography 65

Acknowledgments

Silent gratitude isn’t much use
to anyone.

G.B. Stern

First and foremost, I wish to thank my advisor Martin Giese. Working
with him has been interesting and fun, and when I was stuck he always
had time to sit down with me and help me stare at the proof. Martin
knows virtually everything and shares his knowledge freely, explaining
the difficult things clearly and patiently. He also reads with great care;
this thesis would be far more nebulous without his critical look. Martin,
your dedication to your work has inspired me to work harder and think
better — thank you.

I also wish to thank my second advisor Arild Waaler, who has a gift
for saying innocent things that trigger new ideas or rekindle old ones.
Without him, this calculus may well have been left unfinished, and this
thesis would have been a boring read indeed.

A third person to thank is Roger Antonsen, who inspires by his fiery
passion for the field of logic and mathematics. He is also responsible for
the beautiful typography in this thesis.

A fourth person is Sigurd Kvammen, who has stood by me all the
while during the writing of this thesis, listening patiently to me during
my troubles despite being from a different field of science altogether. He
also helped me proofread all the sixty+ pages of my work, catching ty-
pos and repetitive sentences with great agility. I also owe a thanks for
proofreading to Mads Thorstensen.

Finally, my thanks go to the people at the logic seminar, who com-
mented on early drafts of this work. Studying alongside you has been a
pleasure and I hope to continue doing that.

3

Chapter 1

Introduction

This thesis is about automated theorem proving, a field of computer sci-
ence that concerns itself with making machines able to reason in formal
systems. An example of such a system is propositional logic. Another ex-
ample is first-order logic, while a more familiar (to some) example is high
school algebra. To accomplish this, computer scientists create calculi, sets
of rules that determine what can be inferred from what is already there.

In this thesis we shall develop a calculus for the formal system known
as coherent logic (CL), also called geometric logic. This system is a syntac-
tic subset of first-order logic. There are already many types of calculi avail-
able for first-order logic; we adapt one of them, called Next-Generation
Hyper-Tableaux, to coherent logic in the hopes of efficiency gains.

Coherent logic is usually defined as a fragment of first-order logic,
where all formulae have the form

∀~x.(A1 ∧ · · · ∧ An → ∃ ~u1.B1 ∨ · · · ∨ ∃ ~um.Bm)

where the Ai are atoms, while the Bi are conjunctions of atoms. (The
notation ~x refers to a finite list of variables.) Additionally, there are no
function symbols. Variables and constants are the only terms.

There has recently been a certain amount of interest in coherent logic
[BC05,Bez05,dNM06], mostly for the following reasons:

• The natural axiomatization of many problems, for instance in ax-
iomatic geometry, naturally lies in CL.

• For other problems, there is a satisfiability preserving translation
into CL [Nor07] that does not need to introduce Skolem functions.
As explained by Bezem and Coquand [BC05], this is a desirable
property if proofs are to be translated into proof objects for a system
like Coq.

5

6 1. INTRODUCTION

• The very simple term structure makes it possible to use very efficient
data structures, unification, etc.1

Proof procedures for CL typically use some variant of the hyper-tableau
calculus, which requires all negative literals of a clause to be present
before extending a branch. The question is what to do with universal
variables in positive literals that might be split over branches. Normally,
these variables are treated as universally quantified on the clause level, an
approach that either leads to backtracking or, avoiding that, high mem-
ory consumption to keep the information that backtracking would dis-
card. An example of this is found in the Hyper-Tableaux calculus (Sec-
tion 2.1): If a literal Pxy is on the branch and we wish to expand with
a clause Pxx → Qx, the instantiation of x must be equal to that of y.
One way to solve this is to expand and apply a global substitution {y/x}
on the tableau, but this may force you to backtrack if no refutation is
reached. Alternatively, you apply a constraint to generate an expansion
with Qx << y = x. The constraint means that the literal Qx may only
be used in future expansions if you close your derivation by some substi-
tution that unifies x and y. This avoids backtracking, but the constraints
must be accumulated and propagated, a process that consumes memory.

If one wishes to avoid this, one can systematically instantiate such vari-
ables, commonly known as critical variables, with all ground terms, i.e. all
existing constants. This is done in previous work on CL and this approach
works, but it suffers from the need to guess the correct instantiation.

In this thesis we explore the possibility to treat these variables with
an instance-based method, similar to the next-generation hyper tableau
calculus of Baumgartner [Bau98]. Instance-based methods have proven
to be effective in practice, e.g. in the work on disconnection by Letz and
Stenz [LS07]. We are hoping for a further efficiency gain from the simple
term structure of CL.

Previous work on instance-based methods is based on problems in
clause normal form. To our knowledge the calculus presented in this the-
sis is the first instance-based calculus to work with a richer input.

1.1 Chapter guide

In Chapter 2 we give a comprehensive overview of related calculi, both
instance-based and otherwise. We discuss their differences and similari-

1We should point out that the results of this thesis hold also if complex terms are
permitted. However, there is then less motivation in considering the fragment.

1.2. SCIENTIFIC CONTRIBUTIONS 7

ties, comparing them to our own calculus as well as to each other.
The presentation of our results starts with Chapter 3, which contains

basic definitions used throughout this thesis. The calculus we have de-
veloped is presented and extensively discussed in Chapter 4, then proven
sound and complete in chapters 5 and 6 respectively. Chapter 7 contains
interesting things that we discovered but that didn’t fit anywhere else. We
conclude this thesis with a short summary and outline possible directions
for future work in Chapter 8.

1.2 Scientific contributions

This work builds on both the CL calculus by Bezem and Coquand (Sec-
tion 2.2) and the NG calculus by Baumgartner (Section 2.3.4). The con-
tribution of this thesis consists of an instance-based hyper-tableau calculus
for coherent logic that

• works on a richer input than clause normal form,

• does not introduce skolem functions,

• does not need any extra bookkeeping to handle existentially quanti-
fied variables, and

• stays sound and complete if complex terms are permitted. Also,

• finding rule applications can be done as efficiently as in the NG cal-
culus despite the differences, and

• on problems in clause normal form, the calculus should perform as
well as the NG calculus.

Chapter 2

Related calculi

In this chapter we shall look at different calculi related to the one pre-
sented in this work. As the calculus we have developed is an instance-
based hyper-tableau calculus for coherent logic, it is related both to the
original Hyper Tableaux described in Section 2.1 and the ground CL calcu-
lus described in Section 2.2. After these two calculi, we take a look at the
field of instance-based methods in Section 2.3. Of the methods described,
our calculus is an adaptation of the Next-Generation Hyper-Tableaux (NG)
calculus described in Section 2.3.4.

2.1 Hyper Tableaux

Hyper tableau calculi work on formulae in clause normal form, and every
clause is divided into a positive and a negative part. As an example, the
clause ¬Pxy ∨¬R∨Qxy becomes Pxy ∧R→ Qxy using this notation. In
general, a clause is an implication A → B with A the negative and B the
positive part.

In non-hyper tableau calculi, expanding a branch with a clause gen-
erates one new branch for every literal of the clause. Some of these new
branches become closed, and some don’t. In hyper-tableaux the general
idea is different: An expansion with a certain clause C is not possible until
every new branch containing a negative literal from C can be closed. Usu-
ally, this translates to ‘the negative literals of C are already on the branch’
in the ground case (cf. Section 2.2), or ‘there exists a multiset unifier for
the negative literals of C and the literals on the branch’ in the general
case. This idea is quite old, originally inspired by hyper-resolution. We
quote from [Häh01, Sect. 4.6]:

In fact, hyper tableaux were considered early on by Brown

9

10 2. RELATED CALCULI

[Bro78], but this work did not make the impact it deserved.
The family of calculi known as model generation [MB88,FH91]
is essentially a variant of hyper tableaux and will be discussed
here as well.

In this section we shall look at a hyper-style tableau calculus of Baum-
gartner, Furbach, and Niemelä called Hyper Tableaux (HT) [BFN96]. This
calculus is not instance-based itself, but acts as a foundation for the other
instance-based calculi by Baumgartner.

A key problem of HT is the problem of critical variables, i.e. variables
that are split over positive literals of a clause, e.g. x in S → Pxa ∨ Qxa.
A clause without such variables is called pure, and given a clause C and
substitution σ, if Cσ is pure then σ is called a purifying substitution for C.
We shall need these notions later.

The calculus constructs a tableau from a clause set by means of a single
rule. Before describing this rule, we shall need the notion of a model for
a tableau branch. In HT, all open branches contain only positive literals,
and to any branch b the authors of [BFN96] associate a model [b], namely
the minimal Herbrand model that satisfies the universal closure of every
literal on b. That this model satisfies a clause C is denoted [b] |= C.

We are now ready to describe the single rule of HT. Given a branch b
and a clause C = A → B = ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm, in order
to expand the tableau with C we need to find a substitution σ such that
[b] |= ∀(Aσ), where ∀(A) is the universal closure of A. This is called the
hyper condition, and [BFN96] contains a method for finding such a sub-
stitution by syntactical means, more precisely by a terminating resolution
procedure. The hyper condition essentially translates to ‘after unification,
all the negative literals of A are on the branch b’, as is common for such
calculi.

If such a substitution is found, the branch b is extended by Cσπ with π
a purifying substitution for C, forming n+m new branches. For every i ≤
n each new branch labeled with ¬Aiσπ is closed, while for every j ≤ m
each new branch labeled with Bjσπ is open. The purifying substitution π
allows us to treat variables in branch literals as universally quantified per
literal, since no variable occurs in more than one literal.

Consider an example from [BFN96]: If we have a one branch tableau
with literal Rfx on the branch plus a clause Rx → Px ∨ Qxy, the model
for our branch satisfies Rxσ with σ = {x/fx}. We can take a purifying
substitution π = {x/a} and get the tableau below (the closed branch is
marked by a ?).

2.2. CL CALCULUS 11

Rfx

¬Rfa
?

Pfa Qfay

A major source of inefficiency in HT is the purifying substitution, and
it is obsoleted in the NG calculus (see Section 2.3.4 for details). It is a
source of inefficiency because it must be guessed more or less blindly, and
we may in the worst case have to expand the tableau with every ground
instance of a clause (try every possible purifying substitution) to achieve
a refutation.

The authors of [BFN96] also present improvements over the basic cal-
culus we just described, as well as experimental results on the prover they
developed using HT.

2.2 CL calculus

There exists a calculus for coherent logic that we will call the CL calculus,
developed by Bezem and Coquand [BC05] and described in more detail
by Bezem in [Bez05]. The CL calculus is a hyper-tableau calculus, and
requires all the negative literals of a clause to be present on a branch be-
fore using the clause to extend it. Additionally, the calculus is ground and
works by enumerating every ground instance of every clause. Consider
the example below, modified from [Bez05].

Clause set:

(A) Na

(B) Nx→ ∃y(Ny ∧ Sxy)

(C) Sxy ∧ Syz → ⊥

Derivation:

Na (1)

¬Na
?

Nb (2)

Sab (2)

¬Nb
?

Nc (3)

Sbc (3)

¬Sab
?

¬Sbc (4)
?

12 2. RELATED CALCULI

At the start, we have one ground term a, and we can expand with Na
(1). We can also make a ground instance of (B) using a, and as Na is on
the branch, we can expand with this instance. The existentially quantified
variables are replaced with fresh constant symbols, yielding (2). Now we
have a new constant b, and we can use it to make a new instance of (B).
Expansion with this instance gives (3). Now we have enough symbols to
make a ground instance of (C), namely Sab ∧ Sbc, and expand with it (4)
to close the derivation.

The obvious deficiency of this method is that we can make many more
instances that are not shown, and for every such instance we have to
check if it can be used in an expansion step. To rectify this inefficiency,
this work lifts the CL calculus to proper first-order coherent clauses. We do
this by using unification to avoid enumerating ground terms, but without
introducing skolem functions.

An interesting point worth mentioning is that while the satisfiability
or validity of any coherent formula is decidable, satisfiability of coherent
theories, i.e. sets of coherent formulae, is undecidable. This is proven in
[Bez05] by reduction of the halting problem for register machines, known
to be undecidable.

2.3 Instance-based methods

The general idea of instance-based theorem proving is to prove the unsat-
isfiability of a set of formulae in clausal normal form by generating sets
of instances of these formulae, then checking the unsatisfiability of these
sets. As any instance of a formula φ is a logical consequence of φ, if a set
of instances is not satisfiable, neither is the original set.

Consider an example that does this in a very inefficient way. We gen-
erate instances of every clause in the clause set below by looping over
possible constants to try, then check to see if the generated instances are
unsatisfiable.

(A) Pxy

(B) ¬Paz ∨Qaz

(C) ¬Pbz ∨Rbz

(D) ¬Rbc

We could start by generating the set of instances

{Paa,¬Pab ∨Qab,¬Pba ∨Rba,¬Rbc}

2.3. INSTANCE-BASED METHODS 13

This set is satisfiable (make every positive literal true), so we continue the
loop. Next, we can make the set

{Pab,¬Pab ∨Qab,¬Pbc ∨Rbc,¬Rbc}

This set is also satisfiable, so we continue to find

{Pbc,¬Pac ∨Qac,¬Pbc ∨Rbc,¬Rbc}

which is unsatisfiable, and we can stop.
There are two important points of inefficiency here. The first one is

that the clause ¬Paz ∨ Qaz is superfluous, as the clause set is unsatisfi-
able without it. We should thus avoid generating instances of this clause
altogether. The second point of inefficiency is the lack of direction in the
instantiation process, leading to many dead-ends as we generate instances
that do not lead to an unsatisfiable set. Usually, the sets are not discarded
and thus there are no dead-ends, but one still has to deal with all the
superfluous instances generated.

Several improvements on the basic idea that we presented above have
been made. A general idea is to use unification of complementary liter-
als to guide the instantiation process, done in a very basic form in the
Inst-Gen calculus of Ganzinger and Korovin [Kor]. In the Hyper-Linking
calculus of Lee and Plaisted [LP92], the instantiation process, and to an
extent the choice of clauses to instantiate, is guided by the simultane-
ous unification of all complementary literals. This continues in the Next-
Generation Hyper Tableau calculus of Baumgartner et al. [Bau98], which
we use as a basis for our own calculus. There, a tableau derivation is used
to much more actively guide the choice of clause to instantiate next while
still using unification to find the instance needed. A similar idea motivates
the Disconnection calculus of Billon [Bil96], improved upon by Letz and
Stenz [LS07].

A different approach, focusing less on the syntax of the clauses and
more on the semantics of a hypothetical model for them is adopted in the
FDPLL [Bau00] and Model Evolution [BT03] calculi, also by Baumgartner
(the latter together with Tinelli). We will discuss all of these in order, then
conclude this section with a short summary.

A common feature of instance-based methods is their ability to de-
cide the Bernays-Schönfinkel class of problems, also known as ‘essentially
propositional’ problems. A problem in this class is a set of formulae of
the form ∃~x∀~y.φ(~x, ~y), where φ(~x, ~y) contains no quantifiers or function
symbols. To solve such a problem is to decide whether or not the set
is satisfiable, and the fact that instance-based methods decide this class

14 2. RELATED CALCULI

of problems means that they terminate on any such problem with a cor-
rect answer. This class of problems is represented at CASC, the CADE
ATP Systems competition [SS06], which is a major competition for au-
tomated theorem provers. The winners in this class (called ‘EPR’) are
usually instance-based provers.

Before proceeding to the individual methods we shall require a defini-
tion used by several of them. Note that some of the calculi below do not
refer to links directly, but use the concept nonetheless.

Definition 2.1 (Link) Given two distinct clauses C and D, a link between
C and D is a pair of literals L ∈ C and ¬K ∈ D such that there exists a
unifier for L and K. �

2.3.1 Inst-Gen

This calculus, developed by Korovin and Ganzinger, can be seen as the
‘smallest’ instance-based method. Several of the calculi mentioned later
precede the papers we refer to here, but if one ignores the timeline, Inst-
Gen is the ‘first’ method in the sense that nearly everything else can be
seen as an extension of it. It is presented in [GK03], but our reference for
this section is [Kor].

The calculus works by looking for links within clauses. If a link be-
tween two clauses C ∨ L and D ∨ ¬K with unifier σ is found, and σ
instantiates L or ¬K, then clauses (C ∨ L)σ and (D ∨ ¬K)σ are added to
the current clause set. One then replaces every variable in every clause
in the clause set by a special constant and checks the result for satisfia-
bility, much as in the unguided calculus we described at the beginning of
Section 2.3. The beauty of Inst-Gen is that it is ‘trivially’ sound and easy
to prove complete — sound because we always add instances of clauses
already present, hence consequences thereof, and complete by a simple
proof using Herbrand’s theorem. Also, it is extensible by many refine-
ments, which are discussed in [Kor]. These include hyper-style inference,
semantic selection (add instances that are not yet satisfied by a generated
model for the clauses we do have), and redundancy elimination.

In addition to the work mentioned above, [GK04] presents an inte-
gration of equality reasoning into Inst-Gen, while [Kor08] is a system
description of iProver, a theorem prover based on an improved version of
Inst-Gen.

2.3. INSTANCE-BASED METHODS 15

2.3.2 Hyper-Linking

Developed by Lee and Plaisted around 1990 (we use [LP92] as our main
reference for this section), this is one of the first instance-based methods.
The Hyper-Linking calculus works, similarly to Inst-Gen, by looking for
links between the clauses. The process is divided into ‘rounds’; each round
computes for every clause C the set of hyper-links for this clause.

Definition 2.2 (Hyper-link) Given a clause C = {L1, . . . , Ln}, a hyper-
link for C is a set of links such that for every i, there is one and only one link
featuring Li. �

For every such hyper-link, we can compose the unifiers of every link in
it (possibly renaming variables) to get a single substitution for the hyper-
link. Call this substitution θ; the instance we add to our clause set is Cθ.
After all the clauses have been processed (this process terminates), we
can ground every clause by substituting some distinct constant for every
variable to obtain a set of ground clauses. This set can be checked for
satisfiability by e.g. resolution, and if it is refuted we are done. Otherwise,
a new round is initiated with the clause set we failed to refute as input.

In this calculus, the instances computed attempt to create clauses that
are complementary. This helps to avoid superfluous clauses, as they would
have few or no links to other clauses. However, if there is a ‘cluster’ of
superfluous clauses, i.e. clauses that have links between them but no links
to other clauses, and this cluster is satisfiable, Hyper-Linking would still
generate instances of clauses in the cluster.

A lot of work on Hyper-Linking has been done since its inception. In
1990, a prover called CLIN was developed by Lee [Lee90] for this calcu-
lus. Around 1992, Alexander and Plaisted integrated equality reasoning
into the calculus [AP92, Ale95], and Alexander later developed a prover
CLIN-E [Ale97] to address inefficiencies in CLIN that he and Plaisted had
uncovered during their equality research.

A parallel line of research looked for improvements to Hyper-Linking
itself, by adding a candidate model to the proof search and using Hyper-
Linking to find instances of clauses that are false in this model. If such
an instance is found, the model is modified to satisfy it. The first attempt
[CP94], due to Chu and Plaisted, came around 1994, and a prover for the
method [CP97] was developed. This was followed by [PZ00] and finally
by [YP02], which left the Hyper-Linking paradigm.

16 2. RELATED CALCULI

2.3.3 Disconnection

The Disconnection calculus was conceived by Billon [Bil96] and improved
upon by Letz and Stenz [LS07], whose paper is our main reference for
this section. They also developed a prover for this calculus called DCTP
[LS01], and integrated equality reasoning into the calculus (covered in
[LS07], but originally in [LS02]).

One big difference to Hyper-Linking is that Disconnection is a tableau
calculus. However, unlike the calculi we shall be discussing later, this cal-
culus also works on links (sometimes called connections). In contrast to
Hyper-Linking, where all the links of a clause are used together, Discon-
nection looks at one link at a time. The general idea is as follows: We
draw an initial path through the current clause set to act as a fake branch
at the start of the derivation. Then, if we have two clauses C and D on a
branch or in the current clause set, and have found a link between C and
D using literals on the (real or fake) branch, we expand the tableau by
clauses Cσ and Dσ using the unifier σ for this link. Consider an example
expansion with the clause ¬Paz ∨Qaz with ¬Paz being the literal on the
initial path:

Before expansion

¬Rxb Pxb Sxb

After expansion

¬Rxb Pxb

¬Rab Pab

¬Pab
?

Qab

Sab

Sxb

To use the link between Pxb and ¬Paz we have to instantiate x to
a and z to b. Before doing the expansion with ¬Paz ∨ Qaz, we put the
instantiated tableau clause on the branch. The branch marked by ? is
closed, as it contains complementary literals (Pab and ¬Pab) if grounded
to the constant ∗ (vacuous in this case since the literals are ground). Any
(real) branch satisfying that condition can be closed, and there is always
one such branch in every expansion.

This way of looking for single links that are ‘needed’, i.e. can be used
together with the clauses we already have, removes the problem of super-
fluous clauses to a large extent. If you are unlucky, you can still end up de-

2.3. INSTANCE-BASED METHODS 17

riving a cluster of superfluous clauses, but not necessarily. Hyper-Linking,
on the other hand, does not have a way to avoid this possibility. On the
negative side, Disconnection generates many similar branches, something
that can lead to near-copies of derivations.

2.3.4 Next-Generation Hyper Tableaux

The NG calculus of Baumgartner [Bau98] is an instance-based version of
his Hyper Tableaux calculus [BFN96], developed together with Furbach
and Niemelä. The Hyper Tableaux calculus was partly ground: If a vari-
able occurred in two different literals in the positive part of a clause, like x
in Pa→ Qxy∨Rx, HT would guess a ground term to substitute for x (see
Section 2.1). The NG calculus improved this by adding proper unification
support and thus removing this inefficiency.

The NG calculus is also a tableau calculus, but is only indirectly con-
cerned with links. Instead, we divide all clauses into a positive and a nega-
tive part, so that the clause ¬Pax∨¬Qax∨Rbx becomes Pax∧Qax→ Rbx.
The calculus works by looking for the situation where the negative side of
a clause unifies with the literals on a branch — in other words, a situation
where every negative literal of a clause is part of a link with some literal
on the branch. Then, two things can happen: If the composed substitu-
tion of this set of links is such that no branch literal is instantiated, we
can expand the branch using our clause. When this happens, every new
branch containing a literal from the negative side of a clause is closed. If
the condition above is not true, we do not expand the branch using our
clause. Instead, we create instances of every clause on the tableau that
participates in the set of links using the substitution we computed, then
add all these instances to our clause set.

This calculus gets much the same benefits as Disconnection, and gener-
ates a similar amount of branches, albeit in a slightly different order. This
is expected, as a branch expansion in NG can be thought of as a list of Dis-
connection expansions, one for every negative literal found in the clause
(modulo order). The generation of instances that NG does explicitly is
done implicitly in Disconnection, cf. Section 2.3.3. The two calculi are
also very similar in their definitions of redundant inferences and model
generation from an open branch.

The calculus presented in this thesis is an instance-based version of the
CL calculus (see Section 2.2) based on the NG calculus. The CL calculus
can be seen as a ground version of NG, and our work is thus a lifting of
that to free-variable clausal form. On the other hand, this work can be
seen as an extension of NG that enables it to handle clauses with two

18 2. RELATED CALCULI

types of variables. For examples, as well as a discussion of the differences
between NG and our own calculus, we refer the reader to Chapter 4.

Finally, there is a paper by Feng, Sun, and Wu [FSW06] that claims to
have found a counterexample to the completeness of NG. This counterex-
ample is erroneous; we discuss it in Section 6.1. As such, we believe that
NG is indeed complete as proven in [Bau98].

2.3.5 FDPLL

Despite the fact that NG is complete, provers based on it have not per-
formed as expected. This fact prompted Baumgartner to try a more se-
mantic approach, and the FDPLL calculus [Bau00] is the first result from
this line of research. It attempts to lift the propositional DPLL procedure
to a first-order calculus, as DPLL has performed quite well on proposi-
tional problems.

DPLL works by case analysis: Given a clause set S, we pick a proposi-
tional variable, say A, from a clause in S, and create two new clause sets
S[A/>] and S[A/⊥] (by S[A/⊥] we mean the set S with every instance
of A replaced by ⊥), to be analyzed separately. The two clause sets we
created are simpler than S, and can be further simplified by propositional
rules, e.g. A ∨ > ≡ >. If we find an elementary contradiction during this
simplification, that clause set is unsatisfiable. If not, we pick a new vari-
able to split on until we either run out of propositional variables (in case
which we conclude that S is satisfiable), or find that all the sets we have
generated are unsatisfiable, which means that S is not satisfiable either.

FDPLL lifts this splitting rule to non-ground literals by trying to gener-
ate a potential model for a set S of non-ground clauses. This is a tableau
calculus, so the usual notions of branches etc. apply. At the beginning,
the potential model satisfies nothing, i.e. assigns false to every instance
of every positive literal, and the single branch has a ‘literal’ ¬x on it that
unifies with any positive literal. We then look for a clause C ∈ S which is
falsified by the model, a statement equivalent to ‘every literal of C unifies
with the complement of a branch literal using unifier σ’. If it is then true
that Cσ contains a literal L such that neither L nor the complement of
L is on the branch, we split on this literal and create two new branches,
equivalent to two potential models: One satisfying every instance of L
and another one falsifying every such instance. In general, a literal on
the branch represents every instance of itself, except when there is a more
specific literal on the branch generating an exception. This is similar to
our own model construction, cf. Def. 6.8.

There is a second rule in FDPLL, the Commit rule. After a split, a

2.3. INSTANCE-BASED METHODS 19

branch may contain literals L and ¬K that unify with a unifier σ, such
that neither Lσ nor the complement is on the branch. This is unfortunate
for the model generation, as we have no way to decide what to satisfy.
The Commit rule remedies the situation by creating two new branches:
One with Lσ and another with the complement.

Finally, a branch is closed if there exists a clause D and substitution
δ such that for every L ∈ D, the complement of Lδ is on the branch.
To make more sense of this description, consider a simple example taken
from [Bau00].

Clause set:

(A) Pay

(B) Pxb ∨ ¬Pzy ∨Qxyz

Derivation:

¬x

Pay

Pxb ¬Pxb

Pab ¬Pab

¬Pay
?

We start with the catch-all ¬x, then unify clause A with ¬x using the
empty substitution to split on Pay. The right branch is closed due to
clause A. Next, we can unify B with the open branch by unifying ¬Pzy
with Pay and the rest with ¬x. Neither the literal Pxb nor the complement
is on the branch, so we can split again. Finally, we can see the Commit
rule being applied: As Pay and ¬Pxb unify to Pab, we can use Commit to
get the two branches with Pab and ¬Pab.

2.3.6 Model Evolution

A continuation of Baumgartner’s work on FDPLL, the Model Evolution
calculus (MEV) is ‘a more faithful lifting of the DPLL procedure’ [BT03,
abstract]. Here, the focus is also on the model, instead of the clauses
themselves. A sequent calculus, MEV operates on sequents of the form
Λ ` Φ. Λ is called a context, while Φ is the clause set we are trying to
refute. The procedure is started on a clause set S by constructing the
sequent ¬v ` S, with ¬v a catch-all metaliteral similar to the one used
in FDPLL. If we manage to derive a sequent Λ ` ∅ from ¬v ` S, then S
is satisfiable, and the context Λ gives a model for S (in general we will
never reach this sequent, as the derivation becomes infinite). On the other
hand, if we manage to derive a sequent Λ ` Φ,� where � is the empty

20 2. RELATED CALCULI

clause, the branch containing this sequent is closed and cannot lead to a
model for S.

The chief advantage of MEV is that it manages to lift the simplification
rules of DPLL to first-order logic. An example of this is the Subsume rule,
which in the propositional case allows one to simplify {L,L ∨ C, . . .} to
{L, . . .}— as L has to be true, the satisfiability of this clause set does not
depend on L ∨ C. We say that L subsumes L ∨ C. Such rules can save a
lot of work, and MEV contains two of them, the Subsume rule mentioned
above, and a second rule called Resolve.

In addition to the simplification rules there are two rules that add liter-
als to the context, Assert and Split. The Split rule is similar to the splitting
rule in FDPLL, while the Assert rule is a lifting of the propositional rule
that assigns > to a clause containing a single literal, called a unit clause.
Such a clause can only be made true in one way, namely by assigning
true to the literal (in the propositional case), or assigning true to every
instance of the literal (in the first-order case).

To achieve a sound and complete lifting of these rules, the authors
of [BT03] introduce the notion of a parameter, a type of variable they use
to constrain the context. The general idea here as well is that a literal
L in context Λ represents every instance of itself, unless a more specific
negative literal creates an exception. Here, parameters come into play: If
L is parameter-free, it will not be subject to exceptions, potentially leading
to an efficiency gain. New parameters are introduced and propagated via
the Split rule, and care is taken in all rules to avoid contradictions in the
context.

Quite a lot of work has been done on MEV. A theorem prover called
DARWIN, two-times winner of the ‘EPR’ problem class of CASC [SS06],
has been developed by Fuchs, together with Baumgartner and Tinelli
[BFT04, Fuc04]. The calculus has also been improved by ‘lemma learn-
ing’ [BFT06], a method for generating formulae to avoid dead-ends later
in the search. A further and more general improvement was found by
Fuchs, Baumgartner, Tinelli, and de Nivelle [BFdNT09].

2.3.7 Summary

The calculi presented here give a short overview of the current knowledge
of instance-based methods. For a more in-depth tutorial, we refer the
reader to the IJCAR 2004 tutorial on instance-based methods [BS].

Chapter 3

Preliminaries

In this chapter we shall define coherent logic as a subset of first-order logic
in Section 3.1. Then, in Section 3.2 we shall define a clausal coherent
logic similar to clause normal form, but with two types of variables. We
give a semantics for it in Section 3.2.1, then we prove Theorem 3.16 stat-
ing that the clausal logic is an accurate representation of coherent logic.
The chapter is concluded by Section 3.2.2, which contains definitions of
various substitutions and relations to be used throughout this thesis.

3.1 First-order logic

Definition 3.1 (Signature) A signature Σ = 〈P ,V , C〉 is a tuple with P an
infinite set of predicate symbols, V an infinite set of variables, and C an
infinite set of function symbols.

A signature is coherent if the function symbols are all of arity zero,
i.e. constants.

The set of Σ-terms T is the union V ∪C, hence a term is either a variable
or a constant. �

Definition 3.2 (Formulae) Given a coherent signature Σ = 〈P ,V , C〉, the
set of Σ-formulae F is the least set such that

1. P (t1, . . . , tn) ∈ F for P ∈ P and t1, . . . , tn ∈ T

2. ¬φ ∈ F for φ ∈ F

3. φ ◦ ψ ∈ F for ◦ ∈ {∧,∨,→} and φ, ψ ∈ F

4. ∀x.φ and ∃x.φ ∈ F for x ∈ V and φ ∈ F

21

22 3. PRELIMINARIES

Any formula P (t1, . . . , tn) above is called atomic or simply an atom. We
will usually omit the parentheses and write Pxy for P (x, y) wherever it is
convenient. �

We treat ∧ and ∨ as commutative and associative, thus writing A1 ∧
· · ·∧An without parentheses. The connective→ has the lowest precedence
and ¬ the highest. Also, we assume that quantifiers bind free variables in
formulae, thus in the formula ∀x.φ, x occurs free in φ. Given this, we can
define what this thesis is about, namely coherent formulae.

Definition 3.3 (Coherent formula) A coherent formula is any formula of
the form

∀~x.(A1 ∧ · · · ∧ An → ∃ ~u1.B1 ∨ · · · ∨ ∃ ~um.Bm)

with atomic formulae Ai and conjunctions of atomic formulae Bj for i ≤ n
and j ≤ m. (The notation ~x refers to a finite list of variables.) We allow the
cases n = 0 and m = 0, writing > → φ (or just φ) and φ→ ⊥ respectively.�

A coherent formula is thus a universally quantified implication from a
conjunction of atoms to a disjunction of existentially quantified conjunc-
tions of atoms.

3.1.1 First-order semantics

A modelM for a logical language consists of a set |M|, called the domain,
and an interpretation function sM for s a predicate or constant symbol.
We demand that every constant be interpreted as an element of |M| and
every predicate symbol of arity n as a relation on |M|n. To interpret free
variables, we shall use an assignment.

Definition 3.4 (Assignment) An assignment for a modelM is a function
from variables to elements of |M|. We use µ, η, and θ to denote assign-
ments. �

Example 3.5 LetM be a model with domain |M| = {a, b, c}. The assign-
ment µ = {x/a, y/a, z/c} maps x and y to a and z to c, so we have that
µ(x) = a and µ(z) = c, while the value of µ(w) is undefined. �

Free variables are thus interpreted as domain elements by the assign-
ment. Given this, a formula φ is true inM under µ, equivalentlyM satis-
fies φ under µ, which we write asM, µ |= φ, as defined below (modified
from [Han04, pp. 9–10]):

3.2. CLAUSE LOGIC 23

1. For atomic formulae, M, µ |= P (a1, . . . , an) if 〈aM,µ
1 , . . . , aM,µ

n 〉 ∈
PM.

2. M, µ 6|= ⊥.

3. M, µ |= ¬φ ifM, µ 6|= φ.

4. M, µ |= φ ∧ ψ ifM, µ |= φ andM, µ |= ψ.

5. M, µ |= φ ∨ ψ ifM, µ |= φ orM, µ |= ψ.

6. M, µ |= φ→ ψ ifM, µ |= φ does not hold orM, µ |= ψ holds.

7. M, µ |= ∃x.φ if there exists an assignment µ′ differing from µ only
in the value assigned to x, such thatM, µ′ |= φ.

8. M, µ |= ∀x.φ if for every possible assignment µ′, differing from µ
only in the value assigned to x,M, µ′ |= φ holds.

A formula φ without free variables is true in a modelM if it is true in
that model under an arbitrary assignment (as the assignment does noth-
ing in this case), which we write simply asM |= φ.

3.2 Clause logic

The calculus presented in Chapter 4 does not work on formulae, but on
clauses. Syntax and semantics for these are defined in this section. First
of all, we are going to change our definition of variables and terms, as we
distinguish between universal and existential variables instead of having
explicit quantifiers. We also distinguish between the constants that come
with the problem and witnesses introduced by instantiating existential
variables. There are still no (non-nullary) functions, so the only terms are
variables, constants, and witnesses. The definitions in this chapter will
be used throughout the rest of this thesis — thus wherever we speak of
variables, terms, etc., we use the definitions from this section.

Definition 3.6 (Variables, terms) Given a coherent signature from Def. 3.1,
we divide the set of all variables V into two disjoint sets: the set of universal
variables Va and the set of existential variables Ve. We will use x, y, z to
denote universal variables, and a dot to mark existential ones, e.g. ẋ.

The type of a variable is either existential or universal. The type of a
variable x is universal iff x ∈ Va, otherwise the type of x is existential.

24 3. PRELIMINARIES

We keep the set C of constant symbols as before, but add an infinite set
W of witness symbols which are used like constants, but are not in C. We
will use a, b, c for constants, and denote witnesses by a bar, e.g. ū.

The set of all terms is defined as the union T = V ∪ C ∪W. �

Example 3.7 If P is a predicate symbol, then Pxẋ is a literal with univer-
sal variable x and existential variable ẋ. Likewise, Pax is a literal with a
constant a and universal variable x, while Pūx is a literal with a witness ū
and universal variable x.

As there are no function symbols, expressions like Pf(x)ẋ and Paf(u̇)
are not literals. �

Next, we can define clauses and clause sets, as well as the relation
between clauses and formulae.

Definition 3.8 (Clauses, clause sets) A coherent clause or simply clause
is a multiset of literals and sets of literals, written as a disjunction ¬A1 ∨
· · ·∨¬Am∨B1∨· · ·∨Bn where m,n ≥ 0. We may also write this as A→ B,
where A = {A1, . . . , Am} is called the negative part or the negative literals
of the clause, and B = {B1, . . . , Bn} the positive part. The elements of A
are atoms with no existential variables, while the elements of B are sets of
atoms that, while they may contain both types of variables, must be pairwise
disjoint in their existential variables. Clauses with B non-empty are called
program clauses.

The literals of A → B, written Lits(A → B), are the negated atoms of
A together with all the atoms in every element of B, i.e the union {¬L|L ∈
A} ∪

⋃
B.

The elements of A→ B, written Elems(A→ B), are the negated atoms
of A and the elements of B, i.e. the union {¬L|L ∈ A} ∪B.

A clause set is a set of clauses. �

Definition 3.9 (Formulae and clauses) To any coherent formula φ we as-
sociate a coherent clause φc as follows:

1. If φ is atomic, then φc = φ.

2. If φ is a conjunction of atoms A1 ∧ · · · ∧ An, then φc = {Ac1, . . . , Acn}.

3. If φ is a disjunction of atomic conjunctions ∃~x1.B1∨· · ·∨∃~xm.Bn, then
φc = {B1

c, . . . , Bn
c}. Every variable bound by an existential quantifier

is in Ve.

3.2. CLAUSE LOGIC 25

4. If φ is an implication ∀~x(A → B), then φc = Ac ∪ Bc. Every variable
bound by a universal quantifier is in Va.

In other words, any coherent formula can be turned into a coherent clause
by removing the quantifiers and transforming conjunctions and disjunctions
into sets. �

Example 3.10 If P , Q, R, and S are predicate symbols, then both

Pxy ∧Qab→ Ru̇c

and
(Qxu̇ ∧Ryv̇) ∨ Saẇ

are clauses, corresponding to coherent formulae

∀x∀y(Pxy ∧Qab→ ∃u̇(Ru̇c)

and
∀x∀y∃u̇∃v̇((Qxu̇ ∧Ryv̇) ∨ ∃ẇ(Saẇ)

respectively. On the other hand, neither

Pu̇x→ Qab

nor
Pxy → Qxu̇ ∨Ryu̇

are clauses. The first expression contains an existential variable in the nega-
tive part, while the literals in the positive part of the second are not disjoint
in their existential variables. �

Example 3.11 Given the clause C = Pxy ∧ Qxy → Ru̇x ∧ Su̇y, we have
that the literals of C are Lits(C) = {¬Pxy,¬Qxy,Ru̇x, Su̇y} and that the
elements of C are Elems(C) = {¬Pxy,¬Qxy, {Ru̇x, Su̇y}}. �

3.2.1 Clausal typed-variable semantics

When we move from coherent formulae to coherent clauses all variables
become free, and the ordinary first-order semantics no longer suffice.
Typed-variable semantics introduce the notions of universal and existen-
tial assignments (since we have corresponding variables) to interpret free
variables.

26 3. PRELIMINARIES

Definition 3.12 (Universal and existential assignment) A universal as-
signment is a function from universal variables to domain elements, while
an existential assignment is a function from existential variables to domain
elements. We will use a superscript ‘a’ to show that an assignment is univer-
sal, and a superscript ‘e’ to show that it is existential. �

Given a modelM, a universal assignment µa and an existential assign-
ment µe, we define the interpretation of a term s in the modelM under
universal assignment µa and existential assignment µe, written sM,µa,µe,
as follows:

1. cM,µa,µe
= cM for a constant symbol c.

2. xM,µa,µe
= µa(x) for a universal variable x.

3. u̇M,µa,µe
= µe(u̇) for an existential variable u̇.

Example 3.13 Consider a modelM where every constant is interpreted as
itself with domain |M| = {a, b, c}, together with universal assignment µa =
{x/a, y/a, z/b} and existential assignment µe = {u̇/c, v̇/c}. The literal Pxu̇a
is then interpreted as (Pxu̇a)M,µa,µe

= PMµa(x)µe(u̇)aM = PMaca. �

Predicate symbols are interpreted as relations, the same as in the first-
order semantics. We can now defineM, µa, µe |= φ (φ is true inM under
µa and µe) for a clause φ as follows:

1. If φ is an atomic formula P (t1, . . . , tn), thenM, µa, µe |= P (t1, . . . , tn)
if 〈tM,µa,µe

1 , . . . , tM,µa,µe

n 〉 ∈ PM.

2. If φ is a set of atoms, thenM, µa, µe |= φ ifM, µa, µe |= L for every
L ∈ φ.

3. If φ is of the form A → B, then M, µa, µe |= φ if M, µa, µe 6|= A or
M, µa, µe |= S for some S ∈ B.

A clause φ is true in a model M (M satisfies φ) if for every uni-
versal assignment µa there exists an existential assignment µe such that
M, µa, µe |= φ. For a clause φ without variables, this collapses toM |= φ
in the ordinary first-order semantics. A clause is satisfiable if there exists
a model that satisfies it.

A clause set is satisfiable if there exists a model that satisfies every
clause in the set. If no such model exists, the clause set is unsatisfiable
(contradictory).

3.2. CLAUSE LOGIC 27

Example 3.14 Let M be a model that interprets every constant as itself,
with |M| = {a, b, c}. Let P and Q be predicate symbols, and define the
interpretations PM = {〈a, b〉, 〈b, c〉} and QM = {〈c, b〉, 〈a, c〉}.

Consider a clause C = Pxy ∧ Qxu̇. This clause is a set of atoms, and
it is true in M under the assignments µa = {x/a, y/b} and µe = {u̇/c},
as 〈a, b〉 ∈ PM and 〈a, c〉 ∈ QM. However, under the assignments ηa =
{x/c, y/a} and ηe = {u̇/b} the clause C is false, as 〈c, a〉 6∈ PM, which
means thatM, ηa, ηe 6|= Pxy. �

Example 3.15 The clause set

{Pxy, Pxy → Rab}

is satisfiable, as it can be satisfied by a modelM such thatM |= Pxy and
M |= Rab. On the other hand, the clause set

{Pxy, Pxy → Rab,Rab→ ⊥}

is not satisfiable, as any potential model would have to satisfy ⊥, which is
not possible. �

Apart from the split between universal and existential assignment, the
semantics is quite standard. That the clausal semantics are correct is cap-
tured in the following theorem.

Theorem 3.16 (Equivalence of semantics) For every model M and co-
herent formula φ with corresponding coherent clause φc,M |= φ if and only
ifM |= φc. �

Proof For the if part, assume that M |= φc. This means that for every
universal assignment µa there exists an existential assignment µe such that
M, µa, µe |= φc. Let µa be an arbitrary universal assignment, and let µe be
the corresponding existential assignment. We can compose them to form an
assignment µ = µaµe.

Now we shall prove by induction thatM, µ |= φ. For the base case, if φ
is atomic,M, µ |= φ since φ = φc.

For the general case, if φ is a conjunction of atoms A1 ∧ · · · ∧ An, then
φc = {Ac1, . . . , Acn}. By assumption,M, µa, µe |= Aci ∈ φc for every i, and by
inductionM, µ |= Ai for every i, as the Ai are atomic. This, however, means
thatM, µ |= φ by the ordinary FOL semantics.

If φ is an existentially quantified disjunction of conjunctions of atoms
∃~x1.B1∨· · ·∨∃~xn.Bn, then φc = {Bc

1, . . . , B
c
n}. By assumption,M, µa, µe |=

Bc
i ∈ φc for some i, and by induction, M, µ |= Bi for some i. This means

28 3. PRELIMINARIES

that there are elements in |M| that can be assigned to the variables ~xi such
that Bi is true inM under µ, and that again gives us thatM, µ |= ∃~xi.Bi.
However, this means thatM, µ |= φ.

Finally, if φ is an implication ∀~x(A → B), then φc = Ac ∪ Bc. By
assumption, either M, µa, µe 6|= Ac or M, µa, µe |= S for some S ∈ Bc.
If M, µa, µe 6|= Ac holds, then by induction M, µ 6|= A, which means that
M, µ |= A → B. This means that there are elements in |M| that can be
assigned to the variables ~x such that A → B is true in M under µ, which
gives us thatM, µ |= ∀~x(A→ B).

IfM, µa, µe |= S for some S ∈ Bc was the case, then by inductionM, µ
satisfies some disjunct of B, and the rest of the argument proceeds exactly as
in the paragraph above.

Since µa was arbitrarily chosen, this holds for every such assignment,
which means that M |= φ for every assignment µ, which was the desired
property.

For the only if part, we shall assume that M |= φ. This means that for
every assignment µ,M, µ |= φ. Let µ be arbitrarily chosen, and split it into
a universal part µa and an existential part µe. The proof is also by induction
on the form of φ. For the base case, if φ is atomic, M, µa, µe |= φc since
φ = φc.

If φ is a conjunction of atoms A1 ∧ · · · ∧ An, then φc = {Ac1, . . . , Acn}. By
assumption, M, µ |= Ai for every i, and by induction, M, µa, µe |= Aci for
every i. By the semantics, this gives usM, µa, µe |= φc.

If φ is an existentially quantified disjunction of conjunctions of atoms
∃~x1.B1 ∨ · · · ∨ ∃~xn.Bn, then φc = {Bc

1, . . . , B
c
n}. By assumption, M, µ |=

∃~xi.Bi for some i, which means that there is an assignment µ′ different from
µ only in the values assigned to ~xi such that M, µ′ |= Bi. The difference
between µ and µ′ is in their existential variables, so we can split µ′ into µa

and µ′e. By induction, we then have thatM, µa, µ′e |= Bc
i for some i, which

means thatM, µa, µ′e |= φc.
Finally, if φ is an implication ∀~x(A → B), then φc = Ac ∪ Bc. By

assumption, there is an assignment µ′ different from µ only in the values
assigned to ~x such that either M, µ′ 6|= A or M, µ′ |= B. We can split
µ′ into a universal and an existential part as usual to get µ′a and µe. If
M, µ′ 6|= A holds, then by induction M, µ′a, µe 6|= Ac, which means that
M, µ′a, µe |= Ac ∪ Bc = φc. On the other hand, ifM, µ′ |= B was the case,
then by inductionM, µ′a, µe |= Bc and thus also φc.

As µ was arbitrarily chosen, this holds for every µ, which means that it
is also true that for every universal assignment µa there exists an existential
assignment µe such thatM, µa, µe |= φc, which again means thatM |= φc.�

3.2. CLAUSE LOGIC 29

3.2.2 Substitutions and relations

Some care needs to be taken concerning the two types of variables when
defining substitutions, unifiers, variants, etc.

Definition 3.17 (Substitutions) A substitution is a function from the set
of variables to the set of terms. As we have two types of variables, we split
substitutions into a universal and an existential part.

A universal substitution is a function σa : Va → T from the set of
universal variables to the set of terms.

An existential substitution is a function σe : Ve → T from the set of
existential variables to the set of terms.

A faithful variable renaming σ̇ is a bijective substitution that maps exis-
tential to existential and universal to universal variables.

A refreshing substitution (refresher) % for a clause or a literal is a faith-
ful variable renaming that maps every occurring (universal and existential)
variable to a fresh variable with respect to a tableau branch, which will al-
ways be clear from the context.

A witnessing substitution is an injection υ : Ve → W that maps every
existential variable to a witness. This makes a witnessing substitution an
existential substitution.

A universal grounding substitution γa for a clause C is a substitution
that maps every universal variable in C to a ground term. An existential
grounding substitution γe for C likewise maps every existential variable in
C to a ground term. �

Example 3.18 Consider the universal substitution σ = {x/a, y/u̇} and the
existential substitutions τ = {u̇/x, v̇/c} and δ = {u̇/ẇ, ẋ/ẏ, z/w}. We have
that σ maps the variable x to the constant a and the variable y to the exis-
tential variable u̇. The other two substitutions are read the same way.

The substitution δ is a faithful variable renaming, as it is bijective and
maps existential variables to other existential variables. On the other hand,
τ is not a renaming, as it maps a variable to a constant.

The substitution δ is a refresher for any branch which does not contain
the variables ẇ, ẏ, and w.

Given the clause C = Px ∨Qv̇, the substitution σ is a universal ground-
ing substitution for C, as Cσ = Pa ∨ Qv̇ contains no universal variables.
However, σ is not a most general grounding substitution, as {x/a} is more
general than σ. Likewise, τ is an existential grounding substitution for C, as
Cτ = Px ∨Qc contains no existential variables. �

30 3. PRELIMINARIES

Definition 3.19 (Unifier, multiset unifier) A unifier for clauses C and D
is a substitution σ such that Cσ = Dσ.

A multiset unifier for two sets of literals S = {s1, . . . , sn} and T is a
substitution σ such that Sσ = Tσ, where Sσ = {s1σ, . . . , snσ}.

In this thesis we will use universal unifiers, and we will explicitly state
this every time we use one. �

Example 3.20 Given the clauses C = Pxc ∨ Qa and D = Pu̇z ∨ Qy, the
substitution σ = {x/u̇, z/c, y/a} is a unifier for C and D, as Cσ = Dσ =
Pu̇∨Qa. This unifier is universal, as it does not contain existential variables
in the domain.

Given two sets of literals S = {Pa, Px,Qb} and T = {Pa,Qy}, the
universal substitution τa = {x/a, y/b} is a universal unifier for S and T , as
Sτa = Tτa = {Pa,Qb}. �

Definition 3.21 (Limited universal substitution and relations) A limi-
ted universal substitution λa is a universal substitution such that, for any
universal variable x and witnessing substitution υ, xλaυ = xλa. In other
words, a limited universal substitution cannot introduce an existential vari-
able into a clause.

For clauses A and B we define A ≥0 B, true iff there is a limited uni-
versal substitution λa and existential faithful variable renaming σ̇ such that
Aλaσ̇ = B. We also define A >0 B, true iff A ≥0 B and not B ≥0 A. �

Example 3.22 The universal substitution σa = {x/c, y/z} is limited, while
the universal substitution τa = {x/u̇, y/c} is not, as xτaυ = ū 6= xτa = u̇. �

Example 3.23 Consider the clauses Pxu̇z, Pyv̇z and Pau̇w̄. The following
holds: Pxu̇z ≥0 Pyv̇z >0 Pau̇w̄. The first part of this inequality holds
because we can use limited universal substitution λa = {x/y} and existential
faithful variable renaming σ̇ = {u̇/v̇} to get Pxu̇zλaσ̇ = Pyv̇z. The second
part holds using limited universal substitution κa = {y/a, z/w̄} and the
inverse of σ̇.

On the other hand, we have that Px ≥0 Pu̇ does not hold, as there is no
limited universal substitution that can send x to u̇. Also, since Pyv̇ ≥0 Pxu̇
holds, Pxu̇ >0 Pyv̇ does not hold. �

Definition 3.24 (Relations) For clauses A and B we define A � B, A is
more general than B, iff there exists a limited universal substitution σa and
witnessing substitution υ such that Aσaυ = B.

A and B are faithful variants, denoted A ∼f B, iff there exists a faithful
variable renaming σ̇ such that Aσ̇ = B. �

3.2. CLAUSE LOGIC 31

Example 3.25 Consider the clauses Pu̇z, Pẇv, and Px̄y. The following
holds:

Pu̇z ∼f Pẇv � Px̄y � Px̄y

The relation Pu̇z ∼f Pẇv holds because we can use a faithful variable re-
naming σ̇ = {u̇/ẇ, z/v} to get Pu̇zσ̇ = Pẇv. The relation Pẇv � Px̄y
holds because we can use the limited universal substitution σa = {v/y} and
some witnessing substitution υ such that ẇυ = x̄ to get Pẇvσaυ = Px̄y.

Of special interest is Px̄y � Px̄y, as the symbol � does not suggest this.
It holds because we can use the empty limited universal substitution ∅ and
any witnessing substitution (as there are no existential variables, it has no
effect) to satisfy Def. 3.24. However, � is not reflexive; cf. Example 3.26.

Going in the other direction, we have that Px̄y ≺ Px̄y holds (for obvious
reasons), but that Pẇv ≺ Px̄y does not hold, as there is no way to map x̄ to
anything. �

Example 3.26 As a cautionary example, Pu̇v̇ � Pu̇v̄ does not hold, as
a witnessing substitution is total on existential variables. This means that
Pu̇ � Pu̇ does not hold either, as there is no witnessing substitution υ such
that u̇υ = u̇. However, Px � Px does hold, as an empty substitution counts
as a limited universal one.

Also, Pu̇ � P v̇ does not hold, as neither a universal nor a witnessing
substitution may map u̇ to v̇. Finally, Px � Pu̇ does not hold either, as
no limited universal substitution may introduce existential variables. These
properties may be counterintuitive, but make some of the proofs nicer. Taken
together, we can say that the � relation is useful for comparing clauses with-
out witnesses to clauses with witnesses (but without existential variables),
and also to compare clauses with witnesses to each other. For comparisons
between clauses with existential variables we shall use the relations from
Def. 3.21. �

Chapter 4

The calculus

This chapter is organized as follows: In Section 4.1, we go through an
example derivation to explain the usage of our calculus. In Section 4.2,
we give the technical definitions necessary to formally define the rules,
which we do in Section 4.2.1. Then, we discuss the conditions found
in the rules in Section 4.3, focusing on possible versus impossible rule
applications. The chapter is then concluded by a discussion of problems
encountered on the way and the differences between our work and that
of Baumgartner [Bau98] in Section 4.4.

4.1 Example and usage

Consider the following unsatisfiable clause set.

(A) Pu̇x

(B) Pxy → Qxy ∧Rxy

(C) Qxa ∧Rxa→ ⊥

We shall derive a closed tableau for it step by step. At the start, we have
an empty tableau with a single empty branch, and the negative literals
of (A) (of which there aren’t any) unify with the empty tableau without
instantiating any literals on the branch. This means that we can apply
the Ext rule using clause (A) and get the tableau below. The existential
variable becomes a witness during this application.

Pūx

Next, we have clause (B) with negative literals that unify with Pūx.
We refresh the variables in the branch literals to get Pūx1, and apply Ext

33

34 4. THE CALCULUS

using clause (B) and universal substitution {x/ū, y/x1} to get the tableau
below. The left-hand branch of this tableau is defined to be closed by
Def. 4.4, and we mark such branches by a ?.

Pūx

¬Pūx1

?
Qūx1

Rūx1

Next, we would like to close the single open branch by applying Ext
with (C), as the negative literals present there unify with the branch liter-
als. However, the unifier computed here is different from the two unifiers
we computed previously. If we take fresh copies {Qūx2, Rūx3} of Qūx1

and Rūx1, the universal MGU for this set and the negative literals of (C)
is {x/ū, x2/a, x3/a}, a unifier that instantiates the branch literals. This
renders the Ext rule inapplicable, but allows us to use the Link rule. This
rule operates on the current clause set of a branch, which is a set of clauses
that can be used in Ext rule applications on that branch. The calculus
maintains one such set for every branch, and the Link rule adds instances
of existing clauses to this set.

The result of our Link rule application can be seen in the tableau be-
low. The rule is applied with clause (C) not using the branch literals, but
the corresponding literals in the origin clauses, i.e. clauses from the cur-
rent clause set that were used in Ext applications on the branch we are
currently working on. In this case, this is clause (B), but twice, as we are
using two literals from it. We refresh the variables in one of the instances
to get Px2y2 → Qx2y2 ∧ Rx2y2 (for the other instance, we shall use index
3). Then, we unify {Qx2y2, Rx3y3} with the negative literals of (C). The
resulting two copies of Pxa → Qxa ∧ Rxa are faithful variants of each
other (identical copies, in fact), so it suffices to add only one of them to
the current clause set.

Pūx

¬Pūx1

?
Qūx1

Rūx1

Link: (D) Pxa→ Qxa ∧Rxa

After this, we still cannot use (C) in an Ext rule application, as there
has been no change to the branch literals yet. Nor can we use (D) with

4.1. EXAMPLE AND USAGE 35

Ext, as the negative literals of (D) unify with Pūx (modulo refreshers)
only by instantiating the branch literal. However, this allows us to use
Link again to generate the tableau below. The Link application with (D)
adds (E) to the current clause set, and as (E) has no negative literals we
can use Ext on it directly, also shown on the tableau below. We introduce
a new witness for the existential variable when we do this.

Pūx

¬Pūx1

?
Qūx1

Rūx1

Link: (D) Pxa→ Qxa ∧Rxa

Link: (E) P v̇a

P v̄a

Now (D) can be used in an Ext application, as Pxa unifies with P v̄a
using MGU {x/a}. The result of this application is shown in the tableau
below, and a branch is again closed.

Pūx

¬Pūx1

?
Qūx1

Rūx1

Link: (D) Pxa→ Qxa ∧Rxa

Link: (E) P v̇a

P v̄a

¬P v̄a
?

Qv̄a

Rv̄a

Now we can apply Ext with (C) using unifier {x/v̄} on branch literals
Qv̄a and Rv̄a. This application yields the complete, closed tableau be-
low. Note that it is not necessarily the case that we end up with ground

36 4. THE CALCULUS

instances of the original clauses on the tableau — a refutation may be,
and often is, found before we reach ground level. The main point of the
calculus remains: We try to unify negative literals with branch literals. If
the branch literals are instantiated by this, we apply Link, otherwise we
apply Ext.

Pūx

¬Pūx1

?
Qūx1

Rūx1

Link: (D) Pxa→ Qxa ∧Rxa

Link: (E) P v̇a

P v̄a

¬P v̄a
?

Qv̄a

Rv̄a

¬Qv̄a
?

¬Rv̄a
?

In this derivation, we applied Ext until we hit an instantiation problem,
then used Link once. This did not allow us to proceed, as (D) could not
be used with Ext directly — however, we used Link to keep instantiating
up the tableau, a process that later allowed us to use Ext again. This is
typical for this calculus, and also for the NG calculus of Baumgartner. We
expect to be able to make use of this observation in an implementation,
by keeping track of the clauses that need to be instantiated with Link in
the case of a failed Ext, and thereby finding necessary Link applications
very quickly. A formal treatment of this effect can be found in Chapter 7.

4.2 Formal definitions

Before we define the rules of our calculus, we give some necessary tech-
nical definitions.

Definition 4.1 (Tableau, branch) A tableau is a set of branches.

4.2. FORMAL DEFINITIONS 37

A branch b is a tuple 〈p,N, TC,OR〉, where p is a list of literals (the
branch list), N is the current clause set of the branch, TC is a relation
between the literals in p and the set of tableau clauses of the branch, and
OR is a relation between the literals of p and the set of origin clauses of the
branch. (We will define what all four of these contain during the description
of the calculus.) To talk about the elements of a branch, we define suitable
notation as follows:

1. A function ` such that `(b) = p,

2. another function C− such that C−(b) = N ,

3. a relation TCb such that TCb(L,C) if 〈L,C〉 ∈ TC, and

4. a relation ORb such that ORb(L,C) if 〈L,C〉 ∈ OR.

We overload ∈ and use it to denote list membership: L ∈ p means that
L appears in the list p, possibly several times. A list is written using square
brackets; the empty list is thus [].

We write p ·L for the extension of the list p with a new element L or, if L
is a set, with the elements of L in any order. �

Example 4.2 Consider the clause set S = {Pa, Px → Qx} together with
the tableau drawn below:

Pa

¬Pa
(b1)
?

Qa
(b2)

The tableau contains two branches

b1 =

〈 p1 = [Pa,¬Pa]
N1 = {Pa, Px→ Qx}
TC1 = {〈Pa, Pa〉, 〈¬Pa, Pa→ Qa〉}
OR1 = {〈Pa, Pa〉, 〈¬Pa, Px→ Qx〉}

〉

and

b2 =

〈 p2 = [Pa,Qa]
N2 = {Pa, Px→ Qx}
TC2 = {〈Pa, Pa〉, 〈Qa, Pa→ Qa〉}
OR2 = {〈Pa, Pa〉, 〈Qa, Px→ Qx〉}

〉

38 4. THE CALCULUS

For p1, we have that Pa,¬Pa ∈ p1, and that p1 · Qc = [Pa,¬Pa,Qc].
The current clause sets of the two branches are equal, but the relations TC
and OR differ. Why they differ is explained in Section 4.2.1. �

Definition 4.3 (Fresh witnessing substitution) We say that a witnessing
substitution υ is fresh with respect to a branch b if no witness on b is in the
co-domain of υ. A witnessing substitution is fresh with respect to a tableau
T if it is fresh with respect to every b ∈ T . �

Given these definitions, we can now formally define the rules of our
calculus.

4.2.1 Rules

The rules are formally defined below. To allow the Link rule to refer to
the original clauses, Ext keeps references to them using the relations TC
and OR. Both rules operate on tableaux, and the process is started by
constructing an initial tableau {〈[], Cs, {}, {}〉} from a clause set Cs.

Definition 4.4 (The Ext rule) The Ext rule schema is

〈p,N ∪ {A→ B}, TC,OR〉, T
{〈p ·K,N ∪ {A→ B}, TC ′K , OR′K〉 | K ∈ Elems((A→ B)σaυ)} ∪ T

Ext

where

1. 〈p,N ∪ {A→ B}, TC,OR〉 is a branch,

2. T contains the remaining branches

3. σa is a universal substitution, and

4. υ is a fresh witnessing substitution w.r.t. the current tableau

such that

5. L1, . . . , Ln ∈ p are literals with refreshers %1, . . . , %n,

6. σa is a multiset MGU such that Aσa = {L1%1, . . . , Ln%n}σa, and

7. for every i, Li%iσa ∼f Li%i.

Additionally,

4.2. FORMAL DEFINITIONS 39

8. every new branch 〈p · ¬K, . . .〉, where K ∈ Aσaυ, is called closed (we
mark closed branches by a ?),

9. every new branch 〈p ·K, . . .〉, where K ∈ Bσaυ, is called open,

10. TC ′K = TC ∪ {〈K, (A→ B)σaυ〉}, and

11. OR′K = OR ∪ {〈K,A→ B〉}. �

In other words, if we can unify the negative literals of a clause with the
literals on the branch without instantiating said literals, we split the clause
below the branch and introduce witnesses for any existential variables.
The relations TC and OR are updated to relate the literals added on the
new branches to the correct tableau clause and origin clause.

Given a literal on a branch, we thus know the tableau clause it belongs
to (TC) and what clause in the current clause set this clause came from
(OR). This is illustrated in the figure below: The underlined literals in the
derivation form a tableau clause, namely Pxa → Qūa ∧ Rūa, and every
underlined literal is TC-related to it. Also, every underlined literal has
(B) as an origin clause, and is related to it by OR.

(A) Pxa

(B) Pxy → Qu̇y ∧Ru̇y

Pxa

¬Pxa
?

Qūa

Rūa

On a separate note, observe that the MGU σa above is in fact limited,
since neither A nor the literals on the branch can ever contain existential
variables. It therefore holds that (A→ B) � (A→ B)σaυ.

Definition 4.5 (The Link rule) The Link rule schema is

〈p,N ∪ {A→ B}, TC,OR〉, T
〈p,N ∪ {A→ B} ∪ {C1%1σa, . . . , Cn%nσa}, TC,OR〉, T

Link

where

1. 〈p,N ∪ {A→ B}, TC,OR〉 is a branch,

2. T contains the remaining branches, and

3. σa is a universal substitution

such that

40 4. THE CALCULUS

4. L1, . . . , Ln are literals from clauses C1, . . . , Cn ∈ N with refreshers
%1 . . . , %n, such that OR(L′i, Ci) for some L′i ∈ p with Li � L′i for every
i, and

5. σa is a multiset MGU such that Aσa = {L1%1, . . . , Ln%n}σa, and

6. Li%iσa 6∼f Li%i for some i.

Instead of adding {C1%1σ
a, . . . , Cn%nσ

a} to the current clause set, it is suffi-
cient to add only those Ci%iσa that satisfy Ci%iσa 6∼f Ci%i. �

In contrast to the Link rule in [Bau98], we do not unify branch literals
with A — instead, we unify the corresponding literals in the origin clauses
with A. If we can do this in such a way that the literals are instantiated,
we add their clauses to the current clause set.

4.3 Possible and impossible rule applications

In this section we shall discuss the conditions found in the rules and focus
on what would make a rule application impossible. Consider the example
derivation from Section 4.1, repeated here with every Ext rule application
marked.

(A) Pu̇x

(B) Pxy → Qxy ∧Rxy

(C) Qxa ∧Rxa→ ⊥

Pūx (1)

¬Pūx1

?
Qūx1 (2)

Rūx1 (2)

Link: (D) Pxa→ Qxa ∧Rxa

Link: (E) P v̇a

P v̄a (3)

¬P v̄a
?

Qv̄a (4)

Rv̄a (4)

¬Qv̄a
?

¬Rv̄a (5)
?

4.3. POSSIBLE AND IMPOSSIBLE RULE APPLICATIONS 41

There are five applications of Ext, two of which put two literals on the
same branch, and two applications of Link. We shall discuss some of them
in detail.

4.3.1 Ext application 2

Consider the Ext application labeled (2): We take clause (B) from the
current clause set, and need to satisfy all the conditions in Def. 4.4. Our
branch contains literal Pūx, and we can use refresher % = {x/x1} to sat-
isfy condition 5. The point of condition 5 is to avoid variable conflicts
when speaking about the satisfiability of a branch (cf. Def. 5.1). This is
accomplished by demanding that the negative literals of a clause be uni-
fied with fresh copies of literals on the branch. This condition cannot, in
a sense, be violated, as it is always possible to take fresh copies of all the
variables present.

Next, we need to check that the literals on the branch (in this case,
Pūx) unify with the negative literals of (B) using a universal substitution.
The fact that the substitution is universal is explicated, but vacuous: as
there are no existential variables in the negative literals of any clause nor
in the branch literals of any branch, if there exists a unifier for the two
sets of literals, there also exists a universal such unifier. We also demand
in condition 6 that the unifier be a MGU. In our case, this unifier is σa =
{x/ū, y/x1}, but there may always exist several MGUs. This condition
may, and will, often fail — if (B) had been a clause of the form Pay → · · · ,
an Ext rule application would be impossible at this stage, for there is no
unifier for {Pūx1} and {Pay}.

The most important condition is condition 7, which demands that for
every fresh copy of a branch literal L used in the rule application, it must
hold that Lσa ∼f L. Recall from Def. 3.24 that A ∼f B holds if there
is a faithful variable renaming σ̇ such that Aσ̇ = B. The point of this is
as follows: The unifier σa must not instantiate any of the branch literals,
i.e. map any variable to a term that cannot be mapped back to that vari-
able. In our case, this is true: Pūx1σ

a = Pūx1 ∼f Pūx1. This condition
can fail, and in surprising ways.

Assume that (B) was a clause of the form Pxy∧Pyz → · · · . In this case,
no Ext application is possible, because there is no unifier for {Pūx1, P ūx2}
and {Pxy, Pyz} that avoids mapping x1 to ū. Notice that we may try
(and even succeed) applying Ext on a branch with only one literal using a
clause with several negative literals. We can do so by taking copies of the
branch literals, each with its own refresher.

Another interesting fact about condition 7 is that if it alone fails, then

42 4. THE CALCULUS

a Link application is possible instead of Ext. The proof of this property
is in Lemma 6.5, and it suggests a search strategy: Apply Ext whenever
possible, and if the application fails due to condition 7, apply Link instead.
This application of Link will sooner or later lead you to an Ext application
— cf. Chapter 7 for a detailed overview of the interplay between Ext and
Link.

There is also a witnessing substitution υ mentioned in condition 4. It
is applied to the clause (B) after σa to replace every existential variable
by a witness, and this substitution must be fresh, i.e. it must not introduce
witnesses already present. However, as it is a substitution, it will map the
same existential variable in (B) to the same witness, as intended. This is
also a condition that cannot be violated, since we have an infinite supply
of witnesses. In our example this condition is not needed, as (B) contains
no existential variables.

Finally, Def. 4.4 has an ‘additionally’ part. This is bookkeeping infor-
mation. The first two items here state that any new branch with a negative
literal is closed — this is generally true, and so is the fact that any branch
with no negative literal on it is open. The last two items state that we keep
track, for every literal added by any Ext application, of the clause this lit-
eral came from (TC) and where that clause came from (OR). For example,
the branch with literalQūx1 would get a pair 〈Qūx1, P ūx1 → Qūx1〉 added
to its TC relation, and a pair 〈Qūx1, Pxy → Qxy〉 added to its OR relation.

4.3.2 Link applications

Consider the first Link application in the derivation above, the one labeled
(D). It uses clause (C) from the current clause set, but before explaining it,
let us recall Def. 4.5. Here, we find condition 4, which demands that we
have literals L1, . . . , Ln from clauses C1, . . . , Cn in the current clause set
(in our case, this is the set of clauses {A,B,C}). These literals and clauses
must be such that for every i, there exists a literal L′i on the branch with
a pair 〈L′i, Ci〉 in the relation OR of that branch, and furthermore L′i � Li
must hold.

Let us turn this definition around: There must exist literals L′1, . . . , L
′
n

on the branch such that there are literals L1, . . . , Ln in their origin clauses
(clauses related to the literals by means of OR) with L′i � Li for every i.
In our case, there are literals Qūx1, Rūx1 on the branch, both with origin
clause (B), and (B) contains literals Qxy,Rxy, both of which are more
general than their branch counterparts. Notice that these literals come
from two distinct copies of (B). We refresh the literals to get Qx2y2, Rx3y3

from Px2y2 → Qx2y2 ∨ Rx2y2 and Px3y3 → Qx3y3 ∨ Rx3y3 respectively,

4.4. DISCUSSION 43

and move on to condition 5.
Condition 5 is similar to condition 6 in the Ext rule, and demands that

there exists a universal unifier σa for the set {Qx2y2, Rx3y3} and the neg-
ative literals of (C), namely {Qxa,Rxa}. Here, the fact that the unifier is
universal is important — the literals from the origin clauses may contain
existential variables, and we do not wish to instantiate them with ‘ordi-
nary’ terms under any circumstances. For example, the literals Paẇ and
Pxb unify, but there is no universal unifier for them — so this condition
may fail in two different ways, in contrast to condition 6 in the Ext rule,
where the ‘universal’ part is vacuous.

In our case, there is a universal unifier σa = {x2/x, y2/a, x3/x, y3/a}
which is a MGU as demanded by condition 5, and we may move on to
condition 6. This condition is the opposite of condition 7 in the Ext rule,
and states that at least one of the origin clauses that we are working on
must be instantiated by σa. In our case, this is true for both clauses, but
as the resulting clauses are variants (in fact, exact copies) of each other,
we need only add one of them to the current clause set. As a result, we
add the clause Pxa → Qxa ∨ Rxa to the current clause set. Notice that
this condition may fail — in that case, the rule application is impossible
because we would add variants of clauses already present to the current
clause set, which is unnecessary.

4.4 Discussion

Our calculus is an adaptation of the Next-Generation Hyper Tableaux cal-
culus (NG) [Bau98], and has two rules called Ext and Link. The purpose
of the Ext rule, here as in NG, is to split a clause below a branch, possibly
resulting in new branches, if the left-hand side of this clause unifies with
the literals present on the branch. However, this is only done if the uni-
fier does not instantiate the literals on the branch. If existential variables
are present in the clause to be split, the Ext rule replaces them by fresh
constants.

For example, given the clause Pu̇x, which corresponds to the first-
order formula ∀x∃uPux, one extends the tableau with the literal Pūx for
a new witness ū.

The Link rule is, on the other hand, significantly different from the
one in NG. Its purpose in NG is to handle the case where the unifier com-
puted instantiates branch literals, by adding the instances we would get
from this unifier to the current clause set. Here, the purpose remains, but
matters are complicated by the presence of existential variables and the

44 4. THE CALCULUS

constants that replace them. The first complication is to preserve witness
freshness when instantiating. Consider an example to illustrate the neces-
sity of this (the examples here assume a familiarity with NG, but this will
not be needed later):

Clause set:

(A) Pu̇x

(B) Pya ∧ Pyb→ ⊥

Derivation:

Pūx

Link: Pūa

Link: Pūb

P ūa

P ūb

¬Pūa
?

¬Pūb
?

The clause set is satisfiable, but we get a closed tableau. The obvious
solution to this is to make Link substitute new witnesses for the ones
present. As a Link rule application necessarily instantiates the clauses,
this seems like a good idea. However, if this is done carelessly it leads to
a completeness problem, as shown below.

Clause set:

(A) Pu̇x

(B) Pyz → Qyz

(C) Qwa→ ⊥

Derivation:

Pūx

¬Pūx
?

Qūx

Link: P v̄a→ Qv̄a

A Link rule application with clause (C) on the right branch leads to an
instantiation of the tableau clause Pūx→ Qūx with x/a. A new witness v̄
is generated, so the Link application results in P v̄a→ Qv̄a. Unfortunately,
we lose completeness, because the new witness makes it impossible to
Link Pūx with P v̄a → Qv̄a. The point here is that the interpretation of
ū does not depend on the value of y at all, and therefore it is sound to
keep ū unchanged when instantiating y. This motivates our alteration of
the Link rule to create instances of the original, uninstantiated clauses

4.4. DISCUSSION 45

in the current clause set, instead of the tableau clauses. This removes
all problems of preserving freshness, as the current clause set contains
existential variables, and these become constants only in the Ext rule.

This version of the Link rule raises an interesting question: How do
you efficiently find possible applications of Link? For Ext, you need only
to look at the branch literals and unify them with the negative part of a
clause. The Link rule, however, is not applied to tableau clauses (of which
the branch literals are part), it is applied to origin clauses. The answer
is given in Lemma 6.5, where we prove that it is sufficient to look at the
branch literals — if the negative part of a clause unifies with the branch
literals in such a way that the literals are instantiated, then it is possible to
apply Link. This allows us to ‘have our cake and eat it too’, as we manage
to handle existential variables without losing efficiency.

Chapter 5

Soundness

We prove soundness by showing that the rules of our calculus preserve
satisfiability of tableaux, while a tableau with all branches closed is not
satisfiable. This is the usual way of proving soundness for tableau and
sequent systems. The tricky part here is soundness of the Ext rule —
the Link rule generates instances of the clauses we started with, and any
instance of a clause is a logical consequence of it, hence it is sound to add
it to the current clause set. Soundness of Ext is similar to soundness of
Ext in [Bau98], but there only an informal proof is given. We therefore
write the proof out in full for both rules.

Definition 5.1 (Branch satisfiability) We extend the notion of satisfiabil-
ity defined in Section 3.2.1 to branches. A model M satisfies a branch b
under universal assignment µa if

1. M satisfies every clause in C−(b), and

2. M, µa satisfies every literal in `(b).

Notice that there is no mention of existential assignment. This is so be-
cause the literals on a branch do not contain existential variables. The first
condition does not refer to the assignments at all, since the variables in the
clauses are implicitly quantified according to their type. �

Example 5.2 Let b be a branch with branch list `(b) = [Qv̄z, P v̄y] and
current clause set C−(b) = {Qv̇z,Qxy → Pxy,Rc}. The model M with
|M| = {v̄, a, c} and satisfying only the ground atoms

Qv̄v̄, Qv̄a,Qac, P v̄a, P v̄v̄, Pac,Rc

satisfies b under universal assignment µa = {z/v̄, y/a}.

47

48 5. SOUNDNESS

However, M does not satisfy b under the universal assignment ηa =
{z/c, y/a} because ηa(z) = c andM 6|= Qv̄c. �

Lemma 5.3 (Refreshing substitutions preserve satisfiability) For every
clause C, modelM, and refresher %,M |= C if and only ifM |= C%. �

Proof Let a clause C, model M, and refresher % be given. For the only if
part, assume thatM |= C, and let ηa be an arbitrary universal assignment
for M. Define a universal assignment µa for M such that µa(x) = ηa(x%)
for every universal variable x. (Recall from Def. 3.17 that for any variable
x, x% is a variable of the same type as x.)

Since M satisfies C for every universal assignment by assumption, it
must in particular satisfy C under µa, which means that there exists an
existential assignment µe such thatM, µa, µe |= C.

Now construct an existential assignment ηe by letting ηe(u̇%) = µe(u̇) for
every existential variable u̇. Since M, µa, µe |= C, it must also be the case
that M, ηa, ηe |= C%. Since ηa was arbitrary, this holds for every universal
assignment, and we are done.

The same proof goes through for the if part if one lets C and C% switch
places. �

Lemma 5.4 Let e ∈ |M| be an arbitrary element of some model. No closed
branch b is satisfiable under the universal assignment ∗ such that ∗(x) = e
for every universal variable x. �

Proof Assume for the sake of contradiction that there exists a closed branch
b and a model M such that M, ∗ satisfies b. From the definition of satisfi-
ability, we have that for every L ∈ `(b), M, ∗ |= L. Furthermore, since b
is closed, it was closed by an application of the Ext rule, which means that
there is a literal ¬K ∈ `(b).

From the definition of Ext, we know that there exists a universal substi-
tution σa, a literal L ∈ `(b), a refresher %, and a witnessing substitution υ
such that K = K ′σaυ = L%σa. In other words, K came from some literal
K ′ in a clause using σa, and the substitution made it equal to some literal L
previously on the branch (ignoring the refresher for a moment).

SinceM, ∗ |= L and L contains no existential variables,M, ∗ |= L%. (By
definition of a refresher, every universal variable in L is still universal, and
∗ interprets all universal variables as the same element.) Also, since the Ext
rule demands that L%σa ∼f L%, and using the definition of ∼f , we know
thatM, ∗ |= L%σa.

This, however, is a contradiction, since K = L%σa, and a model cannot
satisfy a literal and its negation under the same assignment. �

49

Before continuing, we shall need the definition below.

Definition 5.5 (Satisfiable tableau) A model M satisfies a tableau T if
there exists a branch b ∈ T such that M satisfies b under the universal
assignment ∗ from Lemma 5.4. A tableau is satisfiable if there exists a model
that satisfies it. �

Lemma 5.6 (Ext and Link preserve satisfiability) If either the Ext or the
Link rule is applied on a satisfiable tableau, the resulting tableau is also
satisfiable. �

Proof Let a satisfiable tableau T be given, and letM be the model satisfying
it. Then, there exists a branch b ∈ T such thatM, ∗ satisfies b. Notice that
if the rule application is not done on b, the resulting tableau still contains b,
and is therefore satisfied byM. Assuming that the rule application is indeed
done on b, we get a case for each rule.

Link An application of the Link rule affects only the current clause set
C−(b), leaving us free to ignore the literals on b. By definition of branch
satisfiability, we have that M |= C for every C ∈ C−(b). Furthermore, let
C1%1σ

a, . . . , Cn%nσ
a be the clauses added to C−(b) by an application of the

Link rule using universal substitution σa. By Lemma 5.3, M |= Ci%i for
every i. Also, since σa is a universal substitution (cf. Def. 4.5) it instantiates
only the universal variables in Ci%i, from which it follows thatM |= Ci%iσ

a

for every i.
Ext The Ext rule creates new branches, but copies the current clause set

C−(b) without changing it — we can thus concentrate on the literal list
`(b). By definition of branch satisfiability, we have that M |= C for every
C ∈ C−(b) and thatM, ∗ |= L for every L ∈ `(b). Furthermore, let b1, . . . , bn
be the branches added to the tableau by the Ext rule applied on b with clause
A → B ∈ C−(b), and denote the resulting tableau by T ′ = (T − {b}) ∪
{b1, . . . , bn}. The clause added to the tableau is (A→ B)σaυ (cf. Def. 4.4).

We shall prove that T ′ is satisfiable by constructing a modelM′ satisfying
bi for some i under ∗.
M satisfies A → B, it also satisfies its instance (A → B)σa since σa

is a universal substitution. In particular this means that for the universal
assignment ∗ there is an existential assignment µe such that M, ∗, µe |=
(A → B)σa. Using this fact, constructM′ by letting |M′| = |M|. Likewise,
for every predicate symbol, constant, or witness x present in T , let xM′

=
xM. Finally, for every witness u̇υ in (A → B)σaυ, let (u̇υ)M

′
= µe(u̇).

As u̇υ is a fresh constant for every u̇ in (A → B)σaυ (due to the Ext rule,
cf. Def. 4.3), M′ is well-defined and satisfies b under ∗. In addition, due to
the fact that M, ∗, µe |= (A → B)σa it is also the case that that M′, ∗ |=

50 5. SOUNDNESS

(A → B)σaυ. This means that M′, ∗ satisfies some K ∈ (A → B)σaυ. As
we for some i have `(bi) = `(b) · K, our new model M′ satisfies bi under ∗
and we are done. �

Theorem 5.7 (Soundness) The presented calculus is sound: If there exists
a closed tableau derivation for a clause set S, then S is unsatisfiable. �

Proof Let S be given, and assume that we have a closed tableau deriva-
tion for it. Furthermore assume, for contradiction, that S is satisfiable. By
Lemma 5.6, any tableau derivation for S must contain a branch satisfied
by some model under the assignment ∗ from Lemma 5.4. However, since
all branches are closed, by Lemma 5.4 no such branch exists, a fact that
contradicts our assumption about the satisfiability of S. �

Chapter 6

Completeness

In this chapter we prove completeness. First, we define a few auxiliary no-
tions and prove Lemma 6.5 to be used in the proof of Lemma 6.10. Then,
we define how to construct a model from an open branch in Def. 6.8,
prove Lemma 6.10, and finally prove our calculus complete in Theo-
rem 6.11.

Definition 6.1 (Tableau clauses) Let b be a branch. By the set of tableau
clauses of or on b, written C+(b), we mean the set⋃

L∈`(b)

{C | TCb(L,C)}

Intuitively, this is the set of instantiated clauses (A→ B)σaυ that were used
in Ext applications on b. Likewise, the set of origin clauses is the set of
clauses A→ B above, using relation ORb. �

Definition 6.2 (Derivation) A tableau derivation for a clause set S is a se-
quence of tableaux P0, P1, . . ., possibly infinite, such that P0 = {〈[], S, {}, {}〉}
and any Pn+1 is obtained from Pn by an application of a rule to a branch of
Pn. �

Definition 6.3 (Refutation) A refutation of a clause set S, also called a
proof, is a tableau derivation for S that contains at least one tableau with
all branches closed. �

Definition 6.4 (Finished branch, fair derivation) A branch b is finished
if all the rules that can be applied have been applied.

A derivation is fair if it is a refutation or if it contains a tableau with a
finished branch. �

51

52 6. COMPLETENESS

When searching for ways to extend a derivation, a tableau calculus
usually looks at the literals found on a branch. This is not true for the
Link rule of our calculus, which works on literals in origin clauses instead
of literals on the branch. However, we would still like to find possible
applications of Link by looking at the branch literals alone. The lemma
below, used in the proof of Lemma 6.10, allows us to do exactly that.

Lemma 6.5 A Link rule application with clause A → B is possible on a
branch b if there exist

1. literals L1, . . . , Ln ∈ `(b) and

2. a limited universal unifier σa with Aσa = {L1%1, . . . , Ln%n}σa using
refreshing substitutions %1, . . . , %n

3. such that for some i, Li%iσa 6∼f Li%i. �

(The reverse does not hold.)

Proof Let the premises of the lemma be given. The Link rule (Def. 4.5) re-
quires that there be literals L′1, . . . , L

′
n from clauses C1, . . . , Cn such that for

every i, ORb(Li, Ci) and L′i � Li holds, Li being the literal from the premises.
Also, we need to find a universal substitution τa unifying {L′1%1, . . . , L

′
n%n}

and A. Last, we have to ensure that for some i, L′i%iτ
a 6∼f L′i%i. In other

words, there must exist literals that will unify with A in the origin clauses of
the literals on the branch, such that at least one of the literals in question is
instantiated.

First, we prove that the literals L′1, . . . , L
′
n exist. For every i, there exists a

tableau clause C ′i with TCb(Li, C ′i), and for this clause we have Li ∈ Lits(C ′i)
by the Ext rule (Def. 4.4). Also, by the same definition, for every i there exists
an origin clause Ci with ORb(Li, Ci). Since the unifier σa in the Ext rule is
limited, these clauses are related by Ci � C ′i, which means that there exists
a literal L′i ∈ Lits(Ci) with L′i � Li.

Next, we need to prove that there exists a universal unifier for the sets
{L′1%1, . . . , L

′
n%n} and A. Note that since L′i � Li, we have L′iλiυi = Li for

some limited universal substitution λi and witnessing substitution υi for all
i. The witnesses introduced by the υi are all distinct. Since the refreshers re-
name variables and make all the literals variable-disjoint, also to the literals
in A, there similarly exist limited universal resp. witnessing substitutions λ̂i
and υ̂i with disjoint support such that L′i%iλ̂iυ̂i = Li%i.

We thus get Aσa = {L1%1, . . . , Ln%n}σa = {L′1%1λ̂1υ̂1, . . . , L
′
n%nλ̂nυ̂n}σa.

Since the supports are disjoint, we can move the λ̂i and υ̂i out and obtain

53

Aσa = {L′1%1, . . . , L
′
n%n}λ̂1υ̂1 . . . λ̂nυ̂nσ

a. As witnessing substitutions com-
mute with limited universal substitutions, we obtain the equality Aσa =
{L′1%1, . . . , L

′
n%n}λ̂1 . . . λ̂nσ

aυ̂1 . . . υ̂n. Finally, due to refreshing, the substitu-
tions λ̂i have no effect on A, and since the witnessing substitutions are all
injective, we can reverse their effect and get

Aλ̂1 . . . λ̂nσ
aυ̂−1

1 . . . υ̂−1
n = {L′1%1, . . . , L

′
n%n}λ̂1 . . . λ̂nσ

aυ̂−1
1 . . . υ̂−1

n

which gives us τa = λ̂1 . . . λ̂nσ
aυ̂−1

1 . . . υ̂−1
n as universal unifier. This means

that there is a most general such unifier, which we shall denote τ̂a.
Finally, due to item 3 in the premises we have a literal Li ≺ L′i with

Li%iσ
a 6∼f Li%i, and we would like to prove that L′i%iτ̂

a 6∼f L′i%i. Since
σa has this property (item 3) and λ̂i is a substitution to make L′i equal
to Li together with a witnessing substitution, τa also has it. Making the
unifier an MGU cannot destroy this type of instantiation, so we conclude
that L′i%iτ̂

a 6∼f L′i%i and are done. �

Before proceeding further, we need to define a way to construct a
model from an open branch (Def. 6.8). To do that, we shall need the
definition below.

Definition 6.6 (Herbrand universe) Given a clause set S, the Herbrand
universe of S, writtenHU(S), is the set of ground terms present in the clauses
of S (possibly augmented with a constant). For coherent logic this is simply
the set of constants in the clauses of S. �

Example 6.7 The Herbrand universe of S = {Pax∨Qbx,Qyc} is HU(S) =
{a, b, c}. �

Given these definitions, we are ready to construct a Herbrand model
for an open branch by specifying the ground atoms to satisfy. The model
construction we use is adapted from [Bau98], which again is similar to
the one in the completeness proof for the disconnection calculus [LS07].

Definition 6.8 (Model construction) Given an open branch b, construct a
modelM as follows:

1. |M| = HU(C+(b)).

2. cM = c for every constant or witness c (all ground terms are inter-
preted as themselves).

3. For every ground atom Lg, we haveM |= Lg iff

54 6. COMPLETENESS

Lg = Lγaυ for some L ∈ C ∈ C−(b), some universal ground-
ing substitution γa for C, and some witnessing substitution
υ that satisfy the requirements that

a) there is an L′ ∈ `(b) with ORb(L
′, C) and L � L′ �

Lγaυ, and
b) there is no D ∈ C−(b) with Cγa ≤0 D <0 C. �

This definition means that only instances of atoms on the branch may
be true in our model. The reverse does not hold due to the requirement
that there are no clauses in C−(b) between C and Cγa, since we may for
some instances of C choose a different disjunct to satisfy. Consider an
example that illustrates this.

Example 6.9 Consider the clause set below together with a tableau deriva-
tion.

Clause set:

(A) Pu̇x

(B) Pu̇b

(C) Pxy → Qxy ∨Rx

(D) Pxb→ Qxb ∨Rx

(E) Qxb→ ⊥

(F) Qay → ⊥

Derivation:

Pūx

¬Pūy
?

Qūy

P v̄b

¬P v̄b
?

Qv̄b

¬Qv̄b
?

Rv̄
◦

Rū

Note that the derivation is not finished, and the example model we give
here does not satisfy the clause set.

Consider the branch marked with ◦. This branch is open, so we can
construct a modelM from it by Def. 6.8. The domain is |M| = {a, b, ū, v̄}.
We have that M |= Qūa, because Qūy is on the branch with origin clause
(C) and literal Qxy � Qūy � Qūa, and furthermore there is no clause from
C− between the origin clause (C) and Pūa→ Qūa ∨Rū.

Notice thatM does not satisfy Qaū even though there is a literal in (C)
that can be made equal to it using σa = {x/a, y/ū}, as Qxy � Qūy 6� Qaū.
This is a good thing, for the clause set contains clause (F) = Qay → ⊥, and
there is no model that can satisfy both Qaū and (F).

55

Now consider Qūb. We have thatM 6|= Qūb (as expected), because, while
Qūy is on the branch with condition 3a satisfied using γa = {x/ū, y/b}, there
is a clause (D) from C− between (C) and Bγa = Pūb→ Qūb ∨Rū.

Finally, M |= Pūa, but not Pab, as there is no universal grounding
substitution or witnessing substitution that could make u̇ equal to a. �

The idea behind this model definition (and the ones in the works cited
above) is that every literal on a branch represents every ground instance
of itself. As the example shows, we need to constrain this basic idea to
make it work. To do so properly, we can observe that an ‘exception’ to a
literal L from clause C representing some ground instance of itself occurs
when this instance is also an instance of some literal that must be false
(Pb in the example above). Such a situation can of course be indirect, we
could e.g. have had Pb → Rb and Rb → ⊥ instead of Pb → ⊥, but this
does not matter — there is a path of instances from L to ⊥.

To pin down the issue, we can notice that if such an exception exists, it
involves a clause that leads to a proper instance of L and C. (If the clause
lead to C without instantiating it, the branch would have been closed)
This means that the Link rule will make sure to add this instance to our
clause set, motivating us to look there for such exceptions. Doing this
requires some care. First, we need to be certain that such an instance of
C actually ends up on the branch we are looking at (or an extension of
it), otherwise we would have a model that does not satisfy every clause.
This would have happened if we for some reason did not add Pb ∨ Qb to
the branch, then the model would not have satisfied Pb as before, but it
would not have satisfied Qb either. This, however, cannot occur due to the
interplay between Link and Ext discussed in Chapter 7.

Second, the presence of existential variables complicates matters. Ex-
istential variables become constants during Ext, so if a clause D ∈ C−(b)
contains existential variables, the tableau clause Dσaυ that we get on the
branch is always a proper instance of D — which means that if we talk
about tableau clauses, we may well get a model that doesn’t satisfy any-
thing at all. The solution is, once again, to talk about the origin clauses,
as they are equal in their existential variables. This is the reason behind
the ‘zero-relation’ ≥0, as we do not want Px to be strictly more general
than Pu̇, nor Pu̇ to make anything except Pū true.

We connect the above definition of a branch model to tableaux and
derivations in the lemma below. The argument is similar to the one in the
completeness proof for the NG calculus [Bau98], but we have to deal with
two types of variables and a significantly different model construction.

56 6. COMPLETENESS

Lemma 6.10 (Model existence) Let P be a fair tableau derivation for a
clause set S. If P is not a refutation, then S is satisfiable. �

Proof Let the set S and fair derivation P be given, and assume that P con-
tains a tableau with finished open branch b. Construct a model M from b
as defined in Def. 6.8. We must prove that M satisfies every clause in S,
which we will restate as follows: For every clause C ∈ S and every uni-
versal grounding substitution γa for C there exists an existential grounding
substitution γe for C such thatM satisfies Cγaγe.

Assume for contradiction that this is not the case, i.e. there exists a clause
C = A → B ∈ C−(b) ⊇ S and universal grounding substitution γa for
C such that M does not satisfy Cγaγe for any existential grounding sub-
stitution γe for C. Pick C to be such that there is no D ∈ C−(b) with
Cγa ≤0 D <0 C. We say, borrowing from [Bau98], that C is a most specific
generalization of Cγa in C−(b). This always exists: Any decreasing chain
C >0 C1 >0 C2 >0 · · · would eventually reach a term depth exceeding that
of Cγa.

Using the semantics, the assumption that there is no γe such thatM |=
Cγaγe means thatM |= Kg for every ground atom Kg ∈ Aγa, as A contains
no existential variables and is therefore grounded by γa. Since M |= Aγa,
we have from Def. 6.8 that for every Kg ∈ Aγa there exists an atom L ∈
E ∈ C−(b) and an atom L′ ∈ `(b) with ORb(L

′, E) such that, for some
universal grounding substitution δa and witnessing substitution υ it holds
that L � L′ � Lδaυ = Kg. This means that for some limited universal
substitution λa and witnessing substitution υ̂, L′λaυ̂ = Lδaυ = Kg. Since
L′ ∈ `(b) contains no existential variables and λa is limited, Lλaυ̂ = Lλa,
so we get L′λa = Kg. Doing this for every Kg ∈ Aγa, we get substitutions
λa1, . . . , λ

a
n such that, {L′1λa1, . . . , L′nλan} = Aγa.

If we apply refreshers %i to the literals Li to make them variable-disjoint,
pairwise and also with A, we obtain new limited universal substitutions λ̂ai
with disjoint support such that {L′1%1λ̂

a
1, . . . , L

′
n%nλ̂

a
n} = Aγa. Due to the

variable-disjointness, this implies that {L′1%1, . . . , L
′
n%n}λ̂a1 . . . λ̂an = Aγa, and

that therefore τ̂a = λ̂a1 . . . λ̂
a
nγ

a is a universal unifier for {L′1%1, . . . , L
′
n%n}

and A. Finally, since there exists a universal unifier for these two sets, there
also exists a most general such unifier for them. Call this unifier τa.

Since L′i are literals from the branch and A contains the negative literals
of a clause, neither can contain existential variables. Therefore, the MGU τa

does not introduce existential variables, which means that it is limited.
From here, we need to consider two cases. If τa is such that for every i, it

holds that L′i%iτ
a ∼f L′i%i, an Ext rule application with clause C is possible.

If this condition does not hold, by Lemma 6.5 a Link rule application with

6.1. COMPLETENESS NOTES 57

clause C is possible, but using a different unifier τ ′a for {L1%1, . . . , Ln%n}
and A (cf. Lemma 6.5).

Ext Since the branch is finished, this application of the Ext rule has hap-
pened, and there is an atom from the positive literals of Cτaυ′ (Def. 4.4)
on b. (The positive part of C cannot be empty, for then b would have been
closed.) Since Cτaυ′ � Cγaυ′, there is now an atom more general than some
disjunct of Bγaυ′ on the branch, and since there is no existential grounding
substitution γe such that M |= Bγaγe, there must be a clause D ∈ C−(b)
such that Cγa ≤0 D <0 C, as per Def. 6.8 (C is the origin clause of Cτaυ′).
However, this contradicts our choice of C as the most specific generalization
of Cγa in C−(b).

Link Since the branch is finished, this application of the Link rule has
happened, and there is for some i a clause Ei%iτ ′a ∈ C−(b) with Ei%iτ ′a 6∼f
Ei%i, and Ei contains literal Li that made M satisfy some Kg = Liδ

a
i υi.

As τ ′a is a universal MGU (cf. Lemma 6.5) for {L1%1, . . . , Ln%n} and A,
and A contains no existential variables, τ ′a is limited. Furthermore, since
Kg ∈ A is ground we getEiδai ≤0 Ei%iτ

′a <0 Ei However, this contradicts our
assumption thatM |= Liδ

a
i υi, as Ei%iτ ′a violates condition 3b in Def. 6.8.

As both cases end up in a contradiction, we are done. �

The previous lemma is almost a proof of completeness by itself. How-
ever, we tie everything together and prove completeness in the theorem
below.

Theorem 6.11 (Completeness) The presented calculus is complete: If a
clause set S is unsatisfiable, then there exists a refutation of S. �

Proof Let the satisfiable clause set S be given, and construct a fair tableau
derivation P for S using definitions 6.2 and 6.3. Since S is unsatisfiable, by
Lemma 6.10 P must be a refutation for S. �

6.1 Completeness notes

After completing our proof, we received an e-mail from Peter Baumgartner
telling us about a paper by Feng, Sun, and Wu [FSW06] that claims to
have found a counterexample to Baumgartner’s NG calculus, which our
own work is based upon. The counterexample is problem ‘MSC006-1’
from TPTP [SS98], and according to the paper it admits no refutation in
NG. This was a serious issue, as our calculus does not significantly differ
from NG for clauses without existential variables. The problem is the
following clause set, with a partial derivation.

58 6. COMPLETENESS

Clause set:

(A) Pxy ∧ Pyz → Pxz

(B) Qxy ∧Qyz → Qxz

(C) Qxy → Qyx

(D) Pxy ∨Qxy

(E) Pab→ ⊥

(F) Qcd→ ⊥

Derivation:

Pxy

Link: Pab ∨Qab

Pab

¬Pab
?

Qab
◦

Qxy

We put clause (D) on the branch, then apply Link with Pxy and Pab→
⊥, putting the resulting clause on the branch. Of interest is the branch
marked with ◦. To get a refutation, we need to expand this branch with
clause (A). If we try this, we need to take two copies of Pxy on the branch,
renaming the variables, and unify this with {Pxy, Pyz} of clause (A).
Call the copies {Puv, Pws}, and compute a unifier {x/u, y/v, w/v, x/s}.
This unifier changes Pws to Pvs, but as Pvs is a renaming of Pws (and
likewise for their respective clauses) this does not violate the condition in
the Ext rule, neither in NG nor in our calculus. The clause to expand the
branch is thus Puv ∧ Pvs→ Pus.

The authors of [FSW06] claim that the inference is redundant, as ‘the
head literal to extend the branch [Pus]... [is] a variant of the literal Pxy
on the branch’. This immediately means that our calculus is not affected,
as we have no such definition of a redundant inference. However, on
a finer reading of Baumgartner’s paper on the NG calculus [Bau98], we
discovered that the condition of redundancy he employs demands that
the clause to extend the branch is a variant of a clause on the branch. It is
not sufficient to have a literal be a variant of a literal on the branch. This
means that the NG calculus is also complete as presented in [Bau98].
However, for both for our calculus and for NG this demonstrates that a
redundancy condition must compare clauses (and not merely literals) to
avoid loss of completeness.

Chapter 7

Odds and ends

During our work on this calculus, we noticed a curious effect, referred to
in Section 4.1. We call this Link tree, as the Link applications form a tree.
This effect is also present in the NG calculus [Bau98], but without direct
mention. The effect in question is that a Link rule application always
leads to an Ext rule application, sometimes via many intermediary Link
rule applications. Consider an illustrative example (refreshers omitted),
which works the same way in NG:

Clause set:

(A) Pxy

(B) Pxy → Qxy

(C) Qxa→ ⊥

Derivation:

Pxy

¬Pxy
?

Qxy

◦

Link: (D) Pxa→ Qxa

Link: (E) Pxa

Pxa

¬Pxa
?

Qxa

¬Qxa
?

We expand with clauses (A) and (B), then wish to close the right
branch by expansion with (C) (at the point marked with ◦), which is not
possible directly. Instead, we use Link once to generate (D), which does

59

60 7. ODDS AND ENDS

not help us — however, (D) can be used to Link again, generating (E),
which can be used to expand the branch. Then we can expand with (E),
and finally, with (C). Thus, the Link rule application with (C) leads to an
Ext rule application with (C).

To formalize this effect and prove that it is indeed universal, we shall
need the following definition.

Definition 7.1 (Branch extension) Given branches b = 〈p,N, TC,OR〉
and b′ = 〈p′, N ′, TC ′, OR′〉, we say that b′ is an extension of b if and only if
the following conditions hold:

1. p is a sublist of p′,

2. N ⊆ N ′,

3. TC ⊆ TC ′, and

4. OR ⊆ OR′.

In other words, b′ extends b if and only if b is a part of b′. Notice that
according to this definition, both Link and Ext generate extensions of the
branch they are applied on. �

Now, we are ready to formulate and prove a lemma that properly de-
scribes the Link tree effect. A similar lemma (if not this one, as is) can be
formulated for the NG calculus.

Lemma 7.2 (Link tree) If a Link rule application with a clause C = A →
B is possible on a branch b as described by Lemma 6.5, there exists an exten-
sion of b on which an Ext rule application with C is possible. �

Proof Let the branch and the clause be given. From Lemma 6.5 we know
that there exist literals L1, . . . , Ln on b such that Aσ = {L1%1, . . . , Ln%n}σ
using some refreshers %1, . . . , %n.

An Ext rule application with C is possible if there are literals L′1, . . . , L
′
n

on b such that {L′1%′1, . . . , L′n%′n} and A unify using some refreshers %′1, . . . , %
′
n

without instantiating any of the literals L′i. We need to find these literals.
We shall do so by repeatedly applying the Link rule up the tableau that b is
part of until we reach some clauses that can be used in Ext rule applications.
Then we shall show that the whole tree of clauses generated by Link can be
used to extend the branch b, yielding the desired literals.

Apply Link on b using the clause C. The set C−(b) is now extended with
clauses D1, . . . , Dn such that for every i ≤ n, there exists a literal L ∈ `(b)
with origin clauseDo

i , andDi is a proper instance ofDo
i using some universal

61

substitution τ̂ . We want the negative literals of Di to unify with literals on
b. To see that it does, notice that Do

i is an origin clause — it has been
used in an Ext rule application on b, so its negative literals unify with the
branch. Now consider any universal variable x from Do

i such that xτ̂ is not
a universal variable. The term xτ̂ must occur in A, since Di was produced by
unifying some literals from Do

i with some literals from A. Since both A and
the negative literals of Do

i unify with the branch, the negative literals of Di

must also. As this unifier unifies a negative part of a clause with the branch,
it is limited. Thus, if this unifier fulfills the conditions in the Ext rule, then
we have found our clauses. If not, then by Lemma 6.5 a Link rule application
with every such Di is possible, and we can repeat this paragraph.

This process must terminate: Since the tableau branch is conversely well-
founded, there is a first clause (or clauses) that were used with Ext, and
these clauses must have an empty negative part (they must have the form
> → B′). Any instance of such a clause can be used in an Ext rule application
at any time.

Let us take the sequence of Link applications above and make it into a
tree: At the root, we have C. The children of C are the clauses D1, . . . , Dn

generated by the Link rule application using C. In general, the children of
any node are the clauses generated from a Link rule application with the
clause at that node; clauses that cannot be used in a Link rule application
have no children. As shown above, this tree is finite.

For every level of the tree with clauses D1, . . . , Dn, we have that the par-
ent clause Dp unifies with some set of literals from the bodies of D1, . . . , Dn

using the universal substitution from the Link rule application in question.
Now we use an inductive argument to show that the whole tree can be used
(incrementally) in Ext rule applications. The base case are the leaves of the
tree — the clauses in them are either without negative literals or (as shown
above) unifiable with the branch. In either case, they can be used in Ext rule
applications directly.

Now assume we have for some node with clause D applied Ext for every
child of this node on an extension b′ of b. Every such application extends b′,
generating new branches. Every such branch contains at least one positive
literal from every clause in the children. Pick the branch that contains the
literals used in the Link rule application with clause D, and call it b′′. We
know that these literals were made equal to literals in the negative part of
D, so the negative part of D unifies with b′′, and this unifier does not need
to alter the literals on the branch — so an Ext rule application with clause
Dp is possible.

Since C is at the root of the tree, an Ext rule application with C is possible
on some extension of b. �

62 7. ODDS AND ENDS

This effect can be said to be the ‘real’ reason for completeness of both
our calculus as well as of NG. Speaking in a high-level language, we can
say that the calculi are complete because

a) If a clause C is falsified by the model from the current branch b, it is
always possible to do ‘something’, and

b) as stated by Lemma 7.2, if the ‘something’ is a Link rule application,
then

c) an Ext rule application is sooner or later possible, which

d) makes the model of an extension of b satisfy C.

It would have been more fulfilling to prove completeness in the way out-
lined. However, Lemma 7.2 refers to an extension of a branch, while
we need an open finished branch for Lemma 6.10. The problem is that
there is no way to know, in advance, which extension from Lemma 7.2
will become such a branch, a fact that thwarted all our attempts at the
kind of proof outlined above. This made us go for the style of proof found
in [Bau98], which works just fine.

Chapter 8

Summary and future work

Ideas won’t keep; something
must be done about them.

Alfred North Whitehead

In this thesis we have presented an instance-based hyper-tableau cal-
culus for coherent logic based on the next-generation hyper-tableau cal-
culus of Baumgartner [Bau98]. We have described this new calculus in
detail, explaining why it is not as easy to define as one might think. Par-
ticular care was taken to define it in such a way that neither bookkeeping
of dependencies nor complex terms are required at any point. We have
also proven it sound and complete. Additionally, we have presented an
overview of related methods, both instance-based and otherwise, and dis-
cussed their similarities and differences to each other as well as to our
own calculus.

The most important direction for future theoretical work will be to
consider refinements like the following.

• Only apply Ext with some clause C if the model generated from a
branch does not yet satisfy C. To implement this refinement we
would need a way to efficiently describe the model and find a way
to check whether it satisfies a clause.

• Built-in equality handling. As we have no complex terms, this should
be possible in a very efficient manner, as the only possible equalities
are x = y, x = a and a = b — equalities between variables and
constants.

63

64 8. SUMMARY AND FUTURE WORK

• Efficient model generation from an open branch, e.g. like in the Dis-
connection calculus [LS07]. The big questions here are about what
we can and cannot do with a model description. For example, is it
possible to decide validity of ground literals in such a model, or of
clauses?

Another obvious direction of work will be to implement the calculus
to see if it performs as expected, and what we do and do not gain from
the lack of complex terms.

Bibliography

[Ale95] Geoffrey D. Alexander. Proving first-order equality theorems
with hyper-linking. PhD thesis, The University of North Car-
olina at Chapel Hill, 1995.

[Ale97] Geoffrey D. Alexander. CLIN-E — Smallest Instance First
Hyper-Linking. Journal of Automated Reasoning, 18(2):177–
182, 1997.

[AP92] Geoffrey D. Alexander and David A. Plaisted. Proving equal-
ity theorems with hyper-linking. In CADE-11: Proceedings
of the 11th International Conference on Automated Deduction,
pages 706–710, London, UK, 1992. Springer-Verlag.

[Bau98] Peter Baumgartner. Hyper tableau — the next generation. In
Harrie de Swart, editor, Automated Reasoning with Analytic
Tableaux and Related Methods, volume 1397 of LNCS, pages
60–76. Springer, 1998.

[Bau00] Peter Baumgartner. FDPLL: A First-Order Davis-Putnam-
Logeman-Loveland Procedure. In Automated Deduction —
CADE-17, volume 1831 of LNCS, pages 200–219. Springer,
2000.

[BC05] Marc Bezem and Thierry Coquand. Automating coherent
logic. In Logic for Programming, Artificial Intelligence, and
Reasoning, volume 3835 of LNCS, pages 246–260. Springer,
2005.

[Bez05] Mark Bezem. On the undecidability of coherent logic. In Aart
Middeldorp, Vincent van Oostrom, Femke van Raamsdonk,
and Roel de Vrijer, editors, Processes, Terms and Cycles: Steps
on the Road to Infinity, volume 3838 of LNCS, pages 6–13.
Springer, 2005.

65

66 BIBLIOGRAPHY

[BFdNT09] Peter Baumgartner, Alexander Fuchs, Hans de Nivelle, and
Cesare Tinelli. Computing finite models by reduction to
function-free clause logic. Journal of Applied Logic, 7(1):58–
74, 2009. Special Issue: Empirically Successful Computer-
ized Reasoning.

[BFN96] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper
tableaux. In Logics in Artificial Intelligence, volume 1126 of
LNCS, pages 1–17. Springer, 1996.

[BFT04] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Dar-
win: A theorem prover for the model evolution calculus. In
Stephan Schulz, Geoff Sutcliffe, and Tanel Tammet, editors,
IJCAR Workshop on Empirically Successful First Order Reason-
ing (ESFOR (aka S4)), Electronic Notes in Theoretical Com-
puter Science, 2004.

[BFT06] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli.
Lemma learning in the model evolution calculus. In Logic for
Programming, Artificial Intelligence, and Reasoning, volume
4246 of LNCS, pages 572–586. Springer, 2006.

[Bil96] Jean-Paul Billon. The disconnection method - a confluent
integration of unification in the analytic framework. In
TABLEAUX ’96: Proceedings of the 5th International Workshop
on Theorem Proving with Analytic Tableaux and Related Meth-
ods, pages 110–126, London, UK, 1996. Springer-Verlag.

[Bro78] Frank M. Brown. Towards the automation of set theory and
its logic. Artificial Intelligence, 10(3):281–316, 1978.

[BS] Peter Baumgartner and Gernot Stenz. IJCAR 2004 tutorial
T3: Instance based methods. Currently availible at http:
//www.mpi-inf.mpg.de/~baumgart/ijcar-tutorial/.

[BT03] Peter Baumgartner and Cesare Tinelli. The model evolution
calculus. In Automated Deduction - CADE-19, volume 2741 of
LNCS, pages 350–364. Springer, 2003.

[CP94] Heng Chu and David A. Plaisted. Semantically guided first-
order theorem proving using hyper-linking. In Automated De-
duction — CADE-12, volume 814 of LNCS, pages 192–206.
Springer, 1994.

http://www.mpi-inf.mpg.de/~baumgart/ijcar-tutorial/
http://www.mpi-inf.mpg.de/~baumgart/ijcar-tutorial/

67

[CP97] Heng Chu and David A. Plaisted. CLIN-S — A Semantically
Guided First-Order Theorem Prover. Journal of Automated
Reasoning, 18(2):183–188, 1997.

[dNM06] Hans de Nivelle and Jia Meng. Geometric resolution: A proof
procedure based on finite model search. In John Harrison,
Ulrich Furbach, and Natarajan Shankar, editors, International
Joint Conference on Automated Reasoning 2006, volume 4130
of LNCS, page 15 pages. Springer, 2006.

[FH91] H. Fujita and R. Hasegawa. A model generation theorem
prover in KL1 using a ramified-stack algorithm. In Pro-
ceedings 8th International Conference on Logic Programming,
Paris/France, pages 535–548. MIT Press, 1991.

[FSW06] Shasha Feng, Jigui Sun, and Xia Wu. Hyper Tableaux — The
Third Version. In Knowledge Science, Engineering and Manage-
ment, volume 4092 of LNCS, pages 127–138. Springer, 2006.

[Fuc04] Alexander Fuchs. Darwin: A Theorem Prover for the Model
Evolution Calculus. Master’s thesis, University of Koblenz-
Landau, 2004.

[GK03] H. Ganzinger and K. Korovin. New directions in instantiation-
based theorem proving. In Proc. 18th IEEE Symposium on
Logic in Computer Science,(LICS’03), pages 55–64. IEEE Com-
puter Society Press, 2003.

[GK04] H. Ganzinger and K. Korovin. Integrating equational reason-
ing into instantiation-based theorem proving. In Computer
Science Logic (CSL’04), volume 3210 of Lecture Notes in Com-
puter Science, pages 71–84. Springer, 2004.

[Han04] Christian Mahesh Hansen. Incremental proof search in the
splitting calculus. Master’s thesis, Dept. of Informatics, Uni-
versity of Oslo, 2004.

[Häh01] Reiner Hähnle. Tableaux and related methods. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 3, pages 101–178. Elsevier Sci-
ence B.V., 2001.

[Kor] Konstantin Korovin. An invitation to instantiation-based rea-
soning: From theory to practice. Currently availible at http:
//www.cs.man.ac.uk/~korovink/my_pub/index.html.

http://www.cs.man.ac.uk/~korovink/my_pub/index.html
http://www.cs.man.ac.uk/~korovink/my_pub/index.html

68 BIBLIOGRAPHY

[Kor08] K. Korovin. iProver – an instantiation-based theorem prover
for first-order logic (system description). In A. Armando,
P. Baumgartner, and G. Dowek, editors, Proceedings of the
4th International Joint Conference on Automated Reasoning,
(IJCAR 2008), volume 5195 of Lecture Notes in Computer Sci-
ence, pages 292–298. Springer, 2008.

[Lee90] Shie-Jue Lee. CLIN: An automated reasoning system using
clause linking. PhD thesis, The University of North Carolina
at Chapel Hill, 1990.

[LP92] Shie-Jue Lee and David A. Plaisted. Eliminating duplication
with the hyper-linking strategy. Journal of Automated Reason-
ing, 9:25–42, 1992.

[LS01] Reinhold Letz and Gernot Stenz. DCTP — a disconnec-
tion calculus theorem prover - system abstract. In IJCAR
’01: Proceedings of the First International Joint Conference
on Automated Reasoning, pages 381–385, London, UK, 2001.
Springer-Verlag.

[LS02] Reinhold Letz and Gernot Stenz. Integration of equality rea-
soning into the disconnection calculus. In TABLEAUX ’02:
Proceedings of the International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods, pages
176–190, London, UK, 2002. Springer-Verlag.

[LS07] Reinhold Letz and Gernot Stenz. The disconnection tableau
calculus. Journal of Automated Reasoning, 38:79–126, 2007.

[MB88] Rainer Manthley and François Bry. SATCHMO: A theorem
prover implemented in Prolog. In 9th International Confer-
ence on Automated Deduction, volume 310 of LNCS, pages
415–434. Springer, 1988.

[Nor07] Jon Malm Norgaard. An automated translation of first-order
logic formulas to coherent theories. Master’s thesis, Univer-
sity of Bergen, 2007.

[PZ00] David A. Plaisted and Yunshan Zhu. Ordered semantic hyper-
linking. Journal of Automated Reasoning, 25(3):167–217,
2000.

69

[SS98] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF
Release v1.2.1. Journal of Automated Reasoning, 21(2):177–
203, 1998.

[SS06] G. Sutcliffe and C. Suttner. The State of CASC. AI Communi-
cations, 19(1):35–48, 2006.

[YP02] Adnan Yahia and David A. Plaisted. Ordered semantic hyper
tableaux. Journal of Automated Reasoning, 29:17–57, 2002.

	Contents
	Acknowledgments
	1 Introduction
	1.1 Chapter guide
	1.2 Scientific contributions

	2 Related calculi
	2.1 Hyper Tableaux
	2.2 CL calculus
	2.3 Instance-based methods
	2.3.1 Inst-Gen
	2.3.2 Hyper-Linking
	2.3.3 Disconnection
	2.3.4 Next-Generation Hyper Tableaux
	2.3.5 FDPLL
	2.3.6 Model Evolution
	2.3.7 Summary

	3 Preliminaries
	3.1 First-order logic
	3.1.1 First-order semantics

	3.2 Clause logic
	3.2.1 Clausal typed-variable semantics
	3.2.2 Substitutions and relations

	4 The calculus
	4.1 Example and usage
	4.2 Formal definitions
	4.2.1 Rules

	4.3 Possible and impossible rule applications
	4.3.1 Ext application 2
	4.3.2 Link applications

	4.4 Discussion

	5 Soundness
	6 Completeness
	6.1 Completeness notes

	7 Odds and ends
	8 Summary and future work
	Bibliography

