
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Modularization Approaches in the Context
of Monolithic Simulations

Master’s Thesis of

Frederik Reiche

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek

Advisor: M.Sc. Sandro Koch

Second advisor: Dipl.-Inform Jörg Henß

15. March 2018 – 14. September 2018

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Bretten, 07.09.2018

. .

(Frederik Reiche)

Abstract

Quality characteristics of a software system such as performance or reliability can deter-

mine its success or failure. In traditional software engineering, these characteristics can

only be determined when parts of the system are already implemented and past the design

process. Computer simulations allow to determine estimations of quality characteristics

of software systems already during the design process. Simulations are build to analyse

certain aspects of systems. The representation of the system is specialised for the spe-

ci�c analysis. This specialisation often results in a monolithic design of the simulation.

Monolithic structures, however, can induce reduced maintainability of the simulation and

decreased understandability and reusability of the representations of the system. The

drawbacks of monolithic structures can be encountered by the concept of modularisation,

where one problem is divided into several smaller sub-problems. This approach allows an

easier understanding and handling of the sub-problems.

In this thesis an approach is provided to describe the coupling of newly developed

and already existing simulations to a modular simulation. This approach consists of a

Domain-Speci�c Language (DSL) developed with model-driven technologies. The DSL

is applied in a case-study to describe the coupling of two simulations. The coupling of

these simulations with an existing coupling approach is implemented according to the

created description. An evaluation of the DSL is conducted regarding its completeness to

describe the coupling of several simulations to a modular simulation. Additionally, the

modular simulation is examined regarding the accuracy of preserving the behaviour of the

monolithic simulation. The results of the modular simulation and the monolithic version

are compared for this purpose. The created modular simulation is additionally evaluated

in regard to its scalability by analysis of the execution times when multiple simulations

are coupled. Furthermore, the e�ect of the modularisation on the simulation execution

times is evaluated.

The obtained evaluation results show that the DSL can describe the coupling of the two

simulations used in the case-study. Furthermore, the results of the accuracy evaluation

suggest that problems in the interaction of the simulations with the coupling approach exist.

However, the results also show that the overall behaviour of the monolithic simulation is

preserved in its modular version. The analysis of the execution times suggest, that the

modular simulation experiences an increase in execution time compared to the monolithic

version. Also, the results regarding the scalability show that the execution time of the

modular simulation does not rise exponentially with the number of coupled simulations.

i

Zusammenfassung

Qualitätsmerkmale eines Software-Systems wie Zuverlässigkeit oder Performanz können

über dessen Erfolg oder Scheitern entscheiden. Diese Qualitätsmerkmale können im klassi-

schen Software-Ingenieurswesen erst bestimmt werden, wenn der Entwurfsprozess bereits

vollendet ist und Teile des Software-Systems implementiert sind. Computer-Simulationen

erlauben es jedoch Schätzungen dieser Werte schon während des Software-Entwurfs

zu bestimmen. Simulationen werden erstellt um bestimmte Aspekte eines Systems zu

analysieren. Die Repräsentation des Systems ist auf diese Analyse spezialisiert. Diese

Spezialisierung resultiert oft in einer monolithischen Struktur der Simulation. Solch eine

Struktur kann jedoch die Wartbarkeit der Simulation negativ beein�ussen und das Ver-

ständnis und die Wiederverwendbarkeit der Repräsentation des Systems verschlechtern.

Die Nachteile einer monolithischen Struktur können durch das Konzept der Modulari-

sierung reduziert werden. In diesem Ansatz wird ein Problem in kleinere Teilprobleme

zerlegt. Diese Zerlegung ermöglicht ein besseres Veständnis und eine bessere Handhabung

der Teilprobleme.

In dieser Arbeit wird ein Ansatz präsentiert, um die Kopplung von neu entwickelten

oder bereits existierenden Simulationen zu einer modularen Simulation zu beschreiben.

Dieser Ansatz besteht aus einer Domänenspezi�schen Sprache (DSL), die mit modellge-

triebenen Technologien entwickelt wird. Die DSL wird in einer Fallstudie angewendet, um

die Kopplung von zwei Simulationen zu beschreiben. Weiterhin wird die Kopplung dieser

Simulationen mit einem existierenden Kopplungsansatz gemäß der erzeugten Beschrei-

bung manuell implementiert. In dieser Fallstudie wird die Vollständigkeit der Fähigkeit der

DSL untersucht, die Kopplung von mehreren Simulation zu einer modularen Simulation

zu beschreiben. Weiterhin wird die Genauigkeit des Modularisierungsansatzes bezüglich

der Verhaltensbewahrung der modularen Simulation gegenüber der monolithischen Ver-

sion evaluiert. Hierfür werden die Resultate der modularen Simulation mit denen der

monolithischen Version verglichen. Zudem wird die Skalierbarkeit des Ansatzes durch

die Betrachtung der Ausführungszeiten untersucht, wenn mehrere Simulationen gekop-

pelt werden. Außerdem wird der E�ekt der Modularisierung auf die Ausführungszeit in

Relation zur monolithischen Simulation betrachtet.

Die erhaltenen Resultate zeigen, dass die Kopplung der beiden Simulationen der Fall-

studie, mit der DSL beschrieben werden kann. Die Resultate bezüglich der Evaluation

der Genauigkeit weisen Probleme bei der Interaktion der Simulationen mit dem Kopp-

lungsansatz auf. Nichts desto trotz bleibt das Verhalten der monolithischen Simulation

in der modularen Version insgesamt erhalten. Die Evaluation zeigt, dass die modulare

Simulation eine Erhöhung der Ausführungszeit im Vergleich zur monolithischen Version

erfährt. Zudem deutet die Analyse der Skalierbarkeit darauf hin, dass die Ausführungszeit

der modularen Simulation nicht exponentiell mit der Anzahl der gekoppelten Simulationen

wächst.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Modelling and Simulation Foundation 3
2.1 Model Driven Software Development . 3

2.1.1 Models - De�nition and Properties 3

2.1.2 Model Driven Software Development 4

2.1.3 View-Based Modelling . 5

2.2 Software Based Simulation . 6

2.2.1 Simulation State and Approaches for Simulation Modelling . . . 7

2.2.2 Discrete-Event Simulation . 8

2.2.3 Structures of Multi-System Simulations 9

2.2.4 Composability of Simulations . 10

2.2.5 Co-Simulation and the High-Level Architecture 11

2.3 Approaches for the Description of Simulation Composition 15

2.3.1 CODES . 15

2.3.2 Discrete Event Systems Speci�cation 15

2.3.3 Ptolemy . 16

2.3.4 OMNeT++ . 17

3 Simulation of So�ware Systems and Business Processes Foundations 19
3.1 Domain-Speci�c Languages and Architecture Description Languages . . 19

3.2 Component-based Software Simulation 20

3.2.1 Components . 21

3.2.2 The Palladio Approach . 22

3.2.3 EventSim . 24

3.2.4 Business IT impact simulation . 25

4 RelatedWork 29
4.1 Composability and Interoperability . 29

4.1.1 Challenges in the Interaction of High-Level Architecture Imple-

mentations . 29

4.1.2 Modelling Approaches for The High-Level Architecture 31

4.1.3 Using Ontologies for Simulation Composition and Interoperability 32

4.1.4 Simulation Composition Approaches 33

v

Contents

4.2 Decoupling in the Context of Monolithic Simulations 34

4.3 Architecture Description Languages for Modular Simulations 37

5 Extraction of Simulation Models fromMonolithic Simulations 39
5.1 Simulation Features of Monolithic Simulations 39

5.2 Simulation Information to be Identi�ed for Extraction 40

5.2.1 Simulation Entities . 40

5.2.2 Flows in Monolithic Simulations 40

5.3 Usage of the Flows and Entities . 41

5.3.1 Identi�cation of Entities by Simulation Features 41

5.3.2 Determination of Requiring and Providing Data 41

5.3.3 Replication of Entities . 42

5.3.4 Types of Execution Flows in a Waiting Scenario 42

5.4 Challenges in the Extraction of Simulations 43

5.4.1 Tooling . 43

5.4.2 Duplicated Code . 43

5.4.3 Synchronisation of Simulation Time with Coupling Approaches . 44

6 A Description Language for Simulation Coupling 45
6.1 Modular Simulations in the DSL . 47

6.2 Mitigation of Information Incompatibilities through Adaptation 52

6.2.1 Adapter Types . 53

6.2.2 Adaptation Process . 54

6.3 Package Structure of the Metamodel . 55

6.3.1 Superordinate Package Structure 56

6.3.2 Dependencies between the Packages SimulationFeature, Modu-

larEnvironment and DataRepresentation 58

6.3.3 Overview of the Adaptation Package Structure 59

6.3.4 Package Structure of ModularSimulationAssembly 60

6.4 Basic Metamodel Classes . 62

6.5 Representation of Information . 63

6.5.1 Data types . 63

6.5.2 Operations . 67

6.5.3 Representation of Information of Simulation Features 68

6.5.4 Discussion of the Metamodels’ Object Oriented Structure Design 71

6.5.5 Object Instances . 73

6.6 Description of Simulation Features and Modular Simulation Environments 73

6.6.1 Modelling of Simulation Features 73

6.6.2 Modelling of Modular Simulation Environment 75

6.7 Metamodel of the Adaptation Approach 81

6.7.1 Adapter Services . 81

6.7.2 Adaptation Descriptions . 82

6.8 Assembly of Modular Simulations . 87

6.8.1 Structure of Assembled Modular Simulation 87

6.8.2 Annotation of Information with Context Information 89

vi

Contents

6.8.3 De�nition of Required and Provided Information of Simulations . 91

6.8.4 Attachment of Adaptation Descriptions to Adapters 95

6.8.5 Connections in the Modular Simulation Assembly 96

6.8.6 Hierarchical Assembly of Modular Simulations 100

6.9 Role Based Modular Simulation Development with the DSL 100

6.9.1 Simulation Developer . 101

6.9.2 MSE-Developer Perspective . 101

6.9.3 Adaptation Developer Perspective 102

6.9.4 Simulation Architect Perspective 102

7 Evaluation 105
7.1 Description of the Monolithic Simulation WorkwaySim 105

7.1.1 WorkwaySim Simulation Model 105

7.1.2 In�uences on the Behaviour of WorkwaySim 107

7.1.3 Waiting and Driving Scheme of the Human Entity 108

7.1.4 Discussion of Validity of WorkwaySim for Evaluation 110

7.2 Evaluation Design . 110

7.3 Presentation of the DSL Model of WorkwaySim 112

7.3.1 Modelling of poRTIco . 112

7.3.2 Modelling of the HumanSim . 117

7.3.3 Modelling of BusSim . 119

7.3.4 Modelling of the Adaptations used in WorkwaySim 121

7.3.5 Modelling of the WorkwaySim Interfaces 122

7.3.6 Modelling of the WorkwaySim Assembly 123

7.4 Evaluation Results . 130

7.4.1 Evaluation Results for RQ1 - Completeness 130

7.4.2 Evaluation Results for RQ2 - Accuracy 137

7.4.3 Evaluation Results of RQ3 - Scalability 142

7.5 Discussion of Evaluation-Relevant Design Decisions of WorkwaySim . . 143

7.5.1 Implementation of the Waiting Scheme 143

7.5.2 Implementation of Multiple HumanSim Features 143

7.5.3 Calculation of Execution Time in WorkwaySim 144

7.6 Discussion of Results . 144

7.7 Assumptions and Limitations . 148

7.8 Threats to Validity . 148

7.8.1 Internal Validity . 148

7.8.2 External Validity . 149

7.8.3 Construct Validity . 149

7.8.4 Conclusion Validity . 150

8 Conclusion 151

Bibliography 153

vii

List of Figures

2.1 Model layers de�ned by in the Meta Object Facility (MOF) 5

2.2 Terminology of view-based modelling . 6

2.3 View of HLA components . 14

3.1 Simulator Environment of EventSim and SimuCom 24

3.2 IntBIIS Layers . 26

6.1 Abstract Diagram of Provided and Required Interfaces used in Integrated

Business IT Impact Simulation (IntBIIS) 50

6.2 Abstract and Exemplary Structure of Modular Simulations 51

6.3 The Proposed Adaptation Process . 55

6.4 The Superordinate Package Structure of the DSL 57

6.5 Package Structure of the Packages SimulationFeature, ModularEnviron-

ment and DataRepresentation . 58

6.6 Package structure of the superordinate Adaptation package 59

6.7 All packages and dependencies related to the ModularSimulationAssembly
package and its sub-packages . 60

6.8 Content of the metamodels basic package 62

6.9 Classes and Relations Contained in the DataTypes Package 64

6.10 Classes and relations contained in the OperationModel package 67

6.11 Classes and relations contained in the SimulationInformation package . . 69

6.12 Depiction of Design Alternatives for the DSL of two Object-Oriented

Structure . 72

6.13 Classes and relations contained in the SimulationFeature package 74

6.14 Classes and relations contained in the ModularEnvironment package . . . 76

6.15 Classes and relations contained in the Annotations package 77

6.16 Classes and relations contained in the ManagementService package . . . 80

6.17 Classes and relations contained in the AdapterServices package 82

6.18 Classes and relations directly contained in the Adaptation package 83

6.19 Classes and relations contained in the AdaptationConversion package . . 84

6.20 Classes and relations directly contained in the ModularEnvironment package 85

6.21 Classes and relations directly contained in the ModularSimulationAssembly
package . 88

6.22 Classes and relations contained in the AnnotationEnhancement package . 90

6.23 Classes and relations contained in the InterfaceDe�nition package 92

6.24 Classes and relations contained in the InterfaceMapping package 94

6.25 Classes and relations contained in the ComponentInterfaceConnection package 97

6.26 Classes and relations contained in the AssemblyConnections package . . . 98

ix

List of Figures

6.27 Classes and relations contained in the AssemblyComponentWiring package 99

7.1 Figures of Deterministic Simulation Results for AwayTimes values 138

7.2 Deterministic Simulation Results . 141

7.3 Non-deterministic Simulation Results: AwayTimes 142

7.4 Comparison of Execution Times . 142

x

List of Tables

7.1 Comparison between the elements of the poRTIco implementation and its

DSLs model relevant for WorkwaySim 113

7.2 The Annotation model elements speci�ed for poRTIco 114

7.3 Modelled ManagementService instances in the poRTIco DSL model 116

7.4 Modelled MSEServiceInterface instances in the poRTIco DSL model 117

7.5 DataType model instances of the HumanSim model 118

7.6 Model elements contained in the ObjectOrientedViewSimulationData in-

stance in the HumanSim model . 119

7.7 DataType model instances of the BusSim model 120

7.8 Model elements contained in the ObjectOrientedViewSimulationData in-

stance in the BusSim model . 120

7.9 Model elements to model the adaptation approach 121

7.10 Abstract Interface Model Elements . 122

7.11 Annotated ObjectClasses in the WorkwaySim Model 125

7.12 Annotated Data in the WorkwaySim Model 125

7.13 Annotated Operations in the WorkwaySim Model 125

7.14 Annotated Parameters in the WorkwaySim Model 126

7.15 Model Elements to Model the de�nition of Provided Information in Work-

waySim . 127

7.16 Model Elements to Model the de�nition of Provided Information in Work-

waySim . 127

7.17 Connections between Required and Provided Interfaces 128

7.18 AdaptationAttachments model elements in WorkwaySim 129

7.19 Simulation PC Speci�cation . 130

7.20 Comparison of Model Elements and Implementation Elements: BusSim

Model . 131

7.21 Comparison of Model Elements and Implementation Elements: HumanSim

Model . 132

7.22 Comparison of Model Elements and Implementation Elements: poRTIco

Model . 133

7.23 Comparison of Model Elements and Implementation Elements: Work-

waySimAdaptation Model . 134

7.24 Comparison of Model Elements and Implementation Elements: Work-

waySim Model . 135

7.25 Comparison of Model Elements and Implementation Elements: Work-

waySim Model - continued . 136

7.26 Accuracy Results for AwayTimes in Deterministic WorkwaySim 137

xi

List of Tables

7.27 Simulation Results in the Deterministic WorkwaySim for AwayTimes,

WaitingTimes and DrivingTimes . 138

7.28 Durations for AwayTimes, WaitingTimes and DrivingTimes in Determin-

istic WorkwaySim . 138

7.29 Evaluation Results for Non-deterministic WorkwaySim: AwayTimes . . . 139

7.30 Evaluation Results for Non-deterministic WorkwaySim: WaitingTimes . 139

7.31 Evaluation Results for Non-deterministic WorkwaySim: DrivingTimes . 140

xii

Acronyms

ADL Architecture Description Language

API Application Programming Interface

BOM Base Object Model

BP Business Process

DES Discrete-Event Simulation

DEVS Discrete Event System Speci�cation

DIS Distributed Interactive Simulation

DSL Domain-Speci�c Language

EMD Earth Mover’s Distance

EMF Eclipse Modelling Framework

FOM Federate Object Model

GQM Goal Question Metric

HLA High-level Architecture

IEEE Institute of Electrical and Electronics Engineers

IntBIIS Integrated Business IT Impact Simulation

IS Information System

KAMP Karlsruhe Architecture Maintainability Prediction

LCIM Levels of Conceptual Interoperability Model

MBSD Model-Based Software Development

MDA Model-Driven Architecture

MDSD Model-Driven Software Development

MoC Model of Computation

MOF Meta Object Facility

xiii

List of Tables

MSE Modular Simulation Environment

OE Organisational Environment

OMG Object Management Group

OMT Object-model Template

RDSEFF Resource Demanding Service E�ect Speci�cation

RTI Run-time Infrastructure

SADL Simulation Architecture Description Language

SEFF Service E�ect Speci�cation

SISO Simulation Interoperability Standards Organisation

SOM Simulation Object Model

UML Uni�ed Modeling Language

XML Extensible Markup Language

xiv

1 Introduction

Wrong design decisions in the development of software can signi�cantly in�uence the

quality characteristics of the resulting product. Examples of quality characteristics can be

performance or reliability. Determining the quality characteristics of a software system in

the design phase can avoid necessary changes later in development which reduces costs or

even prevents failure of the total product. For example, it is possible that stakeholders do

not accept the product if it does not respond in a speci�c time frame under load expected

to be normal (performance). The impact of design decisions that negatively in�uence

quality characteristics of a software system can often only be determined in later phases

of development when parts of the software already exist. Simulations can be used to

determine estimates of quality characteristics to analyse the impacts of design decisions

already in the design phase of the software system. These estimates help developers to

choose or compare design decisions regarding their impact on the software system without

actually realising them �rst. Simulations are build to analyse certain aspects of a system.

The representation of the system is highly specialised for this analysis. Therefore, only

features of a system which are relevant to the analysis of the desired aspects are represented.

In order to analyse the impact of design decisions regarding quality characteristics on

software systems such as performance, not only the systems architecture but also use-cases

and the deployment hardware can be of importance. The specialisation of the system

often results in a monolithic structure. Monolithic structures can induce problems in

maintainability and decrease the understandability and reuse of the representation of the

system. In a monolithic simulation, a signi�cant part of the structure has to be understood

to reuse it. It can be time and cost consuming to gain understanding of a monolithic system

so that it can be more e�ective to implement a simulation again [1]. These problems can

be encountered with the approach of modularisation where one problem is divided into

several smaller problems [2]. In the context of simulations, modularisation can be used to

describe a large simulation by several smaller simulations. Each smaller simulation can

represent one feature of the system. The smaller scope of each simulation can improve its

understandability. In the modularisation of simulations, a coupling approach has to be

used to connect multiple simulations. Also, the coupling approach provides capabilities to

enable correct interaction between simulations.

An example of a simulation to gather software quality measures is the Palladio approach

by Reussner et al. [3]. This approach applies simulations to analyse component-based

software systems with respect to the quality characteristics performance and reliability.

The features represented for this analysis in Palladio are use-cases of the software system,

its architectural design including the behaviour of the used components and its deployment

on hardware resources. However, further in�uencing factors can impact the systems quality

characteristics, depending on the context the software systems are used in. An example is

the use of software systems in a business setting. Here business processes can have an

1

1 Introduction

impact on the actual performance of a software system. For instance, a software system can

express acceptable quality characteristics when a normal load is applied. However, when

a business process includes a break after which every employee starts to use the software-

system again at the same time, the system can experience repeated overload and thus a

decrease in performance. Such problems arise when software systems are not designed

dependent on each other [4]. The IntBIIS [4] approach utilises Palladio to simulate the

interaction of business processes with software systems to gather quality characteristics

(e.g. response times). With this approach, IntBIIS can �nd interdependent in�uences

between business processes and software-systems regarding performance already in the

design process. IntBIIS includes Palladio with its business process representation in a

monolithic structure. Therefore, the representations of the business process are designed

to match the structure and representations of Palladio. The approach of matching to

a speci�c structure can result in problems. An example is that the business process

representation cannot be reused in another simulation when it does not provide the same

representations and concepts of software systems. The principle of modularisation can

be applied to avoid such a strict matching to a particular structure. In the context of

IntBIIS, the smaller simulations are Palladio and the business process simulation itself.

In this approach, Palladio would only provide certain information (e.g. the response

time of a software system) to other simulations. To achieve interaction, the business

process simulation and Palladio have to be coupled with an coupling approach. Also, the

business process simulation would have to request the provision of the response times

of the software system from Palladio. Due to the application of a coupling approach, the

provided information can be transferred independently to their representation in the other

simulation.

To provide support in the modularisation of monolithic simulations, a DSL is created

with model-driven technologies to describe the coupling between several simulations. This

approach is developed by inspecting the simulation IntBIIS. Also, existing approaches for

simulation coupling and interoperability are examined. An example of such an approach

is the High-level Architecture (HLA) as a current standard for simulation interoperabil-

ity. Furthermore approaches on simulation modelling as well as simulation composition

approaches are inspected. Additionally IntBIIS is analysed to gather insight about informa-

tion that can support the extraction of smaller simulations out of a monolithic simulation.

We also investigate already existing decoupling approach for this purpose.

This thesis is therefore organised as follows: First, Chapter 2 provides the foundations

of modelling and simulation. Insight in the simulation of software systems and business

processes is provided in Chapter 3. Chapter 4 provides and discusses work related to

the topics in this thesis. Information supporting the extraction of models contained in

monolithic computer simulations found by inspection of IntBIIS is given in Chapter 5.

Chapter 6 describes the provided DSL to describe the coupling between simulations.

Thereafter, the evaluation of our modularisation approach with the DSL is presented in

Chapter 7. Finally, Chapter 8 provides a �nal conclusion and a presentation of future work

in the context of this thesis.

2

2 Modelling and Simulation Foundation

This chapter provides foundations for topics required in this master thesis. (Meta)models

and Model-Driven Software Development (MDSD) are introduced in Sec. 2.1. This intro-

duction includes the de�nition of models, metamodels and metametamodels in Sec. 2.1.1.

MDSD and Model-Based Software Development (MBSD) is described in Sec. 2.1.2. Also

the terms of view-based modelling is described in Sec 2.1.3. One application of models

is the description of the behaviour of real or virtual systems in a computer. This �eld of

application is called simulation. Sec. 2.2 provides a introduction into computer simulations.

Sec. 2.2.1 includes di�erent approaches on how to model a simulation. One modelling

approach is the discrete-event simulation. This approach is presented in more detail in

Sec. 2.2.2. Multiple systems models can be used to create a single simulation. 2.2.3 de�nes

two structures for the connection between the di�erent models. A goal in the simulation

community is to assemble a simulation of other simulations. A simulation consisting of

other simulation is called a modular simulation in this thesis. Required capabilities of

simulations and approaches to achieve this goal are introduced in 2.2.4. An approach to

connect simulations with each other is introduced in 2.2.5. The description is followed by

an introduction in approaches to describe modular simulations in Sec. 2.3.

2.1 Model Driven So�ware Development

Models are widely used to make information easier accessible or usable by abstracting

certain features. For example, we use the model of military troops for tactical training

(e.g. navy ships). In a tactical training, the represented navy ship is an abstraction of a

real navy ship, the "original". However, this representation can have altered (e.g. size)

or omitted (e.g. no interior) features. The de�nition of a model is given in the following

section.

2.1.1 Models - Definition and Properties

Models are de�ned corresponding to the de�nition by Stachowiak et al. [5]. Here, models

are de�ned as a formal representation of a real- or virtual world entity (abstraction).

Furthermore,the models are created for a speci�c purpose. Also, they are only meaningful

to their users as well as for speci�c operations and time-spans (pragmatism). For example,

the model of a navy ship is only created for training exercises. It cannot be used for the

transportation of persons. Models contain only a subset of attributes of the original to

serve the intended purpose (reduction). In the navy ship example, the ship model contains

only the appearance of real ships. However, the engine and exhausts are omitted due to

their irrelevance for the given purpose. By this de�nition, models represent a particular

3

2 Modelling and Simulation Foundation

set of features/attributes. A model instance is generated when values are assigned to the

features/attributes of a model. For example the features of a ship could be a colour of the

hull or the speed of the ship. In a model instance the value red can be assigned to the

feature "colour" and 30 Knots to "speed" .

A model itself is described by another model - the so-called metamodel. The metamodel

abstracts elements and properties of a model as well as the possible structure. Elements

and structure are de�ned by relationships, constraints and modelling rules [6]. These

de�nitions are one of four aspects needed to construct valid models. A model described

by the metamodel is called an instance and conforms to the metamodel [3]. Völter et al.

[6] de�nes the four aspects of valid model creation:

1. The abstract syntax describes the elements of the models and their relations,

independent of their representation.

2. At least concrete syntax has to be provided to describe the representations of the

abstract syntax.

3. The static semantic determines the criteria that qualify a model as well-formed

through a set of rules and constraints not covered or described by the concrete

syntax.

4. The dynamic semantic describes the meaning of the meta-model by means like,

for example, natural-language.

A metamodel can be described by another model, which is then called a metametamodel.

It is possible that another model can describe this model as well. However, in this thesis,

we use the four-layered approach of the MOF of the Object Management Group (OMG) [7],

where the metametamodel describes itself. The relation between these levels is depicted

in 2.1. Models can be used as supporting- or central artefacts in software development.

This topic is discussed in the following section.

2.1.2 Model Driven So�ware Development

Models are used in various �elds of application in computer science. For example, in

programming or software development. In programming, machine code is abstracted with

the purpose of better understandability and easier manipulation. Assembler code can be

seen as a abstraction of a programs binary code. Its purpose is to enable programmers

to better read, understand and manipulate the contents of the code. Instances of these

abstractions (i.e. the written source �les) can be transformed back into the form they are

abstracted from (i.e. the binary code). This transformation is done within the process of

compilation.

In software development, models can be not only be used to abstract code but also other

features of a software system. For example, the usage of the system or the behaviour of

the internals of the system (e.g. communication between classes). In MBSD, these models

are used for documentation and can be seen as secondary artefacts. Another use is to

depict and display certain aspects of the development or the system (e.g. for internal-

4

2.1 Model Driven Software Development

Metamodel
(e.g. UML)

M3

M2

M1

M0 Original

Model
(e.g. data)

Meta-metamodel
(e.g. Ecore)

conforms to

conforms to

conforms to

conforms to

represents

represents

represents

represents

Figure 2.1: Model layers de�ned by in the MOF [3]

or stakeholder communication). Concerning the code-abstraction aspect and the use of

models in software development the approach of MDSD was invented. In this approach,

models are �rst class development artefacts [6]. Therefore, models are used for code

generation or analysis and constitute a central part in development. It can be seen as

another level added to the abstraction of machine code to better manage the complexity

of source code [6]. Here, source-code is abstracted by models representing whole classes,

interactions or even architectures of systems. This abstraction can be used to achieve

advantages like increased development speed. Also, the use of MDSD promises better

software quality through automate transformations of the model to code. Additionally,

the di�erent modelled aspects can be reused in other software systems like, for example,

product lines [6]. Another bene�t is the management of consistency in the software

development. In MDSD, consistency between documentation and code can be achieved by

the model-to-code transformation. Typically, all changes to the system are �rst made in the

model when possible. The model-to-code transformation then provides these capabilities

since all changes are already in the model.

2.1.3 View-Based Modelling

View-based modelling is used to provide a focused approach for stakeholders. Di�erent

views present aspects of the same model for di�erent purposes. For example, the same

model is used to express a components-based software system. However, the view of

system architect only provides the model elements to display and manipulate the software’s

structure. On the other hand, the view speci�ed for the deployer of the system only shows

5

2 Modelling and Simulation Foundation

deployment relevant information like the hardware, on which the components can be

deployed on [8]. Goldschmidt et al. [8] use the terms of view type and view to distinguish

between the de�nition level and the instance level. Here, the de�nition level is speci�ed

by the view type and the instance level by the view.

1represents

*

instanciates 1

views *

*
defines

definedBy

1showsElements 1
* represents

View Model Metamodel

ViewType

Stakeholder

Viewpoint

Concern

*

ViewTypes

defines*

representedIn

1
1 concern

interesetdIn*
definedBy

*

*

defines

*has

Figure 2.2: Terminology of view-based modelling according to Goldschmidt et al. [8]

View types de�ne rules to structure views that can be created. Each view has to be

created in accordance to these rules [8]. Burger [9] mentions that view types "can be

interpreted as a metamodel for actual views" [9]. Goldschmidt et al. [8] de�nes view types

by two aspects to provide a connection between view types and metamodels. The �rst

aspect speci�es that "a view-type de�nes a set of meta-classes whose instances a view

can display" [8]. The second aspect is the de�nition states that a view type "de�nes a

concrete syntax and a mapping of the abstract metamodel syntax" [8]. This de�nition

targets the second level of the MOFs hierarchy depicted in Fig. 2.1. A view type can de�ne

several viewpoints. One or more stakeholders can be interested in several concerns. The

view point expresses these concerns in view types [9]. For example, view points on a

component-based software architecture can be concerned about system independent and

system dependent speci�cs.

Views are instances of the view types[8]. Therefore they can be seen in a relation as

parallel to those of models to metamodels. Thus, views correspond to the �rst level of

the MOFs hierarchy [3]. Each view can have di�erent properties. Those properties are

described by Goldschmidt et al. in [8]. The resulting terminology of view-based modelling

used by Goldschmidt et al. [8] is partially shown in Fig. 2.2

2.2 So�ware Based Simulation

In science and industry, cases exist, where data-gathering from a system or manipulation

of a system is not possible, infeasible (e.g. high cost or low e�ciency) or even dangerous.

An example of systems that cannot be manipulated are cosmic systems. Also, a problem is

the data-gathering of systems not existing at that time (e.g. software systems in design).

Another example can be found in the running example of tactical training. The participation

of every vehicle and person in the tactical training of one trainee would result in high costs.

6

2.2 Software Based Simulation

The gathering of data despite these prior mentioned problems is desirable. Therefore,

systems are described by models to enable their representation in a computer.

Systems are viewed as entities acting together or in dependence on each other to

achieve a common goal [10]. A system is represented by mathematical expressions or

logical relationships. These relationships describe the di�erent assumptions de�ning

the system [10]. The representation of a system is called a simulation model. If the

simulation models of a simulation can be solved by means like algebra, calculus or statistics,

exact results can be obtained [10]. The calculation of exact results can get harder or

even impossible with rising model complexity. Computers are used to imitate (simulate)

the behaviour of models to cope with this problem of rising complexity. In computer

simulations, models are numerically evaluated over time [11]. Di�erent modelling types

can be used to provide the system structure and to represent the behaviour. Examples

for those types are Petri nets, event relationship graphs or queueing networks [12]. This

approach also poses the advantage to change or enhance the system preliminary without

providing real resources. Also, problems in a systems representation can be found before

they appear in reality [13].

Simulations have to represent time to model real-world or virtual systems. The represen-

tation of time enables the user to gather time-dependent data like time-related measures

(e.g. response time of simulated software systems [3]). It is often also possible to manipulate

time to advance it faster or slower than normal [13], so that the term simulation time has

been introduced. This term signals the possible di�erences between real wall-clock-time

and the time represented in a simulation. The state of the system is de�ned by a set of

variables called System State Variables (hereafter called state variables) [10]. The system is

described by these variables related to a speci�c time to provide all information necessary

for a certain purpose of investigation [11]. By the representation of the system through

variables, it is possible to manipulate the system and control its behaviour. Di�erent

approaches exist to represent time and state in a simulation. Because of the importance of

these topics, they are introduced in the following section.

2.2.1 Simulation State and Approaches for Simulation Modelling

One modelling factor of a simulation is the representation of states and the transition

between them. The state is represented through attributes which are necessary to de-

scribe the simulation at a certain point in time [10]. Simulations can be either modelled

continuously, discretely or as a combination of both [12].

The state of continuous systems is described by variables modelled through explicit

functional forms, di�erence- or di�erential equations [13]. These forms enable a continuous

change of the state of a system over time [10]. In discrete-time simulations, changes to

the variables are executed instantaneously at de�ned discrete points in time [12]. Rules

have to be speci�ed for how and when time advances [12]. Lots of systems are not purely

discrete or continuous. Therefore a combined approach can be used. Here the interaction

of both approaches is one of the main concerns [13].

Multiple approaches of simulation modelling emerged for continuous or discrete models.

Each approach is designed with its distinct goal. In this thesis, mainly discrete approaches

are presented. Additionally only the approach of Discrete-Event Simulation (DES) is

7

2 Modelling and Simulation Foundation

discussed in more depth. The system’s behaviour in the classical discrete modelling

world-view is modelled in a top-down approach. Entities in a system (e.g. a paramedic

or a vehicle) are explicitly represented by attributes de�ning their information [13]. The

prede�ned �ow of each entity from state to state through the system is modelled in this

world-view[13]. Di�erent views on the system and how to model them emerged in this

world-view. An example is the event orientation, in which the system state is changed

by a series of instantaneous events where no time passes while executing the event [10].

Another approach is process orientation where passive entities �ow through the system by

multiple process steps [12]. In contrast to events, time may pass in a process step. Contrary

to the top-down view on a system, agent-based modelling uses a bottom-up approach to

build the system. Agents are placed in the system, each speci�ed with its behaviour. The

agents interact with each other as de�ned by their behaviour. The interaction of all agents

creates the behaviour of the complete system [12]. The approach of event orientation is

supposed to be very �exible. Also, it is used in the motivating example simulation IntBIIS

and the evaluation system. Therefore, the DES approach is introduced in the following

Sec. 2.2.2.

2.2.2 Discrete-Event Simulation

In DES, the system state (i.e. its variables) changes at discrete points in time by the

occurrence of instantaneous events [13]. Each event is speci�ed by the modeller and

de�nes its in�uence on various variables in the system [10]. A discrete-event simulation

consists of multiple parts responsible for event management, scheduling, and the resulting

simulation. Besides the variables representing the system state, the simulation clock

variable represents the current simulation time. For organisation of the events an event-

list is employed. It contains the next time each event type occurs. A timing routine selects

the next event from the event-list and executes its event-routine. An important aspect of

discrete-event simulation is that no time advances while an event is executed [12]. Thus,

the timing-routine advances simulation time by updating the simulation clock only after

the event-execution is completed. In some modelled activities, time advancement during an

event may be allowed or desired. Start and end events have to be de�ned in such a case [12].

Time can be commonly advanced by using the "next-event time advance" mechanism. At

the start of the simulation, the simulation times of future events are determined and the

simulation clock is set to zero. Through the execution of the simulation, the timing-routine

continuously selects the next event for execution [10]. Whenever the event-routine is

called, three actions are possible[10].

1. Update of the system state, i.e. changing its variables

2. Gathering of information about the simulation

3. Extension of the event-list by newly generated times of event-occurrences.

Time advances to the determined time of the next event by updating the simulation

clock after the event-routine is �nished [10]. This procedure is repeated until a stopping

condition is found to be true [10].

8

2.2 Software Based Simulation

2.2.3 Structures of Multi-System Simulations

Some real-world or virtual systems consist of collections of sub-systems rather than

a single system. Each of these sub-systems has to be modelled to be simulated as a

whole system. Thus each simulation can be seen as a separate (sub-)simulation. For

example, a military training simulation can consist of the distinct models for the air-

force, the nautical-force and ground-force. Di�erent simulations have to be combined to

communicate and interact with each other to produce a simulation of their joined behaviour.

Approaches like isolated simulations, co-simulations or integrated simulations are applied

to achieve such a combination [14]. In the isolated simulation approach, each simulation is

separately executed. Only their results are exchanged after their execution [14]. Integrated

simulations are used to let simulations interact with each other, even when they are

originally not intended to do so [15]. In co-simulation, multiple simulations interact

through a common coordinating entity. This entity provides communication and data-

exchange functionality for the simulations.

Software systems or simulations can be designed as either monolithic or modular

structures. Monolithic architectures in software engineering contain all capabilities and

responsibilities of a software system. The single parts realising the capabilities are tightly

coupled through a uniquely developed structure [16]. In the context of simulation, this

corresponds to a structure where each simulation model representing a system in a multi-

system simulation is located in one unique structure. This approach poses drawbacks also

known from monolithic structures in software development. Large monolithic simulation

models su�er from low and costly extensibility along with missing reusability in other

simulations [17]. Furthermore problem in the usage of monolithic simulations is, that the

underlying simulation models are specialised to the monolithic structure of the simulation.

If a (sub-) model of the simulation shall be reused, it has to be prior extracted. This requires

the understanding of the structure itself. The extraction can then be time extensive and

costly so that it can be more e�cient to implement the simulation anew [1].

These drawbacks can be approached by the method of modularisation [2] as used

in software engineering. In modularisation, a problem is separated in several smaller

problems. This approach enables a better understanding of a single problem. Another

bene�t of modular structures is shown in the reusability of their modules. Reusability is

bene�cial because of reduced development time and a wider design-alternative-space. The

latter is provided by the possible combination of o�-the-shelve components and self-created

components [18]. The simulation community also researched this technique on their own,

which is called composability. Composability aims to reuse simulations to describe di�erent

larger simulations [18]. This approach is similar to the use of components in component-

based software design. However, software components themselves are designed to provide

reusable functionality. Also, they are treated as black-boxes (i.e. the developers cannot

see their internals) [3]. On the other hand, simulations often contain speci�c semantic

information [19]. Because semantics are di�cult to capture, two simulations can have

di�erent semantics for the same information. The di�erence between semantics introduces

di�culties in the interaction. Also, simulation composability is said to pose additional

di�culties like time management or event generation [18]. However, it is still desired

to compose simulations of multiple reusable simulations or models. We call simulations

9

2 Modelling and Simulation Foundation

consisting of other simulations or models "composed" or "modular" simulations. In the

following, composability and its requirements are further discussed.

2.2.4 Composability of Simulations

A goal of the modular simulation is to select, assemble and re-assemble simulations like

components in the component-based software design [20]. In the simulation community,

the terms of composability and interoperability are introduced. Composability de�nes

the capability to select, assemble and reassemble di�erent larger simulations to satisfy

speci�c requirements. Prior selected simulation components should be (re-)combinable

without larger e�ort to meet di�erent needs [20]. Interoperability, on the other hand, is

concerned about the consistent and meaningful collaboration of multiple simulations to

simulate a scenario [21]. The focus lies on the exchange of data and information between

the simulations. An assembly of simulations to achieve one goal can be interoperable.

However, at the same time, this assembly is not necessarily composable when the single

simulations cannot be reused in another context [20]. Interoperability is a prerequisite

for achieving composability. However, interoperability alone is not su�cient enough [20].

This problem originates in the reason that interoperability, in the �rst place, describes the

combination of multiple simulations. Composability, on the other hand, is focused on the

model and that they �t together in a meaningful way. Interoperability approaches use

some form of protocol or coordinating entity to enable interaction between simulations.

These simulations must be �tted to the capabilities and structures of the interoperability

approach. Thus, the �tted simulations cannot be independently recombined to other

larger simulations without further e�ort [20]. With these de�nitions Page and Briggs [22]

propose three dimensions, or views, to categorise the interconnection of simulations. The

composability-view is speci�ed on the models of di�erent simulations. Composability, in

this dimension, is given when the objectives and assumptions of the models are properly

aligned [22]. Interoperability de�nes the view on implementation speci�cs of the model

like data type consistency. The last dimension is integrability. This view is concerned with

the physical environment of the simulation. In this thesis, only the �rst two levels are of

interest. An attempt to bridge the gap of composability and interoperability is proposed

by Tolk et al. [23] to combine implementation focused interoperability approaches with

conceptual models. It is structured in reference to the "Levels of Information Systems’

Interoperability" [24]. A conceptual model describes the aspects of a system to be repre-

sented in a model. These aspects include the limiting assumptions on the model and other

assumed capabilities to satisfy a special purpose [15]. As a result, Tolk et al. [23] de�nes

the Levels of Conceptual Interoperability Model (LCIM) [23]. This model consists of �ve

Levels. These levels are de�ned as follows:

• Level 0 - System Speci�c Data: There exists no interoperability between two

systems. The data is system speci�c and only proprietary usable and not shared.

Data only usable and identi�able by the system (e.g. undocumented csv-tables or

hard-coded data) is such an example. Thus the data and functionality of the system

are only known to already familiar users.

10

2.2 Software Based Simulation

• Level 1 - DocumentedData: All data is known and documented in a consistent way

using a de�ned protocol. With such documentation and access through interfaces,

data can be mapped to external sources.

• Level 2 - Aligned Static data: The meaning of the data is unambiguously described

and documented with a common reference model based on a common ontology. This

level targets the solution of con�icts created by merging di�erent data sources. These

con�icts are speci�ed in four con�ict classes. These classes are namely semantic,

descriptive, heterogeneous and structural con�icts. Semantic con�icts describe

that two concepts of the schemata of the models/simulations do not match exactly.

Descriptive con�icts are concerned with, for example, di�erent names, attributes for

the same concept or synonyms. In structural con�icts, di�erent structures describe

the same concept in di�erent models. The last con�ict class are heterogeneous

con�icts. These con�icts describe di�erent methodologies used to describe concepts.

• Level 3 - Aligned Dynamic Data: Additionally to the data in level 2, the behaviour

of a single component, including the use of data and resulting state changes, is made

visible.

• Level 4 - Harmonized Data: For each component, the conceptual model has to

be made available. The availability of the conceptual models allows a check for

semantic consistency.

The LCIM can be used to enhance the de�nition of components and their speci�cations.

This improved de�nition is supposed to achieve easier and better-de�ned interoperability.

Wang et al. [25] enhances the LCIM to incorporate the notion of integrability, interop-

erability and composability prior mentioned. Seven levels of interoperability (0-6) are

proposed as a result. Level 1 is is related to the "physical and technical connections" [17]

between the system. The simulation and implementation details are the predominant

aspects in levels 2 - 4. These level include the exchange of data. Levels 5 and 6 are aligned

with the composability dimension in [22] and refer to the alignment of models. Bartholet

et al. [18] points out that true composability is not achieved yet and is currently mostly

theoretical. However, progress in the �eld of interoperability is made by standards like the

high-level architecture and the base object model. Thus, co-simulation and the high-level

architecture are introduced in-depth in the following section.

2.2.5 Co-Simulation and the High-Level Architecture

An approach to provide capabilities for interaction has to be used to couple multiple

simulations. Co-simulation is a principle to combine multiple simulations, the so-called

simulation units, to a larger simulation. Running those units on di�erent computers is

possible. The simulation units can be seen, as black-box components with di�erent external

visible information [26]. An entity responsible for the management and exchange of

information between the simulation units is used. It contains capabilities like management

of time or the movement of data between the units [26]. This entity is called an coordinator.

The result of the connection of multiple simulation units and a coordinator is called

11

2 Modelling and Simulation Foundation

co-simulation. The co-simulation itself can be coupled with other simulation units or

co-simulations through another coordinator. This results in hierarchical structures [26].

A realisation of this principle is the HLA. Dahmann et al. [27] introduces the HLA as

an approach for discrete-event co-simulation, standardized by the Institute of Electrical

and Electronics Engineers (IEEE). Based on concepts of Distributed Interactive Simulation

(DIS) [28], the HLA provides an architecture consisting of three major parts. These

parts are major functional elements, interfaces, and design rules. All of those parts are

developed to be feasible for all simulation applications. The HLA speci�cation provides

rules and a common framework for the de�nition of speci�c system architectures [27].

With this approach, reuse and interoperability of simulations in 2.2.4 is achieved. HLA

does not dictate an implementation or programming language due to its description as

framework and protocols. The HLA consists of three functional components resulting in a

co-simulation, or in HLA called "federation" [27] .

1. The (sub-)simulations are called federates and are assembled to a federation.

Passive data collection and evaluation is enabled through monitors and loggers.

They can be applied like general federates. The only requirement a federate must

meet is the realisation of the HLA capabilities needed. This prerequisite includes

capabilities for the interaction between objects of di�erent simulations.

2. The Run-time Infrastructure (RTI) provides services to support the federates in

their "federate-to-federate" communication. A second function is the provision of

the federation management support. This management includes capabilities like

federation management or time management. Only indirect communication between

federates over the RTI exists in the HLA.

3. The runtime interface speci�cation is a set of implementation and object model

independent speci�cations. They de�ne how federates should interact with the

RTI. This de�nition includes the way to invoke RTI services and how to respond to

requests from the RTI.

For the formal de�nition of the HLA, three components are speci�ed. Furthermore, the

HLA itself is formally de�ned by the runtime interface speci�cation, the Object-model

Template (OMT) and the HLA rules [27]. The federate interface speci�cation describes

the services provided by the RTI. This speci�cation subsumes the services in 6 di�erent

management categories. Following a short description of each category is given. They are

taken from [29], where the whole speci�cation can be read.

• Federation management de�nes capabilities for the management of federation

executions, including the creation, modi�cation and deletion. Functionality for the

de�nition of synchronisation points and to save and restore federation states are

also included.

• Declaration management realises functionality for declaring what information

and interactions a federate provides or requires. This declaration must be made

before object instances can be registered or manipulated.

12

2.2 Software Based Simulation

• Object management speci�es how object instances are registered, modi�ed or

deleted. Also, the sending and receiving of interactions are de�ned.

• Each instance of an object can be shared among federates. The ownership man-
agement handles the ownership status of attributes belonging to an instance. This

status allows cooperative modelling of a given object instance in a federation.

• Time management provides services and capabilities for coordinating the time

between the federates. The time in HLA is seen as a single time axis. The simulation

speci�c time is coordinated on the basis of this axis. All messages and interactions

between simulations are coordinated to this single time speci�cation.

• Data distribution management may be used to reduce the tra�c between the

RTI and a federate by de�ning a �lter for irrelevant data.

The OMT is a standard form to document the FOM and the Simulation Object Model (SOM)

consistently. The SOM de�nes the simulation data, thus speci�es all the data which can

be possibly exchanged [27]. The Federate Object Model (FOM), on the other hand, de�nes

which data is shared in the federation [27]. All data used in the FOM is provided in

the SOMs of the participating simulations in a federation. This separation facilitates

reuse because the SOM is generally valid for its corresponding simulation. Thus, each

SOM can be used in the creation of multiple federations [27]. The HLA structures the

data of simulations and interactions in an object-oriented principle. Thus, information is

structured as classes with attributes and interactions with parameters. Here, classes and

attributes are entities persisting over time. Interactions with parameters only exist in one

instance of time. The structure of information is classically de�ned in tabulated form and

speci�ed in [30]. However, approaches like the poRTIco project [31] use the Extensible

Markup Language (XML) for de�nition of the OMT. In the following, some capabilities

of the OMT are further described and taken from [30]. Multiple kinds of information are

de�ned.

• Objects classes

• Attributes of object classes

• Data types

• Interaction classes

• Parameters of interaction classes

The HLA facilitates an inheritance scheme where the child class inherits all information (e.g.

attributes or parameters) from its parent class. The inheritance is used for object classes as

well as for interaction classes. Object classes must inherit from the root class HLAobjectRoot.
This class provides additional attributes required to process object classes and attributes

by the RTI. The same concept exists by the HLAinteractionRoot for interaction classes.

Each attribute in an object class has to incorporate a prior speci�ed data type. Data types

are de�ned by a name, size in bits, an interpretation, the endianness and a text �eld

13

2 Modelling and Simulation Foundation

declaring the encoding. Data types are HLA federation speci�c. Similar to object classes,

interaction classes are complemented with parameters, containing a data type and further

HLA speci�c information [30]. The HLA Rules provide basic guidelines for federations

and single federates. An example of federation rules is that all object representation takes

place in the federates and not in the RTI. Another example is that all federates must

provide their public information in their SOM using the OMT [32]. Fig. 2.3 depicts the

parts of the HLA with functional federates. To enable federates to communicate with

Runtime Infrascructure

Federation Management

Object Management

Time Management

Declaration Management

Ownership Management

Data Distribution Management

Tools

Fed. Amb. RTI. Amb.

Interface to
Liveplayers

Fed. Amb. RTI. Amb.

Simulations
(e.g. Navy, Marines...)

Fed. Amb. RTI. Amb.

Legacy:

Fed. Amb:Federate Ambassador

RTI. Amb:RTI Ambassador

Figure 2.3: View of HLA components [27]

the RTI, implementation entities called ambassadors are commonly used. Two types of

ambassadors exist. The RTI Ambassador provides the capabilities to call federate-initiated

methods of the RTI (e.g to check if messages are available for a federate). The Federate
Ambassador handles callbacks from the RTI to the federate [21].

Aside from the HLA other approaches for interoperability and composability can exist.

A standard de�nition of the data of a model, a so-called object model, is bene�cial to

support a composition approach [15]. Simulation can be easier composed if they comply

to such a model. The OMT describes such an object model, but only describes data. The

Base Object Model (BOM) standard takes this idea further. A BOM includes the HLA OMT

and complements it with additional information like patterns of interplay or general data

de�nitions [33].

The BOM is a standard supported by the Simulation Interoperability Standards Organi-

sation (SISO). The BOM is meant to facilitate interoperability, reuse and composability of

simulations [34]. BOMs document data structured as classes with attributes and interac-

tions with parameters. This structure is based on the HLA OMT speci�cation described in

Sec. 2.2.5. Unlike classical FOMs or SOMs, the BOMs describe a complete "model of a sim-

ulation interplay activity" [33]. BOMs complement the FOMs and SOMs with meta-data

for this purpose. The meta-data can include information like requirements, the conceptual

14

2.3 Approaches for the Description of Simulation Composition

model, sequence diagrams or description of the intended domain [33]. They are designed

as small compositional units. Each unit describes a single aspect rather than a complete

simulation like the FOM or SOM [33]. Thus a BOM consists of a conceptual model, model

mappings and the HLA Object Model [34].

2.3 Approaches for the Description of Simulation
Composition

As mentioned in Sec. 2.2.3, modular simulations consist of multiple (sub-)simulations

or their models. The description of simulation composition can be useful due to the

higher level of abstraction and their bene�ts mentioned in Sec. 2.1. One example is the

validation of consistency between the models. Also, it is possible to generate code out of a

description. Furthermore, descriptions can be reused in other modular simulations. This

section provides an overview of some approaches to describe modular simulations and

simulation composition.

2.3.1 CODES

The CODES approach by Teo and Szabo [35] focuses on the abilities to discover and

reuse components. It provides the capability to validate the syntactical and semantic

composability of the selected components. Models and their composition are described

by an ontology to facilitate syntactical composability [35]. Each model in this ontology

consists of black-box components with in-channels and out-channels which describe the

provision or requirement of certain data. In addition to the in-channels and out-channels,

the component contains descriptions of attributes and their behaviour. The syntactic

composability is enforced by rules described with a composition grammar [36]. Semantic

composability is checked when the out-channel of one component is connected to the

in-channel of another other. Sent and received data are annotated with attributes like

origin, destination, time, type and range. An algorithm checks if the connection between

in- and out-channels is valid.

2.3.2 Discrete Event Systems Specification

The Discrete Event System Speci�cation (DEVS) approach is proposed by Zeigler [37] and

uses formal de�nitions to specify DES models. Developers can describe the states of a

model and transitions between them by this formalism. A DEVS model is de�ned by seven

parameters to provide this capability. The parameters are [37]:

• A set of input events

• A set of output events

• A set of sequential states

• The initial state taken from the set of sequential states

15

2 Modelling and Simulation Foundation

• A time advancement function is used to set the maximal duration the simulation

can execute one state

• The internal transition function. This function de�nes the change of the system’s

internals when the maximal duration of a state is exceeded

• In the external transition function, the transition behaviour is described when

encountering an event

• An output function, determining the output event generation

Zeigler [37] enhances this de�nition by using sub-components to provide coupled DEVS.

Coupled DEVS utilises a hierarchical approach. It consists of atomic DEVS models or other

coupled DEVS models. An atomic DEVS model is speci�ed with the structure shown above.

Another 8-tuple describes the coupled DEVS, which contains input and output events

as well. Additionally, the names of the subcomponents and the used atomic or coupled

DEVS models are speci�ed. External input couplings de�ne possible points of interactions

between the coupled DEVS and other DEVS models. Internal couplings determine how the

contained DEVS models are connected. The external output coupling function determines

the output of a coupled DEVS. If two events coincide, a tie-breaking selector function

decides which event is selected. Zeigler and Lee [38] also propose an extension of DEVS to

be able to describe the capabilities of HLA. The time advance is based on events rather than

discrete steps. Thus, events occur only by signi�cant changes in input, state or variables.

Zeigler and Lee [38] also inspect the properties and speci�cs of the term "signi�cant

change". An application of the DEVS formalism (more concrete parallel DEVS by Chow

et al. [39]) is used by Röhl and Uhrmacher [40]. To achieve composition, they use the

notion of components and interfaces as in [41]. The description of these components must

be delivered in XML format. The components de�ne public ports. Components can be

connected to each other with these ports. Each component and interface is de�ned in XML

format with a speci�c syntax. A composition is de�ned by use of a new component. This

component de�nes the ports and naming of each component as well as the connections

between them. When the components and the connections are speci�ed, the components

internal behaviour needs to be speci�ed with the parallel DEVS formalism. The DEVS

model must provide the ports de�ned in the corresponding component de�nition. If this

structure and requirements are ful�lled, the XML-components along with their DEVS

model are transformed into executable models usable by the simulation tool James II [42].

2.3.3 Ptolemy

Ptolemy II is a framework to model and compose hierarchical and heterogeneous simu-

lation models. It is described by Eker et al. [43]. Ptolemy II is based on actor-oriented

models. Each actor is a component shares data with each other and is executed concur-

rently [44]. The communication between actors is de�ned by the use of ports and passing

messages between them. Ptolemy II applies a hierarchical approach. Therefore atomic and

composite actors exist [43]. Atomic actors are internally not de�ned as an actor model.

Composite actors are composed of other actors as similar to composite DEVS. Only direct

16

2.3 Approaches for the Description of Simulation Composition

communication between actors in composite components is allowed. Communication to

actors outside the composite component is only possible through component ports on the

composite components border [44]. On each hierarchical level, composite actors are seen

as black box. Therefore, they are treated like atomic actors. Ptolemy II provides implemen-

tations with di�erent Model of Computation (MoC) to describe the computational aspects

in a component [44]. Each MoC provides the scheduling and communication details for

actors. For example, MoC describe the data �ow and used time model (e.g. continuous or

discrete event). However, this approach can pose the problem that actors with di�erent

MoCs cannot process the date of each other. Special actors resolve these problems by

translation of data from one MoC to the other [43]. The hierarchical description by actors

and the de�nition of their behaviour by MoCs allows not only modelling but also analysis

of the resulting simulation.

2.3.4 OMNeT++

OMNeT++ is an environment to describe and simulate DES and is presented by Varga

and Hornig [45]. Its original purpose is to model "communication networks, multipro-

cessors and other distributed or parallel systems" [45]. However, its general modelling

approach allows speci�cation of other distributed simulations. OMNeT++ is written in

the programming language C++, but third-party support for the languages Java and C#

is available. The basic structure consists of simple and compound modules. Compound

modules can be seen analogue to couple DEVS models. Therefore they consist of other

compound or simple modules. In their use, compound modules cannot be distinguished

from simple modules. The functionality of a compound module can be implemented by a

simple module or the other way around. Each module sends messages to other modules by

the use of gates. These gates constitute the input and output interfaces of the module [46].

Messages contain data and other supplied attributes like timestamps and are sent between

the gates. Therefore di�erent gates are connected with connections. These connections

specify which input gate of one module connects the output gate of another module [45].

Through the use of compound modules, OMNeT++ facilitates a hierarchical approach.

However, modules of a compound module can only communicate with external modules

through the use of a gate at the compound modules border. Thus, no internal module can

directly communicate with an outer module [45]. OMNeT++ provides a graphical editor

along with an approach to also simulate the described models.

17

3 Simulation of So�ware Systems and
Business Processes Foundations

Quality characteristics of software systems can determine their success or failure. Qual-

ity characteristics are attributes of a system, relevant to a certain stakeholder. Quality

characteristics can be categorized in external and internal characteristics according to

McConnell [47]. External quality characteristics are those relevant and experienced by the

user like the capability of a system to provide its functionality when required (i.e. reliabil-

ity). Internal quality characteristics are relevant for the developer like the di�culty on how

the software can be modi�ed to provide or change capabilities (i.e. maintainability) [47].

Indirect in�uences, such as unaccounted business processes, can unexpectedly in�uence

the quality characteristics of a software system as well. Thus, early approximations of

characteristics and impacts of other in�uence sources like business processes are desirable.

The software system in question can be simulated to obtain early approximations of quality

metrics. For this purpose, the software system has to be modelled. The model of a system

has to includes all in�uence sources of the system like the hardware environment or

business processes. Another aspect that can be modelled is the structure of the software

system.

To provide the capability to model a software system, a DSLs can be used. These

languages are constructed to be able to describe a certain domain. DSLs are described

in Sec. 3.1. An category of DSLs are Architecture Description Language (ADL)s. These

languages are used to describe the architecture of systems and are also described in Sec. 3.1.

The foundation of component-based software system simulation is provided in Sec. 3.2.

This foundation includes the de�nition of components in Sec. 3.2.1. This section is followed

by the description of Palladio, which is a concrete example of the provision of a component-

based software simulation. The simulation engine EventSim can be used by Palladio to

execute the models de�ned by Palladio. This simulation engine is described in Sec. 3.2.3.

Furthermore, IntBIIS is described as extension of Palladio to discover the mutual in�uences

between business processes and software systems in Sec. 3.2.3

3.1 Domain-Specific Languages and Architecture Description
Languages

A DSL provides the capabilities to describe certain domains. DSLs help developers by

improving their productivity as well as enable communication with domain experts [48].

This improvement is achieved by the limited expressiveness of the DSL and a focus on

a certain small domain [48]. Thus, domain experts do not have to understand general

19

3 Simulation of Software Systems and Business Processes Foundations

purpose code of programming languages like C++ or Java. This approach allows the focus

on the concepts and the description of the domain instead of the need to learn a general

purpose language. Moreover, domain experts can work with structures and terms they are

familiar with. An example of a DSL can be seen in the Sprat approach[49]. This approach

enables a scientist to describe ecosystems by an ecosystem DSL. The sprat DSL provides

the capabilities to specify ecosystems and species with a restricted set of terms used by

the domain expert[49]. Another example of a DSL is the Palladio DSL. It is designed to

describe component-based software architectures to predict quality characteristics [3].

The Palladio approach provides a DSL to describe the architecture of a system. Such a

DSL is also called an ADL. ADLs are formal languages with the purpose of representing

the architecture of software-intensive systems [50]. Clemens et al. [50] surveys common

ADLs for their capabilities and presents multiple properties a language should have to be

an ADL. Some of these capabilities are basic capabilities like abstraction, communication

and integrity. Also, the provision of a mapping of behaviour to di�erent architectures

can be a capability of ADLs [51]. Furthermore, ADLs should enable the user to create,

re�ne or validate software architectures and also have to provide the elements to describe

a software architecture [50].

Considering simulations, McKenzie et al. [52] points out that ADLs are "underutilised"

in the modelling and simulation community. This conclusion is reached after surveys of

usefulness and e�ectiveness of general-purpose ADLs to describe and analyse simulation

systems. For this purpose, two ADLs are chosen to describe two simulation systems

in connection with a HLA approach. McKenzie et al. [52] conclude that the simulation

community would bene�t from the formal approach of ADLs. Four bene�ts are named [52]:

1. Robustness of simulation architectures (i.e. improved reliability, stability and

extensibility) can be reached by the application of the software architecture disciple.

2. Reaching conceptual composability is possible by explicit notations of simulation

components, connectors and their interfaces. This approach can help simulation

architects to see the composition aspect of simulation systems.

3. Better knowledge transfer to study good or bad design. Also, ADL descriptions

could be a good entry point for simulation architects to become familiar with the

system.

4. Risk reduction by revealing key aspects of the simulation system and analysing

them to �nd possible problems.

3.2 Component-based So�ware Simulation

Collection of software quality measures is only possible after certain points in the develop-

ment process. Measures can only be gathered when testable pieces of software are created

in software development without simulation. Thus, parts of the system are already in the

creation- and past the design process. It is even possible to that certain measures can only

be obtained during the run-time of the system (i.e. after its deployment). The ability to

20

3.2 Component-based Software Simulation

collect data only in a late phase of development poses a problem in the detection of design

mistakes. Much time and e�ort are already invested into design decisions, possibly later

found to have a negative impact on the resulting system [3]. In other engineering areas,

simulation is a common practice to gather information about systems without building

them �rst [3]. In software engineering, simulation can be used to obtain an estimation of

software systems’ properties in earlier phases of the development (e.g. of performance).

Early estimations enable developers to react to negative in�uences in the design of software.

An early reaction to negative impacts is important because "errors are more expensive

the later they are removed" [53]. To be able to simulate the software system, it has to be

modelled. The model has to include all factors in�uencing the software systems. Examples

are the architecture, the use of the system and the hardware. With this information, it is

possible to gather values for characteristics of the system. The Palladio approach provides

capabilities for modelling and simulation of software systems for exactly this purpose. It

provides a DSL to model the architectural domain of component-based software systems.

The relevant terms of software components has to be introduced due to their usage in the

Palladio approach.

3.2.1 Components

Software components are used in software development to build and structure software

systems. They are supposed to be used and reused by third parties and to provide the ability

to be independently deployable [41]. Thus, the intent of components is for developers

to avoid the need to create every part of the software by themselves. This approach

enables the possibility to buy readily available software components created by a third

party "o�-the-shelf". The component approach provides bene�ts in the �eld of system

development and maintenance. Thus, components provide possibilities for signi�cant

savings in time. These saving can be motivated by teams that are creating systems and

are not experienced in the domain of a certain functionality [41]. These teams can obtain

components for these functionalities. The development of functionality includes high

upfront expertise gathering. This upfront gathering of expertise results in higher cost

compared to developers with domain experience. Thus, buying a component in this case,

avoids the gathering of expertise which results in saved time and with that consequently

costs. Also, it can be expected that a component, created by a team specialised in its

functionality is highly reliable. Thus, this implies that functionality, implemented by

developers with less expertise in the domain, is inferior to a component of a specialised

team [41]. The bene�t of increased maintainability is reasonable because components

are directly maintained and kept up-to-date by its third-party developers. Therefore,

the correct implementation of the functionality is outsourced by its users. To facilitate

the compositional aspects of components, they have to be contractually speci�ed and

self-contained [41]. This speci�cation is realised by the use of one or more interfaces.

An interface is understood as "abstract description of units of software" [41] which is

de�ned as "points of interaction between components" [3]. Interfaces specify what a

component requires and provides. Pre-conditions and post-conditions with functional

but also quality concerns can be stated [41]. Other attributes of components are their

black-box nature and their non-observable external states [41]. The former implies that no

21

3 Simulation of Software Systems and Business Processes Foundations

internal information is accessible by the user except through the de�ned interfaces. This

implication includes that especially no source-code or internal behaviour is visible [3].

A non-observable external state implies that copies of a component can exist but that

they are indistinguishable from the original [41]. The feature of non-observable states

makes it possible to use one component more than once (e.g. in a load-balancing scheme).

Besides their bene�ts, components also have drawbacks. They must be speci�ed to a

certain component approach, resulting in a specialisation of the assembled system. Also

two to three times higher upfront cost can be expected for design and speci�cation due to

the detailed interface design and good quality attributes. Amortization of these costs is

possible if the component is reused more often [3].

3.2.2 The Palladio Approach

The Palladio approach is developed with the goal to gather approximations of quality

metrics in early design phases. Examples for quality metrics are performance or reliabil-

ity. The gathering of quality metrics is achieved by using the DSL of Palladio to model

component-based software systems. This DSL allows the user to describe software archi-

tectures and their contained knowledge relevant for quality prediction [3]. Palladio can

be utilised with these models to simulate the modelled system to gather resulting quality

attributes. The architectural domain provides performance and reliability characteristics.

Performance covers resource e�ciency and timing behaviour indicated by the following

measures [3]:

• Response time describes the time between passing a request to a system and the

return of its computed response.

• Throughput measures the units of work that can be done by a system in a unit of

time

• Utilization indicates the load of a resource over time in relation to the maximal

load it can process per time unit.

Reliability in Palladio is indicated by the measures of probability of failure on demand and

the failure rate of the system. The former describes the likelihood that a failure occurs

in the system when it is used. The latter denotes the rate of failure occurrence in the

system [3]. To capture the system properties, which are relevant to performance and

reliability, not only the architecture has to be speci�ed but details about the execution

environment and the usage pro�le as well. The generated measures can be used to analyse

design alternatives for their impact in performance or reliability or trade-o� between

each [3]. As an example, two similar components A and B can be used in the system. The

system is modelled and simulated with component "A" and also with component "B" to

examine if one component provides an advantage in performance or reliability. The result

can be surveyed for positive or negative impacts. Through the response time and resource

load, problems like bottlenecks can be found [3]. The supplementation of hardware and

usage speci�cations allows to inspect their impact on the system. This insight can be

granted in other ways only at runtime when the system is deployed on the hardware

22

3.2 Component-based Software Simulation

and in operation. For example, it is possible to �nd that the system does not achieve

the requirement of a given response time when using a certain hardware. Also, the load

generated by users can pose an in�uencing factor of the success of a system. A component

can prove valid when used by ten users, but shows decreased quality when used by 1000

users. Thus the design alternative of a load balancer can be evaluated to remedy this

problem [3].

Palladio speci�es three viewpoints and four developer roles responsible for modelling

the architecture, execution environment and usage pro�le of the system. They are used

to produce a detailed model of the system and also separate the development process

into collaborating units. The viewpoints contain di�erent view types and distinguishing

between system-independent and system-dependent properties. The �rst viewpoint pro-

vides building blocks like components or hardware speci�cs which are possibly reusable in

other models and systems. The second viewpoint is related to system-speci�c properties

like the assembly of multiple components to a system or the assertion from components

to hardware. Reussner et al.[3] describes the viewpoints, view-types and their connection

to the roles as follows.

1. The structural viewpoint contains the system-independent repository and the

system-dependent assembly view-type. The repository contains components, in-

terfaces and data types to create the component-based software architecture. Its

content is created by either a component developer by direct speci�cation and im-

plementation or a software architect through speci�cation of new interfaces required

for assembly. In the assembly view-type, components are connected(assembled) by

the component developer to composite components or by the system architect to

entire systems.

2. With the behavioural viewpoint the behaviour in a component, between compo-

nents and the usage of systems is modelled. The component developer uses Service

E�ect Speci�cation (SEFF)s to model the intra-component behaviour, which de�nes

the �ow of a call through the internals of the component. These SEFFs can be

enriched with resource demands for actions and calculations, resulting in Resource

Demanding Service E�ect Speci�cation (RDSEFF). The Domain Expert models the

behaviour between the components as well as the usage of the system by its users.

3. The deployment viewpoint captures the hardware aspects of the system. The

system deployer models the system-independent resource environment with the

possible or available hardware. This environment is represented by resource con-

tainers which can be seen as individual computers each consisting of one or more

resources. Currently, processing units (i.e. CPU) and storage (i.e. HDD) are available.

When using multiple resource containers, linking resources represent the connection

between the resource containers. Components of systems are allocated to those

resource-containers in the system-dependent allocation view-type by the system

deployer.

4. The decision viewpoint spans above all viewpoints. Di�erent design decisions are

speci�ed. If the design is changed, violations of a certain decision can be discovered.

23

3 Simulation of Software Systems and Business Processes Foundations

The simulation of the modelled system by the di�erent roles can be conducted by the use

of multiple simulators available for Palladio. One of these simulators is SimuCom, which

uses the process interaction technique as well as an event-based technique for di�erent

parts of the simulation. It generates code of the provided model through model-to-code

transformations. In the process interaction technique, each generated user is mapped

to a thread provided by the operating system. This mapping results in performance

drawbacks when many users have to be spawned. With this problem in mind, Palladio can

be used with the EventSim simulator [54]. This simulator employs the event-scheduling

technique to cope with higher workload intensities [3]. This simulator is explained

in more detail in Sec. 3.2.3. Another simulator usable by Palladio is SimuLizar, which

enables Palladio to model and analyse self-adaptations. The analysis of self-adaptation

is achieved through the capability to specify monitoring annotations and a simulation-

based solver which interprets the provided models [3]. The schematic structure of the

Palladio simulation environment used by EventSim and SimuCom is shown in Fig. 3.1.

The Abstract SimEngine constitutes the lowest level of the structure and provides general

Desmo-J SSJ

Abstract SimEngine

SimuCom
Infrastructure

EventSim

PCM-Instance
interprets

Figure 3.1: Simulator Environment of EventSim and SimuCom

simulation capabilities like an implementation of the process technique or functionality

for event-based simulation [54]. Libraries like Desmo-J [55] or SSJ [56] typically provide

these functionalities [54]. The Abstract SimEngine was formerly included in SimuCom but

has been factored out to provide its capabilities to EventSim [54]. SimuCom and EventSim
constitute another layer and realise a simulation approach. The last layer is represented

by a Palladio component model instance which is interpreted by a supported simulator.

3.2.3 EventSim

To compute performance metrics by use of Palladio models, the discrete-event simulator

SimuCom is considered as the reference simulator of Palladio simulator [3]. It realises the

process-interaction simulation technique where every simulated user is mapped to a thread

of the operating system. This technique, however, experiences performance drawbacks

which are ampli�ed through the use of Java-Threads when complex simulation models (i.e.

many users) are processed [54]. These drawbacks result from the "inability to represent

simulation processes e�ciently" of Java [54]. EventSim simulator was developed with the

24

3.2 Component-based Software Simulation

goal to provide an alternative to SimuCom and to cope with these problems. It uses the

event-scheduling simulation technique explained in 2.2.2. The relevant system parts are

realised as entities. Thus, the users of the simulated system (user entity) invoking system

requests (request entity) and having demands on resources like processing or storage

(resource entity) are de�ned [54]. Their behaviour is modelled through chains of actions.

Therefore, usage scenarios for user entities and RDSEFFs for request entities are used.

Every entity is responsible for simulating their behaviour by traversing the action-chain

and, in each traversal step, executing the action [54]. Contrary to SimuCom, EventSim
interprets the loaded model rather than generating simulation code or performing model

transformations [3]. Events are generated by the corresponding entity to trigger the

simulation of component- or usage-behaviour [54]. They contain a call to an interpreter

as well as the intended simulation time. Due to the event-based principle, no simulation

time passes while an event is executed. After traversal of an action, the successor in the

chain is traversed conforming to the event-list described in 2.2.2. Extensibility of EventSim
was a speci�c goal in its development. The concept of traversal strategies re�ects this

extensibility. Here, each strategy describes a special traversal behaviour [4]. The de�nition

of a new traversal strategy or a new action extends EventSim with additional simulation

capabilities. Heinrich introduces an extension of Palladio in [4]. This extension enables

the simulation of dependencies between software systems and the new domain of business

processes. This extension is further described in the following section.

3.2.4 Business IT impact simulation

A major reason for problems or failures of Information System (IS)s in the industry is

the missing alignment between them and the Business Process (BP)s in which they are

used [4]. In the development of ISs and BPs, often their mutual impact is not considered.

Thus, ISs and BPs are designed mainly in parallel rather than dependent on each other [4].

The missing dependence can lead to performance drawbacks at runtime which may not

be obvious in the development process. For example, a BP can induce high workloads,

which can result in large process execution times or overloaded resources [14]. Quality

attributes of an IS can be acceptable in a normal use case, but can rapidly decline due to

certain actions speci�c to a BP.

A IntBIIS is used to �nd dependencies and shortcomings at early stages of the devel-

opment [4]. It intertwines BP and IS simulation which enables the prediction measures

relevant to discover the performance-impact between a BPs and an ISs. For its realisation,

the Palladio tool-chain and the simulator EventSim are used. However, the general model

is not speci�c to Palladio and, therefore, can be applied to di�erent BP and IS approaches

when similar meta-models and prediction of performance measures are provided [4]. Each

BP is modelled by a set of activities which are collections of linked steps and (sub-)activities

in itself. Therefore, Heinrich [4] introduces the term "step" as the "smallest unit of work"

in a BP [4]. These steps are distinguished between the entity performing them. They

are called actor steps when completely performed by a human. Performed by an IS, they

are called system steps. For each step performed by an actor, it can be de�ned if it is

interruptible. Interruption of an actor step can occur if the actor step can be assigned to

an actor with higher priority. Also, an actor step can be interrupted if an actor is outside

25

3 Simulation of Software Systems and Business Processes Foundations

of its working times [4]. A BP is located in an Organisational Environment (OE), which can

be seen as parallel to the resource environment of Palladio described in 3.2.2. It contains

human actors as active resources, actively performing actor steps. Device resources can be

optionally required to perform these steps. The device resources are similar to passive

resources in Palladio and thus cannot perform steps themselves. Each human actor con-

tains work periods and belongs to one or more organisational roles. The latter is used to

group actors "exhibiting a speci�c set of attributes, quali�cations or skills" [4]. Heinrich [4]

clari�es that BPs are a�ected by di�erent factors. Either by overloading/exhaustion of

resources through too many actor requests or by the response time of an IS in a single

system step. In the �rst case, the requested resources cause a bottleneck which can result

in performance issues. If at least one resource is overloaded by too many requests and

cannot take more requests, the BP itself is slowed or even interrupted. In the second

case, large response times in the IS for one step can increase the response time of the

surrounding actor step or even the whole BP.

To use Palladio with IntBIIS, the simulator EventSim was extended by introducing new

simulation layers or extending existing ones [14]. These layers are shown in Fig. 3.2. For

D. Simulation of Process Instance Arrival

The simulation continuously generates process instances
that traverse the process model. The start point of the first in-
stance is the start time of the first ProcessTriggerPeriod of the
process. Then the distance to the start point of the next instance
is generated randomly, based on the arrival distribution of the
current process ProcessTriggerPeriod allocated to the process,
and added to the last start point. The next instance starts
traversing the process model at that point in time. Instance
start points will be generated and instances start traversing
the process model until the generated start point of a process
instance exceeds the end time of the last ProcessTriggerPeriod.

E. Simulation of Resource Demand

If a process instance reaches an actor step within the process
model, the actor step is put as a job into the waiting queue of
an ActorResource allocated via his/her role to the actor step.
The specific ActorResource is selected based on the length
of its waiting queue and whether s/he is currently available
(i.e. the current simulation time lies within a WorkingPeriod).
For actor steps the processing time is already specified as
resource demand. The waiting time is determined in simulation

by waiting in the queue of the ActorResource. The resulting
execution time of an actor step is the sum of its processing
time and its waiting time at the corresponding resources.

F. Simulation of Workload Distribution

Simulation has to consider the mutual impact on workload
distribution as described above. This is represented by the
waiting queues in simulation. If a job is put in a waiting
queue as the resource is busy at the time the job arrives at
the resource, the flow of the process instance is hindered. For
each step waiting times may vary from instance to instance. As
a result, the distance between instances in the process model
may change. Thus, workload distribution is manipulated by
each step in the simulation.

VII. CONCLUSION AND FUTURE WORK

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

Figure 3.2: Simulation layers and elements in IntBIIS. Grey depicts the existing EventSim

elements, blue denotes the elements and layers introduced by IntBIIS [4]

this extension, the mechanism of EventSim is used by supplementing a new traversal

strategy in the case an actor step being encountered. The corresponding strategy selects a

human actor resource from a set of human actors which meets the following criteria [14]:

• The human actor owns the organisational role

• The human actor has the shortest duration until the actor step can be performed

26

3.2 Component-based Software Simulation

Non-suspended actors and those with the smallest duration to start the activity are pre-

ferred due to these criteria. IntBIIS introduces several new actions to EventSim. The

AcquireDeviceResource and ReleaseDeviceResource actions realise an assignment of device

resources to actor resources. This separation allows the application of the traversal strategy

concept of EventSim [4]. This concept is used as explained in 2.2.2 to allow time to proceed

even when the resource is assigned. In the traversal strategy of AcquireDeviceResource,
the availability of the resource is examined. The resource is allocated for processing the

corresponding action sequence if its requested amount is available. If the amount exceeds

the available resources, the BP instance is blocked. The traversal of ReleaseDeviceResource
releases acquired resources. To control the processing of actor steps and the suspension of

actors the events ProcessingFinishedEvent and SuspendEvent are supplied. The �rst event

indicates the �nishing of an actor step and starts the next scheduling. The second event

signals the intention of an actor resource to suspend (e.g. because of a lunch break) [4].

The utilised sensor framework in EventSim is extended by sensors measuring BP-related

execution times and actor resource utilisation. To generate BP instances, the Process-
WorkloadGenerator is used, which resembles an open workload scheme which generates

instances with a certain inter-arrival time. The simulation of these instances are performed

by the traversal of its action chain as described in [54]. While the corresponding action

chain is traversed, either actor steps or system steps can be encountered. In the case of

the former, the traversal strategy described above is applied. The traversal strategy for

software-system simulation of Palladio is used [4]. Performance measures for theBPs as

well as the ISs are collected through the corresponding sensors.

27

4 RelatedWork

This chapter provides an overview and discussion of works and approaches related to the

topics in this thesis. This overview is partitioned in three superordinate sections. Work

about interoperability and composability is discussed, which includes general theoretical

work about interoperability in the context of HLA in Sec. 4.1.1. Concrete modelling

approaches for HLA are described in 4.1.2. The use of ontologies to describe interoperability

and composability are described in Sec. 4.1.3. Also the concrete approaches described

in Sec. 2.3 are discussed in 4.1.4. Approaches of decoupling of monolithic simulations is

examined in Sec. 4.2. Also, an insight in the availability of ADL for modular simulations is

provided in Sec. 4.3.

4.1 Composability and Interoperability

One goal of the DSL used in the our modularisation approach is to provide the capabilities

to describe the composition (i.e. the coupling) of modular simulations. One property of

the DSL is that it has to be possible to describe the coupling approach of HLA. Because of

this goal, motivating theoretical work concerned about interoperability in the context of

HLA and model-driven development is presented in the following section.

4.1.1 Challenges in the Interaction of High-Level Architecture
Implementations

The major and standardised interoperability approach for discrete simulations is the HLA.

A deeper insight in the constructs and de�nitions of HLA is given in Sec. 2.2.5. The DSL

aims to describe multiple approaches to connect simulations, but also the capability to

describe the HLA. However, the HLA only describes the capabilities but provides no

reference implementation. Because of this missing implementation, multiple independent

realisations are produced. For each realisation, di�erent programming languages with

di�erent Application Programming Interface (API) as well as unique communication

protocols are used. Therefore, each federate must be implemented in the implementation-

speci�c language and use a speci�c API of a certain realisation.

The implementation in a speci�c language poses the problem of the missing capability of

each HLA realisation to interact with one another without further e�ort. Granowetter [57]

calls this problem the "Interoperability Barrier" [57]. Along with the explanation of this

problem, Granowetter [57] proposes approaches to reduce the impact of this barrier.

These approaches are barrier elimination, work around or lowering the barrier. In barrier

elimination, "wire standards" [57] like the DIS [28] are used.

29

4 Related Work

Every implementation should decode and encode its network data according to a stan-

dardised de�nition in this approach. Therefore, all federates only needs to understand

the standardised messages. This standardisation eliminates the need for every federate to

be written in a speci�c language and to translate di�erent encodings. At the same time,

Granowetter [57] argues that this approach is a bad idea through too many restrictions to

the HLA implementations. Also, this approach would dictate a lot of HLA functionality

like, for example, time management.

In the idea of bridging two RTI, a RTI-to-RTI-bridge joins two federation executions as

federate. Through this approach, data can be forwarded from one RTI to another. However,

some HLA information like interactions or reaction to states cannot be forwarded in

this way. Granowetter [57] therefore proposes the lowering of the barrier "through

standardisation and cooperation of the RTI vendors, federate developers and federation

program managers" [57].

Tolk [58] proposes the use of model-driven engineering approaches to end the "in-

teroperability war" [58]. Through a model-oriented approach, the developers can be

"supported in the design, implementation and execution phases" [58]. Tolk emphasises

the positive aspect of metamodels through the e�ective "mapping and migration manage-

ment" [58] of di�erent solutions. The positive aspects are possible through the capability

to transform modelled approaches into another, di�erent realisations of already de�ned

models. As one example Tolk [58] mentions the approach of the MOF. The proposed

model-driven approach by Tolk [58] is another way to lower the barrier proposed by

Granowetter [57]. Thus, one part of this thesis is to describe the data focused interaction

(i.e., the interoperability) between multiple simulations through the use of model-driven

technologies.

Parr and Keith-Magee [59] propose to apply Model-Driven Architecture (MDA) to HLA

as well. The use of MDA is attractive due to bene�ts like improved reuse quality and

interoperability when a standardised component model is used. At the same time, MDA

decreases development e�ort, maintenance and costs. The need for a component model

for HLA is stressed to provide reusable information and descriptions. As an example,

Parr and Keith-Magee [59] use the Common Object Request Broker Architecture as a

component-based approach in the domain of software engineering. One focus of the this

approach is the notion of interfaces. The federates (i.e. the component) should provide or

require an interface and therefore publish or subscribe the content of the interface [59].

Also, Parr and Keith-Magee [59] describe the use of the Uni�ed Modeling Language

(UML) for modelling and stress the need for a speci�c UML pro�le. UML should be utilised

to fully describe the HLA capabilities with, for example, object and interaction classes and

publication/subscription of object classes. Furthermore, HLA management speci�cs like

time management or object management should be of concern to be described with UML.

The idea of modelling simulations as components and the use of interfaces is supported in

the DSL. However, only the data-centric capabilities are of prior concern and thus only

the description of object- and interaction classes are provided. Also, the DSL provides the

capability to model the services and functions of the RTI.

30

4.1 Composability and Interoperability

4.1.2 Modelling Approaches for The High-Level Architecture

Topçu et al. [21] show an approach of modelling the behaviour and data of a HLA feder-

ations. In this approach, the SOM, the FOM as well as the behaviour are modelled with

the help of editors. A generator produces preliminary code using the models. This code

can then be edited to produce executable code. This approach by Topçu et al. [21] is a

powerful approach to model HLA federations and their behaviour. The approach provides

capabilities for analysis and simulation. However, the limitation to HLA poses problems

with simulations demanding other requirements and thus are not applicable to the func-

tions and speci�cations of HLA. One example is the need for distributed simulation with

agent-based models of Scerri et al. [60]. In the approach of Scerri et al. [60] the requirement

of shared variables is stated. This requirement is approached with an additional service

called "con�ict resolver". Such a service is not planned in the HLA speci�cation and thus,

not realised in a model-driven approach with the sole focus on HLA. Because of such

alternate solutions for distributed simulation, the DSL does not only focus on HLA. The

DSL tries to provide the �exibility to describe di�erent capabilities within a HLA-like

structure.

Bocciarelli et al. [61] provides a model-driven framework to produce distributed simu-

lations of autonomous systems. For this purpose the modelling language SysML [62] is

used. The additional pro�le SysML4HLA enhances SysML with the capabilities to describe

HLA like simulation structures. In the process of the approach of Bocciarelli et al. [61],

autonomous systems are designed with SysML capabilities. The resulting model is then

annotated with stereotypes of the SysML4HLA pro�le. Through a model-to-model trans-

formation, the automated system is transformed into an UML model with HLA structure.

This UML model is then transformed into Java code conforming to the pitch RTI imple-

mentation [63]. However, mostly code-stubs are generated and need to be �lled with the

�nal code. This approach shows a use-case of model-driven development to HLA in the

application of SysML. However, the proposed functionality is only usable for HLA code

and autonomous simulation. Also, SysML in this context does not provide the focus on

the assembly of simulation as desired in the DSL. Thus, this approach does not meet the

requirement to provide a general-purpose modelling approach to model the coupling of a

modular simulation.

Neema [64] provides an integrated approach to model large-scale distributed simulations.

This approach enables the modelling of simulations and integrates many simulators like

OMNeT++ and MATLAB/Simulink. The HLA is used to coordinate time advancement and

data routing for common interaction between the described simulations. Because of the

application of HLA, Neema provides a metamodel for the modelling of federations and

federates. This metamodel includes the ability to model interaction classes and object

classes as given by the SOM. For each federate, the publish and subscribe relationship

can be de�ned. Neema [64] also provides a metamodel for deployment and execution

information. This description is utilised by a model interpreter to move all generated

scripts and �les to the execution destination. One di�culty encountered by Neema [64]

was the use of simulations with their self-described data model. The di�erence in the

data model of each simulation causes the problem of incompatible described data. Thus,

a simulation can receive data from another simulation, but cannot interpret it. In HLA

31

4 Related Work

this happens in the approach of Neema [64] if two simulation engines use di�erent FOMs

or SOMs. Neema [64] gives examples for such problems. One example are di�erent

names for the same data like "Hello" and "Bonjour". Another example is an object class

modelled by two simulations. Here the attribute "ID" is represented in one simulation

as Integer and in the other simulation as String. Neema [64] provides a mapper as a

new federation to remedy this problem. This mapper is responsible for transforming

data. Neema [64] provides a metamodel to describe mappings between information. If

more complex transformations are required as described in the examples above, the user

can insert Java-like code. Due to the similarity of the approach of Neema [64] to the

one we create, the di�erences need to be discussed. Neema [64] provides an integrated

approach using HLA. The HLA capabilities are implicitly used but not explicitly speci�ed.

Also, the data is modelled with the attributes of HLA. The sole focus on HLA poses the

problem of use in other simulation domains. This problem was shown in the example

of Scerri et al. [60] in Sec. 4.1.2. Our DSL is designed with the use to model not only

HLA capabilities, but other possible approaches. Therefore also functionality used for

the interoperability can be de�ned. The DSL provides also focus on composability and

reusability. The reusability is facilitated by the use of independent interfaces. Furthermore,

the metamodel is designed to a independent description of simulations and coordinators.

These capabilities are complemented with the ability to describe the assembly/composition

of simulations. The DSL provides a guideline for roles to specify the simulations and

assembly. One common aspect is the bridging of di�erent data models with mappers. The

mapping integration in the approach Neema [64] is realised ready to be used. Nevertheless,

the DSL provides reuse of the adaptations in di�erent models. Additionally, approaches to

structure the mapping of data are provided to reduce the number of descriptions necessary.

Furthermore, the metamodel is designed to enhance the capabilities of adaptation further.

4.1.3 Using Ontologies for Simulation Composition and Interoperability

An approach in the �eld of composability is provided by Benjamin et al. [65] through the

use of ontologies. An ontology de�nes entities in a domain, together with their properties

and relationships. The approach of Benjamin et al. [65] enables ontologies to describe

components and their properties and place them into a repository. When components are

required, they can be chosen through their requirements. Benjamin and Akella [66] extract

ontology models for each simulation application. The sources for these models are text

sources like requirement documents, design documents and source code. The metamodel

of each application is described through the ontologies to facilitate interoperability. An

ontology-driven translation is carried out by mappings, which de�ne "equivalence between

concepts" [66] in the simulation application.

Gutierrez and Leone [67] use an ontology network for building distributed simulations

for supply chain management. The aspects of composition and interoperation are realised

through the application of the BOM and HLA. The ontology network consists of four

ontologies: BOMOnto, FEDOnto, SCOnto and EMOnto. The FEDOnto provides the concepts

of HLA to generate the conceptual model of a federation. Semantic information enriches

this model through the BOMOnto. This ontology describes the information contained

in BOMs. A federation realises the supply chain concepts, which are described by the

32

4.1 Composability and Interoperability

SCOnto ontology. The implementation of the business process within the supply chain is

modelled with the EMOnto ontology. To use the approach of Gutierrez and Leone [67],

each federation member must agree upon a FOM de�nition. Followed by this agreement,

already created SOMs can be uploaded to build the resulting ontology. This approach

poses a possible drawback because the participants of the simulation need a previously

created SOM. Through the need for an existing SOM, the approach of Guiterrez and

Leone [67] is only applicable after the design process. However, building a model of the

federate is desirable along the design process of a simulation. This enables the developer

to select �tting simulations to achieve a composed capability. Özdikis et al.[68] provide an

application of an ontology with respect to HLA. In this approach, an ontology is used for

a transformation to a HLA object model. For this purpose, a tool is provided to transform

the proposed ontology to OMT constructs. The ontology is designed to represent multiple

capabilities not only those speci�c to HLA. However, in the approach by Özdikis et al. [68],

the HLA speci�cs are directly provided in the process of ontology-to-HLA transformation.

This ontology can be seen as a part of the whole approach. However, no composability

features are provided.

Ontologies can express many aspects needed to describe assembled simulations. How-

ever, the underlying ontology must be carefully designed. Also, it is possible that it can

express properties not intended to. The creation of a metamodel provides a more detailed

restriction of such properties. Because of this, a model-driven approach using the Eclipse

Modelling Framework (EMF) is used to provide the DSL

4.1.4 Simulation Composition Approaches

In 2.3, approaches to de�ne or model the composition of simulation models are presented.

In this section, the reasons for not selecting one of these approaches is discussed.

CODES provides many features to describe distributed simulation and ensures simu-

lation composability and interoperability. The use of black-box components provides

the possibility to exchange a component by a di�erent one with the same capabilities.

The behaviour description allows to capture simulations in the aspect of their complete

behaviour. Also, the check for syntactic composability ensures the valid coupling of the

simulation. However, to provide all of these capabilities, the whole simulation development

must adhere to the structure provided by CODES. Also, other simulation structures like the

use of HLA are not possible. In contrast to this restriction, the DSL is designed on a higher

design abstraction level. This allows the provision of a tool for describing simulation

without specifying concrete underlying structures and mechanism.

The DEVS approach enables developers to describe a large amount of properties of

composed simulations, such as a hierarchical structure, input couplings, output couplings as

well as encapsulation of atomic models. A formalised approach also enables the application

of formal methods to check for consistency. However, it can be assumed that domain

experts are not familiar with the formal description of DEVS. Thus, they have to learn

and understand this formalism before they can design their system. Also, DEVS does not

provide reuse in the sense of interfaces de�nitions. In the DSL, the notion of hierarchical

composition and the coupling is taken but provided more abstractly. The use of a DSL

can provide applications for di�erent developer roles to enable a better understanding

33

4 Related Work

and specialisation to certain aspects of simulation development. DEVS is also used in

the approach by Röhl and Uhrmacher [40]. The DEVS formalism and the XML format

is used to provide the reusability of components. This approach includes the reuse of

interfaces to describe di�erent simulation capabilities. Also, hierarchical compositions can

be de�ned. However, the model must be described in the DEVS formalism. Also, the direct

use of the simulation tool James II prohibits the use of other simulators. Furthermore,

the description of object-oriented simulation models and descriptions of composition

approaches is not possible. In the DSL, the notion of components and interfaces is used.

A hierarchical composition is also provided to achieve similar results. The model-driven

approach, however, should help developers to compose simulations without knowing a

speci�c XML syntax.

As described in Sec. 2.3.3, Ptolemy II allows the analysis of its described composed

simulation. An analysis is especially useful when the simulation is in the design process

to gather information about it. The hierarchical description of simulations is provided to

enable a �ner granularity of the design. The use of the black-box principle enables the

exchange of actors with di�erent MoCs but the same functionality. However, due to the

approach of Ptolemy II, each simulation has to be described with its tool-set. Thus, existing

simulations must be designed with the tools of Ptolemy II again. Also, the possibility

to describe reusable interface is not given either. These interfaces could be reused in

other simulations to describe the data needed for the same simulation aspect. This notion

of de�ned reusable interfaces is however given in the DSL. Also, the DSL provides the

capability to describe multiple interoperability approaches like HLA, which is not given

in Ptolemy II
OMNeT++ also provides the desired capability to describe atomic and composed com-

ponents. The gates provide particular points of interaction between components. Also,

the black-box view on simulations provides the capability to exchange simulations by

others. However, the OMNeT++ approach restricts the user on its speci�c capabilities as

well as to its prescribed structure. In the DSL, the encapsulation of simulations in larger

simulations and the passing of information is also provided. However, OMNeT++ does

not provide a model-based approach to describe additional information like management

functionality or functions to be realised by the simulations. The restriction of OMNeT++
to speci�c languages provides another drawback to describe composed simulations. Thus,

the DSLs model-driven approach uses a higher level of abstraction. There, models with

their provided and required data can be de�ned without keeping the �nal realisation in

mind.

4.2 Decoupling in the Context of Monolithic Simulations

All prior works in this chapter are concerned about the creation of simulations according to

composability approaches. However, simulation models can still be contained in monolithic

simulations. The underlying simulation models contained in a monolithic simulation

need to be extracted to be reused individually. Regrettably, the works on the extraction of

simulation models con�ned in monolithic simulations are found to be scarce. Papadopoulos

et al. [69] use dynamic decoupling to partition a complex equation-based object-oriented

34

4.2 Decoupling in the Context of Monolithic Simulations

model into sub-models. This approach is used on physical systems which run on continuous

or discrete time-scales. Dynamic decoupling is done in a two-phased approach. In the

analysis phase, the structure and the time-scales in the system model are analysed. The

decoupled integration phase then tries to improve simulation e�ciency. The proposed

approach is speci�c to equation-based systems and therefore can only be used in this

domain. The DSL tries to provide a more general approach to �nd a way to decouple

simulations. Fish and Chen [70] provide another decoupling approach of monolithic

simulation in the �eld of multiphysics. However, this approach is speci�c to equation-

based piezoelectricity physics. Thus, this work is not usable to the goal to propose a more

general decoupling approach in the form of guidelines.

Other related sources are inspected due to the lack of literature on the topic of de-

coupling in the context of simulations. Some sources exist in the domain of software

engineering. One goal in the decoupling of software is to identify separate components.

To achieve this goal, Kim and Chang [71] presents a step-wise UML-based approach to

identify components. The identi�cation is achieved through the application of clustering

algorithms, metrics, heuristics and decision rules. Metrics are used in the �rst step to anal-

yse functional dependencies between use cases. In the second step, the determined metrics

are applied to a clustering algorithm. This step allows to �nd and combine use-cases with

the same values. Step three allocates classes to components. The allocation is executed

through the inspection of sequence diagrams which belong to the clustered use-cases. If a

class is assigned to more than one component, metrics are calculated between classes and

components. Following, the con�icting components are compared using these metrics. In

the fourth step, the optimal selection of components is conducted. A value to determine

the number of components and the granularity is proposed. The components are chosen

so that this value is optimal. However, such an approach can allocate functionality valid in

the sense of a software component. However, simulations consist of semantic systems. If

only a functionality based approach is applied to the code of a simulation, it is possible that

semantically connected code pieces are separated. Thus, in the separation of simulations,

not only functionality is of importance but also the semantic of the functionality.

Choi and Cho [72] provide an approach to identify components by employing use-case

diagrams and sequence diagrams. Choi and Cho [72] provide de�nitions for static and

dynamic dependencies between classes. For static dependencies, relationships between

classes are exploited in a class diagram. Those relationships are composition, inheritance

and association [72]. Composition describes the containment of a class in another, so that

writing to one class directly in�uences the other. For example, the creation of one class

includes the creation of the other. According to Cho and Choi [72], "classes in a composition

tend to be operated as a functional unit" [72]. The inheritance relationship provides high

cohesion because the child classes inherit properties of the parent class. If those classes

were distributed in multiple components, the cohesion between those components would

be equally high. Cho and Choi [72] state, that composition and inheritance relationship

provide a "strong bond" [72] between classes. Therefore these classes have to be part of

the same component and cannot be used independently. In the association relationship,

one class can send messages or invoke functions of another. This relationship does not

provide direct in�uence on the other class. Nevertheless, a high degree of dependency

exists. Dynamic dependencies are analysed in the form of call types between classes.

35

4 Related Work

For this purpose, Cho and Choi [72] de�ne �ve classes of calls between classes and their

direction. The direction is either uni-directional (i.e. one class calls methods of another) or

bi-directional (both classes call methods of each other). With these characteristics, Cho and

Choi [72] propose multiple criteria to identify business/system components. Following,

a step by step approach is proposed to identify these components. Requirements and

use-cases are utilized to identify candidate components. Call graphs are used to group

the found classes. The approach by Cho and Choi [72] uses a descriptive way to identify

business and system components. The notions of relations between classes are bene�cial

and the provision of a step by step approach provides a solid basis to be used. However, this

approach is speci�ed on software systems. Simulations also have to incorporate semantics

to be valid which are not part of the approach of Cho and Choi [72].

Dehghani [73] gives descriptive guidelines on how to decouple monolithic software

into micro-services. An example is to minimise the dependencies of the decoupled micro-

services to the monolith. This guideline can be used in the context of simulation to decide

if a simulation model should be further divided. Also, the idea to decouple the software

system step by step and not in a "big bang" approach is applicable to simulations. The step

by step approach enables the simulation in use to remain operational with the decoupled

parts and the monolithic system along the decoupling process. Lots of the other guidelines

given by Dehghani [73] are however more speci�c to software systems. Because of this,

they are only usable as ideas in the simulation decoupling.

Sarkar et al. [74] provide a case study and a modularisation approach to a large-scale

business application. In this approach, monolithic systems partitioned into domain modules

for which interfaces are found. This partitioning is done by identi�cation of domains and

their domain-speci�c business operation represented in the software system. Through

heuristics, the domain’s �les are identi�ed and assigned to the domain modules. With these

�les, sub-modules are created to express speci�c functionality. The intermodule interaction

is inspected by using static code-analysis tools. Especially calls between modules and

receiving functions are of interest. For the functions between domain modules, interfaces

are de�ned. The described approach is again speci�c to software systems. However, the

separation of domains can be used on larger simulation models. Then interfaces between

the contained simulation models can be found. The interaction between modules can be

seen as interaction between simulation models. So, even if this approach cannot be used

directly, some ideas can be used in the creation of the decoupling approach.

Software decoupling is a problematic topic in the �eld of software engineering. Taibi et

al. [75] show this predicament in an empirical study about the migration from monolithic

architectures to micro-service structures. In this study, the results from interviews of

21 practitioners concerning this migration are discussed. One of the main issues is the

"complexity to decouple from the monolithic system" [75]. An approach to this topic is

to reimplementing the capabilities of the system as micro-services "from scratch" [75].

Another approach is to only implement new software features as micro-services. In

simulation development, this is analogue to only implement new simulation models with a

coupling approach. All work concerning the decoupling of software systems is only used as

guidelines. However, decoupling approaches in software engineering often miss semantic

aspects of simulation models. For example if in software engineering, two functionalities

can be separated. However, in simulation, these functionalities may belong tightly together

36

4.3 Architecture Description Languages for Modular Simulations

to generate a semantic relationship. Also, no concrete step by step support of decoupling

has been found.

Few relevant solutions are found, which leads to the conclusion that works on the

decoupling of simulation are hard to �nd or scarcely researched.

4.3 Architecture Description Languages for Modular
Simulations

In software engineering, ADLs are used to describe the structure of software systems.

However, they allow not only the description of software systems but also their analysis.

In the domain of distributed simulation, Coen-Porisini and Baresi [76] introduce the

Simulation Architecture Description Language (SADL). With SADL, each artefact during

the di�erent design phases of a distributed simulation can be described. UML is enhanced

in SADL to be able to describe assembled simulations speci�cally. This approach also

incorporates the creation of a metamodel. It can provide "a formal description of all

the entities that are relevant in the design process" [76]. In the �rst design phase, the

information model is described. Each information model consists of reusable elements

with attributes. For each element input and output, gates are de�ned. Each piece of

information can only �ow through points de�ned by these gates. In the second phase, the

developer creates the system architecture. One or more objects are created in the process

of system architecture speci�cation. Each object is an instance of an element and consists

of assigned values. Those values correspond to instantiations of the referenced elements

attributes. In the simulation architecture de�nition phase, each object is assigned at least

one simulation component. The simulation component has input interfaces and output

interfaces. Links connect each interface type. Filter components are provided in addition

to the simulation components. Each �lter component transforms data to enable simulation

models to exchange information if their data representation does not match. Another form

of a component is the activator, which can alter the control �ow of a simulation. Each

simulation architecture also has to specify a data �ow description (i.e. the information that

is exchanged among components). Also, the control �ow description has to be supplied,

de�ning how the components interact. The simulation deployment can be described

with the resulting simulation architecture model. In this design step, the components

of a simulation architecture are distributed on "nodes". Each node represents a process

or processor. SADL also provides consistency checks, to signal errors in the modelling

process to the user. SADL also provides an approach to model and analyse simulation

compositions. However, SADL is rather restrictive in the way simulations interact. The

metamodel of SADL does not enable a developer to describe management functionality

used in distributed simulations as, for example, RTI-management-capabilities. However,

this capability facilitates a broad and de�ned use and enables to describe the capabilities

for the management of multiple simulations in a speci�c approach. The notion of the �lter

component is required for a integration of independently created simulations. A similar

approach is used in the DSL but with a di�erent design to enable a broad reuse of the

�lters and mappings.

37

4 Related Work

Besides SADL there are not many other full-�edged ADLs specialised in simulations.

This problem is also recognised by McKenzie et al. [52]. Instead, the software ADLs

Rapide [77] and Acme [78] are used to describe and analyse distributed simulations. The

architectural descriptions are based on HLA and two federation architectures. Through

successful application of the ADLs, McKenzie et al. [52] concluded that general purpose

ADLs are applicable to distributed simulation. However, McKenzie et al.[52] also stress

the bene�ts of a standardised simulation ADL speci�c for the simulation community.

38

5 Extraction of Simulation Models from
Monolithic Simulations

This chapter provides information to support the extraction of simulation models out

of monolithic simulations. For this purpose, the monolithic simulations IntBIIS and Hu-
manSim is inspected. Therefore, the provided information are only related these two

monolithic simulations but it is possible that they are applicable in other simulations with

similar structures as well. The scope of this description chapter is restricted to DES and

process oriented simulations as described in Sec. 2.2.1. With the identi�ed information

entry-points to inspect the connection between the simulation models are provided. The

found connections can then be used to extract the simulation model and describe required

and provided informations of each extracted model.

First, Sec. 5.1 describes structure of a monolithic simulation as created of its features.

Sec. 5.2 then provides conceptual elements in these modules to be important for the

extraction of simulations out of a monolithic simulation. Sec. 5.3 describes how these

elements can be used to de�ne aspects to concern when extracting simulation. Finally,

some problems con�ned in di�erent aspects in the extraction of simulations such as the

synchronisation of simulations or tooling approaches, are discussed in Sec. 5.4

5.1 Simulation Features of Monolithic Simulations

Monolithic simulations contain one or several simulation models to represent the system

to be analysed (see Sec. 2.2.3). These simulation models are designed to correspond to

the speci�c structure of a simulation. In the process of modularisation, the simulation

itself can be divided into its features. These features can then be extracted to be reused.

These extracted features are called "simulation features" because each feature constitutes a

simulation which represents a feature of the former simulation. An extracted feature itself

does not have to contain only one simulation model. For example the Palladio feature can

contain simulation models for reliability and performance. If Palladio is extracted out of

IntBIIS, these models can be extracted together as one feature. The business process model

provides another feature. The separation of a monolithic simulation in its features has to

be done by application of contextual information. This information is especially important,

because simulations are claimed to be developed on context-sensitive assumptions [18].

Either a developer knowing these assumptions can separate the simulation models or the

developer has to obtain knowledge about the simulation �rst. This gathering of knowledge,

however, can be cost and time intensive.

39

5 Extraction of Simulation Models from Monolithic Simulations

5.2 Simulation Information to be Identified for Extraction

If a feature is identi�ed by context information, its con�ned elements can be found. Three

categories are found to de�ne information in simulations. First, entities as shortly described

in Sec. 2.2 used in the simulation system can be identi�ed. These entities are used to to

potentially progress the system state by interactions with other entities. Other kinds of

information is the �ow of the simulation execution (hereafter called "execution �ow") and

the �ow of data between features. Entities and the �ows can be used in the extraction of

models and their code out of monolithic simulations. Therefore, they are de�ned in the

following subsections.

5.2.1 Simulation Entities

Entities �ow through the system and interact together to possible change the state of the

system [11]. These entities and their use in each simulation feature have to be identi�ed

for the extraction. The categorisation of Banks et al. [11] is used to categorize these

entities in two classes. The �rst class are dynamic entities. These entities are used to

actively interact with other entities and can �ow through the system. This interaction

can change the state of the system and generates the systems behaviour. In IntBIIS, Actor
instances are dynamic entities. They use device resources to change the state of the

simulation (e.g. by obtaining device resource capacity to proceed with their execution

or to block other actors). The second class of entities are static entities. These entities

are used by dynamic entities to support the execution of the simulation behaviour. Static

entities themselves do not interact with other entities themselves. In IntBIIS, static entities

are device resources. These entities are used by actor resources to generate the desired

behaviour of the simulation model. The speci�cation of dynamic and static simulation

entities is dependent on the simulation model they are used in. Therefore, the static entity

can become an dynamic entity in an evolutionary scenario. For example, device resources

in IntBIIS are currently only used by actors. Their occupation regulates the simulation �ow

(e.g. by blocking the process of actor resources when no capacity is available). The device

resources themselves do not provide any further behaviour. If, for instance, the model is

extended and device resources can interact with each other (e.g. to provide networked

behaviour), the device resources become dynamic entities.

5.2.2 Flows in Monolithic Simulations

The information �ow and execution �ow in monolithic simulation are identi�ed to be

signi�cant for extraction of simulation features. The execution �ow of a simulation is

expressed by the traversal of events in DES or the execution of the process steps in process

oriented simulations. Multiple execution �ows can exist in a monolithic simulation. The

dynamic entities are used in this �ow to interact with other entities and the system itself

to change its state. Entities are related to execution �ows. For example, each user of a user-

scenario in Palladio has its own execution �ow. The state of the simulation features (i.e.

state variables) can alter the execution �ow of a module. Also, the execution �ow can be

dependent on entity attributes. For example the state variable of a component in Palladio

40

5.3 Usage of the Flows and Entities

can describe which event is called as next. The execution �ow and the entities in this

�ow also induce the second type of �ow, the data �ow, in a simulation. The information-

(i.e. data-) �ow de�nes the transfer of information between simulation entities. An

information �ow exists when dynamic entities change attributes of other entities or call

one of their functionalities. The information �ow can be direct between an dynamic entity

and dynamic or static entity. Also an indirect �ow exists where information is transferred

between dynamic entities over an static entity. The information �ow is of importance

when extracting models to specify the data used by the extracted simulation. It is possible

that these information can be optional. The data �ow between entities can alter execution

�ows when they are dependent on state variables.

5.3 Usage of the Flows and Entities

The application of the proposed information con�ned in simulation modules described

in Sec. 5.2 is provided in this section. The execution �ow can be used to identify the

entities con�ned in a simulation feature. The interactions of entities de�ne the interfaces

for interaction between simulation features. Furthermore, direct interaction between

the execution �ows can be identi�ed. Therefore, connection properties in the case of an

extraction can be found when inspecting the entities and the execution �ows. For this

purpose, the identi�cation aspect of entities in simulation features is discussed in this

section. Furthermore insight is provided for inspecting requirements and provisions of

simulation features. In addition to this inspection, the need for replication of entities in

the modules is discussed. Additionally, di�erent types of waiting schemes in modular

simulations is explained.

5.3.1 Identification of Entities by Simulation Features

In a modular simulation, every entity has to be identi�able to be usable by other simulation

features. This identi�cation allows a entity of one simulation feature to interact with an

entity of another simulation feature. If no identi�cation is possible, the entities cannot

interact. The interaction between actor resources and software systems can be taken as

example. In the current monolithic system of IntBIIS, the traversal of the usage scenario is

executed by traversal of the corresponding modelled actions by references. In a modular

simulation, IntBIIS can be split in a Palladio simulation feature and a business process

simulation feature. A speci�c software system cannot be speci�ed to be accessed by an

actor step through a reference due to this separation. Because multiple software systems

could be realised, the business process simulation feature has to de�ne which system has

to be traversed. If no identi�cation would be provided the usage of a certain software

system is not possible

5.3.2 Determination of Requiring and Providing Data

To determine the requirements or provision of data, the information �ows between execu-

tion �ows of the simulation features have to be found. In a direct information �ow between

41

5 Extraction of Simulation Models from Monolithic Simulations

two active entities, the simulation feature containing the entity changing the variable can

be declared as "providing". The simulation feature containing the entity with the changed

value can be declared as "requiring". This declaration has to be done for every transferred

data. It is possible that the data-�ow between two entities is not direct. Static entities can

be used to exchange information. Here, the dynamic entities accessing the static entity

have to be found. However, the required and provided properties themselves are the same

as in the simple case. Furthermore, the events or process steps themselves can change or

call functionality or change data of entities in other simulation features. These changes of

data and calls of functionality have also to be declared as "provided". It is possible that

a entity is conceptually assigned to two or more simulation features. These simulation

features can utilise and de�ne the attributes of one entity. In this case, the required and

provided information cannot be found by analysis of the data-�ows themselves. This

property has to be found by inspecting all execution �ows for usage of a dynamic entity.

However, such a inspection can be time consuming and context information is helpful. If

this constellation is found, the attributes utilised in one simulation feature and modi�ed

in the other simulation feature have to be required. This speci�cation can result in the

constellation, that simulation features both require and provide values for attributes of

one entity.

5.3.3 Replication of Entities

The �ow of data between two modules realises a change of state. In an entity driven

simulation, the information about entities used to interact with has to be stored in every

simulation feature. The necessity for representation of entities from other features can be

identi�ed by the dynamic entities in the execution �ow of a simulation feature. Every entity

in other simulation features accessed by an dynamic entity in the analysed simulation

feature has to be represented. The entities can be seen as the interfaces between the

simulation features. To replicate an entity it su�ces to represent only the properties to be

accessed or changed (e.g. attributes or functions to access). This allows to only provide

a limited representation of the entities of other simulations and reduces overhead in the

implementation. It can even su�ce to only store the identifying elements on an entity

(e.g. a name or identi�er) The need for replication is not bi-directional. Therefore, if one

entity has to be replicated in one module, the other module does not necessarily has to

also contain the entity. If entities are conceptually assigned to two or more simulation

feature as described in Sec. 5.3.2, the entities have to be represented both of them. Here,

all attributes used in the execution �ow of the simulation features have to be represented.

5.3.4 Types of Execution Flows in a Waiting Scenario

The execution �ow is especially important for the representation of waiting for an event.

With a execution �ow, conditional and unconditional waiting can be expressed. In condi-

tional waiting, the execution �ow builds loops and checks for a change in state (i.e. change

in the value of an entity). Here, another execution �ow has to alter the state (e.g. alter state

variables or attribute values of an entity) to let the waiting �ow proceed. However, this

�ow also allows to escape or change the behaviour if the condition is not reached. Palladio

42

5.4 Challenges in the Extraction of Simulations

and IntBIIS does not provide such an approach. Therefore, we use the example of the

movement of a troop and a supply transport. The troop approaches a point and enters the

waiting state. The execution �ow of the troop reschedules the wait event until a variable is

changed (e.g. a "train arrived" value on their position). If the transport arrives, the value is

changed and the execution �ow proceeds with the next event. The rescheduling can also

be "broken" by providing a escape condition (e.g. a certain time has passed). Unconditional

waiting on the other hand is represented by the end of an execution �ow. In this approach

the execution �ow (e.g. scheduling of events) is interrupted. The only way to proceed with

the conceptual �ow is by the resuming through another execution �ow. As an example

in IntBIIS, we conceptually separate the actor step traversal and the traversal of software

systems. When a actor step is executed, a point is reached where the software system

traversal is scheduled. The traversal of the actor step is ended but the conceptual �ow

(e.g. the work day) is only paused. Then traversal of the software system is executed.

At its end, the execution �ow of the software system resumes the execution �ow of the

actor step. A more distinct example is the one stated above. However, this time, the troop

execution �ow is not rescheduled in the loop. The execution �ow is only resumed by the

arrived transport. With unconditional waiting, an explicit dependency on another �ow

can be produced. Without the interaction of this �ow, the execution of the model is not

proceeded. Thus this approach states a true requirement for the interaction with another

simulation.

5.4 Challenges in the Extraction of Simulations

The extraction of simulations provides some challenges in di�erent areas of development.

Some problems are presented in this section.

5.4.1 Tooling

We use simulations written in Java. In the process of this thesis, only few tools could be

found to provide valid information for decoupling. The static structure of a simulation

can be viewed with Structure101 [79] or SonarGraph [80]. The static structure can show

isolated models or references between identi�ed dynamic or static entities. To �nd the

data and control �ow, data �ow analysis or program slicing can be used. However, in the

domain of the Eclipse IDE, we found no tools working with our eclipse distributions (Eclipse

Modelling Tools Neon.3 (V4.6.3)). The decoupling should not be hindered by a unsuccessful

or time-intensive setup of tools. This would increase the cost of the decoupling and can

make it infeasible from the perspective of stakeholders.

5.4.2 Duplicated Code

One problem in the decoupling of a system is duplicated code. This duplication is necessary

for dynamic and static entities used by multiple simulations as described in Sec. 5.3.3.

For each simulation, the entity has to be internally represented. Either a full �edged

representation or only by representable stubs. Another problem arises with the simulation

43

5 Extraction of Simulation Models from Monolithic Simulations

engine. No problems arise if the monolithic simulation already uses di�erent simulation

engines for the execution of each underlying simulation model. However, this is seldom

the case as seen for example in IntBIIS where EventSim is used for the Palladio as for

the business process simulation model. Therefore, if these two simulation models are

placed in their own simulation, the code of EventSim has to be used in both simulations.

Duplicated code is a problem for maintainability. The code of the simulation engine has

to be maintained separately. This problem can be approached by using a plug-in system.

This is the case for EventSim. A plug-in system enables the central maintenance of the

simulation engine.

5.4.3 Synchronisation of Simulation Time with Coupling Approaches

To use extracted simulations, an coupling approach has to be used to enable the creation

of the desired behaviour of a modular simulation. The goal of extracting a simulation

feature out of a monolithic simulation is to reuse it as a single simulations and in modular

simulations. Therefore it is important that extracted simulations can be reassembled

in a modular simulation to provide the monoliths behaviour. Coupling approaches can

contain the ability to synchronise the time for the simulation features interacting with

it. Monolithic simulation however, have to provide their own time mechanism which is

con�ned in the used simulation engine. Two approaches are identi�ed in the extraction

of a simulation features exists to use the time-line of the coupling approaches. The �rst

approach is to use the monoliths simulation engine and its time-mechanism in the extracted

feature as well. In this approach, the time-line of the simulation engines of the features

and the time-line of the coupling approach have to be synchronised. This synchronisation

has to be carefully executed so that no information is lost. This can pose great di�culty

dependent on the simulation engine and the underlying use of the simulation features

models. If, for example, in one simulation feature only one execution �ow and entity exists,

its synchronisation can be directly to the time-line of the coupling approach. However, if in

one simulation feature multiple execution �ows for entities exist, then one execution �ow

can schedule a time advance after that of another entity with a greater time advance. In

such a case one of these time-advances can be lost. This can result in incorrect interaction

with the other simulation features. Therefore, the time-mechanism of the simulation engine

has to be adapted to synchronise the execution �ows themselves and also to synchronise

them in regard to the time-line of the coupling approach. The other approach is to utilize

only the time-mechanism of the coupling approach. Therefore, only the simulation model

is used but not the monolithic simulations engine. This however results in two major

drawbacks. First, simulation engines provide capabilities for simulation approaches like

DES (i.e. event-scheduling-mechanisms). These features have to be either be replicated or

other simulation approaches have to be used (e.g. process oriented simulation instead of

DES). Second, the simulation features is �tted to a certain coupling approach and cannot

be reused with other approaches.

44

6 A Description Language for Simulation
Coupling

In this chapter, a DSL is introduced to describe the coupling between simulation features.

This DSL is designed to support the modularisation of monolithic simulations or the design

of new modular simulations. The modular simulation can only use the information of

the contained simulations. Simulations of a modular simulation can be other modular

simulations themselves and simulation features.

The interaction between simulations consists of an exchange of information. The term

information of simulations includes the data of simulations (e.g. attribute values) and

noti�cation of simulations about certain events they can react on of other simulations. The

modular simulation has to use a coupling approach to enable interactions between its used

simulations. The coupling approach is called Modular Simulation Environment (MSE) in

the DSL. The simulations and the MSEs have to be combined to create a working modular

simulation. This combination is realised in a modular simulation assembly. Therefore,

the term modular simulation and modular simulation assembly is used interchangeably

in this chapter. The DSL is designed to provide the capabilities for the description of

the static architectural and information-driven design of modular simulations. The static

architectural description is related to the used simulation and their connection through

the MSE. The information driven design capabilities are used to describe the exchange of

information between simulations. This design poses some limitation on the use of the DSL.

One limitation is the inability to describe the aspect of a modular simulations’ behaviour.

The DSL is created with model-driven technologies. Therefore the DSL provides a

metamodel for the description of the modular simulation and its content (e.g. simulation

modules). The EMF [81] is used to design the DSLs’ metamodel. The capabilities of the DSL

have to be extensible for possible modi�cations in the future. For this purpose, metamodel

elements are provided to be used as entry-points for extension. The DSL is designed with

the following goals:

• The DSL has to contain the capabilities to de�ne the structural parts of modular

simulations. These capabilities include the de�nition of simulation features and the

MSEs. The applicant of the DSL must also be able to connect these de�nitions to

modular simulations.

• It has to be possible to describe modular simulations as a combination of other

modular simulations and simulation features.

• The information contained in a simulation must be describable. This description

enables the use of the information in the assembly of a modular simulation.

45

6 A Description Language for Simulation Coupling

• Exchanged information between simulations has to be describable. This description

is done by the speci�cation of required and provided information.

• The DSL has to provide the capabilities to model simulation features and MSEs,

independently. This independent design includes that no knowledge of the other

used simulations or MSEs of a certain modular simulation assembly is needed. This

goal enables the use of models of third party developers because no assumptions

about other simulation features or MSEs can be made.

• The information contained in simulations and MSEs must be represented to be usable

by computers. Also, the DSL has to be able to model an object-oriented scheme for

the representation of information contained in simulations and MSEs.

• It must be possible to describe MSEs to facilitate capabilities for interaction between

simulations. This description includes possible callable functionalities and additional

information needed to provide these capabilities.

• The metamodel of the DSL has to allow the description of at least the capabilities

and aspects of the HLA. However, not only the HLA has to be describable. De�ning

more, less or di�erent capabilities must be possible.

• Incompatibilities can arise due to the independent design of simulations and the

MSEs. The main reason for these incompatibilities is the di�erent de�nition of

information in the independent description. Therefore, the DSL has to provide an

approach to mitigate the incompatibilities of the described information.

• The models created with the DSL shall be reusable in di�erent modular simulations.

This reusability includes the descriptions of simulations and MSEs. Also, the content

of the approach to mitigate incompatibilities of information have to be reusable.

Additionally, the modular simulations themselves have to be reusable.

This chapter is structured by �rst giving a more precise de�nition of our understanding

of modular simulations in Sec. 6.1. This de�nition also includes the constituting parts of

modular simulations. The solution approach to mitigate incompatibilities of information is

described in Sec. 6.2. An introduction of the DSLs’ metamodel is given after the description

of this approach. Sec. 6.3 provides an overview and discussion about the package structure

of the metamodel. The detailed description of the elements contained in the metamodel is

given after that. This description starts with the introduction of basic metamodel elements

to enable an identi�cation of model elements Sec. 6.4. Sec 6.5 describes the metamodel

elements used to specify information in simulation features and MSEs. Sec. 6.5.1 includes

the description of data types used in information to make them usable by computers. This

description is followed by the explanation of the metamodel content to model noti�cations

in Sec 6.5.2. These elements are required to de�ne the information contained in simulations

and MSE. Sec. 6.5.3 describes the representation of information in the simulation. The

information in the DSL is represented by an object-oriented structure. Sec. 6.5.4 provides a

discussion about the chosen design of the metamodels object-oriented structures. Sec. 6.6.1

describes the elements to model simulation features. The metamodel parts to describe

46

6.1 Modular Simulations in the DSL

MSEs are provided in Sec 6.6.2. Sec. 6.2 describes the approach to resolve incompatibilities

between information of independently designed simulations and coordinators. This de-

scription includes a proposition for a possible process to use this approach in Sec. 6.2.2.

Likewise, the identi�ed areas (or types) of the solution approach are explained in Sec. 6.2.1.

The metamodel content for the created solution is described in Sec. 6.7. Sec. 6.8 contains

the de�nition of metamodel elements to model the assembly of a modular simulation.

Sec. 6.8.2 describes the provided elements to enable the use of the independent designed

information in the modular simulation. These elements include the capability to specify

additional context information for data and noti�cations contained in simulations. This

speci�cation enables processing of information by the MSE. The required and provided

data in the modular simulation has to be speci�ed for each simulation. This speci�cation

is realised by mappings to interfaces described in Sec. 6.8.3. The approach to resolve

incompatibilities of simulation is de�ned to be reusable in di�erent modular simulations.

Therefore, the created models have to be kept abstract to to be applicable in multiple

modular simulation models. The abstractly de�ned parts have to be connected to the infor-

mation in a modular simulation to enable their usage. The metamodel elements realising

this concrete speci�cation are described in Sec. 6.8.4. The simulations and MSE parts have

to be statically connected to describe possible information �ows. The description of the

metamodel elements used to connect the content of modular simulations are given in

Sec. 6.8.5.

Also di�erent developer roles are proposed for the use of the DSL. Di�erent roles enable

a specialisation of developers into di�erent aspects in the creation of modular simulation.

For example, one developer specialises in the development of MSEs and another in that

of simulation modules. This specialisation can result in more reliable content due to the

specialisation. Also, parallel and interleaved solution of the tasks in the development of

modular simulations is possible. The roles are described in Sec. 6.9

6.1 Modular Simulations in the DSL

Modular simulations in the DSL consist of several simulations to provide desired capabili-

ties and information. These capabilities are achieved by the interaction of the contained

simulations. For this purpose, the contained simulations can provide data to other simula-

tions or require data from others. The information required by a simulation is necessary

for correct processing of its underlying model. For example, the response time of software

systems is required in the business process simulation to calculate the overall execution of

an actor in IntBIIS. Also, simulations can require noti�cations from other simulations to

react to them. In DES these noti�cations typically trigger a particular event. For example,

Palladio requires the noti�cation to start the simulation (i.e. the traversal) of a software

system. In some scenarios, noti�cations are not only required for correct execution of the

simulation. It is possible that a simulation does not proceed with calculations if it does

not get a speci�c noti�cation. The required information has to be provided by another

simulation. Palladio provides the response times of software systems to other simulations

(e.g. to the business process simulation) in the above examples. IntBIIS provides the

noti�cation to Palladio to start the simulation of a software system. Noti�cations can

47

6 A Description Language for Simulation Coupling

include additional pieces of information to provide a better speci�cation. For example,

IntBIIS could provide an id of the software system to be simulated. Functionality has to

be provided to enable interaction between simulations contained in a modular simula-

tion. The functionality is de�ned in a MSE in the DSL. The MSE de�nes capabilities to

realise correct interaction between the simulations. This de�nition includes capabilities to

manage several common aspects in simulations. For example, the exchanged information

of two simulations or the representation and management of simulation time. Multiple

approaches for MSEs can exist. One example of a possible approach is to provide these

capabilities directly in each simulation of a modular simulation. In this approach, the

simulations have to synchronise with each other. Another approach is to use a centralised

coordination unit which provides these capabilities. This unit is called a coordinator. The

coordinator provides capabilities for a common interaction between simulations. These

capabilities include the management of simulation aspects. Examples for capabilities are

the distribution of information, management of time or noti�cation of simulations about

events. A MSE can specify context information to the data and noti�cations exchanged

between simulations. The context information is needed for simulation information to be

processable by the coordinator. An example for a context information is the order how

updates to a datum have to be delivered. The MSE also has to specify noti�cations to and

from simulations. These noti�cations enable the use of the coordinator capabilities. For

example noti�cations to call for an advancement of time. The coordinator is currently the

only realised approach in the DSL. Nevertheless, we speci�cally distinguish here between

coordinator and MSE. The MSE is understood as the conceptual part used in a modular

simulation. The coordinator, on the other hand, is a concrete approach. For each concrete

approach, the metamodel has to be enhanced by describing elements. An example of

a coordinator is the HLA RTI. A RTI can be represented explicitly by elements in the

metamodel. Representation of information contained in simulations and MSEs need to

be described to be usable in a modular simulation. The exchange of information could

not be speci�ed without such representation. The description of available and required

information in a simulation is necessary for simulation modules. The statement of re-

quired information is of particular importance. This statement provides insight into the

information needed to execute the simulation module correctly.

The information of simulations and MSEs have to be modelled based on computer

interpretable data types. This approach enables usage of the models in the implementation

of the modular simulation. The speci�cation of the data types must be �exible enough

to represent all information contained in a simulation or MSE. This information can be

semantically enriched to specify certain aspects in a simulation. Semantically enriched

information is, for example, units of time or distance. Another example is the representation

of the available working time spans in IntBIIS. An object-oriented scheme is employed in

the DSL to represent information of simulations. Data of simulations are represented by

classes and their contained attributes due to this scheme. In the DSL, classes are called

"object classes", and attributes are called "properties". Also, the noti�cations of simulations

and MSEs have to be de�ned. These noti�cations are performed by functions (in the

DSL called "operations") and their parameters. Parameters specify additional information

transported in an operation. The name "operation" for noti�cations is chosen because

they can be seen as similar to a call of a function in a program. One goal of the DSL is

48

6.1 Modular Simulations in the DSL

to provide reusable descriptions of simulations and MSEs. That goal is re�ected in the

design of the DSL to create descriptions of simulations and MSEs independently. This

description entails that no knowledge of other simulations or MSEs used in the modular

simulation is needed for their design. Therefore, the information and data types con�ned

in simulations or MSEs are also speci�ed independently. Three reasons motivate the

property of independent development. The �rst reason stems from the extraction of

simulation modules out of monolithic simulations. Each simulation module is still using

the schemes of the monolithic simulation (e.g. individual data types). Furthermore, the

goal the independent speci�cation increase the reusability of models created by third

parties. The designed models are easier applicable to other modular simulation, when

they are created independent of the currently used MSE or other simulations in a modular

simulation. The third reason stems from parallel and specialised creation and use by

di�erent developers and teams. Di�erent developers can focus on their �eld of expertise

(e.g. creation of simulations, MSE or assembly of modular simulation). Other developers

can use the developed content without the implementation of the content by themselves.

If simulations were directly based on a MSE, the developer would have to �t its products

on the MSE. The independence in development provides the bene�t of sole responsibility

as it is assumed with components described in Sec. 3.2.1.

The goal of the independent creation of simulations and MSEs induces the potential

problem of incompatible or con�icting information. This problem originates from the

possible di�erent design decisions for information contained in simulations and MSE. For

example, two simulations incorporate the same concept (e.g. speed). Because of di�erent

naming conventions or design decisions, di�erent names are used for this concept (e.g.

speed and velocity). If one simulation receives the information of this concept with another

name (e.g. values), it cannot be processed. Another example is the di�erent representation

of "percent". One simulation can use an Integer (values: 0 to 100) and the other a Double

(values: 0.00 to 1.00) to represent percent. If both simulations are chosen to interact,

they cannot (correctly) interpret the received value. The selection of only compatible

descriptions would greatly reduce the number of possible selectable simulations and MSEs

for a modular simulation. Therefore, the DSL provides the approach of "adaptation" to

mitigate the e�ect of con�icting or incompatible information. The adaptation approach

can be used to enable interaction between simulations of a modular simulation containing

di�erently designed information. The assembly of a modular simulation can, therefore, be

described with the content described above.

The simulation modules of a modular simulation can either be simulation features

or modular simulations. Simulation features do not consist of other simulations. The

use of other modular simulations creates a hierarchic structure. Simulations and MSE

approaches are con�ned in components to be used in the DSL. The components of

simulation features and modular simulations do not appear di�erent in the assembly of

another modular component. This property enables the use of simulation features or

modular simulations interchangeably. A simulation module can consist of one or multiple

models. Thus, a simulation can represent a single-model system or a monolithic system

(i.e. multiple models con�ned in one system). This design supports an evolutionary

style. The monolithic simulation can be used as a component. A modular simulation

can be created when the (sub-)models of the monolithic simulation are decoupled and

49

6 A Description Language for Simulation Coupling

con�ned in independent simulations. This modular simulation can then be exchanged.

The description of the required and provided information of a component also supports the

ability to exchange components. The DSL employs an interface scheme for the de�nition

of a components provided and required information in the modular simulation. Interfaces

de�ne information to be exchanged. A component can mark an interface as provided

or required. This mark signals that the component provides or requires the information

speci�ed by the interface. Every information to be exchanged in a modular simulation

has to be de�ned in an interface �rst. This enables to exchange simulations in a modular

simulation with the same required and provided interfaces. The modular simulation has

to de�ne the information contained in unsatis�ed required interfaces as required by itself.

This de�nition allows the deference of the provision of the information to a simulation

outside of the modular simulation. Also, the information the modular simulation can

provide has to be described. This description allows to use of the modular simulation for

information provision in another modular simulation.

Fig. 6.1 exemplary shows the containment of the simulation features Palladio and

business process in the modular simulation IntBIIS with provided and required interfaces

Components can also contain tools. Tools are represented like simulation features with

Palladio BusinessProcess

System
Response time

Notification to start
system traversal

IntBIIS

Figure 6.1: The representation of the modular simulation IntBIIS. The half-circles represent

provided information according to interfaces. The circles represent the required

information according to interfaces. The connection between two elements

de�ne the connection between the corresponding information interfaces

required and provided information. Tools can, for example, be data or time logging

tools. Due to their con�nement in a simulation component, they also have to apply

the requirement and provision scheme of simulations. The nested structure of modular

simulations creates a hierarchy. One logical consequence is that the lowest level of the

hierarchy only consists of simulation features.

The DSL also has to provide the capabilities to de�ne the structural aspects of modular

simulations. This structure consists of information on how the components in the modular

simulation are connected. This connection includes how the information in the modular

simulation �ows. Two types of connections between components are di�erentiated in

the DSL. One connection speci�es the relationship between the required and provided

interfaces. A required interface of one component can be connected to a provided interface

of another component when they use the same abstract interface. This connection allows

checking of whether each required interface is satis�ed by a provided interface. If a required

interface cannot be satis�ed, a connection to the modular simulation itself has to be

50

6.1 Modular Simulations in the DSL

speci�ed. This is called a delegation connection in the DSL. This speci�cation enables the

de�nition of the required information by the modular simulation itself. Another connection

is the �ow of information in the modular simulation. Each component contains connectors

to be connectible with other components. In an implementation, these connectors contain

the capability to transfer and receive information (e.g. by references or by network

capabilities). These connectors de�ne the interaction points between the simulation

components and MSE components. Only one connection between the underlying model

(i.e. simulation or MSE) of a component and the component itself has to be implemented.

Also, only the component has to provide the logic for interaction between the modular

simulation and the independently developed containments. Therefore, the component is

the interface between independent designed elements and the assembly of the modular

simulation. Through this design, the independently developed elements are separated

from the modular simulation. The noti�cations to access the capabilities of MSEs have to

be speci�ed in the connector. This speci�cation includes noti�cations from simulations

to the MSE. Also, the noti�cations from the MSE to the simulations have to be speci�ed.

This speci�cation enables the simulations to access the capabilities of the MSE and the

MSE to provide information to the simulations (e.g. updates or other noti�cation). Each

simulation has to establish a connection to the coordinator to enable interaction. This

connection is realised between the connectors of the components.

For every modular simulation at least one MSE has to be used to enable the interaction

between simulations. The same MSE can be used in di�erent modular simulations. The

de�nition of the DSL also allows to de�ne and use di�erent MSEs in one modular simulation.

An exemplary structure of a hierarchical modular simulation is shown in Fig. 6.2. Here,

the connections between components and connectors specify the information �ow. They

do not describe provided and required information. Before the metamodel is discussed in

BusinessProcess Coordinator 1 Palladio

IntBIIS

IntBIIS DataLogging Sim

Coordinator 2
Data Logger

(Response Time)

Figure 6.2: The structure of a hierarchical modular simulation. The lines represent the

connections between components and de�ne the information �ow

detail, the approach of "adaptation" is provided in the following section.

51

6 A Description Language for Simulation Coupling

6.2 Mitigation of Information Incompatibilities through
Adaptation

One obstacle in the assembly and reassembly of simulations are di�erences in the ex-

changed information. There are several approaches to eliminate or reduce such di�erences.

For example, Tolk [23] approaches this problem by presenting multiple levels of interoper-

ability as described in Sec. 2.2.4. One level is related to structural, declarative and semantic

con�icts. The use of a reference model solves the �rst two con�icts. Another approach is

to provide a common object model for a modular simulation. Every simulation has to use

the content of this object model. The drawback of this approach is that all simulations

in a modular simulation have to conform to this object model along with its included

representation of information.

The DSL provides an approach to mitigate incompatibilities between information of

simulations in a modular simulation. For this approach, the DSL utilises the idea of adapters.

The approach is similar to the mapping approach of Neema [64]. The DSL provides an

independent speci�cation of abstract description for adaptation rules. The descriptions

specify what information has to be adapted and how the adaptation is executed and are

called adaptation descriptions. Abstract names represent the information to adapt. These

names are called "markers" in the DSL. For example, two interacting simulations exchange

values of time. However, time is represented as minutes in one simulation and as seconds

in the other. Both simulations would interpret the exchanged values for time wrong. For

this purpose, two markers are created. One marker contains the name "minute" and the

other "second". Additionally, a developer speci�es a rule for how to transform the described

information. We call this an "adaptation conversion". A conversion stating to multiply

or divide the value by 60 would be su�cient in the time-example. This example is pretty

fundamental and could be resolved by other means. Nevertheless, it is used to clarify

the idea of the approach. The DSL provides capabilities to structure the abstract markers

by use of specialised adaptation descriptions. These structures described by adaptation
descriptions are supposed to reduce the number of descriptions in relation to a de�nition

of every adaptation as a one-to-one relation. Di�erent identi�ed structures are prede�ned

and provided by the DSL. One example is the structure of SI-Units. SI-Units de�ne a "base

unit" for each represented quantity (e.g. second for time units). Every other related unit is

de�ned as to be calculated from this unit. This structure is represented in the DSL.

To enable the adaptation in the DSL, a component in a modular simulation can describe

contained entities to execute the described adaptations. These entities are called adapter
services. The location of these adapter services in a component reduces the dependencies

between an independent designed simulation or MSE to the modular simulation. The

location in a component enhances the reusability of independent designed content in

multiple modular simulations. The location of an adapter service in the components

enables adaptations to be usable centralised in a coordinator, or locally in a simulation.

These locations are di�erent from the used mapper in the approach by Neema [64]. Here,

the mapper is an independent tool, connected to a RTI. For a tooling approach, the

information has to be transferred to the mapper. Neema [64] used this design to provide

an approach without altering or encapsulating a HLA. An encapsulation is however

52

6.2 Mitigation of Information Incompatibilities through Adaptation

already modelled in the DSL. So, we decided to design the adaptation approach without

transferring all information to a component. This design is also based on the reason of

possible network communication. If all information in a modular simulation has to be

transferred to one component performance problems can arise. Also, if the component

fails due to some reason (e.g. the tool experiences and erroneous state), the whole modular

simulation cannot be adapted. In an information exchange, the adapter service veri�es if

an adaptation description can be applied in the exchange of information. It also executes

the conversion.

A goal of the DSL is to facilitate the independent speci�cation of the adaptation descrip-

tions. Therefore, the descriptions are designed independently of concrete information

in modular simulations. This independence is realised by the abstract markers de�ned

before. In the independent form, the abstract description cannot be applied in a modular

simulation. Therefore, the descriptions have to be connected to the adapter services to be

usable in modular simulations. While connected to a particular adapter service, the infor-

mation contained by the described simulations and MSEs are connected to the markers.

The identi�ed types of adaptations are presented in the following Sec. 6.2.1. A proposition

of an exemplary realisation of a step-wise adaptation process is provided in Sec. 6.2.2

6.2.1 Adapter Types

Adaptation is used to resolve con�icts in the information of di�erent simulations. The

term "con�ict" is taken from Tolk and Muguira [23] where information di�erences are

assigned to four con�ict classes. Tolk and Muguira [23] state that a common reference

model can resolve descriptive and structural con�icts. However, such a reference model

cannot be assumed by independently developed simulations or modules extracted of

di�erent monolithic simulations. Therefore, the adaptation approach uses these two

classes. Descriptive con�icts describe di�erent names for the same concepts and exchanged

information [23]. The provided adaptation approach can solve this con�ict. Markers for

the names of the information for each adapted concept are provided. A conversion can

be described to translate the names used in the simulation speci�ed by the prior de�ne

markers. One example is the use of di�erent languages (e.g. "hello" in di�erent languages).

The second con�ict class refers to structural con�icts. This concept incorporates two

di�erent problems. One is the use of di�erent structures. One underlying structure can

be transformed into another in the adaptation (e.g. a collection "list" to an array). The

other problem is stated, that one concept uses an attribute, the other a reference to another

concept. This problem can be resolved by describing a requirement or provision of another

information. Furthermore, a con�ict class is identi�ed as di�erences in information by

their underlying representation. Here, one simulation uses a di�erent data type to describe

a concept than another simulation. An example for this is given in Sec. 6.2 with the

representation of "percent". Adaptation could also be used to adapt the representation of

time in several simulations. This adaptation can be applied when simulations use di�erent

representations of simulation time like continuous, discrete or mixed time. Nutaro [82]

shows, that it is possible to transform equation based continuous time models into discrete

time or discrete states. However, Nutaro [82] also explains that "discrete event simulation

of continuous systems is an active area of research". Nevertheless, because of the possibility

53

6 A Description Language for Simulation Coupling

of such an approach, adaptations could transform the continuous represented information

into discrete representation. The DSL could provide an adaptation description to identify

the time scheme of a simulation. For this time scheme, the approach of continuous time

discretisation can be described. However, this is a theoretical assumption, and further

research has to be provided in future works on this topic. Filtering or transformation

of information can also be a adaptation type. This type can be used to convert the

information contained in a simulation to another type. For example, one simulation needs

the number of active actors in IntBIIS. IntBIIS provides only the actors con�ned in a list.

An adaptation description can be realised, where the conversion describes the calling

of the .size() method of the list type. Another application is the transformation of not

transferable information by the MSE scheme. For example, only data types like String or

Integer can be exchanged between simulation. One simulation uses a collection of objects

of a speci�c class. The adaptation approach could be used to transform the objects into

string representation. Another kind of �ltering is the provision of information with certain

underlying conditions. These conditions can possible not be represented by other schemes

in the modular simulation. For example, a simulation only requires actors with an active

state. This requirement cannot be expressed by the current scheme of expressing required

information. Therefore, an adaptation could be speci�ed to provide only the active actors.

6.2.2 Adaptation Process

Adapter services and adaptation descriptions can be used after their speci�cation and

connection to the modular simulation. We propose the following conceptual approach for

the adaptation as depicted in Fig. 6.3. The process starts when information is exchanged. A

process detects one or several correspondences in information according to the adaptation

descriptions. Found correspondences are resolved with the application of the conversion

in the description. It has to be checked if new correspondences appeared due to the

transformations. For example, stunde (English for hour) is transformed to hour. In the

simulation, all hours are represented as seconds. Therefore, hour has to be transformed to

seconds. The process is �nished for one information when no more correspondences are

found. This procedure allows a chained transformation of the information received from

the source to the one expected in the destination. We provide no reference implementation

of this process realisation. Each implementation of adapter services can be individually

performed. This approach enables the implementation of the concepts in a design of the

developers choice.

54

6.3 Package Structure of the Metamodel

1. Seek correspondences
between adaptation descriptions
and exchanged information

2. Correspondences found?

3. Execute all correspondent
adaptation descriptions

4. Seek for further possible
correspondences
with adaptation descriptions due to
results of the transformation

5. New correspondences found?

Yes

No

No

Yes

Figure 6.3: The proposed conceptual process of adaptation. Large round circles are actions,

arrows mark the control �ow. The diamonds (rotated squares) depict decisions.

The small black circle depicts the start and the small white circle signals the

end

6.3 Package Structure of the Metamodel

The metamodel of the DSL is used to describe modular simulations. This metamodel is

structured by multiple superordinate packages. Every superordinate package except of

the basic package in the DSL, realises elements and capabilities of modular simulations

as described in Sec. 6.1. The basic package provides basic capabilities to identify model

elements. It is taken o� the Karlsruhe Architecture Maintainability Prediction (KAMP) [83]

metamodel. In the remainder of this Sec. 6.3 and its subsections, the package structure

of the metamodel is presented. The DSL provides the capabilities to describe simulation

features in the SimulationFeature package. MSEs can be described by elements in the

ModularEnvironment package. Both packages contain elements to the DataRepresentation
to de�ne their data. The package contains the elements to describe data types and the

information contained in basic simulations. This description includes the capabilities to

describe operations and data. The metamodel elements to describe the independent parts

of the adaptation approach are located in the Adaptation package and its sub-packages.

The ModularSimulationAssembly package and its sub-packages provide all capabilities to

describe an assembly of modular simulation. The elements in these packages use the models

created with the prior mentioned packages. A �ne granular package structure allows the

provision of an overview of the topics in the DSL to each metamodel element. Also, the

packages con�ne highly semantically or logically coupled elements. This structure makes

extraction of the responsibilities of the packages into separate projects easier. Extraction

55

6 A Description Language for Simulation Coupling

into di�erent projects enables the reuse and separate evolution of the package contents.

For example, the packages Adaptation package could be reused in a project to provide more

exact descriptions of conversion. Also, this project could be maintained by one developer

team without possibly breaking the use in the DSL. The inclusion in other projects is a

case for its reuse.

The inspection of the package structure is provided as block-diagrams. The dependencies

between each package are marked. Two types of dependencies can describe a relation.

One dependency is the sub-typing of an element of another package (triangle-arrow with

white head). The other dependency signals the usage of an element of another package.

This using-dependency is marked by a black arrow. A bidirectional (marked with two

arrows) connection between two packages signals a mutual dependency between the

packages. If the direction is unidirectional, the target package does not need elements

of the opposite package. The structure of superordinate packages is described including

their directly contained packages in the following subsections. This description is used

to provide a general overview. The dependencies of the packages are marked. However,

in the overview, no speci�cation of the number of dependencies is provided. Packages

not containing inner packages are marked in grey. After the provision of the overview,

the packages are, and di�erent design decisions are provided. Additionally, alternative

packaging approaches are discussed when deemed useful. Only the package structure is

discussed in this section. A �ner description of the meta model is provided in Sec. 6.4 to

Sec. 6.8.6

6.3.1 Superordinate Package Structure

Fig. 6.4 shows the structure of the superordinate packages including their directly con-

tained sub-packages. Every subordinate package contains sub-typing elements of the basic
package. This shows the utility characteristics of the basic package. The independence

between the packages ModularEnvironment and SimulationFeature is visible. Their con-

tained elements directly reference (i.e. use) the content of the DataRepresentation package.

This relation is marked by the black arrows. Therefore, the content of ModularEnviron-
ment and SimulationFeature can be used independently of each other. The elements of

ModularEnvironment and SimulationFeature directly use the content of DataRepresentation.

This relationship shows a dependency of capabilities to de�ne information. This depen-

dency, however, is due to the information-centric design of the DSL. The elements of

DataRepresentation do not contain elements of other packages. Only sub-typing relations

to other packages exist. The contained elements only sub-type elements of Adaptation
and ModularSimulationAssembly. The sub-typing is related to the Adaptation package,

because the aims to adapt information. The Adaptation provides one element to be sub-

typed by all adaptable classes to realise this ability conveniently in the metamodel. This

element explains the sub-types relation. The design of the DataRepresentation shows

strong independence from all other packages. Therefore, this package could be a good

candidate for extraction into its project. This extraction would allow to maintain, evolve

and reuse this package in a more isolated fashion. Also the Adaptation package does

not have outgoing references except to the basic package. This property illustrates the

independent use of the Adaptation approach. The design of Adaptation package allows

56

6.3 Package Structure of the Metamodel

ModularEnvironment SimulationFeature

DataRepresentation

Adaptation

ModularSimulationAssembly

OperationModel

DataTypes

SimulationInformation

ManagementServices
AdapterServices

AdaptationConversion

AdaptationDescriptions

AssemblyConnections

AnnotationEnhancement

AssemblyInterface

Annotations basic

Figure 6.4: Superordinate package structure of the DSL. Packages are depicted including

the directly contained packages of the superordinate packages. Boxes con-

taining text are packages and their names. Grey box �lling signals no further

packages containment. White box �lling signals further contained packages.

extracting this package for better reuse. This package is a good candidate to reuse in other

metamodels to provide the adaptation capabilities. Also, an evolution independent of the

DSL is possible. The assembly character of the ModularSimulationAssembly package is

shown in the superordinate view. Its contained elements directly use other elements of all

four remaining packages in the DSL metamodel. Sub-type references exist to the basic and

the Adaptation package. The high coupling of the ModularSimulationAssembly package to

the other packages shows that its content is explicitly designed for the use of the content

of the other packages. The ModularSimulationAssembly package cannot be used in another

metamodel without the other packages. This property stresses the assembly capability of

this package.

In the following subsections, further dependencies between di�erent packages are dis-

cussed. For this purpose, the dependencies are described in �ner granularity. Dependencies

between directly contained elements of the superordinate package to elements of inner

packages are also marked in the �gures of the following subsections. This description is

57

6 A Description Language for Simulation Coupling

done by a connection (i.e. arrows) of the border of the package symbol to the contained

package.

6.3.2 Dependencies between the Packages SimulationFeature,
ModularEnvironment and DataRepresentation

The elements of the ModularEnvironment package and the SimulationFeature package use

the elements of the DataRepresentation package. This usage is emphasizes the information

providing nature of the MSE and simulation features. In this section, the inner-package-

dependencies of the packages are inspected. Also the inter-package-dependencies between

ModularEnvironment, SimulationFeature and DataRepresentation are discussed. Further-

more, possible alternatives are discussed. On this basis, it is explained why the current

structure is selected. The package structure of these three superordinate packages is

presented in Fig. 6.5. In this �gure, the inner- and inter-package dependencies are visible.

ModularEnvironment

SimulationFeature

DataRepresentation

OperationModel

DataTypes

SimulationInformation

ManagementServices

Annotations

Figure 6.5: Package structure of the three superordinate packages ModularEnvironment,
SimulationFeature and DataRepresentation. Dependencies between the elements

contained in a superordinate package and the contained packages are marked

by a connection between the package borders

Because SimulationFeature does not have inner packages, no inner-package dependencies

can be shown. Every package has its distinct use in the DSL. The absence of further

packages in SimulationFeature illustrates the data-centric nature of this package. The

package content is used to design simulation features. The current goal of the DSL placed

on the information contained in a simulation. Therefore, the content of SimulationFeature
only contains elements to describe a simulation together with its contained information.

This approach is also visible by inspecting the dependencies between the SimulationFeature
and DataRepresentation package. Elements of the SimulationFeature package use elements

of the DataTypes and SimulationInformation packages. The DataTypes package provides

the capability to de�ne the types of information. This capability is needed to build models

of information from data types interpretable by a computer. The SimulationInformation

58

6.3 Package Structure of the Metamodel

package contains elements to de�ne information contained in basic simulations. The

SimulationInformation uses the DataTypes to be able to describe data on the basis of data

types to be understandable by computers. The elements of the Operations package enable

the modeller to represent noti�cations which the simulations and MSEs can send and

receive. The DataTypes package has to be used because of the independent development

aspect of basic simulations. The instances of the elements contained inDataTypes have to be

speci�ed for every simulation feature to be usable. For this purpose, the SimulationFeature
package uses elements of theDataTypes package. Also, the SimulationFeature packages uses

elements of the SimulationInformation package. The elements of this package are utilised to

represent information like object classes with properties and operations with parameters.

The independent description of a MSE creates the need to specify own data types too.

Therefore, the ModularEnvironment package uses content of the DataTypes package. The

model elements directly contained in the ModularEnvironment package use elements of

the inner ManagementServices and Annotation packages. The ManagementServices package

provides elements to describe the capabilities of a MSE. The elements of the Annotation
package can be used to specify the context information required from simulation data

and noti�cations. The ModularEnvironment package as well as the ManagementServices
package use elements of the OperationModel package. This usage signals, that one package

has to create element instances and one package references it.

6.3.3 Overview of the Adaptation Package Structure

The Adaptation package contains all elements to provide the realisation of the adaptation

approach. The package structure is depicted in Fig. 6.6 It is evident that the Adaptation
package contains centralising elements in this approach. There is a bidirectional depen-

dency between the Adaptation and the AdaptationDescriptions package. This dependency

signals a de�nition of elements in one package and usage in the other. Also, the Adaptation

Adaptation

AdapterServices

AdaptationConversion

AdaptationDescriptions

Figure 6.6: Package structure of the superordinate Adaptation package

package and the AdaptationDescriptions package use elements of the AdaptationConversion
package. The purpose of these references is for one package to de�ne the elements and for

the other to use them. The Adaptation package also references the AdapterServices package.

Therefore, a connecting capability is signalled by using all three contained packages. Due

59

6 A Description Language for Simulation Coupling

to the use of all packages, the Adaptation package is self-contained and therefore can be

extracted for a separated use.

6.3.4 Package Structure of ModularSimulationAssembly

The modular simulation assembly is designed to combine all models created with the

other packages in the metamodel to a modular simulation. Therefore a high coupling

to the content of the other packages can be expected. The dependencies related to the

ModularSimulationAssembly package are shown in Fig. 6.7. The �gure shows the inner

packages and intra-package dependencies. Also, the other packages directly used by the

ModularSimulationAssembly package or its inner-packages are depicted.

ModularEnvironment

SimulationFeature

DataRepresentation

Adaptation

ModularSimulationAssembly

SimulationInformation

AssemblyInterface

AnnotationEnhancement

AssemblyConnection

Annotations
AdapterServices

InterfaceDefinition

InterfaceMapping

ComponentWiring

InterfaceConnection

ManagementServices

Figure 6.7: All packages and dependencies related to the ModularSimulationAssembly
package and its sub-packages

ModularSimulationAssembly shows high dependencies on every other package in the

DSL. These dependencies are expected due to its assembly nature. The ModularSimula-
tionAssembly package itself directly contains elements. This containment can be seen

by dependencies of the ModularSimulationAssembly package to its inner packages. The

elements of ModularSimulationAssembly package directly use elements of the ModularEn-
vironment package and SimulationFeature package. Also these packages use elements of

the ModularSimulationAssembly package themselves. This bidirectional relation provides a

hint of a bidirectional relationship of elements in the packages. This usage can be explained

by the component approach employed by the modular simulation. Also elements of the

60

6.3 Package Structure of the Metamodel

Adaptation package and AdapterServices package are used. The reasons for this relation

can be found in the explanation of the adaptation approach in Sec. 6.2. The containment

of adapter services explains the dependency of AdapterService package to components

de�ned in the ModularSimulationAssembly. Also the adaptation descriptions have to be

bound to the adapter services and the information of the modular simulation. Therefore,

the package content of Adaptation is used. The AnnotationEnhancement package is used

to enrich independent designed data and noti�cations of simulation features with context

information. The MSE de�nes the required context information. Therefore, this package

uses the elements of the Annotations package. The elements of the SimulationInformation
package is used to specify the context information for the data and noti�cations pro-

vided by basic simulations. Contextually annotated information is seen as available in the

modular simulation. The AssemblyInterface package is used to de�ne and use interfaces

to represent provided and required simulation information in the modular simulation.

The de�nition of interfaces is realised with the content of InterfaceDe�nition. The Inter-
faceDe�nition package does not contain outgoing dependencies because this de�nition

is realised independent of concrete information. The content of the InterfaceMapping
package is used to de�ne interfaces as provided or required for simulations in the modular

simulation. Also, it maps the information to the interfaces. Therefore, the mapping has

to use the content of InterfaceDe�nition to specify the applied interface. It depends on

elements of AnnotationEnhancement to map the available information of simulations in

the modular simulation to the interfaces. The content of InterfaceMapping is used in

components to de�ne their required and provided interfaces. Therefore a dependency of

the ModularSimulationAssembly to the InterfaceMapping exists. The AssemblyConnection
package provides capabilities to de�ne di�erent types of connection in the modular sim-

ulation. This includes the de�nition of connectors and connections. A connector has to

include the information what noti�cations can be sent and received from and by the MSEs.

Therefore, the AssemblyConnection has a connection to the ModularEnvironment package.

In this package collections of the operations realising the capabilities are provided. The

bidirectional dependency between ModularSimulationAssembly and AssemblyConnection
signals the use of a element connecting the modular simulation and the content of the

AssemblyConnection package. This is emphasized by missing dependencies of Modular-
SimulationAssembly to the inner packages of the AssemblyConnection package. Also the

inheritance dependencies of the inner packages to elements directly contained in As-
semblyConnection indicates this relation as well. The ComponentWiring package is used

to describe the information �ow connection between components. Thus, the possible

information �ow between components can be modelled. The de�nition of components

is done in the ModularSimulationAssembly package. Therefore, the ComponentWiring
package uses the connecting capabilities of AssemblyConnection and the ModularSimula-
tionAssembly package to model such connections. The InterfaceConnection contains the

elements to describe the connection between required- and provided-interface de�nitions.

This connection describes which required interface is satis�ed by which provided interface.

The elements of the InterfaceMapping package have to be used to specify the required

and provided interfaces. Also, the components used in the interface mapping have to be

marked. This relation also explains the dependency to the ModularSimulationAssembly
package.

61

6 A Description Language for Simulation Coupling

6.4 Basic Metamodel Classes

Model elements often require to be identi�able by the the system or users. The provision

of super classes with identi�cation capabilities (e.g. as attributes) avoids the need for

replication in each new metamodel element. Super classes also provide a way to design

reusable capabilities. Also such classes enable a centralized maintenance. These classes can

then be sub-typed by all metamodel elements that require these capabilities. The classes

for provision of identi�cation capabilities for model elements in the DSL are located in the

basic package. The package content is depicted in Fig. 6.8.

Identifier

id : EString

NamedElement

Name : EString

Entity

SemanticEntity

semantics : EString

Figure 6.8: Content of the metamodels basic package

The abstract class Identi�er contains the attribute id:EString. The value of id is set to

a unique string when a subtype of Identi�er is instantiated. This unique string allows

to uniquely identify each model element. The generation of this unique id is realized by

application of the code-line setId .(ECore .дenerateUU ID()) in the metamodels implemen-

tation source code. The abstract class NamendElement contains the attribute name:EString.

The name-string allows the provision of a human-readable self-de�ned name to a model

element. Human-de�ned names let the modellers better identify the model element than a

random string. The abstract Entity class sub-types Identi�er and NamendElement. This

sub-typing provides the model element with attributes to describe a name and a unique

identi�er. These two attributes allow the de�nition of model elements with both identi�-

able capabilities. These capability are necessary because the name cannot be restricted to

be unique. The id allows di�erentiation between model elements even when they have

the same assigned value for name. The abstract class SemanticEntity sub-types Entity.

It extends the capabilities of Entity by the attribute semantics:EString. The semantics
attribute allows to provide semantic information about an identi�able entity in a simula-

tion. The Identi�er, NamendElement and Entity classes are reused elements of the KAMP

metamodel [83]. SemanticEntity is an addition for a semantic description of the entity.

Many of the elements in the DSL-metamodel either sub-type Entity, SemanticEntity
or Identi�er. The metamodel of the DSL is presented and described in the following

section. Mentioning of these super-types would increase the text-volume of this chapter

unnecessarily. Nevertheless, knowledge of the of attributes and capabilities of a metamodel

element is necessary. Therefore, tags are used in the text to annotate the elements sub-

62

6.5 Representation of Information

typing one of the classes of the basic package. The tag [I] stands for Identi�er, [NE] for

NamedElement, [E] for Entity and [SE] for SemanticEntity

6.5 Representation of Information

The DSLs’ models of simulations and MSEs have to describe their contained information

to be usable in an implementation of a computer program. Therefore, the information

has to be represented to be understandable by programs. Two types of information are

required in the DSL. The �rst type is representing the state of a simulation (hereafter

called data). This information is exchanged and modi�ed by other simulations. The second

type enables components in the modular simulation to send and exchange noti�cations

to each other. Noti�cations do not persist over time. Therefore, when a noti�cation is

received, it cannot be its contained information cannot be reused. Simulations and MSEs

can react on the noti�cations (e.g. schedule events or execute capabilities). The underlying

types of data have to be described to be representable in a computer. The metamodel

capabilities of the DSL enabling the description of data is presented in the remainder of

this section.

6.5.1 Data types

Data types are used in the DSL to represent the information of simulations and MSEs on

the basis of types processable by a computer. Sec. 6.1 provides reasons why it is necessary

to enable an independent modelling of simulation features and MSEs. For this purpose,

every model of a simulation or MSE has to describe its used data types. Data types in the

DSL are not only understood as types like Integer or String. Data types can be semantically

enriched types on the basis of such types like Integer or String (e.g. Units like second or a

type to limit capacity of a device resource). The data types used in MSEs or simulations

can be described in the DSL by the elements of the package DataType. Its structure is

depicted in Fig. 6.9

Each data type is modelled as an element of the abstract class DataType[SE]. The

DataType instances are containments of the DataTypeContainer[SE] metamodel class.

This collected de�nition enables centralised maintenance and collected reuse of its ele-

ments. The reuse enables developers to use the model of DataTypeContainer with the

same DataType instances in di�erent models. Only the DataTypeContainer description

has to be migrated for its reuse. An example for the application of this approach is the

creation of a product line for a modular simulation. The reusability removes the necessity

to model the DataType instances again for each product. DataType is sub-classed by the

abstract class ClassicalDataType and the Unit class. The abstract ClassicalDataType class

represents data types and other containments found in programming languages. The term

containments is used for structures of data types like maps or collections. The super type

ClassicalDataType enables an easier de�nition of interleaved data types (e.g. to model a

collection of collections). To de�ne an interleaved type, the subtype of ClassicalDataType
only has reference or create instances of the ClassicalDataType class. Assumptions on the

existing basic data types of programming languages have to be made. These assumptions

63

6 A Description Language for Simulation Coupling

DataType

EnumLiteral

literalName : EString
literalValue : EInt

Range

lowerBounds :
EString = inf
upperBounds :
EString = inf

BaseDataType

stepSize : EString
initialValue : EString
primitiveDataType :
PrimitiveDataType =
BOOL

UnitTypeContainer

Unit

unitSymbol : EString

EnumType

DataTypeContainer

DataTypeCollection

CombinedDataType

PrimitiveDataType

BOOL
BYTE
INTEGER
STRING
LONG
DOUBLE
CHAR
FLOAT

ClassicalDataType

ObjectClassReferenceDataType

 objectclass : ObjectClass

DataTypeMap

[1..1] basedatatype

[0..1] range[0..*] unittypecontainer

[0..*] datatype

[1..1] classicaldatatype

[0..1] range

[0..*] enumliteral

[0..1] enumtype

[2..*] classicaldatatype

[1..1] representingDataType

[0..1] unittypecontainer [0..*] unit

[1..1] KeyType

[1..1] valueType

Figure 6.9: Classes and Relations Contained in the DataTypes Package

are necessary because not all programming languages support the same data types. An

alternative would be to identify a minimal set of data types available in all programming

languages. This identi�cation would, however, restrict the DSLs convenience. We call

the selected types "primitive data types" (hereafter called primitive types). These selected

primitive types are de�ned as literals in the PrimitiveDataType Enum element. The primi-

tive types are Byte, Integer, Boolean, Long, Float, Double, Char and String. These primitive

types are used to model BasicDataType instances. This class subtypes ClassicalDataType.
BasicDataType is used to provide the basis for the representation of all information in the

DSL. The BasicDataType contains the enum attribute primitveDataType:PrimitiveDataType
to signal its underlying primitive type. The assumption of primitive types results in the

problem that some simulations cannot use certain types. This problem exists because some

assumed primitive types are not natively build-in in speci�c programming languages. One

example is the boolean data type in the context of the programming language C. The DSL

provides capabilities to model such data types on the basis of other primitive types. One of

these capabilities is found in the description of the BasicDataType itself. The DSL provides

the ability to specify values a BaseDataType can assume. This is realized by the attributes

initialValue:EString, stepSize:Estring and the Range metamodel class. initialValue de�nes

the value a BasicDataType represents, when no value is speci�ed (e.g. 0 for Integer). The

stepSize attributes describes the value the BasicDataType assumes by an "increment by one"

64

6.5 Representation of Information

(e.g. 1 for Integer). Only textual values can be provided for the attributes initialValue and

stepSize because the primitive type of a BasicDataType cannot be directly interpreted in the

metamodel of the DSL. It is possible to use an editor for the DSL or by application of the

Object Constraint Language to restrict the content of these attributes. This would allow to

restrict the String of initialValue and stepSize to �t the selected PrimitiveDataType enum

literal. However, this approach is currently not realised.The Range element contains the

attributes of lowerBounds:EString and upperBounds:EString. The lowest and highest values

of a BasicDataType can be described with these attributes. The de�nition of initialValue,
stepSize and Range allows to describe data types not built-in in a programming language

with available primitive types. As an example the data type of Boolean in the programming

language C can be modelled. If a simulation is written in C, the modeller can model a

Boolean on the basis of an Integer. For example by creating a BaseDataType with the

name attribute set to "Boolean". The primitivDataType attribute can be set to INTEGER,

the stepSize to "1" and the initialValue to 0. Then a Range instance can be created with the

value "0" for the lowerBounds attribute and "1" for upperBounds attributes. The semantics

of BaseDataType can state: "0 stands for false, 1 for true". The restriction of values can also

be used to create semantic enriched data types based on primitive types. One example is

the restriction of values for the capacity attribute of the possible work durations for actor
resources in IntBIIS. For example a Double data type can represent the work durations

with a value range from 8.5 to 12.

Data types in programming languages are described by their representation in a com-

puter. Such information is, for example, the size in bits or their endian. The modelling

of such information would allow a more de�ned handling of each BasicDataType. This

information currently cannot be modelled in the scope of the DSL due to its architecture

based perspective. Nevertheless, such information provides ideas for further enhancement

of the DSL to enhance its application capabilities. Another type usable in programs is

the Enum data type. The Enum type enables a selection of identi�ers better readable by

humans (e.g. to present the state of a system). Enums provide textual-literals based on

values. The human can read the literals, and the computer interprets the values. The

application of Enums also allows restricting the values of data. For this purpose, the

DSL provides the capability to de�ne Enums. The Enum data type is represented by an

extra metamodel element in the DSL. Enums are modelled by the EnumType class. This

class contains instances of the EnumLiteral[I] element. Each instance of EnumLiteral
de�nes the attributes literalName:EString and a literalValue:EInt. The literalName attribute

represents the literals presented name. These literals enable an easier identi�cation and

understandability by modellers. The literalValue attribute represents the underlying value.

It must be assured by the modeller, that multiple instances of EnumLiteral never have the

same value for LiteralValue in a EnumType instance. Every EnumType has to reference one

BaseDataType to provide information about the underlying representation of its de�ned

literalValue instances. A capability of a type-system in object-oriented computer programs

is to de�ne references to other object classes. In the DSL, a reference to information of

a simulation can be used twofold. One possible use is the indirection to another object

classes can be used to provide additional information to be transferred. Another possible

use of indirection is the potential use of adaptation scenarios (e.g. to translate the data into

another format). References to other data is enabled by the DSLs ObjectClassReference-

65

6 A Description Language for Simulation Coupling

DataType class. This element references ObjectClass instances whose explanation is given

later in this chapter. Data can be structured in di�erent ways like collections or maps

in computer programs. These structures allow the storage and exchange of structured

information. The description of such structures is necessary if simulations do not want to

exchange a single but similar connected information at once. Collections represent one

of these structures. In the DSL the term collection is used for every structure providing

multiple instances of a data type at once. Example of such structures are lists or queues

but also arrays. A collection is modelled in the DSL by the DataTypeCollection metamodel

element. This element describes a collection of another ClassicalDataType by referencing

one of its instances. For example a collection of a BasicDataType. The reference of a Classi-
calDataType also enables to model collections of collections (e.g. 2D arrays). Programming

languages also provide capabilities like Structs or Tuples to structure multiple di�erent

data types. This structural approach is especially useful to de�ne a connection between

two data types. The CombinedDataType class represents a tuple-like connection of multiple

ClassicalDataTypes. This class references two or more ClassicalDataType instances for this

purpose. Maps can be used in the DSL to enable the connection between elements of two

ClassicalDataType instances. This design enables the modeller to represent maps, used in

simulations, to be represented. One semantic representation of information in simulations

are units (e.g meters or seconds). Units provide known and common semantics to their

values. These semantics provide a basis for reasoning and interpreting the values (e.g.

comparing response times). Because units are commonly used in simulations to provide

de�ned semantics, they are also represented in the DSL. Units are modelled as subclass of

DataType by the Unit class. Real-life units are assigned to a unit symbol for abbreviation

(e.g. second -> s). This symbol can be de�ned by the UnitSymbol:EString attribute. In

reality, units are expressed with numerical values. The application of units gives these

values a semantic meaning. To be represented in a computer, units have to be based on a

data type. The using of a data type is realized in the DSL by a reference to a BaseDataType
instance in the Unit class. The BaseDataType speci�es the underlying representation of a

unit (e.g. Integer or Double). For example, the unit second could be expressed as Double

(to also de�ne fractions of seconds) or Integer. The Range instance and the attributes

of BaseDataType de�ne the values the unit can assume. Some units, however, are more

limited in their range of values due to their semantics. For example, the values of "degree

Celsius" range from -273,15 to in�nity. The BaseDataType instance may have a greater

range. For example the referenced BaseDataType expresses a general purpose Integer

with a range from in�nity to in�nity. The use of one general purpose data type can be

motivated to reduce the data type instances in the model. The range of a unit can be

further speci�ed due to this potential di�erence. The restriction of the values is realized

by a containment of zero or one Range instance in the Unit class. Unit instances can be

referenced by a UnitTypeContainer[SE]. These containers facilitate concise semantics and

the connection between units. For example, the units second, minute and hour can be

collected in a duration UnitTypeContainer.

66

6.5 Representation of Information

6.5.2 Operations

The constituting parts of a modular simulation (i.e. the simulations and MSEs) have

to exchange information to create a concise behaviour. One of these exchanges is a

noti�cation of a simulation or MSE. A noti�cation does not persist over time. Thus the

noti�cation is sent and received in an instance of time. Noti�cations can be designed for

the MSE to state the desire to access its capabilities. Also, a noti�cation to a simulation

can express the occurrence of a certain event. This event can result in a reaction of that

simulation (e.g. change of state or scheduling of an event itself).

In a process-oriented simulation, this event is represented by a call to a function. The

noti�cation about an event can be used to schedule an event in a simulation in a DES. The

term of operation is used in the DSL for noti�cation. This naming is chosen because of the

similarity to starting a process by a call to an function or operation. An example in IntBIIS

is the noti�cation that an actor-step uses a software system. The use of a software system

is realised by scheduling an event to start its simulation. In a process-oriented approach,

this could be a call to a "startTraversal" operation. The DSL provides the capabilities to

describe operations by metamodel elements in the OperationModel package. The content

of the packages is depicted in Fig. 6.10 Developers have to know speci�cs about the

Operation

 returnType : DataType

OperationExecutionEffect

effect : EString

OperationParameter

optional : EBoolean =
false
 dataType : DataType

Precondition

description :
EString

Postcondition

description :
EString

Exception

message :
EString

ExceptionContainer

[0..*] precondition

[0..*] parameters

[0..*] postcondition

[0..*] operationexecutioneffect

[0..*] exception

[0..*] exception

[0..1] exceptioncontainer

Figure 6.10: Classes and relations contained in the OperationModel package

operation in an independent development scenario. This speci�c de�nition is required

because the operation can be used by a third party in an modular simulation. The speci�cs

description of an operation allows guidelines for its designed application. Therefore, the

operation has to de�ned what it expects from the callee and what can be expected of its

execution. Conditions have to be de�ned to be met to execute the operation (precondition)

for this purpose. The operation guarantees a particular state or reaction after the execution

(postconditions) if these conditions are met. It is possible that the callee can or must

provide additional information to execute the operation. The parameters of the operation

provide the additional information. For example, in Palladio, the noti�cation about the

67

6 A Description Language for Simulation Coupling

start of a software system could entail an identi�er. Only this identi�er enables Palladio

to simulate the correct system. A parameter can also be speci�ed to be optional. This

optionality allows alternative executions of an operation when additional information is

provided. It is also possible that a problem in the execution of the operation occurs. Such

a problem can be in the prior example, that the software system does not exist in Palladio.

Exceptions for problems can be stated to enable the callee to react in a de�ned way The

explicit statement of these exceptions enables the callee to react to certain erroneous

situations (e.g. to re-sent a correct id).

Operations are described in the metamodel of the DSL by the Operation[SE] class. The

information to be speci�ed in an operation are realised as containments in this class. Each

Operation contains zero or more model elements of the Preconditions and Postconditions
classes. The attribute description:EString textually describes a condition. Each Operation
can model the e�ect of an execution by an instance of OperationExecutionE�ect. This

instance enables a developer to identify the operation with the desired e�ect. The Opera-
tionExecutionE�ect can be used when the name of the operation is not descriptive enough.

The attribute e�ect:EString enables the modeller to describe the e�ect. The provision

of a textual description is necessary because the real e�ect is heavily implementation

dependent. The DSL, however, is not concerned with implementation details. Each oper-

ation can have multiple parameters to represent additional required information. Each

of those parameters contains an identifying name. To represent these parameters, the

Operation class contains zero or more instances of the OperationParameter[SE] class. The

OperationParameter class references one DataType instance to de�ne the expected type of

the parameter. By the de�nition of the type, the expected values are indirectly described

for this OperationParameter as well. A OperationParameter can be described as optional

to reduce the number of model instances. The attribute optional:EBoolean describes this

optionality. Each operation can reference zero or more exceptions to be encountered when

executed. These exceptions are represented by the Exception[SE] metamodel class. The

exception instances themselves are created in a ExceptionContainer[SE] instance. The

centralised de�nition and management of Exception instances in a ExceptionContainer
element enables a collected reuse. It is possible to export the complete ExceptionContainer
instance instead of creating or exporting every Exception anew in another model. Also,

the collection of Exception instances and referencing enables centralised maintenance. If

an Exception instance has to be changed (e.g. another description or another name for

better recognition) it only has to be done in the container. If Exception instances for every

operation would be created, the problem of replication could arise when one exception is

used in multiple operations. When this problem occurs, each replication would have to be

manually changed.

6.5.3 Representation of Information of Simulation Features

The information of simulations has to be represented in order to use them in a modular

simulation. This representation is necessary for a de�ned structure. The structure enables

a shared understanding of the relation between the information. The object-oriented

structure is selected due to its application in the �eld of simulations. Object orientation can

express entities in a simulation. The scheme is also applied by several high-level languages

68

6.5 Representation of Information

like Java, C++ and C#. Because of this design decision, the DSL describes provided and

required information of a simulation in an object-oriented structure.

The SimulationInformation package of the DSL provides the ability to model required and

available information of simulation features in an object oriented structure. Its contents

are shown in Fig. 6.11 The entry-point to describe information of simulations is the

ObjectOrientedView
SimulationData

 objectinstance :
ObjectInstance

RequiredDataEntry

ObjectClassInheritance

SimulationData

OperationExecutionEffectOnData

PureRequiredOO
Entry

ObjectClass

OperationOverride

ReferencingRequired
OOEntry

ObjectClassOperation

 precondition : Precondition
 parameters :
OperationParameter
 postcondition :
Postcondition
 returnType : DataType
 operationexecutioneffect :
OperationExecutionEffect
 exception : Exception

Data

constant :
Boolean = false
 datatype :
DataType

[0..*] objectclassoperation

[0..1] objectClassInheritance

[0..*] objectclassoperation

[0..1] objectorientedviewsimulationdata

[0..*] objectclass

[0..1] objectclassinheritance

[0..*] operationoverride

[0..*] requireddataentry

[0..1] simulationdata

[1..1] overridenOperation

[0..1] parentClass

[0..*] childClasses

[0..*] objectclassoperation

[0..1] objectclass[0..*] data

[0..*] data

[0..1] objectclass

[0..1] referencingrequiredooentry

[0..1] purerequiredooentry
[0..1] objectclass

Figure 6.11: Classes and relations contained in the SimulationInformation package

abstract class SimulationData[SE]. The abstraction of this class enables the DSL to be

enhanced by other approaches than the object-oriented structure. The current metamodel

provides an object-oriented structure by the use of the ObjectOrientedViewSimulationData
metamodel class. The de�nition of available and required information is essential to enable

simulations to exchange data. It must be known which information a simulation can

provide or requires. Also, the developer who creates a modular simulation must know

of the information required to assemble the simulation correctly. This property is of

importance because the modular simulation has to be designed to enable the ful�lment of

these requirements. This ful�lment provides the means for the simulation to execute its

model correctly.

Each simulation has to de�ne its available information to enable collaboration with

other simulations. This de�nition enables a developer to select the component to provided

information for another simulation in a modular simulation. The term "available" includes

all information a simulation is designed to be able to provide in its execution. The descrip-

tion of not only provided but all available information for one simulation scenario enables

69

6 A Description Language for Simulation Coupling

greater reuse of the model. For example, the model of Palladio is created with the DSL.

Palladio can produce information about response time and reliability of a system. Palladio

could be modelled only for the scenario of IntBIIS with the response time of the system.

However, this modelling approach would reduce the use of the independent Palladio model

only to modular simulations using response times. When the reliability is described as

available, the model could also be used in other modular simulations.

In the DSL, the information of simulations is structured around an object class according

to the object-oriented structure. Every object class contains properties and operations and

represents the entities in a simulation. The properties specify the data contained in an

entities. This data is used to de�ne their state. An object class with its data is used over a

long duration in the simulation time. All object classes with their states in a simulation

constitute the state of the entire simulation. This availability over time is opposed to

operations. Operations in an object class de�ne the possibility to notify the simulation

about an event or request a state change. The containment of an operation in an object

class provides more speci�c information about the targeted entity in a simulation. The

call of an operation can trigger events in a simulation using this entity. Nevertheless, the

DSL allows also to de�ne operations not con�ned in object classes. This de�nition enables

a general purpose application of noti�cations. The ObjectOrientedViewSimulationData
realizes a zero to many containment to the ObjectClass[SE] metaclass. Thus, zero or more

instances can be created in a simulation. Each instance contains zero or more Data[SE]

and ObjectClassOperation instances. The Data class describes data contained in an object

class. Data in a simulation is represented to provide values for a certain purpose (e.g. to

specify capacity in a device resource in IntBIIS). This capability is the reason why not only

data types are referenced in an object class. The Data class allows a semantic de�nition

of its data in the context of the ObjectClass. For this purpose, the semantics attribute of

the SemanticEntity superclass is used. Data in the DSL is based on a data type. This basis

enables the interpretation of data by a computer. The Data element references one instance

of DataType to describe the data type of the data. An ObjectClassOperation inherits from the

super-type Operation of the OperationModel package. An enhancement of the operations

OperationExecutionE�ect is provided by the sub-type of OperationExecutionE�ectOnData.

The de�nition of the specialized ObjectClassOperation and OperationExecutionE�ectOnData
enables a more precise description of the operation. This precise description entails the

e�ect on the referenced Data when the operation is called (e.g. this operation decrements

this data by one).

Particular attention has to be placed to information required by the simulation. A

requirement speci�es the need for speci�c information to correctly execute. Requirements

describe the need for speci�c data (e.g. the response times of components in IntBIIS). Also,

a requirement of an operation represents the handling of noti�cations (e.g. a component in

Palladio needs to be called to start its traversal). Therefore, each simulation has to be able

to de�ne the required information to be able to execute its simulation. This de�nition is

optional because it is possible that nothing is required. Two cases are di�erentiated for the

description of the required information. In the �rst case, the simulation already partially

describes an object class. For example, the simulation describes the troop movement

direction and the size of the troop. The speed of the troop is required to execute the

movement model. Therefore, a requirement to an existing object class exists. The required

70

6.5 Representation of Information

information has to be described in addition to the existing one. This speci�cation allows

another simulation to describe a troop entity which calculates the movement of the troop

by its size. The Second case is the de�nition of information not related to any ObjectClass
in the simulation. For example, the business process of IntBIIS only needs the response

time of a system from Palladio. No information of software system is represented in the

business process model. The abstract class RequiredDataEntry[SE] provides the capability

to describe the required information in the DSL. Zero or more instances of sub-types of

this abstract type can be created in an ObjectOrientedViewSimulationData instance. The

PureRequiredOOEntry model element realizes the requirement if no �tting ObjectClass
exist (case two). Its metaclass incorporates a containment to create one ObjectClass for

this purpose. Thus, a new ObjectClass is created. The ReferencingRequiredOOEntry realizes

the requirement of information related to an existing ObjectClass (case one). Therefore

this entry references the existing ObjectClass instance. The required information (i.e.

data and operations) are modelled as containments of the ReferencingRequiredOOEntry.

Another approach to describe available and required information would be to annotate

every class by an enum. This enum then consists of the literals "available", "required" or

"both". However, for usage in the assembly, the correctness had to be checked by the editor.

The checking in the editor should be minimised in the DSL. Thus, the prior described

structure is chosen.

6.5.4 Discussion of the Metamodels’ Object Oriented Structure Design

Each usable information is attached to an (object) class in an object-oriented structure.

This class contains properties (i.e. the data usable) and operations (i.e. functions callable to

change information or state). It is possible to represent this scheme by di�erent metamodel

design approaches in the DSL.

One approach is the one currently used. A metamodel element for each type of infor-

mation is created for this approach. All elements containing potential information are

understood as "type of information". Thus, in the DSL, these types are object classes and

their properties. Also, information types are operations with their parameters. The root

element to describe information is the object class. This element contains properties (i.e.

the data) and operation elements. For each information type, a separate metamodel class

is used. This design allows a well de�ned static structure of the object-oriented approach

to describe information. Classes in the metamodel can explicitly reference a particular

information type by their class. Collected reuse of the model elements is possible due to

the direct containment of the information (i.e. data and operations) in the object class. The

static, well-de�ned structure, however, is also a drawback of this approach when object

classes, properties and operation have to be encapsulated in the DSL. In this case, an

additional element for each information type has to provided. Also, the structure between

these elements has to be replicated. This approach currently adds at least four elements (for

object class, property, operation, operation parameter) for each object-oriented structure

representation in the metamodel. The approach also has a negative impact on maintain-

ability. This negative impact is of importance when the object-oriented structure has to be

changed or extended (e.g. by another information type). This change has to be realised for

each object-oriented structure in the metamodel.

71

6 A Description Language for Simulation Coupling

An approach to remedy these drawbacks is the de�nition of a loosely coupled descrip-

tion. Here, one "simulation information" metamodel element is used. An enum contains

literals for each information type (i.e. object class, property, operation or parameter).

The "simulation information" element contains a literal of this information type enum.

Instances of related "simulation information" are required to be together in a "simulation

information" container. This container ensures that the contained instances are only used

together. An object-oriented structure is realised by an "is-contained-in" or "contains"

relation. Instances of a corresponding metamodel element specify the containment in a

"simulation information" metamodel element. The "is-contained-in" instance references

one "simulation information" instance. This approach would provide greater �exibility and

reuse of all instances. Also, it reduces the metamodel elements for representation of the

object-oriented structure. Additionally, the enhancement of possible types of information

is easily done by the addition of another literal to the "simulation information kind" enum.

Nevertheless, this approach has several drawbacks. One of the drawbacks is possible

undesired "is-contained-in" relations. For example, an operation can be contained in a

property or a parameter in an object class. An editor has to be created to enforce the

object-oriented structure. Thus, the editor has to prevent invalid relations. This approach

would defer the correctness to the editor. The DSL is designed with the goal to reduce

the outsourcing of checks to an editor. Because in each creation of an editor for the

DSL, the correctness of checks must be ensured. Thus, besides all drawbacks of the strict

object-oriented structure approach, it is used in the DSL. Additionally, in the strict object-

oriented structure, object classes, properties, operations and parameters can inherit or

references its de�ning information. This capability is not possible in the �exible approach.

Here, common possible super classes would have to be designed to reference the desired

capabilities. Such an approach would also increase the number of checks that have to be

made by an editor. Both structures are shown in Fig. 6.12

ObjectClass

Property Operation

Parameter

*

1 1

*

1
*

SimulationInformation

SimulationInformation
Container

SimulationInformation
Type

-ObjectClass
-Property
-Operation
-Parameter

*

1

*
<<is-contained-in>>

1

1

Figure 6.12: Two possible designs of object oriented structures in the DSL. Left: A strict

de�ned structure (realised in the DSL). Right: A loosely coupled approach to

enable a object oriented structure. Arrows with black rectangles are contain-

ments. Arrows alone are references

72

6.6 Description of Simulation Features and Modular Simulation Environments

6.5.5 Object Instances

Object are instances of object classes. Object classes provide the information contained

and the object (instance) is an entity in the simulation. Therefore, each object (instance)

de�nes the state of a simulation. The ObjectInstance package provides capabilities to

describe object instances. To assign values to the information contained in ObjectClass
elements, the metamodel uses key-value-maps as elements. Each key references a Data
instance. To provide a more typed capabilities, the Data class would have to be sub-typed

(e.g. for explicit handing of the EnumType). This capability currently is only provided

by the DataSpeci�cation package in a limited way. The DSL is designed to describe the

static architectural and information focused aspects of a modular simulation. Objects are

created and deleted in the execution of simulations. This creation and deletion of objects

is determined in the execution of the simulation. Thus, objects are related to the dynamic

aspects of modular simulations. Therefore, the DSL currently does not use the contents of

the ObjectInstance and DataSpeci�cation package.

6.6 Description of Simulation Features and Modular
Simulation Environments

The metamodel elements described in Sec. 6.5 can be used to de�ne the information

contained in simulation features and MSEs. This section describes the modelling approach

of the DSL to describe simulation features and MSEs

6.6.1 Modelling of Simulation Features

Modular simulations consist of multiple simulation modules. One type contained in

a modular simulation is the simulation feature. Simulation features contain only one

simulation. However, it does not matter if this simulation consists of one single model

or a monolithic model (i.e. multiple models con�ned in one). In the DSL, one goal is

to describe simulation features independently. Therefore, it is mandatory to provide

metamodel elements that are not dependent on instances of other simulation feature,

modular simulation or MSE models. The elements to describe simulation features with the

DSL are available in the SimulationFeature package. Its content is depicted in Fig. 6.13 The

description of simulations is mainly focused on the data they require and can make available.

To explicitly state the required information is essential. Required information is understood

to be necessary for a (correct) execution of the simulation. One goal of the independent

description of simulations is to be usable in di�erent modular simulations and by di�erent

developers. The description of required and available information can be not enough

to adequately describe the semantics of the simulations. The semantics of a simulation,

however, are essential for their use in modular simulation. The semantic de�nition of an

simulation enables other developers to acquire information about the simulation. Therefore,

they can decide if the simulation provides the desired information for their modular

simulation. For this purpose, a further semantic de�nition of the simulation has to be

provided. The SimulationFeature[SE] class forms the entry-point to model a simulation

73

6 A Description Language for Simulation Coupling

SimulationFeature

 dataTypeContainer : DataTypeContainer
 basicsimulationcomponent : BasicSimulationComponent

SimulationDescription

simulationDescription : EString
 simulationdata : SimulationData

SimulationTimeInformation

simulationTimeType : TimeType =
DiscreteEvent

TimeType

DiscreteEvent
Discrete
Continuous

[1..1] simulationDescription

[1..1] simulationtimeinformation

Figure 6.13: Classes and relations contained in the SimulationFeature package

feature with the DSL. Code can be generated for each modelled simulation to be used in

an implementation. If this ability of a model is used, the implementation of the described

simulation has to be contained in a SimulationFeature instance. The data types used in

the simulation have to be individually speci�ed to enable its independent de�nition. The

de�nition of data types is used to represent the information contained in simulations to

be understandable by computers. For this purpose the SimulationFeature class de�nes a

instance of DataTypeContainer. The possible data types used by simulations are de�ned

in Sec. 6.5.1. For a reusable description of the simulation, the SimulationDescription
class is available. A de�nition of the time-scheme used in a simulation (e.g. discrete-

event simulation) supports the understanding of the simulation by other developers.

If a MSE is specialised on capabilities of DES it is possible to �nd incompatibilities of

the simulation with a continuous time scheme. This problem can be relaxed by the

experimental time adaptation, described in Sec. 6.2.1. To express the simulations time-

scheme used in the simulation, the SimulationDescription contains a containment of the

rudimentary SimulationTimeInformation class. In this class, the time-scheme is represented

as an attribute of the TimeType enum. Currently the enum includes the literalsDiscreteEvent,
DescreteTime and Continuous. The SimulationTimeInformation is currently not further

used in the DSL. Nevertheless, it provides an entry-point for enhancement of the DSL in

regards to the time-scheme (e.g. time-adaptation discussed in Sec. 6.2.1.

The SimulationDescription includes the attribute simulationDescription:EString to en-

able a textual description of the simulation. This attribute provides a human-readable

description of the simulation. Simulations are used in a modular simulation to provide

information and behaviour in cooperation with other simulations. Therefore, the avail-

able information of the simulation has to be provided to be usable. A containment of

SimulationData in the SimulationDescription provides capabilities to model the required

and available information in the simulation. Developers can choose the models for their

74

6.6 Description of Simulation Features and Modular Simulation Environments

modular simulation on the basis of the textual description and the available and required

information. The most important content of a simulation feature description in the DSL is

currently the speci�cation of required and available information. This aspect emphasises

the current information-driven focus of the DSL. This relation can be seen in Fig. 6.13.

Two of three classes in the package contain references to elements of DataRepresentation
package.

6.6.2 Modelling of Modular Simulation Environment

A MSE provides the capabilities to enable interaction between simulations. Every simula-

tion interacting through a MSE has to adhere to its de�ned scheme of interaction. The MSE

also has to include capabilities for managing aspects of simulations to provide a common

understanding of the created modular simulation. An example of this is the management of

a common understanding of time. Here, every simulation must adhere to or at least know

of a common time line If no common time-line is provided, simulations cannot update or

get values conforming in a correct order. This situation is created because this order has

to be according to the simulation time the information sent or changed. However, without

a common time line, each simulation would interpret the information according to its

time line This action could result in invalid states. Therefore, the management of some

simulation aspects is necessary to create a successful interaction between simulations. As

mentioned in Sec. 6.1, a centralised interaction-scheme is used in the DSL. The decision

originates mainly from the popularity of HLA. To be able to evaluate the approaches

of this thesis, an interaction approach (i.e. a MSE) was required. The most commonly

found and easy to access MSEs are HLA implementations. The information of simulation

is passed over a common coordinating unit, the coordinator, to facilitate communication

between simulations. Besides the MSE capabilities, the coordinator needs knowledge about

the information required and provided by the simulations. This information consists of

data and operations of other simulations. The knowledge about this information enables

the controlled modi�cation of simulation information in the modular simulation. Also,

it enables the coordinator to pass the updated information correctly to the simulations.

The time in a simulation is synchronised with those of the other simulations. A MSE is

described by the capabilities it provides. The capabilities related to one managed aspect

are de�ned in a service. In the DSL these services are called "management services". The

relation between one capability of a MSE and one management service enables its reuse

in another MSE. With this scheme, the single aspects can be reused by only extracting

and using the management service. Also, capabilities can be centrally maintained and

are easier found due to their collected de�nition. The MSE can de�ne required context

information to handle the data and operations of the simulation. The data and operations

can be processed by the coordinator only if they specify the context information of the

MSE. Context information can be, for example, the scheduling-strategy for updating the

value of data. The explicit representation of such context information in the model is

necessary. The DSL is designed to allow di�erent MSEs for the use in a modular simulation.

This design implies that the context information cannot be de�ned for simulations in their

independent description. A speci�cation of the context information in the independent

description of simulations would violate the goal of the independent design of MSEs and

75

6 A Description Language for Simulation Coupling

simulation features of the DSL. The decision to assume the �xed set of context information

of HLA was declined because of two reasons. A designed MSE in the DSL could also

contain only a subset of the functionality of HLA. Therefore, not all information would be

needed. For example, the MSE uses a scheme, where simulations directly have to enforce

the information exchange. Here, only the simulation time is coordinated by the MSE. In

this approach, the context information for the distribution of information is not usable.

Also, the use of a �xed set of context information would prohibit developers to develop

another approach besides HLA. The DSL however, is designed to provide the ability to

develop a broad range of modular simulation approaches. For example the approach

of Scerri et al. [60] uses agent-based simulation and an approach similar to HLA. The

capabilities are extended to allow shared ownership of information. Such approaches

could come with own required context information. The �exible de�nition of the context

information in the DSL also allows the description of such approaches.

The MSE_Entity[SE] class is the entry-point in the ModularSimulationEnvironment
package. This class is also used as extension point to provide di�erent kinds of MSE.

Concrete elements to model a MSE have to inherit this class. This inheritance enables an

easier enhancement of the DSLs capability to model a MSE. The metamodel components

and their relation of the ModularEnvironment package is shown in Fig. 6.14 The Coordinator

Coordinator

 managementservice :
ManagementService
 dataspecificationcontainer :
DataTypeContainer

ExceptionContainer

 exception : Exception

MSE_Entity

 msecomponent
: MSEComponent

AnnotationContainer

 annotation : Annotation

AnnotationInterface

informationType :
AnnotatableInformation =
ObjectClass
 annotation : Annotation

MSEServiceInterface

 managementservicefunction :
ManagementServiceFunction

[0..1] coordinator

[0..*] annotationcontainer
[0..1] coordinator

[0..*] annotationinterface

[0..1] coordinator

[0..*] mseserviceinterface

[0..*] exceptioncontainer

Figure 6.14: Classes and relations contained in the ModularEnvironment package

metamodel class is used to de�ne a MSE with centralised capabilities. The Coordinator

76

6.6 Description of Simulation Features and Modular Simulation Environments

class itself is mainly used to provide a collected de�nition of the MSE capabilities. The

following subsections describe the content of the MSE and the Coordinator class.

6.6.2.1 Definition of Context Information

The context information required for processing information provided by simulations

is called annotation in the DSL. The Coordinator contains zero or more AnnotationCon-
tainer[SE] instances. Each container contains instances of the Annotation[SE] class. Both

metamodel elements are located in the Annotations package. Its content is depicted in

Fig. 6.15. The containment in the AnnotationContainer[SE] instances facilitates central

WritableAnnotation

contentRestriction
Description :
EString

SelectableAnnotation

WritableAnnotatio
nSetter

valueContent :
EString

MultipleSettable
Annotation

ExclusiveSettable
Annotation

Annotation

OnlyusedInDefintion :
EBoolean = true

MultipleSelection
AnnotationSetter

ExclusiveSelection
AnnotationSetter

Combined
Annotation

AnnotationSetter

Annotation
Value

Combined
Annotation
Setter

AnnotationInterface

informationType :
AnnotatableInformation
= ObjectClass
 coordinator :
Coordinator

AnnotationContai
ner

 coordinator :
Coordinator

AnnotatableInformation

ObjectClass
Data
Operation
OperationParameter

[1..1] writableannotation

[0..*] selectedValues

[1..1] multiplesettableannotation
[0..1] selectedValue[1..1] exclusivesettableannotation

[2..*] annotation

[0..1] selectableannotation

[0..*] annotationvalue

[2..*] annotationsetter

[1..1] combinedannotation

[0..*] annotation[0..*] annotation

[0..1] annotationcontainer

Figure 6.15: Classes and relations contained in the Annotations package

management of multiple instances of the Annotation class. Also, it enables reuse and pro-

vides better maintainability. These bene�ts are provided because there is only a centralised

location for the de�nition of Annotation instances.

It is possible to de�ne di�erent sets of Annotation instances. These sets specify the con-

text information to be provided by information types. The separation between information

77

6 A Description Language for Simulation Coupling

types allows a de�nition of the meaning of context information in the MSE. For example,

an object class itself cannot be updated in any way in the scheme of the current provided

DSLs information structure. The update of an object class is realised by updating the at-

tributes. Therefore, there is no meaning in de�ning an update-policy for the object classes

itself. The sets of Annotation instances for information types are de�ned by instances of

the AnnotationInterface[SE] class. Each instance contains the informationType attribute.

The values of informationType are literals of the AnnotatableInformationTypes enum. The

current literals of the enum are "ObjectClass", "Data", "Operation" and "OperationParame-

ter". This approach enables fewer metamodel classes than the creation of a metamodel

class for each information type. In an enhancement of the DSL, information types can

be added only by a new literal in the AnnotatableInformationTypes enum. This design

contradicts the decision made for the object-oriented structures discussed in Sec. 6.5.4.

However, the annotation information can only be used with the same model elements.

Contrary to this approach, the structure of object orientation can be used in di�erent

locations of the metamodel. Therefore structural integrity has to be checked more often on

di�erent elements than that of the AnnotationInterface. The AnnotationInterface references

one or more Annotation instances con�ned in a AnnotationContainer. These references

realise the assertion of Annotation instances each information type has to de�ne.

As stated, Annotation instances are used to de�ne context information required to

process information. In a modular simulation, the required information of a simulation

only uses the information another simulation provides. In the DSL the providing simulation

de�nes the available information in the modular simulation. The requiring simulation only

uses the information. Some context information has only to be provided in the de�nition

of information. An example is the strategy to update the values of properties of an object

class when they are changed. On the other hand, some context information can be used

in the request of the information as well. The de�nition of an information may state if a

certain context information value is allowed. For example, if other simulations can own

the de�ned information. The requiring simulation itself can state with the same context

values if this capability is assumed or not. For example, the requiring simulation speci�es

a potential request to own the information. To model this capability of an Annotation,

the attribute OnlyUsedInDe�nition:EBoolean is provided. The value "true" models if the

de�nition of this Annotation is allowed by de�nitions of requirements. Therefore, when

the attribute is set to true for a Annotation instance, it can be ignored when modelling

required information.

Each sub-type of Annotation, de�nes the kind of value an Annotation can assume. To

assign a the speci�c value, the abstract class AnnotationSetter with its specialised sub-class

is available. For each concrete sub-class of Annotation, a sub-class of AnnotationSetter exists.

This structure is chosen due to the di�erent values and cardinalities of selectable values a

subtype of Annotation represents. A more generic structure would limit the possibilities

to describe and later set values. A way to counter this approach would be to provide an

editor containing the logic to express the current structure. This, however, is not desired

in the conception of the DSL. The subclasses of Annotation and their capabilities are:

• The WritableAnnotation provides the capability to provide a free-text-writeable

Annotation. The content of the text �eld is restricted by a textually description

78

6.6 Description of Simulation Features and Modular Simulation Environments

in the contentRestrictionDescription:EString attribute. The WritableAnnotationSet-
ter references one WritableAnnotation and speci�es the content by the attribute

valueContent:EString.

• The abstract SelectableAnnotations provides an element to de�ne Annotations with

values selectable by the corresponding AnnotationSetter. These values are de�ned

by one or more contained AnnotationValues[SE]. The value is represented by the

name attribute. The classes MultipleSettableAnnotation and ExclusiveSettableAnnota-
tion sub-type SelectableAnnotations. These sub-types di�erentiate between di�erent

cardinalities of annotationValue the corresponding AnnotationSetter sub-classes can

reference. For the MultipleSettableAddtion, the corresponding MultipleSelectionAnno-
tationSetter references one MultipleSettableAnnotation and one or more of its de�ned

AnnotationValue. Parallel to this, the ExclusiveSelectionAnnotationSetter references

one ExclusiveSettableAnnotation and zero or one AnnotationValues. The separate

de�nition of these metamodel elements allows to explicitly model the cardinalities

the setters can set for each SelectableAnnotation subclass.

• The CombinedAnnotation subtype provides the ability to contextually describe a con-

nection between two or more Annotation instances by a referencing relation. Parallel

to this approach, the CombinedAnnotationSetter contains two or more references

to AnnotationSetter. This allows to de�ne connected annotations. A connection is

necessary if one annotation is related to another. For example if one annotation pro-

vides a "condition" value, a WritableAnnotation can be used to specify the condition.

The CombinedAnnotation allows a speci�cation of this relation.

6.6.2.2 Representation of MSE Capabilities by ManagementServices

The functionality and internal processes of a coordinator itself are contained in a Manage-
mentService[SE] class. For example, the capability to manage and coordinate simulation

time is con�ned in a ManagementService. This approach enables a reusable design of the

ManagementService. Each ManagementService can be extracted of the MSE representation

and reused in another to provide certain capabilities. Also, it allows the more concrete

de�nition of the capability represented by a ManagementService itself. A ManagementSer-
vice de�nes noti�cations to provide access and interaction between simulations and the

MSE. As stated in Sec. 6.5.2, these noti�cations are called operation in the DSL. Each

management service therefore de�nes operations responsible for realising the access to

represented capabilities. The entry-point for modelling of a management service is the

ManagementService class in the ManagementServices package. Its contents is shown in

Fig. 6.16. As it can be seen in this �gure, a ManagementService is mainly de�ned by its

purpose and the provided operations. This way of modelling results due to the strong

implementation dependency of ManagementServices. The implementation of functionality

of the MSE is done in each ManagementService.
Each ManagementService contains zero or more instances of ManagementServiceSup-

portEntitiy. The attribute purpose:EString of the MSE describes the supporting entities

functionality. No further modelling is possible, due to their strong implementation speci�c

context. However, the knowledge of such entities is important when another developer

79

6 A Description Language for Simulation Coupling

ManagementService

purpose : EString
 msefacility : Coordinator

ManagementServiceSupportEntity

purpose : EString

ManagementServiceFunction

printableDescription : EString
 precondition : Precondition
 parameters : OperationParameter
 postcondition : Postcondition
 returnType : DataType
 operationexecutioneffect : OperationExecutionEffect
 exception : Exception

Annotation

OnlyusedInDefintion :
EBoolean = true
 annotationcontainer :
AnnotationContainer

MSEServiceInterface

 coordinator :
Coordinator

[0..*] managementservice

[0..*] managementservicesupportentity

[0..1] managementservice

[0..*] managementservicefunction[0..*] annotation
[0..*] managementservicefunction

Figure 6.16: Classes and relations contained in the ManagementService package

reuses the ManagementService model. This developer can be a third-party developer not

entirely familiar with the implementation details of the ManagementService. The modeller

can provide guidelines for the needed implementation content by the ManagementService-
SupportEntitiy. A ManagementService de�nes its available functionality by the containment

of zero or more ManagementServiceFunction instances. They enhance the Operation class

and also supply the printableDescription:EString attribute. The modeller can describe the

purpose of the functionality of each operation instance in more detail with this attribute.

Each ManagementServiceFunction can be seen in the implementation as one function in

the code. Multiple management services can interact to provide a certain capability. This

relation can be modelled by the self-reference contained in the ManagementService class.

A ManagementService needs certain context information of information to provide their

capabilities correctly. For example, the context information specifying how to update

data in relation to simulation time is needed in the management service. This context

can be related to the common simulation time of the time management service. The

ManagementService class contains a zero or more reference relation to Annotation to signal

their requirement. The referenced Annotation instances de�ne what context information

is required in the case of the reuse of the ManagementService.

80

6.7 Metamodel of the Adaptation Approach

6.6.2.3 Interfaces for Interaction with the MSE

The ManagementService instances of a MSE model de�ne the capabilities a MSE possesses.

Also, the operations to use these capabilities are de�ned. In the DSL, the provision of

capabilities is seen only as de�nitions of operation. This design enables the reuse and

exchange of di�erent ManagementService instances equal operations. The operations are

collected in zero or more MSEServiceInterface instances to declare them to be usable in

the interaction between simulations and MSEs. These instances reference zero or more

ManagementServiceFunction instances. With the de�nition of multiple MSEServiceInter-
face instances the operations to represent a capability of one ManagementService can be

collected. Thus, the ManagementService and MSEServiceInterface can be reused together.

Additionally, the de�ned functionality can be used for di�erent purposes. A purpose can

entail operations to be called by simulations to interact with the coordinator (e.g. request-

ing a certain capability). Also, interfaces can be de�ned to be realised by simulations to

be called by the coordinator. This realisation enables the coordinator to send updates

to the simulations. This avoids the need for simulations to "poll" functionalities of the

coordinator for updates. Exception instances are used to de�ne information of possible

errors that could happen in the execution of the capabilities of a MSE. The callee of the

operation can then directly react to an exception. Instances of ExceptionContainer[SE] can

be created to describe possible exceptions in the MSE. In an ExceptionContainer, multiple

Exception instances can be de�ned. These exceptions can be referenced by Operation
instances. The centralisation of exceptions enables better maintainability of the exceptions

themselves. If each operation would de�ne its contained exceptions, the same instance

could not be reused. Thus, when for example the exception name changes, each instance

would have to be changed manually. With the centralised approach, the Exception instance

in the ExceptionContainer has to be changed.

6.7 Metamodel of the Adaptation Approach

The necessity and conceptual realisation of the adaptation approach is described in Sec. 6.2.

This section describes the realisation of the adaptation approach in the DSL. The decisions

behind certain aspects are also discussed. The DSL incorporates two concepts to achieve an

independent description of the adaptation approach. One concept are abstract adaptation

description describing what information to adapt and how to adapt it. The other concept

are the adapter services executing the adaptation by the use of the adaptation descriptions.

These two parts are further described in this section.

6.7.1 Adapter Services

One concept of the adaptation approach in the DSL is the executing unit of adaptations

- the adapter service. The description of this unit is realized in the DSL by the abstract

AdapterService[E] class. The instances of AdapterService represent the executing entities

of the adaptation approach. This class is located in the AdapterServices package in the

Adaptation package. Its content is displayed in Fig. 6.17 AdapterService instances are

located in the components containing the simulations or coordinators of the modular

81

6 A Description Language for Simulation Coupling

DescriptiveAdapter SemanticAdapter

DataMigrationAdapterWorkloadAdapter

StructuralAdapter

TimeAdapter FilterAdapter

AdapterService

Figure 6.17: Classes and relations contained in the AdapterServices package

simulation. Not placing of the adapter services in the independent models of simulation

features or MSEs allows minimising the dependencies between the independent designable

models and the modular simulation. Another possible approach is the de�nition of the

AdapterService as a separate tool in the modular simulation. Thus, it has to require all data

provided by all simulations. This approach is applied by Neema [64]. The intention of the

tool approach is to avoid modi�cation of the used RTI. Its application to the DSL requires

knowledge of the modeller about all simulations used in the assembly. This prerequisite,

however, is contradictory to the notion of independent development of simulations and

tools. However, an extension of the DSL is possible to provide individual description

structures for tools.

The DSL provides di�erent sub-types of the AdapterService metamodel element. These

sub-types are used to express di�erent topics of adaptation like declarative and structural

adaptations as mentioned in Sec. 6.2.1. For each type, a corresponding metamodel subclass

of AdapterService. The available classes are FilterAdapter, TimeAdapter, DescriptiveAdapter,
SemanticAdapter and StructuralAdapter. Currently, there is no di�erence in the metamodel

elements of the AdapterService sub-types. Nevertheless these elements are provided to

provide further extension points for the adaptation approach in the DSL.

6.7.2 Adaptation Descriptions

The other concept of the adaptation approach is the description to identify the information

to adapt. Additionally, it must be speci�ed how the AdapterService has to adapt the infor-

mation. An AdaptationDe�nitionRepository[SE] instance contains zero or more instances

of AdaptationDescription. The AdaptationDe�nitionRepository class is directly contained

in the Adaptation package. Its content is depicted in Fig. 6.18. The collection of related

AdaptationDescription instances in a AdaptationDe�nitionRepository facilitates reuse of

related adaptation descriptions. The AdaptationDe�nitionRepository can be reused as one

model element if the descriptions are required in another modular simulation assembly.

For example, it can be expected, that the adaptation of SI-Units is required in more than

one simulation. The description of adaptations for SI-Units has only be modelled once in a

82

6.7 Metamodel of the Adaptation Approach

DataMarker

AdaptableAdaptationDefinitionRepository

AdaptationDescription

subProperty : EString

AdaptationConversion

textualConversionDescription
: EString

AdapterDescriptio
nAttachment

 adapterservice :
AdapterService

AdaptationMarker
Mapping

[0..1] adaptationdefinitionrepository

[0..*] adaptationconversion

[0..1] adaptationdefinitionrepository

[0..*] adaptationdescription[0..*] datamarker

[0..1] adaptationdefinitionrepository

[1..1] adaptationdescription

[1..1] datamarker

[1..*] adaptable

[0..1] adapterdescriptionattachment

[1..*] adaptationmarkermapping

[0..1] adaptationdefinitionrepository

Figure 6.18: Classes and relations directly contained in the Adaptation package

AdaptationDe�nitionRepository. This repository can then be migrated to models of other

modular simulations

To enable the independent description of adaptations, the abstract class DataMarker[SE]

is used. The DataMarker abstractly de�nes information to be adapted when encoun-

tered. These markers are referenced in AdaptationDescription instances. The DataMarker
instances abstractly represent the information de�ned in a description. Zero or more

instances of DataMarker are contained in an AdaptationDe�nitionRepository. This enables

the reuse of DataMarker instances in multiple AdaptationDescriptions without modelling

them multiple times. Also better maintainability of DataMarker instances can be expected.

If AdaptationDescription instances would de�ne own DataMarker, it is possible that mul-

tiple instances would relate to the same information. If this information is renamed, all

related AdaptationDescription instances have to be scanned. In a centralised organisation,

only the single DataMarker in the AdaptationDe�nitionRepository has to be changed.

The DSL provides the abstract class AdaptationConversion[SE] to enable the description

of the execution of an adaptation. This description is used when data corresponding to a

DataMarker instance of an AdaptationDescription is found. The elements for this purpose

are contained in the AdaptationConversion package. Its content is shown in Fig. 6.19.

Instances of this class are contained in AdaptationDe�nitionRepository instances. This

enables reuse in multiple AdaptationDescription instances of the same repository. This

approach reduces the number of AdaptationConversion instances because there can be

multiple AdaptationDescription models using the same adaptation process. Also, these

83

6 A Description Language for Simulation Coupling

AdaptationConversion

textualConversionDescription : EString
 adaptationdefinitionrepository :
AdaptationDefinitionRepository

MathematicalConv
ersion

term : EString
invertible :
Boolean = true

TransformationalConversionFilteringConversion

CollectionFilteri...

DirectSourceCode
Conversion

code : EString

Figure 6.19: Classes and relations contained in the AdaptationConversion package

conversions can be reused due to their containment in the AdaptationDe�nitionRepository
in other models. For example, the AdaptationConversion describing the relabelling of a

name can be reused in descriptions to translate languages and unit names. This approach

also enables the reuse of implementation code in the AdaptationConversion. The one-time

de�nition also enhances maintainability like with DataMarker. The textualConversionDe-
scription:EString describes textually what the conversion is supposed to do. In general,

no better model of the adaptation process can be given in the DSL. This problem exists

because the execution of an adaptation is heavily implementation-dependent.

The sub-classes of AdaptationConversion di�erentiate between several kinds of adapta-

tion processes. This design provides a guideline for di�erent kinds of conversions. Each

sub-class provides additional information required for the kind of adaptation process.

The MatematicalConversion speci�es how to convert values by the de�nition of a term.

The term is de�ned as the attribute term:EString. The modelling of mathematical terms

is not deemed of priority in the current DSL. Because of this, the term is only a textual

description of the formulas (e.g."+5"). The invertible:Boolean attribute signals if the term

can be inverted to convert the target value to the destined by the same MathematicalCon-
version (e.g. +5 is invertible with -5). This design facilitates broader reuse because one

description can be used for two elements. Currently no mathematical system is supplied.

However, the Adaptation metamodel could be enhanced for this support in the future. The

TransformationalConversion is a general purpose conversion and can only be described. Its

design purpose is to contain speci�c functions like the exchange of strings. An example

description of such a conversion is "Transform "name"-value of source to "name"-value of

the target. The ReferenceUsingConversion is a special kind of conversion and references

other information. This conversion is used to request additional information to transform

the information. This conversion models additional data requirements for the conversion

described in thetextualConversionDescription:EString attribute.

All adaptation relations between data can be modelled as one-to-one relations. Thus,

every two data instances are adapted according to a certain adaptation conversion. How-

ever, the number of one-to-one description increases further when more than two context

84

6.7 Metamodel of the Adaptation Approach

related instances of data exist. For example, when one name (e.g. unit second) is used

in multiple simulations with di�erent languages. If two languages are available, one or

two descriptions are required. The number of descriptions between two information

depends on whether the conversion is "invertible" (i.e. usable in both directions) or not.

When three information has to be adapted, 3 or 6 adaptations have to be speci�ed. Let

n be the number of adapted related information, then
(n∗(n−1))

2
(invertible) or n ∗ (n − 1)

(not invertible) descriptions have to be modelled. This approach creates an increasing

modelling complexity. An increased complexity inhibits failures in the description of the

adaptation (e.g. the modeller forgets one relation). The DSL provides special structures to

express certain relations with a reduced number of relations to counter this complexity.

These structures are provided by the sub-classes of the abstract AdaptationDescription.

The use of the structures reduce the number of AdaptationDescription instances (e.g. by

using multiple DataMarker in one model). The AdaptationDescription class along with its

subclasses is contained in the AdaptationDescriptions package. Its content is displayed in

Fig. 6.20.

AllToAllAdaptation

 datamarker :
DataMarker
 adaptationconversion :
AdaptationConversion

LinkedAdaptationSingleAdaptation

 adaptationconversion :
AdaptationConversion
 datamarker : DataMarker

OneMarkerToManyAdaptation

 datamarker : DataMarker
 adaptationconversion :
AdaptationConversion

DerivedElement

 datamarker : DataMarker
 adaptationconversion :
AdaptationConversion

Baseconnected
Adaptation

 datamarker :
DataMarker

LinkedAdaptation
Element

 linkedElement :
DataMarker

LinkedAdaptationElementLink

 adaptationconversion :
AdaptationConversion

AdaptationDescription

subProperty : EString
 adaptationdefinitionrepository :
AdaptationDefinitionRepository

[0..*] linkedadaptationelement

[1..*] lowestElement
[1..1] highestElement

[0..1] previousLink
[1..1] linkedadaptationelement

[0..*] nextLink

[0..*] derivedelement

[0..1] baseconnectedadaptation

Figure 6.20: Classes and relations directly contained in the ModularEnvironment package

The most basic AdaptationDescription is the OneToOneDescription. This description

should only be used when the other structures cannot be applied in a meaningful way. The

85

6 A Description Language for Simulation Coupling

OneToOneDescription represents only two contextually related information to be adapted in

one another. For this purpose, the OneToOneDescription instance references two instances

of DataMarker. Also this description speci�es how to execute the adaptation by refer-

encing one AdaptationConversion. Another structure targets the adaptation of multiple

information by the same process. An example is the already stated example of di�erent

languages. The words in the languages are known, and they have only to be translated. If

all information is prior known, only the translation and the names have to be speci�ed.

This can be modelled by the AllToAllAdaptation metamodel element. In this element,

two or more DataMarker instances are referenced. Also one AdaptationConversion has

to be referenced to describe how to adapt the information. When data corresponding to

two of the DataMarker instances in this description are encountered, the data is adapted

as described in the AdaptationConversion instance. For example, the AllToAllAdaptation
can be used for the "Hello" example of Neema [64]. Here, the names "Hello", "Bonjour"

and "Namaste" have to be adapted into one another. In the AllToAllAdaptation the Data-
Marker instances with the corresponding values of the name:EString attribute have to be

references. Then a "name-exchange" AdaptationConversion is supplied. One problem of

the thought behind the AllToAllAdaptation is the possible quantity of referenced Data-
Marker instances. Also, the information described by instances must be known in advance

to create all used DataMarker instances. The OneMarkerToManyAdaptation element is

provided by the DSL to relax these conditions. This element provides the capability to

reference one DataMarker and one AdaptationConversion. This description is provided to

describe information like the AllToAllAdaptation when the DataMarker instances cannot

be foreseen. As for example, multiple simulations describe an integer with their own data

types. Thus, there are "XInt", "YInt" and "ZInt". The "text" for "X", "Y" and "Z" cannot be

foreseen. The OneMarkerToManyAdaptation speci�es only one DataMarker "Int" because

of this unforeseeable elements. As mentioned in Sec. 6.2, the DataMarker are connected in

the assembly of modular simulations to the data. Therefore all data can then be connected

to the single DataMarker. This OneMarkerToManyAdaptation seems to de�ne a more con-

venient application than AllToAllAdaptation. However, the AllToAllAdaptation provides a

more exact description of the adaptation data. This can be easier understood in the case of

a reuse scenario. Another identi�ed structure originates from the de�nition of SI-Units as

described in Sec. 6.2. SI-Units are de�ned by a base quantity (e.g. for time: second). Every

other related quantity is derived of this base quantity. This structure is represented by the

BaseconnectedAdaptation element. A instance of this element references one DataMarker
as base marker. Also the BaseconnectedAdaptation contains zero or more instances of De-
rivedElement. Each DerivedElement references a AdaptationConversion and one DataMarker.
To create a SI-Unit description for the time related quantities, a BaseconnectedAdapta-
tion is required. Exemplary, the adaptation of the units second, minute and hour shall

be described. Therefore, three DataMarker instances with the corresponding names are

created. A created BaseconnectedAdaptation instance references the "second" DataMarker.
Two DerivedElement instances are created for minute and hour. Each referencing one

of both DataMarker instances. Each DerivedElement instance additionally references a

MathematicalConversion which signals the calculation (*60 in minutes and *3600 in hours).

The last structure provided by the DSL is the LinkedAdaptation. This description contains

LinkedAdaptationElement instances and combines them by LinkedAdaptationElementLink

86

6.8 Assembly of Modular Simulations

to a "tree"-like structure. Each LinkedAdaptationElement de�nes a zero or one previousLink
containment to a LinkedAdaptationElementLink. Also a zero to many nextLink references

to LinkedAdaptationElementLink is de�ned. The LinkedAdaptationElementLink provides

an AdaptationConversion and references a LinkedAdaptationElement. The DataMarker in a

LinkedAdaptationElement marks the information of an element. The LinkedAdaptation
enables another kind to describe relations. To de�ne the �rst and last LinkedAdaptationEle-
ment instances in the tree (i.e. the leafs and the root), the LinkedAdaptation references

LinkedAdaptationElement instances. In the proposed adaptation process in Sec. 6.2.2, this

structure can be used to scan the elements on a more de�ned and e�cient way.

6.8 Assembly of Modular Simulations

Modular simulations are used to create new simulations and behaviours out of existing

simulations. Therefore, the used modules have to be connected. A MSE describes the

capabilities to enable an interaction between the simulations. In the current DSLs de�nition

of modular simulation assembly, the designed simulations and MSEs are combined to

describe a modular simulation. Also models of other modular simulations can be used

to facilitate a hierarchical composition. Adaptation is used to resolve incompatibilities

between information of the independent designed elements of modular simulation.

This section describes the capabilities of the DSL to describe the assembly of modular

simulations. First, the necessary elements to describe a single assembly are presented.

Then, the capabilities to de�ne the information used in the modular simulation is described.

This de�nition includes the enhancement of information with MSE speci�c annotations.

The enhanced information is mapped to interface to be described as provided or required

by a simulation. This description is realised by the use of interfaces abstractly describing

information. Also, the mapping of the abstract AdaptationDescription instances to the

information are explained. To describe how the simulations and MSEs are connected,

the model elements to connect required and provided information is de�ned. Also, the

elements to describe the communication between the simulations and coordinators are

provided.

6.8.1 Structure of Assembled Modular Simulation

Modular simulations are composed of independently designed simulation features and

other modular simulations. The MSEs provide the capabilities to enable communication

and information exchange between simulations. The coordinator is currently the only

possible realisation for a MSE.

In the DSL, the abstract Assembly[SE] class is used as entry point to de�ne assemblies.

It is contained in the ModularSimulationAssembly package. The content of this package is

shown in Fig. 6.21. The Assembly class provides the possibility to provide other assembly

approaches in the DSL. For example, the DSL could be extended in the future by the

ability to assembly di�erent MSE models to one large MSE. The only existing sub-class of

Assembly is currently the SimulationAssembly class. Every modular simulation is described

by this class class. AssembableComponent[SE] encapsulates a simulation or MSE in the

87

6 A Description Language for Simulation Coupling

SimulationAssembly

 interfacemapping :
InterfaceMapping

Assembly

 connection : Connection

SimulationFeatureComponent

 simmodule :
SimulationFeature

AssembableComponent

 componentconnector :
ComponentConnector
 adapterservice : AdapterService
 adapterdescriptionattachment :
AdapterDescriptionAttachment

AssembledSimulationComponentMSEComponent

 mse_entity : MSE_Entity

SimulationComponent

 interfacemapping
: InterfaceMapping

AnnotationEnhancedInformation

[0..1] simulationcomponent

[0..1] annotationenhancedinformation

[1..1] encapsulatedSimulationAssembly

[0..1] assembledsimulationcomponent

[1..1] simulationassembly

[0..*] assembablecomponent

Figure 6.21: Classes and relations directly contained in the ModularSimulationAssembly
package

modular simulation in a component (i.e. independent designed simulations, coordinator

or modular simulations). With this encapsulation, the independently designed models do

not have to be changed. The components enable the modular simulation assembly speci�c

elements to be separated from the independent elements.

The simulation features, coordinators and modular simulations have to provide di�erent

de�nitions to be coupled in a modular simulation. Therefore, three di�erent subtypes of

AssembableComponent are provided. Each component references one of the corresponding

models used in a modular simulation. These components are

• SimulationFeatureComponent: Provided for the use of independent modelled basic

simulations. This component references an instance of SimulationFeature

• MSEComponent: References a MSE_Entity. This enables the use of an MSE to provide

functionality for simulation information exchange, coordination and communication

• AssembledSimulationComponent: encapsulates a SimulationAssembly instance through

a reference. This elements enables the use of modular simulations in the assembly

To de�ne provided and required interfaces, the AssembledSimulationComponent and

SimulationFeatureComponent sub-type the abstract SimulationComponent. The abstract

class itself subtypes AssembableComponent. Thus, both SimulationComponent subtypes

only indirectly inherit from AssembableComponent. Because AssembledSimulationCompo-
nent and SimulationFeatureComponent both subtype SimulationComponent, they cannot

be di�erentiated in the use of a modular simulation. This design enables the modeller to

either use simulation features or modular simulations. Because of this design the models

of the simulations are then exchangeable.

88

6.8 Assembly of Modular Simulations

The encapsulation of components enforces the reuse of the independent designed parts

with di�erent assembly speci�c properties. The bene�t of this design is stressed by the

ability to use the same simulation with di�erent MSEs. As described in Sec. 6.6.2.1, every

MSE is able to de�ne own annotations. Information types (e.g. object class or properties)

have to specify values for annotations corresponding to a coordinator models AnnotationIn-
terface instances. Information not providing values for each annotation cannot be handled

by the MSE. If the annotations would be described in a SimulationFeature model instance,

other MSEs could not be used with it. The exchange of assembly components, however, is

a substantial property of the DSL. Thus, only the encapsulating AssembableComponent
model has to be changed. The encapsulated SimulationFeature can be designed indepen-

dently of any coordinator through this approach. Another bene�t of the encapsulation in

components is the possible further enhancements of the DSL.

The AdaptationDescription have to be linked to the information used in the Simula-
tionAssembly instance and adapter services. This is realised by "attachments" to adapter

services contained in the components. Another important factor is to describe the re-

quired and provided information in a modular simulation. This description enables the

exchange of simulation components. The de�nition of required and provided information

also enables an exact speci�cation of the information exchange between simulations. The

connections used in a modular simulation have to be de�ned. These connection de�ne the

information �ow between the components. These mentioned topics are described in the

remainder of this section.

6.8.2 Annotation of Information with Context Information

The available and required information of a simulation have to be explicitly speci�ed as

used in a modular simulation. As stated in Sec. 6.6.2.1, the MSE needs certain contextual

information to process information. This is de�ned by Annotation instances of the MSEs.

All information exchanged in the assembled simulation must be enhanced with these

attachments and their values to be processable. Thus, the values for annotations have to

be modelled for information used in the modular simulation. In the DSL this is done for

each SimulationComponent. The DSL provides an encapsulating model element for each

information type existing in a simulation and de�ned in the MSE. This encapsulation en-

ables the separation of modular simulation assembly speci�c information and independent

designed information. An object-oriented structure as described in Sec. 6.5.3 is created.

The replication of the object-oriented structure is caused by the design decision of the

DSL stated in Sec. 6.5.4.

Every information has to be annotated with the values of Annotation instances of the

MSE. In the DSL, the assertion of the values of Annotation instances to information

is realised by the AnnotationSetter metamodel elements described in Sec. 6.6.2.1. The

abstract class AnnotationEnhanced[E] provides a reusable element for the selection of

AnnotationValue instances for information used in the modular simulation. It is located

in the AnnotationEnhancement package. Its contained metamodel classes are depicted in

Fig. 6.22. This class provides the capabilities to create instances of AnnotationSetter. Every

setter references one Annotation instance. AnnotationSetter enables the modeller to specify

the values according to the sub-type of the Annotation. The AnnotationInterface of the

89

6 A Description Language for Simulation Coupling

AnnotatedObjectClass

 objectclass : ObjectClass

AnnotatedOperation

 objectclassoperation :
ObjectClassOperation

OverriddenAnnotationEnhanced

AnnotationEnhanced

 annotationsetter : AnnotationSetter
 annotationinterface :
AnnotationInterface

OOAnnotationEnhancedInformation

AnnotationEnhancedInformation

 simulationcomponent :
SimulationComponent

AnnotatedData

 data : Data

AnnotatedParameter

 operationparameter :
OperationParameter

[1..1] AnnotationEnhanced

[0..*] additionenchancedobjectclass

[0..*] additionenhancedoperation[0..*] additionenhanceddata

[0..*] annotatedparameter

Figure 6.22: Classes and relations contained in the AnnotationEnhancement package

applied MSE has to be referenced by each AnnotationEnhanced. This reference enables

an editor to support the selection of the correct interface for an information type (e.g.

ObjectClass or Data). Also an editor could support the modeller that AnnotationSetter
instances for all Annotation instances in the interface are de�ned.

Four metamodel classes exist to reproduce the object oriented structure to encapsulate

the independent designed information. These classes correspond to the object oriented

structure described in Sec. 6.5.3. These four classes are AnnotatedObjectClass, Anno-
tatedData, AnnotatedOperation and AnnotatedParameter. All four classes sub-type the

AnnotationEnhanced class to gain the capabilities to select AnnotationValue instances. The

AnnotatedObjectClass references one ObjectClass instance. The instance of AnnotatedOb-
jectClass can contain instances of the AnnotatedOperation class and AnnotatedData class.

Also AnnotatedOperation can contain instances of the AnnotatedParameter element. This

structure shows the drawback of the decision stated in Sec. 6.5.4. The structure needs

four metaclasses. Each of these metamodel elements encapsulates one instance of the

corresponding information type by referencing it. AnnotatedObjectClass references one

ObjectClass, AnnotatedOperation one Operation and AnnotatedData one Data instance. Also

AnnotatedParameter references one OperationParameter. For each information type, the

90

6.8 Assembly of Modular Simulations

values of the required Annotation instances have to be set. The Annotation instances to be

used are speci�ed by the AnnotationInterface of the used MSE.

The prior mentioned AnnotationEnhanced classes encapsulates information types pro-

vided by simulation features. Modular simulations only use information required or

provided of its contained simulations. If the modular simulation is used in another assem-

bly, it is possible that another MSE is used. In this case, the information has to be �tted to

the Annotation of this other MSE. The DSL provides the OverriddenAnnotationEnhanced
element for the representation of this approach. It is contained in AssembledSimulation-
Component. The OverriddenAnnotationEnhanced also subtypes AnnotationEnhanced and

references one AnnotationEnhanced element. This enables the "override" of an annota-

tion of the AnnotationEnhanced information. The encapsulation AnnotationEnhanced
also allows to keep the representation of the annotated information when used in the

AssembledSimulationComponent.

6.8.3 Definition of Required and Provided Information of Simulations

The annotation of information described in the prior section Sec. 6.8.2 de�nes information

available for use in the modular simulation assembly. Each of the annotated information can

be marked as provided or required by a simulation component. The DSL uses interfaces to

de�ne the information to be exchanged in a modular simulation. Each interface represents

speci�c information to be exchanged. These interfaces are used in modular simulation to

describe the information simulations provide and require. These interfaces can be reused

by di�erent modular simulations when the same information is exchanged. The de�nition

of interfaces also allows an exchange of the component and the underlying simulation.

Only the required and provided interfaces have to correspond with the other component

to be exchangeable. The description of information interfaces in the DSL is speci�ed in

the following subsection. This speci�cation is followed by the explanation how the DSL

realises the mapping of interfaces to de�ne information as required and provided.

6.8.3.1 Description of Information Interfaces

One reason for creating modular simulations is to use other simulations to produce the

desired behaviour. These simulations can depend on information of other simulation. It

is possible that one model requires data from another model to be executed correctly. In

IntBIIS, for example, the business process requires the response time of Palladio com-

ponents to be able to calculate its model correctly. IntBIIS is con�ned with Palladio in

one large simulation in a monolithic simulation. If the simulations are separated, their

required and provided information have to be speci�ed to make this requirement explicit.

To de�ne data to be exchanged by simulations in a reusable and independent way, the

notion of interfaces as explained in Sec. 3.2.1 is used. The content of an interface de�nes

the information to be exchanged. The interface expresses an abstract point of interaction

between multiple simulations. One simulation does not know how the other simulation

creates the information. Therefore, the de�nition of the information in a simulation has to

su�ce.

91

6 A Description Language for Simulation Coupling

The design of the interface does not include the simulation using this interface. Contrary

to the interface notion of Palladio, not only operations but also object classes and data

are de�ned in an interface. The DSL provides the InterfaceDe�nition package to enable

the modelling of interfaces. Its content is depicted in Fig. 6.23 Its entry-point for interface

s

InterfaceOperation

InterfaceObjectClass

InterfaceRepository
InterfaceInformation

InterfaceData

dataTypeDescript
ions : EString

AssemblyInterface

InterfaceParameter

optional :
Boolean = false
dataTypeDescript
ions : EString

[0..*] interfaceparameter

[0..*] interfacedata

[0..*] interfaceoperation

[0..*] interfaceobjectclass

[0..1] interfacerepository [0..*] assemblyinterface

[0..*] interfaceoperation

Figure 6.23: Classes and relations contained in the InterfaceDe�nition package

de�nition is the InterfaceRepository[SE] element. The purpose of this repository is to

represent multiple interfaces for one de�ned context. For example, information to be

exchanged between Palladio and and the business process simulation. In IntBIIS the

information can be the response time or the operation to execute the simulation of a speci�c

software system. The collection of interfaces in the repository enables modellers to reuse

the de�nitions for guidelines on what data typically �ows between simulation in a certain

context. One example is the context of response time calculation of software systems

with components. The response time of components has to be transferred. Therefore, the

response time has to be contained in an interface.

The InterfaceRepository contains zero or more instances of AssemblyInterface to model

interfaces in the DSL. The DSL has to replicate the designed object-oriented structure

of the metamodel to represent informations to be transferred. The DSL provides the

classes InterfaceObjectClass, InterfaceData, InterfaceOperation and InterfaceParameter for

this purpose. All four classes sub-type the abstract InterfaceInformation[SE] class. The

representation of the object-oriented structure enables direct mapping between the sub-

types of AnnotationEnhanced and the interfaces. A AssemblyInterface can contain zero or

more InterfaceObjectClass instances. Each InterfaceObjectClass can de�ne zero or more

InterfaceData and InterfaceOperation instances. Each InterfaceOperation contains zero or

more InterfaceParameter instances.

92

6.8 Assembly of Modular Simulations

The descriptions of the content of interfaces are kept on an abstract level and do not

de�ne a concrete type. This design is necessary because of the independent development

of simulations and MSE. The approach of high abstraction is similar to the one in the

adaptation descriptions of Sec. 6.7.2. A description of a certain data type would hinder

the interaction between the two simulations. If one simulation uses a Double to represent

"percent" and another uses an Integer, a type de�nition would not allow one of these

simulations to use the interface. Therefore, InterfaceData and InterfaceParameter contains

only a textual description of the semantics of the informations data type. This descrip-

tion is realised by the dataTypeDescriptions:EString attribute. These descriptions enable a

developer to check whether the semantics of its provided data �ts to the interface. The

interplay between adapter and abstract interface description enables the interoperabil-

ity simulations. The adapter approach transforms the values in the other format. The

InterfaceParameter also contains the optional:Boolean attribute to signal if a parameter is

optional. This attribute describes the same optionality as of parameters in operation as

presented in Sec. 6.5.2. The created AnnotationEnhanced information can be described as

either required or provided by a simulation component with the interface descriptions.

6.8.3.2 Mapping of Enhanced Information to Interfaces

Each interface can be used to describe the information a simulation requires and provides.

To de�ne the provided or required information in a modular simulation, the AnnotationEn-
hanced information of a component has to be mapped to an interface. If one simulation

marks an interface as provided and another simulation the same interface as required,

the information described in this interface can be exchanged. Contrary to interfaces in

Palladio, a mapping of the underlying types of the information has to be provided to the

interface. This approach allows the identi�cation of incompatibilities between the required

and provided information. This design is motivated by the adaptation approach of the

DSL. The underlying speci�cs of the information must be known (e.g. the data types)

to adapt information exchanged by simulations. This knowledge enables to create exact

AdaptationDescription instances for the simulation assembly if it is not already available.

To describe the mapping of information to an interface in the DSL, each Simulation-
Component provides containments to the InterfaceRequired and InterfaceProvided classes.

These metamodel classes are located in the InterfaceMapping package. The packages

content is depicted in Fig. 6.24. Both classes are sub-types of the abstract InterfaceMapping
class. InterfaceMapping references one AssemblyInterface to de�ne the targeted interface.

This allows to verify if the interface is correctly mapped. The sub-classes signal whether

a component requires or provides the information of the referenced AssemblyInterface.
The RequiringObjectClassMapping references the RequiredDataEntry of the simulation to

specify the interface required by a simulation component. This design allows to check

if the required information and the AnnotatedInformation corresponds. Additionally, the

AnnotatedObjectClass is speci�ed to provide the speci�cs of the information. The reference

to InterfaceObjectClass provides a mapping to the entry in the interface. This enables an

editor to control the correct mapping of InterfaceObjectClass and the AnnotatedObjectClass.
From this class, another object-oriented structure is created. This includes zero to many

containments to the classes DataToInterfaceMapping and OperationToInterfaceMapping.

93

6 A Description Language for Simulation Coupling

ParameterToInterfaceMa
pping

 annotatedparameter :
AnnotatedParameter
 interfaceparameter :
InterfaceParameter

OperationToInterfaceMapping

 annotatedoperation :
AnnotatedOperation
 interfaceoperation :
InterfaceOperation

InterfaceRequired

 simulationcomonent :
SimulationComponent

InterfaceProvided

 simulationcomonent :
SimulationComponent

InterfaceMapping

 assemblyinterface :
AssemblyInterface

DataToInterfaceMa
pping

 annotateddata :
AnnotatedData
 interfacedata :
InterfaceData

RequieringObjectClassMapping

 annotatedobjectclass :
AnnotatedObjectClass
 requireddataentry :
RequiredDataEntry
 interfaceobjectclass :
InterfaceObjectClass

ProvidingObjectClassMapping

additionenchancedobjectclass
 : AnnotatedObjectClass
 interfaceobjectclass :
InterfaceObjectClass

[0..*] parameter_interface_mapping

[0..*] requieringinterfaceobjectclassmapping

[0..*] providinginterfaceobjectclassmapping

[0..*] data_interface_mapping

[0..*] operation_interface_mapping

[0..*] operation_interface_mapping

[0..*] data_interface_mapping

[0..*] providingOperationMapping

[0..*] requieringOperationMapping

Figure 6.24: Classes and relations contained in the InterfaceMapping package

The OperationToInterfaceMapping contains zero or more references to the Parameter-
ToInterfaceMapping class. Each of these classes references the corresponding type of

the AnnotationEnhanced structure and the Interface structure. This allows to prohibit all

mappings except of the ones between the de�nitions of the information types.

A modular simulation has to satisfy the requirements of the components. The require-

ment has to be deferred if not enough modules are contained in the modular simulation to

satisfy all requirements. The modular simulation itself has to describe the information

as required. This description is modelled by references to InterfaceRequired instances in

the SimulationAssembly class of the ModularSimulationAssembly package. The modular

simulation can also provide information itself. However, only information de�ned as

provided of the contained simulation components can be provided by a modular simula-

tion. This provision is modelled by references of the ModularSimulationAssembly class to

the InterfaceProvided class. The modular simulation can be used with other simulations

94

6.8 Assembly of Modular Simulations

in another modular simulation description through deferring of provided and required

information.

6.8.4 Attachment of Adaptation Descriptions to Adapters

Adaptation in the DSL is described by two parts as presented in Sec. 6.7. The AdapterService
is created in components and the independent designed AdaptationDescription. Adapta-
tionDescription instances abstractly describes the information to adapt to facilitate reuse

in other modular simulations. Also the application of the adaptation is described in Adap-
tationConversion models. The AdaptationDescription instances are not directly modelled

in AdapterService elements. This design is prohibited because the AdaptationDescrip-
tions are designed independently of concrete modular simulation. A direct binding to

an AdapterService would only make them reusable in the same modular simulation. The

AdaptationDescription instances to apply can only be determined in the modular simulation

assembly. Here, all exchanged information and simulations are known. The Adaptation-
Description instances have to be attached to the AdapterService instances in the assembly

because of this design.

This ability is provided by the AdapterDescriptionAttachment[I] in the Adaptation pack-

age as depicted in Fig. 6.18 of Sec. 6.7. AdapterServices instances and AdapterDescrip-
tionAttachment instances are created in a AssembableComponent. This allows for every

component to access adaptation capabilities. AdapterDescriptionAttachment instances ref-

erence one AdaptationDescription and one AdapterService model. These references de�ne

what adaptations a AdapterService instance has to realise. Multiple AdaptationDescriptions
with the same name can exist simultaneously because AdaptationDe�nitionRepository are

modelled independently. Therefore, the AdapterDescriptionAttachment also references

the AdaptationDe�nitionRepository the AdaptationDescription is supposed to be de�ned

in. This design supports the modeller in the modelling of the adaptations in modular

simulations and provides tools to reduce the probability of confusion. Also, additional

editor support is possible in the future to avoid mix-ups of di�erent AdaptationDescription
instances.

AdaptationDescription instances are still not applicable by the AdapterService with the

previously mentioned elements. This problem exists because the information, which is

targeted by theAdaptationDescription, is only abstractly described byDataMarker instances.

The information in the modular simulation has to be connected to the DataMarker in

the AdaptationDescription to be adaptable. Otherwise the AdapterService could apply the

wrong AdaptationDescription to the wrong information. Therefore, the DSL provides the

capability to connect DataMarker instances in the AdaptationDescription to elements of

the super-type Adaptable. This connection to Adaptable instances is modelled by the

AdaptationMarkerMapping[I] element. AdaptationMarkerMapping therefore references

on DataMarker instance and one or more Adaptable instances. The Adaptable super-type

marks the information that can be adapted by the AdapterService instances. The abstract

Adaptable metaclass is located in the AdapterServices package. Currently, metaclasses

sub-typing Adaptable are

• ObjectClass

95

6 A Description Language for Simulation Coupling

• Data

• Operation

• ObjectInstance

• AnnotationEnhanced

• DataType

With the attachment of AdaptationDescription to the AdapterService instances and the

AdaptationMarkerMapping instances, the proposed process of Sec. 6.2.2 can be realised.

6.8.5 Connections in the Modular Simulation Assembly

The connection between components is necessary to describe the architectures of a modu-

lar simulation. Two types of connections are identi�ed in the DSL. One type of connection

is realised between simulations in respect to the the interface mappings in the modular

simulation. The other type of connection is related to the interaction between compo-

nents. Components are able to communicate with another component if a connection

exists between them. For example, each simulation component is directly connected to a

coordinator component in a coordinator-based MSE. Furthermore, no connection between

two simulation components exist in the coordinator-example. The Assembly class in the

ModularSimulationAssembly package contains zero or more instances of the abstract Con-
nection[E] class. This class is contained in the AssemblyConnections package and provides

the entry-point for the de�nition of new connection types. Connection contains a reference

to the Assembly instance it is created in.

6.8.5.1 Connection between Required and Provided Interfaces

One type of connection between components is the relation of interfaces in the modular

simulation assembly. The de�nition of this connection enables the identi�cation of the �ow

of information between simulations. This type of connection is realised by the sub-class

ComponentInterfaceConnection of Connection in the DSL. All elements of this sub-type are

provided in theComponentInterfaceConnection package depicted in Fig. 6.25 Two conceptual

sub-types are di�erentiated. One sub-type is the RequiredProvidedInterfaceConnection class,

which references one InterfaceRequired and a InterfaceProvided instance. These interfaces

have to reference the same AssemblyInterface. This can be checked by an editor due

to the reference of a AssemblyInterface in the InterfaceMapping class. The referencing

of a InterfaceRequired and a InterfaceProvided instance de�nes the connection between

those two interface realisations. The RequiredProvidedInterfaceConnection class additionally

references the corresponding providing and requiring components to describe the complete

connection. This connection enables to verify if the referenced interfaces correspond to the

intended components. This is done by the providingComponent and requieringComponent
reference. The connection between interfaces enables a modeller to inspect if all required

or provided interfaces are satis�ed.

96

6.8 Assembly of Modular Simulations

RequiringDelegationConnection

 assembly : Assembly
 interfacerequired :
InterfaceRequired
 simulationassembly :
SimulationAssembly
 requieringComponent :
SimulationComponent

RequiredProvidedInterfaceConnection

 assembly : Assembly
 providingComponent :
SimulationComponent
 requieringComponent :
SimulationComponent
 interfaceprovided : InterfaceProvided
 interfacerequired : InterfaceRequired

ProvidingDelegationConnection

 assembly : Assembly
 interfaceprovided :
InterfaceProvided
 simulationassembly :
SimulationAssembly
 providingComponent :
SimulationComponent

ComponentInterfaceConnection

 assembly : Assembly

Figure 6.25: Classes and relations contained in the ComponentInterfaceConnection package

The SimulationAssembly class references InterfaceMapping instances to signal that the

information contained in the mapping is deferred to another simulation assembly. The

DSL includes two subclasses of ComponentInterfaceConnection to connect the component

whose interface is deferred. The sub-classes are named RequiringDelegationConnection and

ProvidingDelegationConnection. Both classes reference the SimulationAssembly class to

mark the simulation assembly to be connected to an InterfaceMapping. The connection has

to mark the interface providing or requiring the information as well as the corresponding

component. This design allows to inspect if all requirements are satis�ed in the modular

simulation with these delegations.The component containing the interface mapping of

the delegation is described by a reference to a instance of SimulationComponent. The

RequiringDelegationConnection and ProvidingDelegationConnection are separated to map

to the correct sub-type of InterfaceMapping. This design allows a more direct mapping

and enables an easier. Additionally the important required interfaces can be explicitly

veri�ed with this approach. For this purpose, RequiringDelegationConnection references

one InterfaceRequired instance and the ProvidingDelegationConnection references one

InterfaceProvided instance. This allows to model and also validate the connections to the

corresponding instances of SimulationAssembly.

6.8.5.2 Connections between Components

The second type of connection describes the communication between the components.

This connection type provides a more implementation oriented de�nition. For this purpose,

the points of connection have to be de�ned. These points are called connectors. The

connectors de�ne the entities enabling the sending and receiving of communication. In a

network-based approach, these entities are clients or servers where the data streams are

created. Ambassadors are a type of connector in the HLA implementations. The connector

97

6 A Description Language for Simulation Coupling

in the DSL is represented by the abstract class ComponentConnector which is de�ned in

the AssemblyConnections package shown in Fig. 6.26

Connection

 assembly : Assembly

ComponentConnector

 assembablecomponent :
AssembableComponent
 mseserviceinterface :
MSEServiceInterface

SimulationComponentConnector MSEComponentConnector

Figure 6.26: Classes and relations contained in the AssemblyConnections package

Each AssembableComponent has to de�ne at least one ComponentConnector to be con-

nectible with other components. The ComponentConnector also references the corre-

sponding AssembableComponent. The two classes SimulationComponentConnector and

MSEComponentConnector subtype ComponentConnector. These sub-types are used to con-

trol the connections between components. The ComponentConnector element references

several instances of the MSEServiceInterface class de�ned by the MSE. These references pro-

vide operations to access capabilities of the component. Also, these interfaces can contain

the operations the simulation has to provide to be noti�able by the MSE. The sub-typing

of SimulationComponentConnector and MSEComponentConnector from ComponentCon-
nector introduces a design-weakness in the DSL. Because ComponentConnector includes

a reference to AssembableComponent, its sub-classes cannot only specify their intended

component. This design allows simulations to have a MSEComponentConnector. However,

this design decision provides capabilities to extend the DSL. As stated in Sec. 6.6.2 currently

only the coordinator scheme is represented as MSE. However, another approach would

be to place the MSE capabilities in simulations themselves. With this approach, simula-

tions would require SimulationComponentConnector as well as MSEComponentConnector
instances.

The connection between two components of a modular simulation assembly is called a

"wiring" in the DSL. This wiring can exist between several component types. For example,

a wiring can exist between a simulation and MSE component. However, other connections

are possible like one between two MSE components. The DSL provides the �exibility for

the de�nition of such approaches. However, they are currently not included in the DSL.

For example, two MSEs can be used in one modular simulation. Each MSE provides its

capabilities. The complete capabilities of the modular simulation are created of both MSEs.

The reasoning for this approach is to deploy both components on di�erent machines to

reduce possible bottlenecks.

A wiring is realised by the abstract WiringConnection class in the DSL. This class and all

of its sub-classes are contained in the ComponentWiring package depicted in Fig. 6.27. This

class itself does not provide references to ComponentConnector instances. These references

98

6.8 Assembly of Modular Simulations

MSEExchangeWiring

description : EString
 assembly : Assembly
 coordinatorOne : MSEComponent
 coordinatorTwo : MSEComponent
 coordinatorOnecomponentconnector :
MSEComponentConnector
 coordinatorTwocomponentconnector :
MSEComponentConnector

Simulation_MSEWiring

 assembly : Assembly
 coordinator : MSEComponent
 simulationcomponentconnector :
SimulationComponentConnector
 coordinatorcomponentconnector :
MSEComponentConnector

WiringConnection

 assembly : Assembly

SimulationFeature_MSEWiring

 assembly : Assembly
 simulation :
SimulationFeatureComponent

AssembledSimulation_MSEWiring

hierarchyApproach : EString
 assembly : Assembly
 modularSimulation :
AssembledSimulationComponent

Figure 6.27: Classes and relations contained in the AssemblyComponentWiring package

are left to the sub-classes of WiringConnection. One type is the wiring between two MSE

components. This approach aims to describe the representation of modular simulations

with more than one MSE. The CoordinatorExchangeWiring subtypes WiringConnection.

This subtype allows the provision of capabilities for di�erent design approaches of the

modular simulation. CoordinatorExchangeWiring contains the attribute description:EString
to de�ne what information is exchanged between the coordinator. Also, two instances

of MSEComponent are referenced. One reference is named coordinatorOne and the other

coordinatorTwo. These two references specify MSEComponent instances to be connected

by this wiring. Also two references to the MSEComponentConnector exists. These ref-

erences specify the connector instances used in the wiring. The referenced connector

instances have to correspond with the referenced components. This correspondence

can be veri�ed by an editor. The other type of wiring de�nes a connection between

a SimulationComponent instance and a MSEComponent instance. For this purpose, the

abstract class Simulation_MSEWiring is provided. It sub-types WiringConnection. The Sim-
ulation_MSEWiring class references one MSEComponent and a MSEComponentConnector.
Also one SimulationComponentConnector is referenced. The Simulation_MSEWiring di�er-

entiates between the modelling of connections to SimulationFeatureComponent instances

and AssembledSimulationComponent instances. Therefore, the two classes SimulationFea-
ture_MSEWiring and AssembledSimulation_MSEWiring sub-class Simulation_MSEWiring.

The SimulationFeature_MSEWiring references a SimulationFeatureComponent instance.

The AssembledSimulation_MSEWiring references a AssembledSimulationComponent in-

stance. The di�erentiation between those two components originates from the hierarchical

99

6 A Description Language for Simulation Coupling

structure of simulations. An approach must be provided to enable components of two

hierarchies to interact together. In the DSL, this approach is described by the hierarchyAp-
proach:EString attribute of AssembledSimulation_MSEWiring. No further modelling can

be provided due to the complexity of this topic. The problems concerning hierarchies of

simulations is discussed in the following Sec. 6.8.6.

6.8.6 Hierarchical Assembly of Modular Simulations

A modular simulation component must be indistinguishable from a simulation feature com-

ponent to facilitate a modular description of an assembly hierarchy. This property is stated

by Kim and Kim [84]. Thus, there cannot be speci�c connections between coordinators of

di�erent levels of hierarchy. The approach to connect MSEs of di�erent hierarchy level

must be implementation dependent. However, to provide the capability to model these

approaches, the AssembledSimulation_MSEWiring element is used in the DSL. It speci�es

that a AssembledSimulationComponent is connected with a MSEComponent. This wiring

contains the attribute hierarchyApproach:EString. This attribute is supposed to supply a

textual information on how the hierarchical approach is to be realised like, for example,

through approaches of Cai et al. [85]. Each AssembledSimulation_MSEWiring instance

uses the connector references of Simulation_MSEWiring. Thus, an internal coupling can

be achieved between the connector in the encapsulated AssembledSimulationComponent
model and a MSEComponentConnector of the current hierarchy

6.9 Role Based Modular Simulation Development with the
DSL

Di�erent developer roles are proposed to use the DSL for the creation of di�erent parts

of a modular simulation. This separation of roles can result in increased e�ciency of

development due to the �elds of expertise the developers can provide. Also, a parallel or

interleaved development �ow is also possible. For this purpose, the roles of simulation
developer, adaptation developer, MSE-developer and simulation architect are de-

�ned. The roles use di�erent views on the underlying metamodel with two viewpoints.

This approach is similar to the roles provided in the component-based software speci�ca-

tion of Palladio as described in Sec. 3.2.2. The viewpoints on the systems are structured

in the simulation assembly independent (development) viewpoint and the simulation

assembly dependent (development) viewpoint. These viewpoints are only called inde-
pendent viewpoint and dependent viewpoint in the this chapter. In the independent

viewpoint, the roles use the DSL to model parts of the modular simulation independent of

each other. This includes, for instance, the MSE and simulation feature representations. In

the dependent viewpoint, the simulation architect interacts with the other roles to create

a simulation assembly. In some cases, multiple developers have to interact to connect each

part of a simulation assembly.

100

6.9 Role Based Modular Simulation Development with the DSL

6.9.1 Simulation Developer

The simulation developer is responsible for the descriptions, extraction and development

of simulation features. In the independent viewpoint, the simulation developer is re-

sponsible for modelling the simulation by use of the DSL. Another responsibility lies in the

creation of the implementation of the simulation to be usable. The simulation developer

utilizes the SimulationFeature package for the modelling aspect. The simulation developer

provides a description of simulation as well as the available and required information

contained in the simulation. When the model is �nished, the simulation developer im-

plements the modelled simulation feature. Because there is currently no model-to-text

transformation for the DSL, the simulation developer has to implement the simulation

feature according the model.

Another task of the simulation developer is the extraction of (sub-)simulations out of

monolithic simulations. This task is assigned to the dependent viewpoint. A simulation

developer has to extract simulations when the simulation architect does not have the

simulations to describe the desired behaviour of the modular. The extraction is only

possible if the monolithic simulation and the contained behaviour is already identi�ed.

This identi�cation has to be done by the simulation architect due to the knowledge about

the behaviour needed in the modular simulation. The DSL can be used in two di�erent

approaches in the extraction process. In the �rst approach, the simulation developer uses

the DSL to model the (sub-)simulations before or during the process of extraction. The

application of this approach enables to grasp the completeness of the extractions. For

example, if all information is de�ned in each model (for example possible interactions).

Also, it can be explored if probable starts of events between the simulation components are

realised. Additionally the extracted simulation can be immediately used in the descriptions

of modular simulations with the DSL. Another approach is to model the simulations

with the DSL after their manual extraction. This approach only enables the usage in the

description of modular simulations in the DSL. However, no further bene�ts are provided

in this approach. Therefore, the �rst approach is to prefer.

6.9.2 MSE-Developer Perspective

The MSE-developer provides the description of MSE capabilities. Also, context information

is modelled to state their requirement of data and noti�cations of simulations In the inde-
pendent viewpoint, the ModularEnvironment package is utilized. The MSE-developer

can enhance the DSL to provide elements for MSE approaches to be realised. If the MSE
developer wants to create a coordinator like MSE, the Coordinator class is used as entry-

pint. The MSE-developer develops the functionality of the MSE and the required context

information. Also the interfaces to be called by simulations or the MSE are de�ned. Also

the MSE-developer. The MSE-developer implements the realisation of the MSE model

after the de�nition is �nished. The MSE-developer supports the simulation architect in

the assignment of the correct context information to supported information types in the

dependent viewpoint. Also the de�nition how simulations have to be connected to the

MSE realisation is to be de�ned.

101

6 A Description Language for Simulation Coupling

6.9.3 Adaptation Developer Perspective

In the independent viewpoint the adaptation developer designs generic adaptation de-

scriptions and collects them in an AdaptationDe�nitionRepository. For example, adaptation

descriptions for SI-units, naming conventions or translations. Also approaches to de�ne

the adaptation conversions are speci�ed. The adaptation developer can also develop source

code for the conversions to be imported into concrete implementations.

In the assembly viewpoint the a adaptation developer interacts with the simulation

architect to �nd or de�ne adaptation descriptions used in the assembly. The simulation

architect, therefore, provides information about possible mismatches in the data of the

assembled simulation. The adaptation developer then inspects available modelled reposito-

ries. The DataMarker models of a repository provide an entry-point for the inspection. If

two DataMarker �t the inconsistent information, the adaptation developer searches for the

AdaptationDescription instances they are referenced in. To �t the needed purpose of the

adaptation developer, the AdaptationDescription is not only dependent on the DataMarker
and structure. It also depends on the modelled AdaptationConversion. For example, the

adaptation developer needs to convert the values of two data types and AdaptationDe-
scription containing both markers exist. The AdaptationConversion states to transform

the names name of a data instead of the representing value. Here, the structure and

DataMarker are correct, but the AdaptationConversion and target do not match. Because

of this problem, the adaptation developer must know the purpose of the mismatching

information through the interaction with the simulation architect. If no �tting Adapta-
tionDescription is available for each problem, new instances are de�ned in an existing or

new repositories. For example, the simulation architect provides the information that

one simulation uses seconds and the other minutes. The a adaptation developer inspects

available AdaptationDe�nitionRepository model instances for corresponding "second" and

"minute" DataMarker instances. If correspondences are found, the referencing Adapta-
tionDescription instance is searched. If a description expresses the relationship required

in the assembly, the AdaptationDe�nitionRepository is used by the simulation architect

in the modular simulation assembly. This case shows the goal of the reusable design of

adaptations in the DSL. The adaptation developer creates a new adaptation description

if no existing can be found. The created description is placed in a contextually �tting

AdaptationDe�nitionRepository or a new one is created.

6.9.4 Simulation Architect Perspective

In the independent viewpoint, the simulation architect designs interfaces to describe

assumed information transfer between potential simulations. Therefore assumptions for

the simulation separation have to be made. For example, the simulation architect designs

an interface to specify the information exchange between simulations to calculate response

times. The assumption is made that a calculation of an overall response time includes

the transfer of further response times between simulations. As �rst step, the simulation

architect searches already existing interface repositories for the required interface. The

simulation architect models an interfaces describing the response time by the use of

the AssemblyInterface class if no corresponding interface can be found,. The simulation

102

6.9 Role Based Modular Simulation Development with the DSL

architect de�nes repositories to provide contextual relations between designed interfaces.

For this purpose, instances of InterfaceRepository are created.

In the dependent viewpoint, the simulation architect is the central role for connect-

ing all designed models of the DSL. For this purpose, the simulation architect uses the

SimulationAssembly class of the DSL as entry-point. The simulation architect assembles

the simulation. Existing simulation features, modular simulations and MSEs are used

to achieve a particular purpose. The simulation architect describes the created modular

simulation in the SimulationAssembly element. This description can be used by other

simulation architects to determine if the assembled simulation is of use in other assemblies.

To create an assembled simulation for an individual goal, the simulation architect selects

simulation features and modular simulations according to their described information and

purpose. Also, simulations are selected with the wish to provide speci�c data capabilities

to other simulations. The components of the simulations are included in the modular

simulation assembly. One or more MSEs have to be inspected for the required functionality

in the to be used in the assembled simulation. The best way to determine these capabilities

is to interact with the MSE-developer or inspect the semantics of each ManagementService
instance. The component models of one or more selected MSEs are then used in the

modular simulation.

After all components are speci�ed, the simulation architect connects the information to

them. The simulation architect inspects each required and available data of the selected

simulations. In this process, the simulation architect determines if all information require-

ments can be satis�ed by the selected simulations. The simulation architect has to three

options if not all requirements can be satis�ed. The �rst one is to �nd more or exchange

already selected simulations. Another possibility is to use the mechanisms of the DSL to

de�ne the delegation of the required and provided information to other components. Then

a new modular simulation has to be built. The simulation architect has to interact with a

simulation developer if the prior described options are not applied. For example because

no other simulations are available or the modular simulation is determined to be used as

working simulation (i.e. no delegation of required information is possible). The simulation

developer has to create the simulation with the required information or extract simulation

features out of existing monolithic simulations.

When all requirements are satis�ed, the simulations are encapsulated to be used in the

context of the assembly. Following, the simulation architect selects the interfaces for the

required and provided data. No interface model should be modi�ed if not developed for

exactly the described purpose. Thus, if no interface for certain provided and required

information is available, interfaces have to be created. The simulation architect sets the

Annotation values for each information used in the modular simulation for each simulation.

The simulation architect models information to be required or provided for each simulation

by the mapping to an interface with the prior annotated information. Additionally, the

simulation architect interacts with the adaptation developer as described in Sec. 6.9.3. With

all needed AdaptationDescription instances available, the simulation architect connects

them to the AdapterServices of the destined component. Also the DataMarker instances

used in the AdaptationDescription instances are connected by the simulation architect to

the adaptable information.

103

6 A Description Language for Simulation Coupling

To de�ne the connection between required and provided interfaces of simulations,

the simulation architect de�nes ComponentInterfaceConnection instances. Each provided

interface is therefore connected with a required interface of another component. Also

with these mappings, the simulation architect can specify which requirement or provision

is delegated by the modular simulation to other simulations. Through the modelling of

wirings, the simulation architect speci�es connections between simulation components

and coordinator components by Simulation_MSEWiring instances. This approach enables

a more �exible connection between those components.

104

7 Evaluation

The approach to modularise monolithic simulations by the application of the DSL is

evaluated in this chapter. This evaluation includes the applicability (i.e. completeness) of

the DSL itself and also characteristics like accuracy and scalability of the created modular

simulation. We use the monolithic simulation WorkwaySim as evaluation system. This

system is described in Sec. 7.1. The evaluation design is presented in Sec. 7.2. The creation

of the evaluation simulations model by application of the DSL is provided in Sec. 7.3. The

created model elements are evaluated in comparison to the implementation elements of

the evaluation simulation’s modular version in Sec. 7.4.1. Also, the behaviour preserving

capabilities of the DSL are inspected by comparing simulation results of the monolithic

simulation with the modular simulation. The results are presented in Sec. 7.4.2. Another

aspect to evaluate is the in�uence of the modularisation in regard to the execution time.

The results for this aspect are presented in Sec. 7.4.3. All presented results are discussed in

Sec. 7.6. Assumptions, limitations and threats to validity are presented in Sec. 7.7.

7.1 Description of the Monolithic Simulation WorkwaySim

The simulationWorkwaySim is used as the evaluation system and is explained in more detail

in this section. This explanation provides the knowledge needed for the evaluation. The

explanation includes the underlying models and the declaration of variables in�uencing the

behaviour of the WorkwaySim for this purpose. Also, it is discussed why the WorkwaySim
is usable as an evaluation system.

7.1.1 WorkwaySim Simulation Model

The simulation WorkwaySim simulates the life-cycle of humans and a public transport

system with buses and bus stops. Two underlying models are used to achieve these

simulations through interaction. The model for the public transport contains buses, bus

stops and routes. A bus is represented by a name, a �xed number of seats and the current

number of occupied seats. The number of occupied seats cannot exceed than the maximal

number of seats. A bus also contains a route. Each route consists of route segments

connecting two bus stops. Every route segment describes the average speed and the

distance between two bus stops. A bus visits consecutively each bus stop on its route.

The bus unloads collected passengers at each bus stop if this is their destination. Also,

passengers waiting at bus stops are loaded. The waiting passengers are represented by

a waiting queue in the bus stops. All waiting passengers are loaded if the sum of their

number and the already transported passengers is smaller than the maximum number of

seats. Not all waiting passengers are loaded if this process would exceed the maximum

105

7 Evaluation

number of seats. The waiting passengers have to wait for another bus to be loaded in this

case. We call the simulation model representing the public transport system "Bus model".

The simulation of a humans life-cycle is strongly abstracted. A human in the Work-
waySim has a �xed home and workplace. The humans life-cycle in WorkwaySim simulation

consists of three superordinate actions. The �rst action is travelling to the person’ work-

place and back home. The Human is the central part of this simulation model. Therefore,

we call the underlying simulation model "Human". The other two actions of the human

are working and spending free time. Working and spending of free-time actions are not

simulated in detail by the WorkwaySim. Both are representing by advancing simulation

time by speci�c duration. In the case of work, this duration is 8 hours. Two approaches

are applied to simulate the humans’ way to workplace and back. One approach is for

the human to walk directly to their workplace and back. The other approach is taking a

bus to drive between a bus stop at home and a bus stop at their workplace. One of these

approaches is set for each human at its initialisation randomly. In the approach to simulate

the human to walk directly, a value is assigned randomly at the initialisation process. This

value determines the duration it takes for a human to walk between the home and the

workplace. The walking of this way is simulated by requesting an advance of simulation

time by the predetermined duration. This simulation approach is a simple scenario with

no dependence to any other simulation entity. The time a human spends away from home

is calculated for the simulation approach of a direct walk between the humans workplace

at home as:

taway,walkinд = 2 ∗ twalkinд + twork (7.1)

Where taway,walkinд is the total time a human spends away from home, twalkinд is the time

it takes a human to walk the way between the workplace and home. twork is the time a

human has to spend working. In the approach to simulate a human taking a bus, two

bus stop of an available route are randomly assigned to it. One bus stop is used as the

bus stop near the humans home. The other bus stop is assigned as the one near the

humans’ workplace. The human only drives between these two stops in the simulation.

The duration a human takes to walk from its home to the bus stop at home is randomly

determined. The same is done for the way between the work and the humans’ bus stop at

its workplace. The simulation of walking these ways is again simulated by only requesting

an advance of simulation time. The requested advance in time is set by the predetermined

walking durations prior mentioned. The human arrives at the de�ned bus stop on its

way to work after the simulation time is advanced. Here, the human is enqueued in the

waiting queue of the bus stop. The human describes its destination as the bus stop. This

destination signals where the human is unloaded by the bus. The human enters a waiting

state to wait for the transportation to the destination. Depending on the workload of a bus,

it is possible that the human cannot enter the �rst arriving bus. The humans’ free-time

is reduced when it is not loaded. Thus, the free time of a human depends on the waiting

time at the bus stop, the driving time on the bus and the ways from and to the bus stops.

A bus picks the human up and signals when the destination is reached. The bus in the

WorkwaySim is simulated as described before. Therefore, the approach of using a bus in

the life-cycle is a more complex one. This approach includes the interaction between two

separate models. The free-time of a simulated human depends on the execution of the

106

7.1 Description of the Monolithic Simulation WorkwaySim

bus model and other simulated human. The time a human spends away from home is

calculated for the simulation approach of utilising a bus to cross the distance between the

humans workplace at home as:

taway,drivinд = twork + 2 ∗ tHS + 2 ∗ tWS + twaitinд + tdrivinд (7.2)

Where taway,drivinд is the time the human spends away from home when utilising a bus. tHS

is the time a human takes to walk between the bus stop at home and its home. Analogue,

tWS is the time a human spends to walk between the bus stop at the workplace and its

workplace. twaitinд is the time a human waits for the bus on his way to workplace and back.

tdrivinд represents the time a human drives in the bus on its way to workplace and back.

Like in the scenario of directly walking to the workplace, twork is the time a human spends

working. Therefore, when both approaches are enabled, the away time for a human is:

taway = taway,drivinд or taway,walkinд (7.3)

Thus, the free-time of a human is calculated by:

t f ree = 24 − taway (7.4)

7.1.2 Influences on the Behaviour of WorkwaySim

The resulting behaviour of the WorkwaySim is in�uenced by attribute values of human

entities and the bus entities. The WorkwaySim uses the Duration class to allow descriptions

of seconds, minutes and hours to measure time. The following attributes in Human entities

have stochastically assigned values and in�uence the behaviour of the simulation:

• homeBusStop:BusStop and workBusStop:BusStop specify the bus stop at the workplace

and home for a human. These bus stops are chosen randomly from all available bus

stops in the WorkwaySim

• behaviour:HumanBehaviour de�nes whether a human walks directly to the workplace

or uses the bus. The values come from the HumanBehaviour enum with two labels.

The enum label is assigned randomly at initialisation of a human.

• HOME_TO_STATION:Duration contains the duration for a human to walk between

the home and the bus stop at home in minutes. (Random value between 1 and 61)

• WORK_TO_STATION:Duration expresses the duration for a human to walk from the

workplace to the bus stop at the workplace in minutes (Random value between 1

and 61)

• WALK_DIRECTLY:Duration contains the duration for a human to walk directly to

the workplace and back in minutes (Random value between 1 and 151)

The other entity in the WorkwaySim determining its behaviour is the bus. The attributes of

this entity are set deterministic in the source code. The possible execution of the simulation

is mainly controlled by the route a bus takes to collect humans and the available maximum

107

7 Evaluation

number of seats. The latter attribute can in�uence the execution of the model. If all

seats are occupied, humans are not transported and thus, proceed to wait. Because of

the stochastic assignment of the values for the attributes WORK_TO_STATION:Duration
and HOME_TO_STATION:Duration, the bus seats can create another execution path when

many humans are simulated.

To provide a more controlled execution, we implemented the possibility to alter the

non-deterministic in�uences on the simulation behaviour to deterministic ones. This

approach allows eliminating the non-deterministic behaviour as far as possible. For this

purpose, each human is based on an id. This id starts at zero and is increased for every

simulated human. With this id, the humans’ bus stop at home and the bus stop near the

workplace is determined by sorting them into a list. Then the home bus stop is selected by

the human id modulo the number of available bus stops. The bus stop near the workplace

is the next bus stop on the list. All durations for a human to walk are set to 30 minutes.

7.1.3 Waiting and Driving Scheme of the Human Entity

In the WorkwaySim, the human model expresses the waiting for the bus. As described in

Sec. 5.3.4, waiting can be expressed by two approaches. One approach is the implicit waiting

where the execution �ow is ended and resumed by not scheduling and rescheduling events.

In this approach, the waiting is realised by not scheduling the next event in an conceptual

execution �ow of a model. Here, an event has to be scheduled by another event to resume

the conceptual execution �ow. The other approach is to employ a busy-waiting scheme.

The WorkwaySim includes both approaches. For the �rst approach, the execution �ow of

the human ends with the arriving at a bus stop. An event is scheduled in the unloading

event of the bus model when the human arrives at the destination bus stop. This event

resumes the logical execution �ow of the human. The other approach includes the busy

waiting scheme. Here, the human uses the collected:boolean attribute as variable to test.

Listing 7.1 shows the pseudo-code of the busy-waiting scheme applied in the WorkwaySim.

108

7.1 Description of the Monolithic Simulation WorkwaySim

/ / t e s t i f a human e n t i t y i s no t c o l l e c t e d
i f human . i s C o l l e c t e d () == f a l s e then

/ / C r e a t e new wa i t i n g e v e n t
wai tEven t = new WaitEvent ()

/ / Re− s c h e d u l e a new wa i t i n g e v e n t wi th
/ / a p r e d e t e rm i n e d t ime s t e p " Bu syWa i t i n g S t e p "
wai tEven t . s c h e d u l e (human , BusyWai t ingS tep)

/ / S t o p p r e c e e d i n g o f t h e e v e n t
return ;

end i f

/ / c r e a t e d r i v i n g e v e n t
d r i v i n g E v e n t = new D r i v i n g E v e n t ()

/ / s c h e d u l e d r i v i n g e v e n t
d r i v i n g E v e n t . s c h e d u l e (human , 0)

Listing 7.1: Busywaiting Approach to wait for a bus in the WorkwaySim

The value of BusyWaitingStep is de�ned as a duration in seconds. This duration describes

the time point in simulation time when this event is to be scheduled. The time point is

determined by the current time plus the duration provided by BusyWaitingStep. When the

busy-waiting approach is applied, the driving of a bus is simulated like the waiting for it.

The corresponding code is shown in Listing 7.2.

/ / t e s t i f a human e n t i t y i s c o l l e c t e d
i f human . i s C o l l e c t e d () == true then

/ / C r e a t e new d r i v i n g e v e n t
D r i v i n g E v e n t = new D r i v i n g E v e n t ()

/ / Re− s c h e d u l e a new d r i v i n g e v e n t wi th
/ / a p r e d e t e rm i n e d t ime s t e p " Bu syWa i t i n g S t e p "
wai tEven t . s c h e d u l e (human , BusyWai t ingS tep)

/ / S t o p p r e c e e d i n g o f t h e e v e n t
return ;

end i f

/ / c r e a t e e v e n t t o s i g n a l a r r i v a l
a r r i v e E v e n t = new a r r i v e E v e n t ()

/ / s c h e d u l e d r i v i n g e v e n t
a r r i v e E v e n t . s c h e d u l e (human , 0)

Listing 7.2: Driving Approach when using the waiting approach of busy-waiting in the

WorkwaySim

109

7 Evaluation

7.1.4 Discussion of Validity of WorkwaySim for Evaluation

This thesis is used to provide an approach to create a modular simulation. Therefore, the

simulation has to consist of at least two separable (sub-)models. WorkwaySim is valid for

this point because it provides the two underlying models with distinct concerns. The �rst

model is the life-cycle model and the second is the public-transport model. As described

in Sec. 6, extracted simulation can have requirements to execute their model and can

provide information. Through the interaction between the life-cycle model and the public

transport model, this is the case in the extraction of both models to separate simulations.

Therefore also the required and provided information aspects of the DSL can be evaluated.

Furthermore, this dependence allows identi�cation of the information �ow between the

models.

7.2 Evaluation Design

We apply the Goal Question Metric (GQM) [86] approach to evaluate the modularisation

with the proposed DSL. Therefore we state three goals: in the �rst goal G1, the DSL is to

be analysed regarding its completeness as a language to describe the coupling of modular

simulations. In the second goal G2 the behaviour preserving aspects of the DSL are to

be analysed. The third goal G3 entails the analysis of execution times to evaluate the

scalability of the modular simulation in contrast to the monolithic version. We assume

that the behaviour preservation of the modular simulation compared to the monolithic

version is comparable with the accuracy of the DSL.

We formulate the �rst research question RQ1 to evaluate the completeness of the DSL:

Does the DSL provide the capabilities to describe the coupling between simulation features
contained in a monolithic simulation? The capabilities and completeness of DSLs are

normally evaluated by approaches, discussed by Horko� et al. [87]. These approaches

rely on the application of the DSL in empirical studies, laboratory experiments (e.g. with

students) or case-studies. Also, comparative approaches with other similar DSLs are

discussed. The only applicable approach for evaluation in the time-frame is to conduct a

case-study. This approach allows to inspect the completeness of capabilities of the DSL.

Additionally the behaviour preservation and scalability can be evaluated on a concrete

example. For the purpose of evaluating the DSL in the regard of RQ1, we describe the

procedure of modelling the coupling of the simulation features contained in WorkwaySim.

This approach provides insight if the DSL is complete, so that WorkwaySim can be modelled

as the coupling of its simulation features. Additionally, we also use Metric 1 (M1) on the

created model:

M1 =
ELANG

EIMPL
(7.5)

Here, ELANG describes the number of elements in the modular simulation. EIMPL denotes

the number of elements in the implementation of the modular simulation. The results

can be used to inspect if all elements of the implementation can be modelled. Also, the

overhead of elements created through the application of the DSL can be evaluated. We

use the poRTIco RTI implementation [31] in the modular simulation as coupling approach.

This implementation is an open source implementation of the HLA standard [27]. The

110

7.2 Evaluation Design

application of poRTIco also allows the demonstration of the capability to model the HLA

with the DSL. This ability is a goal of the DSL as stated in Sec. 6. No model-to-text

transformation capability is currently provided for the DSL. Because of this missing

capability, the implementation of the modular simulation described by the DSL has to be

created manually.

The second research question is stated regarding the behaviour preservation of the

modularisation approach (G2). The second research question RQ2 is de�ned as follows:

Are the produced simulation results in the monolithic simulation similar to those of the
modular simulation? With this research question, the similarity in behaviours of the

modularised simulation to monolithic version is evaluated. WorkwaySim uses its entities

and their initial variables to control its simulation behaviour. Some of these attributes are

assigned with stochastic techniques (e.g. using a random number generator). Therefore,

the Earth Mover’s Distance (EMD) [88] is used as Metric 2 (M2). The EMD is con�rmed

by Rubner et al. [89] as the most useful metric for measuring mutual di�erence in an

empirical comparison of distribution-based similarity metrics. The EMD compares two

probability distributions and takes their shapes and locations into account. The EMD

provides a distance metric specifying the e�ort necessary to transform one distribution

into another [88]. This distance signals the di�erence between the two distributions.

With the EMD, we compare the resulting values of the monolithic simulation and its

modularised version. Also, two statistical signi�cance tests are applied to provide further

information. The �rst test is the two-sample Wilcoxon rank sum test (hereafter called

Wilcoxon test) [90]. In the case of monolithic and modular simulations, the sample consists

of multiple values for the same data (e.g. created by multiple runs or multiple entities).

With this comparison, the Wilcoxon test states the probability p that the two samples come

from the same distribution. Thep value constitutes theMetric 3 (M3). The null-hypothesis

is stated that both samples come from the same distribution. The alternative hypothesis

states that they do not come from the same distribution. Therefore, if the p-value is smaller

than an assumed threshold (i.e. the level of signi�cance), the alternative-hypothesis has

to be accepted. The second signi�cance test is the two-sample Kolmogorov-Smirnov

test [90]. With this test, two samples can be tested if they follow the same probability

distributions. The null hypothesis of the Kolmogorov-Smirnov test states that two samples

follow the same distribution. Similar to the Wilcoxon test, the Kolmogorov-Smirnov test

provides a probability that both samples conform to the same probability distribution.

Therefore, if the p-value is smaller than the selected level of signi�cance, the alternative

hypothesis has to be accepted. This alternative hypothesis states that both samples do

not originate from the same probability distribution. A level of signi�cance of α = 0.05
is chosen for the Wilcoxon test as well as the Kolmogorov-Smirnov test. The p-value of

the Kolmogorov-Smirnov test is used as Metric 4 (M4). The quality of these measures

depends on the calculated samples. Even if both simulations would be equal, a small

number of values can result in a signi�cant di�erence because of their stochastic nature.

Therefore, the metrics above are also used on a deterministic version of WorkwaySim.

In this version, all controllable stochastic attributes are set to deterministic values and

references. In an entirely deterministic simulation, both simulations produce equivalent

values if they provide the same modelled behaviour.

111

7 Evaluation

The third research question is related to the in�uence of the modularisation in per-

formance. Also it is to evaluate how well the modular simulation scales. Therefore, the

third research question RQ3 is the following: Can the modularised simulation cope with
an increasing amount of simulations to a MSE. For this purpose, multiple simulations are

coupled. The resulting execution times are measured. Therefore, we use the execution

times of the simulation as Metric 5 (M5)

7.3 Presentation of the DSL Model of WorkwaySim

One goal of the DSL is the property to model the capabilities of the HLA, or more precisely,

a concrete RTI. As a concrete RTI, the poRTIco implementation is chosen. Therefore,

poRTIco is modelled as MSE and coordinator. The WorkwaySim consists of the underlying

Bus model and the Human model. Therefore, we call the simulation features BusSim and

HumanSim. These features are modelled with the DSL in order to describe the information

con�ned in the WorkwaySim. Also, the description of modelling the assembly of the

modular simulation WorkwaySim is provided. The purpose of the DSL is to be used in the

development of simulations. We only provide model elements used in WorkwaySim for

evaluation. For example, in poRTIco, only data types used in WorkwaySim are described.

7.3.1 Modelling of poRTIco

The source code of poRTIco is analysed to provide its model. The modularenvironment
model of the DSL is created to describe poRTIco. PoRTIco provides data types used in the

communication with the coupled simulations. Also functions to be called by the simulations

are realised to access the capabilities of poRTIco. These callable functions are de�ned in

an class called RTIambassador. Also functions are provided to be called from poRTIco in

the simulations. These functions are de�ned in a class called FederateAmbassador. For

every function, poRTIco de�nes several exceptions that mark occurrences of errors in

the execution of a functionality. The functions in the ambassadors are ordered by the

surrounding of commentary blocks according to capabilities of poRTIco. PoRTIco conforms

to the HLA and therefore realises the contextual information required of object classes

with their attributes and interactions with parameters according to the OMT. To model

these capabilities, the OMT speci�cation has to be analysed as well. The implementation

details of each capability is of minor importance in the DSL. However, the DSL provides

capabilities to describe entities used in management services. For some capabilities, poRTIco
de�nes classes for such supporting entities.

PoRTIco uses standard data types with di�erent representations. However, they are

based on Java base data types like Integer or String. Therefore the DataTypeContainer with

the Name attribute set to "poRTIco_DTC" is created. The model instance is only called

by its name in this text when the Name metamodel attribute is set. For example, when

the Name attribute is set to "poRTIco_DTC", it is expressed as: the DataTypeContainer
"poRTIco_DTC". DataType instances are created for the types supported by the RTI.

PoRTIco represents an Integer with big endian encoding by the class HLAInteger32BE.

This data type is modelled by a BasicDataType instance "HLAInteger32BE". The results

112

7.3 Presentation of the DSL Model of WorkwaySim

of the modelling process of the data types are shown in Table 7.1. Generic data types,

abstract classes and super classes are used in poRTIco to provide data types used in the

communication with simulations. One example is the class HLA1516eVariableArray.java.

This data type represents variable arrays through lists with generic type parameters. A

representation of generics and super-type references is currently not supported by the

DSL. Therefore, only the description of each concrete array types can be modelled by the

speci�cation of a DataTypeCollection element. Therefore, a HLA1516eVariableArray.java
of type byte can be modelled by a DataTypeCollection "Byte[]". A speci�cation of the

representation of the underlying primitive types is also not provided in the DSL (e.g.

little or big endian). Nevertheless, such speci�cs can be abstractly described by the

name attribute of BaseDataType instances like HLAInteger32BE. This representation of

information does however not a�ect the created models.

Metamodel Element Model Element

BaseDataType HLAboolean

BaseDataType HLAbyte

BaseDataType HLA�oat

BaseDataType HLAACIIstring

BaseDataType HLAASCIIchar

BaseDataType HLAInteger32BE

DataTypeCollection HLAInteger32BE[]

BaseDataType HLA�oat64Time

BaseDataType HLA�oat64Interval

DataTypeCollection HandleSet

BaseDataType HLA�oat64BE

DataTypeCollection Byte[]

BaseDataType Handle

Table 7.1: Comparison between the elements of the poRTIco implementation and its DSLs

model relevant for WorkwaySim

The exceptions used in functions of the RTIambassador or FederateAmbassador of poRTIco
are modelled in an ExceptionContainer "poRTIco_EC" instance. Every exception in poRTIco
is contained in the package hla.rti.1516e.exceptions. Therefore, for each class in this package,

a corresponding instance of Exception is modelled.

The HLA speci�es contextual information provided by ObjecClasses, Attributes (DSL:

Data), Interactions (DSL: Operation) and Parameters. Due to the conformance of poRTIco to

HLA, this information has to be provided. To model the requirement of these contextual

information and their values, an AnnotationContainer instance "poRTIco_AC" is created,

in which the instances of Annotation are speci�ed. All created Annotation instances are

shown in Table 7.2. When data of simulations are declared to the RTI, it can be speci�ed

whether an attribute can be acquired, divested or both in a federation. Also federates can

specify if they want to divest and acquire the attribute. Divestiture means that a federate

owning an instance of a object class allows that another federate can acquire the right to

113

7 Evaluation

modify the attribute of this instance. The speci�cation of the acquisition de�nes that a

federate want to modify the attributes of an instance of an object class. For this purpose,

the HLA speci�cation provides the contextual information "ownership". It can be speci�ed

to the values "acquire" or "divest". To model this de�nition, the MultipleSettableAnnotation
instance "Ownership" is speci�ed. The attribute OnlyUsedInDe�nition of "Ownership" is

set to false, because simulation features not de�ning the attribute can specify acquisition

or divestiture for it. This allows to not only specify that federates can acquire or divest the

attribute but also their explicit intention to do so. To de�ne the values speci�able for this

Annotation instance, two AnnotationValue instances "Divest" and "Acquire" are modelled.

The policy when an instance of an information value has to be updated can also be chosen

in HLA. Possible policies are "Static" (i.e., owner updates it when requested) or "Periodic"

(i.e., update at regular time intervals). Furthermore, the policies "Conditional" (i.e., update

when a condition occurs) or "NA" (i.e., information is never updated) are selectable. This

contextual information is modelled by a ExclusiveSettableAnnotation "UpdateType" instance.

Its value for OnlyUsedInDe�nition is set to true because this policy is only speci�ed by the

simulation de�ning this information. The AnnotationValue instances "Static", "Periodic",

"Conditional" and "NA" are de�ned to model the corresponding values. The conditions for

the "Conditional" value has to be speci�able, which can be expressed with a WritableAn-
notation instance. Therefore, a model instance of WritableAnnotation "UpdateCondition"

is speci�ed. The HLA de�nes contextual information to be semantically connected. Ex-

emplary, when "Conditional" is speci�ed as update type, it has to be possible to specify

update conditions. This connection can be modelled by CombinedAnnotation instances.

Here, semantically connected Annotation instances are modelled to belong together. For

example the CombinedAnnotation "Update" is modelled. This Annotation references the

ExclusiveSettableAnnotation "UpdateType" and the WritableAnnotation "UpdateCondition".

AnnotationType Annotation Name Annotation Values

MultipleSettableAnnotation Sharing Publish, Subscribe

MultipleSettableAnnotation Ownership Acquire, Divest

CombinedAnnotation Update

ExclusiveSettableAnnotation UpdateType Static, Periodic, Conditional,

NA

WritableAnnotation UpdateCondition

CombinedAnnotation Distribution

ExclusiveSettableAnnotation Order Receive, Timestamp

ExclusiveSettableAnnotation Transportation HLAreliable, HLAbestE�ort

WritableAnnotation Dimension

Table 7.2: The Annotation model elements speci�ed for poRTIco. Each horizontal line in

the table speci�es contextually connected Annotation instances

The capabilities of a MSE are categorized by conceptional concerns and represented by

ManagementService instances in the DSL. These services are speci�ed by analysing the

source code of poRTIco. The HLA federate interface speci�cation [29] is also inspected due

114

7.3 Presentation of the DSL Model of WorkwaySim

to the conformance of poRTIco to it. All model elements can be inspected in the created

WorkwaySim model [91].

All capabilities in poRTIco are con�ned in sub-packages of the package org.portico.lrc.services.
For example the package org.portico.lrc.services.ownership contains the capabilities to man-

age the ownership of information. A ManagementService "Ownership Service" is modelled

to describe these capabilities. PoRTIco provides the class AttributeDivest.java to describe

a message to divest one or more attributes. Also, the FederateAmbassador.java and RTI-
ambassador.java classes provide functions to be called by federates or by the RTI to handle

the ownership of information. The RTIambassador.java class contains the method attribu-
teOwnershipAcquisition(. . .) enabling federates to request the acquisition of the ownership

of attributes of a object instance in the federation. The federate interface speci�cation

also pre- and post-conditions are provided as well as exceptions, supplied arguments and

returned arguments for all accessible functions by the RTI or the federates. Each callable

service of poRTIco is modelled by a instance of ManagementServiceFunction. Therefore, we

model a ManagementServiceFunction "attributeOwnershipAcquisition" in the "Ownership

Service" instance for the representation of the "attributeOwnershipAcquisition(. . .)" func-

tion. The function does not return any data. Thus, the corresponding ReturnType is not

assigned. Exceptions can be referenced to describe their occurrence in the execution of

the corresponding function. Each exception provided by the attributeOwnershipAcquisi-
tion(. . .) is modelled by a reference to a corresponding Exception model instance de�ned

in the "poRTIco_EC" ExceptionContainer instance. PoRTIco speci�es three parameters

for the attributeOwnershipAcquisition(. . .) method. These parameters are a handle for

an object instance, a AttributeHandleSet to specify the attributes to acquire and a user

supplied tag. These attributes are modelled by the creation of three OperationParameter
instances "theObjectClass", desiredAttributes" and "userSuppliedTag". The poRTIco parame-

ter "theObjectClass" uses a handle to specify the object class the attributes are published for.

Therefore the DataType "Handle" is referenced. The "desiredAttributes" attribute in poRTIco
is of the type AttributeHandleSet. A reference to the DataTypeCollection "HandleSet" in

the "desiredAttributes" model element represents this parameter. The "userSuppliedTag"

parameter is represented by an array of the type Byte. Therefore, the DataTypeCollection
"Byte[]" instance is referenced. The Annotation "Ownership" is required by the "Ownership

Service" to correctly execute its functionality. The "Ownership" Annotation instance is

referenced by the "Ownership Service" model to provide this information in the model.

PoRTIco additionally de�nes the OwnershipManager.java class, which is responsible for the

management of the declared divestitures and acquisitions of the federates. This entity is

modelled by an instance of ManagementServiceSupportEntity "Ownership Manager" in the

"Ownership Service". Its purpose is textually described by Purpose attribute. All modelled

management services are shown in Table 7.3 The ambassadors provided PoRTIco realise

functions to access capabilities of management services. However, the functions are only

arranged by commentary blocks in FederateAmbassador.java and RTIAmbassador.java to

describe their relation to a certain management service. An exemplary excerpt of the

poRTIco source-code of the RTIAmbassador.java is provided in Listing 7.3 to show this

structure. The dots show that more functions are placed in the source-code.

115

7 Evaluation

ManagementService Instance

Federation Management

Declaration Service

Object Management

Ownership Service

Time Management

Data Distribution Management

RTI Support Service Management

Table 7.3: All modelled ManagementService instances in the poRTIco DSL model

/ /
/ / Ownersh ip Management S e r v i c e s / /
/ /

. . .

/ / 7 . 8
void a t t r i b u t e O w n e r s h i p A c q u i s i t i o n (

O b j e c t I n s t a n c e H a n d l e t h e O b j e c t ,

A t t r i b u t e H a n d l e S e t d e s i r e d A t t r i b u t e s ,

byte [] u s e r S u p p l i e d T a g)

throws A t t r i b u t e N o t P u b l i s h e d , . . .

. . .

/ /
/ / Time Management S e r v i c e s / /
/ /
/ / 8 . 2
void e n a b l e T i m e R e g u l a t i o n (L o g i c a l T i m e I n t e r v a l theLookahead)

throws I n v a l i d L o o k a h e a d , . . .

. . .

Listing 7.3: Excerpt of the poRTIco RTIAmbassador.java

Instances of MSEServiceInterface are created in the poRTIco model to explicitly model

these semantic relations. The names of the modelled instances provide the informa-

tion, which interface is used in a federate ambassador and which in the RTI ambassador.

An example for a model instance is the MSEServiceInterface "OwnershipManagement

Functionality_RTI_Ambassador". This instance references all ManagementServiceFunction
corresponding to the functions in RTIambassador.java from the "Ownership Manage-

ment Services" commentary to the "Time Management Services" commentary. Thus, the

"Ownership Management Functionality_RTI_Ambassador" instance contains all Man-
agementServiceFunction instances for the ownership management in the RTIambassador.

116

7.3 Presentation of the DSL Model of WorkwaySim

Examples of these functions are "attributeOwnershipAcquisition", "cancelAttributeOwner-

shipAcquisition" or "con�rmDivestiture". All MSEServiceInterface instances can be viewed

in the model in the corresponding GitHub repository [91] and are listed in Table 7.4.

MSEServiceInterface

Federation Management Functionality_RTIAmbassador

Federation Management Functionality_FederateAmbassador

Declaration Management Functionality_RTIAmbassador

Declaration Management Functionality_FederateAmbassador

Object Management Functionality_RTIAmbassador

Object Management Functionality_FederateAmbassador

Ownership Management Service Functionality_RTAmbassador

Ownership Management Service Functionality_FederateAmbassador

Time ManagementFunctionality_RTIAmbassador

Time ManagementFunctionality_FederateAmbassador

Data Distribution Management_RTIAmbassador

RTI Support Service Functionality_RTIAmbassador

poRTIco API-speci�c functionality_RTIAmbassador

Table 7.4: Modelled MSEServiceInterface instances in the poRTIco DSL model

7.3.2 Modelling of the HumanSim

To show the capabilities of the DSL for the independent modelling of simulation features,

the HumanSim simulation feature is modelled. A modularsimulation model is created.

A DataTypeContainer with the name "HumanSim_DTC" is de�ned to model the data

types used in the HumanSim. Time units have to be de�ned to describe the time aspects

in the HumanSim like the duration a human takes to walk to a bus stop. The unit-

element requires a BaseDataType to be described. For this purpose, the BaseDataType
"HumanDouble" is created. This data type uses the label "DOUBLE" as primitive data

type to represent the time. The "HumanDouble" is used as a general representation of the

double data type of the Java language. Therefore, no restrictions of the possible value by

application of the Range model instance is speci�ed. The units second, minute and hour are

used in HumanSim to de�ne time aspects. Thus, a Unit model element is created for each

unit. Their reference to BaseDataType is set to "HumanDouble", the name to either "second",

"minute" or "hour". The unit symbol is set to "s" for second, "min" for minute and "h" for

hour. A UnitTypeContainer "Duration" is modelled to provide a collected view of these units.

This container references the "second", "minute" and "hour" Unit elements. Besides these

units, the human entity contains the Enum HumanBehaviour. Therefore, a instance of

EnumType is modelled. The "HumanBehaviour" enum contains two EnumLiteral elements

with the LiteralName values "DRIVING_BY_BUS" and "WALKING". To be updated by a bus,

the HumanSim has to specify the collected attribute for a human. This attribute is based on

a boolean value. Therefore, the BaseDataType "HumanBoolean" is de�ned to represent the

117

7 Evaluation

Boolean data type in the model. Its initialValue attribute is set to 0 and its stepSize value to

1. The PrimitiveDataType attribute of "HumanBoolean" is set to "BOOL". Also, a range is

created with the lowerBounds attribute set to 0 and the upperBounds attribute value set

to 1. The names of entities in HumanSim are represented by String values. Therefore, a

corresponding String data type has to be modelled for the description of the name of the

available and required modelled entities. This representation is realised by a BaseDataType
"HumanString" with the PrimitiveDataType label "String". Table 7.5 lists all data types

de�ned in the HumanSim model.

Metamodel Element Model Element

BaseDataType HumanInt

BaseDataType HumanDouble

BaseDataType HumanString

BaseDataType HumanByte

Unit second

Unit minute

Unit hour

UnitTypeContainer Duration

DataTypeCollection HumanByte[]

EnumType HumanBehaviour

ObjectClassReferenceDataType BusStop

Table 7.5: DataType model instances of the HumanSim model

An instance of SimulationDescription "Human_Simulation_Description" is created to

describe the relevant information contained in HumanSim. The SimulationTimeInformation
is created. Its contained SimulationTimeType value is set to "DiscreteEvent", due to the

discrete event execution �ow representation of HumanSim. The available and provided

data in the simulation is modelled by the ObjectOrientedViewSimulationData instance. Only

the active entity "Human" exists in HumanSim. Therefore, an ObjectClass "Human_HS"

is created. The su�x "_HS" in names is only required for identi�cation purposes in the

model due to the textual basis of the model editor. For this purpose, su�xes of "_HS" stand

for "HumanSim" and the "_BS" su�x stands for "BusSim". These su�xes are of no other

use. When a better editor is provided, these su�xes can be eliminated. Please note that

not all information contained in the HumanSim is textually described in this section to

avoid redundant descriptions. The �nal model of the ObjectOrientedViewSimulationData is

presented in Table 7.6.

A EnumTypedData "behaviour" is created to represent the attribute corresponding to the

humans’ behaviour. The Data instance "name" uses the BaseDataType "HumanString" to

describe the name of an human entity. Similar to this design, the created Data "collected"

is based on the data type "HumanBoolean". A human in the HumanSim can register at bus

stops. A instance of ObjectClassOperation "registerHumanAtBusStop_HS" is modelled to

provide noti�cations of this interaction to other simulations. The noti�cation is used by a

bus stop entity to provide information to other simulations that a human has registered

118

7.3 Presentation of the DSL Model of WorkwaySim

Metamodel Element Model Element

ObjectClassOperation registerHumanAtBusStop_HS

OperationParameter HumanName_HS

OperationParameter BusStopName_HS

ObjectClass BusStop_HS

ObjectClass Human_HS

Data behaviour_HS

Data name_HS

Data Destination_HS

ReferencingRequiredOOEntry referencing BusStop_HS

Data BusStopName_HS

ReferencingRequiredOOEntry referencing Human_HS

Data collected_HS

Table 7.6: Model elements contained in the ObjectOrientedViewSimulationData instance

of the HumanSim model

itself. Therefore, a ObjectClass "BusStop_HS" is created and references the "registerHu-

manAtBusStop_HS" instance. The HumanSim only uses bus stops to represent them in

the simulation and to sends noti�cations about the registration of a human. However, the

HumanSim itself does not de�ne available bus stops. Therefore, the names of the bus stops

are required by the HumanSim. A ReferencingRequiredOOEntry is used to represent this

need. A referencing entry is used because the ObjectClass "BusStop" already exists due to

its provision of "registerHumanAtBusStop_HS". To describe the requirement of names of

bus stops, the ReferencingRequiredOOEntry contains the Data instance "BusStopName_HS",

which references the BaseDataType "HumanString". The HumanSim does not specify the

values for the attribute collected of a human because no collection-mechanism is provided.

This value has to be speci�ed and changed by another simulation. This requirement

is modelled by another ReferencingRequiredOOEntry, which references the Human_HS
ObjectClass. A Data instance "collected_HS" is created and references the "HumanBoolean"

to mark the requirement of a boolean value. With the created model, the HumanSim simu-

lation feature is represented to be used in the assembly in the DSL. Before WorkwaySim
can be assembled, the BusSim has to be de�ned.

7.3.3 Modelling of BusSim

The BusSim simulation feature has also to be modelled in order to describe the coupling

of the modular WorkwaySim with the DSL. This process is similar to the modelling of

the HumanSim as described in Section 7.3.2. Only elements not occurred in the Human-
Sim model are described in depth to avoid redundant descriptions already explained in

Sec 7.3.2. The SimulationFeature element is named BusSim. Furthermore, a DataTypeCon-
tainer "BusSim_DTC" is used to describe the data types in BusSim. The content of this

DataTypeContainer instance is provided in Table 7.7 Available and required information

are also described by the ObjectOrientedViewSimulationData. The modelling of these object

119

7 Evaluation

Metamodel Element Model Element

BaseDataType BusInt

BaseDataType BusDouble

BaseDataType BusString

BaseDataType BusByte

Unit second

Unit minute

Unit hour

UnitTypeContainer Duration

DataTypeCollection BusByte[]

EnumType BusState

Table 7.7: DataType model instances of the BusSim model

classes is done similar to the HumanSim model. The content is provided in Table 7.8 The

Metamodel Element Model Element

ObjectClassOperation registerHumanAtBusStop_BS

OperationParameter HumanName_BS

OperationParameter BusStopName_BS

ObjectClass Bus_BS

Data BusName_BS

ObjectClass BusStop_BS

Data BusStopName_BS

ObjectClass Human_BS

Data collected

ReferencingRequiredOOEntry referencing BusStop_BS

ReferencingRequiredOOEntry referencing Human_BS

Data Destination_BS

Data HumanName_BS

Table 7.8: Model elements contained in the ObjectOrientedViewSimulationData instance

in the BusSim model

Table 7.8 is similar to Table 7.6. However, due to the extraction of both models out of the

same monolithic simulation (i.e. WorkwaySim), their models are complementary. For exam-

ple, HumanSim describes the requirement of the name of a bus stop. BusSim describes the

name of a bus stop as available with the Data instance "BusStopName_BS". The HumanSim
speci�es the attribute "collected" as required, where the BusSim is modelled with the Ob-
jectClass "Human_BS" and the Data instance "collected" as available. The bus has to know

the humans it transports. This information is necessary to be able to represent the humans

in the BusSim to unload them and to modify their "collected" attribute. The requirement

of the humans’ name and its destination is modelled by a ReferencingRequiredOOEntry.

This entry references "Human_BS" and speci�es the Data instances "Destination_BS" and

120

7.3 Presentation of the DSL Model of WorkwaySim

"HumanName_BS". The second ReferencingRequiredOOEntry references "BusStop_BS".

Also the ObjectClassOperation registerHumanAtBusStop_BS" is referenced. This model

element speci�es that the BusSim requires noti�cations when a human arrives at the bus

stop.

7.3.4 Modelling of the Adaptations used in WorkwaySim

The simulation features HumanSim and BusSim as well as poRTIco have di�erent represen-

tations of information in the modular WorkwaySim. An example is the transfer of data

by poRTIco through the encoding arrays of type Byte. The simulation features use and

expect Strings and Integer values. Adaptations are de�ned speci�c for WorkwaySim by an

adaptation model to encounter these problems.

The De�nitionRepository "WorkwaySimAdaptationRepository" is created for this pur-

pose. For the description of the byte-array problem, DataMarker instances are created with

the names "byteArray", "string" and "integer". These DataMarker instances are modelled

because the transferred information between BusSim and HumanSim are either String or

Integer values. For example, the names of humans or bus stops are transferred and are

represented in both simulations as strings. poRTIco, however, uses the data types of Bytes

structured in an array for the transfer of values. The transformation between an Array of

Bytes to String or Integer values are described by TransformationalConversion instances

named "ByteArrayToStringConversion" and "ByteArrayToIntegerConversion". Because of

the current limitations of the adaptation approach of the DSL, the conversion can only be

described textually. An example for this description is: "Transforms an integer to an array

of type byte or array of type byte to an integer conforming to poRTIco". With these model

elements, the adaptation is described by an instance of the AdaptationDescription subclass

BaseconnectedAdaptation named "HLAByteArrayAdaption". The type of Byte-Array is se-

lected as the base by referencing the DataMarker "byteArray". Two DerivedElement model

instances are created for this BaseconnectedAdaptation instance. One instance references

the DataMarker "string" and the "ByteArrayToStringConversion". The other DerivedEle-
ment instance references the DataMarker "integer" and the TransformationalConversion
"ByteArrayToIntegerConversion". The resulting "WorkwaySimAdaptationRepository"

content is shown in Table 7.9

Metamodel Element Model Element

DataMarker byteArray

DataMarker string

DataMarker integer

TransformationalConversion ByteArrayToStringConversion

TransformationalConversion ByteArrayToIntegerConversion

BaseConnectedAdaptation HLAByteArrayAdaption

DerivedElement with DataMarker: string

DerivedElement with DataMarker: integer

Table 7.9: Model elements to model the adaptation approach

121

7 Evaluation

7.3.5 Modelling of the WorkwaySim Interfaces

To de�ne required and provided data by simulations in an assembly, interfaces are used.

To model the transferred information in WorkwaySim the interfacede�nition model "Work-

waySimInterfaces" is created. The entry point is a InterfaceRepository instance named

"WorkwaySim_Interfaces".

The transferred information in WorkwaySim consist of the human attributes "collected",

"name" and "destination". Also the name of bus stops has to be exchanged. Additionally,

the noti�cation of a human registering at a bus stop has to be send by the WorkwaySim
and received by the BusSim. To provide a �ne-granular approach, multiple interfaces

are created to describe these information to transfer. The AssemblyInterface instance

HumanAttributes is created for the human attributes de�ned by the WorkwaySim itself.

In this instance, an InterfaceObjectClass named "Human_Attr" is de�ned. This element

contains the InterfaceData "humanName" and "destination". Another instance of Assembly-
Interface "HumanCollected" speci�es a interface for the "collected" attribute of a human.

The AssemblyInterface instance "BusStopRegisterInteraction" contains a InterfaceOperation
"registerHumanAtBusStop" where two parameters are used. One parameter represents the

humans name and the other the bus stop the human registers on. Therefore, two instances

of InterfaceParameter are modelled in the InterfaceOperation "RegisterHumanAtBusStop"

element. The InterfaceOperation instance "registerHumanAtBusStop" is not contained in

an InterfaceObjectClass to enable that his noti�cation can be sent by other entities than

bus stops or by the simulation features themselves. All de�ned AssemblyInterface models

contained in the "WorkwaySim_Interfaces" InterfaceRepository instance are presented in

Table 7.10

Metamodel Element Model Element

AssemblyInterface HumanAttributes

InterfaceObjectClass Human_Attr

InterfaceData humanName

InterfaceData destination

AssemblyInterface BusStopAttributes

InterfaceObjectClass BusStop_Attr

InterfaceData busStopName

AssemblyInterface BusStopRegisterInteraction

InterfaceOperation registerHumanAtBusStop

InterfaceParameter humanName

InterfaceParameter busStopName

AssemblyInterface HumanCollected

InterfaceObjectClass Human_Coll

InterfaceData collected

Table 7.10: Model elements to model the abstract interfaces to describe the information of

a simulation

122

7.3 Presentation of the DSL Model of WorkwaySim

7.3.6 Modelling of the WorkwaySim Assembly

The models of poRTIco, HumanSim and BusSim as well as the created interface and adap-

tation models are used to describe the coupling to the modular WorkwaySim. The Simu-
lationAssembly element is modelled with the name "WorkwaySim". The �rst step in the

modelling approach is to create components of the simulations and the coordinator. There-

fore, a AssembableComponent instance is created for each model of HumanSim, BusSim
and poRTIco.

7.3.6.1 Modelling of AssembableComponents and AnnotationEnhanced Information

The SimulationFeatureComponent instances "HumanSimComponent" and "BusCompo-

nent" are created to use the prior created de�ned models in the WorkwaySim de�nition.

"HumanSimComponent" references the "HumanSim" SimulationFeature element of the

created model. Respective, "BusSimComponent" references the "BusSim" SimulationFeature
element. The created MSEComponent "poRTIcoComponent" references the Coordinator
instance in the poRTIco model.

In both SimulationFeatureComponent instance, the information made available in the

assembly are de�ned by the creation of OOAnnotationEnhancedInformation instances. All

annotated information used in the WorkwaySim are the object classes "Human", "BusStop"

and "Bus". For each corresponding ObjectClass element in the BusSim and HumanSim
a AnnotatedObjectClass is created. Also for their con�ned Data, Operation and Opera-
tionParameter a corresponding sub-class element of AnnotationEnhanced is created. All

of their annotation are set. All AnnotationEnhanced elements in the WorkwaySim model

are presented in tabular form in this text. This presentation includes their annotations

set according to the AnnotationInterface of poRTIco for their InformationType. Table 7.11

contains the AnnotatedObjectClass instances and Table 7.12 presents the AnnotatedData
instances. Also, Table 7.13 shows the AnnotatedOperation elements and Table 7.14 provides

the AnnotatedParameter instances. If multiple AnnotationValue instances are referenced

by a MultipleSettableAnnotation they are marked with a "/".

In the "HumanSimComponent", the AnnotatedObjectClass "Human_HS" is created. The

corresponding AnnotationInterface instance de�ned in the poRTIco is referenced to de�ne

the correct interface. In this case, the AnnotatedObjectClass references the Annotation-
Interface "ObjectClass_AI". The AnnotationInterface of poRTIco for ObjectClass instances

contains the "Sharing" annotation. For this purpose, a MultipleSelectionAnnotationSet-
ter instance is de�ned because of the MultipleSettableAnnotation type of "Sharing". The

information what sub-type of Annotation is used has to be known by the modeller. In

the MultipleSelectionAnnotationSetter, the values of Publish and Subscribe are referenced.

Due to the conformance of poRTIco to the HLA speci�cation, this de�nes that the hu-

man ObjectClass can be published and subscribed. The used operations and data of the

"Human_HS" model is also annotated for the use in the WorkwaySim. The "name", "des-

tination" and "collected" attributes of human entities are used in the assembly (i.e. they

are transferred to or from BusSim). A corresponding AnnotatedData entry is de�ned for

each Data instance. This results in the AnnotatedData elements named "HumanName_HS",

"Collected_HS" and "Destination_HS". Each instance references its corresponding Data

123

7 Evaluation

instances in the HumanSim model. Each AnnotatedData references the AnnotationIn-
terface "Data_AI". This interface contains multiple annotations. The description of the

process of setting AnnotationValue instances for every Data instance in the WorkwaySim
model according to a corresponding AnnotationInterface would be redundant in this text.

Therefore, this process is only described for one AnnotatedData instance in detail. This

instance is the AnnotatedData "HumanName_HS". All modelled instances can be viewed

in Table 7.12. For the two MultipleSettableAnnotation "Ownership" and "Sharing", two

MultipleSelectionAnnotationSetter instances are modelled. One instance references the

Annotation "Ownership" and the other the Annotation "Sharing". The setter for "Sharing"

references the AnnotationValue instances "Publish" and "Subscribe" to show that changes

in the name or collected data can be made but also received. The setter for "ownership"

references the AnnotationValue instances "Acquire" and "Divest". Thus, the ownership of

the data can be divested and acquired by the HumanSim and by every other simulation

feature. The poRTIco model speci�es two CombinedAnnotation instances. One of those

instances is "Distribution", which references the two ExclusiveSettableAnnotation instances

"Order" and "Transportation". For each of those instances, a ExclusiveSelectionAnnotation-
Setter is created and their corresponding Annotation instances referenced. For "Order"

the AnnotationValue "Timestamp" is referenced. This reference de�nes that updates to

the Data "HumanName_HS" is received in a time-ordered way. For "Transportation" the

AnnotationValue "HLAreliable" is referenced. This value speci�es that poRTIco has to

assure that the transfer of the information to a federates is successful. Also, a WritableAn-
notationSetter is de�ned for the WritableAnnotation "Dimension". The dimension of the

self de�ned data type "Bool" is described by this Annotation instance. This description

allows to only receive information conforming to this data type. The "Update" annota-

tion contains one ExclusiveSettableAnnotation "UpdateType" and one WritableAnnotation
"Condition". For "UpdateType" a ExclusiveSelectionAnnotationSetter is speci�ed. This setter

references the AnnotationValue "Static". This value speci�es that a change in the value of

HumanName_HS is only propagated when the value is needed by another simulation in the

assembly. For the WritableAnnotation "Condition" a WritableAnnotationSetter is de�ned.

However, "UpdateType" does not select the AnnotationValue "Conditional". Therefore, the

ValueContent in the WritableAnnotationSetter is left empty. HumanSim also exchanges

information corresponding to the "BusStop" ObjectClass. Therefore, an AnnotatedObject-
Class BusStop_HS is created. For the required BusStop attribute "BusStopName_HS", a

AnnotatedData with the name "BusStopName_HS" is de�ned. With the "Sharing" and

"Ownership" Setter as in the AnnotatedData in the human de�nition. A AnnotatedOperation
"HumanRegistersAtBusStop_HS" is de�ned and a "Sharing" Setter with "Publish" and "Sub-

scribe" de�ned. Also an AnnotatedParameter called "HumanName_BusStopRegOp_HS"

and "BusStopName_BusStopRegOp_HumanNameParam_HS" is created. References the

Parameter_AI AnnotationInterface speci�es that the AnnotationSetter corresponding to

this interface are de�ned.

The information used by "BusSimComponent" are de�ned analogue to the process of

setting annotations for information in HumanSim. Therefore, the AnnotationEnhanced
instances for the description of information of BusSim used in the WorkwaySim are also

shown in the Tables 7.11 to 7.14.

124

7.3 Presentation of the DSL Model of WorkwaySim

ObjectClass Sharing

Human_HS Publish

BusStop_HS Subscribe

Human_BS Subscribe

BusStop_BS Publish

Table 7.11: ObjectClasses of BusSim and HumanSim with their set Annotations used in

WorkwaySim

ObjectClass, Data P/S A/D O Trans. Dim Update Cond.

Human_BS, HumanName_BS S - TS rel - Static -

Human_BS, Collected_BS P A TS rel Bool Static -

Human_BS, Destination_BS S - TS rel - Static -

BusStop_BS, BusStopName_BS P - TS rel - Static -

Human_HS, HumanName_HS P - TS rel - Static -

Human_HS, Destination_HS P - TS rel - Static -

Human_HS, Collected_HS S D TS rel Bool Static -

BusStop_HS, BusStopName_HS S - TS rel - Static -

Table 7.12: Data of BusSim and HumanSim with their set Annotations used in WorkwaySim.

Abbreviations: O = Order, TS = Timestamp, P/S = Sharing, P = Publish, S =

Subscribe, Trans. = Transportation, rel = HLA reliable, Dim = Dimension,

Ownership = A/D, Acquire = A, Divest = D, Update = Update Type ,Cond. =

condition

Operation Sharing

HumanRegistersAtBusStop_BS Subscribe

HumanRegistersAtBusStop_HS Publish

Table 7.13: Operations of BusSim and HumanSim with their set Annotations used in

WorkwaySim

125

7 Evaluation

Operation, Parameter Order Transportation Dimension

HumanRegistersAtBusStop_BS,

HumanName_BusStopRegOp_BS

Timestamp HLAreliable -

HumanRegistersAtBusStop_BS,

BusStopName_BusStopRegOp_BS

Timestamp HLAreliable -

HumanRegistersAtBusStop_HS,

HumanName_BusStopRegOp_HS

Timestamp HLAreliable -

HumanRegistersAtBusStop_HS,

BusStopName_BusStopRegOp_HS

Timestamp HLAreliable -

Table 7.14: Parameters of BusSim and HumanSim with their set Annotations used in

WorkwaySim

7.3.6.2 Modelling of Mappings from Annotation Enhanced Instances to Interfaces

The HumanSim requires the names of bus stops and the the collected attribute values of

humans. The names of bus stops is de�ned in the "BusStopAttributes" AssemblyInterface
instance. Therefore a InterfaceRequired model element is created which references this

instance. The AnnotatedObjectClass "BusStop_HS" is referenced together with a Inter-
faceObjectClass "BusStop_Attr". Also the ReferencingRequiredOOEntry of the HumanSim
model referencing the ObjectClass "BusStop_HS" is assigned. Within the RequiringObject-
ClassMapping, aDataToInterfaceMapping model element is created. This element references

the AnnotatedData "BusStopName_HS" and the InterfaceData busStopName. With this

mapping, it is signalled that the AnnotatedData is required by the HumanSim. HumanSim
provides the name and the destination attribute values of humans. A instance of Interface-
Provided is created to model this provision. The mapping of the instances to specify is done

analogue to the process in InterfaceRequired. ProvidingObjectClassMapping instances are

created for each InterfaceObjectClass in the target interface. In the case of the human

attributes, the ProvidingObjectClassMapping contains references to the AnnotatedObject-
Class "Human_HS" and the InterfaceObjectClass "Human_Attr". For each InterfaceData or

InterfaceOperation, corresponding DataToInterfaceMapping instances or OperationToInt-
erfaceMapping instances are created. In these mappings, the AnnotationEnhanced model

instance and the mapped Interface instance are referenced. In the case of WorkwaySim,

the interface "HumanAttributes" contains two InterfaceData entries. Therefore, two Data-
ToInterfaceMapping instances are created. One instance references the AnnotatedData
instance "Destination_HS" and the InterfaceData "destination". The other DataToInter-
faceMapping contains references to the AnnotatedData instance "HumanName_HS" and

the InterfaceData "humanName". This de�nition of InterfaceRequired and InterfaceProvided
mappings is repeated for the AssemblyInterface instances "BusStopRegisterInteraction"

(provided) and "HumanCollected" (required) in the WorkwaySim. The InterfaceProvided
and InterfaceRequired mappings are also modelled for BusSim with exchanged roles (i.e.

required and provided). Table 7.15 shows the complete de�nition for all InterfaceProvided
mappings instances. Table 7.16 displays all InterfaceRequired model instances. In these

tables it can be seen, that only the su�xes of the data are exchanged (i.e. WS and BS). This

126

7.3 Presentation of the DSL Model of WorkwaySim

shows, that all required data by HumanSim are provided by BusSim. It is also visible that

all information required by BusSim is provided by HumanSim.

Mapping AnnotationEnhanced Name Interface Element Name

Operation HumanRegistersAtBusStop_HS registerHumanAtBusStop

Parameter BusStopName_BusStopRegOp_HS busStopName

Parameter HumanName_BusStopRegOp_HS humanName

ObjectClass Human_HS Human_Attr

Data Destination_HS destination

Data HumanName_HS humanName

ObjectClass BusStop_BS BusStop_Attr

Data BusStopName_BS busStopName

ObjectClass Human_BS Human_Coll

Data Collected_BS collected

Table 7.15: Model elements contained in InterfaceProvided models in the HumanSimCom-

ponent and BusSimComponent. For each row with "Operation", "Parameter"

or "Data" in the "Mapping" column, the corresponding model elements are

[X]-ToInterfaceMapping where X is one of the information types prior men-

tioned. When "ObjectClass" is contained, the corresponding model element is

the "ProvidingObjectClassMapping"

Mapping AnnotationEnhanced Name Interface Element Name

Operation HumanRegistersAtBusStop_BS registerHumanAtBusStop

Parameter BusStopName_BusStopRegOp_BS busStopName

Parameter HumanName_BusStopRegOp_BS humanName

ObjectClass Human_BS Human_Attr

Data Destination_BS destination

Data HumanName_BS humanName

ObjectClass BusStop_HS BusStop_Attr

Data BusStopName_HS busStopName

ObjectClass Human_HS Human_Coll

Data Collected_HS collected

Table 7.16: Model elements contained in InterfaceRequired models in the HumanSimCom-

ponent and BusSimComponent. For each row with "Operation", "Parameter"

or "Data" in the "Mapping" column, the corresponding model elements are

[X]-ToInterfaceMapping where X is one of the information types prior men-

tioned. When "ObjectClass" is contained, the corresponding model element is

the RequiringObjectClassMapping"

127

7 Evaluation

7.3.6.3 Modelling of Connections in WorkwaySim

The InterfaceMapping instances described in Section 7.17 have to be connected in the DSL

in order to describe the implicit information �ow between the components "BusSimCom-

ponent", "HumanSimComponent" and "poRTIcoComponent".

Four instances of RequiredProvidedInterfaceConnection are speci�ed for the connection

between the interfaces. These instances connect the InterfaceProvided mappings to the

InterfaceRequired mappings. Therefore, the implicit data �ow from provisioning simula-

tions to requiring simulations is de�ned. The created RequiredProvidedInterfaceConnection
instances are presented in Table 7.17. In this table, only the underlying AssemblyInterface
is named, because InterfaceRequired and InterfaceProvided model instances do not have

a Name attribute. One connection is textually described as example. The RequiredPro-
videdInterfaceConnection with the name "HumanCollectedMapping" provides a connection

between the InterfaceRequired and InterfaceProvided instances for the "HumanCollected"

AssemblyInterface element. Therefore, the corresponding InterfaceRequired and Inter-
faceProvided model elements are referenced. The providing SimulationFeatureComponent
"BusSimComponent" together with the requiring "HumanSimComponent" referenced as

well.

Connection Name Assembly Interface Providing Component,

Requiring Component

HumanCollectedConnection HumanCollected BusSimComponent,

HumanSimComponent

HumanAttributeConnection HumanAttributes HumanSimComponent,

BusSimComponent

BusStopAttributeConnection BusStopAttributes BusSimComponent,

HumanSimComponent

BusStopRegisterConnection BusStopRegisterInteraction HumanSimComponent,

BusSimComponent

Table 7.17: De�ned model elements to connect InterfaceRequired elements and Interface-
Provided elements in the WorkwaySim assembly model

WiringConnection elements de�ne the structure of WorkwaySim and the communica-

tion paths between the components. Models of components have to de�ne Connector
elements to be de�ned in WiringConnection instances. These connectors are in BusSim
and HumanSim equal to the federate ambassadors and in poRTIco to the RTIambassador.
SimulationComponentConnector instances are de�ned in the SimulationFeatureCompo-
nent instances "BusSimComponent" and "HumanSimComponent". These connectors are

named "HumanSimFederateAmbassador" and "BusSimFederateAmbassador". The MSESer-
viceInterface instances of the poRTIco model which end with "_FederateAmbassador" are

referenced in these connectors. These references are equivalent to de�ned methods in the

FederateAmbassadors needed in of BusSim and HumanSim (e.g. receiveInteraction(. . .) or

re�ectAttributeValues(. . .)). A MSEComponentConnector instance is modelled in the MSEC-
omponent element "poRTIcoComponent" to de�ne the "RTIambassador". This connector is

128

7.3 Presentation of the DSL Model of WorkwaySim

named "poRTIcoRTIAmbassador" and contains references to all MSEServiceInterface in-

stances of the poRTIco model which end with "_RTI_Ambassador". These references model

the functionality of the "RTIAmbassador" of poRTIco. PoRTIco realises a centralised scheme,

where each simulation only communicates with the poRTIco RTI. The connectors are

connected with WiringConnection instances to describe the communication paths between

poRTIco, HumanSim and BusSim. Therefore two instances of SimulationFeature_MSEWiring
are speci�ed. One of these instances is named "poRTIco_HumanSimWiring". It references

the MSEComponent instance "poRTIcoComponent" along with its MSEComponentConnector
"poRTIcoRTIAmbassador". Also the wiring describes the simulation features as endpoints.

For this purpose, the SimulationFeatureComponent "HumanSimComponent" and the Simu-
lationComponentConnector "HumanSimFederateAmbassador" are referenced. This wiring

describes the connection between the federate ambassador and the RTIambassador. The

same model is realised analogue for the "BusSimComponent" model.

7.3.6.4 Modelling of Adaptation Mappings

The simulation feature BusSim realises the adaptation approach proposed in Sec. 6.2.

The used AdapterService "HLAAdapter" is modelled by a StructuralAdapter service in the

SimulationFeatureComponent instance "BusSimComponent". The abstract adaptation de-

scription has to be connected to the data of a modular simulation to be adapted. Therefore,

an AdapterDescriptionAttachment element is created in the "BusSimComponent" instance.

This element references the De�nitionRepository model "WorkwaySimAdaptationRepos-

itory", the StructuralAdapter instance "HLAAdapter" and the BaseConnectedAdaptation
"HLAByteArrayAdaptation". These references models the usage of the "HLAByteAr-

rayAdaptation" in the "HLAAdapter". Three instances of MarkerMapping are created to

provide the mapping between the DataMarker instances and the data in WorkwaySim.

The content of the MarkerMapping instances is shown in Table 7.18. This table shows

DataMarker Name Adaptable Names

byteArray BusByte[], Byte[],

HumanByte[]

string BusString

integer BusInt

Table 7.18: References of model elements in MarkerMapping instances

that the data �ow adapted by the AdaptationDescription is predetermined. The BusSim
only works with its String and Integer values. The "byteArray" DataMarker, on the other

hand, describes multiple names and therefore a sending or receiving by possibly di�er-

ent participants in the modular simulation. The same elements are represented in the

"HumanSimComponent" because it also implements these adaptation capabilities.

129

7 Evaluation

7.4 Evaluation Results

The evaluation results for RQ1 to RQ3 are presented in the subsections of this section. All

evaluation results are found on GitHub [91]. The results were gathered on a computer

with the speci�cations shown in Table 7.19. The knowledge about the speci�cation of the

computer is especially relevant for RQ3 where the execution times of the monolithic and

modular simulation are evaluated in regard to the scalability.

CPU Type Intel Core i7-6700

CPU Speed 3.4 GHz

RAM Size 16 GB

RAM Type DDR4

RAM Speed 2133 MHz

Operating
System

Windows 10 64bit

Table 7.19: Simulation PC

7.4.1 Evaluation Results for RQ1 - Completeness

The evaluation results regarding the completeness of the DSL are presented in this section.

Therefore a mapping between the model elements of the WorkwaySim DSL model and

its implementation is presented in Table 7.20 to Table 7.25. In this mapping, the number

of model elements are asserted to the corresponding implementation elements. This

enables to reason about the capabilities of the DSL in comparison to the working example

implementations. If model elements cannot be mapped to a implementation element, the

element is denoted with "no correspondence".

Table 7.20 provides a comparison of the number of model elements of the BusSim simu-

lation feature model to the implementation elements in the the BusSim implementation.

In the model, 35 elements are created. All 22 elements in the implementation have a corre-

spondence in the model. Therefore, 13 of the 35 model elements have no correspondence.

This results in a value of 1.59 in metric 1 for the BusSim model. The Table 7.21 compares

the model elements and the implementation elements of the WorkwaySim simulation.

Here, 30 model elements are used. The implementation includes 21 elements. Thus, 9

model elements have no correspondence in the source code. Thus, metric 1 is 1.43.

Table 7.22 shows the comparison between the poRTIco implementation elements and the

elements of the poRTIco model. The poRTIco model consists of 405 created elements. The

implementation contains 365 elements relevant for the coupling of WorkwaySim. Therefore,

40 model elements have no correspondence. This results in metric 1 with 1.11.

There is no correspondence with the "WorkwaySimInterfaces" model to the modular

WorkwaySim implementation. The abstract description of interfaces in the DSL is used for

the reusable abstract description of the exchanged information in a modular simulation.

Therefore, no realisation in the implementation can be mapped to the model elements.

Because of this reason, a mapping table in is dismissed. The model of the adaptation

approach is implemented in the HumanSim and BusSim to provide an implementation

130

7.4 Evaluation Results

Metamodel Element Number of Instances Java-Sourcecode-

Element

Number of

Code-Elements

SimulationFeature

BusSim

1 BusModel.java 1

DataTypeContainer 1 No correspondence 0

UnitTypeContainer

Duration

1 Duration.java 1

Unit (second,

minute, hour)

3 No correspondence 0

BaseDataType 5 Data types of Java 5

DataTypeCollection (BusByte[]) 1 Java "Array" 1

EnumType BusState 1 BusState Enum

(Bus.java)

1

EnumLiterals 4 No correspondence 0

Object Oriented View Simulation Data 1 No correspondence 0

Bus_BS, BusStop_BS, Human_BS_B 3 Bus.java, BusStop.java, Human.java 3

Data (Bus_BS) 5 Bus.java �elds 5

Data (BusStop_BS) 1 BusStop.java �elds 1

Data (Human_BS) 1 Human.java �elds 1

ObjectClassOperation

registerHumanAt-

BusStop_HS

3 "registerHumanAtBusStop()" 1

OperationParameter

(registerHumanAt-

BusStop_HS)

2 "registerHumanAtBusStop()" parameter 2

ReferencingRequiredOOEntry 2 No correspondence 0

Data (ReferencingRequiredOOEntry) 2 Human.java �elds 2

Total Number of
Model-Instances

35 Total Number of
Java-Sourcecode-
Elements

22

Table 7.20: Comparison between the elements of the implementation of the Bus Simulation

and its DSLs model

131

7 Evaluation

Metamodel Element Number of Instances Java-Sourcecode-

Element

Number of

Code-Elements

SimulationFeature HumanSim 1 HumanModel.java 1

DataTypeContainer HumanSim_DTC 1 No correspondence 0

UnitTypeContainer

Duration

1 Duration.java 1

Unit (second,

minute, hour)

3 No correspondence 0

BaseDataType 5 Data types of Java 5

DataTypeCollection (WorkwayByte[]) 1 Java "Array" 1

EnumType

HumanBehaviour

1 HumanBehaviour

Enum

1

EnumLiterals 2 No correspondence 0

ObjectClassReferenceDataType BusStop 1 No correspondence 0

Object Oriented View Simulation Data 1 No correspondence 0

BusStop_HS, Human_HS_B 3 Bus.java, BusStop.java, Human.java 3

Data (Human_BS) 4 Human.java �elds 4

ObjectClassOperation

registerHumanAt-

BusStop_BS

1 "registerHumanAtBusStop()" 1

OperationParameter

(registerHumanAt-

BusStop_BS)

2 "registerHumanAtBusStop()" parameter 2

ReferencingRequiredOOEntry 2 No correspondence 0

Data (ReferencingRequiredOOEntry) 2 Human.java �eld,

BusStop.java �eld

2

Total Number of
Model-Instances

30 Total Number of
Java-Sourcecode-
Elements

21

Table 7.21: Comparison between the elements of the implementation of the Human Simu-

lation and its DSLs model

132

7.4 Evaluation Results

Metamodel Element Number of Instances Java-Sourcecode-

Element

Number of

Code-Elements

Coordinator

poRTIco

1 LRC.java 1

DataTypeContainer poRTIco_DTC 1 No correspondence 0

BaseDataType (e.g., HLAbyte) 8 org.portico.impl.hla1516e.types.encoding 8

BaseDataType (e.g., HLA�oat64Time) 2 org.portico.impl.hla1516e.types.time 2

BaseDataType Handle 1 HLA1516eHandle.java 1

DataTypeCollection 2 Java-Language 2

ExceptionContainer poRTIco_EC 1 hla.rti1516e.exceptions package 1

Exception 110 .java �les

in hla.rti1516e.exceptions package

110

MSEServiceInterface 13 No correspondence 0

AnnotationContainer 1 org.portico.lrc.model package 1

AnnotationInterface 4 org.portico.lrc.model package (and OMT) 4

MultipleSettableAnnotation 2 No correspondence 0

Sharing, Ownership implicit

AnnotationValue 4 No correspondence 0

publish, subscribe,

divest, acquire

ExclusiveSettableAnnotation 3 org.portico.lrc.model package 2

UpdateType, Order,

Transportation

Order.java,

Transportation.java

AnnotationValue 8 No correspondence 0

WritableAnnotation 2 No correspondence 0

CombinedAnnotation 2 No correspondence 0

ManagementService 7 No correspondence 0

ManagementServiceFunction 232 NullFederateAmbassador.java

and RTIambassador Methods

232

ManagementServiceSupportEntity 1 TimeManager.java 1

Total Number of
Model-Instances

405 Total Number of
Java-Sourcecode-
Elements

365

Table 7.22: Comparison between the elements of the poRTIco implementation and its DSLs

model relevant for WorkwaySim

133

7 Evaluation

example of the adaptation. The comparison of the model elements and the implementation

elements are shown in Table 7.23. This implementation results in nine model elements in

the WorkwaySimAdaptation model and 14 elements (seven elements in HumanSim and

seven in BusSim). Therefore, only one model element has no correspondence. Metric 1
has a value of 0.64. The model of the assembly of the WorkwaySim model is asserted to

Metamodel Element Number of Instances Java-Sourcecode-

Element

Number of

Code-Elements

De�nitionRepository 1 No correspondence 0

DataMarker 3 Objects in

BusFederate.java

and HumanFeder-

ate.java

6

TransformationalConversion 2 ByteArrayTo[Integer/Sting]Conversion.java4

BaseConnectedAdaptation 1 HLAByteArrayAdaption.java 2

DerivedElement 2 Objects of HLAByteArrayDerivedElement.java4

Total Number of
Model-Instances

9 Total Number of
Java-Sourcecode-
Elements

14

Table 7.23: Comparison between the elements of the WorkwaySimAdaptation model and

the implementation in BusSim anf HumanSim

its corresponding implementation elements. This mapping is presented in the Table 7.24.

This table is continued by Table 7.25 due to the many model elements. 159 model elements

are used to represent the coupling of the modular WorkwaySim. These model elements

can be mapped to 28 elements in the implementation. This results in 131 model elements

without correspondences in the source code. Therefore metric 1 is 5.68.

134

7.4 Evaluation Results

Metamodel Element Number of Instances Java-Sourcecode-

Element

Number of

Code-Elements

SimulationAssembly

WorkwaySim

1 No correspondence 0

SimulationFeatureComponent

BusSimComponent,

HumanSimComponent

2 BusFederate,

HumanFederate

2

MSEComponent

poRTIcoComponent

1 poRTIco.jar 1

StructuralAdapter 2 HLAAdapter.java

(HumanSim,

BusSim)

2

AdapterDescriptionAttachment 2 No correspondence 0

MarkerMapping 6 DataMarkerMapping objects

(BusFederate.java,

HumanFederate.java)

6

SimulationComponentConnector

(BusSimComponent,

HumanSimComponent)

2 BusFederateAmbassador.java,

HumanFederateAmbassador.java

2

MSEComponentConnector 1 Rti1616eAmbassador.java 1

OOAnnotationEnhancedInformation 2 No correspondence 0

AnnotatedObjectClass 4 No correspondence 0

AnnotatedData 8 No correspondence 0

AnnotatedOperation 2 No correspondence 0

AnnotatedParameters 4 No correspondence 0

MultipleSelectionAnnotationSetter 20 No correspondence 0

ExclusiveSelectionAnnotationSetter 32 No correspondence 0

WritableAnnotation 20 No correspondence 0

CombinedAnnotationSetter 20 No correspondence 0

InterfaceProvided 4 No correspondence 0

InterfaceRequired 4 No correspondence 0

Table 7.24: A comparison between the elements of the WorkwaySim implementation and

its modular simulation assembly model

135

7 Evaluation

Metamodel Element Number of Instances Java-Sourcecode-

Element

Number of

Code-Elements

RequiringObjectClassMapping 2 subscribeObjectClassAttributes
(BusFederate.java,

HumanFederate.java)

2

DataToInterfaceMapping

(InterfaceRequired)

3 Attribute handles in

subscribeObjectClassAttributes()
(BusFederate.java,

HumanFederate.java)

3

ProvidingObjectClassMapping 2 publishObjectClassAttributes()
(BusFederate.java,

HumanFederate.java)

2

DataToInterfaceMapping

(InterfaceProvided)

3 Attribute handles in

publishObjectClassAttributes()
(BusFederate.java,

HumanFederate.java)

3

OperationToInterfaceMapping

(InterfaceRequired)

1 subscribeInteractionClass()
(BusFederate.java)

1

ParameterToInterfaceMapping

(InterfaceRequired)

2 No correspondence 0

OperationToInterfaceMapping

(InterfaceProvided)

1 publishInteractionClass()
(HumanFeder-

ate.java)

1

ParameterToInterfaceMapping

(InterfaceProvided)

2 No correspondence 0

RequiredProvidedInterfaceConnection 4 No correspondence 0

SimulationFeature_MSEWiring 2 rtiamb.connect()
BusFederate.java ,

HumanFederate.java

2

Total Number of
Model-Instances

159 Total Number of
Java-Sourcecode-
Elements

28

Table 7.25: Continuation of Table 7.24: comparison between the elements of the Work-

waySim implementation and its modular simulation assembly model - contin-

ued

136

7.4 Evaluation Results

7.4.2 Evaluation Results for RQ2 - Accuracy

Values of the life-cycle of humans are created to evaluate the RQ2. The human entities

in the simulation are directly in�uenced by the bus and their daily routine. The humans

indirectly in�uence themselves if they provide a number greater than the maximum

capacity by the bus. Therefore, values of the human entities can provide insight into the

simulations behaviour. As described in section 7.1, in HumanSim, the way to the workplace

and back home of a human is of the primary interest. Therefore, values of taway , twaitinд
and tdrivinд are collected to resemble this way to the workplace and back. These values

are subsumed by the names AwayTimes (taway), WaitingTimes (twaitinд) and DrivingTimes
tdrivinд for a number of simulated humans. Therefore, the contained values are provided in

simulation time. The values in WaitingTimes is dependent on the bus and its load due to

the possible overloading scenarios.

Due to the stochastic nature of the behaviour controlling variables in human entities,

it can be challenging to provide a statement about the equivalence of an approach. All

controllable stochastic dependent variables are altered to be deterministic to evaluate the

behaviour preservation of the modular simulation. This alteration allows discovering of

in�uences on the simulation behaviour if any exist. Additionally to use the deterministic

values described in Sec. 7.1 no human will walk directly to their workplace due to the

independence of this approach. Therefore, only the interaction between the both simulation

feature in�uence the results.

M2 to M4 are shown in Table 7.26 for the collected values of taway,drivinд for 10, 50 and

100 simulation humans. Only the metrics for Taway,drivinд are presented in the table due to

its dependence on twaitinд and tdrivinд. In a deterministic simulation, a change in the last

two value types shows immediate results in a deviation of the values in taway,drivinд. This

deviation can be discovered by a change in the EMD or in possible changes in p-values

of the statistic tests. Fig. 7.1 shows the distributions of the AwayTimes values of the

Number Humans EMD (M2) Wilcoxon p (M3) Kolmogorov-

Smirnov p (M4)

10 0 1 1

50 0 1 1

100 0.0964 0.949 1

Table 7.26: Deterministic WorkwaySim AwayTimes Results

monolithic and the modular simulations for 10, 50 and 100 simulated humans. The x-axis

represents the AwayTimes values of humans in seconds. The y-axis illustrates the density

of the AwayTimes values for the corresponding quantity of simulated humans. The EMD

and both p-values are at their maximum with 10 and 50 simulated humans. However,

deviations of the maximum can be seen in the simulation of 100 humans. To analyse the

deviation with 100 simulated humans, Table 7.27 presents the metrics for the collected

values for AwayTimes, DrivingTimes and WaitingTimes. In this table, it can be seen that

metric 1 and 2 di�er where metric 3 is still at 1.00. In the WaitingTimes, EMD is 0.145

and Wilcoxon p-value is 0.949. The DrivingTimes result of EMD is 0.05 and the Wilcoxon

137

7 Evaluation

0e+00

2e-04

4e-04

6e-04

43750 44000 44250 44500
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(a) 10 Humans

0e+00

2e-04

4e-04

6e-04

8e-04

445004475045000452504550
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(b) 50 Humans

0e+00

1e-04

2e-04

3e-04

4e-04

5e-04

46000 48000 50000
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(c) 100 Humans

Figure 7.1: Figures of Deterministic Simulation Results for AwayTimes values

p-value is 0.991. In the overall AwayTimes, the Wilcoxon p-value is 0.949 and the EMD is

0.0964. The sums of the three value types are provided in Table 7.28 together with their

di�erences. The di�erences are calculated with by subtracting the modular times by the

monolithic times. It is visible, that the di�erences are multiples of �ve.

Value Type EMD (M2) Wilcoxon p (M3) Kolmogorov-

Smirnov p (M4)

AwayTimes 0.0964 0.949 1

WaitingTimes 0.145 0.949 1

DrivingTimes 0.05 0.991 1

Table 7.27: Simulation results AwayTimes, WaitingTimes and DrivingTimes for 100 simu-

lated humans in the Deterministic WorkwaySim

Value Type Modular

Duration (Sum)

Monolithic

Duration (Sum)

Di�erence

AwayTimes 4667390 4667400 -10

WaitingTimes 545185 545200 -15

DrivingTimes 522205 522200 5

Table 7.28: A comparison between the resulting durations in the monolithic WorkwaySim

and Modular WorkwaySim

138

7.4 Evaluation Results

More data is gathered to see a trend in the evaluation when applying the non-deterministic

attributes of humans in WorkwaySim. The number of simulated humans is increased

step-wise to gather more data. However, technical limitations were experienced when

simulating more than 100 humans on the evaluation machine. To be able to gather more

than 100 values of humans, it was deemed useful to collect information of multiple runs

and use them as one data set. The metrics for each value types are provided in separate

tables. The values of AwayTimes are now taway and are presented in Table 7.29. The metrics

for WaitingTimes are shown in Table 7.30 and for DrivingTimes in Table 7.31. Fig. 7.2

shows the density distributions of the non-deterministic runs of the monolithic simulation

and the modular version for the AwayTimes. The distribution di�er from the ones shown

in Fig. 7.1 because of the non-deterministic variables.

Number Humans EMD (M2) Wilcoxon p (M3) Kolmogorov-

Smirnov p (M4)

10 3554.36 0.082 0.164

50 182.14 0.629 0.964

100 437.67 0.543 0.699

300 201.70 0.523 0.847

500 349.24 0.329 0.413

100 103.04 0 0.992 0.954

Table 7.29: Evaluation Results for the AwayTimes in the non-deterministic WorkwaySim

version

Number Humans EMD (M2) Wilcoxon p (M3) Kolmogorov-

Smirnov p (M4)

10 994.00 0.322 0.759

50 528.05 0.14 0.544

100 312.66 0.269 0.581

300 47.89 0.73 0.97

500 152.83 0.359 0.46

1000 46.84 0.993 0.936

Table 7.30: Evaluation Results for the WaitingTimes in the non-deterministic WorkwaySim

version

At ten humans, the Wilcoxon p-value is at 0.082 and the Kolmogorov-Smirnov p-value

at 0.164. The EMD distance is at 3554.36 between both simulations. Fig. 7.2 (a) shows

the dissimilarities in the results and distributions of both simulations. For 50 humans,

the EMD is 182.14 and the Wilcoxon p-value 0.629. The Kolmogorov-Smirnov p-value is

0.964. The two distributions depicted in Fig. 7.2 (b) show a trend to similarities. However,

di�erences are visible. For 100 humans, the EMD is 437.67 and the Wilcoxon p-value 0.543.

The Kolmogorov-Smirnov p-value is 0.699. The two distributions provided in Fig. 7.2 (c)

139

7 Evaluation

Number Humans EMD (M2) Wilcoxon p (M3) Kolmogorov-

Smirnov p (M4)

10 425.17 0.319 0.759

50 554.74 0.437 0.544

100 475.51 0.217 0.281

300 94.89 0.796 0.249

500 94.89 0.726 0.863

100 6.37 0.945 0.759

Table 7.31: Evaluation Results for the DrivingTimes in the non-deterministic WorkwaySim

version

show the trend to the increase in distance and dissimilarity. With 300 humans, the EMD is

201.70 and the Wilcoxon p-value 0.523. The Kolmogorov-Smirnov p-value is 0.847. The

corresponding distributions are shown in Fig. 7.2 (d) where a clear trend to an alignment

of the two distributions can be seen. At 500 humans, the EMD is 349.24 and the Wilcoxon

p-value 0.329. The Kolmogorov-Smirnov p-value is 0.413. The increase in non-alignment

is also visible in Fig. 7.2 (e). For 1000 humans, the EMD is 103.04 and the Wilcoxon p-value

0.992. The Kolmogorov-Smirnov p-value is 0.954. In Fig. 7.2 (f) shows the trend also

seen in the metrics 2 to 4. Similarities between the forms of the monolithic simulations

distributions and the one of the modular version can be seen.

Fig. 7.3 depicts the EMD values of the AwayTimes, WaitingTimes and the DrivingTimes
for further inspection of the dependencies of the EMD. On the x-axis, the numbers of

simulated humans are represented. On the y-axis, the EMD is marked.

140

7.4 Evaluation Results

0.0e+00

2.5e-05

5.0e-05

7.5e-05

1.0e-04

3000035000400004500050000
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(a) 10 Humans

0e+00

2e-05

4e-05

6e-05

8e-05

3000035000400004500050000
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(b) 50 Humans

0e+00

2e-05

4e-05

6e-05

3000035000400004500050000
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(c) 100 Humans

0e+00

2e-05

4e-05

6e-05

3000035000400004500050000
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(d) 300 Humans

0e+00

2e-05

4e-05

6e-05

3000035000400004500050000
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(e) 500 Humans

0e+00

2e-05

4e-05

6e-05

3000035000400004500050000
simulation time (seconds)

de
ns

ity

Modular

Monolithic

(f) 1000 Humans

Figure 7.2: Deterministic Simulation Results

141

7 Evaluation

10

100

1000

0 250 500 750 1000
Number of Simulated Humans

E
M

D Away

Driving

Waiting

Figure 7.3: EMD Values for non-deterministic WorkwaySim Humans sorted by AwayTimes,

DrivingTimes and WaitingTimes

7.4.3 Evaluation Results of RQ3 - Scalability

Another aspect to evaluate possible drawbacks or bene�ts of modularisation are the

execution times of the monolithic simulation and modular simulation. The maximum

number of simulation features to be run with poRTIco is limited by the performance of the

used computer. On the used simulation PC, the number of maximum simulated features

is between 128 and 140 at once. The execution times of the modular and monolithic

WorkwaySim are depicted in Figure 7.4. The x-axis of the �gure shows the number of

simulated humans. The y-axis shows the execution times of the simulation. The �gure

shows the execution times for 10 to 100 simulated humans. It is of importance to notice

the logarithmic scale of the y-axis. The di�erence between the execution times of the

1

10

100

1000

25 50 75 100
Number Simulated Humans

E
xe

cu
tio

n
 T

im
e

 (
se

co
n

d
s)

Modular

Monolithic

Figure 7.4: Execution Times of the Monolithic and Modular WorkwaySim

142

7.5 Discussion of Evaluation-Relevant Design Decisions of WorkwaySim

monolithic simulation and the modular simulation is visible. The logarithmic scale induces

the impression that the monolithic simulations execution time increases in great amounts

where the modular execution times are nearly the same. However, the execution times of

the monolithic simulation range between 0.16 seconds and 0.95 seconds. The execution

times of the modular simulation ranges between 427.00 seconds and 720,19 seconds.

7.5 Discussion of Evaluation-Relevant Design Decisions of
WorkwaySim

Design and implementation decisions of the modular WorkwaySim which are relevant for

the evaluation are discussed in this section. One decision is the application of the waiting

approach in the monolithic WorkwaySim and its modular version. Also the implementation

of the simulation features of WorkwaySim are discussed. This discussion also provides

insight about the positioning of the location in the source code, where the points of times

are taken to calculate the execution times.

7.5.1 Implementation of the Waiting Scheme

The waiting scheme employed in WorkwaySim has to be equal in the monolithic simu-

lation and its modular version to evaluate the behaviour preservation of the approach.

This equality allows a more exact evaluation of the behaviour of both simulations. The

modular simulation employs the busy-waiting scheme. This application is motivated by

implementation problems for resuming an control �ow in interaction with poRTIco. Even

when a simulation feature schedules events for the human, it has to test for incoming

events by poRTIco. This testing has to be done by use a time lookahead value. However, if

this lookahead is chosen to great, advancements in time can be invalid. If it is selected to

small, no changes can be found. Therefore, time has to be advanced to scan the time-line.

Because of this problem, the busy-waiting scheme is employed. Due to scheduling prob-

lems with poRTIco, the busy-waiting time advance duration of �ve seconds was determined.

Scheduling problems were experienced with times below this duration. To provide equal

results, also the monolithic WorkwaySim employs this time scheme with the same time

advance.

7.5.2 Implementation of Multiple HumanSim Features

Another implementation speci�c decision is the simulation of each human. In modular

WorkwaySim, each human and bus is represented by its own model with its own simulation

engine and its own time line. This time line is then synchronised with the poRTIco time line.

Multi-threading is used to simulate multiple humans in one application. For each human,

a simulation is created and connected to poRTIco. This allows to spawn multiple features

with one application. To realise the correct collection of values used in the evaluation,

each created HumanSim simulation feature contains an ID. A "master" simulation feature

is determined by the ID zero. This simulation feature waits for all HumanSim simulation

features to be �nished and then gathers and writes the collected values to �les.

143

7 Evaluation

Technical limitations were experienced in the interaction with multi-threading approach

and poRTIco. PoRTIco speci�es that each joining federate has to respond within 5 seconds to

a call-back from the RTI. In the multi-threading approach, this limitation creates problems

when many threads are spawned to simulate multiple humans. When 100 humans have to

be simulated, it is possible that some threads cannot respond within 5 seconds. poRTIco
throws an exception when the response to the callback does not arrive within this time-

window. Therefore, the HumanSim program spawns threads with a pre-set sleeping-period

in between (e.g. four humans and then 30 seconds sleeping duration) to avoid this problem.

This enables the spawned threads to answer in the time frame of 5 seconds. Contrary

to this design, all entities are created in the same model and are scheduled to the same

time-line in the monolithic simulation.

7.5.3 Calculation of Execution Time in WorkwaySim

In the modular and monolithic of WorkwaySim, execution times are calculated by collecting

two points in time tbeinд and tend . Here, tbeдin is a point in time to signal the begin of the

simulation execution. tend is a point in time denoting the end of the simulation execution.

This collection is realised by the assignment of Double values with the Java-Method

System.nanoTime(). The execution time is then calculated with tend − tbeдin. The collection

these time points are not implemented in the same locations in the source code of the

monolithic WorkwaySim and its modular version due to the multi-threading approach.

The time-point tbeдin in the monolithic simulation is the immediate entry in the simulation

execution itself. Therefore, the creation of all entities (i.e. bus, bus stops and humans)

are included. tend is collected before the writing of evaluation data to �les after the end

of simulation time. In the modular WorkwaySim, tbeдin is not located after the immediate

start of each simulation. The execution time is calculated by use of a master HumanSim
simulation feature (i.e. with ID zero). The entity synchronisation between BusSim and

HumanSim simulation features is left out of the execution time. All federates have to wait

on a synchronisation point. If the execution time would be calculated before this point

of time, the thread spawn overhead would also be included. Therefore, tbeдin is collected

before the master HumanSim simulation feature starts the simulation of its human. This

allows obtaining the simulation time without setup and waiting mechanisms for threads

not ready to execute the simulation model. tbeдin is taken when all simulation features

have ended their simulation execution. This approach allows to achieve a common ending

point. This synchronisation represents the joined exit of simulation as in the monolithic

version.

7.6 Discussion of Results

With the description of the model, it is shown that is possible to describe the WorkwaySim
in a modularised form with the DSL. The created models with the DSL along with the

evaluation results can be found on GitHub [91].

The model shows limitations of modelling capabilities. The DSL does not support

generics type parameters and inheritance as used in the programming language Java. This

144

7.6 Discussion of Results

drawback is already mentioned in section 7.3.1 where it is not possible to describe the

data type "HLAvariableArray". This drawback is also supported by Table 7.22 where no

corresponding model element to this Java class can be speci�ed. Therefore the the DSL is

described as insu�cient concerning these capabilities. However, a workaround for this

problem is to specify these capabilities as model elements of type (e.g. "Byte[]", "Int[]" or

"Second[]").

Furthermore, concerning the completeness of the DSL (RQ1), Sec. 7.4.1 provides a map-

ping between the model elements and the Java implementation elements. The provided

Tables 7.20 to 7.25 show that, for most model elements correspondences in the code exists.

One reason for missing correspondences is that some model elements are for reuse and

structuring purposes of the model. Examples for such elements are the DataTypeContainer,
ObjectOrientedViewSimulationData and ReferencingRequiredOOEntry model instances in

Table 7.21 and Table 7.20. Another reason for the missing correspondences are that el-

ements in the implementation are seen as one entity. For example the Duration.java in

BusSim with its representation of time units is counted as one element. In the DSL, the

UnitTypeContainer duration is counted as well as all three Unit model instances. The same

can be shown for the EnumType "HumanBehaviour" with the two EnumLiteral instances

(counted as 3). This enum is also present in the HumanSim implementation. However,

these literals are not counted in the implementation as elements. Additionally, model

elements of the DSL can express concepts only implicitly implemented. For example

the Annotation and AnnotationValue instances of the poRTIco model represent the pos-

sible columns of the HLA OMT for object class, attribute, parameter and interaction. In

poRTIco, these columns are not represented as separate classes except Order.java and

Transportation.java. Therefore, a greater di�erence in the between model elements and

implementation elements exists. The adaptation approach described in Sec. 6.2 is also

applied in the implementation. A Metric 1 of 0.64 shows, that fewer model elements than

implementation elements are used. This result supports the intend for the reuse of the

abstract adaptation description. The one model element without correspondence can be

explained by the structural characteristics of De�nitionRepository. The working application

of the approach shows that the idea of data adaptation can be applied. However, due to

the very limited application in the WorkwaySim example, a concrete statement whether

the presented adaptation approach is applicable in more complex scenarios cannot be pro-

vided. Thus, the adaptation approach has to be further researched and applied to more and

complex simulations and problems. The DSL metamodel elements of InterfaceDe�nition
lack any correspondence to the modular WorkwaySim implementation. This, however, is

of no surprise to the author. The InterfaceDe�nition metamodel elements are designed as

reusable model descriptions for the de�nition of information transferred in the simulation.

Therefore, no correspondences in the source code can be found. Table 7.24 also shows a

considerable di�erence between the number of model elements and the implementation

elements. One signi�cant di�erence is related to the annotation of the information used

in the WorkwaySim model. This annotation is equal to the provision of SOMs and FOMs

in the HLA. The FOM WorkwaySimFOM.xml of the WorkwaySim can be found in both

implementations of the simulation features HumanSim and BusSim in the GitHub repos-

itory [91]. Because the content of the WorkwaySimFOM.xml is not provided directly in

the implementation code, no correspondence can be found. Because of the approach of

145

7 Evaluation

not counting elements outside the source code creates a di�erence of 112 elements in this

particular case. Another di�erence is provided by the application of interfaces and their

connection which also can be asserted to the structural aspect of the simulation model.

With the metric 1 of Sec. 7.4.1 the goal G1 can be de�ned as reached with certain

limitations. It is visible that the description of modular simulations can be achieved and

implementation elements can be mapped to the model elements. The results show that

more model elements have to be provided than implementation elements. This problem

also results from the structural description of the DSL and the explicit description of the

information provided not in the source code (e.g. the context information in FOMs and

SOMs). It can also be declared that the DSLs goal to model the HLA as stated in Sec. 6 as

reached. This is shown by the successful application of the DSL to poRTIco.

For the discussion of goal G2, the results provided in Sec. 7.4.2 are inspected. The

accuracy in the context of this work describes if the modularised simulations exhibit the

same behaviour as the monolithic version. When viewing the deterministic results, with 10

and 50 simulated humans, the p-value of Wilcoxon as well as of Kolmogorov–Smirnov are

found to be 1.00. Therefore, the Wilcoxon-test expresses a 100% probability that the values

of the analysed AwayTimes come from the same distribution. The Kolmogorov-Smirnov-

test also expresses a 100% probability that both calculated distributions are based on the

same underlying distribution. The EMD shows a value of 0. This value implies that no

transformation has to be done to transform one distribution into the other. Therefore, for

ten and 50 simulated humans, it can be said that the distributions are identical. This is also

made visible by the overlay of the distributions shown in Fig. 7.1. Here, both curves are

directly overlapping. At 100 simulated humans, deviation of the optimal values are detected

in the p-value of the Wilcox-test and the EMD. Because the walking durations for all

humans are the same, problems in the interaction between BusSim and HumanSim have to

exist. When inspecting Fig. 7.1 for 100 humans, a di�erent form of the distribution is visible

compared to ten and 50 humans. This di�erent form can be explained by the quantity of

the total seats of the bus, which is set to 40. In the deterministic case the bus cannot be

over�lled when ten or 50 humans are simulation. The impossibility to over�ll a bus is

because all humans arrive at one bus stop and exit at the next. Furthermore all humans are

separated into two groups and arrive at exactly the same time. Therefore 5 or 25 humans

arrive at bus stop one and exit at bus stop two. Then the next 5 or 25 humans enter the bus

and exit at bus stop three. Therefore, every human can be picked up after arrived at the bus

stop. Also, every human arrives exactly at the same point in time. However, the bus can be

overloaded when simulating 100 humans. In the deterministic scenario, 50 humans arrive

at the same point of simulation time at the bus stop. Only 40 humans can be loaded into

the bus, and therefore the humans have to wait for one full circle to be transported. Thus,

the second slope exists. The deviation from the optimum in metric 2 and metric 3 shown

in Table 7.26 when simulating 100 humans is surprising. 10 and 50 humans have shown,

that the simulation coupling in itself works. Therefore, it is to assume, that the deviation

is a result of scheduling di�erences by the loading and unloading interactions together

with the busy-waiting scheme. This assumption is reinforced by the di�erences in the

AwayTimes, DrivingTimes and WaitingTimes of the monolithic WorkwaySim and modular

WorkwaySim as shown in Table 7.28. In this table it can be seen that the deviations are a

multiple of �ve. As described in Sec. 7.5.1 the busy-waiting step time is 5 seconds duration.

146

7.6 Discussion of Results

However, this assumption cannot be con�rmed or rejected. Further research has to be

done to �nd the cause of this deviation. Also, a more elaborate implementation could be

designed to avoid the busy-waiting scheme altogether. Another important aspect is the

inspection of the metrics and diagrams provided in Sec. 7.4.2 for the non-deterministic

version of WorkwaySim. In the visible aspects of AwayTimes as shown in Fig. 7.2, a trend

for both distributions to better �t together is to be seen. When inspecting the values given

in Table 7.29 this trend is not constant. There is an increase in the EMD between 50 and

100 simulated humans and between 300 and 500 simulated humans. This indication is

resembled by the p-values of metric 2 and metric 3. A reason for this inconsistency can

be found in the impacts of the random variables in the simulations. Both distributions

can be in�uenced by these variables in a di�erent direction and thus provide even more

divergence. To explore the dependency ofTaway ,Twaitinд andTdrivinд, the EMD as expressed

in Fig. 7.3 can be consulted. No correlation of the three EMD-curves can be seen in the

�rst three data points of each value type. The increase of the EMD in from 50 to 100

humans is against the trend of driving and waiting. Here, the walking times and the

behaviour of the human can constitute the in�uencing factors. However, this factor seems

to reduce when inspecting the EMD values with 100, 300, 500 and 1000 humans. Here,

the interaction between Taway , Twaitinд and Tdrivinд can be seen. From 100 to 300 humans,

all three curves tend to decrease. As inspected in the tables, the EMD values Taway and

Tdrivinд both increase while Twaitinд stays nearly constant.

With the above information, it is concluded that the second goal G2 is ful�lled. The

results in Sec. 7.4.2 show that the accuracy of the modularised simulation by the DSL

approach is achieved. The deterministic results show that only a slight di�erence between

the results can exist when simulating more humans than a bus can pick up. In this

scenario problems can arise. These results can be accounted to the technical speci�cs of

the threading approach and the communication aspects of the poRTIco RTI. The results

show that the accuracy is obtained when enough simulation runs are executed. If only a

few samples are collected, the probabilistic variables express a great impact on the results.

A trend to better metric values is visible with the increasing sample size. However, this

result is in�uenced by the assumption, that a the collection of ten times a sample size of

100 values is the same as one time a sample size of 1000 values. However, this assumption

is not correct due to the overloading of the bus. When 1000 simulated humans would

arrive at the same bus stop to the same time, the bus has to drive its route at least 25 times

to collect all humans. This value can increase when humans already �nished work in this

time frame. In the applied case, a bus loads all humans within at three repetitions of the

route. However, this assumption had to be made to increase the sample size due to the

technical limitations of poRTIco and the multi-threading approach. Therefore, it has to be

further researched if the same trend can be experienced when more than 100 humans are

simulated at once.

For the evaluation of G3, the execution time of the simulation is used as provided in

sec. 7.4.3. In Fig. 7.4 the large di�erence between the modular and monolithic simulation can

be seen. For 10 to 100 simulated humans, the execution times of the monolithic simulation

range between 0.15 and 0.95 seconds. On the other hand, the modular simulation ranges

from 427 to 720.19 seconds. This di�erence is alarmingly high, but even with 100 simulation

humans, no exponential increase is noticed. Because in both simulations the same busy-

147

7 Evaluation

waiting mechanism is applied, it cannot be the in�uencing factor. Therefore, the di�erence

in time has to be located with the synchronisation of federates. However, it can be assumed

that not so many simulation features are applied in one federation. The simulation itself

could be created to simulate 100 humans within one simulation and then synchronise

the interactions of one simulation feature only with the bus stop feature. The results

also indicate that the execution times do not increase exponentially with the number of

simulated humans. Therefore the goal G3 is seen as reached.

7.7 Assumptions and Limitations

Several assumptions have been made and encountered limiting factors in the frame of the

evaluation.

The DSL is evaluated on the working example of WorkwaySim. This simulation is

considered as static so that no dynamic behaviour exists in the logic of the humans or

the bus. Exemplary, every human uses predetermined bus stops and every bus drives

predetermined routes. Thus, no dynamic processes are evaluated. The small complexity of

WorkwaySim is another limiting factor in this evaluation. More complex simulations could

result in behaviours not encountered in the evaluation. However, the limited complexity

of WorkwaySim allows us to control and eliminate most of the stochastic in�uence factors

in its execution. Therefore, the behaviour preservation of the modularisation approach

could be explored. Another assumption is that the modularisation approach by the DSL

can be evaluated on the coupling of two simulation features (i.e. BusSim and WorkwaySim).

The evaluation and the DSL is dependent on the HLA approach and its realisation poRTIco.

Therefore, the limitations of poRTIco and HLA also apply to the evaluation and the DSL.

The limitation of 5 seconds response time from poRTIco in the interaction with the multi-

threading approach resulted in the limitation to a maximum of 120 humans to be simulated.

This results in the problem, that repeated runs had to be started to achieve more than 120

values of human. This limitation leads to the stated assumption that ten times a sample

size is of 100 simulated human is equivalent to one time a sample size of 1000 humans.

The challenges with this assumption and limitation are discussed in Sec. 7.6.

7.8 Threats to Validity

The threats to validity are presented in this section. These threats are internal validity,

external validity, construct validity and conclusion validity.

7.8.1 Internal Validity

Internal validity de�nes if our conclusion is in a causal relationship to our inspections.

Therefore, an unknown third factor could in�uence our conclusion without our knowledge.

This unknown factor is a threat to the validity of our conclusion [1].

In this thesis, the quality of the DSL itself is a threat to validity. Furthermore the quality

of the simulation descriptions is of importance and could be a threat to validity. Other

developers could produce other structures or implementations which could in�uence the

148

7.8 Threats to Validity

results of the evaluation. An example is another implementation of the waiting scheme

without spin-wait by another developer. Another example is a hypothetical implementation

of the Workway model as one simulation feature with multiple internal human entities.

However, this implementation would result in similar implementation and model elements.

Therefore, this can be considered a minor threat. Another threat can be that the types of

times (i.e. AwayTimes, DrivingTimes and WaitingTimes) are dependent on other factors

than the discussed capacity of the bus, the number of humans and their values and the

synchronisation in the modular simulation. Therefore the EMD and both applied statistical

tests could provide di�erent metrics. This is considered a major threat. However, the small

scope of the WorkwaySim allows to control other in�uence factors and therefore reduces

this threat.

7.8.2 External Validity

External validity describes the extend to which the �ndings can be generalised to other

entities [92]. In the case of the evaluation, this means if the �ndings can be generalised to

other applied simulations. Case-studies provide weaker representativeness due to their

limited focus. Other coupling approaches could use other representations not describable

with the provided DSL. Also, other simulations could contain simulation features and

structures not representable with the provided DSL capabilities. However, case-studies

provide insight in the abilities of modularisation approach and the applicability to similar

cases.

7.8.3 Construct Validity

Construct validity is concerned about how far the measures that are studied represents

what the researcher thinks to study [1]. In this thesis, several aspects of the presented

modularisation approach with the DSL are studied. With respect to the completeness,

the relation of created model elements to implementation elements with measure M1 is

meant to check if the DSL represents all implementation parts of the system. However,

because not all elements are measured, only a limited insight can be obtained with this

approach. Other measures can provide di�erent insight in the completeness of the DSL.

Furthermore, a threat to validity exists in the evaluation of the completeness by the

description of the modelling of the limited scope of WorkwaySim. It is intended to inspect

if the the completeness of the simulation coupling on the WorkwaySim can be evaluated

due to the case-study characteristics. Therefore, this can be seen as a minor threat. In

respect to the accuracy (i.e. behaviour preservation) aspect, it is expected to gather

insight if the behaviour of the monolithic simulation and its modular version are similar.

It is also assumed that similarity of behaviour is equivalent to similarity of generated

data. Furthermore, with M2 to M4 it is expected to measure the similarity of the value

distributions of the gathered data. This assumption is considered major threat to validity

in the case it does not hold. A further threat is that the results are in�uenced by the

implementation aspects of the HLA implementation and the realised modular WorkwaySim.

A bad design or problems in the implementation of poRTIco or WorkwaySim can overlay

the behavioural aspects of measured. This is considered a minor threat due to the similarity

149

7 Evaluation

of deterministic results as shown in Sec. 7.4.2. Another threat to construct validity is the

exploration of scalability by multiple runs of the simulation with di�erent humans. The

performance of a personal computer is not constant due to other programs using the same

resources. However, both curves in Fig. 7.4.3 show similar behaviours and a constant trend.

Therefore, this is consider as a minor threat.

7.8.4 Conclusion Validity

Conclusion validity describes the validity of the inference of conclusion of the metrics.

Statistical metrics are used in the investigation of the behaviour preservation, which

reduces subjective interpretation. However, these statistical metrics are not used on

samples of unknown underlying distributions and therefore the expressiveness of these

tests are limited.

150

8 Conclusion

In this thesis, the modularisation in the context of monolithic simulations was inspected.

Modularisation allows the reuse of already existing or newly developed simulations by the

ability to be composed with other simulations. This approach enables the development

of new simulations by composing them out of several simulation features. Also, existing

simulations can be enhanced by new capabilities through modularisation of the simulation

and the coupling of new simulation features. Furthermore, monolithic simulations can be

decoupled into features to reuse them in potentially di�erent contexts. The modularisation

in the context of monolithic simulations was approached in this thesis in two ways. First,

the existing monolithic simulation IntBIIS was analysed to provided points of interests

that can be inspected when extracting simulation features out of a monolithic simulation.

This information can be used to identify important aspects in the interaction of simulation

features like required or provided data. Also, challenges in the extraction of simulation

features out of monolithic simulations are identi�ed in di�erent aspects of development.

In the second part of the approach, a DSL was provided to model the coupling of simula-

tions to describe a modular simulation. For this purpose, the DSL provides the capabilities

to model simulation features and coupling approaches independent of their application in

a concrete modular simulation and thus, independent of each other. This design allows

reusing the created models of simulation features with models of di�erent coupling ap-

proaches. The DSL uses these models to describe the coupling between simulation features

with a concrete coupling approach to a modular simulation. The model of a modular

simulation includes structural properties such as the used simulation features and their

connection through the coupling approach. The data and interactions that are required

or provided by features can be described by interfaces. These interfaces can be reused

in other models of modular simulations. Furthermore developer roles for the application

of the DSL in the development process of a modular simulation are provided as an idea

on how the development of a modular simulation with the DSL can be structured. The

developer roles are designed with the goal to provide concurrent work in a development

process.

A problem in the reuse of simulations developed by third-parties are incompatible

couplings due to di�erences in data and its representations (e.g. one simulation uses a

String and the other simulation an Integer to represent IDs). These incompatibilities can

reduce the number of usable simulation features in a coupling and therefore hinder broad

reuse. The approach of adaptation was proposed to mitigate such incompatibilities and is

supported by the DSL. An entity called adapter service transforms incoming and outgoing

data in this approach. The data to be transformed and the process of transformation is

described by adaptation descriptions.
In a case-study, the proposed approach was evaluated by modularisation of the mono-

lithic simulation Workway. For this purpose, a model was created with the DSL to describe

151

8 Conclusion

a modular version of Workway by modelling the coupling of its simulation features. As

coupling approach, the HLA implementation poRTIco was used. The modular version of

the simulation was implemented manually according to the created model, because no

model-to-text transformation was provided for the DSL. The evaluation was carried out to

inspect the modularisation approach in regards to three research aspects. The �rst research

aspect was the completeness of the DSL to describe a modular version of a monolithic

simulation. The second research aspect was the accuracy to preserve the behaviour when

modularising a monolithic simulation with the DSL. The third research aspect in the

evaluation was the scalability of the modular approach when multiple simulation features

are coupled.

The evaluation results indicated the completeness of the DSL in the application to

WorkwaySim and the HLA implementation poRTIco. Furthermore, the �ndings suggested

the accuracy of the DSL and therefore the overall preservation of the behaviour in the

modular simulation. Additionally, the evaluation results have shown that the execution

time of the modular Workway was higher than in the monolithic simulation in the cur-

rent implementation. Nevertheless, it was found that the execution time had shown no

exponential increase when coupling multiple simulations, and thus that the scalability is

achieved. Therefore, it was concluded that the goal to develop an approach to describe the

coupling of simulations to a modular simulation succeeded with the creation of the DSL.

Also the application of the adaptation approach showed promising capabilities to mitigate

incompatibilities in the implementation of the modular simulation.

One main threat to the validity of the evaluation is the limited scope of the evaluation

simulation WorkwaySim. Therefore, further work will have to include the application of the

modularisation approach to more complex and di�erent simulations. This application also

enables the further evaluation of the adaptation approach. Also, a laboratory experiments

with multiple students to evaluate the completeness and applicability of the DSL in a

bigger scope could are possible which would also reduce threats to external validity. A

claim of the DSL to model hierarchical approaches could not be evaluated in the frame

of this thesis, because the evaluated WorkwaySim did not contain hierarchical structured

simulation features. Therefore, this capability has to be evaluated in future work by

the application of hierarchical de�ned simulations. Additionally, the implementation of

a model-to-text transformation for the DSL is planned. This transformation allows to

generate code for automatic coupling of simulation features. With this code-generation,

the coupling approach is to be used on other coupling approaches asides from HLA. For

this purpose, approaches such as DIS will be analysed. Also, the extension of the DSLs’

metamodel is planned to support behavioural aspects of simulation features and modular

simulations. Additionally, improvements to the metamodel of the DSL regarding the

representation data (e.g. data types) are possible. Furthermore, an enhancement the

DSLs’ capabilities to describe adaptations should be performed. An idea for the latter

is to increase the capabilities to describe adaptation conversions (e.g. with a complete

mathematical system).

152

Bibliography

[1] Per Runeson et al. Case Study Research in Software Engineering: Guidelines and
Examples. 1st. Wiley Publishing, 2012. isbn: 1118104358, 9781118104354.

[2] Hans van Vliet. Software Engineering: Principles and Practice. New York, NY, USA:

John Wiley & Sons, Inc., 1993. isbn: 0-471-93611-1.

[3] Ralf [HerausgeberIn] Reussner et al., eds. Modeling and simulating software ar-
chitectures : the Palladio approach. Includes bibliographical references and index.

Cambridge, Massachusetts: MIT Press, [2016]. isbn: 978-0-262-03476-0.

[4] Robert Heinrich. Aligning Business Processes and Information Systems: New Ap-
proaches to Continuous Quality Engineering. Springer Vieweg, 2014. isbn: 3658065176,

9783658065171.

[5] Herbert Stachowiak. Allgemeine Modelltheorie. Wien, New York: Springer, 1973.

isbn: 0387811060.

[6] Thomas Stahl and Markus Völter. Model driven software development : technology,
engineering, management. Einheitssacht. im Buch fälschl. als Refactorings in großen

Softwareprojekten angegeben. Chichester [u.a.]: Wiley, 2006. isbn: 0-470-02570-0;

978-0-470-02570-3.

[7] About the Meta Object Facility Speci�cation Version 2.5.1. 2016. url: https://www.

omg.org/spec/MOF/2.5.1/ (visited on 07/21/2018).

[8] Thomas Goldschmidt, Ste�en Becker, and Erik Burger. “Towards a Tool-Oriented

Taxonomy of View-Based Modelling”. In: Proceedings of the Modellierung 2012. Ed. by

Elmar J. Sinz and Andy Schürr. Vol. P-201. GI-Edition – Lecture Notes in Informatics

(LNI). Bamberg: Gesellschaft für Informatik e.V. (GI), Mar. 2012, pp. 59–74. isbn:

978-3-88579-295-6.

[9] Erik Burger. “Flexible Views for View-Based Model-Driven Development”. In: Pro-
ceedings of the 18th international doctoral symposium on Components and architecture.
WCOP ’13. Vancouver, British Columbia, Canada: ACM, 2013, pp. 25–30. isbn: 978-1-

4503-2125-9. doi: 10.1145/2465498.2465501. url: http://doi.acm.org/10.1145/

2465498.2465501.

[10] Averill M. Law. Simulation modeling and analysis. 4. ed., international ed., [Nachdr.]

McGraw-Hill series in industrial engineering and management science. Boston

[u.a.]: McGraw-Hill, [20]11. isbn: 978-0-07-125519-6; 0-07-125519-2.

[11] Jerry Banks. “Introduction to Simulation”. In: Proceedings of the 31st Conference on
Winter Simulation: Simulation—a Bridge to the Future - Volume 1. WSC ’99. Phoenix,

Arizona, USA: ACM, 1999, pp. 7–13. isbn: 0-7803-5780-9. doi: 10.1145/324138.

324142. url: http://doi.acm.org/10.1145/324138.324142.

153

https://www.omg.org/spec/MOF/2.5.1/
https://www.omg.org/spec/MOF/2.5.1/
https://doi.org/10.1145/2465498.2465501
http://doi.acm.org/10.1145/2465498.2465501
http://doi.acm.org/10.1145/2465498.2465501
https://doi.org/10.1145/324138.324142
https://doi.org/10.1145/324138.324142
http://doi.acm.org/10.1145/324138.324142

Bibliography

[12] Andreas Tolk et al., eds. Advances in Modeling and Simulation: Seminal Research from
50 Years of Winter Simulation Conferences. en. Simulation Foundations, Methods and

Applications. Springer International Publishing, 2017. isbn: 978-3-319-64181-2. url:

//www.springer.com/de/book/9783319641812 (visited on 05/18/2018).

[13] Jerry [Hrsg.] Banks, ed. Handbook of simulation : principles, methodology, advances,
applications, and practice. A Wiley-Interscience publication. Includes index. New

York: Wiley, c1998. isbn: 0-471-13403-1; 978-0-471-13403-9.

[14] Robert Heinrich et al. “Integrating business process simulation and information

system simulation for performance prediction”. In: Software & Systems Modeling 16.1

(2017), pp. 257–277. url: http://link.springer.com/article/10.1007/s10270-

015-0457-1.

[15] Mikel D. Petty et al. “Software Frameworks for Model Composition”. In: Model.
Simul. Eng. 2014 (Jan. 2014), 4:4–4:4. issn: 1687-5591. doi: 10.1155/2014/492737.

url: http://dx.doi.org/10.1155/2014/492737.

[16] Rod [VerfasserIn] Stephens. Beginning software engineering. Indianapolis, IN, [2015].

url: http://swbplus.bsz-bw.de/bsz453328865cov.htmhttp://lib.myilibrary.

com/detail.asp?id=770088%20;%20http://lib.myilibrary.com?id=770088.

[17] Roberto Setola et al. Managing the Complexity of Critical Infrastructures: A Modelling
and Simulation Approach. 1st. Springer Publishing Company, Incorporated, 2017.

isbn: 3319510428, 9783319510422.

[18] Robert G. Bartholet et al. In search of the philosopher’s stone: Simulation compos-
ability versus component-based software design. Tech. rep. VIRGINIA UNIV CHAR-

LOTTESVILLE DEPT OF COMPUTER SCIENCE, 2004. url: http://www.dtic.mil/

docs/citations/ADA446993.

[19] P.K. Davis et al. Improving the Composability of Department of Defense Models and
Simulations. National Defense Research Institute. Rand, 2003. isbn: 9780833035257.

[20] M. D. Petty and E. W. Weisel. “A composability lexicon”. In: Proceedings of the
Spring 2003 Simulation Interoperability Workshop (2003), pp. 181–187. url: http:

//www.cs.virginia.edu/%5C~%7B%7Drgb2u/03S-SIW-023.doc.

[21] Okan Topçu et al. Distributed Simulation - A Model Driven Engineering Approach.

Simulation Foundations, Methods and Applications. Springer, 2016. isbn: 978-3-319-

03049-4. doi: 10.1007/978-3-319-03050-0. url: https://doi.org/10.1007/978-

3-319-03050-0.

[22] Richard Briggs and John A. Tufarolo. “Toward a Family of Maturity Models for the

Simulation Interconnection Problem.” Paper 04S-SIW-145”. In: In Proceedings of the
Spring Interoperability Workshop. 2004.

[23] Andreas Tolk and James Muguira. The Levels of Conceptual Interoperability Model.
Sept. 2003.

[24] C4ISR Architecture Working Group et al. “Levels of information systems interoper-

ability (LISI)”. In: US DoD (1998).

154

//www.springer.com/de/book/9783319641812
http://link.springer.com/article/10.1007/s10270-015-0457-1
http://link.springer.com/article/10.1007/s10270-015-0457-1
https://doi.org/10.1155/2014/492737
http://dx.doi.org/10.1155/2014/492737
http://swbplus.bsz-bw.de/bsz453328865cov.htmhttp://lib.myilibrary.com/detail.asp?id=770088%20;%20http://lib.myilibrary.com?id=770088
http://swbplus.bsz-bw.de/bsz453328865cov.htmhttp://lib.myilibrary.com/detail.asp?id=770088%20;%20http://lib.myilibrary.com?id=770088
http://www.dtic.mil/docs/citations/ADA446993
http://www.dtic.mil/docs/citations/ADA446993
http://www.cs.virginia.edu/%5C~%7B%7Drgb2u/03S-SIW-023.doc
http://www.cs.virginia.edu/%5C~%7B%7Drgb2u/03S-SIW-023.doc
https://doi.org/10.1007/978-3-319-03050-0
https://doi.org/10.1007/978-3-319-03050-0
https://doi.org/10.1007/978-3-319-03050-0

[25] Wenguang Wang, Andreas Tolk, and Weiping Wang. “The Levels of Conceptual

Interoperability Model: Applying Systems Engineering Principles to M&S”. In: Pro-
ceedings of the 2009 Spring Simulation Multiconference. SpringSim ’09. San Diego,

California: Society for Computer Simulation International, 2009, 168:1–168:9. url:

http://dl.acm.org/citation.cfm?id=1639809.1655398.

[26] Cláudio Gomes et al. “Co-simulation: State of the art”. In: CoRR abs/1702.00686

(2017). arXiv: 1702.00686. url: http://arxiv.org/abs/1702.00686.

[27] Judith S. Dahmann, Richard M. Fujimoto, and Richard M. Weatherly. “The depart-

ment of defense high level architecture”. In: Proceedings of the 29th conference on
Winter simulation. IEEE Computer Society, 1997, pp. 142–149. url: http://dl.acm.

org/citation.cfm?id=268465.

[28] DIS Steering Committee et al. “The DIS vision: A map to the future of distributed

simulation”. In: Institute for Simulation and Training (1994).

[29] “IEEE Standard for Modeling and Simulation (M amp;S) High Level Architecture

(HLA)– Federate Interface Speci�cation - Redline”. In: IEEE Std 1516.1-2010 (Revision
of IEEE Std 1516.1-2000) - Redline (Aug. 2010), pp. 1–378. doi: 10.1109/IEEESTD.

2010.5954120.

[30] “IEEE Standard for Modeling and Simulation (M amp;S) High Level Architecture

(HLA)– Object Model Template (OMT) Speci�cation”. In: IEEE Std 1516.2-2010 (Re-
vision of IEEE Std 1516.2-2000) (Aug. 2010), pp. 1–110. doi: 10.1109/IEEESTD.2010.

5557731.

[31] Tim Pokorny and Michael Fraser. The Portico Project. url: http://www.porticoproject.
org/comingsoon/ (visited on 07/28/2018).

[32] “IEEE Standard for Modeling and Simulation (M amp;S) High Level Architecture

(HLA)– Framework and Rules”. In: IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000)
(Aug. 2010), pp. 1–38. doi: 10.1109/IEEESTD.2010.5553440.

[33] Paul Gustavson et al. “The Base Object Model (BOM) Primer: A Distilled Look at a

Component Reuse Methodology for Simulation Interoperability”. In: (Jan. 2018).

[34] Jianxing Gong et al. “Applying BOM-based simulation model components to rapidly

compose simulations and simulation environments”. In: 2010 International Con-
ference on Computer Application and System Modeling (ICCASM 2010) 14 (2010),

pp. V14-249-V14-252.

[35] Y. M. Teo and C. Szabo. “CODES: An Integrated Approach to Composable Modeling

and Simulation”. In: 41st Annual Simulation Symposium (anss-41 2008). Apr. 2008,

pp. 103–110. doi: 10.1109/ANSS-41.2008.24.

[36] Y. M. Teo and C. Szabo. “CODES: An Integrated Approach to Composable Modeling

and Simulation”. In: 41st Annual Simulation Symposium (anss-41 2008). Apr. 2008,

pp. 103–110. doi: 10.1109/ANSS-41.2008.24.

[37] Bernard P. Zeigler. Multifacetted modelling and discrete event simulation. London

[u.a.]: Acad. Press, 1984. isbn: 0-12-778450-0.

155

http://dl.acm.org/citation.cfm?id=1639809.1655398
https://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://dl.acm.org/citation.cfm?id=268465
http://dl.acm.org/citation.cfm?id=268465
https://doi.org/10.1109/IEEESTD.2010.5954120
https://doi.org/10.1109/IEEESTD.2010.5954120
https://doi.org/10.1109/IEEESTD.2010.5557731
https://doi.org/10.1109/IEEESTD.2010.5557731
http://www.porticoproject.org/comingsoon/
http://www.porticoproject.org/comingsoon/
https://doi.org/10.1109/IEEESTD.2010.5553440
https://doi.org/10.1109/ANSS-41.2008.24
https://doi.org/10.1109/ANSS-41.2008.24

Bibliography

[38] J. S. Lee Bernard P. Zeigler. Theory of quantized systems: formal basis for DEVS/HLA
distributed simulation environment. 1998. doi: 10.1117/12.319354. url: https:

//doi.org/10.1117/12.319354.

[39] Alex Chung Hen Chow and Bernard P. Zeigler. “Parallel DEVS: A Parallel, Hier-

archical, Modular, Modeling Formalism”. In: Proceedings of the 26th Conference on
Winter Simulation. WSC ’94. Orlando, Florida, USA: Society for Computer Simu-

lation International, 1994, pp. 716–722. isbn: 0-7803-2109-X. url: http://dl.acm.

org/citation.cfm?id=193201.194336.

[40] M. Rohl and A. M. Uhrmacher. “Composing Simulations from XML-Speci�ed Model

Components”. In: Proceedings of the 2006 Winter Simulation Conference. Dec. 2006,

pp. 1083–1090. doi: 10.1109/WSC.2006.323198.

[41] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.

2nd. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002. isbn:

0201745720.

[42] James II. url: http://wwwmosi.informatik.uni-rostock.de/mosi/projects/
cosa/james-ii (visited on 08/29/2018).

[43] J. Eker et al. “Taming heterogeneity - the Ptolemy approach”. In: Proceedings of
the IEEE 91.1 (Jan. 2003), pp. 127–144. issn: 0018-9219. doi: 10.1109/JPROC.2002.

805829.

[44] Claudius Ptolemaeus, ed. System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014. url: http://ptolemy.org/books/Systems.

[45] András Varga and Rudolf Hornig. “An Overview of the OMNeT++ Simulation

Environment”. In: Proceedings of the 1st International Conference on Simulation Tools
and Techniques for Communications, Networks and Systems & Workshops. Simutools

’08. Marseille, France: ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2008, 60:1–60:10. isbn: 978-963-9799-20-2. url:

http://dl.acm.org/citation.cfm?id=1416222.1416290.

[46] András Varga. “The OMNeT++ Discrete Event Simulation System”. In: Proceedings
of the European Simulation Multiconference (ESM’2001) (June 2001).

[47] Steve McConnell. Code Complete, Second Edition. Redmond, WA, USA: Microsoft

Press, 2004. isbn: 0735619670, 9780735619678.

[48] Martin Fowler. Domain Speci�c Languages. 1st. Addison-Wesley Professional, 2010.

isbn: 0321712943, 9780321712943.

[49] Arne N. Johanson and Wilhelm Hasselbring. “Hierarchical Combination of Internal

and External Domain-Speci�c Languages for Scienti�c Computing”. In: Proceedings
of the 2014 European Conference on Software Architecture Workshops. ECSAW ’14.

Vienna, Austria: ACM, 2014, 17:1–17:8. isbn: 978-1-4503-2778-7. doi: 10.1145/

2642803.2642820. url: http://doi.acm.org/10.1145/2642803.2642820.

[50] P. C. Clements. “A survey of architecture description languages”. In: Proceedings
of the 8th International Workshop on Software Speci�cation and Design. Mar. 1996,

pp. 16–25. doi: 10.1109/IWSSD.1996.501143.

156

https://doi.org/10.1117/12.319354
https://doi.org/10.1117/12.319354
https://doi.org/10.1117/12.319354
http://dl.acm.org/citation.cfm?id=193201.194336
http://dl.acm.org/citation.cfm?id=193201.194336
https://doi.org/10.1109/WSC.2006.323198
http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii
http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1109/JPROC.2002.805829
http://ptolemy.org/books/Systems
http://dl.acm.org/citation.cfm?id=1416222.1416290
https://doi.org/10.1145/2642803.2642820
https://doi.org/10.1145/2642803.2642820
http://doi.acm.org/10.1145/2642803.2642820
https://doi.org/10.1109/IWSSD.1996.501143

[51] D. C. Luckham and J. Vera. “An event-based architecture de�nition language”. In:

IEEE Transactions on Software Engineering 21.9 (Sept. 1995), pp. 717–734. issn: 0098-

5589. doi: 10.1109/32.464548.

[52] Frederic D. McKenzie, Mikel D. Petty, and Qingwen Xu. “Usefulness of Software

Architecture Description Languages for Modeling and Analysis of Federates and

Federation Architectures.” In: Simulation 80.11 (Sept. 29, 2009), pp. 559–576. url:

http://dblp.uni- trier.de/db/journals/simulation/simulation80.html#

McKenziePX04.

[53] Albert Endres and Dieter Rombach. A handbook of software and systems engineering
: empirical observations, laws and theories. 1. publ. The Fraunhofer IESE series on

software engineering. Includes index. Harlow [u.a.]: Pearson, Addison Wesley, 2003.

isbn: 0-321-15420-7. url: http://bvbr.bib- bvb.de:8991/F?func=service&

doc_library=BVB01&doc_number=012855132&line_number=0001&func_code=DB_

RECORDS&service_type=MEDIA.

[54] Phillip Merkle and Henss Joerg. “EVENTSIM – An Event-driven Palladio Software

Architecture Simulator”. In: Palladio Days 2011. Proceedings, pp. 15–22.

[55] Johannes Göbel et al. “The Discrete Event Simulation Framework DESMO-J: Re-

view, Comparison To Other Frameworks And Latest Development.” In: ECMS. 2013,

pp. 100–109.

[56] Pierre L’Ecuyer, Lakhdar Meliani, and Jean Vaucher. “SSJ: SSJ: A Framework for

Stochastic Simulation in Java”. In: Proceedings of the 34th Conference on Winter Sim-
ulation: Exploring New Frontiers. WSC ’02. San Diego, California: Winter Simulation

Conference, 2002, pp. 234–242. isbn: 0-7803-7615-3. url: http://dl.acm.org/

citation.cfm?id=1030453.1030488.

[57] Len Granowetter. “RTI Interoperability Issues - API Standards, Wire Standards, and

RTI Bridges”. en. In: (), p. 23. url: https://www.sisostds.org/DesktopModules/

Bring2mind / DMX / Download . aspx ? Command = Core _ Download & EntryId = 24573 &

PortalId=0&TabId=105 (visited on 06/30/2018).

[58] Dr. Andreas Tolk. “Metamodels and mappings - ending the interoperability war”. In:

04F-SIW-105, Fall Simulation Interoperability Workshop. 2004.

[59] Shawn Parr Russell Keith-Magee. “The Next Step-Applying the Model Driven Ar-

chitecture to HLA”. In: 2003.

[60] David Scerri et al. “An Architecture for Modular Distributed Simulation with Agent-

based Models”. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: Volume 1 - Volume 1. AAMAS ’10. Toronto, Canada:

International Foundation for Autonomous Agents and Multiagent Systems, 2010,

pp. 541–548. isbn: 978-0-9826571-1-9. url: http://dl.acm.org/citation.cfm?id=

1838206.1838283.

157

https://doi.org/10.1109/32.464548
http://dblp.uni-trier.de/db/journals/simulation/simulation80.html#McKenziePX04
http://dblp.uni-trier.de/db/journals/simulation/simulation80.html#McKenziePX04
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012855132&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012855132&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012855132&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://dl.acm.org/citation.cfm?id=1030453.1030488
http://dl.acm.org/citation.cfm?id=1030453.1030488
https://www.sisostds.org/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=24573&PortalId=0&TabId=105
https://www.sisostds.org/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=24573&PortalId=0&TabId=105
https://www.sisostds.org/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=24573&PortalId=0&TabId=105
http://dl.acm.org/citation.cfm?id=1838206.1838283
http://dl.acm.org/citation.cfm?id=1838206.1838283

Bibliography

[61] Paolo Bocciarelli et al. “A Model-driven Framework for Distributed Simulation of

Autonomous Systems”. In: Proceedings of the Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium. DEVS ’15. Alexandria,

Virginia: Society for Computer Simulation International, 2015, pp. 213–220. isbn:

978-1-5108-0105-9. url: http://dl.acm.org/citation.cfm?id=2872965.2872994.

[62] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide to SysML
: the systems modeling language. Includes bibliographical references and index. -

Description based on print version record. Waltham, MA, c2012. url: http://lib.

myilibrary.com/detail.asp?id=329367.

[63] Pitch Technologies – Pitch pRTI – a Certi�ed HLARTI. url: http://www.pitchtechnologies.
com/products/prti/ (visited on 07/21/2018).

[64] Himanshu Neema. “Large-Scale Integration of Heterogeneous Simulations”. PhD

thesis. Vanderbilt University, 2018.

[65] P. Benjamin, M. Patki, and R. Mayer. “Using Ontologies for Simulation Modeling”.

In: Proceedings of the 2006 Winter Simulation Conference. Dec. 2006, pp. 1151–1159.

doi: 10.1109/WSC.2006.323206.

[66] P. Benjamin and K. Akella. “Towards ontology-driven interoperability for simulation-

based applications”. In: Proceedings of the 2009 Winter Simulation Conference (WSC).
Dec. 2009, pp. 1375–1386. doi: 10.1109/WSC.2009.5429286.

[67] María Gutiérrez and Horacio Leone. “Composability Model in a Distributed Simula-

tion Environment for Supply Chain”. In: 5 (Dec. 2013), pp. 55–69.

[68] Özer Özdikiş, Umut Durak, and Halit Oǧuztüzün. “Tool Support for Transforma-

tion from an OWL Ontology to an HLA Object Model”. In: Proceedings of the 3rd
International ICST Conference on Simulation Tools and Techniques. SIMUTools ’10. Tor-

remolinos, Malaga, Spain: ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), 2010, 55:1–55:6. isbn: 978-963-9799-87-5.

doi: 10.4108/ICST.SIMUTOOLS2010.8678. url: https://doi.org/10.4108/ICST.

SIMUTOOLS2010.8678.

[69] Alessandro Vittorio Papadopoulos and Alberto Leva. “Automating Dynamic Decou-

pling in Object-Oriented Modelling and Simulation Tools”. In: Proceedings of the
5th International Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools, EOOLT 2013, April 19, University of Nottingham, Nottingham, UK. 2013,

pp. 37–44. url: http://www.ep.liu.se/ecp_article/index.en.aspx?issue=084;

article=005.

[70] Jacob Fish and Wen Chen. “Modeling and simulation of piezocomposites”. In: Com-
puter Methods in Applied Mechanics and Engineering 192.28 (2003). Multiscale Com-

putational Mechanics for Materials and Structures, pp. 3211–3232. issn: 0045-7825.

doi: https://doi.org/10.1016/S0045- 7825(03)00343- 8. url: http://www.

sciencedirect.com/science/article/pii/S0045782503003438.

[71] Soo Dong Kim and Soo Ho Chang. “A systematic method to identify software compo-

nents”. In: 11th Asia-Paci�c Software Engineering Conference. Nov. 2004, pp. 538–545.

doi: 10.1109/APSEC.2004.11.

158

http://dl.acm.org/citation.cfm?id=2872965.2872994
http://lib.myilibrary.com/detail.asp?id=329367
http://lib.myilibrary.com/detail.asp?id=329367
http://www.pitchtechnologies.com/products/prti/
http://www.pitchtechnologies.com/products/prti/
https://doi.org/10.1109/WSC.2006.323206
https://doi.org/10.1109/WSC.2009.5429286
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8678
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8678
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8678
http://www.ep.liu.se/ecp_article/index.en.aspx?issue=084;article=005
http://www.ep.liu.se/ecp_article/index.en.aspx?issue=084;article=005
https://doi.org/https://doi.org/10.1016/S0045-7825(03)00343-8
http://www.sciencedirect.com/science/article/pii/S0045782503003438
http://www.sciencedirect.com/science/article/pii/S0045782503003438
https://doi.org/10.1109/APSEC.2004.11

[72] Misook Choi and Eunsook Cho. “Component Identi�cation Methods Applying

Method Call Types between Classes”. In: J. Inf. Sci. Eng. 22.2 (2006), pp. 247–267.

[73] Zhamak Dehghani. How to break a Monolith into Microservices. url: https : / /
martinfowler.com/articles/break-monolith-into-microservices.html (visited

on 07/04/2018).

[74] S. Sarkar et al. “Modularization of a Large-Scale Business Application: A Case Study”.

In: IEEE Software 26.2 (Mar. 2009), pp. 28–35. issn: 0740-7459. doi: 10.1109/MS.2009.

42.

[75] D. Taibi, V. Lenarduzzi, and C. Pahl. “Processes, Motivations, and Issues for Mi-

grating to Microservices Architectures: An Empirical Investigation”. In: IEEE Cloud
Computing 4.5 (Sept. 2017), pp. 22–32. doi: 10.1109/MCC.2017.4250931.

[76] Luciano Baresi and A Coen-Porisini. “An approach for designing and enacting dis-

tributed simulation environments”. In: International Conference on Software: Theory
and Practice, Beijing, China. 2000, pp. 25–28.

[77] D. C. Luckham et al. “Speci�cation and analysis of system architecture using Rapide”.

In: IEEE Transactions on Software Engineering 21.4 (Apr. 1995), pp. 336–354. issn:

0098-5589. doi: 10.1109/32.385971.

[78] David Garlan, Robert Monroe, and David Wile. “Acme: An Architecture Description

Interchange Language”. In: Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research. CASCON ’97. Toronto, Ontario, Canada:

IBM Press, 1997, pp. 7–. url: http://dl.acm.org/citation.cfm?id=782010.

782017.

[79] Structure101 Home » Structure101. en-US. url: https://structure101.com/ (visited

on 09/05/2018).

[80] hello2morrow - Sonargraph. url: https : / / www . hello2morrow . com / products /

sonargraph (visited on 09/05/2018).

[81] Richard Gronback. Eclipse Modeling Project | The Eclipse Foundation. en. url: https:

//www.eclipse.org/modeling/emf/ (visited on 08/06/2018).

[82] James J Nutaro. Discrete-Event Simulation of Continuous Systems. 2007.

[83] KAMPGitHub repository. original-date: 2017-06-02T08:20:59Z. June 2017. url: https:

//github.com/KAMP-Research/KAMP (visited on 08/01/2018).

[84] Jae-Hyun Kim and Tag Gon Kim. “Hierarchical HLA: Mapping hierarchical model

structure into hierarchical federation”. In: Proc. of M&S-MTSA’06 (2006), pp. 75–80.

[85] Wentong Cai, S. J. Turner, and Boon Ping Gan. “Hierarchical federations: an ar-

chitecture for information hiding”. In: Proceedings 15th Workshop on Parallel and
Distributed Simulation. 2001, pp. 67–74. doi: 10.1109/PADS.2001.924622.

[86] Victor R. Basili et al. “The Goal Question Metric Approach”. In: Encyclopedia of
Software Engineering. Wiley, 1994, 2:528–532.

159

https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://doi.org/10.1109/MS.2009.42
https://doi.org/10.1109/MS.2009.42
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/32.385971
http://dl.acm.org/citation.cfm?id=782010.782017
http://dl.acm.org/citation.cfm?id=782010.782017
https://structure101.com/
https://www.hello2morrow.com/products/sonargraph
https://www.hello2morrow.com/products/sonargraph
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://github.com/KAMP-Research/KAMP
https://github.com/KAMP-Research/KAMP
https://doi.org/10.1109/PADS.2001.924622

Bibliography

[87] Jennifer Horko� et al. “Evaluating Modeling Languages: An Example from the

Requirements Domain”. In: Conceptual Modeling. Ed. by Eric Yu et al. Cham: Springer

International Publishing, 2014, pp. 260–274. isbn: 978-3-319-12206-9.

[88] Y. Rubner, C. Tomasi, and L. J. Guibas. “A metric for distributions with applications

to image databases”. In: Sixth International Conference on Computer Vision (IEEE Cat.
No.98CH36271). Jan. 1998, pp. 59–66. doi: 10.1109/ICCV.1998.710701.

[89] J. Puzicha et al. “Empirical evaluation of dissimilarity measures for color and texture”.

In: Proceedings of the Seventh IEEE International Conference on Computer Vision. Vol. 2.

Sept. 1999, 1165–1172 vol.2. doi: 10.1109/ICCV.1999.790412.

[90] Herbert Büning and Götz Trenkler. Nichtparametrische statistische Methoden : [mit
69 Tabellen]. 2., erw. u. völlig überarb. Au�. de Gruyter Lehrbuch. Berlin [u.a.]:

de Gruyter, 1994. isbn: 3-11-013860-3; 3-11-014105-1; 3-11-016351-9. url: http:

//digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1214313&

custom_att_2=simple_viewer.

[91] MoSimEngine - MoSimLanguage, WorkwaySimModel, WorkwaySim. en. url: https:

//github.com/MoSimEngine (visited on 09/07/2018).

[92] Larry B. Christensen. Experimental methodology. 10. ed., Pearson internat. ed. Boston:

Pearson/Allyn and Bacon, 2007. isbn: 0-205-48473-5.

160

https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1109/ICCV.1999.790412
http://digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1214313&custom_att_2=simple_viewer
http://digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1214313&custom_att_2=simple_viewer
http://digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1214313&custom_att_2=simple_viewer
https://github.com/MoSimEngine
https://github.com/MoSimEngine

	Abstract
	Zusammenfassung
	Introduction
	Modelling and Simulation Foundation
	Model Driven Software Development
	Models - Definition and Properties
	Model Driven Software Development
	View-Based Modelling

	Software Based Simulation
	Simulation State and Approaches for Simulation Modelling
	Discrete-Event Simulation
	Structures of Multi-System Simulations
	Composability of Simulations
	Co-Simulation and the High-Level Architecture

	Approaches for the Description of Simulation Composition
	CODES
	Discrete Event Systems Specification
	Ptolemy
	OMNeT++

	Simulation of Software Systems and Business Processes Foundations
	Domain-Specific Languages and Architecture Description Languages
	Component-based Software Simulation
	Components
	The Palladio Approach
	EventSim
	Business IT impact simulation

	Related Work
	Composability and Interoperability
	Challenges in the Interaction of High-Level Architecture Implementations
	Modelling Approaches for The High-Level Architecture
	Using Ontologies for Simulation Composition and Interoperability
	Simulation Composition Approaches

	Decoupling in the Context of Monolithic Simulations
	Architecture Description Languages for Modular Simulations

	Extraction of Simulation Models from Monolithic Simulations
	Simulation Features of Monolithic Simulations
	Simulation Information to be Identified for Extraction
	Simulation Entities
	Flows in Monolithic Simulations

	Usage of the Flows and Entities
	Identification of Entities by Simulation Features
	Determination of Requiring and Providing Data
	Replication of Entities
	Types of Execution Flows in a Waiting Scenario

	Challenges in the Extraction of Simulations
	Tooling
	Duplicated Code
	Synchronisation of Simulation Time with Coupling Approaches

	A Description Language for Simulation Coupling
	Modular Simulations in the DSL
	Mitigation of Information Incompatibilities through Adaptation
	Adapter Types
	Adaptation Process

	Package Structure of the Metamodel
	Superordinate Package Structure
	Dependencies between the Packages SimulationFeature, ModularEnvironment and DataRepresentation
	Overview of the Adaptation Package Structure
	Package Structure of ModularSimulationAssembly

	Basic Metamodel Classes
	Representation of Information
	Data types
	Operations
	Representation of Information of Simulation Features
	Discussion of the Metamodels' Object Oriented Structure Design
	Object Instances

	Description of Simulation Features and Modular Simulation Environments
	Modelling of Simulation Features
	Modelling of Modular Simulation Environment

	Metamodel of the Adaptation Approach
	Adapter Services
	Adaptation Descriptions

	Assembly of Modular Simulations
	Structure of Assembled Modular Simulation
	Annotation of Information with Context Information
	Definition of Required and Provided Information of Simulations
	Attachment of Adaptation Descriptions to Adapters
	Connections in the Modular Simulation Assembly
	Hierarchical Assembly of Modular Simulations

	Role Based Modular Simulation Development with the DSL
	Simulation Developer
	MSE-Developer Perspective
	Adaptation Developer Perspective
	Simulation Architect Perspective

	Evaluation
	Description of the Monolithic Simulation WorkwaySim
	WorkwaySim Simulation Model
	Influences on the Behaviour of WorkwaySim
	Waiting and Driving Scheme of the Human Entity
	Discussion of Validity of WorkwaySim for Evaluation

	Evaluation Design
	Presentation of the DSL Model of WorkwaySim
	Modelling of poRTIco
	Modelling of the HumanSim
	Modelling of BusSim
	Modelling of the Adaptations used in WorkwaySim
	Modelling of the WorkwaySim Interfaces
	Modelling of the WorkwaySim Assembly

	Evaluation Results
	Evaluation Results for RQ1 - Completeness
	Evaluation Results for RQ2 - Accuracy
	Evaluation Results of RQ3 - Scalability

	Discussion of Evaluation-Relevant Design Decisions of WorkwaySim
	Implementation of the Waiting Scheme
	Implementation of Multiple HumanSim Features
	Calculation of Execution Time in WorkwaySim

	Discussion of Results
	Assumptions and Limitations
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion
	Bibliography

