280 research outputs found

    Model-Based Performance Prediction for Concurrent Software on Multicore Architectures

    Get PDF
    Model-based performance prediction is a well-known concept to ensure the quality of software.Current approaches are based on a single-metric model, which leads to inaccurate predictions for modern architectures. This thesis presents a multi-strategies approach to extend performance prediction models to support multicore architectures.We implemented the strategies into Palladio and significantly increased the performance prediction power

    The Media Store 3 Case Study System

    Get PDF

    Certifying Software Component Performance Specifications

    Get PDF
    In component-based software engineering, performance prediction approaches support the design of business information systems on the architectural level. They are based on behavior specifications of components. This work presents a round-trip approach for using, assessing, and certifying the accuracy of parameterized, probabilistic, deterministic, and concurrent performance specifications. Its applicability and effectiveness are demonstrated using the CoCoME benchmark

    Modularization Approaches in the Context of Monolithic Simulations

    Get PDF
    Qualitätsmerkmale eines Software-Systems wie Zuverlässigkeit oder Performanz können über dessen Erfolg oder Scheitern entscheiden. Diese Qualitätsmerkmale können im klassischen Software-Ingenieurswesen erst bestimmt werden, wenn der Entwurfsprozess bereits vollendet ist und Teile des Software-Systems implementiert sind. Computer-Simulationen erlauben es jedoch Schätzungen dieser Werte schon während des Software-Entwurfs zu bestimmen. Simulationen werden erstellt um bestimmte Aspekte eines Systems zu analysieren. Die Repräsentation des Systems ist auf diese Analyse spezialisiert. Diese Spezialisierung resultiert oft in einer monolithischen Struktur der Simulation. Solch eine Struktur kann jedoch die Wartbarkeit der Simulation negativ beeinflussen und das Verständnis und die Wiederverwendbarkeit der Repräsentation des Systems verschlechtern. Die Nachteile einer monolithischen Struktur können durch das Konzept der Modularisierung reduziert werden. In diesem Ansatz wird ein Problem in kleinere Teilprobleme zerlegt. Diese Zerlegung ermöglicht ein besseres Veständnis und eine bessere Handhabung der Teilprobleme. In dieser Arbeit wird ein Ansatz präsentiert, um die Kopplung von neu entwickelten oder bereits existierenden Simulationen zu einer modularen Simulation zu beschreiben. Dieser Ansatz besteht aus einer Domänenspezifischen Sprache (DSL), die mit modellgetriebenen Technologien entwickelt wird. Die DSL wird in einer Fallstudie angewendet, um die Kopplung von zwei Simulationen zu beschreiben. Weiterhin wird die Kopplung dieser Simulationen mit einem existierenden Kopplungsansatz gemäß der erzeugten Beschreibung manuell implementiert. In dieser Fallstudie wird die Vollständigkeit der Fähigkeit der DSL untersucht, die Kopplung von mehreren Simulation zu einer modularen Simulation zu beschreiben. Weiterhin wird die Genauigkeit des Modularisierungsansatzes bezüglich der Verhaltensbewahrung der modularen Simulation gegenüber der monolithischen Version evaluiert. Hierfür werden die Resultate der modularen Simulation mit denen der monolithischen Version verglichen. Zudem wird die Skalierbarkeit des Ansatzes durch die Betrachtung der Ausführungszeiten untersucht, wenn mehrere Simulationen gekoppelt werden. Außerdem wird der Effekt der Modularisierung auf die Ausführungszeit in Relation zur monolithischen Simulation betrachtet. Die erhaltenen Resultate zeigen, dass die Kopplung der beiden Simulationen der Fallstudie, mit der DSL beschrieben werden kann. Die Resultate bezüglich der Evaluation der Genauigkeit weisen Probleme bei der Interaktion der Simulationen mit dem Kopplungsansatz auf. Nichts desto trotz bleibt das Verhalten der monolithischen Simulation in der modularen Version insgesamt erhalten. Die Evaluation zeigt, dass die modulare Simulation eine Erhöhung der Ausführungszeit im Vergleich zur monolithischen Version erfährt. Zudem deutet die Analyse der Skalierbarkeit darauf hin, dass die Ausführungszeit der modularen Simulation nicht exponentiell mit der Anzahl der gekoppelten Simulationen wächst

    Reconstruction of Software Component Architectures and Behaviour Models using Static and Dynamic Analysis

    Get PDF
    Model-based performance prediction systematically deals with the evaluation of software performance to avoid for example bottlenecks, estimate execution environment sizing, or identify scalability limitations for new usage scenarios. Such performance predictions require up-to-date software performance models. This book describes a new integrated reverse engineering approach for the reconstruction of parameterised software performance models (software component architecture and behaviour)

    Enabling Consistency between Software Artefacts for Software Adaption and Evolution

    Get PDF

    Parameter dependencies for reusable performance specifications of software components

    Get PDF
    To avoid design-related per­for­mance problems, model-driven performance prediction methods analyse the response times, throughputs, and re­source utilizations of software architectures before and during implementation. This thesis proposes new modeling languages and according model transformations, which allow a reusable description of usage profile dependencies to the performance of software components. Predictions based on this new methods can support performance-related design decisions

    Evaluating Architectural Safeguards for Uncertain AI Black-Box Components

    Get PDF
    Although tremendous progress has been made in Artificial Intelligence (AI), it entails new challenges. The growing complexity of learning tasks requires more complex AI components, which increasingly exhibit unreliable behaviour. In this book, we present a model-driven approach to model architectural safeguards for AI components and analyse their effect on the overall system reliability

    Evaluating Architectural Safeguards for Uncertain AI Black-Box Components

    Get PDF
    Künstliche Intelligenz (KI) hat in den vergangenen Jahren große Erfolge erzielt und ist immer stärker in den Fokus geraten. Insbesondere Methoden des Deep Learning (ein Teilgebiet der KI), in dem Tiefe Neuronale Netze (TNN) zum Einsatz kommen, haben beeindruckende Ergebnisse erzielt, z.B. im autonomen Fahren oder der Mensch-Roboter-Interaktion. Die immense Datenabhängigkeit und Komplexität von TNN haben jedoch gravierende Schwachstellen offenbart. So reagieren TNN sensitiv auf bestimmte Einflussfaktoren der Umwelt (z.B. Helligkeits- oder Kontraständerungen in Bildern) und führen zu falschen Vorhersagen. Da KI (und insbesondere TNN) in sicherheitskritischen Systemen eingesetzt werden, kann solch ein Verhalten zu lebensbedrohlichen Situationen führen. Folglich haben sich neue Forschungspotenziale entwickelt, die sich explizit der Absicherung von KI-Verfahren widmen. Ein wesentliches Problem bei vielen KI-Verfahren besteht darin, dass ihr Verhalten oder Vorhersagen auf Grund ihrer hohen Komplexität nicht erklärt bzw. nachvollzogen werden können. Solche KI-Modelle werden auch als Black-Box bezeichnet. Bestehende Arbeiten adressieren dieses Problem, in dem zur Laufzeit “bösartige” Eingabedaten identifiziert oder auf Basis von Ein- und Ausgaben potenziell falsche Vorhersagen erkannt werden. Arbeiten in diesem Bereich erlauben es zwar potenziell unsichere Zustände zu erkennen, machen allerdings keine Aussagen, inwiefern mit solchen Situationen umzugehen ist. Somit haben sich eine Reihe von Ansätzen auf Architektur- bzw. Systemebene etabliert, um mit KI-induzierten Unsicherheiten umzugehen (z.B. N-Version-Programming-Muster oder Simplex Architekturen). Darüber hinaus wächst die Anforderung an KI-basierte Systeme sich zur Laufzeit anzupassen, um mit sich verändernden Bedingungen der Umwelt umgehen zu können. Systeme mit solchen Fähigkeiten sind bekannt als Selbst-Adaptive Systeme. Software-Ingenieure stehen nun vor der Herausforderung, aus einer Menge von Architekturellen Sicherheitsmechanismen, den Ansatz zu identifizieren, der die nicht-funktionalen Anforderungen bestmöglich erfüllt. Jeder Ansatz hat jedoch unterschiedliche Auswirkungen auf die Qualitätsattribute des Systems. Architekturelle Entwurfsentscheidungen gilt es so früh wie möglich (d.h. zur Entwurfszeit) aufzulösen, um nach der Implementierung des Systems Änderungen zu vermeiden, die mit hohen Kosten verbunden sind. Darüber hinaus müssen insbesondere sicherheitskritische Systeme den strengen (Qualitäts-) Anforderungen gerecht werden, die bereits auf Architektur-Ebene des Software-Systems adressiert werden müssen. Diese Arbeit befasst sich mit einem modellbasierten Ansatz, der Software-Ingenieure bei der Entwicklung von KI-basierten System unterstützt, um architekturelle Entwurfsentscheidungen (bzw. architekturellen Sicherheitsmechanismen) zum Umgang mit KI-induzierten Unsicherheiten zu bewerten. Insbesondere wird eine Methode zur Zuverlässigkeitsvorhersage von KI-basierten Systemen auf Basis von etablierten modellbasierten Techniken erforscht. In einem weiteren Schritt wird die Erweiterbarkeit/Verallgemeinerbarkeit der Zuverlässigkeitsvorhersage für Selbst-Adaptive Systeme betrachtet. Der Kern beider Ansätze ist ein Umweltmodell zur Modellierung () von KI-spezifischen Unsicherheiten und () der operativen Umwelt des Selbst-Adaptiven Systems. Zuletzt wird eine Klassifikationsstruktur bzw. Taxonomie vorgestellt, welche, auf Basis von verschiedenen Dimensionen, KI-basierte Systeme in unterschiedliche Klassen einteilt. Jede Klasse ist mit einem bestimmten Grad an Verlässlichkeitszusicherungen assoziiert, die für das gegebene System gemacht werden können. Die Dissertation umfasst vier zentrale Beiträge. 1. Domänenunabhängige Modellierung von KI-spezifischen Umwelten: In diesem Beitrag wurde ein Metamodell zur Modellierung von KI-spezifischen Unsicherheiten und ihrer zeitlichen Ausdehnung entwickelt, welche die operative Umgebung eines selbstadaptiven Systems bilden. 2. Zuverlässigkeitsvorhersage von KI-basierten Systemen: Der vorgestellte Ansatz erweitert eine existierende Architekturbeschreibungssprache (genauer: Palladio Component Model) zur Modellierung von Komponenten-basierten Software-Architekturen sowie einem dazugehörigenWerkzeug zur Zuverlässigkeitsvorhersage (für klassische Software-Systeme). Das Problem der Black-Box-Eigenschaft einer KI-Komponente wird durch ein Sensitivitätsmodell adressiert, das, in Abhängigkeit zu verschiedenen Unsicherheitsfaktoren, die Prädektive Unsicherheit einer KI-Komponente modelliert. 3. Evaluation von Selbst-Adaptiven Systemen: Dieser Beitrag befasst sich mit einem Rahmenwerk für die Evaluation von Selbst-Adaptiven Systemen, welche für die Absicherung von KI-Komponenten vorgesehen sind. Die Arbeiten zu diesem Beitrag verallgemeinern/erweitern die Konzepte von Beitrag 2 für Selbst-Adaptive Systeme. 4. Klassen der Verlässlichkeitszusicherungen: Der Beitrag beschreibt eine Klassifikationsstruktur, die den Grad der Zusicherung (in Bezug auf bestimmte Systemeigenschaften) eines KI-basierten Systems bewertet. Der zweite Beitrag wurde im Rahmen einer Fallstudie aus dem Bereich des Autonomen Fahrens validiert. Es wurde geprüft, ob Plausibilitätseigenschaften bei der Zuverlässigkeitsvorhersage erhalten bleiben. Hierbei konnte nicht nur die Plausibilität des Ansatzes nachgewiesen werden, sondern auch die generelle Möglichkeit Entwurfsentscheidungen zur Entwurfszeit zu bewerten. Für die Validierung des dritten Beitrags wurden ebenfalls Plausibilitätseigenschaften geprüft (im Rahmen der eben genannten Fallstudie und einer Fallstudie aus dem Bereich der Mensch-Roboter-Interaktion). Darüber hinaus wurden zwei weitere Community-Fallstudien betrachtet, bei denen (auf Basis von Simulatoren) Selbst-Adaptive Systeme bewertet und mit den Ergebnissen unseres Ansatzes verglichen wurden. In beiden Fällen konnte gezeigt werden, dass zum einen alle Plausibilitätseigenschaft erhalten werden und zum anderen, der Ansatz dieselben Ergebnisse erzeugt, wie die Domänen-spezifischen Simulatoren. Darüber hinaus konnten wir zeigen, dass unser Ansatz Software-Ingenieure bzgl. der Bewertung von Entwurfsentscheidungen, die für die Entwicklung von Selbst-Adaptiven Systemen relevant sind, unterstützt. Der erste Beitrag wurde implizit mit Beitrag 2 und mit 3 validiert. Für den vierten Beitrag wurde die Klassifikationsstruktur auf bekannte und repräsentative KI-Systeme angewandt und diskutiert. Es konnte jedes KI-System in eine der Klassen eingeordnet werden, so dass die generelle Anwendbarkeit der Klassifikationsstruktur gezeigt wurde
    • …
    corecore