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ABSTRACT 

 

This research focuses on swarm-based optimisation algorithms, specifically the Bees 

Algorithm. The basic version of the algorithm was introduced in 2005 and was inspired by the 

foraging behaviour of honey bees in nature. The Bees Algorithm employs a combination of 

exploration and exploitation to find the solutions of optimisation problems.  

This thesis presents three improved versions of the Bees Algorithm aimed at speeding up its 

operation and facilitating the location of the global optimum. For the first improvement, an 

algorithm referred to as the Nelder and Mead Bees Algorithm (NMBA) was developed to 

provide a guiding direction during the neighbourhood search stage. The second improved 

algorithm, named the recombination-based Bees Algorithm (rBA), is a variant of the Bees 

Algorithm that utilises a recombination operator between the exploited and abandoned sites to 

produce new candidates closer to optimal solutions. The third improved Bees Algorithm, called 

the guided global best Bees Algorithm (gBA), introduces a new neighbourhood shrinking 

strategy based on the best solution so far for a more effective exploitation search and develops 

a new bee recruitment mechanism to reduce the number of parameters. 

The proposed algorithms were tested on a set of unconstrained numerical functions and 

constrained mechanical engineering design problems. The performance of the algorithms on 

numerical functions was compared with the standard Bees Algorithm and other swarm based 

algorithms in terms of the solutions found and the convergence speed. In terms of the 

application on constraint mechanical engineering design problems, the performance was 

compared with the results of the standard Bees Algorithm and the results of other algorithms 

in the literature. In addition, a paired test statistical analysis was also carried out on those 

results. 
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The results showed that the improved Bees Algorithms performed better than the standard Bees 

Algorithm and other algorithms on most of the problems tested. Furthermore, the algorithms 

also involve no additional parameters and a reduction on the number of parameters as well. 
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CHAPTER 1 

Introduction 

 

1.1 Background  

Nowadays, many real-world engineering problems involve optimisation, which is the act of 

attaining the best possible results under given constraints. The most common goal of this 

optimisation problem is either to maximise (profit, output, efficiency, etc.), or minimise (time, 

cost, effort, etc.). In order to achieve this goal, various types of optimisation approaches have 

been developed to deal with optimisation problems. Recently, population- based metaheuristic 

inspired by natures types of algorithms have attracted a huge attention as the traditional 

optimisation methods (linear or integer programming) are not adequate to provide best results, 

due to the complexity of the problems. Among the most common algorithms of this type are 

Evolutionary Algorithm (EA), Particle Swarm Optimisation (PSO) algorithm, Artificial Bee 

Colony (ABC) algorithm and the Bees Algorithm. 

This research focuses on one of the algorithms mentioned above, which is the Bees Algorithm; 

an algorithm inspired by the foraging behaviour of honey bee swarms in nature. 

1.2 Motivation 

The Bees Algorithm is one of the nature-inspired swarm-based optimisation methods inspired 

by the foraging behaviour of honey bees. It was introduced by a group of researchers at Cardiff 

University in 2005 (Pham et al., 2005). The algorithm consists of combinations between 

exploration strategy and exploitation strategy representing the activities of scout bees and 

recruit bees in a bee colony respectively. Since its establishment in optimisation, numerous 

improved versions have been proposed to deal with different types of optimisation problems. 
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The performance of the Bees Algorithm on those problems is superior compared to other state-

of-the-art algorithms.  However, the “No Free Lunch Theorem” showed that the performances 

of all algorithms are generally similar when their performance is averaged uniformly over all 

possible problems. This is because an algorithm that performs better on a class of problem will 

not perform better on other class of problems (Wolpert and Macready, 1997). Thus, further 

enhancements to the Bees Algorithm are required to provide alternatives variants of the Bees 

Algorithm for a wider range of problems. 

Previous studies on improving the Bees Algorithm mainly focus on modification of the 

neighbourhood search but usually those improvements add more parameters to the algorithm. 

Hence, developing an improved Bees Algorithm without adding more parameters is one of the 

challenges faced by researchers as the Bees Algorithm has large number of parameters to be 

tuned.  Besides, there is also a need to address the issue of improving the convergence speed 

of the Bees Algorithm caused by random search directions near the global optima. 

In the current operation of the Bees Algorithm, the recruit bees are placed randomly nearby the 

exploited sites. This random search of recruit bees causes slow convergence speed on the Bees 

Algorithm or any other random-based algorithm as well. Thus, adding direction information to 

the recruit bees would help the neighbourhood search in discovering solutions faster than the 

current approach.  

Another issue is lack of information sharing among exploited sites. The best solutions found 

by the neighbourhood search and the abandoned sites consist of highly good solutions. 

Exchanging information between these solutions via combination of partial solutions can 

produce better solutions.  
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Furthermore, reducing the number of parameters of the Bees Algorithm is one of the main 

motivations of this research. A small number of parameters would be more beneficial because 

it will require less tuning for the users. In addition, there is also a lack of study done on 

neighbourhood shrinking strategy for the unimproved sites. The existing approaches of dealing 

with unimproved sites are reducing the neighbourhood size in all dimensions, followed by sites 

abandonment after a predefined consecutive failure to find a better solution. Therefore, it would 

be beneficial to explore better approaches of neighbourhood shrinking strategy especially for 

sites being searched near the global optimum. The neighbourhood search nearby the global 

optimum could cause slow convergence for some types of landscape problems. In order to 

overcome this problem, the algorithm could rely on the information from the best solution so 

far to guide the neighbourhood shrinking strategy for better exploitation.  

1.3 Aim and Objectives 

The overall aim of this study is to further enhance the capability of the Bees Algorithm in 

dealing with single objective optimisation problems without adding more parameters.  

The following objectives were set to accomplish this aim: 

i. Provide a direction during the neighbourhood search by using the Nelder and Mead 

(NM) method to guide the search toward better solution with faster convergence speed. 

ii. Implement recombination operator between exploited and abandoned sites to move the 

solutions found closer to the local or global optima. 

iii. Develop a new self-adaptive bee recruitment mechanism to reduce the number of 

parameters. 

iv. Develop a guided neighbourhood shrinking strategy based on best solution found so 

far. 
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1.4 Research Methodology 

The methodology adopted in this research is as follows: 

i. Reviewing previous works on optimisation techniques, focusing on nature-inspired 

swarm intelligence and more on algorithms based on behaviour of honey bees in nature 

to know research trends and discover potential solutions. 

ii. Developing the proposed Bees Algorithms in R software. 

iii. Evaluating the performance of improved version of the Bees Algorithms on a set of 

unconstrained continuous numerical function. The results were compared with the 

standard Bees Algorithm and other swarm-based algorithms in terms of solution found 

and convergence speed. 

iv. Applying the proposed algorithms to constrained mechanical design problems. The 

results were compared with results of other algorithms obtained in literature. 

1.5 Outline of the Thesis 

The remainder of this thesis is organised as follows: 

Chapter 2 reviews the definition of optimisation, followed by a few conventional approaches 

for solving optimisation problems. This chapter also reviews two types of metaheuristic; single 

solution-based metaheuristic and population-based metaheuristic. The review on metaheuristic 

focuses on nature inspired Swarm Intelligence (SI), specifically more on algorithms based on 

the foraging behaviour of honey bees. The studies related to the Bees Algorithm are also 

discussed in detail.  

Chapter 3 introduces the Bees Algorithm with the Nelder and Mead (NM) method. The 

proposed algorithm is tested on a set of numerical benchmark functions. The results are 

compared with the standard Bees Algorithm and other well-known algorithms in terms of 
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solutions found and convergence speed. In addition, the improved Bees Algorithm is also 

applied on several constraint benchmark mechanical design problems. 

Chapter 4 presents an improved Bees Algorithm that utilises recombination operator during 

local search and on best abandoned sites. The performance of the proposed algorithm is tested 

on similar benchmark function and mechanical design problems as in the earlier chapter. 

Similar methods of comparison as in the previous chapter are also used in this chapter. 

Chapter 5 introduces an adaptive recruitment bee mechanism into the standard Bees Algorithm. 

This version of Bees Algorithm also added a new neighbourhood shrinking strategy that utilises 

the information from the best solution found so far. Similarly, like previous chapters, this 

variant of Bees Algorithm is also tested on a similar set of numerical functions. In addition to 

the mechanical design problems in the previous chapters, this chapter also includes another 

application on a mechanical design problem. 

Chapter 6 summarises the contributions and conclusions of this research. It also provides 

suggestions for future work  
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CHAPTER 2 

Literature Review 

2.1 Preliminaries 

This chapter introduces optimisation and presents some free derivative direct search methods. 

Then, main metaheuristic techniques which are commonly used to solve optimisation problems 

are reviewed. The chapter further reviews on the mechanism of the Bees Algorithm, 

improvements done on the Bees Algorithm and applications of the Bees Algorithm. 

2.2 Optimisation 

In general, optimisation is to find the best combination of variables for a given problem. Most 

of these optimisation problems involve a wide range of domains and are common in real 

engineering problems, which required searching of the optimal solution or near optimal 

solution. The task of optimisation becomes more difficult due to limitation of finance, time and 

resources. Generally, optimisation problems can be expressed in mathematical form subject to 

some constraints and a range of variables as follows: 

Minimise (or maximise) f(x), x = (x1, x1,….., xN), 

 x  ∈  𝕽N 

                 subject to  h1(x) = 0, x = (x1, x1,….., xN), 

                   h2(x) ≤ 0, x = (x1, x1,….., xN), 

where 

f(x) = called objective function or cost function(s), 

x = called design or decision variables, can be real continuous, discrete or a combination of  

      both,  

𝕽N = search space of the design/decision variables, 
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N = number of variables to be optimised 

The equalities for h1 and inequalities for h2 are called constraints. 

 
The main objective of optimisation is to search for optimal solution or satisfactory solution 

once the problem has been expressed correctly. The conventional approach of solving these 

optimisation problems is using gradient-based or derivative-based algorithms. However, these 

methods require knowledge of gradient value of the objective function or constraint function. 

The information on derivative value or gradient value may not be available or difficult to be 

computed for some problems. For this reason, the performance of these types of algorithm has 

limited capability on certain types of problems only and therefore not suitable to be applied on 

more complex problems (i.e. multi-objective optimisation problems, large scale optimisation 

problems). Other conventional approaches of solving optimisation are using the gradient 

descent method known as direct search method, where no gradient information is required. 

This method relies on the value of objective function only to find better solutions. 

 
Another alternative approach to find a satisfactory solution if the conventional approaches 

failed to obtain the exact solution is by using a method known as the ‘heuristic’ method. The 

word heuristic means to find (Greek verb). This method uses probabilistic rule instead of 

deterministic to find best optimal solutions. It is also has been successfully used to find 

satisfactory solutions on a variety of optimisation problems but afterwards, Glover (1986) 

coined a new term called ‘Metaheuristic’, which means high level (meaning of meta in Greek 

prefix) of heuristic method. The next sections describe more details on direct search methods, 

followed by metaheuristic algorithms. 



8 
 

2.2 Direct search methods 

Direct search methods refer to an approach of finding the minimum value of a function using 

direction without computing or approximating the gradient values of the objective functions 

(Kolda et al., 2003). These methods have been through many improvements since its 

introduction in the early 1960s up until today. Although more popular and advanced techniques 

have been discovered in the area of numerical optimisation, direct search methods remain as a 

reliable alternative for the users (Lewis et al., 2000). One of the reasons direct search method 

remains popular is because of their easy and simple implementation. Another reason is that 

they only require few parameter settings compared to sophisticated optimisation techniques. 

The next section briefly describes two examples of direct search methods in detail. 

2.2.1 Nelder and Mead Method 

One of the popular direct search methods is known as the Nelder and Mead (NM) method, 

which uses simplex formed by (N + 1) points in N dimensional space to find the optimum 

value. Originally, this method was introduced by Spendley et al. (1962) that only described the 

reflection of the worst point via a midpoint of the opposite face to form a new simplex.  Later, 

Nelder and Mead (1964) developed this original method into an optimisation algorithm by 

adding a few more additional moves to speed up the convergence speed. Those additional 

moves are expansion, contraction and shrinking operations. The steps of NM methods are as 

described below: 

i. Randomly generate (N+1) points (solutions) across the search space. Evaluate the 

fitness values f of objective function for all the points generated. Identify the worst point 

(xw), best point (xb) and good point (xg) from all those points based on fitness value. 
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Then, reflect the worst point through the midpoint (xc) of best point (xb) and good point 

(xg). 

ii. If the new reflected point (xr) found is a better solution than best point (xb), the 

reflection point extends towards the same direction as reflection operation. This 

operation is known as expansion. 

iii. If the reflection operation failed to find a better solution than best point (xb), an 

operation called contraction is performed where the reflection point contracts back 

towards the opposite direction between the midpoint (xc) and reflected point. 

iv. If the contraction operation also failed to find a better solution, the initial simplex 

shrinks into a smaller simplex consisting of best point (xb), midpoint of (xb) - (xg) and 

midpoint of (xb) - (xw). 

2.2.2 Hooke and Jeeves Method 

Another example of a direct search method is the Hooke and Jeeves (HJ) pattern search, which 

was originally proposed by Hooke and Jeeves (1961).  In this strategy, the HJ method also does 

not require knowledge about gradient values. The mechanism of the HJ method consists of 

repetitive combinations of exploratory moves and pattern moves about a base point (current 

solution). It begins with the identification of appropriate direction (exploratory move) by 

changing all variables at a time based on predefined steps on both directions. Then, a pattern 

move is made according to the established direction (pattern move). The details of the basic HJ 

pattern search are described as follows (Gao et al., 2013):  

 
Assume that the x0, x1, x2, fmin and δ = (δ1, δ2,..δD) are base point (current solution), temporary 

vector to store the obtained point after exploratory move, point obtained by pattern move, 

minimum objective function found so far, and step sizes of D directions, respectively 
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i. First, obtain a point by moving the base point along each dimensional direction at a 

time (exploratory move). The steps involved in the exploratory move are described as 

follows: 

Step 1: Initialise x1= x0, fmin = f(x0), i = 1. 

Step 2: Set x1i = x0i+ δi, if (f(x1) < fmin), fmin = f(x1), go to step 4; else go to step 3. 

Step 3: Set x1i = x0i - δi, if (f(x1) < fmin), fmin = f(x1), go to step 4; else x1i = x0i. 

Step 4: If i < n, set i = i + 1 and go to step 2; else go to step 5. 

Step 5: If fmin < f(x0), the exploratory move is successful; else it is failing. 

ii. If the move is successful, the pattern move is made according to the following formula 

to generate a new base point: x2 = x1 +  (x1 -  x0) 

After the new base point is generated, the exploratory move is repeated. 

iii. If the move is failing, repeat the exploratory move with smaller step size or terminate 

the HJ procedures if stopping criterion has been met. 

2.3 Metaheuristic 

A metaheuristic is an algorithmic framework that is described as a high-level of heuristic 

approach, designed for a wide range of optimisation problems. Most of the well-known 

metaheuristics have similar characteristics, which are nature-inspired and include randomness, 

not using any derivative information and require several parameters to be tuned by users 

(Boussaïd,  et al., 2013). However, it is not necessary for a metaheuristic to consist of all those 

characteristics as different metaheuristics can vary differently according to their foundations. 

 
The essential component to establish a successful metaheuristic is to keep the balance between 

exploration (diversification) and exploitation (intensification) on a given problem. This balance 
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helps metaheuristics to identify potential good areas in the search space that has good solution, 

followed by finding the solution in the identified promising area. Thus, this enables the 

searching process to focus the search efforts only on regions that have been identified as 

promising areas, avoiding unnecessary search efforts on those other regions. 

 

In recent years, there has been an increasing amount of literature on the development of 

metaheuristics due to its effectiveness. Much of the literature available deals with the question 

on how to improve the existing metaheuristics or applying it on new specific problems. The 

most likely causes of this recent development in metaheuristics is because more advanced 

computers with better processing power are available. 

  
Furthermore, metaheuristics are generally classified into two types: single-solution based 

metaheuristic, also known as trajectory methods, and population-based metaheuristic.  Single-

solution based metaheuristic focuses on finding solutions that begin with single point candidate 

solution by moving it away, describing a trajectory in the search space. In contrast, population-

based metaheuristic uses a set of solution simultaneously instead of a single solution. 

2.4 Single-solution based metaheuristics 

The single-solution based metaheuristic search mechanism works by repetitively doing slight 

changes (move search) to a single solution. In each iteration, a new solution is selected from 

the neighbourhood of previous solutions. These movements are described as trajectory through 

the search space. In general, different single-solution based metaheuristics use different search 

movement. This section reviews main examples of single-solution based metaheuristics 

available in the literature, which include Simulated Annealing (SA), Tabu Search (TS) and 

Iterated Local Search (ILS). 
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2.4.1 Simulated Annealing (SA) 

The Simulated Annealing (SA) algorithm was initially proposed by Kirkpatrick et al. (1983) 

based on an algorithm described by Metropolis et al. (1953). The algorithm inspired by the 

annealing process used by metallurgists. This process involves heating of a material to a high 

temperature followed by cooling it slowly. The algorithm works by selecting a random solution 

of x′ within the neighbourhood of present solution x. The acceptance of x′ as the new present 

solution is according to the following probability: 

 

𝑒−
[𝑓(𝑥′)−𝑓(𝑥)]

𝑇⁄  

where 

f(x) = objective function, 

T = Temperature parameter. 

Parameter T is set to a high value at the beginning of the search, and decreased gradually during 

the search. Thus, this algorithm has high acceptance probability initially and gradually reduced 

as the search progresses. So far SA has been successfully applied in different types of 

applications including continuous and discrete problems (Blum and Roli, 2003; Boussaïd et 

al., 2013).  

2.4.2 Tabu Search (TS) 

Tabu Search (TS) is an algorithm that uses memory-based strategies to escape the local 

optimum and guide the search towards a better solution (Glover, 1986). In general, this 

algorithm memorises solutions that have been visited previously, preventing the search to visit 

positions memorised by the algorithm. The list of memorised solutions is called the tabu list. 
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The tabu list usually updates the list of solutions by replacing the oldest solution with a current 

solution. One of the most important elements in TS involves determining the length of the tabu 

list. Although memorising a complete solution in the tabu list would be beneficial in terms of 

performance, but it requires a large amount of space and time. Thus, this length needs to be set 

up in order to control the memory of the search process. In order to overcome this issue, Battiti 

and Tecchiolli (1994) proposed an improved algorithm called the Reactive TS that uses 

adaptive length tabu list.   

2.4.3 Iterated Local Search (ILS) 

Iterated Local Search (ILS) is a metaheuristic that makes use the mechanism to escape from 

local optimum to another promising region in the search space. The framework and features of 

ILS are described by Stutzle (1998) by highlighting the components of ILS in other algorithms. 

In general, the basic ILS produces new starting solutions of the next iteration based on the local 

optimum of current solutions using perturbation mechanisms. The main idea of applying this 

perturbation mechanism on the local optimum is most likely that the new solution will be 

produced at a more promising basin. However, determining the level of this perturbation 

mechanism is crucial for this type of metaheuristic as low perturbation would not suffice to get 

it to escape from the local optimum whereas high perturbation is similar to generating a 

randomly new solution (Boussaïd et al., 2013).  

2.5 Population-based metaheuristics 

Much of the current literature on metaheuristic pays attention to population-based 

metaheuristics rather than single-solution based metaheuristics, especially metaheuristics 

inspired by nature (Swarm Intelligence). The rationale of using a set of solution (population) 

instead of a single solution is the capability to exchange attributes among high quality solutions 
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that will lead to finding good solutions. Population-based metaheuristics are mainly classified 

into three types: Evolutionary Computation (EC), Nature-Inspired Swarm Intelligence (SI) and 

other Evolutionary Algorithms (EA). This system of classification provides a basis of 

identifying different types of algorithms for population-based metaheuristics. 

This section describes main algorithms related to population-based metaheuristics. For each 

category of population-based metaheuristic, a brief description of the algorithms is given with 

more emphasis on SI algorithms.  

2.5.1 Evolutionary Computation (EC) 

Evolutionary Computation (EC) is a group of optimisation algorithms inspired by the 

mechanism of biological evolution and behaviours of living organism (Zhang et al., 2011). 

Most of these EC algorithms (also known as Evolutionary Algorithms (EA)) have similar 

framework which is described as the following: 

1. Population initialisation 

2. Fitness evaluation  

3. Repeat these steps until termination condition is met: 

i. Select parents (individual with better fitness has higher probability to be selected). 

ii. Produce new off-springs using variation operators (i.e., crossover, mutation). 

iii. Evaluate new individuals. 

iv. Select individuals for the next generation. 

4.  End 

The framework described above is a basic form of EC algorithm. Despite the variety of EC 

algorithms available, they all have similar framework as described above. The first step in EC 

algorithms is population initialisation where a set of solution is generated randomly across the 
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search space. Then, that population of initial solution is evaluated using a fitness function or 

objective function followed by selection mechanism. Once the fitness function has been 

evaluated, the algorithm enters the evolutionary iteration which, consists of reproduction and 

variation of new solutions until stopping the criterion is met. 

 

Nowadays, a considerable amount of literature has been published on EC. These studies include 

improving the algorithm, using it in real world applications, and investigating the performance. 

This section describes some main examples of EC algorithms such as Genetic Algorithm (GA), 

Differential Evolution (DE), Genetic Programming (GP) and others. Usually, algorithms 

classified under this have different ways of variable representation (i.e. real, binary), types of 

selection mechanism (i.e. roulette wheel, fitness ranking), and types of genetic operators (i.e. 

crossover, mutation). 

 
Among the most well-known and successful EC methods is Genetic Algorithm (GA). This 

method is inspired by the evolution of natural population according to natural selection and 

survival of the fittest mentioned by Charles Darwin in the Origin of the Species (Beasley et al., 

1993a). The algorithm was originally introduced by John Holland at the University of 

Michigan.   

 
In GA, the candidate solution is represented by a binary string known as chromosome. The 

main operators used by GA to create new solutions are crossover and mutation operators. 

During the reproduction stage, solutions from the population are selected and recombined to 

produce new solutions called offspring. The selection of chromosomes to undergo crossover 

and mutation is based on the fitness of individual chromosomes. A better fit chromosome has 
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a higher chance to be selected compared to low fit chromosomes (Beasley et al., 1993a; Beasley  

et al., 1993b). 

 
Another recent popular EC method is an algorithm known as Differential Evolution (DE) 

algorithm. This algorithm has gained the interest of researchers due to it simple work 

mechanism, few parameters and faster convergence rate compared to other evolutionary 

algorithms (Das et al., 2016). The algorithm is inspired by the principle of natural evolution, 

similar to GA. Even though both algorithms were inspired by the principle of evolution but the 

DE algorithm used real values to represent candidate solutions. The DE algorithm was 

introduced by Storn and Price, (1997) to find the global optimum of  multidimensional real 

valued functions. 

 
The basic form of the DE algorithm also uses mutation and recombination operator to produce 

new candidate solutions. The algorithm starts by generating a population of solutions randomly 

across the search space. Then, new solutions are produced by adding the weighted difference 

between two individuals to a third individual solution at a randomly indexed dimension. The 

individuals selected for this mutation operator are selected from the population. After 

performing mutation, recombination takes place. The comparison of fitness between the current 

solution and old solution determines whether an individual is retained in the population or 

replaced by the new solutions.  

 
Another type of EC algorithm is known as Genetic Programming (GP). This method was 

popularised by Koza (1994), inspired by biological evolution and survival of the fittest as well. 

In general, it works similar to GA but uses a program representation instead of a fixed length 

of strings. Thus in GP, a population of computer programs is evolved to a better population of 

programs (Poli et al., 2008). The most common way of expressing these programs are by syntax 
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trees instead of line of codes. This way enables it to be described in a flexible way of LISP 

language, which is the original programming language used by J. Koza. The leaves of the trees 

represent variables and constants (terminals) of the programs, whereas internal nodes 

(functions) represent arithmetic operations. Both of these terminals and functions produce the 

alphabet of the programs (Boussaïd et al., 2013).  

Besides those EC algorithms described earlier, it is worth to mention a few other EC algorithms 

such as Evolutionary Strategies (ES), Evolutionary Programming (EP) and Estimation 

Distribution Algorithm (EDA). Similarly, like other EC algorithms, these algorithms are also 

inspired by biological evolution and survival of the fittest. 

2.5.2 Nature-inspired Swarm Intelligence (SI) 

Another type of population-based metaheuristic is a type of algorithm inspired by the Swarm 

Intelligence (SI). The concept of Swarm Intelligence (SI) was introduced by Beni (2005) when 

working on Artificial Intelligence, where it is described as the collective behaviour of a 

decentralised, self-organised system, natural or artificial. Examples of such behaviour in nature 

are such as flocks of birds, colonies of bees and shoals of fish. One of the interesting elements 

in this SI system is that it does not have a centralised control system but relies on the capability 

of exchanging information among individuals (Corne et al., 2012). Another crucial component 

for this SI system is its effectiveness of allocating different tasks to specific individuals 

simultaneously (Seeley, 1995). These good attributes of SI behaviour have led to the 

establishment of a type of swarm-based algorithms in optimisation. 

 
Recent trends in optimisation methods showed that swarm-based optimisation algorithms have 

gain interest among users to solve optimisation problems. Usually, these swarm-based 

algorithms are inspired by collective behaviour of a colony of insects or other animals to find 
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near optimal solutions. Several optimisation algorithms inspired by swarm behaviour in nature 

have been proposed in the literature. Examples of swarm-based optimisation algorithms 

inspired by nature are Firefly Algorithm, Ant Colony Optimisation (ACO) algorithm, Particle 

Swarm Optimisation (PSO) algorithm and Bees Inspired algorithm. 

2.5.2.1 Firefly Algorithm (FA) 
 
Firefly Algorithm (FA) is an algorithm inspired by the flashing lights of fireflies in nature.  The 

flashing lights emitted by those fireflies is produced by a biochemical process bioluminescence 

to attract mating partners or warn predators as firefly light are associated with bad taste (Fister 

et al., 2013). Based on this behaviour of fireflies, Yang (2010) introduced the basic form of  

FA which follows these three rules: 

i. All fireflies are attracted to each other regardless of their sex. 

ii. Attractiveness is directly proportional to brightness and both are inversely proportional 

to distance. 

iii. Brightness (I = light intensity) corresponds to landscapes of objective function or fitness 

function. 

The three rules listed above contain important elements in FA, which are variations of light 

intensity and attractiveness. The FA works by moving the individual firefly towards more 

attractive fireflies. The attractiveness of the fireflies depends on the intensity of light emitted. 

With regard to this algorithm, the light intensity is associated to the landscape of objective 

function. This light intensity is determined by the distance between each individual firefly. The 

more nearer the fireflies are from each other, the higher the light intensity; which would result 

in attracting more fireflies toward it. If the fireflies are unable to find brighter fireflies in the 

population, it is moved randomly across the search space. 
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2.5.2.2 Ant Colony Optimisation (ACO) 
 

Another popular Swarm Intelligence inspired by nature is an algorithm called Ant Colony 

Optimisation (ACO) algorithm. The ACO takes inspiration from finding the optimal path 

during food foraging behaviour of ants. Initially, the first version of ACO known as Ant System 

was introduced by Dorigo et al. (1996) for combinatorial problems, specifically Travelling 

Salesman Problem (TSP). The algorithm works by imitating the food searching behaviour in 

the ant colony. The food finding process starts by sending the ants randomly surrounding the 

nest. Once the food source is found, the ants return to the nest. During the journey back to the 

nest, the ants deposits pheromones along the path between food source and nest. With more 

ants using that path, it indicates that it is a favourable path that will result in more pheromones 

deposited on that path. Consequently, this path would attract more ants as high intensity of 

pheromones are present.  

 
Furthermore, as mentioned earlier the ACO was initially used to solve combinatorial problems. 

Thus, in order to implement the ACO algorithm for continuous optimisation problems, Socha 

and  Dorigo (2008) presented an extended version of the ACO algorithm. In this extended 

version of the ACO algorithm, a probability density function was utilised to make the algorithm 

adapt to continuous domain variables. Besides this extended version of ACO algorithm, several 

other variants were also proposed to improve the original version such as the rank-based Ant 

System, Ant Colony System (ACS), MAX-MIN Ant System (MMAS) and elitist strategy Ant 

System (Dorigo and Stutzle, 2010). 

2.5.2.3 Particle Swarm Optimisation (PSO) 
 

In 1995, Kennedy and Eberhart developed a novel optimisation algorithm known as Particle 

Swarm Optimisation (PSO) algorithm. This algorithm is inspired by the flocking of birds in 
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nature to solve optimisation problems. In the PSO algorithm, the set of candidate solutions is 

represented by a swarm of particles which move around the search space. The movement of 

these particles around the search space are according to the variation of velocity based on 

individual particle’s previous best position and other particle’s best position. This mechanism 

allows particles of PSO to move towards a better position by relying on the information of 

individual particles and other particles. 

Since it was introduced in 1995, few studies have been done in improving the PSO algorithms. 

One of the improvements is the introduction of a clamping scheme limit to the velocity 

avoiding the particle from flying out of the search space (Marini and Walczak, 2015). Other 

studies added inertia weight on particle’s updated equation to keep balance between 

exploration and exploitation which, overcome premature convergence of the PSO algorithm 

(Shi and Eberhart, 1998). In terms of application, the PSO algorithm has also been successfully 

used in a wide range of optimisation problems like dynamic, multi-objective and discrete 

(Boussaïd,  et al., 2013). 

Although many modifications claimed to be done on the standard PSO algorithm but the term 

standard PSO algorithm is defined differently among these studies. Therefore, it would be 

beneficial to establish a common standard for the PSO algorithm that consists of recent 

improvements over the original PSO algorithm. So far, there are three versions of standard PSO 

algorithm that have been defined but the most recent is the Standard Particle Swarm 

Optimisation 2011(SPSO2011). This SPSO2011 includes the latest theoretical development of 

PSO, which are adaptive random topology and rotational invariance (Zambrano-Bigiarini et 

al., 2013).  

2.5.2.4 Honey Bees Inspired Algorithm  
 

The Honey Bees Inspired algorithm is another type of population-based metaheuristic based 
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on SI. This type of SI-based algorithms is inspired by the social behaviour of honey bees in 

nature and has attracted a lot of attention recently in the field of optimisation algorithms. 

Currently, there are four main behaviours of honey bees being developed for optimisation 

algorithms which are nest site selection, queen bee evolution process, mating and breeding 

behaviour, and foraging behaviour (Seeley and Visscher, 2004; Sung, 2003; Haddad et al., 

2006; Seeley, 1995). Despite having many different versions of Honey Bee Inspired algorithms 

available, the most recognised and well known algorithms are algorithms based on the foraging 

behaviour compared to other bee-based algorithms as a considerable amount of literature has 

been published on this type of algorithm. This section briefly describes some main honey bee-

based algorithms according to their behaviour. 

 
One of the main activities in honey bees is selecting a potential nest or hive. In general, the 

process of nest selection starts by sending scout bees to the surrounding environment. Then, 

the scout bees return to the hive to advertise their findings of suitable nest sites. The scout bees 

communicate with other bees at the hive by performing a dance called the “waggle dance”. 

Finally, the bees come out with a decision on the site to be selected. Before making the decision 

in selecting a suitable home for the bee colony, there are several requirements that need to be 

considered. There are three of them: accurate decision, quick decision, and mutual decision 

(Seeley and Visscher, 2004). An accurate decision is required to ensure the hive has adequate 

space to accommodate the bee colony and provide secure protection from predators or rough 

weather.  Meanwhile, quick decision is needed to reduce the time scout bees spend outside the 

hive because the longer they are outside the hive, the more likely they are being exposed to 

danger and the energy reserves are reduced as well. The decision also needs to be agreed by all 

colony members. A non-mutual decision by the bee colony would cause the colony to be 

divided leading to a non-fully functioning colony, as mostly a colony only has one queen. Thus, 
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taking into consideration all these requirements is essential in the decision-making process of 

selecting the best quality nest, which is used in the context of optimisation. 

 
By using the model in the decision-making process of honey bees, Diwold et al. (2010) 

proposed a technique to solve dynamic and noisy optimisation problems. The result of the 

proposed approach is promising in making decisions for both types of environment problems. 

In addition, this study also makes use of the behaviour of honey bees called Apis Florea (Asian 

Dwarf honey bees) instead of the usual species known as Apis Mellifira (European honey bees), 

where it is possible to relocate after moving to a new nest if the nest site is not the best one. 

The proposed technique used iterative nest selections and mimics the relocation behaviour to 

eliminate multiple potential nest sites for continuous function optimisations, specifically the 

Sphere and Booth benchmark functions.  

 
The Queen bee evolution process is another type of bee behaviour in nature that has been 

utilised for optimisation algorithms. It was initially introduced by Sung (2003) to improve the 

capability of Genetic Algorithm (GA). In this study, the best solution of GA for each generation 

corresponds to the fittest bee (Queen bee) in the solution. Then, this fittest bee (Queen bee) 

produces new solutions using crossover operator by mating it with other bees selected as 

parents. Although utilising this behaviour in GA improves the exploitation capability of GA, 

but it also causes premature convergence. In order to overcome this problem, several individual 

solutions are permitted to mutate regularly, resulting in more balance between exploration and 

exploitation.  

 
Apart from the study mentioned above, Wang (2009) had also presented a hybrid Bee 

Evolutionary Genetic Algorithm (BEGA) with a clustering method to solve aircraft sequencing 

problems. This proposed algorithm is also a type of algorithm based on the Queen bee evolution 
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process. Similarly, like earlier proposed algorithms, the BEGA experiences premature 

convergence. An alternative approach was used to overcome this problem; by introducing a 

random population in each iteration. Subsequent to introduction of BEGA, Ming et al. (2010) 

proposed an improved version of BEGA. This improved version implemented an adaptive 

selection operator to determine the size of the random population rather than using a fixed size.  

Other behaviours of honey bees that have been modelled in the context of optimisation are 

mating and breeding behaviours. These behaviours were first adopted by Abbass (2001) in an 

algorithm known as Marriage in Honey Bees Optimisation (MBO) algorithm. The algorithm 

imitates the evolution of honey bees at a solitary colony (single queen) up until the 

establishment of eusocial colonies (one or more queens). In order to produce a family, the 

queen should mate with the drones probabilistically during the mating flight. This flight starts 

after the queen made the dance, which would be followed by the drones as well to be mated 

with the queen. During the mating flight on air, the queen mates with drones until the sperm 

gathered in the spermatheca or the queen’s energy level arrives at a certain threshold. Usually, 

the queen bee starts the mating flight with an amount of energy, and progressively decreases 

over time. Once the queen returns to the hive, the breeding process is done by choosing a 

random sperm from the spermatheca. The broods are produced via a crossover of selected 

sperm with the queen’s genome followed by mutation on the broods. Furthermore, the workers 

enhance the produced broods and update their fitness after that process. The last stage of this 

algorithm is replacing the least fit queen with the fittest broods and killing the unselected 

broods, which would establish a new eusocial colony. The search process of this algorithm 

continues with another mating flight until the stopping criterion has been met.  

 
Besides the MBO algorithm, Haddad et al. (2006) also presented an algorithm based on similar 

bee behaviour described earlier named the Honey Bee Mating Optimisation (HBMO) 
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algorithm. Findings of this proposed algorithm in applications of water resources optimisation 

was promising. However, according to Yang et al. (2007), both algorithms mentioned earlier 

are slow in terms of computational time due to complex calculation procedures. Therefore, an 

algorithm called the Fast Marriage in Honey Bee Optimisation (FBMO) algorithm was 

introduced to overcome that issue (Yang et al., 2007). The proposed fast version of the MBO 

algorithm mates the randomly generated drones with a finite number of queens instead of 

mating probabilistically. This FMBO algorithm showed better convergence speed compared to 

the MBO algorithm and easy to implement as less number of parameters are required. 

 
The foraging behaviour of honey bees is one of the activities in honey bees that have been 

regularly modelled in terms of optimisation. So far three algorithms have been considered to 

be the main algorithm categorised under this type of behaviour, which are the Bee Colony 

Optimisation (BCO) algorithm, Artificial Bee Colony (ABC) algorithm and the Bees 

Algorithm (Karaboga et al., 2012) .   

 
The first version of algorithm inspired by the foraging of honey bees was proposed by Sato and 

Hagiwara (1997) named Bee System (BS). In general, this proposed BS is an improvement to 

the Genetic Algorithm (GA) using honey bees foraging behaviour, where chromosomes of 

better fitness are considered superior chromosomes and other chromosomes search surrounding 

the superior chromosomes using multiple solutions. In addition, two new operators called the 

concentrated crossover and Pseudo-Simplex Method were also introduced into this BS to 

provide balance between a global search and local search. Although this BS uses bee behaviour; 

the bees inform other bees by dancing once the feed has been found followed by working 

together to carry the feed to the hive, but it is still not a fully bee-inspired algorithm as it is 

considered to be an improved GA. Hence, an alternative of BS was introduced by Lucic and 

Teodorović (2002) to solve the travelling salesman problem. This version of BS consists of 
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scout bees and forager bees but the scout bees have no guidance during food searching. Thus, 

this method involved low cost food and low quality food as the aim is to find any kind of food. 

 

Later, Teodorovic and Dell’Orco (2005) presented an extended and generalised version of BS 

called the Bee Colony Optimisation (BCO) algorithm. There are two main stages involved in 

this proposed algorithm, which are the forward pass and backward pass. In the first stage, the 

bees explore the search space according to a predefined number of moves that would generate 

partial solutions whereas in the second stage, the returned bees at the hive inform other bees of 

the quality of solutions found by performing a dance. Based on the quality of solutions 

advertised, the bees make a decision whether to keep on dancing and recruit more bees for 

further exploitation or abandon the generated solutions and follow one of the dancer bees. The 

bees with high quality solutions are likely to be followed by other bees and keep on exploration 

near previously found solutions. These two processes of forward pass and backward pass 

continue iteratively until a predefined stopping criterion has been met.  

 
Since the establishment of BCO, various improvement approaches have been proposed to the 

algorithm to solve different types of problems. One of the modifications done to BCO is 

utilising approximate reasoning and fuzzy logic into the bee’s communications and actions 

(Teodorović et al., 2006). The proposed algorithm has been proposed for these combinatorial 

problems; Routing and Wavelength Assignment in all networks, Travelling Salesman Problem 

(TSP), and Ride Matching Problem. Furthermore, other improved versions of the BCO 

algorithm was proposed by Forsati et al. (2015) for document clustering applications. Two new 

concepts called cloning and fairness were introduced in this proposed algorithm to increase the 

exploration capability and propagation of information. Another recent improvement of the 

BCO algorithm is weighted BCO (w-BCO) algorithm, where global and local weights are 
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considered, allowing the bees to search purposely (Moayedikia et al., 2015). In addition, the 

proposed algorithm also adopted a new recruiter selection method to conserve the population 

diversity. 

Another type of honey bee inspired algorithm that has received great attention is the Artificial 

Bee Colony (ABC) algorithm. The algorithm was originally introduced  by Karaboga (2005) 

to solve unconstrained numerical benchmark functions. In the basic version of the ABC 

algorithm, there are three groups of bees involve in the searching process; employed bees, 

onlooker bees and scout bees. An employed bee is a bee that is sent to food sources (potential 

solutions) and would come back to the hive to recruit onlooker bees whereas an onlooker bee 

is bee that is placed at the food source found by employed bee according to nectar amounts 

(quality or fitness of the solutions). The scout bee is a bee that searches randomly across the 

search space if the food source has been exhausted or no further improvements are found after 

a predefined number of iteration. The main steps of the ABC algorithms start by sending a 

number of the employed bees randomly in the search space. After returning to the hive, the 

employed bees advertise the information regarding the food sources found by performing a 

dance called the “waggle dance”. Then, the onlooker bees select food sources advertised by the 

employed bees to continue exploitation. The selection of food sources is based on the roulette-

wheel rule. Similarly, like other population-based algorithms, this process is repeated until the 

stopping criterion has been met. 

 
Previously, there have been misconceptions between ABC algorithm and Bees Algorithm as 

both algorithms were inspired by the foraging behaviour of bees and share similar concepts 

(Mirsadeghi and Shariat Panahi, 2012; Biegler-könig, 2013; Durongdumrongchai et al., 2014). 

Therefore, it is important to highlight the main differences between these two algorithms (Tsai, 

2014a). One of the main major components that differentiate them is the method of updating 
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locations. The ABC algorithm updates its location based on the dth dimension only while the 

Bees Algorithm update locations based on all D dimensions. The ABC algorithm also uses the 

roulette wheel selection method which is different from the Bees Algorithm. Apart from that, 

the ABC algorithm also has the mechanism to self-update the employed bees own locations 

whereas the Bees Algorithm does not. Based on all these differences, it is apparent that both 

algorithms are two different algorithms. 

 
The ABC algorithm was initially developed for solving continuous benchmark functions where 

the results were compared with the PSO algorithm, Genetic Algorithm, Ant Colony 

Optimisation Algorithm, and Differential Algorithm (Karaboga and Basturk, 2007). Since that 

introduction, there have been numerous studies on improvements and applications of the ABC 

algorithm published in literature. One of those studies is an extended version of the ABC 

algorithm by Akay and Karaboga (2012) in application of engineering design problems. In 

order to handle constraint problems; a constraint handling strategy was used during the 

selection step to deal with the constraints. Then, the ABC algorithm has also been extended for 

multi-objective problems (Hedayatzadeh et al., 2010; Akbari et al., 2012). Furthermore, 

Karaboga and Gorkemli (2012) had proposed the Quick ABC algorithm (qABC) to improve 

convergence speed compared to the original version. In this work, a new strategy of updating 

onlooker bees was introduced, which is more accurate to foraging behaviour in nature. A 

parameter called neighbourhood radius was added in this variant and the results obtained after 

tuning the new parameter showed faster convergence than the basic ABC algorithm. 

 
Apart from the honey bees inspired algorithm described above, there are several other 

algorithms based on similar behaviour. The Virtual Bees Algorithm (VBA) is one of the 

algorithms associated with foraging behaviour (Yang, 2005). This algorithm uses parallel 

multiple bees that work independently to solve numerical benchmark functions. Then, there is 
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a routing algorithm known as BeeAdHoc algorithm, which is developed for energy efficient 

routing in Mobile Ad Hoc Networks (MANETs). The results of this new routing algorithm 

obtained better or similar results compared to other algorithms with the least energy 

consumption. 

2.6 The Bees Algorithm 

The Bees Algorithm is a nature-inspired algorithm that imitates the food foraging behaviour of 

honey bees in nature. The food foraging behaviour of honey bees starts with employing part of 

the bee colony population to search for high quality food sources surrounding the hive. After 

collecting the nectar, the scout bees return to the hive. The scout bees that had found high 

quality food sources communicate with other bees by performing a dance known as the 

“waggle dance”. This dance is performed in a specific area of the hive; it gives three points of 

important information related to the flower patches discovered by the scout bees. The points of 

information are the direction where it is located, its distance from the hive, and its quality 

rating. After completing the waggle dance, the dancer bees recruit bees from the hive to go to 

the visited flower patch. Higher quality of flower patch recruits more bees. This process of 

food foraging mechanism will continue for the recruited bees. 

 
In the Bees Algorithm, the position of a food source corresponds to a possible solution to the 

optimisation problem and the nectar amount of each food source represents the quality (fitness 

function) of the associated solution. In general, the unconstrained optimisation problem that is 

going to be solved can be represented as a D-dimensional minimisation problem as follows: 

Minf(X), X = [x1,x2, ..xd..,xD] 

where X = [x1,x2, ..xd..,xD] is the vector to be optimised and D is the number of parameters. At 

the initialisation stage, ns scout bees generate a randomly distributed initial population. Each 
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initial solution is evaluated by the fitness function. Then, each solution is ranked according to 

fitness value. After that, the nb best sites are selected from the ns scout bees. These scout bees 

perform the waggle dance to recruit bees from the hive for local exploration. The selected nb 

best sites for local search consist of ne sites (top rated sites) and nb-ne sites (remaining best 

sites). At this stage, the best ne sites recruit more bees than the remaining best sites nb-ne. The 

recruited bees for elite sites nre and best sites nrb are placed randomly across the patch size 

(ngh). Then, the fitness position of recruited bee is evaluated by the fitness function. The best 

recruited bees for each patch is selected to do the waggle dance upon returning to the hive. 

 
In the next stage, the remaining ns-nb bees are sent randomly across the search space for global 

search. At the last stage, new population of bees is formed combining the remaining ns-nb bees 

and selected recruited bee from each nb best site. The stopping criterion for this algorithm can 

be set either by a predefined number of iterations or predefined fitness above the threshold 

value. The flow chart of the basic Bees Algorithm is shown in Figure 2.1 (Pham and Castellani, 

2009). 

 
Figure 2.1: Flowchart of the basic Bees Algorithm 
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In addition to the basic Bees Algorithm, two new strategies were introduced later to improve 

the basic version of the Bees Algorithm. The first strategy is known as neighbourhood 

shrinking. In this strategy, the patch size is set to a large size. Then, as the search is in progress, 

the patch size shrinks to further refine the local search. This patch size remains constant if the 

fittest recruit bees find better fitness value than the scout bees. However, if the recruit bees 

failed to find a better fitness value, the neighbourhood size decreases. The neighbourhood 

shrinking procedure follows the following formula: 

ai(t) = ngh(t)∗(maxi −mini),                  (2.1) 

ngh(t +1) = 0.8∗ngh(t),                           (2.2) 

where t is the tth-iteration of the Bees Algorithm. The second strategy is known as site 

abandonment. This strategy is used after a predefined tth times (stlim) of neighbourhood 

shrinking failed to find any improvements. The position being abandoned is assumed to be the 

local peak of the optimisation problem. If the abandoned position is the best position found so 

far, it is considered as the global optimum or final solution.   

2.7 Improvements 

This section reviews improvements done on the Bees Algorithm. In general, the modifications 

done on the Bees Algorithm are organised into several parts, which are population initialisation, 

global search and local search, and parameter tuning or adaption. These modifications on some 

of those parts were done to improve the performance. 

 
The first stage in the Bees Algorithm is known as population initialisation. The most common 

initialisation procedure is to send the scout bees randomly across the search space. Then, each 

scout bee evaluates the visited site according to the fitness function. So far, there is only one 

modification done on the initialisation procedure to improve the Bees Algorithm done by 
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Hussein et al. (2014). In this study, a novel initialisation algorithm based on the patch concept 

and Levy flight (movement pattern of biological organisms) distribution is proposed to 

initialise the population of bees in the Bees Algorithm. This version of Bees Algorithm is 

known as the Patch Levy Initialisation algorithm–Bees Algorithm (PLIA-BA), which mimics 

the natural flight patterns of bees by following the Levy flight distribution. 

 
After population initialisation, the next stage of the Bees Algorithm is local search 

(exploitation) followed by global search (exploration). Up to now, a number of studies have 

been done on modifying local search or global search to further improve the Bees Algorithm. 

Among the earliest improvements on the local search was introduced by Pham and Castellani 

(2009). These improvements are neighbourhood shrinking and site abandonment strategies. 

Currently, the Bees Algorithm with these two strategies is known as the standard Bees 

Algorithm. Later, the standard Bees Algorithm was further tested on a set custom-made 

functions (Pham and Castellani, 2013) and real world problems; protein folding benchmarks 

(Pham and Castellani, 2015). 

 
On the other hand, Packianather et al. (2009) proposed a new version of the Bees Algorithm 

based on pheromones to attract bees toward high promising patches. In this version of Bees 

Algorithm, the recruit bees are sent according to the level of pheromone of the selected sites 

instead of using a fixed value. This proposed recruitment mechanism eliminated the 

requirement to set nep and nsp parameter values of the Bees Algorithm. 

 
Meanwhile, Pham and Haj Darwish (2010) used a recursive estimator that predicted the optimal 

parameters of the linear and nonlinear system known as the Kalman filter, in another enhanced 

version of the Bees Algorithm. The Kalman filter is used to update the position of recruited 

bees in the local search. In addition, this proposed Bees Algorithm also applied fuzzy greedy 
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selection mechanism as a new method of choosing the best sites and determining the number 

of recruit bees.  

 
Muhamad et al. (2011) incorporated local search manoeuvres into factor recruitment in the 

Bees Algorithm. The employment of local search manoeuvres is aimed to overcome the 

possibilities of recruited bees getting lost during flying towards selected patches. Thus, this 

added strategy into the Bees Algorithm enables the neighbourhood size to extend in certain 

directions. Despite this proposed Bees Algorithm showing faster convergence on numerical 

problems, it requires more parameters compared to the standard Bees Algorithm.  

 
Another improved Bees Algorithm was proposed by Pham et al. (2012) where a new type of 

bee known as ‘young bees’ are introduced. These ‘young bees’ are the unselected bees in the 

population that are going to be replaced by the new scout bees. Instead of immediately 

eliminating these bees from the population, the ‘young bees’ are protected by letting them 

compete among each other for several iterations until they reached the adult stage. 

Subsequently, Castellani et al. (2012) applied this modified Bees Algorithm to dynamic 

optimisation in  chemical engineering problems. 

 
Afterward, Shatnawi et al. (2013a) introduced  another improved version of Bees Algorithm 

called Memory-based Bees Algorithm (MBA) by adding local memory and global memory 

into the global search and local search. Three types of Memory-based Bees Algorithm are 

presented in this study, which are local memory-based Bees Algorithm, global-memory based 

Bees Algorithm and combination of both memory based Bees Algorithms. The addition of 

local memory was to prevent the recruit bees from visiting sites that have been visited. 

Meanwhile, the global memory was introduced to prevent scout bees from going to sites that 

have been visited or sites currently being visited. The global memory is also used to check 
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whether the recruit bees should follow the best bee in the patch or position memorised by the 

global memory. 

 
Another modification on local search of the Bees Algorithm involved neighbourhood size. One 

of the modifications was proposed by Yuce et al. (2013), in which it added extra enhancement 

on the two strategies introduced in the standard Bees Algorithm. This approach does not 

immediately abandon the unimproved sites after predetermined neighbourhood shrinking but 

goes through further enhancements before being abandoned. Following the introduction of this 

version of Bees Algorithm, the enhanced Bees Algorithm was also applied in multi-objective 

supply chain optimisation problem (Yuce et al., 2014). 

 
Other modifications on the Bees Algorithm related to neighbourhood size is presented by 

Ahmad et al. (2012) using an asymmetrical neighbourhood search in the Bees Algorithm 

instead of a symmetrical search. Then, Ahmad et al. (2014) used a combination of adaptive 

enlargement and reduction in the neighbourhood search. It has been demonstrated in those 

studies that using the asymmetrical neighbourhood search has no significant effects on the Bees 

Algorithm while combinations of adaptive enlargements and reduction strategies proved to be 

helpful in solving mechanical design problems. 

 
In another study, Tsai (2013) proposed a hybrid version of the Bees Algorithm and ABC 

algorithm. The results of this hybrid Bees Algorithm on unconstrained numerical functions 

highlighted the advantages of hybridising these two algorithms. A year later, Tsai (2014a) 

tested the ability of the hybrid Algorithm in handling constraint problems as well. Following 

this application on constraint problems, the hybrid Bees Algorithm was suggested as an 

alternative to solve constraint problems instead of Bees Algorithm or ABC algorithm due to its 

good performance. In addition Tsai (2014b) also proposed an enhanced version of Bees 
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Algorithm that uses a stochastic self-adaptive neighbourhood (ssngh) search. For this modified 

version of Bees Algorithm, the neighbourhood size is not set by the user but varied according 

to the position between two elite bees.  

 
One of the most recent studies done on modification of the local search is proposed by Zhou, 

et al. (2015). In this proposed algorithm, the Bees Algorithm was modified to allow it finding 

multiple optima solutions in multimodal optimisation problems. The modified Bees Algorithm 

used dynamic colony sizes, radius estimations and Hill-Valley mechanism to ensure each patch 

does not converge toward similar optima solutions. In addition, a local search method called 

balanced search technique was also included in the Bees Algorithm to speed up the algorithm. 

 
Another recent modification of the local search of the Bees Algorithm was proposed by Yuce 

et al. (2015). This version of Bees Algorithm uses a slope angle computation and Hill-Climbing 

Algorithm in the local search stage of the Bees Algorithm. The proposed Algorithm was tested 

on numerical benchmark functions and single machine scheduling problems. 

 
So far, most of the studies have tended to focused on local search or global search rather than 

parameter adaption or tuning. Thus, making the parameters adaptive or reduced would be 

beneficial for the users. Currently, there is no systematic way to set the parameters of the Bees 

Algorithm. The most popular method is by fine tuning the parameters until the best solution is 

found which is time consuming. For this reason, few studies have been attempted to overcome 

this problem. One of the studies was proposed by Maneechote and Luangpaiboon (2010) that 

used the Design of Experiment and Modified Simplex Method (MSM) in finding the 

parameters. In another work done by Pham et al. (2009a), where fuzzy logic was utilised to 

improve the Bees Algorithm by eliminating some of those parameters.   
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2.8 Applications 

Up to now, a number of studies have been reported on the successfulness of the Bees Algorithm 

application on a wide range of optimisation problems. Although the Bees Algorithm was 

initially introduced to solve continuous numerical functions (Pham et al., 2006a; Pham and 

Koç, 2010), the Bees Algorithm was also applied on discrete and combinatorial problems later. 

One of the popular applications of the Bees Algorithm is in the area of industrial engineering. 

Pham et al. (2007a) employed the Bees Algorithm to solve cell formation problems. Pham et 

al. (2007b) and  Packianather et al. (2014) also used the Bees Algorithm to schedule jobs for a 

machine. Meanwhile, the Bees Algorithm also has been used in the planning of material 

handling equipment (Sayarshad, 2009), generalised assignment problems (Özbaki et al., 2010), 

PCB assembly optimisations (Ang et al., 2010), and assembly line balancing problems 

(Akpinar and Baykasoğlu, 2014a, 2014b; Daoud et al., 2012; Tapkan et al., 2011). Other works 

that used the Bees Algorithm in the industrial engineering field are optimisation of multi-

objective supply chain networks (Mastrocinque et al., 2013; Yuce et al., 2014), container 

loading problems (Dereli and Das, 2011), manufacturing networks (Xu et al., 2012, 2015), 

combinatorial circuit designs (Mollabakhshi and Eshghi, 2013) and tower crane layout (Lien 

and Cheng, 2014). 

 
The Bees Algorithm has also been utilised by some researchers to solve optimisation problems 

in the field of mechanical engineering. Pham et al. (2009b) and Mirzakhani et al. (2011) applied 

the Bees Algorithm on mechanical design problems while Parsa et al. (2013) implemented the 

Bees Algorithm to find optimal design of probe used in Eddy current testing. Zarea et al. (2013) 

applied the Bees Algorithm to find optimum design of plate fin heat exchangers. Long and 

Nhan (2012) used the Bees Algorithm in designing a hybrid electric vehicle. Another 

application of the Bees Algorithm are in detection of cracks on  beam structures (Moradi et al., 
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2011; Moradi and Kargozarfard, 2013), detection of faulty rolling bearing (Attaran et al., 2011; 

Attaran and Ghanbarzadeh, 2014), updating the structure in finite element models of piping 

models (Moradi et al., 2010)  and determining the neutral stability curve in plane Poiseuille 

flow (Bahrainian and Ghanbarzadeh, 2013). Moradi et al. (2011) and Xu et al. (2011) also 

applied the Bees Algorithm to investigate the performance of a spring damper system of a full 

vehicle model and optimisation of fuel consumption in a semi-track air cushion vehicle, 

respectively. Meanwhile, Ang et al. (2013) described an approach to generate branded product 

concepts by combining the Bees Algorithm and shape grammar. In addition, Vejdannik and 

Sadr (2016) introduced the usage of Bees Algorithm in adopting the smoothing parameters of 

Probabilistic Neural Network (PNN) and Radial Basis Function (RBF) for automatic 

microstructure classifications. 

 
A few other applications of the Bees Algorithm are in the areas of electrical engineering. Idris 

et al. (2009) applied the Bees Algorithm to find the optimal location and parameter settings of 

Flexible AC Transmission System (FACTS) devices. Afterwards, Idris et al. (2010) utilised 

the Bees Algorithm to determine the Available Transfer Capability (ATC) of power 

transactions between source and sink areas in deregulated power systems.  Polratanasuk et al. 

(2010),  Sumpavakup et al. (2012), and Anantasate and Bhasaputra (2011) proposed the use of 

the Bees Algorithm to solve optimal power flow problems. The Bees Algorithm in these studies 

used the parallel computing approach in combination with the Cultural Algorithm (CA) and 

crowded selection with fuzzy mechanism in the selection process. Leeprechanon and 

Polratanasak (2010) presented an application of the Bees Algorithm for Environmental or 

Economic Dispatch (EED) problems with clustering techniques. Other applications in 

electrical engineering are determining optimum design for a five-phase surface-mounted 

permanent magnet synchronous motor (Ilka et al., 2013), finding optimal solar farms and wind 
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farms for power systems (Phonrattanasak et al., 2013; Phonrattanasak, 2011), and selecting 

optimal location of multiple distributed generation units in power distribution systems. Then, 

one of the latest applications of Bees Algorithm in electrical engineering is done by Gholipour 

et al. (2015) that applied it for tuning the back stepping parameters in the thermal plasma 

technology system. 

 
In the area of electronic engineering applications, the Bees Algorithm was used to design the 

antenna of different characteristics (Guney and Onay, 2007, 2008, 2010, 2011). Meanwhile, 

Sayadi et al. (2009) utilised the Bees Algorithm for communication network applications. In 

addition, Boumazouza et al. (2013) described the usage of the Bees Algorithm in detection of 

objects in motion for video sequences. 

 
The Bees Algorithm was also applied to overcome optimisation problems involving the area 

of control engineering. Among of the applications is the tuning of  the proportional integral 

controller (PID) (Ercin and Coban, 2011; Jones and Bouffet, 2008). In these works, the Bees 

Algorithm is compared to other algorithms as well. Ang et al. (2009) used the Bees Algorithm 

in finding the minimum time for motion time planning of a robot arm whereas  Pham and 

Kalyoncu (2009)  and  Zaeri et al. (2011) utilised the Bees Algorithm to tune fuzzy logic 

controllers for a flexible single link robot arm and pitch displacement of aircraft respectively. 

In contrast, Eldukhri and Kamil (2013) optimised the parameters to control swing up 

movements of a robot gymnast. In addition, Fahmy et al. (2011) implemented the Bees 

Algorithm to tune the parameters for two optimisation tasks related to robot manipulator 

control.  
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Another important area of application for the Bees Algorithm is in data mining especially 

related to data clustering. The most common approach in solving clustering problems is by 

using the Bees Algorithm along with other algorithms to make use of their benefits (Bonab et 

al., 2015; Pham et al., 2011; Shafia et al., 2011). Other applications in the area of data mining 

are extraction of fuzzy measures for sample data (Wang, et al., 2011) and control chart pattern 

recognition (Ebrahimzadeh et al., 2013). Furthermore, the Bees Algorithm was also used to 

optimise neural networks for wood defects identification such as described by Pham et al. 

(2006b),  Pham and Darwish (2010) that included Bees Algorithm with Kalman Filter, and  

Packianather and Kapoor (2015) with introduction of a wrapper based feature concept.  

 
Software engineering is another area of application for the Bees Algorithm. Azzeh (2011) 

proposed a novel method of software effort estimation using the Case Based Reasoning (CBR) 

method along with the Bees Algorithm. Wang et al. (2012) used the combination of Bees 

Algorithm with interval constraint solver for assessing the quality of the software. Hazli et al. 

(2013) also proposed a preliminary study of using the Bees Algorithm for software testing. 

 
Some other applications are in the area of image processing (Ahmad Farhan and Bilal, 2011; 

Shatnawi et al., 2013b), civil engineering (Aydogdu and Akijn, 2011), chemistry (Pham et al., 

2012) and computational biology (Bahamish et al., 2008).  
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2.9 Summary 

This chapter briefly described the main algorithms associated with metaheuristic in 

optimisation. The review also included describing direct search methods which is a type that 

commonly used in the conventional approach. Furthermore, the chapter specifically focused 

on the Bees Algorithm, its improvements and applications of the Bees Algorithm in different 

areas.  
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CHAPTER 3 

Bees Algorithm Enhanced with the Nelder and Mead Method 
 

3.1 Preliminaries 

The Bees Algorithm comprises of combinations of global exploration and local exploitation. 

In the global exploration, the Bees Algorithm searches randomly for new promising solutions 

across the search space. In contrast, local exploitation focuses on exploitation around selected 

promising solutions. These two mechanisms form an efficient swarm-based optimisation 

algorithm better than other state-of-the-art optimisation algorithms.  

 
This chapter presents a modification of the local search in the standard Bees Algorithm. In the 

standard version of the Bees Algorithm, recruited bees are sent randomly across the selected 

patch without any directional information. This work proposed an improved Bees Algorithm 

with the Nelder and Mead (NM) method to guide the recruit bees during local search 

procedures. The selection of this method to improve the Bees Algorithm are based on suitability 

and easiness of implementation into the Bees Algorithm. 

 
The rest of this chapter is organised as follows: In section 3.2, the NM method and the proposed 

algorithm are described in detail followed by the experimental design and result comparison. 

Section 3.3 shows application of the proposed algorithm on several constrained mechanical 

design problems. Finally, Section 3.4 concludes and reviews the work.  
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3.2 The Bees Algorithm with the Nelder and Mead (NM) Method  

In this section, a modification to the standard Bees Algorithm is proposed to further enhance 

the capability of the Bees Algorithm. The modification was done in the local search stages of 

the Bees Algorithm. In the standard version of the Bees Algorithm, recruited bees are randomly 

placed across the neighbourhood of selected patch. However, in this proposed algorithm, a 

direct search method known as the Nelder and Mead (NM) method is integrated into local 

search to provide directional information between recruited bees. 

 
The NM method is a free derivative-based local search method (no derivative value required) 

established by Nelder and Mead. This method finds the optimum value using simplexes formed 

by (N + 1) points in the N dimensional space. In two dimensions, it forms a triangle. It begins 

with a given worst position (W), best position (B) and good position (G) that correspond to a 

fitness value represent by (N + 1) points in the N dimensional spaces. In each generation of the 

algorithm, four types of operators are involved which are reflection, contraction, expansion, 

and shrinkage.  

 

Figure 3.1: NM Operators 
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To begin this NM method, a simplex (e.g. two dimensional space minimisation problems) is 

formed from the worst position (W), best position (B) and good position (G). Then, a reflection 

position (R) is produced by reflecting position (W) in the direction of position (B) with d 

distance as described in Figure 3.1(a). After fitness evaluation of position (R), if fitness value 

of position (R) is less than fitness value at position (G), another operator known as expansion 

is performed (Figure 3.1 (b)). In this operator, position (R) is moved further towards position 

(E). If the fitness value of position (E) is less than fitness value of position (R), it is retained 

for the next operation. However, if the reflection operator failed to give a better fitness value, 

contraction operator is performed by contracting position (R) towards position C1 or C2 as 

shown in Figure 3.1 (c). Finally, if the contraction operator failed to gives a better fitness value, 

a smaller simplex is formed by replacing the good position with position M between position 

B–G and worst position with position S between B-W. This operator is described in Figure 3.1 

(d). These operators are performed iteratively until solution is found. 

 
The proposed Bees Algorithm known as the Nelder and Mead Bees Algorithm (NMBA) begins 

with initialisation followed by fitness evaluation. Then, high ranked sites are selected for local 

search. Once the elite sites and best sites have been selected, the recruited bees are sent 

randomly across the patch. In the standard version of the Bees Algorithm, the fittest recruited 

bee is selected from each site. However, in this proposed algorithm, the worst position (xw), 

good position (xg) and best position (xb) of the randomly recruited bees are used to form a 

simplex as in the NM method explained previously. The flowchart of the proposed algorithm 

is given in Figure 3.2. 

 
Figure 3.3 illustrates implementation of NM method during local search where at least three 

recruited bees are sent to Patch1 and Patch2. After the fitness evaluation, those recruited bees 

are sorted according to fitness value. The worst position (xw), good position (xg) and best 
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position (xb) of recruited bees are determined to begin the NM method. Then, a reflection 

position is generated using the expansion operator as described previously. If the reflection 

position gives better fitness value, an expansion operator is performed to generate position E. 

Position E is selected as the fittest for that patch if it gives a better fitness value than position 

R. However, if position R failed to give a better fitness value, a contraction operator is 

performed followed by a shrinking operator. At the end of the local search stage, the fittest 

position is selected out of the positions found by the NM operator and randomly recruited bees. 

After the local search, the remaining unselected scout bees are sent randomly across the search 

space for global exploration. Then, a new population is formed by merging the fittest from each 

patch (local search) and unselected scout bees (global search). This mechanism continues until 

stopping criterion is met. To avoid excessive computation, the NM method was applied only 

in elite sites instead of elite sites and best sites. The remaining phases of the NMBA are similar 

to the standard Bees Algorithm.  
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Figure 3.2: Flowchart of the Bees Algorithm with Nelder and Mead method 

 

                 
Figure 3.3: Two-dimensional illustration of NMBA implementation  
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3.2.1 Experimental Setup 

In this chapter, the performance of NMBA was tested with a set of unconstrained benchmark 

functions, as shown in Appendix A. All the benchmark functions used in this chapter are 

minimisation problems. These fifteen functions are selected based on their popularity and 

characteristics of those benchmark functions. Jamil and Yang (2013) classified the five 

characteristics of the benchmark functions: modality, basins, valleys, separability and 

dimensions.  

 
A function landscape with more than one peak is called multimodal function, whereas a 

function with one peak is known as a unimodal function. These characteristics correspond to 

the modality of the function. Normally, multimodal functions are more difficult to solve 

because the algorithm has the possibility to be trapped in one of those peaks while searching 

for the global optimum. Basin refers to a relatively steep decline surrounding a large area while 

valley occurs when a narrow area of little change is surrounded by regions of steep descent. 

For separability, generally separable functions are easier to solve compared to inseparable 

functions because each variable of a function is independent of the other variables. Then, 

dimensionality corresponds to number of parameters to be solved. In most cases, the difficulty 

of a function increases as the number of dimension increases. The corresponding characteristics 

of functions used are summarised in Appendix B. 

 
The first five functions shown in Appendix B are functions with unimodal fitness landscapes. 

The Martin & Gaddy function is considered as an easy unimodal function. The Easom function 

is a unimodal function that has flat surfaces and small areas of global minimum. Trid function 

is a simple unimodal benchmark function while Rosenbrock and Zakharov are non-separable 

unimodal functions. Even though, Rosenbrock and Zakharov functions are unimodal functions, 
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but the non-separable feature of both functions cause difficulty in finding the global minimum 

as each variable of a function is dependent on the other variables (Jamil and Yang, 2013). 

Moreover, the location of global minimum for the Rosenbrock function which lies in narrow, 

parabolic valleys causes difficulty to find the global minimum (Pham and Castellani, 2009). 

 
The remaining ten functions shown in Appendix B are multimodal functions with a variety of 

features. The Schaffer, Rastrigin, Schwefel and Griewank functions are multimodal functions 

with a large number of local optima. These types of functions have a wavelike fitness landscape 

which could cause difficulties in finding the global minimum. In addition, the Griewank 

function is a non-separable function which has interdependence among the variables (Karaboga 

and Akay, 2009). Another feature that is included in this set of benchmark function is that the 

location of the global minimum is very small relative to the search space denoted by the 

Michaelewicz function (Jamil et al., 2013). Then, for both Shekel_4D and Shekel_10D and the 

Langermann functions, the location of the local minimums is randomly distributed over the 

search space and it is a non-symmetrical function. Thus, these functions do not give any 

advantages to the algorithms that take advantage of symmetrical features in benchmark 

functions (Karaboga and Akay, 2009). For Camel Six Hump and Goldstein & Price functions, 

both functions are considered as easy multimodal functions as most of the other algorithms are 

able to find the global minimum. 

 
One of the important elements in this research is to determine parameter settings of the Bees 

Algorithm. The most popular adopted method is to finely tune the parameters for each function. 

This method requires large number of experiments by trial and error until the best parameters 

are found. However, previous study done by Pham and Castellani (2009) showed that using 

different parameters on the Bees Algorithm for each problem does not significantly improve 

its performance. Thus, a set of parameters was used in this research based on the work done by 
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Pham and Castellani (2009) for the standard Bees Algorithm and NMBA as shown in Table 

3.1. The result of NMBA on benchmark functions mentioned above was compared with 

standard Bees Algorithm. 

 

Table 3.1: Parameter setting values  
Parameter 

ns number of scout bees 24 

ne number of elite sites 2 

nb number of best sites 4 

nre recruited bees for elite sites 30 

nrb recruited bees for remaining best sites 10 

ngh initial size of neighbourhood 0.01 

stlim limit of stagnation cycles for site abandonment 10 
 

In addition to comparison with the standard Bees Algorithm, the proposed Bees Algorithm was 

also compared with another two-popular swarm-based algorithms known as quick Artificial 

Bees Algorithm (qABC) and Standard Particle Swarm Optimisation 2011 (SPSO2011). The 

qABC was selected for comparison with NMBA because both algorithms were inspired by 

similar foraging behaviour. The qABC (Karaboga and Gorkemli, 2012) was selected out of 

other variants of ABC as it is considered one of the latest version of ABC. As for SPSO2011 

(Zambrano-Bigiarini et al., 2013), it is among the popular swarm-based optimisation in the 

literature. For this reason, it is considered the most suitable for comparison with the proposed 

Bees Algorithm. The parameter setting values of both qABC and SPSO2011 are set according 

to the original paper of SPSO2011 (Zambrano-Bigiarini et al., 2013) and quick-ABC 

(Karaboga and Gorkemli, 2012). Despite using parameter settings from the original authors, 

the number of population size for both qABC and SPSO2011 are tailored as 100 populations 

for fair comparison. The SPSO2011 was run using the open source implementation provided 
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by pso R package v1.0-3 (Claus, 2012). All algorithms were run in the R statistical environment 

3.2.0.  

 
The stopping criteria for all algorithms were set according to solution found or number of 

function evaluations. In this study, the algorithm was stopped once acceptable solution has 

been found or it reached maximum number of evaluations. A solution is considered acceptable 

if the difference between the global minimum and solution found (accuracy) is less than or 

equal to 0.001. The maximum number of function evaluations for all algorithms was set to 

500000 function evaluations. Moreover, each algorithm had 100 runs for each benchmark 

function. 

3.2.2 Experimental Results  

In this section, the results of the standard Bees Algorithm, NMBA, SPSO2011 and qABC on a 

set of benchmark function as described in the previous section are compared and presented in 

Table 3.2 and Table 3.3. The median and standard deviation accuracy obtained by each 

algorithm over 100 runs for each function are recorded in Table 3.2 while the median and 

standard deviation number of function evaluations (speed) to obtain the corresponding 

accuracy are recorded in Table 3.3. For the accuracy results in Table 3.2, if the accuracy 

obtained is less than 0.001, the accuracy recorded is 0.0000.  

 
In order to perform the result comparison of NMBA between standard Bees Algorithm and 

other algorithms, a comparison method was adopted in this chapter and in the subsequent two 

chapters as well. In this method, one of those two algorithms are said to perform better than 

another if the accuracy is less than the other and the difference is statistically significant for 
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each benchmark function. If the difference is statistically insignificant, the speed of both 

algorithms is considered for comparison instead.  

 
Similar comparison methods are also used for speed. An algorithm is said to perform better 

than another algorithm if the speed less than the speed of the other algorithm, and the difference 

is statistically significant. If the difference is statistically insignificant, both algorithms are 

assumed to be comparable.  

 
Statistical significant difference of the obtained results, were utilised using the Mann Whitney 

U-tests. The two algorithms are statistically compared at α = 0.05 significance level for the 

various benchmarks. The significance of the difference between the NMBA and other 

algorithms are presented in Table 3.4 and Table 3.5. The p-value shown in both Tables 

determine the significant difference between two median results; p-value less than 0.05 

indicates the difference is significant. 
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 Table 3.2: Comparison on accuracy over 100 runs for NMBA 
Function SBA  NMBA SPSO2011 qABC 

  Median StdDev  Median StdDev Median StdDev Median StdDev 
Easom 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Trid 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.3016 0.3062 

Rosenbrock 4.8919 1.0673  4.7206 1.1237 6.9007 9.4754 0.0758 0.0702 
Zakharov 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0235 0.0867 
Schaffer 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 
Rastrigin 12.9437 3.2667  11.9511 3.0196 6.4253 2.2037 0.0000 0.0219 
Schwefel 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Michaelewicz 0.0000 0.0133  0.0000 0.0111 0.0411 0.0895 0.0000 0.0000 
Goldstein & Price 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Martin & Gaddy 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Camel Six Hump 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Shekel_4D 0.0000 0.0000  0.0000 0.0000 0.0000 2.5068 0.0000 0.0014 
Shekel_10D 0.0015 2.6435  0.0000 2.2667 8.7202 0.2236 8.7231 0.0036 
Griewank 0.1091 0.0226  0.0952 0.0176 0.0341 0.0271 0.0800 0.0389 

Langermann 1.2564 0.0989  0.8469 0.0889 0.9677 0.1363 1.1713 0.0916 
 

 

Table 3.3: Comparison on function evaluations over 100 runs for NMBA 
Function SBA NMBA SPSO2011 qABC 

  Median StdDev Median StdDev Median StdDev Median StdDev 
Easom 3124 1408.923 2450 1170.489 4000 885.2301 1050 6888.015 
Trid 13224 4255.14 8776.5 3954.117 9100 700.657 500000 0 

Rosenbrock 500000 0 500000 0 500000 117878 500000 0 
Zakharov 16374 1896.454 12481 1183.614 35100 4619.083 500000 0 
Schaffer 5305.5 2869.263 4029.5 3071.699 2800 1728.957 43951 225352.2 
Rastrigin 500000 0 500000 0 500000 0 352561.5 97711.63 
Schwefel 2825 100.508 2500 1468.152 14100 30860.92 850 12132.96 

Michaelewicz 163807.5 155525.4 142765.5 146994.1 500000 223339.3 105399 88612.96 
Goldstein & 

Price 1824 729.9545 1168.5 500.9846 4000 501.387 2350 35168.9 

Martin & 
Gaddy 1464 732.9105 1174.5 617.4853 2000 459.1725 15350 204091.6 

Camel Six 
Hump 924 315.7083 442 165.017 3031 581.481 850 405.292 

Shekel_4D 10628 8756.234 10054 10975.58 82500 230204.6 37850 65029.46 
Shekel_10D 500000 168591.4 437767 189641.6 500000 0 500000 0 
Griewank 500000 0 500000 0 500000 105560.5 500000 33908.05 

Langermann 500000 0 500000 0 500000 0 500000 0 
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The results recorded in Table 3.2 show that NMBA succeeded in finding an accuracy less than 

0.001 for most of the benchmark functions considered, except for Rosenbrock, Rastrigin, 

Griewank and Langermann functions whereas the standard Bees Algorithm succeeded in 

finding threshold minimum values for ten benchmark functions except for Rosenbrock, 

Rastrigin, Shekel_10D, Griewank and Langermann functions. Meanwhile, SPSO2011 and 

qABC failed in finding the minimum threshold values for Rosenbrock, Rastrigin, 

Michaelewicz, Shekel_10D, Griewank, Langermann and Trid, Rosenbrock, Zakharov, 

Shekel_10D, Griewank, Langermann functions, respectively. 

 
In terms of number of evaluations, the NMBA outperformed the standard Bees Algorithm on 

most of the functions except for Rosenbrock, Rastrigin, Griewank and Langermann functions. 

These four functions failed to converge and reach a maximum number of function evaluations 

over 100 runs. Hence, their performance is similar in terms of speed whereas for the 

Michaelewicz and Shekel_4D functions, despite NMBA’s median function evaluations being 

less than obtained by Standard Bees Algorithm, the Mann Whitney test showed that these 

results were not statistically significant as the p-value were more than 0.05. Thus, both 

algorithms are said to be comparable in terms of function evaluations for Michaelewicz and 

Shekel_4D functions.  

 
Comparison of NMBA with other algorithms showed that NMBA converges faster for most of 

the benchmark functions as shown in Table 3.3. For comparison with SPSO2011, the NMBA 

is faster than SPSO2011 for most of the benchmark functions except for Schaffer, Trid, 

Rosenbrock, Rastrigin, Griewank, and Langermann functions. For the Schaffer function, the 

SPSO2011 required less function evaluations than NMBA to converge whereas for the Trid 

function, both algorithms are said to be comparable as statistical analysis shown in Table 3.5 

demonstrated that the difference is not significant. As for the Rosenbrock, Rastrigin, Griewank, 
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and Langermann functions, the performance of both algorithms gives comparable results 

because those functions reached maximum function evaluations. 

  
In other cases, NMBA performed better than qABC for most of the benchmark functions except 

for Easom, Rastrigin, Schwefel, and Michaelewicz functions. However, the performance of 

both algorithms for Rosenbrock, Griewank, and Langermann functions is similar in terms of 

function evaluations. 

 

Table 3.4: Significant difference of NMBA’s median 
results against standard Bees Algorithm 

 accuracy p-value speed p-value 
Easom ns - s 0.0000 
Trid ns - s 0.0000 

Rosenbrock ns 0.6527 ns - 
Zakharov ns - s 0.0000 
Schaffer ns - s 0.0000 
Rastrigin ns 0.1676 ns - 
Schwefel ns - s 0.0000 

Michaelewicz ns - ns 0.2187 
Goldstein & Price ns - s 0.0000 
Martin & Gaddy ns - s 0.0000 
Camel Six Hump ns - s 0.0000 

Shekel_4D ns - ns 0.3576 
Shekel_10D ns 0.0629 s 0.0404 
Griewank s 0.0000 ns - 

Langermann s 0.0000 ns - 
s: statistically significant, ns: not significant 
‘-‘: No statistical difference test required 
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Table 3.5: Significant difference of NMBA’s median results  
against other algorithms 

  vs SPSO2011  vs qABC 
 accuracy p-value speed p-value accuracy p-value speed p-value 

Easom ns - s 0.0000 ns - s 0 .0000 
Trid ns - ns 0.2041 s 0 .0000 s 0 .0000 

Rosenbrock ns 0.0969 ns - s 0 .0000 ns - 
Zakharov ns - s 0.0000 s 0 .0000 s 0 .0000 
Schaffer ns - s 0.0000 ns - s 0 .0000 
Rastrigin s 0.0000 ns - s 0 .0000 s 0 .0000 
Schwefel ns - s 0.0000 ns - s 0 .0000 

Michaelewicz s 0.0035 s 0.0001 ns - s 0 .0000 
Goldstein & Price ns - s 0.0000 ns - s 0 .0000 
Martin & Gaddy ns - s 0.0000 ns - s 0 .0000 
Camel Six Hump ns - s 0.0000 ns - s 0 .0000 

Shekel_4D ns - s 0.0000 ns - s 0 .0000 
Shekel_10D s 0.0000 s 0.0000 s 0.0000 s 0 .0000 
Griewank s 0.0000 ns - s 0.0037 ns - 

Langermann s 0.0000 ns - s 0.0000 ns - 
s: statistically significant, ns: not significant    
‘-‘: No statistical difference test required    

 

Another important finding was the overall performance results achieved by NMBA where it 

excelled in eight out of fifteen benchmark functions tested, followed by qABC (five out of 

fifteen), and SPSO2011 (three out of fifteen). A comparison of overall performance is 

summarised in Table 3.6 where the NMBA gives better performance compared to other 

algorithms in case of the Trid, Zakharov, Goldstein & Price, Martin & Gaddy, Camel Six 

Hump, Shekel _4D, Shekel_10D, and Langermann functions. 
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Table 3.6: Comparison of overall performance for NMBA 
Function 

  
SBA NMBA SPSO2011 qABC 

succ. acc. perf. succ. acc. perf. succ. acc. perf. succ. acc. perf. 
Easom 100 X  100 X  100 X  100 X X 

Trid 100 X  100 X X 100 X X 0   

Rosenbrock 0   0   21   0 X X 

Zakharov 100 X  100 X X 100 X  0   

Schaffer 100 X  100 X  100 X X 68 X  

Rastrigin 0   0   0   88 X X 

Schwefel 100 X  100 X  100 X  100 X X 

Michaelewicz 88 X  92 X  39   100 X X 

Goldstein & 
Price 100 X  100 X X 100 X  100 X  

Martin & 
Gaddy 100 X  100 X X 100 X  79 X  

Camel Six 
Hump 100 X  100 X X 100 X  100 X  

Shekel_4D 100 X X 100 X X 59 X  99 X  

Shekel_10D 41   54 X X 0   0   

Griewank 0   0   6 X X 2   

Langermann 0   0 X X 2   0   

Total 1029    1 1046   8 927   3 836   5 
succ: Successful Rate, acc: Accuracy, perf: Overall Performance 

 

Regarding comparison of the overall performance with the standard Bees Algorithm, it can be 

summarised from Tables 3.2–3.3 that, NMBA performed better than the standard Bees 

Algorithm on eleven out of fifteen functions tested. These results demonstrated that the 

performance of NMBA on most of the functions are better than the standard Bees Algorithm 

especially for converged functions where less function evaluations required. Thus, these results 

further support the idea of providing guide direction to the neighbourhood search in improving 

the Bees Algorithm. 
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3.2.3 Discussion 

The most obvious finding to emerge from the results reported in the previous section is the 

effectiveness of the NM method in providing direction during the neighbourhood search. The 

results of this experiment indicate that the NM method is capable of improving the Bees 

Algorithm, specifically in terms of the convergence speed. It is shown in the previous section 

that the NMBA performed better than the standard Bees Algorithm on four unimodal functions 

and seven multimodal functions.  

 
For unimodal functions such as Easom, Trid, Zakharov, and Martin & Gaddy, the NMBA is 

expected to converge faster than the standard Bees Algorithm as the recruited bees would be 

directed toward a better position inside or outside of the patches. An example of improvement 

in terms of convergence speed is illustrated in the plot of convergence for the Trid function in 

Figure 3.4. This figure clearly indicates the superiority of NMBA over the standard Bees 

Algorithm during the search progress, where better fitness has been found even at the early 

stages of the search. For multimodal functions such as Schaffer, Schwefel, Goldstein & Price, 

Camel Six Hump and Shekel_10D, despite its multimodality, the NMBA still found the 

acceptable solution at a higher convergence speed. Meanwhile for Griewank and Langermann 

functions, despite the NMBA not being capable to find an acceptable solution, but it is nearer 

to the global optima. Figure 3.5 illustrates an example of a convergence plot for the Griewank 

function at the logarithmic scale. The figure indicates that both algorithms stagnated in most 

of the search progress, but the NMBA still managed to find a better fitness value. 
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Figure 3.4: Plot of convergence for the Trid function 

 

 

Figure 3.5: Plot of convergence for the Griewank function 

 

With respect to equality in the performance of the NMBA with the standard Bees Algorithm 

for some of the functions (Michaelewicz, Rastrigin, Rosenbrock, and Shekel_4D functions), 

these results are likely to be related to the characteristic of these functions. For the 

Michaelewicz function, despite it being apparent that the median function’s evaluations of the 

improved Bees Algorithm are less than the standard Bees Algorithm, the p-value of 0.2187 

indicates that the difference is not significant. This result may be explained by the fact that the 
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Michaelewicz function is a multimodal function with valleys and ridges. For this reason, the 

NM strategy was less effective in dealing with this type of surface landscape. 

 
 Meanwhile, the Rastrigin is a function that has unimodal behaviour overall, with a rough 

multi-modal surface. Thus, the NM operators within the NMBA are unable to aid the recruited 

bees to locate a better fitness value as the they can be easily trapped between many local 

optimums.  

 
For the Rosenbrock function, even though it is a unimodal function, the location of the global 

optimum inside a long, narrow, parabolic shaped flat valley causes difficulty in terms of finding 

global optimum. This might have contributed to the equal results in the performance on the 

Rosenbrock function.  

 
As for the Shekel_4D function, the performance was found to be comparable to the standard 

Bees Algorithm, though at a higher dimension version of this function (Shekel_10D), the 

NMBA showed significant improvement. The reason for this is not clear but it may have 

something to do with the dimensionality of the problem as for some cases, a higher dimension 

is easier to solve. 

 
When compared to other algorithms, the NMBA did not perform as well as the SPSO2011 and 

qABC for the Easom, Rosenbrock, Schaffer, Rastrigin, Schwefel, Michaelewicz and Griewank 

functions. For the Schaffer and Griewank functions, the SPSO2011 achieved the best overall 

performance compared to other algorithms with both functions sharing similar characteristics, 

namely a wavelike surface landscape. This characteristic might provide an advantage to the 

SPSO2011 over other algorithms in order to deal with this type of function. 
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 As for the Rastrigin function, despite its similarities in terms of the surface landscape with the 

functions mentioned earlier, but its nature as a separable function causes the qABC to perform 

better than other algorithms. For the remaining functions, where the qABC attained the best 

overall performance, those functions are separable functions except for the Rosenbrock 

function. It is likely that the qABC gives the best performance for this type of function. Despite 

it being a non-separable function, the location of global optimum inside the deep valley and 

the flat surface landscape allows the qABC performed to be best performed on this function as 

well. The factors that contribute to this best performance on the Rosenbrock function are likely 

due to long stagnation limit and single index dimension position update of the qABC. 

3.3 Mechanical Design Applications 

In order to further evaluate the effectiveness of the proposed algorithm, four well known 

constrained engineering design problems were chosen: Welded Beam, Pressure Vessel, 

Tension/Compression Spring and Speed Reducer (Akay and Karaboga, 2012). The objective 

of the Welded Beam and Pressure Vessel problems are to minimise cost subject to constraints 

whereas the objective of the Tension or Compression Spring and Speed Reducer are to 

minimise weight subject to constraints. These engineering design problems have different 

characteristics of objective functions with linear and nonlinear constraints (Rao et al., 2011). 

The details of these problems are given in Appendix C (Akay and Karaboga, 2012). 

 
In the case of handling constrained problems, a method used by Ahmad (2012) was 

implemented in this study as the standard Bees Algorithm and NMBA are previously applied 

to unconstrained problems. In this method, only a feasible solution is allowed to be included in 

the solution list by checking whether all constraints have been satisfied. Any infeasible solution 
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found during searching was abandoned from the solution list. This searching process continued 

until required feasible solutions have been found. 

 
The constrained engineering design problems mentioned above have been attempted by several 

researchers on other algorithms. Thus, the results of NMBA and standard Bees Algorithm were 

compared against results obtained by other algorithms (Akay and Karaboga, 2012). The 

parameter values used for NMBA and standard Bees Algorithm for these problems are shown 

in Table 3.7. In order to make fair comparison, the stopping criterion for NMBA and standard 

Bees Algorithm were set as 30000 function evaluations. For each constrained engineering 

design problem, the best, worst, mean and median solution found over 30 runs were recorded 

as shown in Table 3.8. In general, the average (median) solutions found by NMBA and standard 

Bees Algorithm are comparable or better than other algorithms. 

 

Table 3.7: Parameter setting for mechanical design applications 
Problem ns ne nb nre nrb ngh stlim 

Welded Beam 10 2 5 10 5 0.08 5 
Pressure Vessel 10 2 5 10 5 0.2 5 
Tension/Compression 
Spring 10 2 5 10 5 0.001 5 

Speed Reducer 10 2 5 10 5 0.01 5 
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To compare the performance of NMBA against the standard Bees Algorithm, the significant 

differences between both of those algorithms were done using the Mann Whitney Test at α = 

0.05 significance level for each engineering design problem. If the median solution over 

number of runs found by NMBA is less than standard Bees Algorithm and the difference is 

significant, NMBA is said to perform better than standard Bees Algorithm. However, if the 

difference between those two algorithms is insignificant, then it is said to be comparable. The 

results in Table 3.8 show that NMBA obtained better median solutions than the standard Bees 

Algorithm for all the problems. However, a Mann Whitney test revealed that there were no 

significant differences between the solutions obtained by NMBA and standard Bees Algorithm 

for all the problems except for the speed reducer problem. The variation of minimum fitness 

value obtained by standard Bees Algorithm and NMBA over 30 runs are given in Figures 3.6–

3.9. These figures validate the significant differences between both algorithms. These results 

Table 3.8:  Comparison of NMBA against others (Akay and Karaboga , 2012) 
Problem Stats. Scaa Psoa (µ+λ)-ES UPSOm ABC BA NMBA 

Welded 
Beam 

  

Best NA NA 1.724852 1.92199 1.724852 1.7332472 1.73176 
Mean NA NA 1.777692 2.83721 1.741913 1.7679225 1.7649022 

Median NA NA NA NA NA 1.7669785 1.764661 
NFE NA NA 30,000 100,000 30,000 30000 30000 

Pressure 
Vessel 

  

Best 6171 6059.7143 6059.70161 6544.27 6059.71474 6103.4175 6067.8964 
Mean 6335.05 6289.92881 6379.938037 9032.55 6245.3081 6381.4714 6377.1937 

Median NA NA NA NA NA 6315.1676 6241.594 
NFE 20000 30000 30000 100000 30000 30000 30000 

Tension/ 
Compression 

Spring 
  

Best 0.012669 0.012665 0.012689 0.01312 0.012665 0.012673 0.0126693 
Mean 0.012923 0.012702 0.013165 0.0229478 0.012709 0.0133388 0.0132001 

Median NA NA NA NA NA 0.0133214 0.013165 
NFE 25,167 15000 30000 100000 30000 30000 30000 

Speed 
Reducer 

  

Best 2994.74 NA 2996.348094 NA 2997.05841 2999.5471 2997.2193 
Mean 3001.758 NA 2996.34809 NA 2997.05841 3006.3114 3001.9118 

Median NA NA NA NA NA 3005.7187 3002.624 
NFE 54,456 NA 30000 NA 30000 30000 30000 

Bold face indicates the winner of the algorithms, NA: not available, NFE:Number of function evaluations 
aThe welded beam problems are different from the one employed in this study 
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suggest that the NMBA performed better than the standard Bees Algorithm for the speed 

reducer problem but equal in performance for the remaining three problems. 

 
As for the comparison with other algorithms, the results of the best solution found by other 

algorithms in the literature are compared instead of the median result. It can be observed from 

Table 3.8 that, (µ+λ)-E and ABC produced the best solution for the Welded Beam problem 

whereas Pso and ABC produce the best solution for the Tension/Compression Spring problem. 

As for the Pressure Vessel and Speed Reducer problems, the best solutions were found by 

(µ+λ)-ES and Sca respectively. Even though these results show that other algorithms managed 

to find the best solution for all problems, it does not indicate superiority of other algorithms 

against NMBA. Further statistical analysis is still required to compare the performance. The 

most important aspect in comparison with other algorithms is to show the results obtained by 

the NMBA are generally comparable as they are all slightly different. 

 
In summary, these results show that incorporating the NM method into local search of the 

standard Bees Algorithm could improve the capability of the standard Bee Algorithm to find 

better solutions. In addition to the result in Table 3.8, the best solution and constraint values 

found by all algorithms are summarised in Tables 3.9-3.12. 
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Figure 3.6: Minimum costs found by Standard Bees Algorithm and NMBA 
 over 30 runs for the Welded Beam problem 

 
 
 
 
 

 
Figure 3.7: Minimum costs found by Standard Bees Algorithm and NMBA 

 over 30 runs for the Pressure Vessel problem 
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Figure 3.8: Minimum weights found by Standard Bees Algorithm and NMBA 
 over 30 runs for the Tension/Compression Spring problem 

 

 

 

Figure 3.9: Minimum weights found by Standard Bees Algorithm and NMBA 
 over 30 runs for the Speed Reducer problem 
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Table 3.9: Parameter and constraint values of the best 
solutions obtained by NMBA and others for Welded 

Beam 

  (µ+λ)ES ABC BA  NMBA 
x1 0.20573 0.20573 0.20206 0.19886 
x2 3.470489 3.470489 3.56971 3.42656 
x3 9.036624 9.036624 9.03640 9.57797 
x4 0.205729 0.20573 0.20584 0.20326 
g1 0 0 -55.8952 -17.2147 
g2 0.000002 −0.000002 -14.0521 -2970.27 
g3 0 0 -0.00377 -0.0044 
g4 −3.432984 −3.432984 -3.42349 -3.3637 
g5 −0.080730 −0.080730 -0.07706 -0.07386 
g6 −0.235540 −0.235540 -0.23555 -0.23771 
g7 −0.000001 0 -9.23549 -6.86761 

f(x) 1.724852 1.724852 1.733247 1.73176 
 
 

Table 3.10: Parameter and constraint values of the best solutions  
obtained by NMBA and others for Pressure Vessel 

  SCA PSO (µ+λ)ES ABC BA NMBA 
x1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 
x2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 
x3 41.9768 42.098446 42.098446 42.098446 41.811295 42.095279 
x4 182.2845 176.636052 176.636596 176.636596 180.260978 176.677711 
g1 −0.0023 0 0 0 -0.005542 -6.11E-05 
g2 −0.0370 −0.035881 0.03588 −0.035881 -0.038620 -0.035911 
g3 −23420.5966 0 0 −0.000226 -183.1446 -10.4343 
g4 −57.7155 −63.363948 −63.363404 −63.363404 -59.73902 -63.32229 

f(x) 6171 6059.70161 6059.7143 6059.714339 6103.417489 6067.896372 
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Table 3.11: Parameter and constraint values of the best solutions  
obtained by NMBA and others for Tension Spring 

  SCA PSO (µ+λ)ES ABC BA NMBA 
x1 0.0521602 0.05169 0.052836 0.051749 0.052312 0.051413 
x2 0.368159 0.35675 0.384942 0.358179 0.371889 0.350089 
x3 10.648442 11.287126 9.807729 11.203763 10.452475 11.690453 
g1 0 0 −0.000001 −0.000000 -1.91E-05 -5.68E-05 
g2 0 0 0 −0.000000 -2.44E-05 -8.21E-05 
g3 −4.075805 −4.053827 −4.106146 −4.056663 -4.082842 -4.040086 
g4 −0.719787 −0.727706 −0.708148 −0.726713 -0.717198 -0.732331 

f(x) 0.012669 0.012665 0.012689 0.012665 0.012673 0.012669 
 

 
 

 
Table 3.12: Parameter and constraint values of the best solutions 

obtained by NMBA and others for Speed Reducer 
  SCA (µ+λ)ES ABC BA NMBA 
x1 3.5 3.499999 3.499999 3.501481 3.501600 
x2 0.7 0.699999 0.7 0.700124 0.700016 
x3 17 17 17 17 17 
x4 7.327602 7.3 7.3 7.388378 7.307274 
x5 7.715321 7.8 7.8 7.844692 7.802366 
x6 3.350267 3.350215 3.350215 3.350536 3.350318 
x7 5.286655 5.286683 5.2878 5.287016 5.286723 
g1 −0.073915 −0.073915 −0.073915 -0.074636 -0.074382 
g2 −0.197999 −0.197998 −0.197999 -0.198623 -0.198403 
g3 −0.493501 −0.499172 −0.499172 -0.969473 -9.70E-01 
g4 −0.904644 −0.901472 −0.901555 -0.994106 -0.994199 
g5 0 0 0 -0.000141 -8.10E-05 
g6 0.000633 0 0 -0.000181 -2.21E-05 
g7 −0.7025 −0.702500 −0.7025 -0.702447 -0.702493 
g8 0 0 0 -0.000245 -0.000433 
g9 −0.583333 −0.583333 −0.583333 -0.583231 -0.583153 
g10 −0.054889 −0.051325 −0.051326 -0.062608 -0.052249 
g11 0 −0.010852 −0.010695 -0.016441 -0.011147 
f(x) 2994.74424 2996.34809 2997.05841 2999.54709 2997.21932 
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3.4 Summary 

This chapter proposed a modified version of the Bees Algorithm known as NMBA. In this 

NMBA, a NM method was used in the local search to further enhance the performance of the 

Bees Algorithm for unconstraint benchmark functions. The addition of NM method in the local 

search provides guidance for the direction of the local search to find optimal solutions faster 

than the standard Bees Algorithm. Following the addition of the NM method into the local 

search, NMBA showed better performance than the standard Bees Algorithm in various 

benchmark functions, especially in terms of convergence speed. 

 
In addition, the NMBA was also applied to four constrained engineering mechanical problems. 

Experimental results showed that the NMBA significantly outperformed the standard Bees 

Algorithm for one out of four mechanical design problems. Despite this, the standard Bees 

Algorithm still does not outperform NMBA for the remaining three engineering problems. 

Therefore, this proposed algorithm has the potential to be utilised for different real world 

engineering problems. 
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CHAPTER 4 

Recombination Based Bees Algorithm 
 

4.1 Preliminaries 

The recombination operator is one of the essential elements in Evolutionary Algorithm (EA) 

for creating new solutions from two or more old solutions in each generation. The 

successfulness of recombination operator in EA has inspired it to be used in the Standard Bees 

Algorithm. Thus, this chapter presents a new version of Bees Algorithm with recombination 

operator at two different stages. In this proposed Bees Algorithm, the recombination operators 

were added at local search and best abandoned sites to produce new solutions closer to global 

or local optima, improving the exploitation capability. 

 
The rest of this chapter describes the proposed Bees Algorithm in detail including the 

performance on a set of unconstraint benchmark functions, performance on constrained 

mechanical design problems, and the conclusion of this work in section 4.2, section 4.3 and 

section 4.4 respectively. 

4.2 Recombination Based Bees Algorithm 

In this section, a new version of the Bees Algorithm known as the recombination based Bees 

Algorithm (rBA) is introduced. The rBA uses recombination operator at two different stages 

of the standard Bees Algorithm, which are the local search and best abandoned sites. Although 

the Bees Algorithm has been proven to be very good in solving a wide range of real world 

problems, further improvement is needed to expand the capabilities of the standard Bees 
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Algorithm. Therefore, utilising recombination operator in the standard Bees Algorithm may 

produce solutions closer to global or local optima for better exploitation capability. 

 
The recombination operator itself was inspired from commonly used variation operators in 

Evolution Algorithm operator known as recombination operator or crossover operator, which 

mimics the reproduction in biological processes. This recombination operator produces one or 

more child solutions from parent solutions. The main idea of this recombination operator is to 

combine different partitioned variables solutions into new solutions. An example of 

recombination operators (D=dimension) between two solutions is described in Figure 4.1 

below.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Recombination operator mechanism 

  

The proposed recombination operator starts with two good solutions divided into two partitions 

randomly. The number of variables in the partition is determined randomly. Then, two new 

solutions are formed by combining two different solutions which have been divided into 

different partitions. This operator could produce new solutions with better fitness values 

compared to old solutions. For this reason, this recombination operator is added into the 

    x11,x12,x13,x14,x15,…..x1D                       Solution 1 
    x21,x22,x23,x24,x25,…..x2D                        Solution 2 
 

 

              Partition 1                  Partition 2 

    x11,x12,x13,x14,x25,…..x2D                     New Solution 1 
    x21,x22,x23,x24,x15,…..x1D              New Solution 2 

x11,x12,x13,x14 
x21,x22,x23,x24 

x15,…..x1D 
x25,…..x2D 
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standard Bees Algorithm. In addition, additional parameters are also not required for the 

implementation of this recombination operator into the standard Bees Algorithm because the 

solutions are divided into partitions randomly. 

 
The overall flowchart of this proposed algorithm is presented in Figure 4.2. 

Currently, once the fittest bee for each patch has been found in the standard Bees Algorithm, a 

global search is performed as described in Section 2.6. However, in this proposed algorithm 

two additional stages are added into the standard Bees Algorithm. The additional stages of the 

proposed algorithm are recombination operator between two elite sites after selection of the 

fittest patch and recombination operators on two best abandoned sites. 

 
The first modification in the standard Bees Algorithm is by adding recombination operator 

after selection of the fittest patch between two elite sites. Once the fittest recruited bee for each 

patch has been selected, a recombination operator between those two elite sites is executed to 

generate two new positions. If the new positions generated by the recombination operator have 

better fitness than the elite sites, the new position substitutes the elite site as the new elite site. 

To avoid excessive computation, the recombination operator is only applied to elite sites 

instead of all best sites. The main idea of performing recombination operator between two elite 

sites is to combine the components of two good solutions, producing better new solutions than 

the old solutions.  

 
After completion of recombination operator on elite sites, another modification in the standard 

Bees Algorithm is adding recombination operator between two best abandoned sites. As the 

search progresses, the best sites might abandon those sites that failed to find a better solution. 

Thus, two best abandoned sites are selected as soon as two best abandoned sites are available. 

Then, recombination operation between these two sites is done to produce two new positions. 
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If the fitness value of the new position is better than the best solution so far, the new position 

is merged into the new population for the next generation. The mechanism of merging the 

improved abandoned site back into the population is essential in improving the standard Bees 

Algorithm because for few landscape features, the standard Bees Algorithm failed to 

converged. If the standard Bees Algorithm failed to converged, few best solutions found so far 

may have good chances to be improved by recombination operator. Therefore, adding 

recombination operator on those best abandoned sites could produces better new sites. 

 
In order to understand how recombination operator works on two elite sites or on abandoned 

sites, an example of the search behaviour in two dimensional spaces is described in Figures 

4.3-4.5. The search mechanism starts with two distinct elite sites after selecting the fittest 

recruited bee for each patch. In Figure 4.3, two initial elite sites are selected with fitness value 

f(elite1) of elite1 better than fitness value f(elite2) of elite2. Then, two new solutions are 

produced by recombination operation as shown in Figure 4.4. After the fitness evaluation of 

those new solutions, new elite1 replaces elite2 as new elite site for next generation because the 

new elite1 fitness value is better than elite2 fitness value. This additional search behaviour 

enhances the capabilities of the standard Bees Algorithm to converges to better solutions.  
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Figure 4.2: Flowchart of the recombination based Bees Algorithm  
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Figure 4.3: Two initial elite solutions (f(elite1)< f(elite2)) 

 
 

 
Figure 4.4: Two new solutions produced (f(new elite1)< f(elite1)< f(elite2)< f(new elite2))         
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Figure 4.5: The new elite2 selected as new elite site replacing elite2 

4.2.1 Experimental Setup 

This section describes the experimental setup used in this chapter to test the performance of 

the proposed algorithm. In general, similar experimental set up were utilised in this study by 

using a similar set of benchmark functions (see Appendix A), similar parameter settings (Table 

3.1), stopping criterion and method of comparison as in Section 3.2.  

4.2.2 Experimental Results 

Table 4.1 presents the median and standard deviation of accuracy achieved by standard Bees 

Algorithm, rBA, SPSO2011 and qABC algorithm over 100 runs. In order to make the 

comparison clearer, the accuracy on this table is recorded as 0.0000 if the experimental result 

obtained were less than 0.001. Based on the median accuracy results in Table 4.1, the rBA 

finds acceptable solutions on Easom, Trid, Zakharov, Schaffer, Schwefel, Michaelewicz, 
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Goldstein & Price, Martin & Gaddy, Camel Six Hump and Shekel_4D (ten functions). 

Similarly, for the standard Bees Algorithm, global optimum values were found on same 

functions as found by rBA.  

 
Meanwhile, SPSO2011 found acceptable solutions on Easom, Trid, Zakharov, Schaffer, 

Schwefel, Goldstein & Price, Martin & Gaddy, Camel Six Hump and Shekel_4D (nine 

functions) and qABC found on Easom, Schaffer, Rastrigin, Schwefel, Michaelewicz, Goldstein 

& Price, Martin & Gaddy, Camel Six Hump and Shekel_4D (nine functions). 

 
Next, Table 4.2 presents experimental result comparisons on function evaluations for rBA 

against standard Bees Algorithm, SPSO2011 and qABC algorithm over 100 runs. The results 

on Table 4.2 show that rBA converged faster than the standard Bees Algorithm in most of the 

functions tested except for six functions, which were Rosenbrock, Rastrigin, Shekel_4D, 

Shekel_10D, Griewank, and Langermann. For Shekel_4D, although the median function 

evaluations recorded is less than the standard Bees Algorithm, the Mann Whitney test showed 

(See Table 4.3) that these results are not statistically significant. Thus, it is said that the 

convergence speed for this function compared to the standard Bees Algorithm is comparable. 

For the remaining five functions, the performance is comparable in terms of speed as the 

median values recorded were maximum function evaluations. 

 
In the case of comparison with SPSO2011, the results on Table 4.2 shows that the rBA 

performed better than SPSO2011 in terms of convergence speed on eight functions, which were 

Easom, Zakharov, Schwefel, Michaelewicz, Goldstein & Price, Martin & Gaddy, Camel Six 

Hump, and Shekel_4D (eight functions). As for comparison between rBA and qABC algorithm, 

the rBA found acceptable solutions with less function evaluations on Trid, Zakharov, Schaffer, 

Michaelewicz, Goldstein & Price, Martin & Gaddy, and Shekel_4D (seven functions). For all 
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improvements, the p–values are less than 0.05 as shown in Table 4.4, which indicate the 

difference is significant. 

 

  

Table 4.1: Comparison on accuracy over 100 runs for rBA 
Function 

  
SBA  rBA  SPSO2011  qABC 

Median StdDev   Median StdDev   Median StdDev   Median StdDev 
Easom 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 
Trid 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.3016 0.3062 

Rosenbrock 4.8919 1.0673  4.3628 1.2898  6.9007 9.4754  0.0758 0.0703 
Zakharov 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0235 0.0867 
Schaffer 0.000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0010 
Rastrigin 12.9437 3.2667  3.9840 1.4408  6.4253 2.2038  0.0000 0.0219 
Schwefel 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 

Michaelewicz 0.0000 0.0133  0.0000 0.0002  0.0411 0.0895  0.0000 0.0000 
Goldstein & Price 0.0000 0.0000  0.0000 0.0000  0.0000 0.000  0.0000 0.0000 
Martin & Gaddy 0.0000 0.0000  0.0000 0.0000  0.0000 0.000  0.0000 0.0000 
Camel Six Hump 0.0000 0.0000  0.0000 0.0000  0.0000 0.000  0.0000 0.0000 

Shekel_4D 0.0000 0.0000  0.0000 0.0000  0.0000 2.5068  0.0000 0.0014 
Shekel_10D 0.0015 2.6435  0.0015 3.2433  8.7202 0.2236  8.7231 0.0036 
Griewank 0.1091 0.0226  0.0668 0.0194  0.0341 0.0271  0.0800 0.0389 

Langermann 1.2563 0.0989   1.2545 0.1512   0.9677 0.1363   1.1712 0.0916 
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Table 4.3: Significant difference of rBA’s median results 
against standard Bees Algorithm 

 accuracy p-value speed p-value 
Easom ns - s 0.0000 
Trid ns - s 0.0000 

Rosenbrock s 0.0159 ns - 
Zakharov ns - s 0.0000 
Schaffer ns - s 0.0000 
Rastrigin s 0.0000 ns - 
Schwefel ns - s 0.0000 

Michaelewicz ns - s 0.0000 
Goldstein & Price ns - s 0.0000 
Martin & Gaddy ns - s 0.0076 
Camel Six Hump ns - s 0.0019 

Shekel_4D ns - ns 0.0082 
Shekel_10D ns - ns - 
Griewank s 0.0000 ns - 

Langermann ns 0.2670 ns - 
s: statistically significant, ns: not significant 
‘-‘: No statistical difference test required 

Table 4.2: Comparison on function evaluations over 100 runs for rBA 
Function 

  
SBA  rBA  SPSO2011  qABC 

Median StdDev   Median StdDev   Media
n 

StdDev   Median StdDev 
Easom 3124 1408.92  1897 663.15  4000 885.23  1050 6888.02 

Trid 13224 4255.14  10320 2585.29  9100 700.66  500000 0 
Rosenbrock 500000 0  500000 0  500000 117878  500000 0 
Zakharov 16374 1896.45  13888 1943.12  35100 4619.08  500000 0 
Schaffer 5305.5 2869.26  2988.5 1728.23  2800 1728.96  43951 225352.2 
Rastrigin 500000 0  500000 0  500000 0  352561.5 97711.63 
Schwefel 2825 100.51  1376 455.321  14100 30860.92  850 12132.96 

Michaelewicz 163807.5 155525.4  13703 17848.86  500000 223339.3  105399 88612.96 
Goldstein & 

Price 1824 729.96  1480 493.77  4000 501.39  2350 35168.90 

Martin & 
Gaddy 1464 732.91  1272 587.83  2000 459.17  15350 204091.6 

Camel Six 
Hump 924 315.71  752 306.40  3031 581.48  850 405.29 

Shekel_4D 10628 8756.23  8470.5 10583.84  82500 230204.6  37850 65029.46 

Shekel_10D 500000 168591.4  500000 180750.2
0 

 500000 0  500000 0 

Griewank 500000 0  500000 0  500000 105560.5  500000 33908.05 

Langermann 500000 0   500000 0   500000 0   500000 0 
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Table 4.4: Significant difference of rBA’s median results  
against other algorithms 

  vs SPSO2011  vs qABC 
 accuracy p-value speed p-value accuracy p-value speed p-value 

Easom ns - s 0.0000 ns - s 0.0000 
Trid ns - s 0.0000 s 0.0000 s 0.0000 

Rosenbrock ns 0.05876 ns - s 0.0000 ns - 
Zakharov ns - s 0.0000 s 0.0000 s 0.0000 
Schaffer ns - ns 0.4839 ns - s 0.0000 
Rastrigin s 0.0000 ns - s 0.0000 s 0.0000 
Schwefel ns - s 0.0000 ns - s 0.0001 

Michaelewicz s 0.0173 s 0.0000 ns - s 0.0000 
Goldstein & Price ns - s 0.0000 ns - s 0.0001 
Martin & Gaddy ns - s 0.0000 ns - s 0.0000 
Camel Six Hump ns - s 0.0000 ns - ns 0.0819 

Shekel_4D ns - s 0.0000 ns - s 0.0000 
Shekel_10D s 0.0000 ns - s 0.0000 ns - 
Griewank s 0.0000 ns - s 0.0000 ns - 

Langermann s 0.0000 ns - s 0.0000 ns - 
s: statistically significant, ns: not significant    
‘-‘: No statistical difference test required    

 

Table 4.5 presents the comparison results of overall performance of the rBA against other 

algorithms. From Table 4.5, it is shown that the rBA achieved top rank performance on most 

of the functions tested (nine out of fifteen). For comparisons with other algorithms show that 

SPSO2011 and qABC performed better than rBA on two functions (two functions comparable 

to rBA) and four functions respectively. As for comparison with the standard Bees Algorithm, 

the rBA outperformed the standard Bees Algorithm on twelve out of fifteen functions 

considered. The remaining three functions show comparable results compared to the proposed 

algorithm. Overall, these results indicate that the rBA outperformed other algorithms in most 

cases, especially in terms of convergence speed where it can find the global optimum in most 

cases with fewer number of function evaluations.  
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Table 4.5: Comparison of overall performance for rBA 

Function SBA rBA SPSO2011 qABC 
  succ. acc. perf.  succ. acc. perf.  succ. acc. perf.  succ. acc. perf. 

Easom 100 X  100 X  100 X  100 X X 

Trid 100 X  100 X X 100 X X 0   

Rosenbrock 0   0   21   0 X X 

Zakharov 100 X  100 X X 100 X  0   

Schaffer 100 X  100 X X 100 X X 68 X  

Rastrigin 0   0   0   88 X X 

Schwefel 100 X  100 X  100 X  100 X X 

Michaelewicz 88 X  100 X X 39   100 X  

Goldstein & Price 100 X  100 X X 100 X  100 X  

Martin & Gaddy 100 X  100 X X 100 X  79   

Camel Six Hump 100 X  100 X X 100 X  100 X  

Shekel_4D 100 X X 100 X X 59 X  99 X  

Shekel_10D 41 X X 46 X X 0   0   

Griewank 0   0   6 X X 2   

Langermann 0   0   2 X X 0   

Total 1029   2  1046   9  927   4  836   4 
succ.: successful rate, acc.: accuracy, perf.: performance 
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4.2.3 Discussion 

The results mentioned in the previous section show that the proposed rBA in general 

accomplished significant improvements compared to the standard Bees Algorithm and other 

algorithms in terms of finding the global optimum and convergence speed. A possible 

explanation for this improvement is that the recombination operator helps the exploitation in 

the local search. It has been explained by Pham and Castellani (2009) that the only local search 

used in the standard Bees Algorithm, which is random mutations is not sufficient to generate 

favourable random mutations, especially for high dimensional and difficult fitness landscapes 

as the fitness solution decreases. Even though the local search in the standard Bees Algorithm 

assisted by neighbourhood shrinking strategy increases the like hood of finding local peaks, 

additional exploitation strategies could further improve convergence speed and accuracy of the 

Bees Algorithm. For this reason, recombination operator applied on elite sites helps the 

proposed algorithm to find better solutions at fewer function evaluations. 

 
However, the recombination operator may not be suitable for non-separable complex 

multimodal functions such as Shekel_4D, Shekel_10D and Langermann due to combination of 

complex landscape and interdependence between variables. Thus, the usage of recombination 

operator on these functions might cause the recombination operator to produces new positions 

away from the local peak. This reason explains the similar performance of the proposed 

algorithm on Shekel_4D, Shekel_10D and Langermann functions against the standard Bees 

Algorithm.  

 
Furthermore, the rBA also failed to find the global optimum on Rosenbrock, Rastrigin, and 

Griewank functions. A possible explanation for these results may be due to landscape surface 

of the functions. The location of the global minimum for Rosenbrock function on narrow, 
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curved valleys (Kang et al., 2011) might cause difficulty in solving this type of function. The 

Rastrigin and Griewank functions are categorised as a function that has an overall unimodal 

behaviour with large numbers of local optima (Pham and Castellani, 2009). This type of 

characteristic could attribute to non-convergence on these two functions. Another possible 

explanation for this is related to the neighbourhood size used, which is the same for all 

functions. Fine tuning the neighbourhood size value could possibly improve the results.  

 
Although three functions mentioned above were not able to reach global optimum, the Mann 

Whitney test showed that the results on median accuracy obtained by rBA against the standard 

Bees Algorithm were significantly different (See Table 4.3). It thus can be suggested that the 

recombination operator moved the local search closer to the global or local peak finding better 

solutions. Figures 4.6-4.8 present the convergence plot of all these functions during the search. 

It is clear from these figures that the rBA achieved better fitness values than the standard Bees 

Algorithm.  

 
Meanwhile, Figures 4.9-4.11 display the cumulative frequency of recombination operator on 

elite and abandoned sites found better fitness for Rosenbrock, Rastrigin and Griewank 

functions respectively. These figures indicate that the recombination operator is more effective 

on elite sites rather than the abandoned sites as more better solutions produced by the 

recombination operator during the search progress. For the remaining of the functions, the rBA 

performed considerately well compared to the standard Bees Algorithm. 
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Figure 4.6: Plot of convergence for the Rosenbrock function 
 

 

 

Figure 4.7:  Plot of convergence for the Rastrigin function 
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Figure 4.8: Plot of convergence for the Griewank function 

 

 

Figure 4.9: Cumulative frequency of recombination operator found better solutions from elite 
sites and abandoned sites for the Rosenbrock function 
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Figure 4.10: Cumulative frequency of recombination operator found better solutions from 
elite sites and abandoned sites for the Rastrigin function 

 

 

 

Figure 4.11: Cumulative frequency of recombination operator found better solutions from 
elite sites and abandoned sites for the Griewank function 
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Another important finding was the overall performance for functions where rBA did not 

perform as well as SPSO2011 and qABC. These results may be explained in terms of search 

mechanisms in those two algorithms. For SPSO2011, the search mechanism is based on 

individual and neighbourhood-based best known particle positions (Zambrano-Bigiarini et al., 

2013). Moreover, this version of PSO has no mechanism to escape the local optima such as site 

abandonment strategy in the Bees Algorithm. These two differences in search mechanisms are 

likely the reasons SPSO2011 outperforms rBA on Griewank and Langermann functions.   

 
For qABC, the search mechanism for the qABC algorithm only updates the position of bees in 

solution space by one random index dimension instead of all problem dimensions. 

Furthermore, the qABC also has long stagnation limit thus causing continuous exploitation on 

promising patches (Karaboga & Gorkemli, 2012). This might explain the top performance of 

qABC on Easom, Rosenbrock, Rastrigin and Schwefel functions.  

4.3 Mechanical Design Applications 

This section discusses on the application of the proposed Bees Algorithm on the four well 

known constrained mechanical design problems. The details of these mechanical design 

problems are described in Appendix C. In this experiment, same parameter settings as shown 

in Table 3.7 was adopted while the stopping criterion and number of runs were set at 30000 

function evaluations and 30 times, respectively. On handling constraints, a similar method as 

explained in Section 3.3 was used in this experiment where only feasible solutions were 

accepted to be selected in the population. 

 
The results of rBA were compared with the standard Bees Algorithm and the results extracted 

from Akay and Karaboga (2012) in terms of best solution found over 30 runs, median solution 

over 30 runs and function evaluation needed to reach that solution. Table 4.6 shows results 
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obtained by rBA and the comparison against other results found by other researchers. In the 

case of comparing the median solution between the standard Bees Algorithm and the proposed 

Bees Algorithm, the Mann Whitney (at α = 0.05) test was used to check the significant 

difference between two median solutions. An algorithm is said to be better than another if the 

median value obtained is less than other one and the Mann Whitney test showed significant 

difference. If Mann Whitney test showed no significant difference, both algorithms are said to 

be comparable. 

 

 

  

Table 4.6:  Comparison of  rBA against others (Akay and Karaboga, 2012) 
Problem Stats. Scaa Psoa (µ+λ)-ES UPSOm ABC BA rBA 

Welded 
Beam 

 

Best NA NA 1.724852 1.92199 1.724852 1.7332472 1.727224 
Mean NA NA 1.777692 2.83721 1.741913 1.76792249 1.758381 

Median NA NA NA NA NA 1.76697849 1.75392 
NFE NA NA 30,000 100,000 30,000 30000 30000 

Pressure 
Vessel 

 

Best 6171 6059.7143 6059.70161 6544.27 6059.71474 6103.41749 6068.358 
Mean 6335.05 6289.92881 6379.938037 9032.55 6245.3081 6381.47138 6476.64 

Median NA NA NA NA NA 6315.16763 6313.96 
NFE 20000 30000 30000 100000 30000 30000 30000 

Tension/ 
Compresion 

Spring 
 

Best 0.012669 0.012665 0.012689 0.01312 0.012665 0.01267303 0.012668 
Mean 0.012923 0.012702 0.013165 0.0229478 0.012709 0.01333878 0.012768 

Median NA NA NA NA NA 0.0133214 0.01269 
NFE 25,167 15000 30000 100000 30000 30000 30000 

Speed 
Reducer 

 

Best 2994.74 NA 2996.348094 NA 2997.05841 2999.54709 2997.885 
Mean 3001.758 NA 2996.34809 NA 2997.05841 3006.31144 3001.627 

Median NA NA NA NA NA 3005.71872 3001.55 
NFE 54,456 NA 30000 NA 30000 30000 30000 

NA: not available, NFE:Number of function evaluations 
aThe welded beam problem is different from the one employed in this study 
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The results in Table 4.6 indicate that the median solutions over 30 runs found by rBA are better 

than the standard Bees Algorithm and the differences are significant for most of the problems 

except the pressure vessel problem. Figures 4.12–4.15 show variations of solutions obtained 

between both algorithms for all problems. Therefore, this shows that the rBA outperformed the 

standard Bees on the Welded Beam, Tension Spring and Speed Reducer problems but 

performed equally on the Pressure Vessel problem.  

 
Moreover, in terms of best results, the (µ+λ) -ES (ABC found the same best), (µ+λ)-ES, PSO 

and Sca algorithms found the best solution for the Welded Beam, Pressure Vessel, Tension 

Spring and Speed Reducer problems respectively. Although the comparison of results with 

other algorithms show that the rBA did not perform as well as other the algorithms in terms of 

best solution, these results are relatively close compared to the results of rBA. In general, it 

seems that the performance of rBA on these four mechanical design problems compared with 

other algorithms is comparable. Tables 4.7–4.10 present the values of the design variables for 

the best solutions found by rBA, standard Bees Algorithm and other algorithms.  
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Figure 4.12: Minimum costs found by Standard Bees Algorithm and rBA 
over 30 runs for the Welded Beam problem 

 
 
 

 

Figure 4.13: Minimum costs found by Standard Bees Algorithm and rBA 
over 30 runs for the Pressure Vessel problem 
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Figure 4.14: Minimum weights found by Standard Bees Algorithm and rBA 
over 30 runs for the Tension/Compression Spring problem 

 
 
 
 
 

 

Figure 4.15: Minimum weights found by Standard Bees Algorithm and rBA 
over 30 runs for the Speed Reducer problem  
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Table 4.7: Parameter and constraint values of the best solutions  
obtained by rBA and other algorithms for the Welded Beam Problem 
  (µ+λ)ES ABC BA  rBA 

x1 0.20573 0.20573 0.20206 0.20491 

x2 3.470489 3.470489 3.569718 3.490459 

x3 9.036624 9.036624 9.036399 9.038263 

x4 0.205729 0.20573 0.205836 0.205817 

g1 0 0 -55.89515 -8.98355 

g2 0.000002 −0.000002 -14.05208 -23.61819 

g3 0 0 -0.003773 -0.000906 

g4 −3.432984 −3.432984 -3.42349 -3.430284 

g5 −0.080730 −0.080730 -0.077064 -0.079911 

g6 −0.235540 −0.235540 -0.235547 -0.235554 

g7 −0.000001 0 -9.235489 -8.369106 
f(x) 1.724852 1.724852 1.733247 1.731760 

Table 4.8: Parameter and constraint values of the best solutions 
obtained by rBA and other algorithms for Pressure Vessel  

  SCA PSO (µ+λ)ES ABC BA rBA 
x1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 
x2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 
x3 41.9768 42.098446 42.098446 42.098446 41.811296 42.092641 
x4 182.2845 176.636052 176.636596 176.636596 180.260978 176.716452 
g1 −0.0023 0 0 0 -0.005542 -0.000112 
g2 −0.0370 −0.035881 0.03588 −0.035881 -0.038620 -0.035936 
g3 −23420.5966 0 0 −0.000226 -183.1446 -44.05677 
g4 −57.7155 −63.363948 −63.363404 −63.363404 -59.73902 -63.28355 

f(x) 6171 6059.70161 6059.7143 6059.714339 6103.41749 6068.357986 
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Table 4.9: Parameter and constraint values of the best solutions 
obtained by rBA and others algorithm for Tension Spring problem 

  SCA PSO (µ+λ)ES ABC BA rBA 
x1 0.0521602 0.05169 0.052836 0.051749 0.052312 0.051460 
x2 0.368159 0.35675 0.384942 0.358179 0.371889 0.351232 
x3 10.648442 11.287126 9.807729 11.203763 10.452475 11.619171 
g1 0 0 −0.000001 −0.000000 -1.91E-05 -8.40E-05 
g2 0 0 0 −0.000000 -2.44E-05 -1.65E-05 
g3 −4.075805 −4.053827 −4.106146 −4.056663 -4.082842 -4.042626 
g4 −0.719787 −0.727706 −0.708148 −0.726713 -0.717198 -0.731538 

f(x) 0.012669 0.012665 0.012689 0.012665 0.012673 0.012668 
 

  
Table 4.10: Parameter and constraint values of the best solutions  

obtained by rBA and others algorithm for Speed Reducer problem 
  SCA (µ+λ)ES ABC BA rBA 

x1 3.5 3.499999 3.499999 3.501481 3.500848 
x2 0.7 0.699999 0.7 0.700124 0.700011 
x3 17 17 17 17 17 
x4 7.327602 7.3 7.3 7.388378 7.321624 
x5 7.715321 7.8 7.8 7.844692 7.839082 
x6 3.350267 3.350215 3.350215 3.350535 3.350479 
x7 5.286655 5.286683 5.2878 5.287016 5.286741 
g1 −0.073915 −0.073915 −0.073915 -0.074636 -0.074169 
g2 −0.197999 −0.197998 −0.197999 -0.198623 -0.198218 
g3 −0.493501 −0.499172 −0.499172 -0.969473 -9.70E-01 
g4 −0.904644 −0.901472 −0.901555 -0.994107 -0.994117 
g5 0 0 0 -0.000141 -2.01E-04 
g6 0.000633 0 0 -0.000181 -2.50E-05 
g7 −0.7025 −0.702500 −0.7025 -0.702447 -0.702495 
g8 0 0 0 -0.000245 -0.000226 
g9 −0.583333 −0.583333 −0.583333 -0.583231 -0.583239 
g10 −0.054889 −0.051325 −0.051326 -0.062608 -0.054073 
g11 0 −0.010852 −0.010695 -0.016441 -0.015776 
f(x) 2994.744241 2996.348094 2997.058412 2999.547093 2997.884811 
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4.4 Summary 

This chapter has introduced an improved version of Bees Algorithm, known as recombination-

based Bees Algorithm (rBA), specifically applied for unconstrained numerical benchmark 

functions and constrained mechanical design problems. In this proposed Bees Algorithm, a 

technique called recombination operation was used during the local search and between two 

best abandoned sites, producing a solution closer to the local peak. Experimental results have 

shown that the Bees Algorithm with recombination operator helped local search produces 

solution closer to the local peak. This allows the proposed Bees Algorithm to find more 

accurate solutions with less function evaluations as significant test indicated that the rBA 

outperforms the standard version of Bees Algorithm and other algorithms on most of the 

problems applied.  
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CHAPTER 5 

A Guided Global Best Bees Algorithm  
 

5.1 Preliminaries 

The main disadvantage of the Bees Algorithm compared to other algorithms is the large number 

of parameters. In general, large number of parameters requires excessive parameter tuning to 

obtain a good result. Therefore, this chapter proposes a new implementation to reduce the 

number of parameters by using an adaptive number of recruit bees for each selected site. In 

addition to the proposed strategy mentioned above, the proposed Bees Algorithm in this chapter 

also makes use of the best solution found so far to guide the neighbourhood shrinking strategy 

for the unimproved sites. 

 
The first section of this chapter describes the proposed Bees Algorithm in detail. In this first 

section, detailed description of the proposed strategies is given followed by experimental set 

up and experimental results on a set of benchmark functions. It will then go on to the application 

of the proposed algorithm on constrained mechanical design applications for the next section. 

Finally, the last section of this chapter concludes and reviews the work done.  

5.2 Self Adaptive Bees Recruitment Mechanism 

Parameter tuning is one of the most common procedures for finding good solutions in any 

optimisation algorithms. Usually, these parameters need to be tuned manually by the users for 

different types of optimisation problems until the best solution is found. Similarly, like other 

optimisation algorithms, the Bees Algorithm also requires a set of parameters to be tuned for 

finding the best solution. Although several studies were introduced to overcome this issue on 
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the Bees Algorithm as described in Section 2.7, it remains as the main issue to be solved 

because lesser parameters would make the algorithm simpler and consume less time for 

parameter tuning. It is also desirable to have lesser parameters without deteriorating the 

performance of the Bees Algorithm.  

 
In order to reduce the number of parameters, several rules on selection of best sites and how to 

send recruited bees were introduced into the standard Bees Algorithm thus resulting in 

elimination of some of the parameters. These rules were applied to the best selected sites where 

instead of fully ranking it according to fitness value only, the order of these best sites and how 

recruit bees are sent goes to the following rules. 

i. The first top ranked best sites should be best sites discovered by the global 

search. If there is more than one site, the sites discovered by the global search 

should be ranked according to fitness value. 

ii. The second top ranked best sites should be the improved best sites from the 

previous iteration. If there is more than one site, the improved sites should be 

ranked according to fitness value. 

iii. The remaining best sites are the unimproved best sites from the previous 

iteration. If there is more than one site, the unimproved sites should be ranked 

according to fitness value. 

iv. For the number of recruited bees being sent to each best site, it should be linearly 

dependant on the rank of the best site. 

Overall, these new rules reduce the number of parameters from seven parameters to six 

parameters as it eliminates the number of elite sites and number of recruited bees to be sent to 

both elite site(s) and best sites. It is also more like foraging behaviour in nature in terms of 
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selecting promising sites. However, the user still needs to set the total number of recruited bees 

to be sent to each best site. The total Bees Algorithm parameters after applying these rules are:  

i. ns – number scout bees, 

ii. nb – number of best sites, 

iii. nrb_t – total number of recruit bees for selected sites, 

iv. ngh – neighbourhood size, 

v. stlim – stagnation limit. 

5.3 Guided Neighbourhood Shrinking Strategy 

In addition to the new introduced rules described above, another strategy called guided 

neighbourhood shrinking based on global best solution found so far is proposed. This proposed 

strategy uses the information from the global best solution found so far to guide the 

neighbourhood shrinking for the unimproved sites for better exploitation capabilities. Based on 

the assumption that the global best solution found so far often leads to optimal solutions, the 

neighbourhood shrinking bias toward the global best solution found so far on certain conditions 

is believed to guide the local search in finding the optimum solution. This proposed Bees 

Algorithm is named as global best guided Bees Algorithm (gBA). 

 
The flowchart of the proposed gBA is illustrated in Figure 5.1 where index j is the index of 

dimension D, j:1,2,3,…,D. For the standard Bees Algorithm, the neighbourhood size shrinks 

according to Eq. 2.2 whereas for this proposed strategy, the position of the site being search is 

compared against the best solution found so far before proceeding to the next steps. The 

proposed algorithm starts once the neighbourhood search failed to find better fitness value, the 

global best solution found so far has better fitness value than the fittest recruited bee, and at 

least one index position of fittest recruited bee is within the neighbourhood of best found so 
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far. If those three conditions are satisfied, the position of the fittest recruited bee at each 

dimension is checked. The neighbourhood size for position at particular dimensions which is 

not within the neighbourhood of the best solution found so far, it is set to a new neighbourhood 

size; distance between best recruited bee and best solution found at corresponding dimension 

(PGlobal,j,-Pbest,j,). For position at a dimension that is within the neighbourhood of the best 

solution found so far follows the standard neighbourhood shrinking procedure. After all the 

neighbourhood dimension sizes have been updated, the recruited bees are sent to the new 

defined patch. 

 
To explain how the proposed guided global best Bees Algorithm works, the following simple 

2D examples shown in Figures 5.2–5.4 are used. In this example, it is assumed that the Best 

bee (xB) failed to find better fitness value and the Best solution found so far (xG) has better 

fitness value than the Best bee (xB). Figure 5.2 shows nghx1 is not within the neighbourhood 

range of best solution so far whereas nghx2 is within the neighbourhood range of best solution 

found so far. Therefore, a new neighbourhood size of nghx1 for the Best bee (xB) is set with the 

distance between the Best bee (xB) and Best solution found so far (xG) corresponding to x1. 

However, the neighbourhood size for nghx2 shrinks similar as the standard Bees Algorithm 

procedure. These new neighbourhood sizes which follow the procedures mentioned earlier are 

shown in Figure 5.3. Once both neighbourhood sizes have been updated, the recruited bees are 

sent to this site accordingly as described in Figure 5.4.  
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Figure 5.1: Flowchart of the guided neighbourhood shrinking strategy for unimproved sites 
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Figure 5.2 Illustration of guided neighbourhood shrinking strategy for unimproved site – 
satisfy the condition 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.3 Illustration of guided neighbourhood shrinking strategy for unimproved site – set 
ngh sizes 
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Figure 5.4 Illustration of guided neighbourhood shrinking strategy for unimproved site – send 

recruited bees 
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median and standard deviation of accuracy results over 100 runs for the four algorithms. For 

median accuracy that obtained less than 0.001 in the experimental result, the value recorded in 

Table 5.1 is 0.0000 to make the comparison simpler.  

 
Table 5.1 shows that the gBA obtained a median accuracy of less than 0.001 with 100% success 

rate on most of the functions except on the Rosenbrock, Rastrigin, Shekel_10D, Griewank, and 

Langermann functions. For the Shekel_10D function, although it did not achieve 100% success 

rate, it still managed to find accuracy less than 0.001 with 71% success rate. Meanwhile, with 

the exception of Shekel_10D, Michaelewicz, and non-successful functions of gBA, the standard 

Bees Algorithm accomplished 100% success rate on a similar set of functions. 

  
For SPSO2011, the algorithm attained 100% success rate in finding the minimum on Easom, 

Trid, Zakharov, Schaffer, Schwefel, Goldstein & Price, Martin & Gaddy, and Camel Six Hump 

(eight functions) while on the Shekel_4D function, the SPSO2011 succeeded to find the 

threshold accuracy at 59% success rate. Furthermore, Table 5.1 also shows that qABC found a 

median accuracy of less than 0.001 on Easom, Schaffer, Rastrigin, Schwefel, Michaelewicz, 

Goldstein & Price, Martin & Gaddy, Camel Six Hump and Shekel_4D (nine functions). 

 
Next, Table 5.2 shows a comparison of median and standard deviation of function evaluations 

required to achieve accuracy presented in Table 5.1. From these results, for the functions that 

achieved accuracy of less than 0.001; five functions converged faster than the standard Bees 

Algorithm, six functions are comparable in terms of convergence speed as the Mann Whitney 

Test (see Table 5.3) showed no significant difference on these results. Meanwhile, for the 

remaining four functions where the gBA could not achieve the accuracy of less than 0.001 and 

reached maximum function evaluations, the performance is considered comparable with the 

standard Bees Algorithm in terms of function evaluations. 
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Table 5.1: Comparison on accuracy over 100 runs for gBA 

Function 
  

SBA  gBA  SPSO2011  qABC 
Median StdDev   Median StdDev   Median StdDev   Median StdDev 

Easom 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 
Trid 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.30155 0.3062 

Rosenbrock 4.8919 1.0673  3.3271 1.3973  6.9007 9.4754  0.0758 0.0702 
Zakharov 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0235 0.0867 
Schaffer 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0010 
Rastrigin 12.9437 3.2667  0.0108 0.4498  6.4253 2.2037  0.0000 0.0219 
Schwefel 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 

Michaelewicz 0.0000 0.0133  0.0000 0.0000  0.0411 0.0895  0.0000 0.0000 
Goldstein & Price 0.0000 0.0000  0.0000 0.0000  0.0000 0.0003  0.0000 0.0000 
Martin & Gaddy 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 
Camel Six Hump 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 

Shekel_4D 0.0000 0.0002  0.0000 0.0000  0.0000 2.5068  0.0000 0.0001 
Shekel_10D 0.0015 2.6435  0.0006 1.8110  8.7202 0.2236  8.7231 0.0036 
Griewank 0.1091 0.0226  0.0663 0.0252  0.0341 0.0271  0.0800 0.0389 

Langermann 1.2563 0.0989   0.9323 0.1794   0.9676 0.1363   1.1713 0.0916 
 

 

Table 5.2: Comparison on function evaluations over 100 runs for gBA 

Function SBA  gBA  SPSO2011  qABC 
  Median StdDev   Median StdDev   Median StdDev   Median StdDev 

Easom 3124 1408.923  2424 727.3015  4000 885.2301  1050 6888.015 
Trid 13224 4255.14  12724 9430.22  9100 700.657  500000 0 

Rosenbrock 500000 0  500000 0  500000 117878  500000 0 
Zakharov 16374 1896.454  16424 1760.32  35100 4619.083  500000 0 
Schaffer 5305.5 2869.263  1824 1166.363  2800 1728.957  43951 225352.2 
Rastrigin 500000 0  500000 0  500000 0  352561.5 97711.63 
Schwefel 2825 100.508  2624 1127.964  14100 30860.92  850 12132.96 

Michaelewicz 163807.5 155525.4  15029 17257.13  500000 223339.3  105399 88612.96 
Goldstein & Price 1824 729.9545  1824 565.2424  4000 501.387  2350 35168.9 
Martin & Gaddy 1464 732.9105  1224 568.7697  2000 459.1725  15350 204091.6 
Camel Six Hump 924 315.7083  924 340.1411  3031 581.481  850 405.292 

Shekel_4D 10628 8756.234  9228 6329.679  82500 230204.6  37850 65029.46 
Shekel_10D 500000 168591.4  324926.2 149701  500000 0  500000 0 
Griewank 500000 0  500000 0  500000 105560.5  500000 33908.05 

Langermann 500000 0   500000 0   500000 0   500000 0 
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With respect to comparison with other algorithms, it is observed that the proposed algorithm 

converged faster than the SPSO2011 algorithm for the Easom, Zakharov, Schaffer, Schwefel, 

Michaelewicz, Goldstein & Price, Martin & Gaddy, Camel Six Hump, Shekel_4D, and 

Shekel_10D functions. As for comparison with qABC, the gBA outperformed the qABC in 

terms of convergence speed for the Trid, Zakharov, Schaffer, Michaelewicz, Goldstein & Price, 

Martin & Gaddy, Shekel_4D, and Shekel_10D functions (eight functions) while one function 

showed comparable convergence speed (Camel Six Hump function) as the p-value is more than 

0.05 (See Table 5.4). For the rest of the functions, the qABC results obtained 500000 maximum 

function evaluations. 

 
Furthermore, a comparison of overall performance is also made with other algorithms. Table 

5.5 summarises the overall performance results achieved in Table 5.1 and Table 5.2. These 

results show that, the performance of gBA surpassed other algorithms on nine out of fifteen 

functions. From those nine functions, six functions (Trid, Zakharov, Schwefel, Goldstein & 

Price, Camel Six Hump and Shekel_4D) showed equal performance compared to the standard 

Bees Algorithm. 

  
For comparison of gBA with SPSO2011, SPSO2011 demonstrates best overall performance 

over gBA only on one unimodal function (Trid). Besides, these results also show that qABC 

performed better than gBA only on four functions (Easom, Rosenbrock, Rastrigin, Schwefel) 

while one functions (Camel Six Humps) showed equal performance with p-value of 0.5552. 

The results in this section indicate that the guided global best Bees Algorithm is effective in 

improving the performance of the standard Bees Algorithm, especially high dimensional 

multimodal problems. The next section moves on to discuss the results reported in this section. 
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Table 5.3: Significant difference of gBA’s median results 
against standard Bees Algorithm 

 accuracy p-value speed p-value 
Easom ns - s 0.0000 
Trid ns - ns 0.5222 

Rosenbrock s 0.0000 ns - 
Zakharov ns - ns 0.5823 
Schaffer ns - s 0.0000 
Rastrigin s 0.0000 ns - 
Schwefel ns - ns 0.1336 

Michaelewicz ns - s 0.0000 
Goldstein & Price ns - ns 0.5552 
Martin & Gaddy ns - s 0.0003 
Camel Six Hump ns - ns 0.5552 

Shekel_4D ns - ns 0.3735 
Shekel_10D s 0.0000 s 0.0041 
Griewank s 0.0000 ns - 

Langermann s 0.0000 ns - 
s: statistically significant, ns: not significant 
‘-‘: No statistical difference test required 

 

Table 5.4: Significant difference of gBA’s median results  
against other algorithms 

  vs SPSO2011  vs qABC 
 accuracy p-value speed p-value accuracy p-value speed p-value 

Easom ns - s 0.0000 ns - s 0.0000 
Trid ns - s 0.0000 s 0.0000 s 0.0000 

Rosenbrock s 0.0308 ns - s 0.0000 ns - 
Zakharov ns - s 0.0000 s 0.0000 s 0.0000 
Schaffer ns - s 0.0000 ns - s 0.0000 
Rastrigin s 0.0000 ns - s 0.0000 s 0.0000 
Schwefel ns - s 0.0000 ns - s 0.0000 

Michaelewicz s 0.0003 s 0.0000 ns - s 0.0000 
Goldstein & Price ns - s 0.0000 ns - s 0.0147 
Martin & Gaddy ns - s 0.0000 ns -- s 0.0147 
Camel Six Hump ns - s 0.0000 ns 0.9045 ns 0.1416 

Shekel_4D ns - s 0.0000 ns - s 0.0000 
Shekel_10D s 0.0000 s 0.0000 s 0.0000 s 0.0000 
Griewank s 0.0000 ns - s 0.0000 ns - 

Langermann s 0.0078 ns - s 0.0000 ns - 
s: statistically significant, ns: not significant    
‘-‘: No statistical difference test required    
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5.4.2 Discussion 

 

 

The findings reported in the previous section demonstrate the advantages of adapting the best 

solution found so far in order to guide the neighbourhood shrinking for unimproved sites. 

According to the experimental results obtained in Section 5.4.1, the gBA achieved the best 

overall performance over the standard Bees Algorithm on six multimodal functions (Schaffer, 

Rastrigin, Michaelewicz, Shekel_10D, Griewank, and Langermann) and three unimodal 

functions (Easom, Rosenbrock, and Martin & Gaddy). However, the gBA performs similarly 

on four multimodal functions (Schwefel, Goldstein & Price, Camel Six Hump, and Shekel_4D) 

and two unimodal functions (Trid and Zakharov).  

Table 5.5: Comparison of overall performance for gBA 

Function SBA gBA SPSO2011 qABC 
  succ. acc. perf.  succ. acc. perf.  succ. acc. perf.  succ. acc. perf. 

Easom 100 X  100 X  100 X  100 X X 

Trid 100 X  100 X  100 X X 0   

Rosenbrock 0   0   21 X  0 X X 

Zakharov 100 X X 100 X X 100 X  0   

Schaffer 100 X  100 X X 100 X  68 X  

Rastrigin 0   0   0   88 X X 

Schwefel 100 X  100 X  100 X  100 X X 

Michaelewicz 88 X  100 X X 39   100 X  

Goldstein & 
Price 100 X X 100 X X 100 X  100 X  

Martin & 
Gaddy 100 X  100 X X 100 X  79 X  

Camel Six 
Hump 100 X X 100 X X 100 X  100 X X 

Shekel_4D 100 X X 100 X X 59 X  99 X  

Shekel_10D 41   71 X X 0   0   

Griewank 0   0   6 X  2   

Langermann 0   0 X X 2   0   

Total 1029   4  1071   9  927   1  836   4 
succ.: successful rate, acc.: accuracy achieved, perf.: overall performance 
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The comparison of results mentioned earlier, demonstrates the effectiveness of the gBA dealing 

with high dimension multimodal functions, such as Rastrigin, Michaelewicz, Shekel_10D, 

Griewank, and Langermann. Besides, the gBA is also performed fairly effective on the low 

dimension multimodal function (Schaffer).  

 
For the Rastrigin and Griewank functions, despite the gBA not converging, the solutions found 

are closer to the global optimum. The plot of convergence for the Rastrigin function is shown 

in Figure 5.5, where a better final solution found by the gBA. This result is likely because both 

functions have a rough multimodal surface with unimodal behaviour overall. The standard Bees 

Algorithm could be easily trapped inside many local optima on this type of function during the 

neighbourhood shrinking phase. Thus, identifying which neighbourhood size to reduce at the 

selected index based on the best solution found so far would be an advantage for the function 

with the overall unimodal behaviour especially at a higher dimension.  

 

Figure 5.5: Plot of convergence for the Rastrigin function 

0

20

40

60

80

100

120

0 100000 200000 300000 400000 500000 600000

Fi
tn

es
s 

V
al

u
e

Function Evaluations

SBA

gBA



105 
 

As for the Shekel_10D and Langermann functions, the gBA also shows a better performance 

in terms of the solutions found. This indicates that reducing the neighbourhood size at the 

selected index dimension together with new a defined neighbourhood size at the index 

dimension that satisfied the condition, is beneficial for this type of problem.  

 
For Michaelewicz, the valley and ridges of the function could slow down the convergence speed 

of the standard Bees Algorithm if the bees are placed along the valley and ridges. Thus, adding 

the guiding neighbourhood shrinking strategy to the standard Bees Algorithm might help the 

algorithm to escape from those valley and ridges. This behaviour is shown in Figure 5.6, where 

a plot of convergence for the Michaelewicz function clearly demonstrates the ability of the gBA 

to overcome this type of surface landscape. However, this strategy is fairly effective in 

improving the Bees Algorithm on most low dimension multimodal types of functions, probably 

because the guided neighbourhood shrinking did not fully take place as the conditions were not 

satisfied. In this cases, the gBA significantly converged faster than the standard Bees Algorithm 

for the Schaffer function. 

 

 

Figure 5.6: Plot of convergence for the Michaelewicz function 
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Regarding the equal performance of the gBA with the standard Bees Algorithm on six functions 

(Trid, Zakharov, Schwefel, Goldstein & Price, Camel Six Hump and Shekel_4D), both 

algorithms accomplished a 100% success rate but no significant difference in terms of the 

function evaluations on these functions. These results demonstrate that the proposed strategy 

could not improve the Bees Algorithm on these functions, which are considered to be easy 

multimodal functions and unimodal functions. For this reason, the neighbourhood search 

encounter with unimproved sites is less frequent as the search usually find better solutions. 

Figure 5.7 illustrates an example of the optimisation progress for the Camel Six Hump function. 

This figure indicates that the gBA and the standard Bees Algorithm progressively find better 

solutions during most of the search progress. Therefore, no significant improvement was 

observed on these functions.  

 

 

Figure 5.7: Plot of convergence for the Camel Six Hump function 
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When drawing comparison with SPSO2011, where the performance of SPSO2011 is better 

than of the gBA, the results in Table 5.5 show that both algorithms achieved a 100% success 

rate on the Trid function but SPSO2011 required fewer function evaluations. A probable 

explanation is that the search mechanism of the SPSO2011 algorithm has an advantage over 

the algorithms based on the foraging behaviour for this type of function. 

 
Furthermore, for comparison purposes with the qABC algorithm, the result in Table 5.5 shows 

that the gBA did not perform as well as the qABC on the Easom, Rosenbrock, Rastrigin, and 

Schwefel functions. On the Easom and Schwefel, functions, both algorithms achieved a 100% 

success rate but the qABC achieved this with a higher convergence speed. For the Rosenbrock 

function, even though the qABC failed to find the global optimum, the median solution 

obtained is closer to the global optimum compared to the gBA and the difference is significant. 

This result indicates that the qABC outperformed the gBA on the Rosenbrock function. On the 

Rastrigin function, the performance of the qABC excelled in finding the global optimum with 

an 88% success rate, whereas the gBA could not locate the global optimum. Even though the 

performance of the gBA on some of those functions is not as good as in the case of the 

SPSO2011 or qABC, the superiority of the gBA on a large number of functions shows that the 

proposed Bees Algorithm is better than other algorithms. 
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5.5 Mechanical Design Applications 

The previous section has demonstrated the performance of gBA on a set of unconstrained 

numerical benchmark functions. It is now necessary to further evaluate the performance of the 

proposed Bees Algorithm on constrained optimisation problems.  For this reason, four well 

known mechanical design problems were selected: Welded Beam, Pressure Vessel, 

Tension/Compression Spring and Speed Reducer (Appendix C). The parameter settings used 

in this experiment is the same as the ones given in Table 3.7 of section 3.3. This experiment 

also used 30000 function evaluations for stopping criterion and running the algorithm 30 times 

on each problem. With regards to handling constrained problems, a similar method as used in 

section 3.3 was adopted in this experiment. 

 
In addition to the problems mentioned above, the gBA was applied to another mechanical 

design problem from the literature known as the Multiple Clutch problem (Rao et al., 2011).  

The details of the problem are given in Appendix C. The parameter settings used for this 

problem are given in Table 5.6. For this problem, the maximum function evaluations and 

number of runs are the same as those used by Rao et al. (2011). 

 

Table 5.6: Parameter settings for Multiple Clutch Problem 
Parameter ns ne nb nre nrb ngh stlim 

Value 10 2 5 10 5 2 10 
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Table 5.7 and Table 5.8 provide the results of gBA obtained from the experiment on problems 

mentioned above and results of other algorithms. For each problem, the best solution, mean 

solution and median solution over number of runs were recorded in those tables. As for the 

results obtained on the Multiple Clutch problem, the number of successful rate (SR) was also 

recorded. The performance of gBA is compared with the standard Bees Algorithm based on 

the median value. An algorithm is said to be better than another if the median value found is 

less than another and the difference is significance. If the median value difference is 

insignificant, both algorithms are said to be comparable. In this experiment, the Mann Whitney 

Test (at α = 0.05) was used to check the significant difference of results between two 

algorithms. 

 
According to the results reported in Table 5.7 and Table 5.8, the median values found by gBA 

are less than the standard Bees Algorithm and the differences are significant for the Welded 

Beam, Tension Spring and Multiple Clutch problems. These results indicate the superiority of 

gBA over the standard Bees Algorithm on those problems. For the Speed Reducer problem, 

the difference between the median value of gBA and standard Bees Algorithm are insignificant. 

For this reason, both algorithms are said to be comparable on this problem. However, for the 

Pressure Vessel problem, the results showed that the median value obtained by the standard 

Bees Algorithm is less than gBA and the difference is significant. The significant difference 

for all problems is illustrated in Figures 5.8–5.12. Surprisingly, the addition of the proposed 

strategy into the standard Bees Algorithm that was meant to improve or at least equal in general 

performance, showed a performance that was worse on this Pressure Vessel problem.  
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Table 5.7  Comparison of gBA against others (Akay and Karaboga , 2012) 
Problem Stats. Scaa Psoa (µ+λ)-ES UPSOm ABC BA gBA 

Welded Beam 
  

Best NA NA 1.724852 1.92199 1.724852 1.733247 1.728407 
Mean NA NA 1.777692 2.83721 1.741913 1.767923 1.749410 

Median NA NA NA NA NA 1.766979 1.745503 
NFE NA NA 30,000 100,000 30,000 30000 30000 

Pressure 
Vessel 

  

Best 6171 6059.7143 6059.70161 6544.27 6059.71474 6103.4175 6068.23 
Mean 6335.05 6289.92881 6379.938037 9032.55 6245.3081 6381.4714 7583.8873 

Median NA NA NA NA NA 6315.1676 6759.573 
NFE 20000 30000 30000 100000 30000 30000 30000 

Tension/ 
Compresion 

Spring 
  

Best 0.012669 0.012665 0.012689 0.01312 0.012665 0.012673 0.012666 
Mean 0.012923 0.012702 0.013165 0.0229478 0.012709 0.013339 0.012892 

Median NA NA NA NA NA 0.013321 0.012762 
NFE 25,167 15000 30000 100000 30000 30000 30000 

Speed 
Reducer 

  

Best 2994.74424 NA 2996.348094 NA 2997.05841 2999.5471 3000.5082 
Mean 3001.758264 NA 2996.34809 NA 2997.05841 3006.3114 3007.2668 

Median NA NA NA NA NA 3005.7187 3006.872 
NFE 54,456 NA 30000 NA 30000 30000 30000 

NA: Not available, NFE: Number of function evaluations 
aThe welded beam problems are different from the one employed in this study 
 

Table 5.8  Comparison of gBA against others (Rao et al., 2011) for Multiple Clutch 
Problem 

Problem Stats. TLBO ABC BA gBA 

Multiple Clutch Problem 
  

Best 0.313657 0.313657 0.313657 0.313657 
Mean 0.3271662 0.324751 0.328960 0.322020 

Median NA NA 0.325419 0.313657 
SR 0.67 0.54 0.08 0.16 

NFE 1000 1000 1,000 1,000 
SR: successful rate, NFE: Number of function evaluations, NA: Not available 
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Figure 5.8: Minimum costs found by Standard Bees Algorithm and gBA 
over 30 runs for the Welded Beam problem 

 

 
 

Figure 5.9: Minimum costs found by Standard Bees Algorithm and gBA 
over 30 runs for the Pressure Vessel problem  
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Figure 5.10: Minimum weights found by Standard Bees Algorithm and gBA 
over 30 runs for the Tension/Compression Spring problem 

 

 

Figure 5.11: Minimum weights found by Standard Bees Algorithm and gBA 
over 30 runs for the Speed Reducer problem  
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Figure 5.12: Minimum weights found by Standard Bees Algorithm and gBA 
over 100 runs for the Multiple Clutch Problem 
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Table 5.9: Parameter and constraint values of the 
best solutions obtained by gBA and others for 

Welded Beam 

  (µ+λ)ES ABC BA  gBA 
x1 0.20573 0.20573 0.202064 0.204795 
x2 3.470489 3.470489 3.569718 3.499854 
x3 9.036624 9.036624 9.0364 9.040141 
x4 0.205729 0.20573 0.205836 0.205786 
g1 0 0 -55.8952 -32.5063 
g2 0.000002 −0.000002 -14.0521 -31.5751 
g3 0 0 -0.00377 -0.00099 
g4 −3.432984 −3.432984 -3.42349 -3.42936 
g5 −0.080730 −0.080730 -0.07706 -0.07979 
g6 −0.235540 −0.235540 -0.23555 -0.23556 
g7 −0.000001 0 -9.23549 -6.48493 

f(x) 1.724852 1.724852 1.733247 1.728407 
 

 

Table 5.10: Parameter and constraint values of the best solutions 
Obtained by gBA and others for Pressure Vessel 

  SCA PSO (µ+λ)ES ABC BA gBA 
x1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 
x2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 
x3 41.9768 42.098446 42.098446 42.098446 41.811295 42.095279 
x4 182.2845 176.636052 176.636596 176.636596 180.260978 176.677711 
g1 −0.0023 0 0 0 -0.005542 -5.44E-05 
g2 −0.0370 −0.035881 0.03588 −0.035881 -0.038620 -0.035908 
g3 −23420.5966 0 0 −0.000226 -183.1446 -99.92888 
g4 −57.7155 −63.363948 −63.363404 −63.363404 -59.73902 -63.31052 

f(x) 6171 6059.70161 6059.7143 6059.714339 6103.417489 6068.229994 
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 Table 5.12: Parameter and constraint values of the best solutions 
obtained by gBA and others for Speed Reducer 

  SCA (µ+λ)ES ABC BA gBA 

x1 3.5 3.5 3.5 3.50148 3.502 
x2 0.7 0.7 0.7 0.70012 0.70003 
x3 17 17 17 17 17 
x4 7.327602 7.3 7.3 7.38838 7.540459 
x5 7.715321 7.8 7.8 7.84469 7.803575 
x6 3.350267 3.35022 3.35022 3.35054 3.353023 
x7 5.286655 5.28668 5.2878 5.28702 5.287158 
g1 −0.073915 −0.073915 −0.073915 -0.0746 -0.07453 
g2 −0.197999 −0.197998 −0.197999 -0.1986 -0.19853 
g3 −0.493501 −0.499172 −0.499172 -0.9695 -0.96764 
g4 −0.904644 −0.901472 −0.901555 -0.9941 -0.9942 
g5 0 0 0 -0.0001 -0.0021 
g6 0.000633 0 0 -0.0002 -0.00027 
g7 −0.7025 −0.702500 −0.7025 -0.7024 -0.70249 
g8 0 0 0 -0.0002 -0.00052 
g9 −0.583333 −0.583333 −0.583333 -0.5832 -0.58312 
g10 −0.054889 −0.051325 −0.051326 -0.0626 -0.08102 
g11 0 −0.010852 −0.010695 -0.0164 -0.01124 
f(x) 2994.744241 2996.35 2997.06 2999.55 3000.51 

 
 

Table 5.11: Parameter and constraint values of the best solutions 
obtained by gBA and others for Tension Spring 

  SCA PSO (µ+λ)ES ABC BA gBA 
x1 0.0521602 0.05169 0.052836 0.051749 0.052312 0.051413 
x2 0.368159 0.35675 0.384942 0.358179 0.371889 0.350089 
x3 10.648442 11.287126 9.807729 11.203763 10.452475 11.690453 
g1 0 0 −0.000001 −0.000000 -1.91E-05 -1.53E-05 
g2 0 0 0 −0.000000 -2.44E-05 -5.19E-06 
g3 −4.075805 −4.053827 −4.106146 −4.056663 -4.082842 -4.04814 
g4 −0.719787 −0.727706 −0.708148 −0.726713 -0.717198 -0.729777 

f(x) 0.012669 0.012665 0.012689 0.012665 0.012673 0.012666 
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5.6 Summary 

This chapter introduced two new strategies into the standard Bees Algorithm. The first strategy 

implements self-adaptive bee recruitment mechanism on selected sites. It is designed to reduce 

the number of parameters of existing standard Bees Algorithm, which will result in lesser 

efforts in fine tuning of the parameters. The second strategy uses the best solution found so far 

to guide the neighbourhood shrinking strategy. This strategy aimed at making the search 

strategy bias towards the best solution found so far. Experimental results showed that this new 

version of Bees Algorithm excelled the standard Bees Algorithm on various unconstrained 

numerical benchmark functions considered particularly, the high dimensional functions.  

 
Furthermore, the gBA is also applied on five constrained mechanical design problems. The 

experimental results produced by gBA were significantly better than those of the standard Bees 

Algorithm on three of the problems.  
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CHAPTER 6 

Conclusion and Future Work 

 
A summary of the main contributions, together with the conclusion of this research is provided 

in this chapter. It also provides suggestions for future work. 

6.1 Contributions 

The main contributions of this research are: 

i. Providing guiding direction to the neighbourhood search to improve exploitation 

strategies of the algorithm, improving its overall performance.    

ii. Employing a new operator between the selected sites and abandoned sites to produce 

better solutions closer to the local or global optima. 

iii. Reduction in number of parameters to be tuned by introducing new bee recruitment 

mechanisms, eliminating two parameters which are number of recruit bees for elite sites 

(nep) and number of recruit bees for best sites (nsp). 

iv. Development of a new neighbourhood shrinking strategy to deal with slow convergence 

search near global optima more efficiently.  

v. The improved versions of the Bees Algorithm are developed without addition of any 

extra parameters. 

vi. The use of a similar set of parameter values for testing on benchmark functions, 

showing the robustness of the algorithm. 
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6.2 Conclusions 

The objectives mentioned in the first chapter have been achieved. 

Three different improved versions of the Bees Algorithm have been presented in this thesis. 

All proposed algorithms were tested on unconstrained numerical benchmark functions and 

constrained mechanical design problems. Results obtained are provided in the associated 

chapters. The conclusions are as follows: 

1. A guiding direction was provided for the neighbourhood search, forming a new 

improved Bees Algorithm named the Nelder and Mead Bees Algorithm (NMBA). This 

algorithm performed better than the standard Bees Algorithm, specifically in terms of 

speed on most of the problems tested. The NMBA performed moderately on the 

functions with flat surface like landscape and noisy characteristic surface because this 

type of surface might have no directions to guide the neighbourhood search. The 

algorithm also showed fair performance on applications of constrained mechanical 

design problems.  This addresses Objective (i). 

2. The second improvement was utilising the recombination operator between selected 

sites (solutions) and abandoned sites (solutions) to enable sharing of information. The 

recombination-based Bees Algorithm (rBA) utilises recombination operator to produce 

new good solutions closer to the local or global optima. Thus, this allows the 

neighbourhood search to start at a good initial position, which is an advantage for the 

algorithm. Similar problems were also tested for this proposed algorithm. The results 

obtained on most of the problems showed better performance in terms of solution found 

and convergence speed. However, the algorithm gives similar performance on non-

separable type of functions. This result might be due to unsuitability of the 
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recombination operator for this type of function as it could produce solutions away from 

the current solution. This addresses Objective (ii). 

3. Lastly, a new self-adaptive bee recruitment mechanism was introduced into the Bees 

Algorithm, reducing the number of parameters to be tuned. It is also more nature-based 

in terms of honey bee foraging behaviour where the priority of selection considers other 

criteria instead of fully based on fitness value. Furthermore, a new modified 

neighbourhood shrinking strategy was also developed to deal with slow convergence 

and stagnation during search near the global optima. The neighbourhood shrinking 

based on best solution found so far (gBA) performed at least similar to the standard 

Bees Algorithm or better on most of the problems tested with lesser number of 

parameters. This addresses Objectives (iii and iv). 

6.3 Future Work 

Future research might  proceed in the following directions: 

1. Developing an algorithm that requires fewer parameters or a fully adaptive Bees 

Algorithm. This would certainly benefit users of the algorithm in terms of ease of 

application 

2. Investigating the performance of the proposed algorithms on other real world problems 

3. Exploring the performance of the proposed algorithms on higher dimensions and 

different classes of numerical functions 
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APPENDICES 

Appendix A – List of Benchmark Functions 

No. Function Dimension Function Search 
range Minimum 

f1 Schwefel 2 
 

[− 500, 500]D -837.9658 

f2 Easom 2 
 

[− 100,100]D -1 

f3 
Goldstein & 

Price 2 

 

[− 2, 2]D 3 

f4 
Martin & 

Gaddy 2 
 

[− 20, 20]D 0 

f5 Schaffer 2 
 

[−100, 100]D 0 

f6 
Camel six 

hump 2 
 

[−5, 5]D -1.0316 

f7 Shekel 4 

 
𝑓(𝑥)= - ∑

1

∑ (𝑥𝑗− 𝑎𝑖𝑗)2+ 𝐶𝑖
4
𝑗=1

10
𝑖=1  [0, 10]D -10.5364 

f8 Michaelewicz 5 
 

[0, π]D -4.687 

f9 Trid 6 
 

[-D2, D2]D -50 

f10 Shekel 10 
 

𝑓(𝑥)= - ∑
1

𝐶𝑖 ∑ (𝑥𝑗− 𝑎𝑖𝑗)2𝐷
𝑗=1

30
𝑗=1  [0, 10]D -10.2028 

f11 Griewank 10 
𝑓(𝑥) =  

1

4000
∑ (𝑥𝑖 −𝐷

𝑖=1

100)2 ∏ 𝑐𝑜𝑠(
𝑥𝑖−100

√𝑖+1
)𝐷

𝑖=1 +1 [-600, 600]D 0 

f12 Langermann 10 
𝑓(𝑥)= 𝑐𝑖  ∑ 𝑒−

1

𝜋
∑ (𝑥𝑗−𝑎𝑖𝑗)2𝐷

𝑗=130
𝑖=1      

𝑐𝑜𝑠(𝜋 ∑ (𝑥𝑗 − 𝑎𝑖𝑗)2𝐷
𝑗=1 ) 

[0, 10] -1.4 

𝑓(𝑥) = 𝑥1𝑠𝑖𝑛(√│𝑥1│ − 𝑥2𝑠𝑖𝑛(√│𝑥2│ 

𝑓(𝑥) = − cos 𝑥1 + cos 𝑥2 𝑒[(𝑥1− π) 2− (𝑥2− π) 2 ]  

A(𝑥) =
 
1+ (𝑥1 

+x
2
 +1)

2
(19−14x

1
+3x

1

2
−14 𝑥2

  

+6x
1
x

2
 +3x

2
) 

𝐵(𝑥) =
 
 30+ (2𝑥1 −3𝑥2)

2
(18−32𝑥1 + 12x

1

2
  

+48x
2
 −36𝑥1𝑥2 +27𝑥2

2
) 

f(𝑥) =
 
 AB 

 

𝑓(𝑥)= (𝑥1 − 𝑥2)
2 

 + 
(𝑥1−𝑥2−10)2

3
 

𝑓(𝑥)= 0.5 + 
(𝑠𝑖𝑛√𝑥1

2+𝑥2
2)2 − 0.5

[1+0.001(𝑥1
2+𝑥2

2)]2 

𝑓(𝑥)= (4 − 2.1𝑥1
2 

+ 
𝑥1

4

3
 )𝑥1

2 
+𝑥1𝑥2 +(4𝑥2

2
 −4)𝑥2

2
  

𝑓(𝑥) = ∑ (sin 𝑥𝑖
𝐷
𝑖=1 ) (sin(𝑖 𝑥𝑖

2
)

 
)

2m
 

𝑓(𝑥)= ∑ (𝑥𝑖 − 1)2𝐷
𝑖=1  − ∑ 𝑥𝑖

𝐷
𝑖=2 𝑥𝑖 − 1 
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f13 Rosenbrock 10 
 

[− 50, 50]D 0 

f14 Zakharov 10 
 

[− 5, 5]D 0 

f15 Rastrigin 10 𝑓(𝑥) =  ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝐷

𝑖=1

 [− 5.12, 5.12]D 0 

 

 

𝑓(𝑥) = 𝑥1𝑠𝑖𝑛(√│𝑥1│ − 𝑥2𝑠𝑖𝑛(√│𝑥2│ 

𝑓(𝑥) = − cos 𝑥1 + cos 𝑥2 𝑒[(𝑥1− π) 2− (𝑥2− π) 2 ] 
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Appendix B – Characteristics of Benchmark Functions 

 

  

 

  Unimodal Multimodal 
Minima  
on origin 

Minima 
 on grid Separable Non-separable Wavelike Flat Surface Dimensionality 

Easom X   X X   X  

Trid X  X   X   X 

Rosenbrock X  X   X  X X 

Zakharov X  X   X   X 

Martin & Gaddy X   X  X    

Schaffer  X X   X X   

Rastrigin  X X  X  X  X 

Schwefel  X  X X     

Michaelewicz  X  X X   X X 

Goldstein & Price  X  X  X    

Camel Six Hump  X  X  X    

Shekel_4D  X  X  X   X 

Shekel_10D  X  X  X   X 

Griewank  X  X  X X  X 

Langermann   X   X   X     X 
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Appendix C – List of Mechanical Design Problems  

Problem 1: Welded Beam Design 

 

Welded beam design illustrated in Figure B.1 minimizes the cost of the beam subject to 

constraints on shear stress, τ , bending stress in the beam, σ , buckling load on the bar, Pc, end 

deflection of the beam, δ, and side constraints. There are four design parameters (x1, x2, x3 and 

x4 ) for this problem as shown in Figure B.1. 

 

 

Figure B.1: Welded Beam Design (Akay and Karaboga, 2012) 

 

Minimise: f (x) = 1.10471x1
2x2 +0.04811x3x4 (14.0+x2). 

Subject to: g1(x) = τ(x)−τmax ≤ 0, 

                  g2(x) = σ(x)−σmax ≤ 0, 

                  g3(x) = x1 −x4 ≤ 0, 

                  g4(x) = 0.10471x1
2 +0.04811x3x4(14.0+x2)−5.0 ≤ 0, 

                  g5(x) = 0.125−x1≤ 0, 

                  g6(x) = δ(x)−δmax≤ 0, 
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                  g7(x) = P −Pc (x) ≤ 0, 

where 

𝜏(𝑥) =  √(𝜏′)2 +   2𝜏′𝜏′′
𝑥2

2𝑅
+(𝜏′′)2    

𝜏′ =  
𝑃

𝑥1𝑥2√2
      , 𝜏′′ =  

𝑀𝑅

𝐽
 ,   𝑀 = 𝑃(𝐿 +  

𝑥2

2
) 

 

𝑅 =  √     
𝑥2

2

4
+  (

𝑥1+𝑥3

2
 )2    , 𝐽 = 2 [√2𝑥1𝑥2 { 

𝑥2
2

12
+ (

𝑥1+𝑥3

2
 )2}], 𝜎(𝑥) =   

6𝑃𝐿

𝑥4𝑥3
2, 

 

𝛿(𝑥) =
4𝑃𝐿3

𝐸𝑥4𝑥3
3,  𝑃𝐶 =  

4.013𝐸√𝑥4
6𝑥3

2

36

𝐿2 (1 −  
𝑥3

2𝐿
√

𝐸

4𝐺
)’ 

 

P = 6000lb, L = 14in.,  E = 30e6 psi, G = 12e6 psi, τmax= 13 600 psi, σmax = 30 000 psi, 

δmax= 0.25 in. 

0.1 ≤ x1≤ 2.0, 0.1 ≤ x2≤ 10.0, 

0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4≤ 2.0. 

 

Problem 2: Design of Pressure Vessel 

Second example is minimization of the total cost comprising of material, forming and welding 

costs of a cylindrical vessel as shown in Figure B.2. The four design variables are x1 (thickness 

of the shell), x2 (thickness of the head), x3 (inner radius) and x4 (length of the cylindrical section 

of the vessel, not including the head). x1 and x2 are to be in integral multiples of 0.0625 inch 

which are the available thicknesses of rolled steel plates. The radius x3 and the length x4 are 

continuous variables. 
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. 

Figure B.2: Design of Pressure Vessel (Akay and Karaboga, 2012) 

 

Minimise: f (x) = 0.6224x1x3x4+1.7781x2x3
2 +3.1661x1

2 x4 +19.84x1
2 x3 

Subject to: g1(x) = −x1+0.0193x3≤ 0, 

                  g2(x) = −x2+0.00954x3≤ 0, 

                  g3(x) = −πx3
2x4 − 4

3
πx3

3+1296 000 ≤ 0, 

                  g4(x) = x4−240 ≤ 0, 

where  

0 ≤ x1≤ 99, 0 ≤ x2 ≤ 99,  

10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200. 

 

Problem 3: Tension/Compression spring problem 

The tension/compression problem deals with the minimisation of the weight of the 

tension/compression spring shown in Figure B.3, subject to constraints on the minimum 

deflection, shear stress, surge frequency, diameter and design variables. The design variables 

are the wire diameter, d, the mean coil diameter, D, and the number of active coils, N. The 

problem is formulated as: 
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Figure B.3: Tension/Compression Spring problem (Akay and Karaboga, 2012) 

 

Minimise: f (x) = (N +2)Dd2 

Subject to: g1(x) = 1 - 𝐷3𝑁

71785𝑑4 ≤ 0, 

                  g2(x) = 4𝐷2−𝑑𝐷

12566(𝐷𝑑3−𝑑4)
+  

1

5108𝑑2 − 1≤ 0, 

                  g3(x) = 1- 140.45𝑑

𝐷2𝑁
 ≤ 0, 

                  g4(x) = 𝐷+𝑑

1.5
 - 1≤ 0. 

 

X = (d, D, N)T, 0.05 ≤ d ≤ 2.0, 0.25 ≤ D ≤ 1.3, 2.0 ≤ N ≤ 15.0 

 

Problem 4: Speed Reducer Design 

 

The aim of the speed reducer design shown in Figure B.4 is to minimise the weights of the 

speed reducer subject to constraints on bending stress of the gear teeth, surface stress, 

transverse deflections of the shafts and stresses in the shafts. Design parameters of the speed 

reducer problem, the face width (x1), module of teeth (x2), number of teeth in the pinion (x3), 

length of the first shaft between bearings (x4), length of the second shaft between bearings (x5) 

and the diameter of the first shaft (x6) and second shaft (x7). This is an example of a mixed 

integer programming problem. The third variable (number of teeth) is of integer value while 

all other variables are continuous.  
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Figure B.4: Speed Reducer Design (Akay and Karaboga, 2012) 

 

Minimise: f (x) = 0.7854x1x2
2 (3.3333x3

2 +14.9334x3 −43.0934)−1.508x1(x6
2 + x7

2) 

                            +7.4777(x6
3 + x7

3) 

 

Subject to: g1(x) = 27

𝑥1 𝑥2
2𝑥3

 -1 ≤ 0, 

                  g2(x) =  397.5

𝑥1𝑥2
2 𝑥3 

2  -1 ≤ 0, 

                  g3(x) = 1.93𝑥4 
3

𝑥2𝑥3 𝑥6 
4  -1 ≤ 0, 

                  g4(x) = 1.93𝑥5 
3

𝑥2𝑥3 𝑥7 
4  -1 ≤ 0, 

                  g5(x) = 
((

745𝑥4
𝑥2𝑥3

 )
2

+16.9 ×  106)

1
2⁄

110.0𝑥6 
3  -1 ≤ 0, 

                  g6(x) = 
((

745𝑥4
𝑥2𝑥3

 )
2

+157.5 ×  106)

1
2⁄

85.0𝑥7 
3  -1 ≤ 0, 

                  g7(x) = 𝑥2 𝑥3

40
 -1 ≤ 0, 

                  g8(x) =  5𝑥2

𝑥1 
 -1 ≤ 0, 

                  g9(x) =  𝑥1

12𝑥2 
 -1 ≤ 0, 

                  g10(x) =  1.5𝑥6+1.9

𝑥4 
 -1≤ 0, 

                  g11(x) =  1.1𝑥7+1.9

𝑥5 
 -1≤ 0, 

 

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 
5.0 ≤ x7 ≤ 5.5.  
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Problem 5: Multiple Disc Clutch Brake  

 

Figure B.5 shows a multiple disc clutch brake. The objective is to minimize the mass of the 

multiple disc clutch brake using five discrete variables: inner radius (ri=60, 61, 62, . . . , 80), 

outer radius (ro= 90, 91, 92, . . . , 110), thickness of discs (t = 1, 1.5, 2, 2.5, 3), actuating force 

(F = 600, 610, 620, . . . , 1000) and number of friction surfaces (Z = 2, 3, 4, 5, 6, 7, 8, 9). 

 

Figure B.5: Multiple disc clutch brake (Akay and Karaboga, 2012) 

 

Minimise: f (x) = π(ro
2  − r i2 )t(Z +1)ρ 

Subject to: g1(x) = ro −ri − ∆r ≥ 0, 

                              g2(x) = lmax−(Z +1)(t +δ) ≥ 0, 

                              g3(x) = pmax −prz ≥ 0, 

                              g4(x) = pmaxvsrmax−przvsr  ≥ 0, 

                              g5(x) = vsrmax−vsr ≥ 0, 

                              g6(x) = Tmax −T ≥ 0, 

                              g7(x) = Mh−sMs ≥ 0, 

                              g8(x) = T ≥ 0, 

 

 where Mh = 2
3

𝜇𝐹𝑍
𝑟𝑜

3−𝑟𝑖
3

𝑟𝑜
2−𝑟𝑖

2 , prz = 𝐹

𝜋(𝑟𝑜
2−𝑟𝑖

2)
 , vsr = 2𝜋𝑛(𝑟𝑜

3−𝑟𝑖
3)

90(𝑟𝑜
2−𝑟𝑖

2)
 ,  T = 𝐼𝑧𝜋𝑛

30(𝑀ℎ+𝑀𝑓 )
,  
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∆r = 20mm, tmax = 3mm, tmin = 1.5mm, lmax = 30mm, Zmax = 10, vsrmax = 10 m/s, 𝜇= 0.5, s = 
1.5, Ms = 40 N m, Mf = 3 N m, n = 250 rpm, pmax =1MPa, Iz = 55 kg mm2, Tmax = 15 s, Fmax = 
1000N, rimin = 55mm, romax = 110mm. 
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