6 research outputs found

    Image Fuzzy Enhancement Based on Self-Adaptive Bee Colony Algorithm

    Get PDF
    In the image acquisition or transmission, the image may be damaged and distorted due to various reasons; therefore, in order to satisfy people’s visual effects, these images with degrading quality must be processed to meet practical needs. Integrating artificial bee colony algorithm and fuzzy set, this paper introduces fuzzy entropy into the self-adaptive fuzzy enhancement of image so as to realize the self-adaptive parameter selection. In the meanwhile, based on the exponential properties of information increase, it proposes a new definition of fuzzy entropy and uses artificial bee colony algorithm to realize the self-adaptive contrast enhancement under the maximum entropy criterion. The experimental result shows that the method proposed in this paper can increase the dynamic range compression of the image, enhance the visual effects of the image, enhance the image details, have some color fidelity capacity and effectively overcome the deficiencies of traditional image enhancement methods

    A new approach for data visualization problem

    Get PDF
    Data visualization is the process of transforming data, information, and knowledge into visual form, making use of humans’ natural visual capabilities which reveals relationships in data sets that are not evident from the raw data, by using mathematical techniques to reduce the number of dimensions in the data set while preserving the relevant inherent properties. In this paper, we formulated data visualization as a Quadric Assignment Problem (QAP), and then presented an Artificial Bee Colony (ABC) to solve the resulted discrete optimization problem. The idea behind this approach is to provide mechanisms based on ABC to overcome trapped in local minima and improving the resulted solutions. To demonstrate the application of ABC on discrete optimization in data visualization, we used a database of electricity load and compared the results to other popular methods such as SOM, MDS and Sammon's map. The results show that QAP-ABC has high performance with compared others

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Improved versions of the bees algorithm for global optimisation

    Get PDF
    This research focuses on swarm-based optimisation algorithms, specifically the Bees Algorithm. The Bees Algorithm was inspired by the foraging behaviour of honey bees in nature. It employs a combination of exploration and exploitation to find the solutions of optimisation problems. This thesis presents three improved versions of the Bees Algorithm aimed at speeding up its operation and facilitating the location of the global optimum. For the first improvement, an algorithm referred to as the Nelder and Mead Bees Algorithm (NMBA) was developed to provide a guiding direction during the neighbourhood search stage. The second improved algorithm, named the recombination-based Bees Algorithm (rBA), is a variant of the Bees Algorithm that utilises a recombination operator between the exploited and abandoned sites to produce new candidates closer to optimal solutions. The third improved Bees Algorithm, called the guided global best Bees Algorithm (gBA), introduces a new neighbourhood shrinking strategy based on the best solution so far for a more effective exploitation search and develops a new bee recruitment mechanism to reduce the number of parameters. The proposed algorithms were tested on a set of unconstrained numerical functions and constrained mechanical engineering design problems. The performance of the algorithms was compared with the standard Bees Algorithm and other swarm based algorithms. The results showed that the improved Bees Algorithms performed better than the standard Bees Algorithm and other algorithms on most of the problems tested. Furthermore, the algorithms also involve no additional parameters and a reduction on the number of parameters as well

    Smart process monitoring of machining operations

    Get PDF
    The following thesis explores the possibilities to applying artificial intelligence techniques in the field of sensory monitoring in the manufacturing sector. There are several case studies considered in the research activity. The first case studies see the implementation of supervised and unsupervised neural networks to monitoring the condition of a grinding wheel. The monitoring systems have acoustic emission sensors and a piezoelectric sensor capable to measuring electromechanical impedance. The other case study is the use of the bees' algorithm to determine the wear of a tool during the cutting operations of a steel cylinder. A script permits this operation. The script converts the images into a numerical matrix and allows the bees to correctly detect tool wear

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems
    corecore