
IMPROVED VERSIONS OF THE BEES ALGORITHM FOR

GLOBAL OPTIMISATION

By

SHAFIE KAMARUDDIN

A thesis submitted to the

University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

School of Engineering

College of Engineering and Physical Sciences

University of Birmingham

June 2017

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

i

ABSTRACT

This research focuses on swarm-based optimisation algorithms, specifically the Bees

Algorithm. The basic version of the algorithm was introduced in 2005 and was inspired by the

foraging behaviour of honey bees in nature. The Bees Algorithm employs a combination of

exploration and exploitation to find the solutions of optimisation problems.

This thesis presents three improved versions of the Bees Algorithm aimed at speeding up its

operation and facilitating the location of the global optimum. For the first improvement, an

algorithm referred to as the Nelder and Mead Bees Algorithm (NMBA) was developed to

provide a guiding direction during the neighbourhood search stage. The second improved

algorithm, named the recombination-based Bees Algorithm (rBA), is a variant of the Bees

Algorithm that utilises a recombination operator between the exploited and abandoned sites to

produce new candidates closer to optimal solutions. The third improved Bees Algorithm, called

the guided global best Bees Algorithm (gBA), introduces a new neighbourhood shrinking

strategy based on the best solution so far for a more effective exploitation search and develops

a new bee recruitment mechanism to reduce the number of parameters.

The proposed algorithms were tested on a set of unconstrained numerical functions and

constrained mechanical engineering design problems. The performance of the algorithms on

numerical functions was compared with the standard Bees Algorithm and other swarm based

algorithms in terms of the solutions found and the convergence speed. In terms of the

application on constraint mechanical engineering design problems, the performance was

compared with the results of the standard Bees Algorithm and the results of other algorithms

in the literature. In addition, a paired test statistical analysis was also carried out on those

results.

ii

The results showed that the improved Bees Algorithms performed better than the standard Bees

Algorithm and other algorithms on most of the problems tested. Furthermore, the algorithms

also involve no additional parameters and a reduction on the number of parameters as well.

iii

ACKNOWLEDGEMENTS

First and foremost, gratitude and Praise is to Allah, the Most Merciful and Most Compassionate
for His Blessings, that I am to complete this research. I would also like to record my
appreciation to these outstanding individuals for their great contributions:

I am deeply indebted to my supervisor, Prof. D T Pham for all his guidance, advices, knowledge
and supervision that guided me throughout my academic program. His immeasurable supports
and confidence in me inspired me to complete this thesis.

In addition, I also would like to thanks my wife, Dahlia Nursyarmimi and all my family
members for always supporting me during my PhD journey.

Furthermore, I would like also to express my outermost appreciation to all my colleagues,
Muhammad Syahril, Nik Mohd Farid, Dr. Silah Hayati, Al Antoni Akhmad and other closet
friends for their encouragements and advices during my research period

Also, special thanks to my sponsor, the Ministry of Higher Education (MOHE) of Malaysia
and International Islamic University Malaysia (IIUM) for giving me the opportunity to further
my study.

Lastly, I offer my regards and blessing to all of those supported me in any respect during
completion of the research.

This thesis was copy edited for conventions of language, spelling, and grammar by Szakif
Enterprise Academic Services.

iv

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

LIST OF SYMBOLS AND ABBREVIATIONS .. xi

Chapter 1: Introduction ... 1

1.1 Background .. 1

1.2 Motivation .. 1

1.3 Aim and Objectives.. 3

1.4 Research Methodology .. 4

1.5 Outline of the Thesis .. 4

Chapter 2: Literature Review ... 6

2.1 Preliminaries .. 6

2.2 Optimisation ... 6

2.2 Direct Search Methods ... 8

2.2.1 Nelder and Mead Method ... 8

2.2.2 Hooke and Jeeves Method .. 9

2.3 Metaheuristic.. 10

2.4 Single-solution based metaheuristics ... 11

2.4.1 Simulated Annealing (SA) .. 12

2.4.2 Tabu Search (TS) .. 12

2.4.3 Iterated Local Search (ILS) ... 13

2.5 Population-based metaheuristics .. 13

2.5.1 Evolutionary Computation (EC) ... 14

2.5.2 Nature inspired Swarm Intelligence (SI) .. 17

2.5.2.1 Firefly Algorithm (FA) .. 18

v

2.5.2.2 Ant Colony Optimisation (ACO) ... 19

2.5.2.3 Particle Swarm Optimisation (PSO) .. 19

2.5.2.4 Honey Bees Inspired Algorithm .. 20

2.6 The Bees Algorithm ... 28

2.7 Improvements .. 30

2.8 Applications ... 35

2.9 Summary .. 39

Chapter 3: The Bees Algorithm with Nelder and Mead Method 40

3.1 Preliminaries .. 40

3.2 The Bees Algorithm with Nelder and Mead (NM) Method .. 41

3.2.1 Experimental Setup ... 45

3.2.2 Experimental Results .. 48

3.2.3 Discussion ... 55

3.3 Mechanical Design Applications ... 58

3.4 Summary .. 66

Chapter 4: Recombination Based Bees Algorithm ... 67

4.1 Preliminaries .. 67

4.2 Recombination Based Bees Algorithm .. 67

4.2.1 Experimental Setup ... 73

4.2.2 Experimental Results .. 73

4.2.3 Discussion ... 79

4.3 Mechanical Design Applications ... 84

4.4 Summary .. 91

Chapter 5: A Guided Global Best Bees Algorithm ... 92

5.1 Preliminaries .. 92

5.2 Self-Adaptive Bees Recruitment Mechanism .. 92

5.3 Guided Neighbourhood Shrinking Strategy... 94

5.4 Benchmark Functions Experiment on gBA ... 98

5.4.1 Experimental Results .. 98

5.4.2 Discussion ... 103

vi

5.5 Mechanical Design Applications ... 108

5.6 Summary .. 116

Chapter 6: Conclusion and Future Work .. 117

6.1 Contributions.. 117

6.2 Conclusions .. 118

6.3 Future Work ... 119

Appendices .. 120

Appendix A – List of Benchmark Functions ... 120

Appendix B – Characteristics of Benchmark Functions .. 122

Appendix C – List of Mechanical Design Problems ... 123

References ... 130

vii

LIST OF FIGURES

Figure 2.1 Flowchart of the basic Bees Algorithm……………………………………............. 29

Figure 3.1 NM operators…………………………………………………………................... 41

Figure 3.2 Flowchart of the Bees Algorithm using Nelder and Mead method…………............. 44

Figure 3.3 Two-dimensional illustration of NMBA implementation…………………….......... 44

Figure 3.4 Plot of convergence for the Trid function………………………………….............. 56

Figure 3.5 Plot of convergence for the Griewank function……………………………............. 56

Figure 3.6 Minimum costs found by Standard Bees Algorithm and NMBA

over 30 runs for the Welded Beam problem……………………………...... 62

Figure 3.7 Minimum costs found by Standard Bees Algorithm and NMBA

over 30 runs for the Pressure Vessel problem……………………………… 62

Figure 3.8 Minimum weights found by Standard Bees Algorithm and NMBA over 30

runs for the Tension/Compression Spring problem………………………… 63

Figure 3.9 Minimum weights found by Standard Bees Algorithm and NMBA over 30

runs for the Speed Reducer problem……………………………….............. 63

Figure 4.1 Recombination operator mechanism……………………………………………... 68

Figure 4.2 Flowchart of the recombination based Bees Algorithm …………………………... 71

Figure 4.3 Two initial elite solutions (f (elite1)< f(elite2))………………………………............ 72

Figure 4.4 Two new solutions produced (f(new elite1)< f(elite1)< f(elite2)< f(new elite1))............ 72

Figure 4.5 The new elite2 selected as new elite site replacing elite2……………............ 73

Figure 4.6 Plot of convergence for the Rosenbrock function………………………….. 81

Figure 4.7 Plot of convergence for the Rastrigin function…………………………...... 81

Figure 4.8 Plot of convergence for the Griewank function………………………......... 82

Figure 4.9 Cumulative frequency of recombination operator found better solutions

from elite sites and abandoned sites for the Rosenbrock function................. 82

Figure 4.10 Cumulative frequency of recombination operator found better solutions

from elite sites and abandoned sites for the Rastrigin function…………….

83

viii

Figure 4.11 Cumulative frequency of recombination operator found better solutions
from elite sites and abandoned sites for the Griewank function…………… 83

Figure 4.12 Minimum costs found by Standard Bees Algorithm and rBA over 30 runs

for the Welded Beam problem……………………………………………... 87

Figure 4.13 Minimum costs found by Standard Bees Algorithm and rBA over 30 runs

for the Pressure Vessel problem…………………………………................. 87

Figure 4.14 Minimum weights found by Standard Bees Algorithm and rBA over 30

runs for the Tension/Compression Spring problem………………………… 88

Figure 4.15 Minimum weights found by Standard Bees Algorithm and rBA over 30

runs for the Speed Reducer problem……………………………………...... 88

Figure 5.1 Flowchart of the guided neighbourhood shrinking strategy for unimproved

sites……………………………………………………………………………... 96

Figure 5.2 Illustration of guided neighbourhood shrinking strategy for unimproved site –

satisfy the condition……………………………………………………………... 97

Figure 5.3 Illustration of guided neighbourhood shrinking strategy for unimproved site –

set ngh size……………………………………………………………………... 97

Figure 5.4 Illustration of guided neighbourhood shrinking strategy for unimproved site –

send recruited bees……………………………………………………………… 98

Figure 5.5 Plot of convergence for the Rastrigin function…………………………………… 104

Figure 5.6 Plot of convergence for the Michaelewicz function…………………………........... 105

Figure 5.7 Plot of convergence for the Camel Six Hump function……………………….......... 106

Figure 5.8 Minimum costs found by Standard Bees Algorithm and gBA

over 30 runs for the Welded Beam problem………………………………………

111

Figure 5.9 Minimum costs found by Standard Bees Algorithm and gBA

over 30 runs for the Pressure Vessel problem………………………………...........

111

Figure 5.10 Minimum weights found by Standard Bees Algorithm and gBA

over 30 runs for the Tension/Compression Spring problem…………………...........

112

Figure 5.11 Minimum weights found by Standard Bees Algorithm and gBA

over 30 runs for the Speed Reducer problem……………………………………...

112

Figure 5.12 Minimum weights found by Standard Bees Algorithm and gBA

over 30 runs for the Multiple Clutch Problem………………………………...........

113

ix

LIST OF TABLES

Table 3.1 Parameter setting values……………………………………………………....... 47

Table 3.2 Comparison on accuracy over 100 runs for NMBA………………………........... 50

Table 3.3 Comparison on function evaluations over 100 runs for NMBA…………………. 50

Table 3.4 Significant difference of NMBA’s median results against standard Bees

Algorithm………………………………………………………………………

52

Table 3.5 Significant difference of NMBA’s median results against other algorithms……… 53

Table 3.6 Comparison of overall performance for NMBA……………………………….... 54

Table 3.7 Parameter setting for mechanical design applications…………………………… 59

Table 3.8 Comparison of NMBA against others…………………………………………... 60

Table 3.9 Parameter and constraint values of the best solution obtained by NMBA and

others for Welded Beam…………………………………………………............

64

Table 3.10 Parameter and constraint values of the best solution obtained by NMBA and

others for Pressure Vessel……………………………………………………….

64

Table 3.11 Parameter and constraint values of the best solution obtained by NMBA and

others for Tension Spring……………………………………………………….
65

Table 3.12 Parameter and constraint values of the best solution obtained by NMBA and

others for Speed Reducer……………………………………………………….

65

Table 4.1 Comparison on accuracy over 100 runs for rBA………………………………... 75

Table 4.2 Comparison on function evaluations over 100 runs for rBA………………............ 76

Table 4.3 Significant difference of rBA's median results against standard Bees

Algorithm………………………………………………………………………

76

Table 4.4 Significant difference of rBA's median results against other algorithms……........... 77

Table 4.5 Comparison of overall performance for rBA……………………………………. 78

Table 4.6 Comparison of rBA against others…………………………………………….... 88

Table 4.7 Parameter and constraint values of the best solution obtained by rBA and others

for Welded Beam………………………………………………….......................

89

x

Table 4.8 Parameter and constraint values of the best solution obtained by rBA and others
for Pressure Vessel……………………………………………………………...

 89

Table 4.9 Parameter and constraint values of the best solution obtained by rBA and others

for Tension Spring…………………………………………………......................

90

Table 4.10 Parameter and constraint values of the best solution obtained by rBA and others

for Speed Reducer…………………………………………………......................

90

Table 5.1 Comparison on accuracy over 100 runs for gBA………………………………... 100

Table 5.2 Comparison on function evaluations over 100 runs for gBA………………........... 100

Table 5.3 Significant difference of gBA's median results against standard Bees

Algorithm………………………………………………………………………

102

Table 5.4 Significant difference of gBA's median results against other algorithms…….......... 102

Table 5.5 Comparison of overall performance for gBA…………………………………… 103

Table 5.6 Parameters setting values for Multiple Cutch Problem…………………………... 108

Table 5.7 Comparison of gBA against others……………………………………………... 110

Table 5.8 Comparison of gBA against others for Multiple Clutch Problem………………... 110

Table 5.9 Parameter and constraint values of the best solution obtained by gBA and others

for Welded Beam………………………………………………………………

114

Table 5.10 Parameter and constraint values of the best solution obtained by gBA and others

for Pressure Vessel………………………………………………………….......

114

Table 5.11 Parameter and constraint values of the best solution obtained by gBA and others

for Tension Spring……………………………………………………………...

115

Table 5.12 Parameter and constraint values of the best solution obtained by gBA and others

for Speed Reducer…………………………………………………......................

115

xi

LIST OF SYMBOLS AND ABBREVIATIONS

f Function that represent the optimisation problem 6

x design or decision variables 6

𝕽 Search space 6

N Number of variables to be optimised 6

h Constraint function 6

xw Worst point 8

xb Best point 8

xg Good point 8

xc Midpoint 9

xr Reflected point 9

fmin Minimun value of objective function 9

x0 Base point 9

x1 Temporary vector to store temporary point 9

x2 Point obtained by pattern move 9

δ Step sizes 9

T Temperature parameter 15

I Light Intensity 18

D Number of dimensions 28

X Vector of variables to be optimised 28

ns Scout bees 28

nb Best sites 29

ne Elite sites 29

ns-nb The remaining unselected scout bees 29

ngh Neighbourhood size 29

nre Bees recruited for elite sites 29

nrb Bees recruited for best sites 29

ngh(t) Neighbourhood size at tth iteration 29

t Number of iteration 23

maxi Upper domain for variables 23

xii

mini Lower domain for variables 23

stlim Threshold for site abandonment 23

ssngh Self - adaptive neighbourhood size 34

W Worst position 41

B Best position 41

G Good position 41

d Distance 41

R Reflection position 42

E Extension position 42

M Mid - point position 42

S Shrinkage position 42

C1 or C2 Centroid position 42

B–G Position between B and G 42

B–W Position between B and W 42

j Index of dimension 94

PGlobal,j Position of best solution found so far at j-th index dimension 95

Pbest,j Position of unimproved site at j-th index dimension 95

nghx1 Neighbourhood size for variable x1 95

nghx2 Neighbourhood size for variable x2 95

xB Best bee at current iteration 95

xG Best solution found so far by the bee 99

1

CHAPTER 1

Introduction

1.1 Background

Nowadays, many real-world engineering problems involve optimisation, which is the act of

attaining the best possible results under given constraints. The most common goal of this

optimisation problem is either to maximise (profit, output, efficiency, etc.), or minimise (time,

cost, effort, etc.). In order to achieve this goal, various types of optimisation approaches have

been developed to deal with optimisation problems. Recently, population- based metaheuristic

inspired by natures types of algorithms have attracted a huge attention as the traditional

optimisation methods (linear or integer programming) are not adequate to provide best results,

due to the complexity of the problems. Among the most common algorithms of this type are

Evolutionary Algorithm (EA), Particle Swarm Optimisation (PSO) algorithm, Artificial Bee

Colony (ABC) algorithm and the Bees Algorithm.

This research focuses on one of the algorithms mentioned above, which is the Bees Algorithm;

an algorithm inspired by the foraging behaviour of honey bee swarms in nature.

1.2 Motivation

The Bees Algorithm is one of the nature-inspired swarm-based optimisation methods inspired

by the foraging behaviour of honey bees. It was introduced by a group of researchers at Cardiff

University in 2005 (Pham et al., 2005). The algorithm consists of combinations between

exploration strategy and exploitation strategy representing the activities of scout bees and

recruit bees in a bee colony respectively. Since its establishment in optimisation, numerous

improved versions have been proposed to deal with different types of optimisation problems.

2

The performance of the Bees Algorithm on those problems is superior compared to other state-

of-the-art algorithms. However, the “No Free Lunch Theorem” showed that the performances

of all algorithms are generally similar when their performance is averaged uniformly over all

possible problems. This is because an algorithm that performs better on a class of problem will

not perform better on other class of problems (Wolpert and Macready, 1997). Thus, further

enhancements to the Bees Algorithm are required to provide alternatives variants of the Bees

Algorithm for a wider range of problems.

Previous studies on improving the Bees Algorithm mainly focus on modification of the

neighbourhood search but usually those improvements add more parameters to the algorithm.

Hence, developing an improved Bees Algorithm without adding more parameters is one of the

challenges faced by researchers as the Bees Algorithm has large number of parameters to be

tuned. Besides, there is also a need to address the issue of improving the convergence speed

of the Bees Algorithm caused by random search directions near the global optima.

In the current operation of the Bees Algorithm, the recruit bees are placed randomly nearby the

exploited sites. This random search of recruit bees causes slow convergence speed on the Bees

Algorithm or any other random-based algorithm as well. Thus, adding direction information to

the recruit bees would help the neighbourhood search in discovering solutions faster than the

current approach.

Another issue is lack of information sharing among exploited sites. The best solutions found

by the neighbourhood search and the abandoned sites consist of highly good solutions.

Exchanging information between these solutions via combination of partial solutions can

produce better solutions.

3

Furthermore, reducing the number of parameters of the Bees Algorithm is one of the main

motivations of this research. A small number of parameters would be more beneficial because

it will require less tuning for the users. In addition, there is also a lack of study done on

neighbourhood shrinking strategy for the unimproved sites. The existing approaches of dealing

with unimproved sites are reducing the neighbourhood size in all dimensions, followed by sites

abandonment after a predefined consecutive failure to find a better solution. Therefore, it would

be beneficial to explore better approaches of neighbourhood shrinking strategy especially for

sites being searched near the global optimum. The neighbourhood search nearby the global

optimum could cause slow convergence for some types of landscape problems. In order to

overcome this problem, the algorithm could rely on the information from the best solution so

far to guide the neighbourhood shrinking strategy for better exploitation.

1.3 Aim and Objectives

The overall aim of this study is to further enhance the capability of the Bees Algorithm in

dealing with single objective optimisation problems without adding more parameters.

The following objectives were set to accomplish this aim:

i. Provide a direction during the neighbourhood search by using the Nelder and Mead

(NM) method to guide the search toward better solution with faster convergence speed.

ii. Implement recombination operator between exploited and abandoned sites to move the

solutions found closer to the local or global optima.

iii. Develop a new self-adaptive bee recruitment mechanism to reduce the number of

parameters.

iv. Develop a guided neighbourhood shrinking strategy based on best solution found so

far.

4

1.4 Research Methodology

The methodology adopted in this research is as follows:

i. Reviewing previous works on optimisation techniques, focusing on nature-inspired

swarm intelligence and more on algorithms based on behaviour of honey bees in nature

to know research trends and discover potential solutions.

ii. Developing the proposed Bees Algorithms in R software.

iii. Evaluating the performance of improved version of the Bees Algorithms on a set of

unconstrained continuous numerical function. The results were compared with the

standard Bees Algorithm and other swarm-based algorithms in terms of solution found

and convergence speed.

iv. Applying the proposed algorithms to constrained mechanical design problems. The

results were compared with results of other algorithms obtained in literature.

1.5 Outline of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2 reviews the definition of optimisation, followed by a few conventional approaches

for solving optimisation problems. This chapter also reviews two types of metaheuristic; single

solution-based metaheuristic and population-based metaheuristic. The review on metaheuristic

focuses on nature inspired Swarm Intelligence (SI), specifically more on algorithms based on

the foraging behaviour of honey bees. The studies related to the Bees Algorithm are also

discussed in detail.

Chapter 3 introduces the Bees Algorithm with the Nelder and Mead (NM) method. The

proposed algorithm is tested on a set of numerical benchmark functions. The results are

compared with the standard Bees Algorithm and other well-known algorithms in terms of

5

solutions found and convergence speed. In addition, the improved Bees Algorithm is also

applied on several constraint benchmark mechanical design problems.

Chapter 4 presents an improved Bees Algorithm that utilises recombination operator during

local search and on best abandoned sites. The performance of the proposed algorithm is tested

on similar benchmark function and mechanical design problems as in the earlier chapter.

Similar methods of comparison as in the previous chapter are also used in this chapter.

Chapter 5 introduces an adaptive recruitment bee mechanism into the standard Bees Algorithm.

This version of Bees Algorithm also added a new neighbourhood shrinking strategy that utilises

the information from the best solution found so far. Similarly, like previous chapters, this

variant of Bees Algorithm is also tested on a similar set of numerical functions. In addition to

the mechanical design problems in the previous chapters, this chapter also includes another

application on a mechanical design problem.

Chapter 6 summarises the contributions and conclusions of this research. It also provides

suggestions for future work

6

CHAPTER 2

Literature Review

2.1 Preliminaries

This chapter introduces optimisation and presents some free derivative direct search methods.

Then, main metaheuristic techniques which are commonly used to solve optimisation problems

are reviewed. The chapter further reviews on the mechanism of the Bees Algorithm,

improvements done on the Bees Algorithm and applications of the Bees Algorithm.

2.2 Optimisation

In general, optimisation is to find the best combination of variables for a given problem. Most

of these optimisation problems involve a wide range of domains and are common in real

engineering problems, which required searching of the optimal solution or near optimal

solution. The task of optimisation becomes more difficult due to limitation of finance, time and

resources. Generally, optimisation problems can be expressed in mathematical form subject to

some constraints and a range of variables as follows:

Minimise (or maximise) f(x), x = (x1, x1,….., xN),

 x ∈ 𝕽N

 subject to h1(x) = 0, x = (x1, x1,….., xN),

 h2(x) ≤ 0, x = (x1, x1,….., xN),

where

f(x) = called objective function or cost function(s),

x = called design or decision variables, can be real continuous, discrete or a combination of

 both,

𝕽N = search space of the design/decision variables,

7

N = number of variables to be optimised

The equalities for h1 and inequalities for h2 are called constraints.

The main objective of optimisation is to search for optimal solution or satisfactory solution

once the problem has been expressed correctly. The conventional approach of solving these

optimisation problems is using gradient-based or derivative-based algorithms. However, these

methods require knowledge of gradient value of the objective function or constraint function.

The information on derivative value or gradient value may not be available or difficult to be

computed for some problems. For this reason, the performance of these types of algorithm has

limited capability on certain types of problems only and therefore not suitable to be applied on

more complex problems (i.e. multi-objective optimisation problems, large scale optimisation

problems). Other conventional approaches of solving optimisation are using the gradient

descent method known as direct search method, where no gradient information is required.

This method relies on the value of objective function only to find better solutions.

Another alternative approach to find a satisfactory solution if the conventional approaches

failed to obtain the exact solution is by using a method known as the ‘heuristic’ method. The

word heuristic means to find (Greek verb). This method uses probabilistic rule instead of

deterministic to find best optimal solutions. It is also has been successfully used to find

satisfactory solutions on a variety of optimisation problems but afterwards, Glover (1986)

coined a new term called ‘Metaheuristic’, which means high level (meaning of meta in Greek

prefix) of heuristic method. The next sections describe more details on direct search methods,

followed by metaheuristic algorithms.

8

2.2 Direct search methods

Direct search methods refer to an approach of finding the minimum value of a function using

direction without computing or approximating the gradient values of the objective functions

(Kolda et al., 2003). These methods have been through many improvements since its

introduction in the early 1960s up until today. Although more popular and advanced techniques

have been discovered in the area of numerical optimisation, direct search methods remain as a

reliable alternative for the users (Lewis et al., 2000). One of the reasons direct search method

remains popular is because of their easy and simple implementation. Another reason is that

they only require few parameter settings compared to sophisticated optimisation techniques.

The next section briefly describes two examples of direct search methods in detail.

2.2.1 Nelder and Mead Method

One of the popular direct search methods is known as the Nelder and Mead (NM) method,

which uses simplex formed by (N + 1) points in N dimensional space to find the optimum

value. Originally, this method was introduced by Spendley et al. (1962) that only described the

reflection of the worst point via a midpoint of the opposite face to form a new simplex. Later,

Nelder and Mead (1964) developed this original method into an optimisation algorithm by

adding a few more additional moves to speed up the convergence speed. Those additional

moves are expansion, contraction and shrinking operations. The steps of NM methods are as

described below:

i. Randomly generate (N+1) points (solutions) across the search space. Evaluate the

fitness values f of objective function for all the points generated. Identify the worst point

(xw), best point (xb) and good point (xg) from all those points based on fitness value.

9

Then, reflect the worst point through the midpoint (xc) of best point (xb) and good point

(xg).

ii. If the new reflected point (xr) found is a better solution than best point (xb), the

reflection point extends towards the same direction as reflection operation. This

operation is known as expansion.

iii. If the reflection operation failed to find a better solution than best point (xb), an

operation called contraction is performed where the reflection point contracts back

towards the opposite direction between the midpoint (xc) and reflected point.

iv. If the contraction operation also failed to find a better solution, the initial simplex

shrinks into a smaller simplex consisting of best point (xb), midpoint of (xb) - (xg) and

midpoint of (xb) - (xw).

2.2.2 Hooke and Jeeves Method

Another example of a direct search method is the Hooke and Jeeves (HJ) pattern search, which

was originally proposed by Hooke and Jeeves (1961). In this strategy, the HJ method also does

not require knowledge about gradient values. The mechanism of the HJ method consists of

repetitive combinations of exploratory moves and pattern moves about a base point (current

solution). It begins with the identification of appropriate direction (exploratory move) by

changing all variables at a time based on predefined steps on both directions. Then, a pattern

move is made according to the established direction (pattern move). The details of the basic HJ

pattern search are described as follows (Gao et al., 2013):

Assume that the x0, x1, x2, fmin and δ = (δ1, δ2,..δD) are base point (current solution), temporary

vector to store the obtained point after exploratory move, point obtained by pattern move,

minimum objective function found so far, and step sizes of D directions, respectively

10

i. First, obtain a point by moving the base point along each dimensional direction at a

time (exploratory move). The steps involved in the exploratory move are described as

follows:

Step 1: Initialise x1= x0, fmin = f(x0), i = 1.

Step 2: Set x1i = x0i+ δi, if (f(x1) < fmin), fmin = f(x1), go to step 4; else go to step 3.

Step 3: Set x1i = x0i - δi, if (f(x1) < fmin), fmin = f(x1), go to step 4; else x1i = x0i.

Step 4: If i < n, set i = i + 1 and go to step 2; else go to step 5.

Step 5: If fmin < f(x0), the exploratory move is successful; else it is failing.

ii. If the move is successful, the pattern move is made according to the following formula

to generate a new base point: x2 = x1 + (x1 - x0)

After the new base point is generated, the exploratory move is repeated.

iii. If the move is failing, repeat the exploratory move with smaller step size or terminate

the HJ procedures if stopping criterion has been met.

2.3 Metaheuristic

A metaheuristic is an algorithmic framework that is described as a high-level of heuristic

approach, designed for a wide range of optimisation problems. Most of the well-known

metaheuristics have similar characteristics, which are nature-inspired and include randomness,

not using any derivative information and require several parameters to be tuned by users

(Boussaïd, et al., 2013). However, it is not necessary for a metaheuristic to consist of all those

characteristics as different metaheuristics can vary differently according to their foundations.

The essential component to establish a successful metaheuristic is to keep the balance between

exploration (diversification) and exploitation (intensification) on a given problem. This balance

11

helps metaheuristics to identify potential good areas in the search space that has good solution,

followed by finding the solution in the identified promising area. Thus, this enables the

searching process to focus the search efforts only on regions that have been identified as

promising areas, avoiding unnecessary search efforts on those other regions.

In recent years, there has been an increasing amount of literature on the development of

metaheuristics due to its effectiveness. Much of the literature available deals with the question

on how to improve the existing metaheuristics or applying it on new specific problems. The

most likely causes of this recent development in metaheuristics is because more advanced

computers with better processing power are available.

Furthermore, metaheuristics are generally classified into two types: single-solution based

metaheuristic, also known as trajectory methods, and population-based metaheuristic. Single-

solution based metaheuristic focuses on finding solutions that begin with single point candidate

solution by moving it away, describing a trajectory in the search space. In contrast, population-

based metaheuristic uses a set of solution simultaneously instead of a single solution.

2.4 Single-solution based metaheuristics

The single-solution based metaheuristic search mechanism works by repetitively doing slight

changes (move search) to a single solution. In each iteration, a new solution is selected from

the neighbourhood of previous solutions. These movements are described as trajectory through

the search space. In general, different single-solution based metaheuristics use different search

movement. This section reviews main examples of single-solution based metaheuristics

available in the literature, which include Simulated Annealing (SA), Tabu Search (TS) and

Iterated Local Search (ILS).

12

2.4.1 Simulated Annealing (SA)

The Simulated Annealing (SA) algorithm was initially proposed by Kirkpatrick et al. (1983)

based on an algorithm described by Metropolis et al. (1953). The algorithm inspired by the

annealing process used by metallurgists. This process involves heating of a material to a high

temperature followed by cooling it slowly. The algorithm works by selecting a random solution

of x′ within the neighbourhood of present solution x. The acceptance of x′ as the new present

solution is according to the following probability:

𝑒−
[𝑓(𝑥′)−𝑓(𝑥)]

𝑇⁄

where

f(x) = objective function,

T = Temperature parameter.

Parameter T is set to a high value at the beginning of the search, and decreased gradually during

the search. Thus, this algorithm has high acceptance probability initially and gradually reduced

as the search progresses. So far SA has been successfully applied in different types of

applications including continuous and discrete problems (Blum and Roli, 2003; Boussaïd et

al., 2013).

2.4.2 Tabu Search (TS)

Tabu Search (TS) is an algorithm that uses memory-based strategies to escape the local

optimum and guide the search towards a better solution (Glover, 1986). In general, this

algorithm memorises solutions that have been visited previously, preventing the search to visit

positions memorised by the algorithm. The list of memorised solutions is called the tabu list.

13

The tabu list usually updates the list of solutions by replacing the oldest solution with a current

solution. One of the most important elements in TS involves determining the length of the tabu

list. Although memorising a complete solution in the tabu list would be beneficial in terms of

performance, but it requires a large amount of space and time. Thus, this length needs to be set

up in order to control the memory of the search process. In order to overcome this issue, Battiti

and Tecchiolli (1994) proposed an improved algorithm called the Reactive TS that uses

adaptive length tabu list.

2.4.3 Iterated Local Search (ILS)

Iterated Local Search (ILS) is a metaheuristic that makes use the mechanism to escape from

local optimum to another promising region in the search space. The framework and features of

ILS are described by Stutzle (1998) by highlighting the components of ILS in other algorithms.

In general, the basic ILS produces new starting solutions of the next iteration based on the local

optimum of current solutions using perturbation mechanisms. The main idea of applying this

perturbation mechanism on the local optimum is most likely that the new solution will be

produced at a more promising basin. However, determining the level of this perturbation

mechanism is crucial for this type of metaheuristic as low perturbation would not suffice to get

it to escape from the local optimum whereas high perturbation is similar to generating a

randomly new solution (Boussaïd et al., 2013).

2.5 Population-based metaheuristics

Much of the current literature on metaheuristic pays attention to population-based

metaheuristics rather than single-solution based metaheuristics, especially metaheuristics

inspired by nature (Swarm Intelligence). The rationale of using a set of solution (population)

instead of a single solution is the capability to exchange attributes among high quality solutions

14

that will lead to finding good solutions. Population-based metaheuristics are mainly classified

into three types: Evolutionary Computation (EC), Nature-Inspired Swarm Intelligence (SI) and

other Evolutionary Algorithms (EA). This system of classification provides a basis of

identifying different types of algorithms for population-based metaheuristics.

This section describes main algorithms related to population-based metaheuristics. For each

category of population-based metaheuristic, a brief description of the algorithms is given with

more emphasis on SI algorithms.

2.5.1 Evolutionary Computation (EC)

Evolutionary Computation (EC) is a group of optimisation algorithms inspired by the

mechanism of biological evolution and behaviours of living organism (Zhang et al., 2011).

Most of these EC algorithms (also known as Evolutionary Algorithms (EA)) have similar

framework which is described as the following:

1. Population initialisation

2. Fitness evaluation

3. Repeat these steps until termination condition is met:

i. Select parents (individual with better fitness has higher probability to be selected).

ii. Produce new off-springs using variation operators (i.e., crossover, mutation).

iii. Evaluate new individuals.

iv. Select individuals for the next generation.

4. End

The framework described above is a basic form of EC algorithm. Despite the variety of EC

algorithms available, they all have similar framework as described above. The first step in EC

algorithms is population initialisation where a set of solution is generated randomly across the

15

search space. Then, that population of initial solution is evaluated using a fitness function or

objective function followed by selection mechanism. Once the fitness function has been

evaluated, the algorithm enters the evolutionary iteration which, consists of reproduction and

variation of new solutions until stopping the criterion is met.

Nowadays, a considerable amount of literature has been published on EC. These studies include

improving the algorithm, using it in real world applications, and investigating the performance.

This section describes some main examples of EC algorithms such as Genetic Algorithm (GA),

Differential Evolution (DE), Genetic Programming (GP) and others. Usually, algorithms

classified under this have different ways of variable representation (i.e. real, binary), types of

selection mechanism (i.e. roulette wheel, fitness ranking), and types of genetic operators (i.e.

crossover, mutation).

Among the most well-known and successful EC methods is Genetic Algorithm (GA). This

method is inspired by the evolution of natural population according to natural selection and

survival of the fittest mentioned by Charles Darwin in the Origin of the Species (Beasley et al.,

1993a). The algorithm was originally introduced by John Holland at the University of

Michigan.

In GA, the candidate solution is represented by a binary string known as chromosome. The

main operators used by GA to create new solutions are crossover and mutation operators.

During the reproduction stage, solutions from the population are selected and recombined to

produce new solutions called offspring. The selection of chromosomes to undergo crossover

and mutation is based on the fitness of individual chromosomes. A better fit chromosome has

16

a higher chance to be selected compared to low fit chromosomes (Beasley et al., 1993a; Beasley

et al., 1993b).

Another recent popular EC method is an algorithm known as Differential Evolution (DE)

algorithm. This algorithm has gained the interest of researchers due to it simple work

mechanism, few parameters and faster convergence rate compared to other evolutionary

algorithms (Das et al., 2016). The algorithm is inspired by the principle of natural evolution,

similar to GA. Even though both algorithms were inspired by the principle of evolution but the

DE algorithm used real values to represent candidate solutions. The DE algorithm was

introduced by Storn and Price, (1997) to find the global optimum of multidimensional real

valued functions.

The basic form of the DE algorithm also uses mutation and recombination operator to produce

new candidate solutions. The algorithm starts by generating a population of solutions randomly

across the search space. Then, new solutions are produced by adding the weighted difference

between two individuals to a third individual solution at a randomly indexed dimension. The

individuals selected for this mutation operator are selected from the population. After

performing mutation, recombination takes place. The comparison of fitness between the current

solution and old solution determines whether an individual is retained in the population or

replaced by the new solutions.

Another type of EC algorithm is known as Genetic Programming (GP). This method was

popularised by Koza (1994), inspired by biological evolution and survival of the fittest as well.

In general, it works similar to GA but uses a program representation instead of a fixed length

of strings. Thus in GP, a population of computer programs is evolved to a better population of

programs (Poli et al., 2008). The most common way of expressing these programs are by syntax

17

trees instead of line of codes. This way enables it to be described in a flexible way of LISP

language, which is the original programming language used by J. Koza. The leaves of the trees

represent variables and constants (terminals) of the programs, whereas internal nodes

(functions) represent arithmetic operations. Both of these terminals and functions produce the

alphabet of the programs (Boussaïd et al., 2013).

Besides those EC algorithms described earlier, it is worth to mention a few other EC algorithms

such as Evolutionary Strategies (ES), Evolutionary Programming (EP) and Estimation

Distribution Algorithm (EDA). Similarly, like other EC algorithms, these algorithms are also

inspired by biological evolution and survival of the fittest.

2.5.2 Nature-inspired Swarm Intelligence (SI)

Another type of population-based metaheuristic is a type of algorithm inspired by the Swarm

Intelligence (SI). The concept of Swarm Intelligence (SI) was introduced by Beni (2005) when

working on Artificial Intelligence, where it is described as the collective behaviour of a

decentralised, self-organised system, natural or artificial. Examples of such behaviour in nature

are such as flocks of birds, colonies of bees and shoals of fish. One of the interesting elements

in this SI system is that it does not have a centralised control system but relies on the capability

of exchanging information among individuals (Corne et al., 2012). Another crucial component

for this SI system is its effectiveness of allocating different tasks to specific individuals

simultaneously (Seeley, 1995). These good attributes of SI behaviour have led to the

establishment of a type of swarm-based algorithms in optimisation.

Recent trends in optimisation methods showed that swarm-based optimisation algorithms have

gain interest among users to solve optimisation problems. Usually, these swarm-based

algorithms are inspired by collective behaviour of a colony of insects or other animals to find

18

near optimal solutions. Several optimisation algorithms inspired by swarm behaviour in nature

have been proposed in the literature. Examples of swarm-based optimisation algorithms

inspired by nature are Firefly Algorithm, Ant Colony Optimisation (ACO) algorithm, Particle

Swarm Optimisation (PSO) algorithm and Bees Inspired algorithm.

2.5.2.1 Firefly Algorithm (FA)

Firefly Algorithm (FA) is an algorithm inspired by the flashing lights of fireflies in nature. The

flashing lights emitted by those fireflies is produced by a biochemical process bioluminescence

to attract mating partners or warn predators as firefly light are associated with bad taste (Fister

et al., 2013). Based on this behaviour of fireflies, Yang (2010) introduced the basic form of

FA which follows these three rules:

i. All fireflies are attracted to each other regardless of their sex.

ii. Attractiveness is directly proportional to brightness and both are inversely proportional

to distance.

iii. Brightness (I = light intensity) corresponds to landscapes of objective function or fitness

function.

The three rules listed above contain important elements in FA, which are variations of light

intensity and attractiveness. The FA works by moving the individual firefly towards more

attractive fireflies. The attractiveness of the fireflies depends on the intensity of light emitted.

With regard to this algorithm, the light intensity is associated to the landscape of objective

function. This light intensity is determined by the distance between each individual firefly. The

more nearer the fireflies are from each other, the higher the light intensity; which would result

in attracting more fireflies toward it. If the fireflies are unable to find brighter fireflies in the

population, it is moved randomly across the search space.

19

2.5.2.2 Ant Colony Optimisation (ACO)

Another popular Swarm Intelligence inspired by nature is an algorithm called Ant Colony

Optimisation (ACO) algorithm. The ACO takes inspiration from finding the optimal path

during food foraging behaviour of ants. Initially, the first version of ACO known as Ant System

was introduced by Dorigo et al. (1996) for combinatorial problems, specifically Travelling

Salesman Problem (TSP). The algorithm works by imitating the food searching behaviour in

the ant colony. The food finding process starts by sending the ants randomly surrounding the

nest. Once the food source is found, the ants return to the nest. During the journey back to the

nest, the ants deposits pheromones along the path between food source and nest. With more

ants using that path, it indicates that it is a favourable path that will result in more pheromones

deposited on that path. Consequently, this path would attract more ants as high intensity of

pheromones are present.

Furthermore, as mentioned earlier the ACO was initially used to solve combinatorial problems.

Thus, in order to implement the ACO algorithm for continuous optimisation problems, Socha

and Dorigo (2008) presented an extended version of the ACO algorithm. In this extended

version of the ACO algorithm, a probability density function was utilised to make the algorithm

adapt to continuous domain variables. Besides this extended version of ACO algorithm, several

other variants were also proposed to improve the original version such as the rank-based Ant

System, Ant Colony System (ACS), MAX-MIN Ant System (MMAS) and elitist strategy Ant

System (Dorigo and Stutzle, 2010).

2.5.2.3 Particle Swarm Optimisation (PSO)

In 1995, Kennedy and Eberhart developed a novel optimisation algorithm known as Particle

Swarm Optimisation (PSO) algorithm. This algorithm is inspired by the flocking of birds in

20

nature to solve optimisation problems. In the PSO algorithm, the set of candidate solutions is

represented by a swarm of particles which move around the search space. The movement of

these particles around the search space are according to the variation of velocity based on

individual particle’s previous best position and other particle’s best position. This mechanism

allows particles of PSO to move towards a better position by relying on the information of

individual particles and other particles.

Since it was introduced in 1995, few studies have been done in improving the PSO algorithms.

One of the improvements is the introduction of a clamping scheme limit to the velocity

avoiding the particle from flying out of the search space (Marini and Walczak, 2015). Other

studies added inertia weight on particle’s updated equation to keep balance between

exploration and exploitation which, overcome premature convergence of the PSO algorithm

(Shi and Eberhart, 1998). In terms of application, the PSO algorithm has also been successfully

used in a wide range of optimisation problems like dynamic, multi-objective and discrete

(Boussaïd, et al., 2013).

Although many modifications claimed to be done on the standard PSO algorithm but the term

standard PSO algorithm is defined differently among these studies. Therefore, it would be

beneficial to establish a common standard for the PSO algorithm that consists of recent

improvements over the original PSO algorithm. So far, there are three versions of standard PSO

algorithm that have been defined but the most recent is the Standard Particle Swarm

Optimisation 2011(SPSO2011). This SPSO2011 includes the latest theoretical development of

PSO, which are adaptive random topology and rotational invariance (Zambrano-Bigiarini et

al., 2013).

2.5.2.4 Honey Bees Inspired Algorithm

The Honey Bees Inspired algorithm is another type of population-based metaheuristic based

21

on SI. This type of SI-based algorithms is inspired by the social behaviour of honey bees in

nature and has attracted a lot of attention recently in the field of optimisation algorithms.

Currently, there are four main behaviours of honey bees being developed for optimisation

algorithms which are nest site selection, queen bee evolution process, mating and breeding

behaviour, and foraging behaviour (Seeley and Visscher, 2004; Sung, 2003; Haddad et al.,

2006; Seeley, 1995). Despite having many different versions of Honey Bee Inspired algorithms

available, the most recognised and well known algorithms are algorithms based on the foraging

behaviour compared to other bee-based algorithms as a considerable amount of literature has

been published on this type of algorithm. This section briefly describes some main honey bee-

based algorithms according to their behaviour.

One of the main activities in honey bees is selecting a potential nest or hive. In general, the

process of nest selection starts by sending scout bees to the surrounding environment. Then,

the scout bees return to the hive to advertise their findings of suitable nest sites. The scout bees

communicate with other bees at the hive by performing a dance called the “waggle dance”.

Finally, the bees come out with a decision on the site to be selected. Before making the decision

in selecting a suitable home for the bee colony, there are several requirements that need to be

considered. There are three of them: accurate decision, quick decision, and mutual decision

(Seeley and Visscher, 2004). An accurate decision is required to ensure the hive has adequate

space to accommodate the bee colony and provide secure protection from predators or rough

weather. Meanwhile, quick decision is needed to reduce the time scout bees spend outside the

hive because the longer they are outside the hive, the more likely they are being exposed to

danger and the energy reserves are reduced as well. The decision also needs to be agreed by all

colony members. A non-mutual decision by the bee colony would cause the colony to be

divided leading to a non-fully functioning colony, as mostly a colony only has one queen. Thus,

22

taking into consideration all these requirements is essential in the decision-making process of

selecting the best quality nest, which is used in the context of optimisation.

By using the model in the decision-making process of honey bees, Diwold et al. (2010)

proposed a technique to solve dynamic and noisy optimisation problems. The result of the

proposed approach is promising in making decisions for both types of environment problems.

In addition, this study also makes use of the behaviour of honey bees called Apis Florea (Asian

Dwarf honey bees) instead of the usual species known as Apis Mellifira (European honey bees),

where it is possible to relocate after moving to a new nest if the nest site is not the best one.

The proposed technique used iterative nest selections and mimics the relocation behaviour to

eliminate multiple potential nest sites for continuous function optimisations, specifically the

Sphere and Booth benchmark functions.

The Queen bee evolution process is another type of bee behaviour in nature that has been

utilised for optimisation algorithms. It was initially introduced by Sung (2003) to improve the

capability of Genetic Algorithm (GA). In this study, the best solution of GA for each generation

corresponds to the fittest bee (Queen bee) in the solution. Then, this fittest bee (Queen bee)

produces new solutions using crossover operator by mating it with other bees selected as

parents. Although utilising this behaviour in GA improves the exploitation capability of GA,

but it also causes premature convergence. In order to overcome this problem, several individual

solutions are permitted to mutate regularly, resulting in more balance between exploration and

exploitation.

Apart from the study mentioned above, Wang (2009) had also presented a hybrid Bee

Evolutionary Genetic Algorithm (BEGA) with a clustering method to solve aircraft sequencing

problems. This proposed algorithm is also a type of algorithm based on the Queen bee evolution

23

process. Similarly, like earlier proposed algorithms, the BEGA experiences premature

convergence. An alternative approach was used to overcome this problem; by introducing a

random population in each iteration. Subsequent to introduction of BEGA, Ming et al. (2010)

proposed an improved version of BEGA. This improved version implemented an adaptive

selection operator to determine the size of the random population rather than using a fixed size.

Other behaviours of honey bees that have been modelled in the context of optimisation are

mating and breeding behaviours. These behaviours were first adopted by Abbass (2001) in an

algorithm known as Marriage in Honey Bees Optimisation (MBO) algorithm. The algorithm

imitates the evolution of honey bees at a solitary colony (single queen) up until the

establishment of eusocial colonies (one or more queens). In order to produce a family, the

queen should mate with the drones probabilistically during the mating flight. This flight starts

after the queen made the dance, which would be followed by the drones as well to be mated

with the queen. During the mating flight on air, the queen mates with drones until the sperm

gathered in the spermatheca or the queen’s energy level arrives at a certain threshold. Usually,

the queen bee starts the mating flight with an amount of energy, and progressively decreases

over time. Once the queen returns to the hive, the breeding process is done by choosing a

random sperm from the spermatheca. The broods are produced via a crossover of selected

sperm with the queen’s genome followed by mutation on the broods. Furthermore, the workers

enhance the produced broods and update their fitness after that process. The last stage of this

algorithm is replacing the least fit queen with the fittest broods and killing the unselected

broods, which would establish a new eusocial colony. The search process of this algorithm

continues with another mating flight until the stopping criterion has been met.

Besides the MBO algorithm, Haddad et al. (2006) also presented an algorithm based on similar

bee behaviour described earlier named the Honey Bee Mating Optimisation (HBMO)

24

algorithm. Findings of this proposed algorithm in applications of water resources optimisation

was promising. However, according to Yang et al. (2007), both algorithms mentioned earlier

are slow in terms of computational time due to complex calculation procedures. Therefore, an

algorithm called the Fast Marriage in Honey Bee Optimisation (FBMO) algorithm was

introduced to overcome that issue (Yang et al., 2007). The proposed fast version of the MBO

algorithm mates the randomly generated drones with a finite number of queens instead of

mating probabilistically. This FMBO algorithm showed better convergence speed compared to

the MBO algorithm and easy to implement as less number of parameters are required.

The foraging behaviour of honey bees is one of the activities in honey bees that have been

regularly modelled in terms of optimisation. So far three algorithms have been considered to

be the main algorithm categorised under this type of behaviour, which are the Bee Colony

Optimisation (BCO) algorithm, Artificial Bee Colony (ABC) algorithm and the Bees

Algorithm (Karaboga et al., 2012) .

The first version of algorithm inspired by the foraging of honey bees was proposed by Sato and

Hagiwara (1997) named Bee System (BS). In general, this proposed BS is an improvement to

the Genetic Algorithm (GA) using honey bees foraging behaviour, where chromosomes of

better fitness are considered superior chromosomes and other chromosomes search surrounding

the superior chromosomes using multiple solutions. In addition, two new operators called the

concentrated crossover and Pseudo-Simplex Method were also introduced into this BS to

provide balance between a global search and local search. Although this BS uses bee behaviour;

the bees inform other bees by dancing once the feed has been found followed by working

together to carry the feed to the hive, but it is still not a fully bee-inspired algorithm as it is

considered to be an improved GA. Hence, an alternative of BS was introduced by Lucic and

Teodorović (2002) to solve the travelling salesman problem. This version of BS consists of

25

scout bees and forager bees but the scout bees have no guidance during food searching. Thus,

this method involved low cost food and low quality food as the aim is to find any kind of food.

Later, Teodorovic and Dell’Orco (2005) presented an extended and generalised version of BS

called the Bee Colony Optimisation (BCO) algorithm. There are two main stages involved in

this proposed algorithm, which are the forward pass and backward pass. In the first stage, the

bees explore the search space according to a predefined number of moves that would generate

partial solutions whereas in the second stage, the returned bees at the hive inform other bees of

the quality of solutions found by performing a dance. Based on the quality of solutions

advertised, the bees make a decision whether to keep on dancing and recruit more bees for

further exploitation or abandon the generated solutions and follow one of the dancer bees. The

bees with high quality solutions are likely to be followed by other bees and keep on exploration

near previously found solutions. These two processes of forward pass and backward pass

continue iteratively until a predefined stopping criterion has been met.

Since the establishment of BCO, various improvement approaches have been proposed to the

algorithm to solve different types of problems. One of the modifications done to BCO is

utilising approximate reasoning and fuzzy logic into the bee’s communications and actions

(Teodorović et al., 2006). The proposed algorithm has been proposed for these combinatorial

problems; Routing and Wavelength Assignment in all networks, Travelling Salesman Problem

(TSP), and Ride Matching Problem. Furthermore, other improved versions of the BCO

algorithm was proposed by Forsati et al. (2015) for document clustering applications. Two new

concepts called cloning and fairness were introduced in this proposed algorithm to increase the

exploration capability and propagation of information. Another recent improvement of the

BCO algorithm is weighted BCO (w-BCO) algorithm, where global and local weights are

26

considered, allowing the bees to search purposely (Moayedikia et al., 2015). In addition, the

proposed algorithm also adopted a new recruiter selection method to conserve the population

diversity.

Another type of honey bee inspired algorithm that has received great attention is the Artificial

Bee Colony (ABC) algorithm. The algorithm was originally introduced by Karaboga (2005)

to solve unconstrained numerical benchmark functions. In the basic version of the ABC

algorithm, there are three groups of bees involve in the searching process; employed bees,

onlooker bees and scout bees. An employed bee is a bee that is sent to food sources (potential

solutions) and would come back to the hive to recruit onlooker bees whereas an onlooker bee

is bee that is placed at the food source found by employed bee according to nectar amounts

(quality or fitness of the solutions). The scout bee is a bee that searches randomly across the

search space if the food source has been exhausted or no further improvements are found after

a predefined number of iteration. The main steps of the ABC algorithms start by sending a

number of the employed bees randomly in the search space. After returning to the hive, the

employed bees advertise the information regarding the food sources found by performing a

dance called the “waggle dance”. Then, the onlooker bees select food sources advertised by the

employed bees to continue exploitation. The selection of food sources is based on the roulette-

wheel rule. Similarly, like other population-based algorithms, this process is repeated until the

stopping criterion has been met.

Previously, there have been misconceptions between ABC algorithm and Bees Algorithm as

both algorithms were inspired by the foraging behaviour of bees and share similar concepts

(Mirsadeghi and Shariat Panahi, 2012; Biegler-könig, 2013; Durongdumrongchai et al., 2014).

Therefore, it is important to highlight the main differences between these two algorithms (Tsai,

2014a). One of the main major components that differentiate them is the method of updating

27

locations. The ABC algorithm updates its location based on the dth dimension only while the

Bees Algorithm update locations based on all D dimensions. The ABC algorithm also uses the

roulette wheel selection method which is different from the Bees Algorithm. Apart from that,

the ABC algorithm also has the mechanism to self-update the employed bees own locations

whereas the Bees Algorithm does not. Based on all these differences, it is apparent that both

algorithms are two different algorithms.

The ABC algorithm was initially developed for solving continuous benchmark functions where

the results were compared with the PSO algorithm, Genetic Algorithm, Ant Colony

Optimisation Algorithm, and Differential Algorithm (Karaboga and Basturk, 2007). Since that

introduction, there have been numerous studies on improvements and applications of the ABC

algorithm published in literature. One of those studies is an extended version of the ABC

algorithm by Akay and Karaboga (2012) in application of engineering design problems. In

order to handle constraint problems; a constraint handling strategy was used during the

selection step to deal with the constraints. Then, the ABC algorithm has also been extended for

multi-objective problems (Hedayatzadeh et al., 2010; Akbari et al., 2012). Furthermore,

Karaboga and Gorkemli (2012) had proposed the Quick ABC algorithm (qABC) to improve

convergence speed compared to the original version. In this work, a new strategy of updating

onlooker bees was introduced, which is more accurate to foraging behaviour in nature. A

parameter called neighbourhood radius was added in this variant and the results obtained after

tuning the new parameter showed faster convergence than the basic ABC algorithm.

Apart from the honey bees inspired algorithm described above, there are several other

algorithms based on similar behaviour. The Virtual Bees Algorithm (VBA) is one of the

algorithms associated with foraging behaviour (Yang, 2005). This algorithm uses parallel

multiple bees that work independently to solve numerical benchmark functions. Then, there is

28

a routing algorithm known as BeeAdHoc algorithm, which is developed for energy efficient

routing in Mobile Ad Hoc Networks (MANETs). The results of this new routing algorithm

obtained better or similar results compared to other algorithms with the least energy

consumption.

2.6 The Bees Algorithm

The Bees Algorithm is a nature-inspired algorithm that imitates the food foraging behaviour of

honey bees in nature. The food foraging behaviour of honey bees starts with employing part of

the bee colony population to search for high quality food sources surrounding the hive. After

collecting the nectar, the scout bees return to the hive. The scout bees that had found high

quality food sources communicate with other bees by performing a dance known as the

“waggle dance”. This dance is performed in a specific area of the hive; it gives three points of

important information related to the flower patches discovered by the scout bees. The points of

information are the direction where it is located, its distance from the hive, and its quality

rating. After completing the waggle dance, the dancer bees recruit bees from the hive to go to

the visited flower patch. Higher quality of flower patch recruits more bees. This process of

food foraging mechanism will continue for the recruited bees.

In the Bees Algorithm, the position of a food source corresponds to a possible solution to the

optimisation problem and the nectar amount of each food source represents the quality (fitness

function) of the associated solution. In general, the unconstrained optimisation problem that is

going to be solved can be represented as a D-dimensional minimisation problem as follows:

Minf(X), X = [x1,x2, ..xd..,xD]

where X = [x1,x2, ..xd..,xD] is the vector to be optimised and D is the number of parameters. At

the initialisation stage, ns scout bees generate a randomly distributed initial population. Each

29

initial solution is evaluated by the fitness function. Then, each solution is ranked according to

fitness value. After that, the nb best sites are selected from the ns scout bees. These scout bees

perform the waggle dance to recruit bees from the hive for local exploration. The selected nb

best sites for local search consist of ne sites (top rated sites) and nb-ne sites (remaining best

sites). At this stage, the best ne sites recruit more bees than the remaining best sites nb-ne. The

recruited bees for elite sites nre and best sites nrb are placed randomly across the patch size

(ngh). Then, the fitness position of recruited bee is evaluated by the fitness function. The best

recruited bees for each patch is selected to do the waggle dance upon returning to the hive.

In the next stage, the remaining ns-nb bees are sent randomly across the search space for global

search. At the last stage, new population of bees is formed combining the remaining ns-nb bees

and selected recruited bee from each nb best site. The stopping criterion for this algorithm can

be set either by a predefined number of iterations or predefined fitness above the threshold

value. The flow chart of the basic Bees Algorithm is shown in Figure 2.1 (Pham and Castellani,

2009).

Figure 2.1: Flowchart of the basic Bees Algorithm

30

In addition to the basic Bees Algorithm, two new strategies were introduced later to improve

the basic version of the Bees Algorithm. The first strategy is known as neighbourhood

shrinking. In this strategy, the patch size is set to a large size. Then, as the search is in progress,

the patch size shrinks to further refine the local search. This patch size remains constant if the

fittest recruit bees find better fitness value than the scout bees. However, if the recruit bees

failed to find a better fitness value, the neighbourhood size decreases. The neighbourhood

shrinking procedure follows the following formula:

ai(t) = ngh(t)∗(maxi −mini), (2.1)

ngh(t +1) = 0.8∗ngh(t), (2.2)

where t is the tth-iteration of the Bees Algorithm. The second strategy is known as site

abandonment. This strategy is used after a predefined tth times (stlim) of neighbourhood

shrinking failed to find any improvements. The position being abandoned is assumed to be the

local peak of the optimisation problem. If the abandoned position is the best position found so

far, it is considered as the global optimum or final solution.

2.7 Improvements

This section reviews improvements done on the Bees Algorithm. In general, the modifications

done on the Bees Algorithm are organised into several parts, which are population initialisation,

global search and local search, and parameter tuning or adaption. These modifications on some

of those parts were done to improve the performance.

The first stage in the Bees Algorithm is known as population initialisation. The most common

initialisation procedure is to send the scout bees randomly across the search space. Then, each

scout bee evaluates the visited site according to the fitness function. So far, there is only one

modification done on the initialisation procedure to improve the Bees Algorithm done by

31

Hussein et al. (2014). In this study, a novel initialisation algorithm based on the patch concept

and Levy flight (movement pattern of biological organisms) distribution is proposed to

initialise the population of bees in the Bees Algorithm. This version of Bees Algorithm is

known as the Patch Levy Initialisation algorithm–Bees Algorithm (PLIA-BA), which mimics

the natural flight patterns of bees by following the Levy flight distribution.

After population initialisation, the next stage of the Bees Algorithm is local search

(exploitation) followed by global search (exploration). Up to now, a number of studies have

been done on modifying local search or global search to further improve the Bees Algorithm.

Among the earliest improvements on the local search was introduced by Pham and Castellani

(2009). These improvements are neighbourhood shrinking and site abandonment strategies.

Currently, the Bees Algorithm with these two strategies is known as the standard Bees

Algorithm. Later, the standard Bees Algorithm was further tested on a set custom-made

functions (Pham and Castellani, 2013) and real world problems; protein folding benchmarks

(Pham and Castellani, 2015).

On the other hand, Packianather et al. (2009) proposed a new version of the Bees Algorithm

based on pheromones to attract bees toward high promising patches. In this version of Bees

Algorithm, the recruit bees are sent according to the level of pheromone of the selected sites

instead of using a fixed value. This proposed recruitment mechanism eliminated the

requirement to set nep and nsp parameter values of the Bees Algorithm.

Meanwhile, Pham and Haj Darwish (2010) used a recursive estimator that predicted the optimal

parameters of the linear and nonlinear system known as the Kalman filter, in another enhanced

version of the Bees Algorithm. The Kalman filter is used to update the position of recruited

bees in the local search. In addition, this proposed Bees Algorithm also applied fuzzy greedy

32

selection mechanism as a new method of choosing the best sites and determining the number

of recruit bees.

Muhamad et al. (2011) incorporated local search manoeuvres into factor recruitment in the

Bees Algorithm. The employment of local search manoeuvres is aimed to overcome the

possibilities of recruited bees getting lost during flying towards selected patches. Thus, this

added strategy into the Bees Algorithm enables the neighbourhood size to extend in certain

directions. Despite this proposed Bees Algorithm showing faster convergence on numerical

problems, it requires more parameters compared to the standard Bees Algorithm.

Another improved Bees Algorithm was proposed by Pham et al. (2012) where a new type of

bee known as ‘young bees’ are introduced. These ‘young bees’ are the unselected bees in the

population that are going to be replaced by the new scout bees. Instead of immediately

eliminating these bees from the population, the ‘young bees’ are protected by letting them

compete among each other for several iterations until they reached the adult stage.

Subsequently, Castellani et al. (2012) applied this modified Bees Algorithm to dynamic

optimisation in chemical engineering problems.

Afterward, Shatnawi et al. (2013a) introduced another improved version of Bees Algorithm

called Memory-based Bees Algorithm (MBA) by adding local memory and global memory

into the global search and local search. Three types of Memory-based Bees Algorithm are

presented in this study, which are local memory-based Bees Algorithm, global-memory based

Bees Algorithm and combination of both memory based Bees Algorithms. The addition of

local memory was to prevent the recruit bees from visiting sites that have been visited.

Meanwhile, the global memory was introduced to prevent scout bees from going to sites that

have been visited or sites currently being visited. The global memory is also used to check

33

whether the recruit bees should follow the best bee in the patch or position memorised by the

global memory.

Another modification on local search of the Bees Algorithm involved neighbourhood size. One

of the modifications was proposed by Yuce et al. (2013), in which it added extra enhancement

on the two strategies introduced in the standard Bees Algorithm. This approach does not

immediately abandon the unimproved sites after predetermined neighbourhood shrinking but

goes through further enhancements before being abandoned. Following the introduction of this

version of Bees Algorithm, the enhanced Bees Algorithm was also applied in multi-objective

supply chain optimisation problem (Yuce et al., 2014).

Other modifications on the Bees Algorithm related to neighbourhood size is presented by

Ahmad et al. (2012) using an asymmetrical neighbourhood search in the Bees Algorithm

instead of a symmetrical search. Then, Ahmad et al. (2014) used a combination of adaptive

enlargement and reduction in the neighbourhood search. It has been demonstrated in those

studies that using the asymmetrical neighbourhood search has no significant effects on the Bees

Algorithm while combinations of adaptive enlargements and reduction strategies proved to be

helpful in solving mechanical design problems.

In another study, Tsai (2013) proposed a hybrid version of the Bees Algorithm and ABC

algorithm. The results of this hybrid Bees Algorithm on unconstrained numerical functions

highlighted the advantages of hybridising these two algorithms. A year later, Tsai (2014a)

tested the ability of the hybrid Algorithm in handling constraint problems as well. Following

this application on constraint problems, the hybrid Bees Algorithm was suggested as an

alternative to solve constraint problems instead of Bees Algorithm or ABC algorithm due to its

good performance. In addition Tsai (2014b) also proposed an enhanced version of Bees

34

Algorithm that uses a stochastic self-adaptive neighbourhood (ssngh) search. For this modified

version of Bees Algorithm, the neighbourhood size is not set by the user but varied according

to the position between two elite bees.

One of the most recent studies done on modification of the local search is proposed by Zhou,

et al. (2015). In this proposed algorithm, the Bees Algorithm was modified to allow it finding

multiple optima solutions in multimodal optimisation problems. The modified Bees Algorithm

used dynamic colony sizes, radius estimations and Hill-Valley mechanism to ensure each patch

does not converge toward similar optima solutions. In addition, a local search method called

balanced search technique was also included in the Bees Algorithm to speed up the algorithm.

Another recent modification of the local search of the Bees Algorithm was proposed by Yuce

et al. (2015). This version of Bees Algorithm uses a slope angle computation and Hill-Climbing

Algorithm in the local search stage of the Bees Algorithm. The proposed Algorithm was tested

on numerical benchmark functions and single machine scheduling problems.

So far, most of the studies have tended to focused on local search or global search rather than

parameter adaption or tuning. Thus, making the parameters adaptive or reduced would be

beneficial for the users. Currently, there is no systematic way to set the parameters of the Bees

Algorithm. The most popular method is by fine tuning the parameters until the best solution is

found which is time consuming. For this reason, few studies have been attempted to overcome

this problem. One of the studies was proposed by Maneechote and Luangpaiboon (2010) that

used the Design of Experiment and Modified Simplex Method (MSM) in finding the

parameters. In another work done by Pham et al. (2009a), where fuzzy logic was utilised to

improve the Bees Algorithm by eliminating some of those parameters.

35

2.8 Applications

Up to now, a number of studies have been reported on the successfulness of the Bees Algorithm

application on a wide range of optimisation problems. Although the Bees Algorithm was

initially introduced to solve continuous numerical functions (Pham et al., 2006a; Pham and

Koç, 2010), the Bees Algorithm was also applied on discrete and combinatorial problems later.

One of the popular applications of the Bees Algorithm is in the area of industrial engineering.

Pham et al. (2007a) employed the Bees Algorithm to solve cell formation problems. Pham et

al. (2007b) and Packianather et al. (2014) also used the Bees Algorithm to schedule jobs for a

machine. Meanwhile, the Bees Algorithm also has been used in the planning of material

handling equipment (Sayarshad, 2009), generalised assignment problems (Özbaki et al., 2010),

PCB assembly optimisations (Ang et al., 2010), and assembly line balancing problems

(Akpinar and Baykasoğlu, 2014a, 2014b; Daoud et al., 2012; Tapkan et al., 2011). Other works

that used the Bees Algorithm in the industrial engineering field are optimisation of multi-

objective supply chain networks (Mastrocinque et al., 2013; Yuce et al., 2014), container

loading problems (Dereli and Das, 2011), manufacturing networks (Xu et al., 2012, 2015),

combinatorial circuit designs (Mollabakhshi and Eshghi, 2013) and tower crane layout (Lien

and Cheng, 2014).

The Bees Algorithm has also been utilised by some researchers to solve optimisation problems

in the field of mechanical engineering. Pham et al. (2009b) and Mirzakhani et al. (2011) applied

the Bees Algorithm on mechanical design problems while Parsa et al. (2013) implemented the

Bees Algorithm to find optimal design of probe used in Eddy current testing. Zarea et al. (2013)

applied the Bees Algorithm to find optimum design of plate fin heat exchangers. Long and

Nhan (2012) used the Bees Algorithm in designing a hybrid electric vehicle. Another

application of the Bees Algorithm are in detection of cracks on beam structures (Moradi et al.,

36

2011; Moradi and Kargozarfard, 2013), detection of faulty rolling bearing (Attaran et al., 2011;

Attaran and Ghanbarzadeh, 2014), updating the structure in finite element models of piping

models (Moradi et al., 2010) and determining the neutral stability curve in plane Poiseuille

flow (Bahrainian and Ghanbarzadeh, 2013). Moradi et al. (2011) and Xu et al. (2011) also

applied the Bees Algorithm to investigate the performance of a spring damper system of a full

vehicle model and optimisation of fuel consumption in a semi-track air cushion vehicle,

respectively. Meanwhile, Ang et al. (2013) described an approach to generate branded product

concepts by combining the Bees Algorithm and shape grammar. In addition, Vejdannik and

Sadr (2016) introduced the usage of Bees Algorithm in adopting the smoothing parameters of

Probabilistic Neural Network (PNN) and Radial Basis Function (RBF) for automatic

microstructure classifications.

A few other applications of the Bees Algorithm are in the areas of electrical engineering. Idris

et al. (2009) applied the Bees Algorithm to find the optimal location and parameter settings of

Flexible AC Transmission System (FACTS) devices. Afterwards, Idris et al. (2010) utilised

the Bees Algorithm to determine the Available Transfer Capability (ATC) of power

transactions between source and sink areas in deregulated power systems. Polratanasuk et al.

(2010), Sumpavakup et al. (2012), and Anantasate and Bhasaputra (2011) proposed the use of

the Bees Algorithm to solve optimal power flow problems. The Bees Algorithm in these studies

used the parallel computing approach in combination with the Cultural Algorithm (CA) and

crowded selection with fuzzy mechanism in the selection process. Leeprechanon and

Polratanasak (2010) presented an application of the Bees Algorithm for Environmental or

Economic Dispatch (EED) problems with clustering techniques. Other applications in

electrical engineering are determining optimum design for a five-phase surface-mounted

permanent magnet synchronous motor (Ilka et al., 2013), finding optimal solar farms and wind

37

farms for power systems (Phonrattanasak et al., 2013; Phonrattanasak, 2011), and selecting

optimal location of multiple distributed generation units in power distribution systems. Then,

one of the latest applications of Bees Algorithm in electrical engineering is done by Gholipour

et al. (2015) that applied it for tuning the back stepping parameters in the thermal plasma

technology system.

In the area of electronic engineering applications, the Bees Algorithm was used to design the

antenna of different characteristics (Guney and Onay, 2007, 2008, 2010, 2011). Meanwhile,

Sayadi et al. (2009) utilised the Bees Algorithm for communication network applications. In

addition, Boumazouza et al. (2013) described the usage of the Bees Algorithm in detection of

objects in motion for video sequences.

The Bees Algorithm was also applied to overcome optimisation problems involving the area

of control engineering. Among of the applications is the tuning of the proportional integral

controller (PID) (Ercin and Coban, 2011; Jones and Bouffet, 2008). In these works, the Bees

Algorithm is compared to other algorithms as well. Ang et al. (2009) used the Bees Algorithm

in finding the minimum time for motion time planning of a robot arm whereas Pham and

Kalyoncu (2009) and Zaeri et al. (2011) utilised the Bees Algorithm to tune fuzzy logic

controllers for a flexible single link robot arm and pitch displacement of aircraft respectively.

In contrast, Eldukhri and Kamil (2013) optimised the parameters to control swing up

movements of a robot gymnast. In addition, Fahmy et al. (2011) implemented the Bees

Algorithm to tune the parameters for two optimisation tasks related to robot manipulator

control.

38

Another important area of application for the Bees Algorithm is in data mining especially

related to data clustering. The most common approach in solving clustering problems is by

using the Bees Algorithm along with other algorithms to make use of their benefits (Bonab et

al., 2015; Pham et al., 2011; Shafia et al., 2011). Other applications in the area of data mining

are extraction of fuzzy measures for sample data (Wang, et al., 2011) and control chart pattern

recognition (Ebrahimzadeh et al., 2013). Furthermore, the Bees Algorithm was also used to

optimise neural networks for wood defects identification such as described by Pham et al.

(2006b), Pham and Darwish (2010) that included Bees Algorithm with Kalman Filter, and

Packianather and Kapoor (2015) with introduction of a wrapper based feature concept.

Software engineering is another area of application for the Bees Algorithm. Azzeh (2011)

proposed a novel method of software effort estimation using the Case Based Reasoning (CBR)

method along with the Bees Algorithm. Wang et al. (2012) used the combination of Bees

Algorithm with interval constraint solver for assessing the quality of the software. Hazli et al.

(2013) also proposed a preliminary study of using the Bees Algorithm for software testing.

Some other applications are in the area of image processing (Ahmad Farhan and Bilal, 2011;

Shatnawi et al., 2013b), civil engineering (Aydogdu and Akijn, 2011), chemistry (Pham et al.,

2012) and computational biology (Bahamish et al., 2008).

39

2.9 Summary

This chapter briefly described the main algorithms associated with metaheuristic in

optimisation. The review also included describing direct search methods which is a type that

commonly used in the conventional approach. Furthermore, the chapter specifically focused

on the Bees Algorithm, its improvements and applications of the Bees Algorithm in different

areas.

40

CHAPTER 3

Bees Algorithm Enhanced with the Nelder and Mead Method

3.1 Preliminaries

The Bees Algorithm comprises of combinations of global exploration and local exploitation.

In the global exploration, the Bees Algorithm searches randomly for new promising solutions

across the search space. In contrast, local exploitation focuses on exploitation around selected

promising solutions. These two mechanisms form an efficient swarm-based optimisation

algorithm better than other state-of-the-art optimisation algorithms.

This chapter presents a modification of the local search in the standard Bees Algorithm. In the

standard version of the Bees Algorithm, recruited bees are sent randomly across the selected

patch without any directional information. This work proposed an improved Bees Algorithm

with the Nelder and Mead (NM) method to guide the recruit bees during local search

procedures. The selection of this method to improve the Bees Algorithm are based on suitability

and easiness of implementation into the Bees Algorithm.

The rest of this chapter is organised as follows: In section 3.2, the NM method and the proposed

algorithm are described in detail followed by the experimental design and result comparison.

Section 3.3 shows application of the proposed algorithm on several constrained mechanical

design problems. Finally, Section 3.4 concludes and reviews the work.

41

3.2 The Bees Algorithm with the Nelder and Mead (NM) Method

In this section, a modification to the standard Bees Algorithm is proposed to further enhance

the capability of the Bees Algorithm. The modification was done in the local search stages of

the Bees Algorithm. In the standard version of the Bees Algorithm, recruited bees are randomly

placed across the neighbourhood of selected patch. However, in this proposed algorithm, a

direct search method known as the Nelder and Mead (NM) method is integrated into local

search to provide directional information between recruited bees.

The NM method is a free derivative-based local search method (no derivative value required)

established by Nelder and Mead. This method finds the optimum value using simplexes formed

by (N + 1) points in the N dimensional space. In two dimensions, it forms a triangle. It begins

with a given worst position (W), best position (B) and good position (G) that correspond to a

fitness value represent by (N + 1) points in the N dimensional spaces. In each generation of the

algorithm, four types of operators are involved which are reflection, contraction, expansion,

and shrinkage.

Figure 3.1: NM Operators

42

To begin this NM method, a simplex (e.g. two dimensional space minimisation problems) is

formed from the worst position (W), best position (B) and good position (G). Then, a reflection

position (R) is produced by reflecting position (W) in the direction of position (B) with d

distance as described in Figure 3.1(a). After fitness evaluation of position (R), if fitness value

of position (R) is less than fitness value at position (G), another operator known as expansion

is performed (Figure 3.1 (b)). In this operator, position (R) is moved further towards position

(E). If the fitness value of position (E) is less than fitness value of position (R), it is retained

for the next operation. However, if the reflection operator failed to give a better fitness value,

contraction operator is performed by contracting position (R) towards position C1 or C2 as

shown in Figure 3.1 (c). Finally, if the contraction operator failed to gives a better fitness value,

a smaller simplex is formed by replacing the good position with position M between position

B–G and worst position with position S between B-W. This operator is described in Figure 3.1

(d). These operators are performed iteratively until solution is found.

The proposed Bees Algorithm known as the Nelder and Mead Bees Algorithm (NMBA) begins

with initialisation followed by fitness evaluation. Then, high ranked sites are selected for local

search. Once the elite sites and best sites have been selected, the recruited bees are sent

randomly across the patch. In the standard version of the Bees Algorithm, the fittest recruited

bee is selected from each site. However, in this proposed algorithm, the worst position (xw),

good position (xg) and best position (xb) of the randomly recruited bees are used to form a

simplex as in the NM method explained previously. The flowchart of the proposed algorithm

is given in Figure 3.2.

Figure 3.3 illustrates implementation of NM method during local search where at least three

recruited bees are sent to Patch1 and Patch2. After the fitness evaluation, those recruited bees

are sorted according to fitness value. The worst position (xw), good position (xg) and best

43

position (xb) of recruited bees are determined to begin the NM method. Then, a reflection

position is generated using the expansion operator as described previously. If the reflection

position gives better fitness value, an expansion operator is performed to generate position E.

Position E is selected as the fittest for that patch if it gives a better fitness value than position

R. However, if position R failed to give a better fitness value, a contraction operator is

performed followed by a shrinking operator. At the end of the local search stage, the fittest

position is selected out of the positions found by the NM operator and randomly recruited bees.

After the local search, the remaining unselected scout bees are sent randomly across the search

space for global exploration. Then, a new population is formed by merging the fittest from each

patch (local search) and unselected scout bees (global search). This mechanism continues until

stopping criterion is met. To avoid excessive computation, the NM method was applied only

in elite sites instead of elite sites and best sites. The remaining phases of the NMBA are similar

to the standard Bees Algorithm.

44

Figure 3.2: Flowchart of the Bees Algorithm with Nelder and Mead method

Figure 3.3: Two-dimensional illustration of NMBA implementation

Selection

Elite sites (ne) nre
bees per batch

Best sites (nb) nrb
bees per batch

Fitness Evaluation Fitness Evaluation

Nelder & Mead
Method

Select Fittest Patch

Select Fittest Patch

Random Initialisation

Fitness Evaluation

Local Search

Global Search

New Population

Stop?

Solution

Random ns-ne

Fitness Evaluation

Patch2

Reflection point Recruit Bees
Scout bee

Dimension
1

D
im

en
si

on

2

x

y

Patch1

45

3.2.1 Experimental Setup

In this chapter, the performance of NMBA was tested with a set of unconstrained benchmark

functions, as shown in Appendix A. All the benchmark functions used in this chapter are

minimisation problems. These fifteen functions are selected based on their popularity and

characteristics of those benchmark functions. Jamil and Yang (2013) classified the five

characteristics of the benchmark functions: modality, basins, valleys, separability and

dimensions.

A function landscape with more than one peak is called multimodal function, whereas a

function with one peak is known as a unimodal function. These characteristics correspond to

the modality of the function. Normally, multimodal functions are more difficult to solve

because the algorithm has the possibility to be trapped in one of those peaks while searching

for the global optimum. Basin refers to a relatively steep decline surrounding a large area while

valley occurs when a narrow area of little change is surrounded by regions of steep descent.

For separability, generally separable functions are easier to solve compared to inseparable

functions because each variable of a function is independent of the other variables. Then,

dimensionality corresponds to number of parameters to be solved. In most cases, the difficulty

of a function increases as the number of dimension increases. The corresponding characteristics

of functions used are summarised in Appendix B.

The first five functions shown in Appendix B are functions with unimodal fitness landscapes.

The Martin & Gaddy function is considered as an easy unimodal function. The Easom function

is a unimodal function that has flat surfaces and small areas of global minimum. Trid function

is a simple unimodal benchmark function while Rosenbrock and Zakharov are non-separable

unimodal functions. Even though, Rosenbrock and Zakharov functions are unimodal functions,

46

but the non-separable feature of both functions cause difficulty in finding the global minimum

as each variable of a function is dependent on the other variables (Jamil and Yang, 2013).

Moreover, the location of global minimum for the Rosenbrock function which lies in narrow,

parabolic valleys causes difficulty to find the global minimum (Pham and Castellani, 2009).

The remaining ten functions shown in Appendix B are multimodal functions with a variety of

features. The Schaffer, Rastrigin, Schwefel and Griewank functions are multimodal functions

with a large number of local optima. These types of functions have a wavelike fitness landscape

which could cause difficulties in finding the global minimum. In addition, the Griewank

function is a non-separable function which has interdependence among the variables (Karaboga

and Akay, 2009). Another feature that is included in this set of benchmark function is that the

location of the global minimum is very small relative to the search space denoted by the

Michaelewicz function (Jamil et al., 2013). Then, for both Shekel_4D and Shekel_10D and the

Langermann functions, the location of the local minimums is randomly distributed over the

search space and it is a non-symmetrical function. Thus, these functions do not give any

advantages to the algorithms that take advantage of symmetrical features in benchmark

functions (Karaboga and Akay, 2009). For Camel Six Hump and Goldstein & Price functions,

both functions are considered as easy multimodal functions as most of the other algorithms are

able to find the global minimum.

One of the important elements in this research is to determine parameter settings of the Bees

Algorithm. The most popular adopted method is to finely tune the parameters for each function.

This method requires large number of experiments by trial and error until the best parameters

are found. However, previous study done by Pham and Castellani (2009) showed that using

different parameters on the Bees Algorithm for each problem does not significantly improve

its performance. Thus, a set of parameters was used in this research based on the work done by

47

Pham and Castellani (2009) for the standard Bees Algorithm and NMBA as shown in Table

3.1. The result of NMBA on benchmark functions mentioned above was compared with

standard Bees Algorithm.

Table 3.1: Parameter setting values
Parameter

ns number of scout bees 24

ne number of elite sites 2

nb number of best sites 4

nre recruited bees for elite sites 30

nrb recruited bees for remaining best sites 10

ngh initial size of neighbourhood 0.01

stlim limit of stagnation cycles for site abandonment 10

In addition to comparison with the standard Bees Algorithm, the proposed Bees Algorithm was

also compared with another two-popular swarm-based algorithms known as quick Artificial

Bees Algorithm (qABC) and Standard Particle Swarm Optimisation 2011 (SPSO2011). The

qABC was selected for comparison with NMBA because both algorithms were inspired by

similar foraging behaviour. The qABC (Karaboga and Gorkemli, 2012) was selected out of

other variants of ABC as it is considered one of the latest version of ABC. As for SPSO2011

(Zambrano-Bigiarini et al., 2013), it is among the popular swarm-based optimisation in the

literature. For this reason, it is considered the most suitable for comparison with the proposed

Bees Algorithm. The parameter setting values of both qABC and SPSO2011 are set according

to the original paper of SPSO2011 (Zambrano-Bigiarini et al., 2013) and quick-ABC

(Karaboga and Gorkemli, 2012). Despite using parameter settings from the original authors,

the number of population size for both qABC and SPSO2011 are tailored as 100 populations

for fair comparison. The SPSO2011 was run using the open source implementation provided

48

by pso R package v1.0-3 (Claus, 2012). All algorithms were run in the R statistical environment

3.2.0.

The stopping criteria for all algorithms were set according to solution found or number of

function evaluations. In this study, the algorithm was stopped once acceptable solution has

been found or it reached maximum number of evaluations. A solution is considered acceptable

if the difference between the global minimum and solution found (accuracy) is less than or

equal to 0.001. The maximum number of function evaluations for all algorithms was set to

500000 function evaluations. Moreover, each algorithm had 100 runs for each benchmark

function.

3.2.2 Experimental Results

In this section, the results of the standard Bees Algorithm, NMBA, SPSO2011 and qABC on a

set of benchmark function as described in the previous section are compared and presented in

Table 3.2 and Table 3.3. The median and standard deviation accuracy obtained by each

algorithm over 100 runs for each function are recorded in Table 3.2 while the median and

standard deviation number of function evaluations (speed) to obtain the corresponding

accuracy are recorded in Table 3.3. For the accuracy results in Table 3.2, if the accuracy

obtained is less than 0.001, the accuracy recorded is 0.0000.

In order to perform the result comparison of NMBA between standard Bees Algorithm and

other algorithms, a comparison method was adopted in this chapter and in the subsequent two

chapters as well. In this method, one of those two algorithms are said to perform better than

another if the accuracy is less than the other and the difference is statistically significant for

49

each benchmark function. If the difference is statistically insignificant, the speed of both

algorithms is considered for comparison instead.

Similar comparison methods are also used for speed. An algorithm is said to perform better

than another algorithm if the speed less than the speed of the other algorithm, and the difference

is statistically significant. If the difference is statistically insignificant, both algorithms are

assumed to be comparable.

Statistical significant difference of the obtained results, were utilised using the Mann Whitney

U-tests. The two algorithms are statistically compared at α = 0.05 significance level for the

various benchmarks. The significance of the difference between the NMBA and other

algorithms are presented in Table 3.4 and Table 3.5. The p-value shown in both Tables

determine the significant difference between two median results; p-value less than 0.05

indicates the difference is significant.

50

 Table 3.2: Comparison on accuracy over 100 runs for NMBA
Function SBA NMBA SPSO2011 qABC

 Median StdDev Median StdDev Median StdDev Median StdDev
Easom 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Trid 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3016 0.3062

Rosenbrock 4.8919 1.0673 4.7206 1.1237 6.9007 9.4754 0.0758 0.0702
Zakharov 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0235 0.0867
Schaffer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010
Rastrigin 12.9437 3.2667 11.9511 3.0196 6.4253 2.2037 0.0000 0.0219
Schwefel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Michaelewicz 0.0000 0.0133 0.0000 0.0111 0.0411 0.0895 0.0000 0.0000
Goldstein & Price 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Martin & Gaddy 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Camel Six Hump 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Shekel_4D 0.0000 0.0000 0.0000 0.0000 0.0000 2.5068 0.0000 0.0014
Shekel_10D 0.0015 2.6435 0.0000 2.2667 8.7202 0.2236 8.7231 0.0036
Griewank 0.1091 0.0226 0.0952 0.0176 0.0341 0.0271 0.0800 0.0389

Langermann 1.2564 0.0989 0.8469 0.0889 0.9677 0.1363 1.1713 0.0916

Table 3.3: Comparison on function evaluations over 100 runs for NMBA
Function SBA NMBA SPSO2011 qABC

 Median StdDev Median StdDev Median StdDev Median StdDev
Easom 3124 1408.923 2450 1170.489 4000 885.2301 1050 6888.015
Trid 13224 4255.14 8776.5 3954.117 9100 700.657 500000 0

Rosenbrock 500000 0 500000 0 500000 117878 500000 0
Zakharov 16374 1896.454 12481 1183.614 35100 4619.083 500000 0
Schaffer 5305.5 2869.263 4029.5 3071.699 2800 1728.957 43951 225352.2
Rastrigin 500000 0 500000 0 500000 0 352561.5 97711.63
Schwefel 2825 100.508 2500 1468.152 14100 30860.92 850 12132.96

Michaelewicz 163807.5 155525.4 142765.5 146994.1 500000 223339.3 105399 88612.96
Goldstein &

Price 1824 729.9545 1168.5 500.9846 4000 501.387 2350 35168.9

Martin &
Gaddy 1464 732.9105 1174.5 617.4853 2000 459.1725 15350 204091.6

Camel Six
Hump 924 315.7083 442 165.017 3031 581.481 850 405.292

Shekel_4D 10628 8756.234 10054 10975.58 82500 230204.6 37850 65029.46
Shekel_10D 500000 168591.4 437767 189641.6 500000 0 500000 0
Griewank 500000 0 500000 0 500000 105560.5 500000 33908.05

Langermann 500000 0 500000 0 500000 0 500000 0

51

The results recorded in Table 3.2 show that NMBA succeeded in finding an accuracy less than

0.001 for most of the benchmark functions considered, except for Rosenbrock, Rastrigin,

Griewank and Langermann functions whereas the standard Bees Algorithm succeeded in

finding threshold minimum values for ten benchmark functions except for Rosenbrock,

Rastrigin, Shekel_10D, Griewank and Langermann functions. Meanwhile, SPSO2011 and

qABC failed in finding the minimum threshold values for Rosenbrock, Rastrigin,

Michaelewicz, Shekel_10D, Griewank, Langermann and Trid, Rosenbrock, Zakharov,

Shekel_10D, Griewank, Langermann functions, respectively.

In terms of number of evaluations, the NMBA outperformed the standard Bees Algorithm on

most of the functions except for Rosenbrock, Rastrigin, Griewank and Langermann functions.

These four functions failed to converge and reach a maximum number of function evaluations

over 100 runs. Hence, their performance is similar in terms of speed whereas for the

Michaelewicz and Shekel_4D functions, despite NMBA’s median function evaluations being

less than obtained by Standard Bees Algorithm, the Mann Whitney test showed that these

results were not statistically significant as the p-value were more than 0.05. Thus, both

algorithms are said to be comparable in terms of function evaluations for Michaelewicz and

Shekel_4D functions.

Comparison of NMBA with other algorithms showed that NMBA converges faster for most of

the benchmark functions as shown in Table 3.3. For comparison with SPSO2011, the NMBA

is faster than SPSO2011 for most of the benchmark functions except for Schaffer, Trid,

Rosenbrock, Rastrigin, Griewank, and Langermann functions. For the Schaffer function, the

SPSO2011 required less function evaluations than NMBA to converge whereas for the Trid

function, both algorithms are said to be comparable as statistical analysis shown in Table 3.5

demonstrated that the difference is not significant. As for the Rosenbrock, Rastrigin, Griewank,

52

and Langermann functions, the performance of both algorithms gives comparable results

because those functions reached maximum function evaluations.

In other cases, NMBA performed better than qABC for most of the benchmark functions except

for Easom, Rastrigin, Schwefel, and Michaelewicz functions. However, the performance of

both algorithms for Rosenbrock, Griewank, and Langermann functions is similar in terms of

function evaluations.

Table 3.4: Significant difference of NMBA’s median
results against standard Bees Algorithm

 accuracy p-value speed p-value
Easom ns - s 0.0000
Trid ns - s 0.0000

Rosenbrock ns 0.6527 ns -
Zakharov ns - s 0.0000
Schaffer ns - s 0.0000
Rastrigin ns 0.1676 ns -
Schwefel ns - s 0.0000

Michaelewicz ns - ns 0.2187
Goldstein & Price ns - s 0.0000
Martin & Gaddy ns - s 0.0000
Camel Six Hump ns - s 0.0000

Shekel_4D ns - ns 0.3576
Shekel_10D ns 0.0629 s 0.0404
Griewank s 0.0000 ns -

Langermann s 0.0000 ns -
s: statistically significant, ns: not significant
‘-‘: No statistical difference test required

53

Table 3.5: Significant difference of NMBA’s median results
against other algorithms

 vs SPSO2011 vs qABC
 accuracy p-value speed p-value accuracy p-value speed p-value

Easom ns - s 0.0000 ns - s 0 .0000
Trid ns - ns 0.2041 s 0 .0000 s 0 .0000

Rosenbrock ns 0.0969 ns - s 0 .0000 ns -
Zakharov ns - s 0.0000 s 0 .0000 s 0 .0000
Schaffer ns - s 0.0000 ns - s 0 .0000
Rastrigin s 0.0000 ns - s 0 .0000 s 0 .0000
Schwefel ns - s 0.0000 ns - s 0 .0000

Michaelewicz s 0.0035 s 0.0001 ns - s 0 .0000
Goldstein & Price ns - s 0.0000 ns - s 0 .0000
Martin & Gaddy ns - s 0.0000 ns - s 0 .0000
Camel Six Hump ns - s 0.0000 ns - s 0 .0000

Shekel_4D ns - s 0.0000 ns - s 0 .0000
Shekel_10D s 0.0000 s 0.0000 s 0.0000 s 0 .0000
Griewank s 0.0000 ns - s 0.0037 ns -

Langermann s 0.0000 ns - s 0.0000 ns -
s: statistically significant, ns: not significant
‘-‘: No statistical difference test required

Another important finding was the overall performance results achieved by NMBA where it

excelled in eight out of fifteen benchmark functions tested, followed by qABC (five out of

fifteen), and SPSO2011 (three out of fifteen). A comparison of overall performance is

summarised in Table 3.6 where the NMBA gives better performance compared to other

algorithms in case of the Trid, Zakharov, Goldstein & Price, Martin & Gaddy, Camel Six

Hump, Shekel _4D, Shekel_10D, and Langermann functions.

54

Table 3.6: Comparison of overall performance for NMBA
Function

SBA NMBA SPSO2011 qABC

succ. acc. perf. succ. acc. perf. succ. acc. perf. succ. acc. perf.
Easom 100 X 100 X 100 X 100 X X

Trid 100 X 100 X X 100 X X 0

Rosenbrock 0 0 21 0 X X

Zakharov 100 X 100 X X 100 X 0

Schaffer 100 X 100 X 100 X X 68 X

Rastrigin 0 0 0 88 X X

Schwefel 100 X 100 X 100 X 100 X X

Michaelewicz 88 X 92 X 39 100 X X

Goldstein &
Price 100 X 100 X X 100 X 100 X

Martin &
Gaddy 100 X 100 X X 100 X 79 X

Camel Six
Hump 100 X 100 X X 100 X 100 X

Shekel_4D 100 X X 100 X X 59 X 99 X

Shekel_10D 41 54 X X 0 0

Griewank 0 0 6 X X 2

Langermann 0 0 X X 2 0

Total 1029 1 1046 8 927 3 836 5
succ: Successful Rate, acc: Accuracy, perf: Overall Performance

Regarding comparison of the overall performance with the standard Bees Algorithm, it can be

summarised from Tables 3.2–3.3 that, NMBA performed better than the standard Bees

Algorithm on eleven out of fifteen functions tested. These results demonstrated that the

performance of NMBA on most of the functions are better than the standard Bees Algorithm

especially for converged functions where less function evaluations required. Thus, these results

further support the idea of providing guide direction to the neighbourhood search in improving

the Bees Algorithm.

55

3.2.3 Discussion

The most obvious finding to emerge from the results reported in the previous section is the

effectiveness of the NM method in providing direction during the neighbourhood search. The

results of this experiment indicate that the NM method is capable of improving the Bees

Algorithm, specifically in terms of the convergence speed. It is shown in the previous section

that the NMBA performed better than the standard Bees Algorithm on four unimodal functions

and seven multimodal functions.

For unimodal functions such as Easom, Trid, Zakharov, and Martin & Gaddy, the NMBA is

expected to converge faster than the standard Bees Algorithm as the recruited bees would be

directed toward a better position inside or outside of the patches. An example of improvement

in terms of convergence speed is illustrated in the plot of convergence for the Trid function in

Figure 3.4. This figure clearly indicates the superiority of NMBA over the standard Bees

Algorithm during the search progress, where better fitness has been found even at the early

stages of the search. For multimodal functions such as Schaffer, Schwefel, Goldstein & Price,

Camel Six Hump and Shekel_10D, despite its multimodality, the NMBA still found the

acceptable solution at a higher convergence speed. Meanwhile for Griewank and Langermann

functions, despite the NMBA not being capable to find an acceptable solution, but it is nearer

to the global optima. Figure 3.5 illustrates an example of a convergence plot for the Griewank

function at the logarithmic scale. The figure indicates that both algorithms stagnated in most

of the search progress, but the NMBA still managed to find a better fitness value.

56

Figure 3.4: Plot of convergence for the Trid function

Figure 3.5: Plot of convergence for the Griewank function

With respect to equality in the performance of the NMBA with the standard Bees Algorithm

for some of the functions (Michaelewicz, Rastrigin, Rosenbrock, and Shekel_4D functions),

these results are likely to be related to the characteristic of these functions. For the

Michaelewicz function, despite it being apparent that the median function’s evaluations of the

improved Bees Algorithm are less than the standard Bees Algorithm, the p-value of 0.2187

indicates that the difference is not significant. This result may be explained by the fact that the

-100

-50

0

50

100

150

200

250

300

350

400

0 5000 10000 15000

Fi
tn

es
s

V
al

u
e

Function Evaluations

SBA

NMBA

0.01

0.1

1

10

100

1000

0 100000 200000 300000 400000 500000 600000

Fi
tn

es
s

V
al

u
e

Function Evaluations

SBA

NMBA

57

Michaelewicz function is a multimodal function with valleys and ridges. For this reason, the

NM strategy was less effective in dealing with this type of surface landscape.

 Meanwhile, the Rastrigin is a function that has unimodal behaviour overall, with a rough

multi-modal surface. Thus, the NM operators within the NMBA are unable to aid the recruited

bees to locate a better fitness value as the they can be easily trapped between many local

optimums.

For the Rosenbrock function, even though it is a unimodal function, the location of the global

optimum inside a long, narrow, parabolic shaped flat valley causes difficulty in terms of finding

global optimum. This might have contributed to the equal results in the performance on the

Rosenbrock function.

As for the Shekel_4D function, the performance was found to be comparable to the standard

Bees Algorithm, though at a higher dimension version of this function (Shekel_10D), the

NMBA showed significant improvement. The reason for this is not clear but it may have

something to do with the dimensionality of the problem as for some cases, a higher dimension

is easier to solve.

When compared to other algorithms, the NMBA did not perform as well as the SPSO2011 and

qABC for the Easom, Rosenbrock, Schaffer, Rastrigin, Schwefel, Michaelewicz and Griewank

functions. For the Schaffer and Griewank functions, the SPSO2011 achieved the best overall

performance compared to other algorithms with both functions sharing similar characteristics,

namely a wavelike surface landscape. This characteristic might provide an advantage to the

SPSO2011 over other algorithms in order to deal with this type of function.

58

 As for the Rastrigin function, despite its similarities in terms of the surface landscape with the

functions mentioned earlier, but its nature as a separable function causes the qABC to perform

better than other algorithms. For the remaining functions, where the qABC attained the best

overall performance, those functions are separable functions except for the Rosenbrock

function. It is likely that the qABC gives the best performance for this type of function. Despite

it being a non-separable function, the location of global optimum inside the deep valley and

the flat surface landscape allows the qABC performed to be best performed on this function as

well. The factors that contribute to this best performance on the Rosenbrock function are likely

due to long stagnation limit and single index dimension position update of the qABC.

3.3 Mechanical Design Applications

In order to further evaluate the effectiveness of the proposed algorithm, four well known

constrained engineering design problems were chosen: Welded Beam, Pressure Vessel,

Tension/Compression Spring and Speed Reducer (Akay and Karaboga, 2012). The objective

of the Welded Beam and Pressure Vessel problems are to minimise cost subject to constraints

whereas the objective of the Tension or Compression Spring and Speed Reducer are to

minimise weight subject to constraints. These engineering design problems have different

characteristics of objective functions with linear and nonlinear constraints (Rao et al., 2011).

The details of these problems are given in Appendix C (Akay and Karaboga, 2012).

In the case of handling constrained problems, a method used by Ahmad (2012) was

implemented in this study as the standard Bees Algorithm and NMBA are previously applied

to unconstrained problems. In this method, only a feasible solution is allowed to be included in

the solution list by checking whether all constraints have been satisfied. Any infeasible solution

59

found during searching was abandoned from the solution list. This searching process continued

until required feasible solutions have been found.

The constrained engineering design problems mentioned above have been attempted by several

researchers on other algorithms. Thus, the results of NMBA and standard Bees Algorithm were

compared against results obtained by other algorithms (Akay and Karaboga, 2012). The

parameter values used for NMBA and standard Bees Algorithm for these problems are shown

in Table 3.7. In order to make fair comparison, the stopping criterion for NMBA and standard

Bees Algorithm were set as 30000 function evaluations. For each constrained engineering

design problem, the best, worst, mean and median solution found over 30 runs were recorded

as shown in Table 3.8. In general, the average (median) solutions found by NMBA and standard

Bees Algorithm are comparable or better than other algorithms.

Table 3.7: Parameter setting for mechanical design applications
Problem ns ne nb nre nrb ngh stlim

Welded Beam 10 2 5 10 5 0.08 5
Pressure Vessel 10 2 5 10 5 0.2 5
Tension/Compression
Spring 10 2 5 10 5 0.001 5

Speed Reducer 10 2 5 10 5 0.01 5

60

To compare the performance of NMBA against the standard Bees Algorithm, the significant

differences between both of those algorithms were done using the Mann Whitney Test at α =

0.05 significance level for each engineering design problem. If the median solution over

number of runs found by NMBA is less than standard Bees Algorithm and the difference is

significant, NMBA is said to perform better than standard Bees Algorithm. However, if the

difference between those two algorithms is insignificant, then it is said to be comparable. The

results in Table 3.8 show that NMBA obtained better median solutions than the standard Bees

Algorithm for all the problems. However, a Mann Whitney test revealed that there were no

significant differences between the solutions obtained by NMBA and standard Bees Algorithm

for all the problems except for the speed reducer problem. The variation of minimum fitness

value obtained by standard Bees Algorithm and NMBA over 30 runs are given in Figures 3.6–

3.9. These figures validate the significant differences between both algorithms. These results

Table 3.8: Comparison of NMBA against others (Akay and Karaboga , 2012)
Problem Stats. Scaa Psoa (µ+λ)-ES UPSOm ABC BA NMBA

Welded
Beam

Best NA NA 1.724852 1.92199 1.724852 1.7332472 1.73176
Mean NA NA 1.777692 2.83721 1.741913 1.7679225 1.7649022

Median NA NA NA NA NA 1.7669785 1.764661
NFE NA NA 30,000 100,000 30,000 30000 30000

Pressure
Vessel

Best 6171 6059.7143 6059.70161 6544.27 6059.71474 6103.4175 6067.8964
Mean 6335.05 6289.92881 6379.938037 9032.55 6245.3081 6381.4714 6377.1937

Median NA NA NA NA NA 6315.1676 6241.594
NFE 20000 30000 30000 100000 30000 30000 30000

Tension/
Compression

Spring

Best 0.012669 0.012665 0.012689 0.01312 0.012665 0.012673 0.0126693
Mean 0.012923 0.012702 0.013165 0.0229478 0.012709 0.0133388 0.0132001

Median NA NA NA NA NA 0.0133214 0.013165
NFE 25,167 15000 30000 100000 30000 30000 30000

Speed
Reducer

Best 2994.74 NA 2996.348094 NA 2997.05841 2999.5471 2997.2193
Mean 3001.758 NA 2996.34809 NA 2997.05841 3006.3114 3001.9118

Median NA NA NA NA NA 3005.7187 3002.624
NFE 54,456 NA 30000 NA 30000 30000 30000

Bold face indicates the winner of the algorithms, NA: not available, NFE:Number of function evaluations
aThe welded beam problems are different from the one employed in this study

61

suggest that the NMBA performed better than the standard Bees Algorithm for the speed

reducer problem but equal in performance for the remaining three problems.

As for the comparison with other algorithms, the results of the best solution found by other

algorithms in the literature are compared instead of the median result. It can be observed from

Table 3.8 that, (µ+λ)-E and ABC produced the best solution for the Welded Beam problem

whereas Pso and ABC produce the best solution for the Tension/Compression Spring problem.

As for the Pressure Vessel and Speed Reducer problems, the best solutions were found by

(µ+λ)-ES and Sca respectively. Even though these results show that other algorithms managed

to find the best solution for all problems, it does not indicate superiority of other algorithms

against NMBA. Further statistical analysis is still required to compare the performance. The

most important aspect in comparison with other algorithms is to show the results obtained by

the NMBA are generally comparable as they are all slightly different.

In summary, these results show that incorporating the NM method into local search of the

standard Bees Algorithm could improve the capability of the standard Bee Algorithm to find

better solutions. In addition to the result in Table 3.8, the best solution and constraint values

found by all algorithms are summarised in Tables 3.9-3.12.

62

Figure 3.6: Minimum costs found by Standard Bees Algorithm and NMBA
 over 30 runs for the Welded Beam problem

Figure 3.7: Minimum costs found by Standard Bees Algorithm and NMBA

 over 30 runs for the Pressure Vessel problem

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
o

st

Run Number

SBA

NMBA

5000

5500

6000

6500

7000

7500

8000

8500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
o

st

Run Number

SBA

NMBA

63

Figure 3.8: Minimum weights found by Standard Bees Algorithm and NMBA
 over 30 runs for the Tension/Compression Spring problem

Figure 3.9: Minimum weights found by Standard Bees Algorithm and NMBA
 over 30 runs for the Speed Reducer problem

0.005

0.01

0.015

0.02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

W
ei

gh
t

Run Number

SBA

NMBA

2990

2995

3000

3005

3010

3015

3020

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

W
ei

gh
t

Run Number

SBA

NMBA

64

Table 3.9: Parameter and constraint values of the best
solutions obtained by NMBA and others for Welded

Beam

 (µ+λ)ES ABC BA NMBA
x1 0.20573 0.20573 0.20206 0.19886
x2 3.470489 3.470489 3.56971 3.42656
x3 9.036624 9.036624 9.03640 9.57797
x4 0.205729 0.20573 0.20584 0.20326
g1 0 0 -55.8952 -17.2147
g2 0.000002 −0.000002 -14.0521 -2970.27
g3 0 0 -0.00377 -0.0044
g4 −3.432984 −3.432984 -3.42349 -3.3637
g5 −0.080730 −0.080730 -0.07706 -0.07386
g6 −0.235540 −0.235540 -0.23555 -0.23771
g7 −0.000001 0 -9.23549 -6.86761

f(x) 1.724852 1.724852 1.733247 1.73176

Table 3.10: Parameter and constraint values of the best solutions
obtained by NMBA and others for Pressure Vessel

 SCA PSO (µ+λ)ES ABC BA NMBA
x1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375
x3 41.9768 42.098446 42.098446 42.098446 41.811295 42.095279
x4 182.2845 176.636052 176.636596 176.636596 180.260978 176.677711
g1 −0.0023 0 0 0 -0.005542 -6.11E-05
g2 −0.0370 −0.035881 0.03588 −0.035881 -0.038620 -0.035911
g3 −23420.5966 0 0 −0.000226 -183.1446 -10.4343
g4 −57.7155 −63.363948 −63.363404 −63.363404 -59.73902 -63.32229

f(x) 6171 6059.70161 6059.7143 6059.714339 6103.417489 6067.896372

65

Table 3.11: Parameter and constraint values of the best solutions
obtained by NMBA and others for Tension Spring

 SCA PSO (µ+λ)ES ABC BA NMBA
x1 0.0521602 0.05169 0.052836 0.051749 0.052312 0.051413
x2 0.368159 0.35675 0.384942 0.358179 0.371889 0.350089
x3 10.648442 11.287126 9.807729 11.203763 10.452475 11.690453
g1 0 0 −0.000001 −0.000000 -1.91E-05 -5.68E-05
g2 0 0 0 −0.000000 -2.44E-05 -8.21E-05
g3 −4.075805 −4.053827 −4.106146 −4.056663 -4.082842 -4.040086
g4 −0.719787 −0.727706 −0.708148 −0.726713 -0.717198 -0.732331

f(x) 0.012669 0.012665 0.012689 0.012665 0.012673 0.012669

Table 3.12: Parameter and constraint values of the best solutions

obtained by NMBA and others for Speed Reducer
 SCA (µ+λ)ES ABC BA NMBA
x1 3.5 3.499999 3.499999 3.501481 3.501600
x2 0.7 0.699999 0.7 0.700124 0.700016
x3 17 17 17 17 17
x4 7.327602 7.3 7.3 7.388378 7.307274
x5 7.715321 7.8 7.8 7.844692 7.802366
x6 3.350267 3.350215 3.350215 3.350536 3.350318
x7 5.286655 5.286683 5.2878 5.287016 5.286723
g1 −0.073915 −0.073915 −0.073915 -0.074636 -0.074382
g2 −0.197999 −0.197998 −0.197999 -0.198623 -0.198403
g3 −0.493501 −0.499172 −0.499172 -0.969473 -9.70E-01
g4 −0.904644 −0.901472 −0.901555 -0.994106 -0.994199
g5 0 0 0 -0.000141 -8.10E-05
g6 0.000633 0 0 -0.000181 -2.21E-05
g7 −0.7025 −0.702500 −0.7025 -0.702447 -0.702493
g8 0 0 0 -0.000245 -0.000433
g9 −0.583333 −0.583333 −0.583333 -0.583231 -0.583153
g10 −0.054889 −0.051325 −0.051326 -0.062608 -0.052249
g11 0 −0.010852 −0.010695 -0.016441 -0.011147
f(x) 2994.74424 2996.34809 2997.05841 2999.54709 2997.21932

66

3.4 Summary

This chapter proposed a modified version of the Bees Algorithm known as NMBA. In this

NMBA, a NM method was used in the local search to further enhance the performance of the

Bees Algorithm for unconstraint benchmark functions. The addition of NM method in the local

search provides guidance for the direction of the local search to find optimal solutions faster

than the standard Bees Algorithm. Following the addition of the NM method into the local

search, NMBA showed better performance than the standard Bees Algorithm in various

benchmark functions, especially in terms of convergence speed.

In addition, the NMBA was also applied to four constrained engineering mechanical problems.

Experimental results showed that the NMBA significantly outperformed the standard Bees

Algorithm for one out of four mechanical design problems. Despite this, the standard Bees

Algorithm still does not outperform NMBA for the remaining three engineering problems.

Therefore, this proposed algorithm has the potential to be utilised for different real world

engineering problems.

67

CHAPTER 4

Recombination Based Bees Algorithm

4.1 Preliminaries

The recombination operator is one of the essential elements in Evolutionary Algorithm (EA)

for creating new solutions from two or more old solutions in each generation. The

successfulness of recombination operator in EA has inspired it to be used in the Standard Bees

Algorithm. Thus, this chapter presents a new version of Bees Algorithm with recombination

operator at two different stages. In this proposed Bees Algorithm, the recombination operators

were added at local search and best abandoned sites to produce new solutions closer to global

or local optima, improving the exploitation capability.

The rest of this chapter describes the proposed Bees Algorithm in detail including the

performance on a set of unconstraint benchmark functions, performance on constrained

mechanical design problems, and the conclusion of this work in section 4.2, section 4.3 and

section 4.4 respectively.

4.2 Recombination Based Bees Algorithm

In this section, a new version of the Bees Algorithm known as the recombination based Bees

Algorithm (rBA) is introduced. The rBA uses recombination operator at two different stages

of the standard Bees Algorithm, which are the local search and best abandoned sites. Although

the Bees Algorithm has been proven to be very good in solving a wide range of real world

problems, further improvement is needed to expand the capabilities of the standard Bees

68

Algorithm. Therefore, utilising recombination operator in the standard Bees Algorithm may

produce solutions closer to global or local optima for better exploitation capability.

The recombination operator itself was inspired from commonly used variation operators in

Evolution Algorithm operator known as recombination operator or crossover operator, which

mimics the reproduction in biological processes. This recombination operator produces one or

more child solutions from parent solutions. The main idea of this recombination operator is to

combine different partitioned variables solutions into new solutions. An example of

recombination operators (D=dimension) between two solutions is described in Figure 4.1

below.

Figure 4.1: Recombination operator mechanism

The proposed recombination operator starts with two good solutions divided into two partitions

randomly. The number of variables in the partition is determined randomly. Then, two new

solutions are formed by combining two different solutions which have been divided into

different partitions. This operator could produce new solutions with better fitness values

compared to old solutions. For this reason, this recombination operator is added into the

 x11,x12,x13,x14,x15,…..x1D Solution 1
 x21,x22,x23,x24,x25,…..x2D Solution 2

 Partition 1 Partition 2

 x11,x12,x13,x14,x25,…..x2D New Solution 1
 x21,x22,x23,x24,x15,…..x1D New Solution 2

x11,x12,x13,x14
x21,x22,x23,x24

x15,…..x1D
x25,…..x2D

69

standard Bees Algorithm. In addition, additional parameters are also not required for the

implementation of this recombination operator into the standard Bees Algorithm because the

solutions are divided into partitions randomly.

The overall flowchart of this proposed algorithm is presented in Figure 4.2.

Currently, once the fittest bee for each patch has been found in the standard Bees Algorithm, a

global search is performed as described in Section 2.6. However, in this proposed algorithm

two additional stages are added into the standard Bees Algorithm. The additional stages of the

proposed algorithm are recombination operator between two elite sites after selection of the

fittest patch and recombination operators on two best abandoned sites.

The first modification in the standard Bees Algorithm is by adding recombination operator

after selection of the fittest patch between two elite sites. Once the fittest recruited bee for each

patch has been selected, a recombination operator between those two elite sites is executed to

generate two new positions. If the new positions generated by the recombination operator have

better fitness than the elite sites, the new position substitutes the elite site as the new elite site.

To avoid excessive computation, the recombination operator is only applied to elite sites

instead of all best sites. The main idea of performing recombination operator between two elite

sites is to combine the components of two good solutions, producing better new solutions than

the old solutions.

After completion of recombination operator on elite sites, another modification in the standard

Bees Algorithm is adding recombination operator between two best abandoned sites. As the

search progresses, the best sites might abandon those sites that failed to find a better solution.

Thus, two best abandoned sites are selected as soon as two best abandoned sites are available.

Then, recombination operation between these two sites is done to produce two new positions.

70

If the fitness value of the new position is better than the best solution so far, the new position

is merged into the new population for the next generation. The mechanism of merging the

improved abandoned site back into the population is essential in improving the standard Bees

Algorithm because for few landscape features, the standard Bees Algorithm failed to

converged. If the standard Bees Algorithm failed to converged, few best solutions found so far

may have good chances to be improved by recombination operator. Therefore, adding

recombination operator on those best abandoned sites could produces better new sites.

In order to understand how recombination operator works on two elite sites or on abandoned

sites, an example of the search behaviour in two dimensional spaces is described in Figures

4.3-4.5. The search mechanism starts with two distinct elite sites after selecting the fittest

recruited bee for each patch. In Figure 4.3, two initial elite sites are selected with fitness value

f(elite1) of elite1 better than fitness value f(elite2) of elite2. Then, two new solutions are

produced by recombination operation as shown in Figure 4.4. After the fitness evaluation of

those new solutions, new elite1 replaces elite2 as new elite site for next generation because the

new elite1 fitness value is better than elite2 fitness value. This additional search behaviour

enhances the capabilities of the standard Bees Algorithm to converges to better solutions.

71

Figure 4.2: Flowchart of the recombination based Bees Algorithm

Recombination
operator between two
best abandoned sites

Selection

Elite sites (ne) nre
bees per batch

Best sites (nb) nrb
bees per batch

Fitness

Evaluation
Fitness

Evaluation

Select Fittest Patch Select Fittest Patch

Random
Initialisation

Fitness Evaluation

Local Search

Global Search

New Population

Stop?

Solution

Random ns-ne

Fitness Evaluation

Recombination
operator between two

elite sites

Substitute fittest patch if
better fitness is found

abandoned sitei X abandoned sitei

Fitness Evaluation

Merged in to population if
better fitness is found

72

Figure 4.3: Two initial elite solutions (f(elite1)< f(elite2))

Figure 4.4: Two new solutions produced (f(new elite1)< f(elite1)< f(elite2)< f(new elite2))

elite2

Dimension 1

D
im

en
si

on
 2

X2,Y2

X1,Y1

X

Y

elite1

Patch2

Patch1

elite2

elite1 new elite1

new elite2

Dimension 1

D
im

en
si

on
 2

X1,Y1

X2,Y2
X1,Y2

X2,Y1

X

Y Patch2

Patch1

73

Figure 4.5: The new elite2 selected as new elite site replacing elite2

4.2.1 Experimental Setup

This section describes the experimental setup used in this chapter to test the performance of

the proposed algorithm. In general, similar experimental set up were utilised in this study by

using a similar set of benchmark functions (see Appendix A), similar parameter settings (Table

3.1), stopping criterion and method of comparison as in Section 3.2.

4.2.2 Experimental Results

Table 4.1 presents the median and standard deviation of accuracy achieved by standard Bees

Algorithm, rBA, SPSO2011 and qABC algorithm over 100 runs. In order to make the

comparison clearer, the accuracy on this table is recorded as 0.0000 if the experimental result

obtained were less than 0.001. Based on the median accuracy results in Table 4.1, the rBA

finds acceptable solutions on Easom, Trid, Zakharov, Schaffer, Schwefel, Michaelewicz,

new elite2

Dimension 1

D
im

en
si

on
 2

X2,Y2 X2,Y1

X

Y

elite2

Patch2

Patch1

74

Goldstein & Price, Martin & Gaddy, Camel Six Hump and Shekel_4D (ten functions).

Similarly, for the standard Bees Algorithm, global optimum values were found on same

functions as found by rBA.

Meanwhile, SPSO2011 found acceptable solutions on Easom, Trid, Zakharov, Schaffer,

Schwefel, Goldstein & Price, Martin & Gaddy, Camel Six Hump and Shekel_4D (nine

functions) and qABC found on Easom, Schaffer, Rastrigin, Schwefel, Michaelewicz, Goldstein

& Price, Martin & Gaddy, Camel Six Hump and Shekel_4D (nine functions).

Next, Table 4.2 presents experimental result comparisons on function evaluations for rBA

against standard Bees Algorithm, SPSO2011 and qABC algorithm over 100 runs. The results

on Table 4.2 show that rBA converged faster than the standard Bees Algorithm in most of the

functions tested except for six functions, which were Rosenbrock, Rastrigin, Shekel_4D,

Shekel_10D, Griewank, and Langermann. For Shekel_4D, although the median function

evaluations recorded is less than the standard Bees Algorithm, the Mann Whitney test showed

(See Table 4.3) that these results are not statistically significant. Thus, it is said that the

convergence speed for this function compared to the standard Bees Algorithm is comparable.

For the remaining five functions, the performance is comparable in terms of speed as the

median values recorded were maximum function evaluations.

In the case of comparison with SPSO2011, the results on Table 4.2 shows that the rBA

performed better than SPSO2011 in terms of convergence speed on eight functions, which were

Easom, Zakharov, Schwefel, Michaelewicz, Goldstein & Price, Martin & Gaddy, Camel Six

Hump, and Shekel_4D (eight functions). As for comparison between rBA and qABC algorithm,

the rBA found acceptable solutions with less function evaluations on Trid, Zakharov, Schaffer,

Michaelewicz, Goldstein & Price, Martin & Gaddy, and Shekel_4D (seven functions). For all

75

improvements, the p–values are less than 0.05 as shown in Table 4.4, which indicate the

difference is significant.

Table 4.1: Comparison on accuracy over 100 runs for rBA
Function

SBA rBA SPSO2011 qABC

Median StdDev Median StdDev Median StdDev Median StdDev
Easom 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Trid 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3016 0.3062

Rosenbrock 4.8919 1.0673 4.3628 1.2898 6.9007 9.4754 0.0758 0.0703
Zakharov 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0235 0.0867
Schaffer 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010
Rastrigin 12.9437 3.2667 3.9840 1.4408 6.4253 2.2038 0.0000 0.0219
Schwefel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Michaelewicz 0.0000 0.0133 0.0000 0.0002 0.0411 0.0895 0.0000 0.0000
Goldstein & Price 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000
Martin & Gaddy 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000
Camel Six Hump 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000

Shekel_4D 0.0000 0.0000 0.0000 0.0000 0.0000 2.5068 0.0000 0.0014
Shekel_10D 0.0015 2.6435 0.0015 3.2433 8.7202 0.2236 8.7231 0.0036
Griewank 0.1091 0.0226 0.0668 0.0194 0.0341 0.0271 0.0800 0.0389

Langermann 1.2563 0.0989 1.2545 0.1512 0.9677 0.1363 1.1712 0.0916

76

Table 4.3: Significant difference of rBA’s median results
against standard Bees Algorithm

 accuracy p-value speed p-value
Easom ns - s 0.0000
Trid ns - s 0.0000

Rosenbrock s 0.0159 ns -
Zakharov ns - s 0.0000
Schaffer ns - s 0.0000
Rastrigin s 0.0000 ns -
Schwefel ns - s 0.0000

Michaelewicz ns - s 0.0000
Goldstein & Price ns - s 0.0000
Martin & Gaddy ns - s 0.0076
Camel Six Hump ns - s 0.0019

Shekel_4D ns - ns 0.0082
Shekel_10D ns - ns -
Griewank s 0.0000 ns -

Langermann ns 0.2670 ns -
s: statistically significant, ns: not significant
‘-‘: No statistical difference test required

Table 4.2: Comparison on function evaluations over 100 runs for rBA
Function

SBA rBA SPSO2011 qABC

Median StdDev Median StdDev Media
n

StdDev Median StdDev
Easom 3124 1408.92 1897 663.15 4000 885.23 1050 6888.02

Trid 13224 4255.14 10320 2585.29 9100 700.66 500000 0
Rosenbrock 500000 0 500000 0 500000 117878 500000 0
Zakharov 16374 1896.45 13888 1943.12 35100 4619.08 500000 0
Schaffer 5305.5 2869.26 2988.5 1728.23 2800 1728.96 43951 225352.2
Rastrigin 500000 0 500000 0 500000 0 352561.5 97711.63
Schwefel 2825 100.51 1376 455.321 14100 30860.92 850 12132.96

Michaelewicz 163807.5 155525.4 13703 17848.86 500000 223339.3 105399 88612.96
Goldstein &

Price 1824 729.96 1480 493.77 4000 501.39 2350 35168.90

Martin &
Gaddy 1464 732.91 1272 587.83 2000 459.17 15350 204091.6

Camel Six
Hump 924 315.71 752 306.40 3031 581.48 850 405.29

Shekel_4D 10628 8756.23 8470.5 10583.84 82500 230204.6 37850 65029.46

Shekel_10D 500000 168591.4 500000 180750.2
0

 500000 0 500000 0

Griewank 500000 0 500000 0 500000 105560.5 500000 33908.05

Langermann 500000 0 500000 0 500000 0 500000 0

77

Table 4.4: Significant difference of rBA’s median results
against other algorithms

 vs SPSO2011 vs qABC
 accuracy p-value speed p-value accuracy p-value speed p-value

Easom ns - s 0.0000 ns - s 0.0000
Trid ns - s 0.0000 s 0.0000 s 0.0000

Rosenbrock ns 0.05876 ns - s 0.0000 ns -
Zakharov ns - s 0.0000 s 0.0000 s 0.0000
Schaffer ns - ns 0.4839 ns - s 0.0000
Rastrigin s 0.0000 ns - s 0.0000 s 0.0000
Schwefel ns - s 0.0000 ns - s 0.0001

Michaelewicz s 0.0173 s 0.0000 ns - s 0.0000
Goldstein & Price ns - s 0.0000 ns - s 0.0001
Martin & Gaddy ns - s 0.0000 ns - s 0.0000
Camel Six Hump ns - s 0.0000 ns - ns 0.0819

Shekel_4D ns - s 0.0000 ns - s 0.0000
Shekel_10D s 0.0000 ns - s 0.0000 ns -
Griewank s 0.0000 ns - s 0.0000 ns -

Langermann s 0.0000 ns - s 0.0000 ns -
s: statistically significant, ns: not significant
‘-‘: No statistical difference test required

Table 4.5 presents the comparison results of overall performance of the rBA against other

algorithms. From Table 4.5, it is shown that the rBA achieved top rank performance on most

of the functions tested (nine out of fifteen). For comparisons with other algorithms show that

SPSO2011 and qABC performed better than rBA on two functions (two functions comparable

to rBA) and four functions respectively. As for comparison with the standard Bees Algorithm,

the rBA outperformed the standard Bees Algorithm on twelve out of fifteen functions

considered. The remaining three functions show comparable results compared to the proposed

algorithm. Overall, these results indicate that the rBA outperformed other algorithms in most

cases, especially in terms of convergence speed where it can find the global optimum in most

cases with fewer number of function evaluations.

78

Table 4.5: Comparison of overall performance for rBA

Function SBA rBA SPSO2011 qABC
 succ. acc. perf. succ. acc. perf. succ. acc. perf. succ. acc. perf.

Easom 100 X 100 X 100 X 100 X X

Trid 100 X 100 X X 100 X X 0

Rosenbrock 0 0 21 0 X X

Zakharov 100 X 100 X X 100 X 0

Schaffer 100 X 100 X X 100 X X 68 X

Rastrigin 0 0 0 88 X X

Schwefel 100 X 100 X 100 X 100 X X

Michaelewicz 88 X 100 X X 39 100 X

Goldstein & Price 100 X 100 X X 100 X 100 X

Martin & Gaddy 100 X 100 X X 100 X 79

Camel Six Hump 100 X 100 X X 100 X 100 X

Shekel_4D 100 X X 100 X X 59 X 99 X

Shekel_10D 41 X X 46 X X 0 0

Griewank 0 0 6 X X 2

Langermann 0 0 2 X X 0

Total 1029 2 1046 9 927 4 836 4
succ.: successful rate, acc.: accuracy, perf.: performance

79

4.2.3 Discussion

The results mentioned in the previous section show that the proposed rBA in general

accomplished significant improvements compared to the standard Bees Algorithm and other

algorithms in terms of finding the global optimum and convergence speed. A possible

explanation for this improvement is that the recombination operator helps the exploitation in

the local search. It has been explained by Pham and Castellani (2009) that the only local search

used in the standard Bees Algorithm, which is random mutations is not sufficient to generate

favourable random mutations, especially for high dimensional and difficult fitness landscapes

as the fitness solution decreases. Even though the local search in the standard Bees Algorithm

assisted by neighbourhood shrinking strategy increases the like hood of finding local peaks,

additional exploitation strategies could further improve convergence speed and accuracy of the

Bees Algorithm. For this reason, recombination operator applied on elite sites helps the

proposed algorithm to find better solutions at fewer function evaluations.

However, the recombination operator may not be suitable for non-separable complex

multimodal functions such as Shekel_4D, Shekel_10D and Langermann due to combination of

complex landscape and interdependence between variables. Thus, the usage of recombination

operator on these functions might cause the recombination operator to produces new positions

away from the local peak. This reason explains the similar performance of the proposed

algorithm on Shekel_4D, Shekel_10D and Langermann functions against the standard Bees

Algorithm.

Furthermore, the rBA also failed to find the global optimum on Rosenbrock, Rastrigin, and

Griewank functions. A possible explanation for these results may be due to landscape surface

of the functions. The location of the global minimum for Rosenbrock function on narrow,

80

curved valleys (Kang et al., 2011) might cause difficulty in solving this type of function. The

Rastrigin and Griewank functions are categorised as a function that has an overall unimodal

behaviour with large numbers of local optima (Pham and Castellani, 2009). This type of

characteristic could attribute to non-convergence on these two functions. Another possible

explanation for this is related to the neighbourhood size used, which is the same for all

functions. Fine tuning the neighbourhood size value could possibly improve the results.

Although three functions mentioned above were not able to reach global optimum, the Mann

Whitney test showed that the results on median accuracy obtained by rBA against the standard

Bees Algorithm were significantly different (See Table 4.3). It thus can be suggested that the

recombination operator moved the local search closer to the global or local peak finding better

solutions. Figures 4.6-4.8 present the convergence plot of all these functions during the search.

It is clear from these figures that the rBA achieved better fitness values than the standard Bees

Algorithm.

Meanwhile, Figures 4.9-4.11 display the cumulative frequency of recombination operator on

elite and abandoned sites found better fitness for Rosenbrock, Rastrigin and Griewank

functions respectively. These figures indicate that the recombination operator is more effective

on elite sites rather than the abandoned sites as more better solutions produced by the

recombination operator during the search progress. For the remaining of the functions, the rBA

performed considerately well compared to the standard Bees Algorithm.

81

Figure 4.6: Plot of convergence for the Rosenbrock function

Figure 4.7: Plot of convergence for the Rastrigin function

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

0 1000 2000 3000 4000 5000 6000

Lo
g 1

0

(F
it

n
es

s
V

al
u

e)

Function Evaluations

Hundreds

SBA

rBA

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

V
al

u
e

Function Evaluations

Hundreds

SBA

rBA

82

Figure 4.8: Plot of convergence for the Griewank function

Figure 4.9: Cumulative frequency of recombination operator found better solutions from elite
sites and abandoned sites for the Rosenbrock function

0.01

0.1

1

10

100

1000

0 1000 2000 3000 4000 5000 6000

Lo
g 1

0

(F
it

n
es

s
V

al
u

e)

Function Evaluations

Hundreds

SBA

rBA

0.1

1

10

100

1000

10000

0 1000 2000 3000 4000 5000 6000

Log10
(Cumulative
frequency)

Iteration

Elite sites Abandoned sites

83

Figure 4.10: Cumulative frequency of recombination operator found better solutions from
elite sites and abandoned sites for the Rastrigin function

Figure 4.11: Cumulative frequency of recombination operator found better solutions from
elite sites and abandoned sites for the Griewank function

0.1

1

10

100

1000

10000

0 1000 2000 3000 4000 5000 6000

Log10
(Cumulative
frequency)

Iteration

Elite sites Abandoned sites

0.1

1

10

100

1000

0 1000 2000 3000 4000 5000 6000

Log10
(Cumulative
frequency)

Iteration

Elite sites Abandoned sites

84

Another important finding was the overall performance for functions where rBA did not

perform as well as SPSO2011 and qABC. These results may be explained in terms of search

mechanisms in those two algorithms. For SPSO2011, the search mechanism is based on

individual and neighbourhood-based best known particle positions (Zambrano-Bigiarini et al.,

2013). Moreover, this version of PSO has no mechanism to escape the local optima such as site

abandonment strategy in the Bees Algorithm. These two differences in search mechanisms are

likely the reasons SPSO2011 outperforms rBA on Griewank and Langermann functions.

For qABC, the search mechanism for the qABC algorithm only updates the position of bees in

solution space by one random index dimension instead of all problem dimensions.

Furthermore, the qABC also has long stagnation limit thus causing continuous exploitation on

promising patches (Karaboga & Gorkemli, 2012). This might explain the top performance of

qABC on Easom, Rosenbrock, Rastrigin and Schwefel functions.

4.3 Mechanical Design Applications

This section discusses on the application of the proposed Bees Algorithm on the four well

known constrained mechanical design problems. The details of these mechanical design

problems are described in Appendix C. In this experiment, same parameter settings as shown

in Table 3.7 was adopted while the stopping criterion and number of runs were set at 30000

function evaluations and 30 times, respectively. On handling constraints, a similar method as

explained in Section 3.3 was used in this experiment where only feasible solutions were

accepted to be selected in the population.

The results of rBA were compared with the standard Bees Algorithm and the results extracted

from Akay and Karaboga (2012) in terms of best solution found over 30 runs, median solution

over 30 runs and function evaluation needed to reach that solution. Table 4.6 shows results

85

obtained by rBA and the comparison against other results found by other researchers. In the

case of comparing the median solution between the standard Bees Algorithm and the proposed

Bees Algorithm, the Mann Whitney (at α = 0.05) test was used to check the significant

difference between two median solutions. An algorithm is said to be better than another if the

median value obtained is less than other one and the Mann Whitney test showed significant

difference. If Mann Whitney test showed no significant difference, both algorithms are said to

be comparable.

Table 4.6: Comparison of rBA against others (Akay and Karaboga, 2012)
Problem Stats. Scaa Psoa (µ+λ)-ES UPSOm ABC BA rBA

Welded
Beam

Best NA NA 1.724852 1.92199 1.724852 1.7332472 1.727224
Mean NA NA 1.777692 2.83721 1.741913 1.76792249 1.758381

Median NA NA NA NA NA 1.76697849 1.75392
NFE NA NA 30,000 100,000 30,000 30000 30000

Pressure
Vessel

Best 6171 6059.7143 6059.70161 6544.27 6059.71474 6103.41749 6068.358
Mean 6335.05 6289.92881 6379.938037 9032.55 6245.3081 6381.47138 6476.64

Median NA NA NA NA NA 6315.16763 6313.96
NFE 20000 30000 30000 100000 30000 30000 30000

Tension/
Compresion

Spring

Best 0.012669 0.012665 0.012689 0.01312 0.012665 0.01267303 0.012668
Mean 0.012923 0.012702 0.013165 0.0229478 0.012709 0.01333878 0.012768

Median NA NA NA NA NA 0.0133214 0.01269
NFE 25,167 15000 30000 100000 30000 30000 30000

Speed
Reducer

Best 2994.74 NA 2996.348094 NA 2997.05841 2999.54709 2997.885
Mean 3001.758 NA 2996.34809 NA 2997.05841 3006.31144 3001.627

Median NA NA NA NA NA 3005.71872 3001.55
NFE 54,456 NA 30000 NA 30000 30000 30000

NA: not available, NFE:Number of function evaluations
aThe welded beam problem is different from the one employed in this study

86

The results in Table 4.6 indicate that the median solutions over 30 runs found by rBA are better

than the standard Bees Algorithm and the differences are significant for most of the problems

except the pressure vessel problem. Figures 4.12–4.15 show variations of solutions obtained

between both algorithms for all problems. Therefore, this shows that the rBA outperformed the

standard Bees on the Welded Beam, Tension Spring and Speed Reducer problems but

performed equally on the Pressure Vessel problem.

Moreover, in terms of best results, the (µ+λ) -ES (ABC found the same best), (µ+λ)-ES, PSO

and Sca algorithms found the best solution for the Welded Beam, Pressure Vessel, Tension

Spring and Speed Reducer problems respectively. Although the comparison of results with

other algorithms show that the rBA did not perform as well as other the algorithms in terms of

best solution, these results are relatively close compared to the results of rBA. In general, it

seems that the performance of rBA on these four mechanical design problems compared with

other algorithms is comparable. Tables 4.7–4.10 present the values of the design variables for

the best solutions found by rBA, standard Bees Algorithm and other algorithms.

87

Figure 4.12: Minimum costs found by Standard Bees Algorithm and rBA
over 30 runs for the Welded Beam problem

Figure 4.13: Minimum costs found by Standard Bees Algorithm and rBA
over 30 runs for the Pressure Vessel problem

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
o

st

Run Number

SBA

cBA

5000

6000

7000

8000

9000

10000

11000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
o

st

Run Number

SBA

cBA

88

Figure 4.14: Minimum weights found by Standard Bees Algorithm and rBA
over 30 runs for the Tension/Compression Spring problem

Figure 4.15: Minimum weights found by Standard Bees Algorithm and rBA
over 30 runs for the Speed Reducer problem

0.005

0.01

0.015

0.02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

W
ei

gh
t

Run Number

SBA

cBA

2990

2995

3000

3005

3010

3015

3020

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

W
ei

gh
t

Run Number

SBA

cBA

89

Table 4.7: Parameter and constraint values of the best solutions
obtained by rBA and other algorithms for the Welded Beam Problem
 (µ+λ)ES ABC BA rBA

x1 0.20573 0.20573 0.20206 0.20491

x2 3.470489 3.470489 3.569718 3.490459

x3 9.036624 9.036624 9.036399 9.038263

x4 0.205729 0.20573 0.205836 0.205817

g1 0 0 -55.89515 -8.98355

g2 0.000002 −0.000002 -14.05208 -23.61819

g3 0 0 -0.003773 -0.000906

g4 −3.432984 −3.432984 -3.42349 -3.430284

g5 −0.080730 −0.080730 -0.077064 -0.079911

g6 −0.235540 −0.235540 -0.235547 -0.235554

g7 −0.000001 0 -9.235489 -8.369106
f(x) 1.724852 1.724852 1.733247 1.731760

Table 4.8: Parameter and constraint values of the best solutions
obtained by rBA and other algorithms for Pressure Vessel

 SCA PSO (µ+λ)ES ABC BA rBA
x1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375
x3 41.9768 42.098446 42.098446 42.098446 41.811296 42.092641
x4 182.2845 176.636052 176.636596 176.636596 180.260978 176.716452
g1 −0.0023 0 0 0 -0.005542 -0.000112
g2 −0.0370 −0.035881 0.03588 −0.035881 -0.038620 -0.035936
g3 −23420.5966 0 0 −0.000226 -183.1446 -44.05677
g4 −57.7155 −63.363948 −63.363404 −63.363404 -59.73902 -63.28355

f(x) 6171 6059.70161 6059.7143 6059.714339 6103.41749 6068.357986

90

Table 4.9: Parameter and constraint values of the best solutions
obtained by rBA and others algorithm for Tension Spring problem

 SCA PSO (µ+λ)ES ABC BA rBA
x1 0.0521602 0.05169 0.052836 0.051749 0.052312 0.051460
x2 0.368159 0.35675 0.384942 0.358179 0.371889 0.351232
x3 10.648442 11.287126 9.807729 11.203763 10.452475 11.619171
g1 0 0 −0.000001 −0.000000 -1.91E-05 -8.40E-05
g2 0 0 0 −0.000000 -2.44E-05 -1.65E-05
g3 −4.075805 −4.053827 −4.106146 −4.056663 -4.082842 -4.042626
g4 −0.719787 −0.727706 −0.708148 −0.726713 -0.717198 -0.731538

f(x) 0.012669 0.012665 0.012689 0.012665 0.012673 0.012668

Table 4.10: Parameter and constraint values of the best solutions

obtained by rBA and others algorithm for Speed Reducer problem
 SCA (µ+λ)ES ABC BA rBA

x1 3.5 3.499999 3.499999 3.501481 3.500848
x2 0.7 0.699999 0.7 0.700124 0.700011
x3 17 17 17 17 17
x4 7.327602 7.3 7.3 7.388378 7.321624
x5 7.715321 7.8 7.8 7.844692 7.839082
x6 3.350267 3.350215 3.350215 3.350535 3.350479
x7 5.286655 5.286683 5.2878 5.287016 5.286741
g1 −0.073915 −0.073915 −0.073915 -0.074636 -0.074169
g2 −0.197999 −0.197998 −0.197999 -0.198623 -0.198218
g3 −0.493501 −0.499172 −0.499172 -0.969473 -9.70E-01
g4 −0.904644 −0.901472 −0.901555 -0.994107 -0.994117
g5 0 0 0 -0.000141 -2.01E-04
g6 0.000633 0 0 -0.000181 -2.50E-05
g7 −0.7025 −0.702500 −0.7025 -0.702447 -0.702495
g8 0 0 0 -0.000245 -0.000226
g9 −0.583333 −0.583333 −0.583333 -0.583231 -0.583239
g10 −0.054889 −0.051325 −0.051326 -0.062608 -0.054073
g11 0 −0.010852 −0.010695 -0.016441 -0.015776
f(x) 2994.744241 2996.348094 2997.058412 2999.547093 2997.884811

91

4.4 Summary

This chapter has introduced an improved version of Bees Algorithm, known as recombination-

based Bees Algorithm (rBA), specifically applied for unconstrained numerical benchmark

functions and constrained mechanical design problems. In this proposed Bees Algorithm, a

technique called recombination operation was used during the local search and between two

best abandoned sites, producing a solution closer to the local peak. Experimental results have

shown that the Bees Algorithm with recombination operator helped local search produces

solution closer to the local peak. This allows the proposed Bees Algorithm to find more

accurate solutions with less function evaluations as significant test indicated that the rBA

outperforms the standard version of Bees Algorithm and other algorithms on most of the

problems applied.

92

CHAPTER 5

A Guided Global Best Bees Algorithm

5.1 Preliminaries

The main disadvantage of the Bees Algorithm compared to other algorithms is the large number

of parameters. In general, large number of parameters requires excessive parameter tuning to

obtain a good result. Therefore, this chapter proposes a new implementation to reduce the

number of parameters by using an adaptive number of recruit bees for each selected site. In

addition to the proposed strategy mentioned above, the proposed Bees Algorithm in this chapter

also makes use of the best solution found so far to guide the neighbourhood shrinking strategy

for the unimproved sites.

The first section of this chapter describes the proposed Bees Algorithm in detail. In this first

section, detailed description of the proposed strategies is given followed by experimental set

up and experimental results on a set of benchmark functions. It will then go on to the application

of the proposed algorithm on constrained mechanical design applications for the next section.

Finally, the last section of this chapter concludes and reviews the work done.

5.2 Self Adaptive Bees Recruitment Mechanism

Parameter tuning is one of the most common procedures for finding good solutions in any

optimisation algorithms. Usually, these parameters need to be tuned manually by the users for

different types of optimisation problems until the best solution is found. Similarly, like other

optimisation algorithms, the Bees Algorithm also requires a set of parameters to be tuned for

finding the best solution. Although several studies were introduced to overcome this issue on

93

the Bees Algorithm as described in Section 2.7, it remains as the main issue to be solved

because lesser parameters would make the algorithm simpler and consume less time for

parameter tuning. It is also desirable to have lesser parameters without deteriorating the

performance of the Bees Algorithm.

In order to reduce the number of parameters, several rules on selection of best sites and how to

send recruited bees were introduced into the standard Bees Algorithm thus resulting in

elimination of some of the parameters. These rules were applied to the best selected sites where

instead of fully ranking it according to fitness value only, the order of these best sites and how

recruit bees are sent goes to the following rules.

i. The first top ranked best sites should be best sites discovered by the global

search. If there is more than one site, the sites discovered by the global search

should be ranked according to fitness value.

ii. The second top ranked best sites should be the improved best sites from the

previous iteration. If there is more than one site, the improved sites should be

ranked according to fitness value.

iii. The remaining best sites are the unimproved best sites from the previous

iteration. If there is more than one site, the unimproved sites should be ranked

according to fitness value.

iv. For the number of recruited bees being sent to each best site, it should be linearly

dependant on the rank of the best site.

Overall, these new rules reduce the number of parameters from seven parameters to six

parameters as it eliminates the number of elite sites and number of recruited bees to be sent to

both elite site(s) and best sites. It is also more like foraging behaviour in nature in terms of

94

selecting promising sites. However, the user still needs to set the total number of recruited bees

to be sent to each best site. The total Bees Algorithm parameters after applying these rules are:

i. ns – number scout bees,

ii. nb – number of best sites,

iii. nrb_t – total number of recruit bees for selected sites,

iv. ngh – neighbourhood size,

v. stlim – stagnation limit.

5.3 Guided Neighbourhood Shrinking Strategy

In addition to the new introduced rules described above, another strategy called guided

neighbourhood shrinking based on global best solution found so far is proposed. This proposed

strategy uses the information from the global best solution found so far to guide the

neighbourhood shrinking for the unimproved sites for better exploitation capabilities. Based on

the assumption that the global best solution found so far often leads to optimal solutions, the

neighbourhood shrinking bias toward the global best solution found so far on certain conditions

is believed to guide the local search in finding the optimum solution. This proposed Bees

Algorithm is named as global best guided Bees Algorithm (gBA).

The flowchart of the proposed gBA is illustrated in Figure 5.1 where index j is the index of

dimension D, j:1,2,3,…,D. For the standard Bees Algorithm, the neighbourhood size shrinks

according to Eq. 2.2 whereas for this proposed strategy, the position of the site being search is

compared against the best solution found so far before proceeding to the next steps. The

proposed algorithm starts once the neighbourhood search failed to find better fitness value, the

global best solution found so far has better fitness value than the fittest recruited bee, and at

least one index position of fittest recruited bee is within the neighbourhood of best found so

95

far. If those three conditions are satisfied, the position of the fittest recruited bee at each

dimension is checked. The neighbourhood size for position at particular dimensions which is

not within the neighbourhood of the best solution found so far, it is set to a new neighbourhood

size; distance between best recruited bee and best solution found at corresponding dimension

(PGlobal,j,-Pbest,j,). For position at a dimension that is within the neighbourhood of the best

solution found so far follows the standard neighbourhood shrinking procedure. After all the

neighbourhood dimension sizes have been updated, the recruited bees are sent to the new

defined patch.

To explain how the proposed guided global best Bees Algorithm works, the following simple

2D examples shown in Figures 5.2–5.4 are used. In this example, it is assumed that the Best

bee (xB) failed to find better fitness value and the Best solution found so far (xG) has better

fitness value than the Best bee (xB). Figure 5.2 shows nghx1 is not within the neighbourhood

range of best solution so far whereas nghx2 is within the neighbourhood range of best solution

found so far. Therefore, a new neighbourhood size of nghx1 for the Best bee (xB) is set with the

distance between the Best bee (xB) and Best solution found so far (xG) corresponding to x1.

However, the neighbourhood size for nghx2 shrinks similar as the standard Bees Algorithm

procedure. These new neighbourhood sizes which follow the procedures mentioned earlier are

shown in Figure 5.3. Once both neighbourhood sizes have been updated, the recruited bees are

sent to this site accordingly as described in Figure 5.4.

96

Figure 5.1: Flowchart of the guided neighbourhood shrinking strategy for unimproved sites

no

yes

j++

End

Pbest,j +nghj//2<
PGlobal,j +nghj/2 &
Pbest,j – nghj/2>
PGlobal,j - nghj/2

Shrink nghj size

PGlobal,j-Pbest,j
(new nghj size)

Send recruit
bees

All
dimensions?

Select fittest
patch

Standard local
search

Solution
Improved?

yes

no

Better fitness
than Global

best

yes

Start

no

no

yes

97

Figure 5.2 Illustration of guided neighbourhood shrinking strategy for unimproved site –
satisfy the condition

Figure 5.3 Illustration of guided neighbourhood shrinking strategy for unimproved site – set
ngh sizes

nghx1

ng
h x

2

x1

x2

ng
h x

2

 Best found so far (xG)
 Best bee (xB)

nghx1

ng
h x

2

x1

x2

nghx1

sh
ri

nk
ed

ng

h x
2

 Best found so far (xG)
 Best bee (xB)

nghx1

98

Figure 5.4 Illustration of guided neighbourhood shrinking strategy for unimproved site – send

recruited bees

5.4 Benchmark Functions Experiment on gBA

In general, similar experimental set up as in Section 3.2.1 and Section 4.2.1 were utilised in

this chapter. This study used a similar set of benchmark functions (see Appendix A), as well

as the parameters settings (Table 3.1) and stopping criterion as described in Section 3.2.1.

Similar method of comparison with the standard Bees Algorithm, SPSO2011 and qABC were

also utilised in this study as in Chapter 3 and Chapter 4.

5.4.1 Experimental Results

In this experiment, each benchmark function was run independently 100 times with the

standard Bees Algorithm, gBA, SPSO2011 and qABC algorithm. The results found by each

algorithm in terms of accuracy (global optimum - best solution found) and speeds (function

evaluations reached) are given in Table 5.1 and Table 5.2 respectively. Table 5.1 shows the

nghx1

*
* * *

x1

x2

sh
ri

nk
ed

ng

h x
2

 Best found so far (xG)
 Best bee (xB)

 Recruited bees

*
*

99

median and standard deviation of accuracy results over 100 runs for the four algorithms. For

median accuracy that obtained less than 0.001 in the experimental result, the value recorded in

Table 5.1 is 0.0000 to make the comparison simpler.

Table 5.1 shows that the gBA obtained a median accuracy of less than 0.001 with 100% success

rate on most of the functions except on the Rosenbrock, Rastrigin, Shekel_10D, Griewank, and

Langermann functions. For the Shekel_10D function, although it did not achieve 100% success

rate, it still managed to find accuracy less than 0.001 with 71% success rate. Meanwhile, with

the exception of Shekel_10D, Michaelewicz, and non-successful functions of gBA, the standard

Bees Algorithm accomplished 100% success rate on a similar set of functions.

For SPSO2011, the algorithm attained 100% success rate in finding the minimum on Easom,

Trid, Zakharov, Schaffer, Schwefel, Goldstein & Price, Martin & Gaddy, and Camel Six Hump

(eight functions) while on the Shekel_4D function, the SPSO2011 succeeded to find the

threshold accuracy at 59% success rate. Furthermore, Table 5.1 also shows that qABC found a

median accuracy of less than 0.001 on Easom, Schaffer, Rastrigin, Schwefel, Michaelewicz,

Goldstein & Price, Martin & Gaddy, Camel Six Hump and Shekel_4D (nine functions).

Next, Table 5.2 shows a comparison of median and standard deviation of function evaluations

required to achieve accuracy presented in Table 5.1. From these results, for the functions that

achieved accuracy of less than 0.001; five functions converged faster than the standard Bees

Algorithm, six functions are comparable in terms of convergence speed as the Mann Whitney

Test (see Table 5.3) showed no significant difference on these results. Meanwhile, for the

remaining four functions where the gBA could not achieve the accuracy of less than 0.001 and

reached maximum function evaluations, the performance is considered comparable with the

standard Bees Algorithm in terms of function evaluations.

100

Table 5.1: Comparison on accuracy over 100 runs for gBA

Function

SBA gBA SPSO2011 qABC
Median StdDev Median StdDev Median StdDev Median StdDev

Easom 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Trid 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.30155 0.3062

Rosenbrock 4.8919 1.0673 3.3271 1.3973 6.9007 9.4754 0.0758 0.0702
Zakharov 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0235 0.0867
Schaffer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010
Rastrigin 12.9437 3.2667 0.0108 0.4498 6.4253 2.2037 0.0000 0.0219
Schwefel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Michaelewicz 0.0000 0.0133 0.0000 0.0000 0.0411 0.0895 0.0000 0.0000
Goldstein & Price 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000
Martin & Gaddy 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Camel Six Hump 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Shekel_4D 0.0000 0.0002 0.0000 0.0000 0.0000 2.5068 0.0000 0.0001
Shekel_10D 0.0015 2.6435 0.0006 1.8110 8.7202 0.2236 8.7231 0.0036
Griewank 0.1091 0.0226 0.0663 0.0252 0.0341 0.0271 0.0800 0.0389

Langermann 1.2563 0.0989 0.9323 0.1794 0.9676 0.1363 1.1713 0.0916

Table 5.2: Comparison on function evaluations over 100 runs for gBA

Function SBA gBA SPSO2011 qABC
 Median StdDev Median StdDev Median StdDev Median StdDev

Easom 3124 1408.923 2424 727.3015 4000 885.2301 1050 6888.015
Trid 13224 4255.14 12724 9430.22 9100 700.657 500000 0

Rosenbrock 500000 0 500000 0 500000 117878 500000 0
Zakharov 16374 1896.454 16424 1760.32 35100 4619.083 500000 0
Schaffer 5305.5 2869.263 1824 1166.363 2800 1728.957 43951 225352.2
Rastrigin 500000 0 500000 0 500000 0 352561.5 97711.63
Schwefel 2825 100.508 2624 1127.964 14100 30860.92 850 12132.96

Michaelewicz 163807.5 155525.4 15029 17257.13 500000 223339.3 105399 88612.96
Goldstein & Price 1824 729.9545 1824 565.2424 4000 501.387 2350 35168.9
Martin & Gaddy 1464 732.9105 1224 568.7697 2000 459.1725 15350 204091.6
Camel Six Hump 924 315.7083 924 340.1411 3031 581.481 850 405.292

Shekel_4D 10628 8756.234 9228 6329.679 82500 230204.6 37850 65029.46
Shekel_10D 500000 168591.4 324926.2 149701 500000 0 500000 0
Griewank 500000 0 500000 0 500000 105560.5 500000 33908.05

Langermann 500000 0 500000 0 500000 0 500000 0

101

With respect to comparison with other algorithms, it is observed that the proposed algorithm

converged faster than the SPSO2011 algorithm for the Easom, Zakharov, Schaffer, Schwefel,

Michaelewicz, Goldstein & Price, Martin & Gaddy, Camel Six Hump, Shekel_4D, and

Shekel_10D functions. As for comparison with qABC, the gBA outperformed the qABC in

terms of convergence speed for the Trid, Zakharov, Schaffer, Michaelewicz, Goldstein & Price,

Martin & Gaddy, Shekel_4D, and Shekel_10D functions (eight functions) while one function

showed comparable convergence speed (Camel Six Hump function) as the p-value is more than

0.05 (See Table 5.4). For the rest of the functions, the qABC results obtained 500000 maximum

function evaluations.

Furthermore, a comparison of overall performance is also made with other algorithms. Table

5.5 summarises the overall performance results achieved in Table 5.1 and Table 5.2. These

results show that, the performance of gBA surpassed other algorithms on nine out of fifteen

functions. From those nine functions, six functions (Trid, Zakharov, Schwefel, Goldstein &

Price, Camel Six Hump and Shekel_4D) showed equal performance compared to the standard

Bees Algorithm.

For comparison of gBA with SPSO2011, SPSO2011 demonstrates best overall performance

over gBA only on one unimodal function (Trid). Besides, these results also show that qABC

performed better than gBA only on four functions (Easom, Rosenbrock, Rastrigin, Schwefel)

while one functions (Camel Six Humps) showed equal performance with p-value of 0.5552.

The results in this section indicate that the guided global best Bees Algorithm is effective in

improving the performance of the standard Bees Algorithm, especially high dimensional

multimodal problems. The next section moves on to discuss the results reported in this section.

102

Table 5.3: Significant difference of gBA’s median results
against standard Bees Algorithm

 accuracy p-value speed p-value
Easom ns - s 0.0000
Trid ns - ns 0.5222

Rosenbrock s 0.0000 ns -
Zakharov ns - ns 0.5823
Schaffer ns - s 0.0000
Rastrigin s 0.0000 ns -
Schwefel ns - ns 0.1336

Michaelewicz ns - s 0.0000
Goldstein & Price ns - ns 0.5552
Martin & Gaddy ns - s 0.0003
Camel Six Hump ns - ns 0.5552

Shekel_4D ns - ns 0.3735
Shekel_10D s 0.0000 s 0.0041
Griewank s 0.0000 ns -

Langermann s 0.0000 ns -
s: statistically significant, ns: not significant
‘-‘: No statistical difference test required

Table 5.4: Significant difference of gBA’s median results
against other algorithms

 vs SPSO2011 vs qABC
 accuracy p-value speed p-value accuracy p-value speed p-value

Easom ns - s 0.0000 ns - s 0.0000
Trid ns - s 0.0000 s 0.0000 s 0.0000

Rosenbrock s 0.0308 ns - s 0.0000 ns -
Zakharov ns - s 0.0000 s 0.0000 s 0.0000
Schaffer ns - s 0.0000 ns - s 0.0000
Rastrigin s 0.0000 ns - s 0.0000 s 0.0000
Schwefel ns - s 0.0000 ns - s 0.0000

Michaelewicz s 0.0003 s 0.0000 ns - s 0.0000
Goldstein & Price ns - s 0.0000 ns - s 0.0147
Martin & Gaddy ns - s 0.0000 ns -- s 0.0147
Camel Six Hump ns - s 0.0000 ns 0.9045 ns 0.1416

Shekel_4D ns - s 0.0000 ns - s 0.0000
Shekel_10D s 0.0000 s 0.0000 s 0.0000 s 0.0000
Griewank s 0.0000 ns - s 0.0000 ns -

Langermann s 0.0078 ns - s 0.0000 ns -
s: statistically significant, ns: not significant
‘-‘: No statistical difference test required

103

5.4.2 Discussion

The findings reported in the previous section demonstrate the advantages of adapting the best

solution found so far in order to guide the neighbourhood shrinking for unimproved sites.

According to the experimental results obtained in Section 5.4.1, the gBA achieved the best

overall performance over the standard Bees Algorithm on six multimodal functions (Schaffer,

Rastrigin, Michaelewicz, Shekel_10D, Griewank, and Langermann) and three unimodal

functions (Easom, Rosenbrock, and Martin & Gaddy). However, the gBA performs similarly

on four multimodal functions (Schwefel, Goldstein & Price, Camel Six Hump, and Shekel_4D)

and two unimodal functions (Trid and Zakharov).

Table 5.5: Comparison of overall performance for gBA

Function SBA gBA SPSO2011 qABC
 succ. acc. perf. succ. acc. perf. succ. acc. perf. succ. acc. perf.

Easom 100 X 100 X 100 X 100 X X

Trid 100 X 100 X 100 X X 0

Rosenbrock 0 0 21 X 0 X X

Zakharov 100 X X 100 X X 100 X 0

Schaffer 100 X 100 X X 100 X 68 X

Rastrigin 0 0 0 88 X X

Schwefel 100 X 100 X 100 X 100 X X

Michaelewicz 88 X 100 X X 39 100 X

Goldstein &
Price 100 X X 100 X X 100 X 100 X

Martin &
Gaddy 100 X 100 X X 100 X 79 X

Camel Six
Hump 100 X X 100 X X 100 X 100 X X

Shekel_4D 100 X X 100 X X 59 X 99 X

Shekel_10D 41 71 X X 0 0

Griewank 0 0 6 X 2

Langermann 0 0 X X 2 0

Total 1029 4 1071 9 927 1 836 4
succ.: successful rate, acc.: accuracy achieved, perf.: overall performance

104

The comparison of results mentioned earlier, demonstrates the effectiveness of the gBA dealing

with high dimension multimodal functions, such as Rastrigin, Michaelewicz, Shekel_10D,

Griewank, and Langermann. Besides, the gBA is also performed fairly effective on the low

dimension multimodal function (Schaffer).

For the Rastrigin and Griewank functions, despite the gBA not converging, the solutions found

are closer to the global optimum. The plot of convergence for the Rastrigin function is shown

in Figure 5.5, where a better final solution found by the gBA. This result is likely because both

functions have a rough multimodal surface with unimodal behaviour overall. The standard Bees

Algorithm could be easily trapped inside many local optima on this type of function during the

neighbourhood shrinking phase. Thus, identifying which neighbourhood size to reduce at the

selected index based on the best solution found so far would be an advantage for the function

with the overall unimodal behaviour especially at a higher dimension.

Figure 5.5: Plot of convergence for the Rastrigin function

0

20

40

60

80

100

120

0 100000 200000 300000 400000 500000 600000

Fi
tn

es
s

V
al

u
e

Function Evaluations

SBA

gBA

105

As for the Shekel_10D and Langermann functions, the gBA also shows a better performance

in terms of the solutions found. This indicates that reducing the neighbourhood size at the

selected index dimension together with new a defined neighbourhood size at the index

dimension that satisfied the condition, is beneficial for this type of problem.

For Michaelewicz, the valley and ridges of the function could slow down the convergence speed

of the standard Bees Algorithm if the bees are placed along the valley and ridges. Thus, adding

the guiding neighbourhood shrinking strategy to the standard Bees Algorithm might help the

algorithm to escape from those valley and ridges. This behaviour is shown in Figure 5.6, where

a plot of convergence for the Michaelewicz function clearly demonstrates the ability of the gBA

to overcome this type of surface landscape. However, this strategy is fairly effective in

improving the Bees Algorithm on most low dimension multimodal types of functions, probably

because the guided neighbourhood shrinking did not fully take place as the conditions were not

satisfied. In this cases, the gBA significantly converged faster than the standard Bees Algorithm

for the Schaffer function.

Figure 5.6: Plot of convergence for the Michaelewicz function

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 50000 100000 150000 200000

Fi
tn

es
s

V
al

u
e

Function Evaluations

SBA

gBA

106

Regarding the equal performance of the gBA with the standard Bees Algorithm on six functions

(Trid, Zakharov, Schwefel, Goldstein & Price, Camel Six Hump and Shekel_4D), both

algorithms accomplished a 100% success rate but no significant difference in terms of the

function evaluations on these functions. These results demonstrate that the proposed strategy

could not improve the Bees Algorithm on these functions, which are considered to be easy

multimodal functions and unimodal functions. For this reason, the neighbourhood search

encounter with unimproved sites is less frequent as the search usually find better solutions.

Figure 5.7 illustrates an example of the optimisation progress for the Camel Six Hump function.

This figure indicates that the gBA and the standard Bees Algorithm progressively find better

solutions during most of the search progress. Therefore, no significant improvement was

observed on these functions.

Figure 5.7: Plot of convergence for the Camel Six Hump function

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

Fi
tn

es
s

V
al

u
e

Function Evaluations

SBA

gBA

107

When drawing comparison with SPSO2011, where the performance of SPSO2011 is better

than of the gBA, the results in Table 5.5 show that both algorithms achieved a 100% success

rate on the Trid function but SPSO2011 required fewer function evaluations. A probable

explanation is that the search mechanism of the SPSO2011 algorithm has an advantage over

the algorithms based on the foraging behaviour for this type of function.

Furthermore, for comparison purposes with the qABC algorithm, the result in Table 5.5 shows

that the gBA did not perform as well as the qABC on the Easom, Rosenbrock, Rastrigin, and

Schwefel functions. On the Easom and Schwefel, functions, both algorithms achieved a 100%

success rate but the qABC achieved this with a higher convergence speed. For the Rosenbrock

function, even though the qABC failed to find the global optimum, the median solution

obtained is closer to the global optimum compared to the gBA and the difference is significant.

This result indicates that the qABC outperformed the gBA on the Rosenbrock function. On the

Rastrigin function, the performance of the qABC excelled in finding the global optimum with

an 88% success rate, whereas the gBA could not locate the global optimum. Even though the

performance of the gBA on some of those functions is not as good as in the case of the

SPSO2011 or qABC, the superiority of the gBA on a large number of functions shows that the

proposed Bees Algorithm is better than other algorithms.

108

5.5 Mechanical Design Applications

The previous section has demonstrated the performance of gBA on a set of unconstrained

numerical benchmark functions. It is now necessary to further evaluate the performance of the

proposed Bees Algorithm on constrained optimisation problems. For this reason, four well

known mechanical design problems were selected: Welded Beam, Pressure Vessel,

Tension/Compression Spring and Speed Reducer (Appendix C). The parameter settings used

in this experiment is the same as the ones given in Table 3.7 of section 3.3. This experiment

also used 30000 function evaluations for stopping criterion and running the algorithm 30 times

on each problem. With regards to handling constrained problems, a similar method as used in

section 3.3 was adopted in this experiment.

In addition to the problems mentioned above, the gBA was applied to another mechanical

design problem from the literature known as the Multiple Clutch problem (Rao et al., 2011).

The details of the problem are given in Appendix C. The parameter settings used for this

problem are given in Table 5.6. For this problem, the maximum function evaluations and

number of runs are the same as those used by Rao et al. (2011).

Table 5.6: Parameter settings for Multiple Clutch Problem
Parameter ns ne nb nre nrb ngh stlim

Value 10 2 5 10 5 2 10

109

Table 5.7 and Table 5.8 provide the results of gBA obtained from the experiment on problems

mentioned above and results of other algorithms. For each problem, the best solution, mean

solution and median solution over number of runs were recorded in those tables. As for the

results obtained on the Multiple Clutch problem, the number of successful rate (SR) was also

recorded. The performance of gBA is compared with the standard Bees Algorithm based on

the median value. An algorithm is said to be better than another if the median value found is

less than another and the difference is significance. If the median value difference is

insignificant, both algorithms are said to be comparable. In this experiment, the Mann Whitney

Test (at α = 0.05) was used to check the significant difference of results between two

algorithms.

According to the results reported in Table 5.7 and Table 5.8, the median values found by gBA

are less than the standard Bees Algorithm and the differences are significant for the Welded

Beam, Tension Spring and Multiple Clutch problems. These results indicate the superiority of

gBA over the standard Bees Algorithm on those problems. For the Speed Reducer problem,

the difference between the median value of gBA and standard Bees Algorithm are insignificant.

For this reason, both algorithms are said to be comparable on this problem. However, for the

Pressure Vessel problem, the results showed that the median value obtained by the standard

Bees Algorithm is less than gBA and the difference is significant. The significant difference

for all problems is illustrated in Figures 5.8–5.12. Surprisingly, the addition of the proposed

strategy into the standard Bees Algorithm that was meant to improve or at least equal in general

performance, showed a performance that was worse on this Pressure Vessel problem.

110

Table 5.7 Comparison of gBA against others (Akay and Karaboga , 2012)
Problem Stats. Scaa Psoa (µ+λ)-ES UPSOm ABC BA gBA

Welded Beam

Best NA NA 1.724852 1.92199 1.724852 1.733247 1.728407
Mean NA NA 1.777692 2.83721 1.741913 1.767923 1.749410

Median NA NA NA NA NA 1.766979 1.745503
NFE NA NA 30,000 100,000 30,000 30000 30000

Pressure
Vessel

Best 6171 6059.7143 6059.70161 6544.27 6059.71474 6103.4175 6068.23
Mean 6335.05 6289.92881 6379.938037 9032.55 6245.3081 6381.4714 7583.8873

Median NA NA NA NA NA 6315.1676 6759.573
NFE 20000 30000 30000 100000 30000 30000 30000

Tension/
Compresion

Spring

Best 0.012669 0.012665 0.012689 0.01312 0.012665 0.012673 0.012666
Mean 0.012923 0.012702 0.013165 0.0229478 0.012709 0.013339 0.012892

Median NA NA NA NA NA 0.013321 0.012762
NFE 25,167 15000 30000 100000 30000 30000 30000

Speed
Reducer

Best 2994.74424 NA 2996.348094 NA 2997.05841 2999.5471 3000.5082
Mean 3001.758264 NA 2996.34809 NA 2997.05841 3006.3114 3007.2668

Median NA NA NA NA NA 3005.7187 3006.872
NFE 54,456 NA 30000 NA 30000 30000 30000

NA: Not available, NFE: Number of function evaluations
aThe welded beam problems are different from the one employed in this study

Table 5.8 Comparison of gBA against others (Rao et al., 2011) for Multiple Clutch
Problem

Problem Stats. TLBO ABC BA gBA

Multiple Clutch Problem

Best 0.313657 0.313657 0.313657 0.313657
Mean 0.3271662 0.324751 0.328960 0.322020

Median NA NA 0.325419 0.313657
SR 0.67 0.54 0.08 0.16

NFE 1000 1000 1,000 1,000
SR: successful rate, NFE: Number of function evaluations, NA: Not available

111

Figure 5.8: Minimum costs found by Standard Bees Algorithm and gBA
over 30 runs for the Welded Beam problem

Figure 5.9: Minimum costs found by Standard Bees Algorithm and gBA
over 30 runs for the Pressure Vessel problem

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
o

st

Run Number

SBA

gBA

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
o

st

Run Number

SBA

gBA

112

Figure 5.10: Minimum weights found by Standard Bees Algorithm and gBA
over 30 runs for the Tension/Compression Spring problem

Figure 5.11: Minimum weights found by Standard Bees Algorithm and gBA
over 30 runs for the Speed Reducer problem

0.005

0.01

0.015

0.02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

W
ei

gh
t

Run Number

SBA

gBA

2990

2995

3000

3005

3010

3015

3020

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

W
ei

gh
t

Run Number

SBA

gBA

113

Figure 5.12: Minimum weights found by Standard Bees Algorithm and gBA
over 100 runs for the Multiple Clutch Problem

In the case of comparison with other algorithms, gBA is compared based on the best solution

found. The results in Table 5.7 showed that the best solution was found by (µ+λ)-ES (ABC

found the same best), (µ+λ)-ES, PSO (ABC found the same best), and Sca for the Welded Beam,

Pressure Vessel, Tension Spring and Speed Reducer problems respectively. Generally, the

results found by gBA are comparable to other algorithms, even though other algorithms found

better solution in terms of best solution because those values are relatively close compared to

best solution found by others. As for the Multiple Clutch problem, all algorithms found the

same best solution. Overall, these results show the benefits of using the global best to guide the

neighbourhood shrinking on most of the problems. The design variables value of the best

solutions found by gBA, standard Bees Algorithm and other algorithms are given in Tables

5.9–5.12.

0.3

0.325

0.35

0.375

0.4

0.425

0.45

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

W
ei

gh
t

Run Number

gBA

SBA

114

Table 5.9: Parameter and constraint values of the
best solutions obtained by gBA and others for

Welded Beam

 (µ+λ)ES ABC BA gBA
x1 0.20573 0.20573 0.202064 0.204795
x2 3.470489 3.470489 3.569718 3.499854
x3 9.036624 9.036624 9.0364 9.040141
x4 0.205729 0.20573 0.205836 0.205786
g1 0 0 -55.8952 -32.5063
g2 0.000002 −0.000002 -14.0521 -31.5751
g3 0 0 -0.00377 -0.00099
g4 −3.432984 −3.432984 -3.42349 -3.42936
g5 −0.080730 −0.080730 -0.07706 -0.07979
g6 −0.235540 −0.235540 -0.23555 -0.23556
g7 −0.000001 0 -9.23549 -6.48493

f(x) 1.724852 1.724852 1.733247 1.728407

Table 5.10: Parameter and constraint values of the best solutions
Obtained by gBA and others for Pressure Vessel

 SCA PSO (µ+λ)ES ABC BA gBA
x1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375
x3 41.9768 42.098446 42.098446 42.098446 41.811295 42.095279
x4 182.2845 176.636052 176.636596 176.636596 180.260978 176.677711
g1 −0.0023 0 0 0 -0.005542 -5.44E-05
g2 −0.0370 −0.035881 0.03588 −0.035881 -0.038620 -0.035908
g3 −23420.5966 0 0 −0.000226 -183.1446 -99.92888
g4 −57.7155 −63.363948 −63.363404 −63.363404 -59.73902 -63.31052

f(x) 6171 6059.70161 6059.7143 6059.714339 6103.417489 6068.229994

115

 Table 5.12: Parameter and constraint values of the best solutions
obtained by gBA and others for Speed Reducer

 SCA (µ+λ)ES ABC BA gBA

x1 3.5 3.5 3.5 3.50148 3.502
x2 0.7 0.7 0.7 0.70012 0.70003
x3 17 17 17 17 17
x4 7.327602 7.3 7.3 7.38838 7.540459
x5 7.715321 7.8 7.8 7.84469 7.803575
x6 3.350267 3.35022 3.35022 3.35054 3.353023
x7 5.286655 5.28668 5.2878 5.28702 5.287158
g1 −0.073915 −0.073915 −0.073915 -0.0746 -0.07453
g2 −0.197999 −0.197998 −0.197999 -0.1986 -0.19853
g3 −0.493501 −0.499172 −0.499172 -0.9695 -0.96764
g4 −0.904644 −0.901472 −0.901555 -0.9941 -0.9942
g5 0 0 0 -0.0001 -0.0021
g6 0.000633 0 0 -0.0002 -0.00027
g7 −0.7025 −0.702500 −0.7025 -0.7024 -0.70249
g8 0 0 0 -0.0002 -0.00052
g9 −0.583333 −0.583333 −0.583333 -0.5832 -0.58312
g10 −0.054889 −0.051325 −0.051326 -0.0626 -0.08102
g11 0 −0.010852 −0.010695 -0.0164 -0.01124
f(x) 2994.744241 2996.35 2997.06 2999.55 3000.51

Table 5.11: Parameter and constraint values of the best solutions
obtained by gBA and others for Tension Spring

 SCA PSO (µ+λ)ES ABC BA gBA
x1 0.0521602 0.05169 0.052836 0.051749 0.052312 0.051413
x2 0.368159 0.35675 0.384942 0.358179 0.371889 0.350089
x3 10.648442 11.287126 9.807729 11.203763 10.452475 11.690453
g1 0 0 −0.000001 −0.000000 -1.91E-05 -1.53E-05
g2 0 0 0 −0.000000 -2.44E-05 -5.19E-06
g3 −4.075805 −4.053827 −4.106146 −4.056663 -4.082842 -4.04814
g4 −0.719787 −0.727706 −0.708148 −0.726713 -0.717198 -0.729777

f(x) 0.012669 0.012665 0.012689 0.012665 0.012673 0.012666

116

5.6 Summary

This chapter introduced two new strategies into the standard Bees Algorithm. The first strategy

implements self-adaptive bee recruitment mechanism on selected sites. It is designed to reduce

the number of parameters of existing standard Bees Algorithm, which will result in lesser

efforts in fine tuning of the parameters. The second strategy uses the best solution found so far

to guide the neighbourhood shrinking strategy. This strategy aimed at making the search

strategy bias towards the best solution found so far. Experimental results showed that this new

version of Bees Algorithm excelled the standard Bees Algorithm on various unconstrained

numerical benchmark functions considered particularly, the high dimensional functions.

Furthermore, the gBA is also applied on five constrained mechanical design problems. The

experimental results produced by gBA were significantly better than those of the standard Bees

Algorithm on three of the problems.

117

CHAPTER 6

Conclusion and Future Work

A summary of the main contributions, together with the conclusion of this research is provided

in this chapter. It also provides suggestions for future work.

6.1 Contributions

The main contributions of this research are:

i. Providing guiding direction to the neighbourhood search to improve exploitation

strategies of the algorithm, improving its overall performance.

ii. Employing a new operator between the selected sites and abandoned sites to produce

better solutions closer to the local or global optima.

iii. Reduction in number of parameters to be tuned by introducing new bee recruitment

mechanisms, eliminating two parameters which are number of recruit bees for elite sites

(nep) and number of recruit bees for best sites (nsp).

iv. Development of a new neighbourhood shrinking strategy to deal with slow convergence

search near global optima more efficiently.

v. The improved versions of the Bees Algorithm are developed without addition of any

extra parameters.

vi. The use of a similar set of parameter values for testing on benchmark functions,

showing the robustness of the algorithm.

118

6.2 Conclusions

The objectives mentioned in the first chapter have been achieved.

Three different improved versions of the Bees Algorithm have been presented in this thesis.

All proposed algorithms were tested on unconstrained numerical benchmark functions and

constrained mechanical design problems. Results obtained are provided in the associated

chapters. The conclusions are as follows:

1. A guiding direction was provided for the neighbourhood search, forming a new

improved Bees Algorithm named the Nelder and Mead Bees Algorithm (NMBA). This

algorithm performed better than the standard Bees Algorithm, specifically in terms of

speed on most of the problems tested. The NMBA performed moderately on the

functions with flat surface like landscape and noisy characteristic surface because this

type of surface might have no directions to guide the neighbourhood search. The

algorithm also showed fair performance on applications of constrained mechanical

design problems. This addresses Objective (i).

2. The second improvement was utilising the recombination operator between selected

sites (solutions) and abandoned sites (solutions) to enable sharing of information. The

recombination-based Bees Algorithm (rBA) utilises recombination operator to produce

new good solutions closer to the local or global optima. Thus, this allows the

neighbourhood search to start at a good initial position, which is an advantage for the

algorithm. Similar problems were also tested for this proposed algorithm. The results

obtained on most of the problems showed better performance in terms of solution found

and convergence speed. However, the algorithm gives similar performance on non-

separable type of functions. This result might be due to unsuitability of the

119

recombination operator for this type of function as it could produce solutions away from

the current solution. This addresses Objective (ii).

3. Lastly, a new self-adaptive bee recruitment mechanism was introduced into the Bees

Algorithm, reducing the number of parameters to be tuned. It is also more nature-based

in terms of honey bee foraging behaviour where the priority of selection considers other

criteria instead of fully based on fitness value. Furthermore, a new modified

neighbourhood shrinking strategy was also developed to deal with slow convergence

and stagnation during search near the global optima. The neighbourhood shrinking

based on best solution found so far (gBA) performed at least similar to the standard

Bees Algorithm or better on most of the problems tested with lesser number of

parameters. This addresses Objectives (iii and iv).

6.3 Future Work

Future research might proceed in the following directions:

1. Developing an algorithm that requires fewer parameters or a fully adaptive Bees

Algorithm. This would certainly benefit users of the algorithm in terms of ease of

application

2. Investigating the performance of the proposed algorithms on other real world problems

3. Exploring the performance of the proposed algorithms on higher dimensions and

different classes of numerical functions

120

APPENDICES

Appendix A – List of Benchmark Functions

No. Function Dimension Function Search
range Minimum

f1 Schwefel 2

[− 500, 500]D -837.9658

f2 Easom 2

[− 100,100]D -1

f3
Goldstein &

Price 2

[− 2, 2]D 3

f4
Martin &

Gaddy 2

[− 20, 20]D 0

f5 Schaffer 2

[−100, 100]D 0

f6
Camel six

hump 2

[−5, 5]D -1.0316

f7 Shekel 4

𝑓(𝑥)= - ∑

1

∑ (𝑥𝑗− 𝑎𝑖𝑗)2+ 𝐶𝑖
4
𝑗=1

10
𝑖=1 [0, 10]D -10.5364

f8 Michaelewicz 5

[0, π]D -4.687

f9 Trid 6

[-D2, D2]D -50

f10 Shekel 10

𝑓(𝑥)= - ∑
1

𝐶𝑖 ∑ (𝑥𝑗− 𝑎𝑖𝑗)2𝐷
𝑗=1

30
𝑗=1 [0, 10]D -10.2028

f11 Griewank 10
𝑓(𝑥) =

1

4000
∑ (𝑥𝑖 −𝐷

𝑖=1

100)2 ∏ 𝑐𝑜𝑠(
𝑥𝑖−100

√𝑖+1
)𝐷

𝑖=1 +1 [-600, 600]D 0

f12 Langermann 10
𝑓(𝑥)= 𝑐𝑖 ∑ 𝑒−

1

𝜋
∑ (𝑥𝑗−𝑎𝑖𝑗)2𝐷

𝑗=130
𝑖=1

𝑐𝑜𝑠(𝜋 ∑ (𝑥𝑗 − 𝑎𝑖𝑗)2𝐷
𝑗=1)

[0, 10] -1.4

𝑓(𝑥) = 𝑥1𝑠𝑖𝑛(√│𝑥1│ − 𝑥2𝑠𝑖𝑛(√│𝑥2│

𝑓(𝑥) = − cos 𝑥1 + cos 𝑥2 𝑒[(𝑥1− π) 2− (𝑥2− π) 2]

A(𝑥) =

1+ (𝑥1

+x
2
 +1)

2
(19−14x

1
+3x

1

2
−14 𝑥2

+6x
1
x

2
 +3x

2
)

𝐵(𝑥) =

 30+ (2𝑥1 −3𝑥2)

2
(18−32𝑥1 + 12x

1

2

+48x
2
 −36𝑥1𝑥2 +27𝑥2

2
)

f(𝑥) =

 AB

𝑓(𝑥)= (𝑥1 − 𝑥2)
2

 +
(𝑥1−𝑥2−10)2

3

𝑓(𝑥)= 0.5 +
(𝑠𝑖𝑛√𝑥1

2+𝑥2
2)2 − 0.5

[1+0.001(𝑥1
2+𝑥2

2)]2

𝑓(𝑥)= (4 − 2.1𝑥1
2

+
𝑥1

4

3
)𝑥1

2
+𝑥1𝑥2 +(4𝑥2

2
 −4)𝑥2

2

𝑓(𝑥) = ∑ (sin 𝑥𝑖
𝐷
𝑖=1) (sin(𝑖 𝑥𝑖

2
)

)

2m

𝑓(𝑥)= ∑ (𝑥𝑖 − 1)2𝐷
𝑖=1 − ∑ 𝑥𝑖

𝐷
𝑖=2 𝑥𝑖 − 1

121

f13 Rosenbrock 10

[− 50, 50]D 0

f14 Zakharov 10

[− 5, 5]D 0

f15 Rastrigin 10 𝑓(𝑥) = ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝐷

𝑖=1

 [− 5.12, 5.12]D 0

𝑓(𝑥) = 𝑥1𝑠𝑖𝑛(√│𝑥1│ − 𝑥2𝑠𝑖𝑛(√│𝑥2│

𝑓(𝑥) = − cos 𝑥1 + cos 𝑥2 𝑒[(𝑥1− π) 2− (𝑥2− π) 2]

122

Appendix B – Characteristics of Benchmark Functions

 Unimodal Multimodal
Minima
on origin

Minima
 on grid Separable Non-separable Wavelike Flat Surface Dimensionality

Easom X X X X

Trid X X X X

Rosenbrock X X X X X

Zakharov X X X X

Martin & Gaddy X X X

Schaffer X X X X

Rastrigin X X X X X

Schwefel X X X

Michaelewicz X X X X X

Goldstein & Price X X X

Camel Six Hump X X X

Shekel_4D X X X X

Shekel_10D X X X X

Griewank X X X X X

Langermann X X X X

123

Appendix C – List of Mechanical Design Problems

Problem 1: Welded Beam Design

Welded beam design illustrated in Figure B.1 minimizes the cost of the beam subject to

constraints on shear stress, τ , bending stress in the beam, σ , buckling load on the bar, Pc, end

deflection of the beam, δ, and side constraints. There are four design parameters (x1, x2, x3 and

x4) for this problem as shown in Figure B.1.

Figure B.1: Welded Beam Design (Akay and Karaboga, 2012)

Minimise: f (x) = 1.10471x1
2x2 +0.04811x3x4 (14.0+x2).

Subject to: g1(x) = τ(x)−τmax ≤ 0,

 g2(x) = σ(x)−σmax ≤ 0,

 g3(x) = x1 −x4 ≤ 0,

 g4(x) = 0.10471x1
2 +0.04811x3x4(14.0+x2)−5.0 ≤ 0,

 g5(x) = 0.125−x1≤ 0,

 g6(x) = δ(x)−δmax≤ 0,

124

 g7(x) = P −Pc (x) ≤ 0,

where

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+(𝜏′′)2

𝜏′ =
𝑃

𝑥1𝑥2√2
 , 𝜏′′ =

𝑀𝑅

𝐽
 , 𝑀 = 𝑃(𝐿 +

𝑥2

2
)

𝑅 = √
𝑥2

2

4
+ (

𝑥1+𝑥3

2
)2 , 𝐽 = 2 [√2𝑥1𝑥2 {

𝑥2
2

12
+ (

𝑥1+𝑥3

2
)2}], 𝜎(𝑥) =

6𝑃𝐿

𝑥4𝑥3
2,

𝛿(𝑥) =
4𝑃𝐿3

𝐸𝑥4𝑥3
3, 𝑃𝐶 =

4.013𝐸√𝑥4
6𝑥3

2

36

𝐿2 (1 −
𝑥3

2𝐿
√

𝐸

4𝐺
)’

P = 6000lb, L = 14in., E = 30e6 psi, G = 12e6 psi, τmax= 13 600 psi, σmax = 30 000 psi,

δmax= 0.25 in.

0.1 ≤ x1≤ 2.0, 0.1 ≤ x2≤ 10.0,

0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4≤ 2.0.

Problem 2: Design of Pressure Vessel

Second example is minimization of the total cost comprising of material, forming and welding

costs of a cylindrical vessel as shown in Figure B.2. The four design variables are x1 (thickness

of the shell), x2 (thickness of the head), x3 (inner radius) and x4 (length of the cylindrical section

of the vessel, not including the head). x1 and x2 are to be in integral multiples of 0.0625 inch

which are the available thicknesses of rolled steel plates. The radius x3 and the length x4 are

continuous variables.

125

.

Figure B.2: Design of Pressure Vessel (Akay and Karaboga, 2012)

Minimise: f (x) = 0.6224x1x3x4+1.7781x2x3
2 +3.1661x1

2 x4 +19.84x1
2 x3

Subject to: g1(x) = −x1+0.0193x3≤ 0,

 g2(x) = −x2+0.00954x3≤ 0,

 g3(x) = −πx3
2x4 − 4

3
πx3

3+1296 000 ≤ 0,

 g4(x) = x4−240 ≤ 0,

where

0 ≤ x1≤ 99, 0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

Problem 3: Tension/Compression spring problem

The tension/compression problem deals with the minimisation of the weight of the

tension/compression spring shown in Figure B.3, subject to constraints on the minimum

deflection, shear stress, surge frequency, diameter and design variables. The design variables

are the wire diameter, d, the mean coil diameter, D, and the number of active coils, N. The

problem is formulated as:

126

Figure B.3: Tension/Compression Spring problem (Akay and Karaboga, 2012)

Minimise: f (x) = (N +2)Dd2

Subject to: g1(x) = 1 - 𝐷3𝑁

71785𝑑4 ≤ 0,

 g2(x) = 4𝐷2−𝑑𝐷

12566(𝐷𝑑3−𝑑4)
+

1

5108𝑑2 − 1≤ 0,

 g3(x) = 1- 140.45𝑑

𝐷2𝑁
 ≤ 0,

 g4(x) = 𝐷+𝑑

1.5
 - 1≤ 0.

X = (d, D, N)T, 0.05 ≤ d ≤ 2.0, 0.25 ≤ D ≤ 1.3, 2.0 ≤ N ≤ 15.0

Problem 4: Speed Reducer Design

The aim of the speed reducer design shown in Figure B.4 is to minimise the weights of the

speed reducer subject to constraints on bending stress of the gear teeth, surface stress,

transverse deflections of the shafts and stresses in the shafts. Design parameters of the speed

reducer problem, the face width (x1), module of teeth (x2), number of teeth in the pinion (x3),

length of the first shaft between bearings (x4), length of the second shaft between bearings (x5)

and the diameter of the first shaft (x6) and second shaft (x7). This is an example of a mixed

integer programming problem. The third variable (number of teeth) is of integer value while

all other variables are continuous.

127

Figure B.4: Speed Reducer Design (Akay and Karaboga, 2012)

Minimise: f (x) = 0.7854x1x2
2 (3.3333x3

2 +14.9334x3 −43.0934)−1.508x1(x6
2 + x7

2)

 +7.4777(x6
3 + x7

3)

Subject to: g1(x) = 27

𝑥1 𝑥2
2𝑥3

 -1 ≤ 0,

 g2(x) = 397.5

𝑥1𝑥2
2 𝑥3

2 -1 ≤ 0,

 g3(x) = 1.93𝑥4
3

𝑥2𝑥3 𝑥6
4 -1 ≤ 0,

 g4(x) = 1.93𝑥5
3

𝑥2𝑥3 𝑥7
4 -1 ≤ 0,

 g5(x) =
((

745𝑥4
𝑥2𝑥3

)
2

+16.9 × 106)

1
2⁄

110.0𝑥6
3 -1 ≤ 0,

 g6(x) =
((

745𝑥4
𝑥2𝑥3

)
2

+157.5 × 106)

1
2⁄

85.0𝑥7
3 -1 ≤ 0,

 g7(x) = 𝑥2 𝑥3

40
 -1 ≤ 0,

 g8(x) = 5𝑥2

𝑥1
 -1 ≤ 0,

 g9(x) = 𝑥1

12𝑥2
 -1 ≤ 0,

 g10(x) = 1.5𝑥6+1.9

𝑥4
 -1≤ 0,

 g11(x) = 1.1𝑥7+1.9

𝑥5
 -1≤ 0,

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5.

128

Problem 5: Multiple Disc Clutch Brake

Figure B.5 shows a multiple disc clutch brake. The objective is to minimize the mass of the

multiple disc clutch brake using five discrete variables: inner radius (ri=60, 61, 62, . . . , 80),

outer radius (ro= 90, 91, 92, . . . , 110), thickness of discs (t = 1, 1.5, 2, 2.5, 3), actuating force

(F = 600, 610, 620, . . . , 1000) and number of friction surfaces (Z = 2, 3, 4, 5, 6, 7, 8, 9).

Figure B.5: Multiple disc clutch brake (Akay and Karaboga, 2012)

Minimise: f (x) = π(ro
2 − r i2)t(Z +1)ρ

Subject to: g1(x) = ro −ri − ∆r ≥ 0,

 g2(x) = lmax−(Z +1)(t +δ) ≥ 0,

 g3(x) = pmax −prz ≥ 0,

 g4(x) = pmaxvsrmax−przvsr ≥ 0,

 g5(x) = vsrmax−vsr ≥ 0,

 g6(x) = Tmax −T ≥ 0,

 g7(x) = Mh−sMs ≥ 0,

 g8(x) = T ≥ 0,

 where Mh = 2
3

𝜇𝐹𝑍
𝑟𝑜

3−𝑟𝑖
3

𝑟𝑜
2−𝑟𝑖

2 , prz = 𝐹

𝜋(𝑟𝑜
2−𝑟𝑖

2)
 , vsr = 2𝜋𝑛(𝑟𝑜

3−𝑟𝑖
3)

90(𝑟𝑜
2−𝑟𝑖

2)
 , T = 𝐼𝑧𝜋𝑛

30(𝑀ℎ+𝑀𝑓)
,

129

∆r = 20mm, tmax = 3mm, tmin = 1.5mm, lmax = 30mm, Zmax = 10, vsrmax = 10 m/s, 𝜇= 0.5, s =
1.5, Ms = 40 N m, Mf = 3 N m, n = 250 rpm, pmax =1MPa, Iz = 55 kg mm2, Tmax = 15 s, Fmax =
1000N, rimin = 55mm, romax = 110mm.

130

REFERENCES

Abbass, H. A. 2001. MBO: Marriage in Honey Bees Optimization-A Haplometrosis
Polygynous Swarming Approach. In Proceedings of the 2001 Congress on Evolutionary
Computation (CEC2001). Seoul, May 2001, pp.207-214.

Ahmad Farhan, A., & Bilal, S. 2011. A Novel Fast and Robust Digital Image Watermarking

Using Bee Algorithm. In Multitopic Conference (INMIC), 2011 IEEE 14th International,
Karachi, 2011, pp. 82–86.

Ahmad, S. A. 2012. A study of Search Neighbourhood in The Bees Algorithm. Cardiff

University.

Ahmad, S. A., Pham, D. T., & Faieza, A. A. 2014. Combination of Adaptive Enlargement and
Reduction in the Search Neighbourhood in the Bees Algorithm. Applied Mechanics and
Materials, 564, 614–618.

Ahmad, S. A., Pham, D. T., Ng, K. W., & Ang, M. C. 2012. TRIZ-inspired Asymmetrical

Search Neighborhood in the Bees Algorithm. Sixth Asia Modelling Symposium, May
2012, pp.29-33

Akay, B., & Karaboga, D. 2012. Artificial Bee Colony Algorithm for Large-scale Problems

and Engineering Design Optimization. Journal of Intelligent Manufacturing, 23(4), 1001–
1014.

Akbari, R., Hedayatzadeh, R., Ziarati, K., & Hassanizadeh, B. 2012. A Multi-Objective
Artificial Bee Colony Algorithm. Swarm and Evolutionary Computation, 2, 39–52.

Akpinar, Ş., & Baykasoğlu, A. 2014a. Modeling and Solving Mixed-Model Assembly Line

Balancing Problem with Setups. Part I: A Mixed Integer Linear Programming Model.
Journal of Manufacturing Systems, 33(1), 177–187.

Akpinar, Ş., & Baykasoğlu, A. 2014b. Modeling and Solving Mixed-model Assembly Line

Balancing Problem with Setups. Part II: A Multiple Colony Hybrid Bees Algorithm.
Journal of Manufacturing Systems.

Anantasate, S., & Bhasaputra, P. 2011. A Multi-objective Bees Algorithm for Multi-objective

Optimal Power Flow Problem. In Electrical Engineering/Electronics Computer
Telecommunications and Information Technology (ECTI), Association of Thailand-
Conference 2011, May 2011, pp. 852-856.

Ang, M. C., Pham, D. T., & Ng, K. W. 2009. Minimum-Time Motion Planning for a Robot

Arm Using the Bees Algorithm. In 7th IEEE International Conference on industrial
informatics (INDIN 2009), June 2009, pp. 487-492

Ang, M. C., Pham, D. T., Anthony, J. S., & Ng, K. W. 2010. PCB Assembly Optimisation

Using the Bees Algorithm Enhanced with TRIZ Operators. In IECON 2010-36th Annual
Conference on IEEE industrial Electronics Society, November 2010, pp. 2708-2713.

131

Ang, M. C., Ng, K. W., & Pham, D. T., 2013. Combining the Bees Algorithm and shape
grammar to generate branded product concepts. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(12), 1860–
1873.

Attaran, B., & Ghanbarzadeh, A. 2014. Bearing Fault Detection Based on Maximum
Likelihood Estimation and Optimized ANN Using the Bees Algorithm. Journal of Applied
and Computational Mechanics, 1(1), 35–43.

Attaran, B., Ghanbarzadeh, A., Zaeri, R., & Moradi, S. 2011. Intelligent Fault Diagnosis of

Rolling Bearing Based on Optimized Complementary Capability Features and RBF
Neural Network by Using the Bees Algorithm. The 2nd International Conference on
Control, Instrumentation and Automation, Shiraz, 2011, pp. 764–769.

Aydogdu, I., & Akijn, A. 2011. Bees Algorithm Based Optimun Design of Open Canal

Sections. International Journal of Engineering and Applied Sciences, 3(4), 21–31.

Azzeh, M. 2011. Adjusted Case-Based Software Effort Estimation Using Bees Optimization

Algorithm. In ES’11 Proceedings of the 15th international conference on Knowledge-
based and intelligent information and engineering systems, 2011, pp. 315–324.

Bahamish, H. A. A., Abdullah, R., & Salam, R. A. 2008. Protein Conformational Search Using

Bees Algorithm. In IEEE Second Asia International Conference on Modeling &
Simulation (AICMS 08), May 2008, pp. 911–916.

Bahrainian, S. S., Mehrdoost, Z., & Ghanbarzadeh, A. 2013. The Application of Bees

Agorithm in Finding the Neutral Stability Curve for Plane Poiseuille Flow. Meccanica,
48(9), 2255–2261.

Battiti, R., & Tecchiolli, G. 1994. The Reactive Tabu Search. ORSA Journal of Computing,

6(2), 126–140.

Beasley, D., Bull, D. R., & Martin, R. R. 1993a. An Overview of Genetic Algorithms : Part 1,

Fundamentals. University Computing, 2(15), 58 – 69.

Beasley, D., Bull, D. R., & Martin, R. R. 1993b. An Overview of Genetic Algorithms : Part 2

,Research Topics. University Computing, 15(4), 170 – 181.

Beni, G. 2005. From Swarm Intelligence to Swarm Robotics. Swarm Robotics, pp. 1–9.

Biegler-könig, F. 2013. Artificial Bee Colony Algorithm for Power Plant Optimization. In

Proceedings 27th European Conference on Modelling and Simulation, pp. 778–793.

Blum, C., & Roli, A. (2003). Metaheuristics In Combinatorial Optimization: Overview and

Conceptual Comparison. ACM Computing Surveys, 35(3), 189–213.

Bonab, M. B., Zaiton, S., Hashim, M., Erne, N., Bazin, N., Khalaf, A., & Alsaedi, Z. 2015. An

Effective Hybrid of Bees Algorithm and Differential Evolution Algorithm in Data
Clustering. Mathematical Problems in Engineering, vol. 2015, Article ID 240419, pp. 1-
17.

132

Boumazouza, D., Sefouane, Y., Djeddi, M., Khelouat, B., & Benatchba, K. 2013. Bees for

Block Matching. In IECON 2013-39th Annual Conference of the IEEE Industrial
Electronics Society (pp. 2390–2394).

Boussaïd, I., Lepagnot, J., & Siarry, P. 2013. A Survey on Optimization Metaheuristics.

Information Sciences, 237, 82–117.

Castellani, M., Pham, Q. T., & Pham, D. T. 2012. Dynamic Optimisation by a Modified Bees

Algorithm. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, 226(7), 956–971.

Claus Bendtsen. 2012. PSO: Particle Swarm Optimization. Retrieved from http://cran.r-

project.org/package=pso

Corne, D. W., Reynolds, A. P., & Bonabeau, E. 2012. Swarm Intelligence. In G. Rozenberg,
T. Bäck, & JoostN (Eds.), Handbook of Natural Computing (pp. 1599–1622). Kok, New
York: Springer.

Daoud, S., Yalaoui, F., Amodeo, L., Chehade, H., & Duperray, P. 2012. A Hybrid Bees

Algorithm for Solving a Robotic Assembly Line Balancing Problem. In Uncertainty
Modeling in Knowledge Engineering and Decision Making (pp. 1275–1280).

Das, S., Mullick, S. S., & Suganthan, P. N. 2016. Recent Advances in Differential Evolution-

An Updated Survey. Swarm and Evolutionary Computation, 27, 1–30.

Dereli, T., & Das, G. S. 2011. A Hybrid “Bee(s) Algorithm” for Solving Container Loading

Poblems. Applied Soft Computing, 11(2), 2854–2862.

Diwold, K., Beekman, M., & Middendorf, M. 2010. Bee Nest Site Selection as an Optimization

Process. In Proceedings of the 12th Alife Conference, Odense, 2010, pp.626-633.

Dorigo, M., Maniezzo, V., & Colorni, A. 1996. Ant System: Optimization by a Colony of

Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 26(1), 29 – 41.

Dorigo, M., & Stutzle, T. 2010. Ant Colony Optimization : Overview and Recent Advances.

In Handbook of Metaheuristics (pp. 227–263).

Durongdumrongchai, P., Sangiamvibool, W., Aurasopon, A., & Pothiya, S. 2014. Robust And

Optimal Fuzzy Logic Proportional Integral Derivative Controllers Design By Bee
Algorithm For Hydro-Thermal System. Rev. Roum. Sci. Techn. – Électrotechn. et Énerg,
59(2), 193–203.

Ebrahimzadeh, A., Addeh, J., & Ranaee, V. 2013. Recognition of Control Chart Patterns Using

an Intelligent Technique. Applied Soft Computing, 13(5), 2970–2980.

Eldukhri, E. E., & Kamil, H. G. 2013. Optimisation of Swing-up Control Parameters for A

Robot Gymnast Using The Bees Algorithm. In Proceedings of 8th International
Symposium on Intelligent and Manufacturing Systems (IMS 2012), Turkey, pp. 456–466.

133

Ercin, O., & Coban, R. 2011. Comparison of the Artificial Bee Colony and the Bees Algorithm

for PID Controller Tuning. In International Symposium on Innovations in Intelligent
Systems and Applications (INISTA), pp. 595–598.

Fahmy, A. A., Kalyoncu, M., & Castellani, M. 2011. Automatic Design of Control Systems

for Robot Manipulators Using the Bees Algorithm. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(4), 497–
508.

Fister, I., Yang, X. S., & Brest, J. 2013. A Comprehensive Review of Firefly Algorithms.
Swarm and Evolutionary Computation, 13, 34–46.

Forsati, R., Keikha, A., & Shamsfard, M. 2015. An Improved Bee Colony Optimization

Algorithm With An Application To Document Clustering. Neurocomputing, 159(1), 9–
26.

Gao, W. F., Liu, S. Y., & Huang, L. L. 2013. A Novel Artificial Bee Colony Algorithm with
Powell’s Method. Applied Soft Computing Journal, 13(9), 3763–3775.

Gholipour, R., Khosravi, A., & Mojallali, H. 2015. Multi-objective Optimal Backstepping

Controller Design for Chaos Control in a Rod-type Plasma Torch System Using Bees
algorithm. Applied Mathematical Modelling, 39, 4432–4444.

Glover, F. 1986. Future Paths for Integer Programming and Links to Artificial Intelligence.

Computers and Operations Research, 13(5), 533–549.

Guney, K., & Onay, M. 2007. Amplitude-only Pattern Nulling of Linear Antenna Arrays With

the Use of Bees Algorithm. Progress in Electromagnetic Research, 70, 21–36.

Guney, K., & Onay, M. 2008. Bees Algorithm for Design of Dual-Beam Linear Antenna

Arrays with Digital Attenuators and Digital Phase Shifters. International Journal of RF
and Microwave Computer Aided Engineering, 18(4), 337–347.

Guney, K., & Onay, M. 2010. Bees Algorithm for Interference Suppression of Linear Antenna

Arrays by Controlling the Phase-only and Both the Amplitude and Ahase. Journal of
Communications Technology and Electronics, 58(12), 1147–1156.

Guney, K., & Onay, M. 2011. Synthesis of Thinned Linear Antenna Arrays Using Bees
Algorithm. Microwave and Optical Technology Letters, 53(4), 795–799.

Haddad, O. B., Afshar, A., & Mariño, M. A. 2006. Honey-Bees Mating Optimization (HBMO)

Algorithm: A New Heuristic Approach for Water Resources Optimization. Water
Resources Management, 20(5), 661–680.

Hazli, M., Zabil, M., & Zamli, K. Z. 2013. Implementing a T -Way Test Generation Strategy

Using Bees Algorithm. International Journal Advance Soft Compu. Appl, 5(3), 116–126.

134

Hedayatzadeh, R., Hasanizadeh, B., Akbari, R., & Ziarati, K. 2010. A Multi-Objective

Artificial Bee Colony for Optimizing Multi-Objective Problems. 2010 3rd International
Conference on Advanced Computer Theory and Engineering(ICACTE), Chengdu, 2010,
pp. 277-281.

Hooke, R., & Jeeves, T. A. 1961. "Direct Search’' Solution of Numerical and Statistical

Problems. Journal of the ACM, 8(2), 212–229.

Idris, R. M., Khairuddin, A., & Mustafa, M. W. 2009. A Multi-objective Bees Algorithm for

Optimum Allocation of FACTS Devices for Restructured Power System. In TENCON
2009 - 2009 IEEE Region 10 Conference, Singapore, 2009, pp. 1–6.

Idris, R. M., Kharuddin, A., & Mustafa, M. W. 2010. Available Transfer Capability

Determination Using Bees Algorithm. In Universities Power Engineering Conference
(AUPEC), 2010 20th Australasian, pp. 1–6.

Ilka, R., Gholamian, S. A., & Addeh, J. 2013. Optimun Design of A Five-Phase Surface-

Mounted Permanent Magnet Syncronous Motor Using Bees Algorithm. Journal of
Electrical Engineering, 13(1), 146–153.

Jamil, M., & Yang, X. S. 2013. A Literature Survey of Benchmark Functions for Global

Optimisation Problems. International Journal of Mathematical Modelling and Numerical
Optimisation, 4, 150–194.

Jamil, M., Yang, X. S., & Zepernick, H. J. D. 2013. Test Functions for Global Optimization:

A Comprehensive Survey. In Swarm Intelligence and Bio-Inspired Computation (pp.
193–222).

Jones, K. O., & Bouffet, A. 2008. Comparison of Bees Algorithm, Ant Colony Optimisation
and Particle Swarm Optimisation for PID Controller Tuning. In Proceedings of the 9th
International Conference on Computer Systems and Technologies and Workshop for PhD
Students in Computing-CompSysTech ’08 (p. IIIA.9). New York, New York, USA: ACM
Press.

Kang, F., Li, J., & Ma, Z. 2011. Rosenbrock Artificial Bee Colony Algorithm for Accurate

Global Optimization of Numerical Functions. Information Sciences, 181(16), 3508–3531.

Karaboga, D. 2005. An Idea Based On Honey Bee Swarm For Numerical Optimization:
Technical Note TR06, Erciyes Univ Press, Erciyes.

Karaboga, D., & Akay, B. 2009. A Comparative Study of Artificial Bee Colony algorithm.

Applied Mathematics and Computation, 214(1), 108–132.

Karaboga, D., & Basturk, B. 2007. A Powerful and Efficient Algorithm for Numerical Function

Optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization,
39, 459–471.

Karaboga, D., & Gorkemli, B. 2012. A Quick Artificial Bee Colony-qABC-Algorithm for

Optimization Problems. In Innovations in Intelligent Systems and Applications (INISTA),

135

2012 International Symposium (pp. 1–5).
Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. 2012. A Comprehensive Survey:

Artificial Bee Colony (ABC) Algorithm and Applications. Artificial Intelligence Review,
42(1), 21–57.

Kennedy, J., & Eberhart, R. 1995. Particle Swarm Optimization. In Neural Networks, 1995.

Proceedings., IEEE International Conference on, Perth, WA (Vol. 4, pp. 1942–1948).

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. 1983. Optimization by Simulated Annealing.
Science, 220(4598), 671–680.

Kolda, T., Lewis, R., & Torczon, V. 2003. Optimization by Direct Search: New Perspectives

on Some Classical and Modern Methods. SIAM Review, 45(3), 385–482.

Koza, P. J. 1994. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press (Vol. 33).

Leeprechanon, N., & Polratanasak, P. 2010. Multiobjective Bees Algorithm with Clustering

Technique for Environmental/Economic Dispatch. In Electrical Engineering/Electronics
Computer Telecommunications and Information Technology (ECTI-CON), 2010
International Conference, pp. 621–625.

Lewis, R. M., Torczon, V., & Trosset, M. W. 2000. Direct search methods: Then and now.

Journal of Computational and Applied Mathematics, 124(1-2), 191–207.

Lien, L. C., & Cheng, M. Y. 2014. Particle Bee Algorithm for Tower Crane Layout with

Material Quantity Supply and Demand Optimization. Automation in Construction, 45,
25–32.

Long, V. T., & Nhan, N. V. 2012. Bees Algorithm-based Optimization of Component Size and
Control Strategy Parameters for Parallel Hybrid Electric Vehicles. International Journal
of Automotive Technology, 13(7), 1177–1183.

Lucic, P., & Teodorović, D. 2002. Transportation Modeling: An Artificial Life Approach. In

14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI
2002). Proceedings. (pp. 216 – 223).

Maneechote, T., & Luangpaiboon, P. 2010. An Exploration of Bees Parameter Settings via

Modified Simplex and Conventional Design of Experiments. In Proceedings of National
Operations Research Co-operative Research Network Conference, Bangkok, Thailand,
pp. 11–16.

Marini, F., & Walczak, B. 2015. Particle Swarm Optimization (PSO). A Tutorial.

Chemometrics and Intelligent Laboratory Systems, 149, 153–165.

Mastrocinque, E., Yuce, B., Lambiase, A., & Packianather, M. S. 2013. A Multi-objective

Optimization for Supply Chain Network Using the Bees Algorithm. International Journal
of Engineering Business Management, 5, 1–11.

136

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953.

Equation of State Calculations by Fast Computing Machines. Journal Chemical Physics,
21(6), 1087–1092.

Ming, H., Baohui, J., & Xu, L. 2010. An Improved Bee Evolutionary Genetic Algorithm. In

2010 IEEE International Conference on Intelligent Computing and Intelligent Systems,
Xiamen, 2010, pp. 372-374.

Mirsadeghi, E., & Shariat Panahi, M. 2012. Hybridizing Artificial Bee Colony with Simulated

Annealing. International Journal of Hybrid Information Technology, 5(4), 11–18.

Mirzakhani Nafchi, A., Moradi, A., Ghanbarzadeh, A., Rezazadeh, A., & Soodmand, E. 2011.
Solving Engineering Optimization Problems Using the Bees Algorithm. In 2011 IEEE
Colloquium on Humanities, Science and Engineering, Penang, 2011, pp. 162-166.

Moayedikia, A., Jensen, R., Wiil, U. K., & Forsati, R. 2015. Weighted Bee Colony Algorithm

For Discrete Optimization Problems With Application To Feature Selection. Engineering
Applications of Artificial Intelligence, 44, 153–167.

Mollabakhshi, N., & Eshghi, M. 2013. Combinational Circuit Design Using Bees Algorithm.

In IEEE Conference Anthology, China, 2013, pp. 1-4.

Moradi, A., Nafchi, A. M., Ghanbarzadeh, A., & Soodmand, E. 2011. Optimization of Linear

and Nonlinear Full Vehicle Model for Mmproving Ride Comfort vs. Road Holding With
the Bees Algorithm. In 2011 IEEE Colloquium on Humanities, Science and Engineering,
Penang, 2011, pp. 17-22.

Moradi, S., Fatahi, L., & Razi, P. 2010. Finite element model updating using bees algorithm.

Structural and Multidisciplinary Optimization, 42(2), 283–291.

Moradi, S., & Kargozarfard, M. H. 2013. On multiple crack detection in beam structures.

Journal of Mechanical Science and Technology, 27(1), 47–55.

Moradi, S., Razi, P., & Fatahi, L. 2011. On The Application of Bees Algorithm to The Problem

of Crack Detection of Beam-Type Structures. Computers & Structures, 89(23-24), 2169–
2175.

Muhamad, Z., Mahmuddin, M., Nasrudin, M. F., & Sahran, S. 2011. Local Search Manoeuvres

Recruitment in The Bees Algorithm. In Proceedings of The 3rd International Conference
on Computing and informatics, ICOCI 2011, 8-9 June, 2011 Bandung, Indonesia, pp.43-
48

Nelder, J. A., & Mead, R. 1964. A Simplex Method for Function Minimization. Computer

Journal, 7, 308–313.

Özbakir, L., Baykasoğlu, A., & Tapkan, P. 2010. Bees Algorithm for Generalized Assignment

Problem. Applied Mathematics and Computation, 215(11), 3782–3795.

137

Packianather, M. S., Fruggiero, F., Mastrocinque, E., Holloway, R., & Lambiase, A. 2014.

Novel Genetic Bees Algorithm Applied to Single Machine Scheduling Problem. In 2014
World Automation Congress (WAC), Waikoloa, HI, 2014, pp. 906-911.

Packianather, M. S., & Kapoor, B. 2015. A Wrapper-based Feature Selection Approach Using

Bees Algorithm for a Wood Defect Classification System. In 2015 10th System of Systems
Engineering Conference (SoSE), San Antonio, TX, 2015, pp. 498-503.

Parsa, H. R., AsgharGholamian, S., & Abbasi, M. 2013. Design and Optimization of Eddy

Current Testing Probe Using Bees Algorithm and Finite Element Analysis. International
Journal of Modern Education and Computer Science, 5(12), 40–46.

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. 2006a. The Bees

Algorithm–A Novel Tool for Complex Optimisation Problems. In Intelligent Production
Machines and Systems - 2nd I*PROMS Virtual International Conference,pp. 454–459.

Pham, D. T., Soroka, A. J., Ghanbarzadeh, A., Koç, E., Otri, S., & Packianather, M. 2006b.
Optimising Neural Networks for Identification of Wood Defects Using the Bees
Algorithm. In 006 4th IEEE International Conference on Industrial Informatics,
Singapore, 2006, pp. 1346-1351.

Pham, D. T., Afify, A. A., & Koç, E. 2007a. Manufacturing Cell Formation Using the Bees

Algorithm. In 3rd International Virtual Conference on Intelligent Production Machines
and Systems (IPROMS 2007),pp. 523–528.

Pham, D. T., & Castellani, M. 2009. The Bees Algorithm: Modelling Foraging Behaviour to

Solve Continuous Optimization Problems. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 223(12), 2919–2938.

Pham, D. T., & Castellani, M. 2013. Benchmarking and Comparison of Nature-inspired
Population-based Continuous Optimisation Algorithms. Soft Computing, 18(5), 871–903.

Pham, D. T., & Castellani, M. 2015. A Comparative Study of the Bees Algorithm as a Tool for
Function Optimisation. Cogent Engineering, 2(1), 1091540.

Pham, D. T., Darwish, A. H., & Eldukhri, E. E. 2009a. Optimisation of a Fuzzy Logic

Controller Using the Bees Algorithm. International Journal of Computer Aided
Engineering and Technology, 1(2), 250.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Muhamad, Z. 2005. Bee

Algorithm - A Novel Approach to Function Optimisation, Technical Report, MEC 0501.
Manufacturing Engineering Centre, Cardiff University, Cardiff, UK.

Pham, D. T., Ghanbarzadeh, A., Otri, S., & Koç, E. 2009b. Optimal Design of Mechanical

Components Using the Bees Algorithm. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 223(5), 1051–1056.

138

Pham, D. T., & Haj Darwish, A. 2010. Using the Bees Algorithm with Kalman Filtering to

Train an Artificial Neural Network for Pattern Classification. Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
224(7), 885–892.

Pham, D. T., & Kalyoncu, M. 2009. Optimisation of A Fuzzy Logic Controller for A Flexible

Single-Link Robot Arm Using the Bees Algorithm. In 2009 7th IEEE International
Conference on Industrial Informatics, Cardiff, Wales, 2009, pp. 475-480.

Pham, D. T., & Koç, E. 2010. Design of a Two-dimensional Recursive Filter Using the Bees

Algorithm. International Journal of Automation and Computing, 7(3), 399–402.

Pham, D. T., Koç, E., Lee, J. Y., & Phrueksanant, J. 2007b. Using the Bees Algorithm to

Schedule Jobs for a Machine. In Proceedings of Eighth International Conference on Laser
Metrology, CMM and Machine Tool Performance, June 2007, pp.430-439.

Pham, D. T., Suarez-Alvarez, M. M., & Prostov, Y. I. 2011. Random Search with k-prototypes

Algorithm for Clustering Mixed Datasets. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 467(2132), 2387–2403.

Pham, Q. T., Pham, D. T., & Castellani, M. 2012. A Modified Bees Algorithm and a Statistics-

based Method for Tuning its Parameters. Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering, 226(3), 287–301.

Phonrattanasak, P. 2011. Optimal Placement of Wind Farm on the Power System Using
Multiobjective Bees Algorithm. In Proceedings of the World Congress on Engineering
2011, Vol. II, pp. 4–8.

Phonrattanasak, P., Miyatake, M., & Sakamoto, O. 2013. Optimal Location and Sizing of Solar

Farm on Japan East Power System Using Multiobjective Bees Algorithm. In 2013 IEEE
Energytech, Cleveland, OH, 2013, pp. 1-6.

Poli, R., Langdon, W. B., & McPhee, N. F. 2008. A Field Guide to Genetic Programing.

Wyvern. Retrieved from http://www.essex.ac.uk/wyvern/2008-04/Wyvern April 08
7126.pdf

Polratanasuk, P., Mesacharoenwong, P., Anantasate, S., & Leeprechanon, N. 2010. Solving
Optimal Power Flow Problem Using Parallel Bee Algorithm. In 6th WSEAS International
Conference on Remote Sensing (Remote’10), pp. 60–64.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. 2011. Teaching–learning-based Optimization: A

Novel Method for Constrained Mechanical Design Optimization Problems. Computer-
Aided Design, 43(3), 303–315.

Sato, T., & Hagiwara, M. 1997. Bee System: Finding Solution by a Concentrated Search. In

1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational
Cybernetics and Simulation, Orlando, FL, 1997, pp. 3954-3959.

139

Sayadi, F., Ismail, M., Misran, N., & Jumari, K. 2009. Multi-Objective Optimization Using the

Bees Algorithm in Time-Varying Channel for MIMO MC-CDMA Systems. European
Journal of Scientific Research, 33(3), 411–428.

Sayarshad, H. R. 2009. Using Bees Algorithm for Material Handling Equipment Planning in

Manufacturing Systems. The International Journal of Advanced Manufacturing
Technology, 48(9-12), 1009–1018.

Seeley, T. D. 1995. The Wisdom of The Hive: The Social Physiology of The Honey Bee

Colonies. Harvard University Press.

Seeley, T. D., & Visscher, P. K. 2004. Group Decision Making in Nest-Site Selection by Honey

Bees. Apidologie, 35(2), 101–116.

Shafia, M. A., Rahimi, M. R., & Tavakolian, R. 2011. A Hybrid Algorithm for Data Clustering

Using Honey Bee Algorithm , Genetic Algorithm and K-Means Method. Journal of
Advanced Computer Science and Technology Research, 1, 110–125.

Shatnawi, N., Faidzul, M., & Sahran, S. 2013b. Optimization of Multilevel Image Thresholding

Using the Bees Algorithm. Journal of Applied Sciences, 13(3), 458–464.

Shatnawi, N., Sahran, S., & Mohammad Faidzul. 2013a. A Memory Based Bees Algorithm:
An Enhancement. Journal of Applied Sciences, 13(3), 497–502.

Shi, Y., & Eberhart, C. R. 1998. A Modified Particle Swarm Optimizer. In 1998 IEEE

International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No.98TH8360), pp. 69–73.

Socha, K., & Dorigo, M. 2008. Ant Colony Optimization for Continuous Domains. European

Journal of Operational Research, 185(3), 1155–1173.

Spendley, W., Hext, G. R., & Himsworth, F. R. 1962. Sequential Application of Simplex

Designs in Optimisation and Evolutionary Operation. Technometrics, 4(4), 441–461.

Storn, R., & Price, K. 1997. Differential Evolution–A Simple and Efficient Heuristic for global

Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359.

Stutzle, T. G. 1998. Local Search Algorithms for Combinatorial Problem: Analysis,
Improvements, and New Applications. Darmstadt University of Technology.

Sumpavakup, C., Srikun, I., & Chusanapiputt, S. 2012. A Solution to Multi-Objective Optimal

Power Flow Using Hybrid Cultural-Based Bees Algorithm. In 2012 Asia-Pacific Power
and Energy Engineering Conference, Shanghai, 2012, pp. 1-4.

Sung, H. J. 2003. Queen-Bee Evolution for Genetic Algorithms. Electronics Letters, 39(6),

575.

Tapkan, P., Özbakır, L., & Baykasoğlu, A. 2011. Bees Algorithm for Constrained Fuzzy Multi-

objective Two-sided Assembly Line Balancing Problem. Optimization Letters, 6(6),

140

1039–1049.
Teodorovic, D., & Dell’Orco, M. 2005. Bee Colony Optimization - A Cooperative Learning

Approach To Complex Transportation Problems. In Proceedings of 16th Mini–EURO
Conference and 10th Meeting of EWGT Advanced OR and AI Methods in Transportation,
pp. 51–60.

Teodorović, D., Lucic, P., Markovic, G., & Dell’Orco, M. 2006. Bee Colony Optimization:

Principles and Applications. In 8th Seminar on Neural Network Applications in Electrical
Engineering, pp. 151–156.

Tsai, H-C. 2013. Integrating Artificial Bee Colony and Bees Algorithm for Solving Numerical

Function Optimization. Neural Computing and Applications, 25(3-4), 635–651.

Tsai, H-C. 2014a. Integrating the Artificial Bee Colony and Bees Algorithm to Face
Constrained Optimization Problems. Information Sciences, 258, 80–93.

Tsai, H-C. 2014b. Novel Bees Algorithm: Stochastic Self-Adaptive Neighborhood. Applied

Mathematics and Computation, 247, 1161–1172.

Vejdannik, M., & Sadr, A. 2016. Automatic Microstructural Characterization and

Classification Using Dual Tree Complex Wavelet-based Features and Bees Algorithm.
Neural Computing and Applications.

Wang, S. 2009. Solving Aircraft-Sequencing Problem Based on Bee Evolutionary Genetic

Algorithm and Clustering Method. In 2009 Eighth IEEE International Conference on
Dependable, Autonomic and Secure Computing, Chengdu, 2009, pp. 157-161.

Wang, X., Contreras, A. F. G., Ceberio, M., Hoyo, C. Del, Gutierrez, L. C., & Virani, S. 2012.
Interval-based Algorithms to Extract Fuzzy Measures for Software Quality Assessment.
In 2012 Annual Meeting of the North American Fuzzy Information Processing Society
(NAFIPS), Berkeley, CA, 2012, pp. 1-6.

Wang, X., Cummins, J., & Ceberio, M. 2011. The Bees Algorithm to Extract Fuzzy Measures

For Sample Data. In 2011 Annual Meeting of the North American Fuzzy Information
Processing Society, El Paso, TX, 2011, pp. 1-6.

Wolpert, D. H., & Macready, W. G. 1997. No Free Lunch Theorems For Optimization. IEEE

Transactions on Evolutionary Computation, 1(1), 67–82.

Xu, S., Yu, F., Luo, Z., Ji, Z., Pham, D. T., & Qiu, R. 2011. Adaptive Bees Algorithm-

Bioinspiration from Honeybee Foraging to Optimize Fuel Economy of a Semi-Track Air-
Cushion Vehicle. The Computer Journal, 54(9), 1416–1426.

Xu, W., Tian, S., Liu, Q., Xie, Y., Zhou, Z., & Pham, D. T. 2015. An Improved Discrete Bees

Algorithm for Correlation-Aware Service Aggregation Optimization in Cloud
Manufacturing. International Journal Advance Manufacturing Technology, 82(422), 1–
12.

Xu, W., Zhou, Z., Pham, D. T., Liu, Q., Ji, C., & Meng, W. 2012. Quality of Service in
Manufacturing Networks: A Service Framework and Its Implementation. The

141

International Journal of Advanced Manufacturing Technology, 63(9-12), 1227–1237.
Yang, C., Chen, J., & Tu, X. 2007. Algorithm of Fast Marriage in Honey Bees Optimization

and Convergence Analysis. In 2007 IEEE International Conference on Automation and
Logistics, Jinan, 2007, pp. 1794-1799.

Yang, X. S. 2010. Firefly Algorithm. In Engineering Optimization: An Introduction with

Metaheuristic Applications (pp. 221–230). John Wiley & Sons, Inc.

Yang, X. S. 2005. Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In

In Artificial intelligence and Knowledge Engineering Applications: A Bioinspired
Approach, Lecture Notes in Computer Science, Vol.3562. Berlin Heidelberg: Springer-
Verlag, pp.317-323

Yuce, B., Mastrocinque, E., Lambiase, A., Packianather, M. S., & Pham, D. T. 2014. A Multi-

Objective Supply Chain Optimisation Using Enhanced Bees Algorithm With Adaptive
Neighbourhood Search and Site Abandonment Strategy. Swarm and Evolutionary
Computation, 18, 71–82.

Yuce, B., Packianather, M., Mastrocinque, E., Pham, D. T., & Lambiase, A. 2013. Honey Bees

Inspired Optimization Method: The Bees Algorithm. Insects, 4(4), 646–662.

Yuce, B., Pham, D. T., Packianather, M. S., & Mastrocinque, E. 2015. An Enhancement to the

Bees Algorithm with Slope Angle Computation and Hill Climbing Algorithm and its
Applications on Scheduling and Continuous-type Optimisation Problem. Production &
Manufacturing Research, 3(1), 3–19.

Zaeri, R., Ghanbarzadeh, A., Attaran, B., & Zaeri, Z. 2011. Fuzzy Logic Controller Based Pitch

Control of Aircraft Tuned With Bees Algorithm. In The 2nd International Conference on
Control, Instrumentation and Automation, Shiraz, 2011, pp. 705-710.

 Zambrano-Bigiarini, M., Clerc, M., & Rojas, R. 2013. Standard Particle Swarm Optimisation
2011 at CEC-2013: A Baseline for Future PSO Improvements. 2013 IEEE Congress on
Evolutionary Computation, CEC 2013, pp. 2337–2344.

Zarea, H., Moradi Kashkooli, F., Mansuri Mehryan, A., Saffarian, M. R., & Namvar

Beherghani, E. 2013. Optimal Design of Plate-Fin Heat Exchangers By a Bees Algorithm.
Applied Thermal Engineering, 69(1-2), 267–277.

Zhang, J., Zhang, Z. H., Lin, Y., Chen, N., Gong, Y. J., Zhong, J. H., & Shi, Y. H. 2011.

Evolutionary Computation Meets Machine Learning: A Survey. IEEE Computational
Intelligence Magazine, 6(4), 68–75.

Zhou, Z., Xie, Y., Pham, D. T., Kamsani, S., & Castellani, M. 2015. Bees Algorithm for

Multimodal Function Optimisation. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 0(0), 1–18.

