
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Enabling Consistency between So�ware
Artefacts for So�ware Adaption and

Evolution

Master’s Thesis of

David Monschein

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Prof. Dr. Anne Koziolek
Advisor: Dr. rer. nat. Robert Heinrich
Second advisor: M.Sc. Manar Mazkatli

27. January 2020 – 2. October 2020

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Hohberg, 1. October 2020

. .
(David Monschein)

Abstract

Nowadays, software systems are evolving at a pace never seen before. In addition, there are
increasingly more adaptations of the software at run-time. Consequently, many challenges
arise, especially when architecture models are used to analyze the software. As a result,
emerging inconsistencies between di�erent software artifacts are almost inevitable. The
e�ort to eliminate these inconsistencies is high and grows due to faster and faster changing
software systems. Furthermore, a profound knowledge about the architecture is necessary
to maintain the consistency permanently. Another problem in this context is that this
knowledge is not available centrally, rather it is usually distributed among several teams
or people (e.g. operators and developers).

Currently, there are several approaches for automated consistency maintenance between
source code and architecture models. Furthermore, there are methods that use monitoring
data to update and enrich the architecture models at run-time. However, these approaches
do not consider the system composition and changes to it. Moreover, they do not perform
automated self-validations or have integrated them only prototypically so far. This leads
to uncertainty about the quality of the architecture models.

Therefore, in this thesis, we present a comprehensive approach for supporting the
consistency preservation between software artifacts with special focus on software evolu-
tion and adaptation. It combines features and concepts of di�erent existing approaches.
At design time, source code analysis and consistency rules are used, while at run-time,
monitoring data is used as input for a transformation pipeline. In contrast to already
existing approaches, the automated derivation of the system composition at run-time and
a semi-automated extraction at design-time are supported. Ultimately, self-validations
were included as a central component of the approach. These allow to dynamically adapt
the behavior based on detected inaccuracies of the models. The goal is to update the
architecture models as accurately as possible and with the highest possible degree of
automation.

In a case study based evaluation the accuracy of the models was measured. Reference
models and monitoring data were used as a basis for comparison. It was shown that the
derived models remain accurate even when considering evolution and adaptation scenarios.
Subsequently, the performance of the transformation pipeline for the case studies was
examined and it became clear that they are adequate for practical use. In this context,
we also examined the overhead that was caused by the monitoring. It was shown that
a good balance between the overhead and the accuracy of the monitoring was achieved.
Finally, the scalability of the transformations within the pipeline was investigated by using
synthetically generated monitoring data as input. The results showed that the scalability
of the transformations is su�cient for the majority of practical use cases.

i

Zusammenfassung

Heutzutage entwickeln und verändern sich Softwaresysteme in einem immer schneller
werdenden Tempo. Außerdem kommt es häu�ger zu Adaptionsszenarien zur Laufzeit
der Software. Daraus ergeben sich viele neue Herausforderungen, insbesondere wenn
Architekturmodelle zur Modellierung der Software verwendet werden. Infolgedessen
sind auftretende Inkonsistenzen zwischen verschiedenen Software-Artefakten nahezu
unvermeidlich. Der Aufwand zur Beseitigung dieser Inkonsistenzen ist erheblich und
wächst aufgrund der immer schneller evolvierenden und adaptierenden Softwaresysteme
weiter. Darüber hinaus ist ein fundiertes Wissen über die Architektur notwendig, um die
Konsistenz dauerhaft zu erhalten.

Es gibt bereits verschiedene Ansätze die die automatisierte Konsistenzhaltung zwischen
Softwareartefakten. Des Weiteren wurden verschiedene Strategien vorgestellt, wie Moni-
toring Daten verwendet werden können, um die Architekturmodelle zur Laufzeit zu aktua-
lisieren und anzureichern. Jedoch binden diese Ansätze die System-Zusammensetzung bei
der Konsistenzhaltung nicht ein. Außerdem führen diese keine Selbst-Validierung durch
oder haben diese bisher nur prototypisch integriert. Dadurch besteht eine Unsicherheit
über die tatsächliche Genauigkeit der Modelle.

In dieser Thesis präsentieren wir einen umfangreichen Ansatz zur Konsistenzhaltung
zwischen Softwareartefakten. Ein besonderes Augenmerk liegt dabei auf der Unterstüt-
zung von Evolutions- und Adaptionsszenarien. Dieser Ansatz kombiniert Funktionen
und Konzepte von verschiedenen existierenden Strategien. Um die Inkonsistenzen zwi-
schen den Modellen zu vermeiden, werden zur Entwurfszeit Quellcode-Analysen und
Konsistenzregeln verwendet, während zur Laufzeit Monitoring-Daten als Input für eine
Transformations-Pipeline dienen. Im Vergleich zu bereits existierenden Ansätzen wird
die Ableitung von Modellen der System-Zusammensetzung zur Lauf- und Design-Zeit
unterstützt. Außerdem wurden Selbst-Validierungen als zentraler Baustein in den An-
satz integriert. Auf Basis der Ergebnisse dieser Validierungen ist es möglich, bestehende
Inkonsistenzen gezielt zu eliminieren.

In einer Fallstudien-basierten Evaluation wurde die Genauigkeit der Modelle ausge-
wertet. Dafür wurden Referenz-Modelle und die Monitoring-Daten als Vergleichsbasis
herangezogen. Es wurde gezeigt, dass die abgeleiteten Modelle akkurat sind, auch wenn
Evolutions- und Adaptionsszenarien betrachtet werden. Anschließend wurde die Per-
formance der Transformations-Pipeline evaluiert. Es wurde deutlich, dass diese für die
meisten praktischen Anwendungsfälle adäquat ist. In diesem Zusammenhang wurde auch
der Monitoring-Overhead gemessen. Es wurde gezeigt, dass ein gutes Balancing zwischen
der Genauigkeit der Monitoring-Daten und dem entstehenden Overhead erreicht wurde.
Abschließend wurde die Skalierbarkeit der Transformationen untersucht. Die Ergebnisse
ergaben, dass diese für die Mehrzahl der praktischen Anwendungsfälle ausreichend ist.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Goal of the Thesis . 2
1.2. Structure of the Thesis . 3

2. Foundations 5
2.1. Model-Driven Software Development . 5

2.1.1. Metamodels . 6
2.1.2. Eclipse Modeling Framework . 6

2.2. Palladio Component Model . 7
2.3. Vitruvius . 10
2.4. Application Monitoring . 11
2.5. Coevolution of Source Code Behaviour and Architectural Elements . . . 12
2.6. iObserve . 14
2.7. CIPM Approach . 19

2.7.1. Monitoring . 19
2.7.2. Incremental Calibration . 21
2.7.3. Self-Validation . 22

3. Objectives and Boundaries 23
3.1. Objectives . 23
3.2. Terminology . 23
3.3. Scope and Usage Scenarios . 24
3.4. Assumptions and Limitations . 26

3.4.1. Limitations . 26
3.4.2. Assumptions . 26

4. Approach 29
4.1. Overview . 29
4.2. Running Example . 30
4.3. VSUM Extensions . 33
4.4. Monitoring . 34

4.4.1. Instrumentation Metamodel Extension 34
4.4.2. Monitoring Record Types Extension 35
4.4.3. Instrumentation Process . 37

v

Contents

4.4.4. Request Tracing . 38
4.5. Service-Call-Graph (SCG) . 39
4.6. Design-Time . 41

4.6.1. Overview . 41
4.6.2. System Composition Derivation 41

4.7. Run-Time . 48
4.7.1. Overview . 48
4.7.2. Monitoring Data Collector . 49
4.7.3. PCM Simulator . 50
4.7.4. Validation Feedback Loop . 50
4.7.5. Runtime Environment Model (REM) 52

4.8. Transformation Pipeline . 53
4.8.1. Overview . 53
4.8.2. Preprocessing . 55
4.8.3. Resource Environment Update 56
4.8.4. System Compositon Update . 57
4.8.5. Repository and Usage Model Update 61
4.8.6. Finalization . 64

5. Evaluation 65
5.1. Overview . 65
5.2. Evaluation Objectives . 65
5.3. Goal Question Metric (GQM) Plan . 66
5.4. Evaluation Metrics . 68

5.4.1. Model Conformity . 68
5.4.2. Distribution Comparison . 70

5.5. Evaluation Setup and Procedure . 71
5.6. Evaluation Environments . 75

5.6.1. CoCoME . 75
5.6.2. TeaStore . 76

5.7. Model Accuracy . 80
5.7.1. Experiment 1 (E1) . 80
5.7.2. Experiment 2 (E2) . 83
5.7.3. Experiment 3 (E3) . 90

5.8. Transformation Pipeline Performance . 95
5.8.1. CoCoME . 95
5.8.2. TeaStore . 97
5.8.3. Summary . 99

5.9. Scalability of the transformations . 100
5.9.1. Repository Model Transformation 100
5.9.2. Resource Environment Transformation 101
5.9.3. System Model and Allocation Model Transformation 104
5.9.4. Usage Model Transformation . 105

5.10. Evaluation Summary . 106
5.11. Threats to validity . 108

vi

Contents

6. RelatedWork 111
6.1. Consistency Preservation of Architectural Models and Source Code . . . 111
6.2. View-based Consistency . 112

7. Future Work 113

8. Conclusion 115

Bibliography 117

A. Appendix 125
A.1. System Model Derivation at Runtime . 125
A.2. Change Scenarios of Experiment 3 . 127

vii

List of Figures

2.1. Overview of the Palladio Component Model [27] 8
2.2. Presentation of an exemplary Service E�ect Speci�cation (SEFF) 9
2.3. Graphical overview of the most important building blocks and the func-

tionality of Vitruvius [50] . 10
2.4. Overview of models, consistency rules and views in Vitruvius’ VSUM in

the context of Langhammer’s co-evolution approach [50] 14
2.5. Overview of the application life-cycle in the context of iObserve and

illustration of the interweaving of adaptation and evolution [30] 15
2.6. Summary of the structure of the TRuntimeUpdate transformation [30] 16
2.7. Comprehensive summary of the iObserve megamodel [30] 18
2.8. Activities and Metamodels involed in CIPM [55] 19
2.9. Structure of the Instrumentation Model which is embedded in the CIPM

approach [17] . 20
2.10. Class diagram visualizing the monitoring record types of the CIPM ap-

proach [35, 56] . 21

3.1. Comparison between the information available at run-time and at design-
time as time progresses . 24

4.1. Summary of the most important artifacts and processes at design-time and
run-time on a high level of abstraction 30

4.2. PCM Repository diagram of the prime generator running example 32
4.3. Presentation of the resulting VSUM for our approach based on the structure

of the co-evolution approach from Langhammer [50] 34
4.4. UML class diagram for the Instrumentation Metamodel which has been

built using the Eclipse Modeling Framework (EMF) 35
4.5. UML class diagram which shows all monitoring record types including

their inheritance characteristics and attributes based on the monitoring of
the CIPM approach [35] . 36

4.6. Basic demonstration of request tracing by means of an HTTP request . . 39
4.7. Sample representation of a basic Service-Call-Graph for the Running Example 40
4.8. Structure of the Service-Call-Graph Metamodel based on the Eclipse Mod-

eling Framework (EMF) . 40
4.9. Activities and strategies that are used to maintain consistency between

source-code and architectural models at design-time; based on the co-
evolution approach of Langhammer [50] 42

ix

List of Figures

4.10. Sample Service-Call-Graph (SCG) for the service providePrimes of compo-
nent CachedPrimeGeneratorService (see running example in Section 4.2),
extracted by using code analysis . 44

4.11. Overview of all components that are involved at runtime 48
4.12. Illustration of how the sliding window mechanism for partitioning the

monitoring data works . 50
4.13. Illustration of how the Validation Feedback Loop (VFL) works in combina-

tion with the transformation pipeline . 51
4.14. Structure of the Runtime Environment metamodel based on the Eclipse

Modeling Framework (EMF) . 53
4.15. Overview of the transformation pipeline structure which is triggered at

runtime . 54
4.16. In-depth view of the transformations that are executed during the prepro-

cess step . 55
4.17. Graphical overview of the process for updating the Resource Environment

Model . 57
4.18. Detailed view of the transformations within the functional unit that is

responsible for deriving the updates of the System Model and the Allocation
Model . 58

4.19. Initial System Model taken from the running example 59
4.20. Exemplary Service-Call-Graph (SCG) of the running example 60
4.21. Updated System Model after the exemplary execution of theTSystemComposition

transformation . 60
4.22. Visual representation of the structure within the procedure for updating

the Repository Model and the Usage Model 62
4.23. Overview of the process that is used to extract the usage scenarios (based

on iObserve [29]) . 63
4.24. Detailed view on the transformations that are triggered in the last step of

the pipeline execution (Finalization) . 64

5.1. Two separate normal distributions with di�erent mean value (µ), visualized
as probability density functions (PDFs) [24]. 71

5.2. Overview of the procedure that is used to simulate change scenarios of
the application . 73

5.3. Overview of all components of the cloud based implementation of CoCoME 75
5.4. Summary of the experiment setup in the context of the CoCoME case study 76
5.5. Overview of all TeaStore components and visualization of the interaction

between them[39] . 77
5.6. Simpli�ed presentation of the Service E�ect Speci�cation (SEFF) of the

extended “con�rmOrder” service and some selected subsequent service
calls (the extensions are highlighted in red) 78

5.7. Summary of the setup of the TeaStore case study for carrying out the
evaluation experiments . 79

5.8. Overview of the procedure and the evaluation of Experiment 1 (E1) . . . 81

x

List of Figures

5.9. Part of the Service-Call-Graph (SCG) that was obtained from the source
code of CoCoME by applying a code analysis 82

5.10. Sample density plot for a distribution of the response times of the “book-
Sale” service in monitoring . 85

5.11. Sample density plot for a distribution of the response times of the “book-
Sale” service in simulation . 85

5.12. Cumulative Distribution Functions (CDFs) for the “bookSale” service . . 85
5.13. Overview of the metrics over time for the CoCoME case study (comparing

the distributions which result from the analysis and the monitoring) . . . 87
5.14. Average response time of TeaStore’s “con�rmOrder” service over time

(averaged over ten experiment executions) 88
5.15. Overview of the accuracy metrics over time for the TeaStore case study

(Experiment 2) . 89
5.16. Overview of the accuracy metrics over time for the TeaStore case study

(Experiment 3) . 92
5.17. Aggregated representation of the loss of accuracy caused by the di�erent

change types by means of box plots, which visualize the quartiles 94
5.18. Number of monitoring records in the sliding window over time while

observing CoCoME . 96
5.19. Detailed performance information on the transformation pipeline over

time (while executing Experiment 2 for CoCoME). 96
5.20. Number of monitoring records in the sliding window over time while

observing TeaStore . 98
5.21. Detailed performance information on the transformation pipeline over

time (while executing Experiment 3 for TeaStore). 98
5.22. Exploration of the scalability of the repository transformation under vari-

ous circumstances . 102
5.23. Analysis of the scalability of the resource environment transformation in

di�erent scenarios . 103
5.24. Execution times of System Model transformation with an increasing num-

ber of changes in the system composition 104
5.25. Scalability analysis of the Usage Model transformation 106

xi

List of Tables

3.1. Summary on the considered Palladio Component Model parts for consis-
tency preservation - distinguished between design-time and run-time . . 25

5.1. Description of the experiments that were conducted to answer the scienti�c
questions of the evaluation . 74

5.2. Number of model elements grouped by element type for the extracted
System Model and the reference model; concerning the CoCoME casestudy 80

5.3. Number of model elements grouped by element type for the extracted
System Model and the reference model; concerning the TeaStore casestudy 83

5.4. Con�guration parameters for the transformation pipeline in the context
of the CoCoME case study (see Section 5.5) 84

5.5. Quartiles for the sample distributions of the monitoring and the simulation 84
5.6. Con�guration parameters for the transformation pipeline in the context

of the TeaStore case study (see Section 5.5) 88
5.7. Overview of the minimum Jaccard coe�cients for Experiment 3, represent-

ing the accuracy of the di�erent models when executing change scenarios
at run-time . 91

5.8. Overview of the aggregated execution times of the individual pipeline
parts in the context of Experiment 2 for the CoCoME case study 97

5.9. Overview of the aggregated execution times of the individual pipeline
parts in the context of Experiment 3 for the TeaStore case study 99

A.1. Truncated example of an exemplary set of change scenarios used for
Experiment 3 of the evaluation . 127

xiii

1. Introduction

Modern software systems become increasingly more complex over time and development
iterations tend to get shorter and shorter. In most cases the software system is based on
various artifacts that represent di�erent abstractions or aspects. An example for such
a pair of artifacts is the source code and related architecture models. Another problem
results from the fact that in many cases the artifacts are managed and developed by
di�erent teams. This creates an overhead due to the mandatory interaction between the
teams. Especially due to the continually rising pace of software evolution and adaptation,
maintaining consistency between software artefacts becomes increasingly more costly and
complex. An example of a scenario that leads to inconsistencies between the architecture
model and the software system is the replication of a database. Even if an accurate model
was built at design-time, it is mandatory that it needs to be updated. In this case, the
operator who performs the replication has to adjust the model manually.

Therefore it is desirable that the e�ort for consistency maintenance is minimized as
much as possible. In this thesis we focus on the consistency between architecture models,
source code and the executed application in the run-time environment. The architecture
model that is used is the Palladio Component Model (PCM) [6], which emphasizes model-
based performance predictions. Since the improved planning possibilities are an important
advantage of the models, it is not su�cient to derive them from running software. Rather,
it is desirable to build an approach that interweaves the evolution of software and models.
Moreover, the adaptation of the software at run-time should also be considered and taken
into account. The goal is a phase-spanning approach to maintain consistency throughout
the evolution and adaptation of the software.

There are already a number of approaches whose goal is to maintain consistency
between software artifacts with the highest possible degree of automation. There are static
approaches such as ArchLint [53] and Just-In-Time Tool for Architecture Consistency
(JITTAC) [11], which aim to detect inconsistencies between source code and architecture
models during development. Langhammer et al. presented a conceptually similar approach
[50]. It extracts architecture models and usage models from source code and test cases.
However, no monitoring events are taken into account at run-time. For this reason, it is
impossible to detect and eliminate any inconsistencies that may arise through software
adaptations. In contrast, there are also some approaches that deal with the derivation,
maintenance and updating of models at run-time. A good summary can be found in [72].
In addition to the approaches mentioned in the summary, we highlight iObserve here [29].
The idea of iObserve is to update PCM models at run-time using monitoring data.

All already mentioned approaches have one thing in common: all of them do not consider
the system composition, i.e. the structure and the arrangement of the components in
the system. But this is also an important part of the architecture models and can be
derived from information about the software (source code and monitoring data). Another

1

1. Introduction

limitation of most existing approaches is that they do not validate the resulting models.
This leads to uncertainty about the actual accuracy of the models. The CIPM approach
[55] takes these self-validations into account, but in the current implementation these are
only integrated prototypically. Moreover, most approaches focus on subtopics and often
only cover evolutionary or adaptation aspects.

In the following section, the most important goals of the thesis are listed and described.

1.1. Goal of the Thesis

The main goal of the thesis is to design an approach which supports the consistency
maintenance between software artefacts and architectural models. It should span the
design-time, but also the run-time of the software. In particular, common evolution and
adaptation scenarios should be supported (e.g. replication of a component at run-time). As
a basis for this, the conception and features of iObserve [29], Vitruvius [46], and CIPM
[55] are combined and used. Vitruvius should be used as a central building block to
eliminate inconsistencies through consistency rules and to establish a mapping between
elements of di�erent models. At run-time, a transformation pipeline (based on iObserve
and CIPM) should be used to derive up-to-date architectural models. So far, iObserve used
the run-time architecture correspondence model (RAC) [62] to provide a mapping between
model elements of di�erent metamodels. In the course of the thesis, the RAC should be
replaced by the correspondence model of Vitruvius. Furthermore, the self-validations
that are already integrated in the CIPM approach should be extended and the results
should be entered into the transformation pipeline. The pipeline can then address and
eliminate existing inaccuracies.

The main contributions of the thesis can be summarized as follows:

(i) Extraction of the system composition at run-time and design-time. At design-time
the derivation is based on the analysis of the source code. Since the exact behavior of
the code at run-time cannot be predicted [18], an overestimation must be made here.
At run-time, the system composition is automatically extracted from the monitoring
data. This is based on the analysis of service call relationships.

(ii) Extension of the self-validations, based on the CIPM approach. The scope of self-
validations is increased, several validations are performed within the transformation
pipeline to directly estimate the impact on the accuracy. In CIPM, up to now only
one validation was performed after the calibration of the architecture models and
the detected inaccuracies were not used directly as input for the calibration [55, 56].

(iii) Fusion of di�erent approaches to cover a variety of aspects of consistency main-
tenance, including iObserve, CIPM, Vitruvius and Langhammer’s co-evolutionary
approach. For example, the features of the iObserve transformation pipeline and the
model calibration of the CIPM approach should be merged.

(iiii) Complete automation and expansion of the instrumentation process. Based on
preliminary work in the CIPM context, the instrumentation should be extended in

2

1.2. Structure of the Thesis

such a way that the extent of monitoring can be controlled at run-time. This allows
to e�ectively manage the arising overhead.

1.2. Structure of the Thesis

Chapter 2 presents the basics for understanding the thesis. Next, Chapter 3 explains the
objectives of the thesis in detail and describes assumptions as well as limitations of our
work. Subsequently, Chapter 4 outlines the conception of the developed approach. Chapter
5 presents the structure and the results of the case study based evaluation. Afterwards,
Chapter 6 discusses the related work in the area of consistency maintenance between
software artifacts and view based consistency. In Chapter 7, areas for future work are
pointed out and �nally, Chapter 8 summarizes the complete thesis and describes the most
important insights.

3

2. Foundations

The thesis relies on several concepts and approaches, which are introduced in this section.
First, Section 2.1 introduces the basics of modeling and model-driven development. Then,
Section 2.2 introduces the Palladio Component Model, which can be used to create models
of component-based software systems. Section 2.3 describes Vitruvius, an approach to
ensure consistency between models. The principle of application monitoring is introduced
in Section 2.4. Subsequently, the last three Sections 2.5, 2.6, and 2.7 describe existing
approaches which address the consistency preservation between software systems and
architecture models.

2.1. Model-Driven So�ware Development

Models are used in software development for various purposes. According to Stachowiak’s
de�nition, a model has three properties: a model is an representation of an original
(mapping feature), a model does not re�ect all properties of the original (reduction feature),
and a model can only replace the original under certain constraints and in certain contexts
(pragmatic feature) [68]. In the context of software development, this is the most common
and widely used de�nition.

Model-driven software development (MDSD), also known as Model-driven development
(MDD), refers to procedures that generate executable code from formal models [69]. These
formal models describe an aspect of the software system entirely, for example the structure
or the behavior. The main goal is to generate the source code of a software from a
model whose complexity is lower than the complexity of the resulting source code. This
results in many advantages, such as a higher development speed, a higher degree of
reusability and the separation of concerns [69]. An example for a modeling language is
the Uni�ed Modeling Language (UML), which can be used for speci�cation, construction,
documentation and visualization of software parts and other systems [63]. In the context
of model-driven development, so-called domain speci�c languages (DSLs) are frequently
used. In contrast to general-purpose languages such as Java and C, these are optimized for
special tasks and domains. Consequently, DSLs are less expressive, but more precise and
compact.

For MDSD it is common that several di�erent models are used. These models can
have di�erent levels of abstraction and are adapted or optimized for a particular purpose.
Typically, the models contain redundant or dependent information. During the evolution of
the models this leads to the fact that changes a�ect several models. These adjustments must
then be done either manually or automatically. Otherwise, inconsistencies between the
models may occur. This process is very complex and requires a high degree of knowledge
about the dependencies and redundancies between the models.

5

2. Foundations

2.1.1. Metamodels

Metamodels are also models that describe the possible structure of models, in particular
the constructs of the modeling language, the relationships between them, the constraints
and modeling rules [69]. A well known metamodel is the UML which has already been
mentioned earlier. In order to be able to describe these meta models it is necessary to
establish a meta-meta model. The Object Management Group (OMG) has introduced the
Meta-Object Facility (MOF) standard, which describes a special metadata architecture [60].
The core component is a self-describing meta-meta model, which provides a general basis
for metamodels. The data is arranged in four meta levels [60]:

M0 Concrete data

M1 Models, for example a concrete instance of UML that represent the M0 level

M2 Metamodels, which describe the structure and composition of the models on M1
level (e.g. UML)

M3 Meta-meta models used to de�ne the M2 plane. These must be self-describing, i.e.
the M3 layer must be describable by means of the M3 layer.

A metamodel must cover four di�erent aspects: abstract syntax, concrete syntax, static
semantics and dynamic semantics [69].

The abstract syntax describes the entities that make up the models, their properties and
relationships. However, it does not make any statements about the representation of these
entities, properties and relationships. [69]

For each abstract syntax at least one concrete syntax must be de�ned. However, several
concrete syntaxes can be de�ned for an abstract syntax, there is no upper limit. A concrete
syntax describes the representation of the components, properties and relations, which
are de�ned in the abstract syntax. Typical forms for a concrete syntax are the graphical or
textual representation. [69]

Static semantics describes restrictions and rules that cannot be expressed using abstract
syntax [69, 1]. It is important that these rules are veri�able. An example of a language for
describing static semantics is the Object Constraint Language (OCL) [16].

The dynamic semantics speci�es the meaning of the elements. Often this is expressed in
natural language. However, it is also possible to map the meta model to a formal language
(e.g. Java or Petri nets), which can be used to formally de�ne the dynamic semantics. [69]

2.1.2. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is, as the name suggests, a Java framework
intended for modeling purposes [12]. It is a project of the Eclipse open source community
and supports the generation of Java code from models. The underlying meta-meta model
is called Ecore and forms the basis for modeling [12]. It is based on a subset of the MOF
standard for metamodeling, which has already been brie�y described.

Using the EMF o�ers many advantages. The entire ecosystem covers many aspects of
modeling. Java source code can be generated directly from the Ecore models. In addition,

6

2.2. Palladio Component Model

there is the possibility to include an editor directly in the generation. With the help of
this editor instances of the model can be created and edited. Furthermore, test cases
are generated which check the generated Java source code. The models can be directly
integrated as a plug-in into the Eclipse platform, but they can also be used as standalone
Java code [22, 12]. The serialization and de-serialization of models is also covered by EMF.
The models can be converted into the XML Metadata Interchange (XMI) format and stored
in �les [74].

The EMF also o�ers many features for the creation of Ecore models. There are two
di�erent editors, one diagramm-based and one tree-based. This allows the implementation
of structures, relationships and rules. It is also possible to directly enter OCL expressions,
which depict the static semantics of the Ecore models. The goal of the EMF is that high-
quality Ecore models can be designed and deployed without much e�ort.

The EMF contains a number of other tools, including implementations of model trans-
formation languages such as QVT [49] and ATL [36], the Java Virtual Machine (JVM)
based programming language Xtend [7] and Xtext [23, 7], which is designed for DSL
development.

In this thesis the EMF was used to establish new model types and to adapt existing
models.

2.2. Palladio Component Model

The Palladio Component Model (PCM) is a model-based approach to the analysis of
software architectures [6]. The PCM focuses on the evaluation of performance aspects,
such as the detection of bottlenecks and scalability problems. However, it is also possible
to analyze reliability and other quality characteristics, such as privacy issues [31, 59].
The advantage of the model-based approach is that the software does not have to be
implemented and then tested, rather it is possible to make statements about the impact
of design decisions at an early stage of development. As a result, high costs for wrong
decisions in development can be avoided and scalable software can be designed from
scratch.

The PCM divides the speci�cation of the software architecture into �ve di�erent model
parts [5]:

1. Repository Model

2. System Model

3. Resource Environment Model

4. Allocation Model

5. Usage Model

These models are designed for di�erent user groups according to the separation of concerns
principle. An overview of the building blocks of a PCM instance is given in Figure 2.1. It
also shows the roles and users that are responsible for each model. The Allocation Model

7

2. Foundations

and the Resource Environment Model are combined in this �gure and both are part of the
system deployer’s scope.

Assembly Model

<<Component

Developer>>
Component Specifications

Allocation Model

Usage Model

<<User>>

<<System

Architect>>

<<System

Deployer>>

<<Domain

Expert>>

part of

part of

part of

part of

Queueing Network Model

Stochastic Regular

Expressions

Performance Prototype

Java Code Skeletons

Model-to-Model

Transformation

Model-to-Code

Transformation

PCM Instance

Figure 2.1.: Overview of the Palladio Component Model [27]

A fully speci�ed PCM instance can be used to perform various analyses and to gen-
erate artifacts. For example, it is possible to transfer the PCM instance into a Queueing
Network Model [19], which can then be used to make statements about the performance.
Furthermore, it is possible to generate a basic skeleton of Java code that re�ects the PCM.
It should be noted that the PCM is on a higher level of abstraction than the Java source
code. Therefore, the generated code should only be seen as a framework and not as a
functionally complete implementation.

In the following paragraphs, the model parts of a PCM instance are described in more
detail.

Repository Model Within the Repository Model, the components and the interfaces of
the software architecture to be modeled are speci�ed. The interfaces contain signatures
with parameters and return types that characterize the services used or provided by the
components. The required and provided interfaces for the components can be speci�ed
via so-called Provided Roles and Required Roles. Another important part of the repository
model are the Service E�ect Speci�cations (SEFFs) within the components. These describe
the behavior of a service provided by the respective component. The structure is similar to
UML activity diagrams [2], but the SEFFs are speci�cally designed so that Resource Demands
can be de�ned for the actions. These Resource Demands de�ne the hardware resources

8

2.2. Palladio Component Model

required for an action. To ensure the accuracy of the simulation results, adequate values
for the resource demands are essential. These values can be described using stochastic
expressions [43], so that distributions can be represented as well. Furthermore, it is possible
to relate the demands to input parameters, so that parametric dependencies can be modeled.
Figure 2.2 shows the visual representation of an exemplary SEFF. The Component Developer
is responsible for creating the components, interfaces and SEFFs in the Repository.

sampleSEFF (int: parameter)

<<ExternalCallAction>>
externalService

<<LoopAction>> <<InternalAction>>
sampleInternalAction

ResourceDemand
19 <CPU>

Figure 2.2.: Presentation of an exemplary Service E�ect Speci�cation (SEFF)

SystemModel The System Model describes the composition of the software architecture,
based on the components and interfaces that have already been created in the Repository
Model. The System Architect is responsible for performing the modeling tasks that concern
the System Model. For the system as a whole, the provided and the required interfaces
must be de�ned. These must then be connected via Delegation Connectors to instances
of components within the system. These instances of components are called Assembly
Contexts. Using Assembly Connectors, provided and required interfaces of Assembly Con-
texts can be connected to each other and thus be satis�ed. The interplay of repository
and system model makes it possible to create composite components. They consist of
assembly contexts and their connection via assembly connectors and are ultimately a part
of the repository model. These composite components can then be “instantiated” again
via Assembly Contexts and therefore allow reusability on a higher level.

Resource Environment and Allocation Model The Resource Environment Model re�ects the
actual hardware environment of the software system. The main elements are the Resource
Containers, which represent a computer with speci�ed available resources. These resources
embody performance-related hardware, such as the hard disk or the CPU. In other words,
no exact clock speed or cache size is speci�ed for a CPU, but only an expression that
describes how many tasks can be executed per time unit. In the same abstract way, the
resource demands are speci�ed in the SEFFs, so that the actually required times for a
speci�c action can be calculated during the simulation. Connections between the Resource
Containers are realized by so-called Linking Resources. For these links properties like
latency and throughput have to be con�gured.

The structure of the Allocation Model is very simple. It consists of Allocation Contexts,
which realize the mapping from Assembly Contexts to Resource Containers. It is necessary
that all Assembly Contexts within the System Model are mapped to Resource Containers.

Both the Resource Environment Model and the Allocation Model are created by the
System Deployer.

9

2. Foundations

Usage Model The Usage Model de�nes the behavior of users, i.e. the way in which they
interact with the system. For this purpose, di�erent Usage Scenarios can be created, which
represent the behavior of individual user groups. For these scenarios, it is possible to
specify the workload, i.e., how many users possess this behavior within a certain period of
time. The structure of a scenario is very similar to the SEFFs within the Repository Model.
Loops and branches can also be integrated. The creation of the Usage Model is the task of
the Domain Expert.

2.3. VITRUVIUS

Vitruvius (VIew-cenTRic engineering Using a VIrtual Underlying Single model) is
a view-based approach which is designed to keep instances of di�erent metamodels
consistent [14, 44]. It uses a Virtual Single Underlying Model (VSUM) [50] which contains
the models. These models can only accessed via views. Consistency between the models is
ensured by so-called consistency preservation rules [45]. They are speci�ed on metamodel
level and consist of triggers, retrievals and actions [45]. Therefore, it is possible to propagate
a change in a certain model through all models. Furthermore, Vitruvius also provides
a bidirectional language, which allows us to specify mappings between metaclasses of
di�erent metamodels [45].

Legend

VT
view type

CPR
consistency preservation rules

consistency preservation process
concerns/refers to
SUM

MM1

MM2

MM3
view1b

VT1

instance of

view1a
instance of

view2b VT2
instance of

view2a
instance of

view3

VT3

instance of

CPR

CPR

Figure 2.3.: Graphical overview of the most important building blocks and the functionality
of Vitruvius [50]

The already introduced views are de�ned on view type level and the views are basically
an instance of a view type. The views enable access to the model instances within the

10

2.4. Application Monitoring

VSUM. As a consequence, the only way to modify the model instances is provided via
views [50]. ModelJoin can be used within a view type to bundle data which is distributed
over di�erent model types [14, 13, 50]. Figure 2.3 visualizes the conception of Vitruvius
and shows the main building blocks.

Vitruvius follows a change-driven approach, i.e. the models are monitored and in case
of changes the consistency maintenance process is triggered [40]. In this way, dependent
and redundant information in other models is updated, mainly based on the consistency
maintenance rules already mentioned. The consistency maintenance process can be
roughly divided into four parts: �rst, the appropriate transformations are selected, then
they are executed, afterwards the correspondences between the elements of the di�erent
models are updated and �nally the adapted models are saved again [47].

The correspondence model is responsible for managing the relationships between the
elements of di�erent models within the VSUM. The structure is relatively simple, it consists
of only two classes: the superordinateCorrespondences class, which can contain an arbitrary
number of correspondences. The correspondence is established either via Temporarily
Unique Identi�ers (TUIDs) or via Universally Unique Identi�ers (UUIDs) [50]. In other
words, a mapping between two elements is characterized by a pair of TUIDs or UUIDs. A
TUID is basically a string consisting of the combination of the �le and an identi�er within
the �le for the respective element. Consequently, a TUID changes when the �le path
changes. In contrast to this stands the UUID, which remains unique even if the �le path
changes. However, this can only be realized if the elements in the respective model have
an identi�er [50]. An example of a model type where UUIDs can be used is the Palladio
Component Model (PCM), see Section 2.2.

The roles for Vitruvius are split into two user groups: the methodologists and the
developers [40]. The methodologists de�ne the transformations and the conditions for cor-
respondences between the elements, i.e. they design the basic framework for maintaining
consistency. The developers interact with the models in the VSUM via the provided views
and thus trigger the speci�ed transformations which ensure that consistency constraints
are ful�lled [40].

2.4. Application Monitoring

In the context of thesis, we refer to monitoring as the process of observing a running
application and collecting data about run-time properties. A classic use case is the diagnosis
of performance problems, such as bottlenecks and excessive loads. During the monitoring
process, various metrics are collected and evaluated. These often include CPU usage and
network load. An important goal of monitoring is to supervise service level agreements
(SLAs) and to ensure their ful�llment [38].

A well known method for establishing a monitoring is the manual insertion of code,
which collects metrics at run-time. Another widely used method is the automated in-
strumentation of the application at startup. Instrumentation is the process of adjusting
the code of the application to be monitored in order to collect the required metrics. An
example is the insertion of time measurements at the beginning and end of a method to
record its execution time. The second method is often used with Java, because it is possible

11

2. Foundations

to change the bytecode of the application during run-time. This means that the application
to be monitored does not even need to know about the monitoring process, instead it can
be used without additional e�ort. The monitoring of the application is then realized via
the so-called “Bytecode Instrumentation” [8].

In this thesis we focus on Kieker [32] and use it for monitoring purposes. Kieker
is a widely used monitoring framework for “monitoring and analyzing the run-time
behavior of concurrent or distributed software systems” [33]. In addition to monitoring
features, analysis possibilities are also supported, e.g. it is possible “to extract and visualize
architectural models” [32]. Special attention is thereby paid to the expandability, so
that monitoring and analysis can be extended without much e�ort by plugins. Kieker
supports several programming languages and methods for instrumentation of the program
code [34]. As a result, the monitoring can be used across borders and on a large-scale.
Another important advantage of Kieker is the low overhead caused by collecting the
metrics at run-time [32]. This ensures that the monitoring does not signi�cantly a�ect
the performance characteristics of the application under observation. The underlying
data structures for the monitoring data are speci�ed using the Instrumentation Record
Language (IRL) [37]. It enables monitoring record types to be de�ned in a style similar to
that of classes. The Instrumentation Aspect Language (IAL) is responsible for determining
where measurements are performed within the application [37]. It also determines which
attributes should be recorded.

2.5. Coevolution of Source Code Behaviour and Architectural
Elements

Langhammer proposed an approach that facilitates the co-evolution of source code and
architectural models [50]. The main goal is to keep architecture models consistent with
the source code of the implementation. Therefore, the approach of Langhammer uses
Vitruvius and de�ned consistency preservation rules. These rules provide automated
consistency maintenance between the repository model and the corresponding source code
of the component-based architecture. Besides that, it extends SoMoX to derive Service-
E�ect Speci�cations (SEFFs) from source code [50, 48]. EJBMox is a further development
of SoMoX which eliminates several limitations [51]. Since the Service E�ect Speci�cations
(SEFFs) are an abstraction of the source code, there is a limitation that only the SEFF can be
built from the source code and not the other way around [50]. The approach also supports
the derivation of a usage model. This procedure is based on analyzing the test cases and
then extracting user behavior [50]. The approach also implicitly establishes a mapping of
elements in the architectural model to the corresponding parts in the source code. This is
realized via the already mentioned Correspondence Model of Vitruvius.

The �rst step in the process of extracting a repository model from the source code is
parsing the source code. This requires a metamodel for Java, in this case JaMoPP [28]
was used. The major advantage of JaMoPP is that it is based on the Eclipse Modeling
Framework (EMF) and can therefore be seamlessly integrated into the VSUM of Vitruvius.

12

2.5. Coevolution of Source Code Behaviour and Architectural Elements

An overview of the models and the consistency preservation rules in the resulting VSUM
is shown in Figure 2.4.

There are two di�erent ways to maintaining consistency between the repository model
and the source code. One of them is change-driven and derives changes in the repository
directly from changes in the source code. The deduction of the changes is based on Vitru-
vius and reaction rules for preserving the consistency [50]. The other approach extracts
a repository model from existing source code. This is based on a "Linking Integration
Strategy" [50].

Langhammer’s approach also integrates the possibility of using performance measure-
ments to generate resource demands for the actions within the services. This was realized
by means of the monitoring tool inspectIT 1. However, a crucial drawback is that the
application has to be set up and deployed to be able to perform this strategy.

1https://inspectit.rocks/

13

2. Foundations

VSUM

VT6

VT view type

CPR consistency preservation rules

consistency preservation process

refers to

VT4

PCM

Java

VT5

Annotated Java Source View

VT2

Java Source View

UML

VT2

UML class diagram

CPRSensor
Model

Simulation
results

Component diagram

VT3

Component-class
implementation view

CPR
CPR

CPR

Figure 2.4.: Overview of models, consistency rules and views in Vitruvius’ VSUM in the
context of Langhammer’s co-evolution approach [50]

2.6. iObserve

iObserve addresses the system adaptation and evolution of cloud-based systems to enable
continuous quality analysis [29]. The main idea is to use run-time observations to detect
changes during the operation phase and derive necessary adjustments to the quality
predictions. The Palladio Component Model (PCM) is used as the basis for the quality
predictions and Kieker is used for monitoring purposes. Brie�y summarized, iObserve
collects monitoring data at run-time with the help of Kieker and applies necessary changes
to the architecture model (PCM instance). The conceptual implementation of iObserve
adopts and extends the MAPE (Monitor, Analyze, Plan, Execute) control loop model [29,
10]. Adaptation and evolution are interwoven and shared models are used throughout
the application life-cycle to close the gap between run-time and design-time. Figure 2.5

14

2.6. iObserve

visualizes the interweaving of adaptation and evolution and also shows the application
life-cycle in the context of iObserve.

Cloud Infrastructure

S
ys

te
m

 A
da

pt
at

io
n

S
ystem

 M
odification

Evaluation

Monitoring &
Observation

Planning

Execution Realization

Analysis

Instrumentation

EvolutionAdaptation

Figure 2.5.: Overview of the application life-cycle in the context of iObserve and illustration
of the interweaving of adaptation and evolution [30]

The following six change scenarios concerning the deployment and use of the application
are supported by iObserve [30]:

1. Workload characterization changes: Changes in user behavior and/or intensity of
use

2. Migration: Transfer of a component from one machine to another

3. Replication: Duplication of a component to achieve load balancing across the di�er-
ent component instances

4. Dereplication: Opposite operation to replication, undeployment of a component
that was previously replicated

5. Allocation: Start-up of a new machine

6. Deallocation: Shutdown of an execution container

The mapping between elements in the architecture model and corresponding elements
in the source code is implemented in iObserve via the Runtime Architecture Correspon-
dence Model (RAC) [30, 62]. It was developed speci�cally for this purpose in the context

15

2. Foundations

of iObserve. The mapping is a central part of the concept, otherwise it is not possible to
relate the monitoring data to elements of an existing architecture model. In the iObserve
megamodel, the RAC forms the transition between the development and operation within
the application lifecycle. Figure 2.7 shows the entire megamodel graphically. Four dimen-
sions are distinguished, on the one hand, implementation level and model level, on the
other hand, development and operation [30].

The main component of the architecture of the iObserve implementation is a transfor-
mation pipeline based on the tea-and-join principle [15]. As input it uses the monitoring
data collected by the Kieker monitoring framework. As can be seen in the megamodel
of iObserve, the structure and amount of monitoring data is mainly in�uenced by the
Record Type Model and the Instrumentation Model. The Instrumentation Model de�nes at
which points within the implementation measurements should be taken. The monitoring
data is processed in such a way that ultimately necessary changes to the architecture
model (PCM) can be carried out. The required changes result from the change scenarios
mentioned above. In this context, iObserve focuses on deployment and workload changes.

The �rst step in the pipeline is to pre-process the monitoring data, i.e. to aggregate,
group it and discard unnecessary data. This high-level transformation is called TPreprocess
and consists of several sub-transformations. The result of this transformation are the
"Aggregated & Re�ned Events", consisting of Deployment Events, Undeployment Events
and the Entry Call Sequence Model, which contains the invocations of the externally
provided system interfaces. The most important and extensive transformation within the
pipeline isTRuntimeUpdate . It uses the data generated in the pre-processing steps and derives
the necessary changes to the architecture model. Just like the TPreprocess transformation, it
also consists of various sub-transformations that break the functionality down to smaller
parts. Figure 2.6 visualizes the inner structure of the transformation.

The Entry Call Sequence Model is used to build an adequate usage model by means of
the TWorkload transformation. The calls of system interfaces by users are �rst subdivided

Undeployment Event

Aggregated &
Refined Events

Deployment Event

Entry Call
Sequence Model Usage Model

Resource Environment
Model

Allocation Model Resource Environment
Model

Allocation Model

Results of TPreprocess

TWorkload

TAllocation

TUndeployment TDeallocation

TDeployment

Figure 2.6.: Summary of the structure of the TRuntimeUpdate transformation [30]

16

2.6. iObserve

into groups, then branches are detected and �nally loops are identi�ed. The results are
then used to construct a usage model with usage scenarios. A usage scenario represents a
group of users that exhibit similar behavior.

The processing of deployment and undeployment events is relatively simple. For each
deployment event the TAllocation transformation �rst checks if the corresponding resource
container exists in the resource environment model and if not it is created. Afterwards the
allocation model is adjusted and the new allocation context is created. This is done by the
TDeployment transformation. First the corresponding allocation context is deleted, then the
container in the Resource Environment Model is deleted if it is no longer present in the
monitoring data.

In the current version, iObserve does not support the calibration of the resource demands
within the repository model, whereas this is supported by the CIPM approach (see following
section).

17

2. Foundations

Model Level

D
evelo

p
m

en
t

O
p

eratio
n

Implementation
Level

<
<
c
o
n
f
o
r
m
s

t
o
>
>

<
<
c
o
n
f
o
r
m
s

t
o
>
>

R
A

C

A
rch

itectu
re

M
eta

m
o

d
el

Im
p

lem
en

tatio
n

A
rtifact

D
ep

l. D
escrip

to
r

S
ch

em
as

A
p

p
licatio

n
F

ram
ew

o
rk

IR
L

<
<
c
o
n
f
o
r
m
s

t
o
>
>

IA
L

In
stru

m
en

tatio
n

M
o

d
el

<
<
c
o
n
f
o
r
m
s

t
o
>
>

A
rch

itectu
ral

M
o

d
el

T
A

p
p

A
sp

ect
Im

p
lem

en
tatio

n

A
O

P
F

ram
ew

o
rk

<
<
c
o
n
f
o
r
m
s

t
o
>
>

<
<
c
o
n
f
o
r
m
s

t
o
>
>

A
rch

itectu
ral

R
u

n
tim

e M
o

d
el

A
g

g
reg

ated
 &

R
efin

ed
 E

ven
ts

M
o

n
ito

rin
g

 D
ata

T
R

u
n

tim
eU

p
d

ate

T
P

rep
ro

ces
s

C
an

d
id

ate
A

rch
itectu

ral
M

o
d

el

A
d

ap
tatio

n
S

crip
t

A
d

ap
tatio

n
 M

o
d

el

<
<
c
o
n
f
o
r
m
s

t
o
>
>

R
eco

rd
 Typ

e
M

o
d

el

R
eco

rd
 Typ

e
Im

p
lem

en
tatio

n

Tran
sfo

rm
atio

n
 S

ingle m
odel input

transform
ation

 M
ultiple m

odel input /
output transform

ation

C
o

n
fo

rm
an

ce

<
<
c
o
n
f
o
r
m
s

t
o
>
>

M
odel to m

etam
ode

l,
data to data type,
artifact to fram

ew
ork

L
eg

en
d

:

<
<
c
o
n
f
o
r
m
s

t
o
>
>

R
A

C
M

eta
m

o
d

el

<
<
c
o
n
f
o
r
m
s

t
o
>
>

Figure
2.7.:Com

prehensive
sum

m
ary

ofthe
iO

bserve
m

egam
odel[30]

18

2.7. CIPM Approach

2.7. CIPM Approach

CIPM (Continous Integration of Performance Models) [55] is an approach that aims to adapt
the architectural model after each source code commit. CIPM is based on the incremental
extraction of software architecture models from Langhammer [50]. However, further
functionalities have been added, for example the parameters in the model are updated with
the help of run-time information. It uses an adaptive monitoring to collect data while the
application is running. Thereby not only information about service calls is collected (so
called coarse-grained monitoring), but also about the behavior within the service calls (so
called �ne-grained monitoring) is tracked [55]. It is called adaptive monitoring, because we
do not instrument the whole code �nely granular, just the parts that have changed. This
can signi�cantly reduce the overhead caused by the monitoring. The architecture model
is recalibrated using the data collected by monitoring. The calibration also consideres
parametric dependencies, which improves the generalization of the calibrated model. In
this context, the generalization describes how accurate the simulation results are for an
usage scenario that has not yet been monitored. Figure 2.8 summarizes the most important
activities and metamodels related to CIPM.

Code

PCM

Instrumentation model

Measurements model

2:

Start monitoring

4: for each RD

Delete probesActivate probes

Accepted error rateNo yes

1:

PCM extraction

Probes generation

CD

3:

Deactivated probes

Estimate PMPs

Enough traces

 Reaction language Routine Trigger the routine Control flow VSUM ModelLegend:

Commit *

Figure 2.8.: Activities and Metamodels involed in CIPM [55]

In the following sections, the most important parts of the CIPM approach are presented
and explained in more detail.

2.7.1. Monitoring

By means of monitoring, measurements are carried out during the run-time of the applica-
tion, which should examine important properties. In particular, this includes measurements
that cover the performance related characteristics. The current implementation of CIPM
uses Kieker as monitoring framework. The so-called Instrumentation Model controls the
extent of the monitoring and decides which services are observed �ne-grained and which
coarse-grained. In the following paragraphs the Instrumentation Model is described, �ne
granular monitoring is compared to coarse granular monitoring and the data structures
on which the monitoring is based are introduced.

19

2. Foundations

Fine-Grained vs Coarse-Grained Monitoring In general, CIPM distinguishes between two
di�erent types of monitoring: �ne-grained and coarse-grained.

With coarse granular monitoring, only the service calls are observed at run-time. This
means that no information about the internal behavior within a service is collected. This
type of monitoring produces a signi�cantly reduced overhead compared to �ne-granular
monitoring, but the data is less meaningful. A suitable use case for coarse granular
monitoring is the validation. If the goal is to detect whether a service is well represented
in the architectural model, the simulation results can be compared with the results of the
coarse-grained monitoring.

With �ne-grained monitoring, on the other hand, all service calls are tracked along
with the corresponding internal actions, loop actions, and branch actions. Logically, this
results in an increased performance overhead at run-time. But this makes it possible to
perform precise adjustments in the model to align it with the run-time behavior (so called
“Calibration” process).

It does not make sense to monitor all services permanently �ne-grained or coarse-
grained. Rather, it is desirable to trigger a �ne-granular or a coarse-granular monitoring
of certain services, depending on the accuracy of the model. This is enabled by means of
the so-called Instrumentation Model. It determines individually for each service which
parts should be monitored. Each time after the execution of the “Ops-time calibration” the
Instrumentation Model gets updated. Using the monitoring data as reference, the accuracy
of the modeled services is estimated. In case of high inaccuracies, the Instrumentation
Model is modi�ed in such a way that the corresponding services are monitored �ne-grained
in the next iteration. The structure of the Instrumentation Model in the context of the
CIPM approach is outlined in the next paragraph.

Instrumentation Model The structure of the Instrumentation Model is very simple and
consists of only two classes. Figure 2.9 illustrates the structure of the underlying metamodel.
The AppProbes class serves as container for an arbitrary number of Probe instances, which

<<EClass>>
AppProbes

<<EClass>>
Probe

+ active: EBoolean
+ abstractActionID: String

*

probes

Figure 2.9.: Structure of the Instrumentation Model which is embedded in the CIPM ap-
proach [17]

de�ne for the elements of the services whether they are monitored or not. The activation
and deactivation is enabled via the “active” attribute. The elements of the services are
addressed via their ID as de�ned in the Palladio Component Model (PCM). The mapping
of the service elements to the implementation (code) is realized via Langhammer’s co-
evolution approach [50].

Monitoring Record Types The record types are the centerpiece of the monitoring and
describe in which format the observation data is collected and stored. In order to de�ne

20

2.7. CIPM Approach

the record types, the Instrumentation Record Language (IRL) of Kieker has been used
[33]. Figure 2.10 shows the data structures on which the monitoring is based. In general,

Extends

Extends
RecordWithSession

+ sessionID: String

ResourceUtilizationRecord

+ resourceID: String

+ utilization: double

+ timestamp: long

ServiceContextRecord

+ serviceExecutionID: String

BranchActionRecord

+ branchID: String

+ executedBranchID: String

ResponseTimeRecord

+ internalActionID: String

+ resourceId: String

+ entryTime: long

+ exitTime: long

LoopActionRecord

+ loopID: String

+ loopIterationCount: long

ServiceCallRecord

+ serviceID: String

+ parameters: String

+ calleServiceExecutionID:String

+ callerId: String

+ assemblyId: String

+ entryTime: long

+ exitTime: long

Extends Extends Extends Extends

Figure 2.10.: Class diagram visualizing the monitoring record types of the CIPM approach
[35, 56]

there are two superordinate classes of record types: the records that can be assigned to
a user session (RecordWithSession) and the records that are part of a service execution
(ServiceContextRecord). The utilization of hardware resources is tracked with the help of
the ResourceUtilizationRecord record type. The remaining record types are responsible
for tracking behavior in the context of a service call. BranchRecords are used to monitor
branch executions, LoopRecords to log loop iterations, ResponseTimeRecords to capture
internal hardware usage and ServiceCallRecords to trace the call of a service itself.

2.7.2. Incremental Calibration

CIPM distinguishes two types of incremental calibration of architecture models: dev-time
calibration and ops-time calibration. The dev-time calibration includes the analysis of
source code changes and the derivation of resulting changes to the architecture model.
The ops-time calibration, on the other hand, uses monitoring data to adjust the deployment
and the usage model.

If new parts are added to the source code, the dev-time calibration ensures that they
are appropriately instrumented. The goal is to estimate the resource demands using the
monitoring data. In this context a special focus is put on the detection of parametric
dependencies. In other words, the resource demands are calibrated in such a way that
they are expressed in dependence on certain parameters. This increases the prediction

21

2. Foundations

power of the models signi�cantly, since it also allows accurate statements to be made
about scenarios that have not been observed so far.

The ops-time calibration is largely based on iObserve (see Section 2.6). For this purpose,
the used parts of iObserve were adapted to operate on the monitoring data structures of
the CIPM approach. The run-time Architecture Correspondence Model (RAC) was not
used because the mapping is implicitly embedded in the monitoring records of the CIPM
approach. The mapping is established by the co-evolution approach and subsequently
woven into the source code within the instrumentation process [56].

2.7.3. Self-Validation

During self validation, the current architectural model is simulated and the results are
compared to reference data. Resulting deviations can then be used to adjust the calibration
process in order to eliminate them. The self-validation process is always performed after
a calibration. The dev-time calibration uses test data as reference, whereas the ops-time
calibration uses monitoring data. Based on the results of the self-validation process, the
Instrumentation Model is adjusted as well. For services with a large discrepancy between
the simulation data and the reference data, �ne-grained monitoring is activated.

22

3. Objectives and Boundaries

This chapter clari�es the scope of the thesis and points out the main goals. First, the goals
are introduced in Section 3.1. Next, in Section 3.2 the basic terms that are necessary for
understanding the approach are explained. Section 3.3 outlines the scope of the approach
and for which kind of usage scenarios it is suitable. Finally, Section 3.4 presents the
limitations of the approach and the assumptions that were made.

3.1. Objectives

The goal is to design and develop a platform that simpli�es keeping source code and
software architecture models consistent throughout the lifecycle of a software. This is
supposed to be realized by automated procedures as well as approaches which support
the developers in keeping the source code consistent with the architectural models. The
necessity of already existing architecture models should not be required, which is especially
interesting for software without existing initial architecture models. Furthermore, special
attention is paid to ensure that the evolution and adaptation of software is supported.

Since the architectural models are located at a higher level of abstraction some informa-
tion is inevitably lost. Therefore, the consistency preservation is often not bidirectional.
Due to this fact, in most parts it is only possible to propagate changes of the source code
to the architecture model and not vice versa.

In the following section, we introduce the core features and use-cases that are covered
by the approach. Thereby we go into more detail about the scope of the consistency main-
tenance and about the change types that are supported. These pre-de�ned requirements
then determine the scope and certain characteristics of the approach (see Chapter 4 below).

3.2. Terminology

In the following, we will often distinguish between design-time and run-time. Design-time
represents the time frame until the deployment of the application under consideration.
Run-time, on the other hand, represents the period after the deployment of the application.
In this context, deployment refers to the process during which the application is put
into a production or test environment. This di�erentiation is crucial with regard to the
information which is available about the composition and the behaviour of the applica-
tion. In general, there is much more information about the application at run-time; for
example, the user behavior is usually only identi�able when the application is executed in
a production environment. In addition, re-con�gurations and other events that occur after
the deployment are unknown at design-time. With the help of application monitoring, we
are able to keep track of these events. Figure 3.1 illustrates this phenomenon.

23

3. Objectives and Boundaries

Time

Deployment

Design-Time
Information

Design-Time
Information

Design-Time
Information

Design-Time
Information

Run-Time Information

Figure 3.1.: Comparison between the information available at run-time and at design-time
as time progresses

The distinction plays an important role in the procedures for the automatic extraction
of architectural models. We have to take into account what information and data is already
present, depending on the point in time.

This results in techniques that have the same goal, but can be completely di�erent
depending on whether they are executed at run-time or at design-time. Therefore, we will
make a fundamental di�erentiation between design-time and run-time.

3.3. Scope and Usage Scenarios

The developed approach supports the consistency preservation of all parts of the Palladio
Component Model (PCM). However, depending on the model type, not all element types
and properties are kept consistent, i.e. there are some limitations. These restrictions are
listed and explained in section 3.4.1.

The following table shows for each model part of the PCM whether consistency main-
tenance is supported with the corresponding application/source code. We distinguish
between run-time and design-time, and also indicate on which preliminary works the
consistency preservation is based. Furthermore, it is mentioned whether the consistency
preservation of the respective parts has been conceptually extended in our approach.

The generation of usage models at design-time has not been considered in our approach,
however there are existing techniques which use test cases to generate them [50]. Fur-
thermore, Resource Environment Models and Allocation Models are not considered at
design-time. In many cases it is not possible to derive these models automatically from
the data that is available. The information is simply missing, since it cannot be found in
the source code. Rather, the deployer of the system determines the resource environment
and allocations individually. Nevertheless, there is also an ongoing project in this area.
It attempts to derive related models for the resource environment and allocations from
documentation and additional information (such as Docker �les) [67]. The derivation of
the resource environment, allocation and usage at run-time are conceptually identical to
the iObserve approach, although they were migrated to our monitoring data structure.

24

3.3. Scope and Usage Scenarios

Design-time Supported Foundations Extended
Repository 3 Coevolution approach[50] 7

System 3 7 3

Resource Environment 7 7 7

Allocation 7 7 7

Usage 7 Coevolution approach[50] 7

Run-time Supported Foundations Extended
Repository 3 CIPM[56, 35] 3

System 3 7 3

Resource Environment 3 iObserve[29] 7

Allocation 3 iObserve[29] 7

Usage 3 iObserve[29] 7

Table 3.1.: Summary on the considered Palladio Component Model parts for consistency
preservation - distinguished between design-time and run-time

Besides the relatively rough information about the scope in Table 3.1, there are some
speci�c use cases that should be supported by our approach. These are particularly
important with regard to the evaluation, which will then measure and ensure the quality
of our approach. The most important use cases are:

[U1] Allocation/ De-Allocation: Appearance/disappearance of resource containers on
which parts of the software system can be executed.

[U2] Migration: Moving a component that is allocated on a speci�c resource container to
another resource container. This procedure consists of two parts, �rst the component
is removed on the original container and then deployed on the new container.

[U3] Replication/De-Replication: Replication is related to migration, the di�erence between
the two is that replication does not remove the component from the original container.
In other words, after the replication process we now have two components of the
same type, but on di�erent containers. De-replication is simply the rollback of a
replication.

[U4] Changes of the system composition: Changes to the system composition at run-
time/design-time, including, for example, the change of a used component. This
point will be addressed in more detail in the remainder of this thesis when describing
the approach to ensure the consistency of the system model.

[U5] Usage behavior : Users change their behaviour and thus in�uence the system. For
example, users buy more products on average.

[U6] Workload: If the system is used by more or less users than before, the workload
changes. This can have signi�cant impact on the system and its performance
characteristics.

25

3. Objectives and Boundaries

In the remainder of the thesis, these use cases will be referenced frequently, as they are
the foundation for many requirements of the approach. Furthermore, the procedure and
structure of the evaluation is designed according to these scenarios.

3.4. Assumptions and Limitations

In this section we go into more detail about limitations and introduce assumptions that
have been made. The di�erence here is that the limitations mainly result from the fact
that some parts were not considered due to complexity reasons. These could be eliminated
with future research. The assumptions, however, were made for reasons of abstraction
and are unlikely to be eliminated by future work.

3.4.1. Limitations

The approach has the following limitations:

[L1] To be able to use the consistency maintenance at run-time, it is necessary that
the application can be monitored. If there is no source code or no access to the
application, some parts of the consistency maintenance cannot be used.

[L2] Performance attributes of links (Linking Resources) within the Resource Environment
Model are not calibrated. In this context, calibration describes the alignment of the
stochastic expressions within the model elements based on the monitoring data.
These include, for example, the latency and throughput of a connection, which are
not automatically adjusted using the monitoring data. The same is partly true for the
characteristics of the resource containers, here only certain properties are calibrated,
such as the number of CPU cores.

[L3] In the automated derivation of the system model at run-time and in the derivation
process of the system model at design-time, composite components are not con-
sidered. These are a buliding block of the PCM which enable the reuse of certain
compositions of components. This limitation can be eliminated, but this requires a
very high implementation e�ort. Furthermore, the same systems can be modelled
with and without composite components.

3.4.2. Assumptions

The following assumptions were made in the context of the thesis:

[A1] No new components are added at run-time, instead they are always developed at
design-time and are not introduced into the production environment until they are
deployed.

[A2] The interfaces provided by the system as a whole do not change at run-time.

26

3.4. Assumptions and Limitations

[A3] A speci�c component type can only be deployed once on a particular container.
This means, for example, that a component of type “database” can only occur once
on a host. However, it is allowed when there are two di�erent component types of
databases (e.g. MySQL and SQLite) deployed on one host. The problem that arises
when we do not make this assumption is that we cannot reliably distinguish between
the component instances. This problem occurs because source code and architectural
model are located at di�erent levels of abstraction. Therefore, we usually cannot
create one-to-one mappings between elements. For the automated derivation of a
System Model we need exactly this one-to-one mapping between monitoring data
and the component instances. A pair of component type and host must therefore
be unique, otherwise it is not possible to automatically derive the System Model
unambiguously. Theoretically, it would be possible to weave information about
the component instance into the monitoring, but this requires domain knowledge
and di�ers from usage scenario to usage scenario. This assumption sounds very
restrictive at �rst, but the excluded cases rarely occur in practice. There were also
no con�icts in the two case studies which we used for evaluation.

27

4. Approach

First, an overview of the approach and the most important contributions is given in Section
4.1, then a running example is introduced in Section 4.2. It is used to illustrate parts of the
approach with a realistic and clear example. Section 4.3 shows the changes to the Virtual
Single Underlying Model (VSUM) of Vitruvius in the context of the thesis. Subsequently,
Section 4.4 presents the extensions regarding the monitoring. These include changes to the
Instrumentation Metamodel, the extension of the monitoring records and the conception
of the automated instrumentation process. Afterwards, Section 4.5 presents the structure
and purpose of the so-called Service Call Graphs (SCGs). These are used at di�erent places
in our approach to represent call relationships between services. Section 4.6 and Section
4.7 introduce the concepts for maintaining consistency at design and run-time. Finally,
Section 4.8 presents the transformation pipeline, which updates the architecture models at
run-time using the monitoring data.

4.1. Overview

In this section, we provide a rough overview of the conceptual design of the approach and
explain how it can be used to enable consistency between source code and architectural
models.

Figure 4.1 shows a very simpli�ed view of the approach as a whole. In order to derive the
initial parts of the architectural model, it is only necessary that source code already exists.
The source code can be used to extract a repository model. This process was inherited from
previous work in this context [50]. The output of the derivation process is a repository
model and a mapping between entities in the source code and corresponding elements
in the architecture model. This mapping is essential for further processes and especially
for the instrumentation (2) of the application. In order to obtain information about the
running application, it is necessary to monitor it. To achieve this we use Kieker [33], which
is well established and often used for this purpose. Conceptually, the instrumentation
process is based on the preliminary work of Dahmane [17], but has been extended within
this thesis. The monitoring is based on the idea that we weave information from the
mapping into the source code during the instrumentation process. This allows us to easily
link the monitoring data to the elements in the architecture model. The methodology of
the monitoring and the instrumentation process are explained in more detail in Section
4.4.

Furthermore, the approach supports the derivation of a system model using the mapping
together with the source code as input (3). This process does not work fully automated, it
is necessary that a developer (e.g. the System Architect; see Section 2.2) manages con�icts
that cannot be resolved automatically at design-time. As a core building block we use a

29

4. Approach

Design-Time Run-Time

Mapping

PCM Instance

Repository Derivation

Source Code

System Derivation
(3)

(1)

Transformation Pipeline
(5)

Instrumentation
(2)

output input

Monitoring DataSimulation

Artefact Process

(4)

Extended/ Contribution

Figure 4.1.: Summary of the most important artifacts and processes at design-time and
run-time on a high level of abstraction

static pointer analysis, which determines the composition of the system with the help of
the mapping. In existing approaches for consistency preservation, the System Model was
not taken into account, which is why this process had to be designed and implemented
from scratch. In Section 4.6.2 the approach is explained in more detail.

At run-time we use the monitoring data as input for a transformation pipeline which
updates all parts of the architecture model accordingly. The special characteristic here
is that the current architectural model is simulated in advance and the results of the
simulation are fed into the transformation pipeline as input. Within the pipeline, the
simulation results are compared with the monitoring data to estimate the accuracy of the
current model. This concept is based on the CIPM approach, which calls this step “self
validation” [55]. Consequently, it possible for the pipeline to adjust its behavior according
to the accuracy or inaccuracy of the current architectural model. The transformation
pipeline and the simulations of the models are discussed in more depth in Section 4.7.

4.2. Running Example

We have implemented and modelled a clearly arranged running example to illustrate parts
of our approach and to be able to give informative examples. Our running example is
an application that can be used to generate and retrieve prime numbers. Structurally it
is designed rather simple, there is a server (PrimeServer), that generates or retrieves the
prime numbers. The server uses a service (PrimeGenerator) to generate prime numbers
within a certain interval. There are two di�erent implementations for the server, one of
them uses a database as cache and the other one generates the prime numbers anew with
every call. Furthermore, there are di�erent implementations (strategies) for the database,
as well as for the generators of the prime numbers which can be used. Figure 4.2 shows

30

4.2. Running Example

the Repository Model of the corresponding PCM instance. We also created models for
all other model types in the PCM, but did not include them here to keep this section
clearly arranged. Later, when describing some parts of our approach, we will refer to this
Repository Model to improve the comprehensibility.

31

4. Approach

Figure
4.2.:PCM

Repository
diagram

ofthe
prim

e
generatorrunning

exam
ple

32

4.3. VSUM Extensions

4.3. VSUM Extensions

The correspondence metamodel of Vitruvius which was already mentioned in the foun-
dations (cf. Chapter 2) is used at certain points in our approach to associate elements
of di�erent metamodels. Wherever we needed a mapping between elements of di�erent
metamodels, we used this correspondence mechanism. Within the transformation pipeline
we intentionally opted against the mapping of iObserve. As mentioned in the Foundations,
iObserve uses the Architecture Correspondence Meta-Model (RAC) [29]. To keep the
mapping uniform, we replaced the RAC and used Vitruvius.

The starting point for the structure of the VSUM was Langhammer’s approach [50].
The VSUM has been extended in two aspects for our approach:

1. The VSUM was extended to include the Instrumentation Model (IM). Some consis-
tency rules have been extended in order to ensure that when services are added/re-
moved in the PCM, associated elements are created/removed in the IM. The IM is
based on the work of Dahmane [17], but has been completely redesigned for our
approach. In previous projects, the IM has not yet been integrated into the VSUM,
this has now been realized by our approach.

2. Extension of the VSUM to include the Runtime Environment Model (REM). The
REM represents the actual runtime environment. It is mainly used to create a
mapping between the resource containers in the PCM resource environment model
and computers in the physical runtime environment. The computers within the
environment are characterized by host names and other hardware properties. From
these properties, we calculate an ID which is set in relationship to a container in the
Resource Environment Model. The REM is introduced in Section 4.7. Furthermore,
consistency rules were de�ned with the help of Vitruvius, which ensure that changes
in the runtime environment are propagated to the PCM instance.

The �nal structure of the VSUM as it is used in our approach is visualized in Figure 4.3.
We have omitted metamodels that are not relevant for our approach to increase simplicity
(e.g. UML models). The consistency rules and the structure of the REM are explained later
in Section 4.7, when it comes to consistency preservation at runtime.

33

4. Approach

VSUM

REM

CPR

CPR

VT1

VT2

VT view type

CPR consistency preservation rules

consistency preservation process

refers to

VT3

PCM

Java

INM
CPR

VT4

extension of existing approaches

Figure 4.3.: Presentation of the resulting VSUM for our approach based on the structure of
the co-evolution approach from Langhammer [50]

4.4. Monitoring

Section 4.4.1 explains the structure of the redesigned and extended Instrumentation Meta-
model, which plays an important role in the monitoring. Afterwards, Section 4.4.2 then
shows the modi�ed monitoring record types, which are the underlying data structures
for the monitoring data. Subsequently, Section 4.4.3 outlines the instrumentation process
which is used to modify the source code and to establish the monitoring. Finally, Section
4.4.4 explains how we enable monitoring across the boundaries of di�erent computers.

4.4.1. Instrumentation Metamodel Extension

The concept of the Instrumentation Model (IM) is based on CIPM and has been implemented
in a previous work (see Foundations) [17]. The structure of the metamodel was redesigned
and extended for our approach. In addition, our enhancements enable the IM to be
regularly updated through self-validation, thus a�ecting monitoring at run-time (see
Section 4.7.4). The resulting metamodel is very simple, consisting of only a few classes
and one enumeration. It is based on the Eclipse Modeling Framework (EMF) [70] and

34

4.4. Monitoring

contains references to the core of the Palladio Component Model (PCM). The structure of
the Instrumentation Metamodel is visualized in Figure 4.4 using a class diagram.

<<EClass>>
InstrumentationModel

*

<<EClass>>
InstrumentationPoint

+ active: EBoolean

<<EEnum>>
InstrumentationType

INTERNAL
BRANCH
LOOP

type
1

org.palladiosimulator.pcm.seff

<<EClass>>
AbstractAction

<<EClass>>
ResourceDemandingSEFF

<<EClass>>
ServiceInstrumentationPoint

Extends

<<EClass>>
ActionInstrumentationPoint

1

Extends

*

service11 action

points

subPoints

Redesigned Instrumentation Metamodel

Figure 4.4.: UML class diagram for the Instrumentation Metamodel which has been built
using the Eclipse Modeling Framework (EMF)

The Instrumentation Model class contains an arbitrary number of Service Instrumentation
Points and is the root container of all elements. These Service Instrumentation Points control
the monitoring for a complete service. This allows, for example, that the monitoring of a
speci�c service can be completely deactivated or activated. The Service Instrumentation
Points additionally contain a number of so-called Action Instrumentation Points. These
control the monitoring at a �ner level and make it possible to monitor branches, loops
and internal actions within a service. The type of this instrumentation point is explicitly
expressed through a reference to the InstrumentationType enumeration. With the help
of the Object Constraint Language (OCL) it is ensured that there are no two di�erent
instrumentation points for the same element. This means that there can be a maximum of
just one ServiceInstrumentationPoint per service and only one ActionInstrumentationPoint
for each sub-action of a service.

During the initial generation of the instrumentation model for a corresponding Palladio
Component Model instance, we create instrumentation points for all services and their
underlying actions. However, only the points that realize the monitoring on service level
are activated (coarse-grained monitoring, see CIPM [55]).

4.4.2. Monitoring Record Types Extension

The extension and modi�cations of the monitoring record types have been determined
on the basis of the requirements for the monitoring data. A special characteristic of our
monitoring is that we weave the information about corresponding model elements of the
PCM directly into the records (see Section 2.7.1 about the CIPM monitoring). The �nal
monitoring record types are shown in Figure 4.5 as UML class-diagram.

35

4. Approach

PCMContextRecord

SessionContextRecord

+ sessionID: String

HostContextRecord

+ hostID: String

+ hostName: String

Extends Extends

ServiceContextRecord

+ serviceExecutionID: String

Extends

ResourceUtilizationRecord

+ resourceID: String

+ utilization: double

+ timestamp: long

Extends

ServiceCallRecord

+ serviceID: String

+ parameters: String

+ callerExecutionID: String

+ externalCallID: String

+ entryTime: long

+ exitTime: long

Extends

Extends

InternalActionRecord

+ internalActionID: String

+ requestedResourceID: String

+ entryTime: long

+ exitTime: long

Extends

LoopActionRecord

+ loopID: String

+ loopIterationCount: long

BranchActionRecord

+ branchID: String

+ executedBranchID: String

Extends

Extends

Extension/ Modification

Figure 4.5.: UML class diagram which shows all monitoring record types including their
inheritance characteristics and attributes based on the monitoring of the CIPM
approach [35]

The newly introduced class PCMContextRecord serves as superclass for all record types.
This allows us to easily �lter out the records that are not relevant for our approach.
The concrete types can be classi�ed in two groups: the SessionContextRecords and the
HostContextRecords. However, a record type does not necessarily has to be assigned to
only one group, it can also belong to both. The monitoring record type HostContextRecord
has been added and is used to associate the monitoring data with a host. It is designed
analogously to the ServiceContextRecord. It indicates that there is an associated computer
to which the record belongs. We not only store the hostname of the computer, we also save
an ID of the host which is constructed based on the hardware and should be unique within
the observed environment over a long-term period. The exact strategy for generating
the host ID is not �xed, in the implementation we used a hash value based on the media
access control address (MAC address) of the computer. A ServiceContextRecord indicates
that a record is produced during the execution of a service. We generate a new ID for each
execution of a service (serviceExecutionID) which must be unique within a certain time
window (approx. 1-5 hours). The ID is required to extract traces from the monitoring data.

36

4.4. Monitoring

More details are provided in Section 4.7. Furthermore, we can determine the corresponding
host for all subtypes of the "ServiceContextRecord" by using the mapping to service calls.

The ServiceCallRecord is used to monitor the execution of a speci�c service on a partic-
ular host. We save the parameters of the service execution JSON [61] encoded into the
parameters attribute and if the service was triggered by another service, this is re�ected by
the callerExecutionID. This ID allows us to build traces of service calls. Furthermore, the
attribute “externalCallID” was added, which indicates whether a service call was triggered
by an external call or not. This is required for the automatic derivation of the system model
at runtime (see Section 4.8). Multiple inheritance is not a concern here, as Kieker’s IRL
supports it and uses interface to build the appropriate Java classes. The LoopActionRecord
and the BranchActionRecord have been adopted one-to-one from the preliminary work. The
last concrete record type is the InternalActionRecord which measures the execution time
for a speci�c Internal Action in the PCM model. In comparison to the former monitoring,
it was renamed in order to keep the naming uniform.

4.4.3. Instrumentation Process

The goal of the instrumentation process is to ensure that the monitoring records are
automatically recorded at runtime. The generated records must also be sent to a backend
where they are processed. This is accomplished by the instrumentation process. In contrast
to many other approaches used for instrumentation, our approach directly aligns the source
code and not the bytecode of the application (see CIPM [56]). The disadvantage of this
method is that we have to perform the instrumentation before building the application,
which makes it less �exible. However, for two reasons it is mandatory that we directly
operate on the source code and not on the bytecode. The �rst reason is that loops are
irreversibly removed during the generation of Java bytecode and can therefore no longer
be detected without further ado. The second problem arises from the mapping of elements
in the PCM instance to elements of the source code. The mapping, which is explained in
more detail in Section 4.3, cannot be adapted to the bytecode without considerable e�ort.

The existing instrumentation process uses Vitruvius to adjust the source code via
consistency rules [17]. The problem is that the JaMoPP metamodel [28], which was used
to represent the source code, only supports Java version 7 and lower. To eliminate this
restriction, we use the JavaParser library1 in our approach to modify the source code.
In addition, the instrumentation process was adapted to support the structure of the
redesigned Instrumentation Model (IM).

As input, the instrumentation process requires an IM, the Correspondence Model and
of course the source code. We also assume that the associated repository model (of the
PCM) is consistent with the current source code. This can be realized using Langhammer’s
approach [50]. The instrumentation process depends on this consistency, otherwise either
problems occur directly or the generated monitoring data is not correct in the end. The
instrumentation procedure is very straight forward, �rst we iterate over all services which
are present in our IM. Next, we use the correspondence model to �nd the corresponding
parts in the source code and instrument them. Then we check whether subordinate actions

1https://javaparser.org/

37

4. Approach

should also be instrumented for the particular service, and if so, these are instrumented in
the same manner. Depending on the type of the action (loop, branch or internal action),
the instrumentation procedure is di�erent. It does not matter whether the instrumentation
points in the IM are marked as active or not, the instrumentation will be performed in
any case. This allows us to easily activate or deactivate monitoring points at run-time.
However, it should be noted that the IM determines which parts should be instrumented
at all. In other words, services that are not included in the IM will not be instrumented.
The modi�cation of the source code is quite simple, for each action to be monitored we
add statements in the code before and / or after the action to track its execution. Listing
4.1 illustrates how an instrumented service call looks in Java source code.

1 @Override

2 public List<Integer> generatePrimes(int amount) {

3 ThreadMonitoringController threadMonitoringController =

ThreadMonitoringController.getInstance();

4 try {

5 ServiceParameters serviceParametersMonitoring = new ServiceParameters();

6 serviceParametersMonitoring.addValue("amount.VALUE", amount);

7 threadMonitoringController.enterService("_2RDcwKMhEemdKJpkeqfUZw", this,

serviceParametersMonitoring);

8

9 // ORIGINAL SOURCE CODE OF THE METHOD

10 } finally {

11 threadMonitoringController.exitService();

12 }

13 }

Listing 4.1: Example of an instrumented service call in the Java source code

In order to clarify the instrumentation process it is described in Algorithm 1 using
pseudocode.

Algorithm 1 Source Code Instrumentation
Input: Instrumentation Model (IM), Correspondence Model (CM), Source Code (SC)
Output: Instrumented Source Code

1: for all SIM ∈ IM .serviceInstrumentationPoints do
2: sourceCodeElements ← дetSourceCodeElements(SIM .service,CM)
3: instrumentServiceCall(sourceCodeElements)
4: for all AIP ∈ SIM .actionInstrumentationPoints do
5: actionSourceCodeElements ← дetSourceCodeElements(AIP .action,CM)
6: instrumentAbstractAction(sourceCodeElements,AIP .type)
7: end for
8: end for

4.4.4. Request Tracing

An important feature of our approach is to support distributed systems which run on
di�erent computers and communicate over the network. Since the monitoring on one

38

4.5. Service-Call-Graph (SCG)

computer actually knows nothing about the monitoring on other computers in the network,
the data is spread out. This leads to the problem that the monitoring data can no longer
be correlated with each other. Especially for service calls that trigger a service call on
another computer, this link between the two service calls would be irrevocably lost.

The answer to this problem is the so-called “request tracing”. It is based on the idea that
information about the current monitoring status is transmitted when communicating via
the network. For example, the ID of the currently called service is appended to a network
request. Because the monitoring data is processed at a single end point, it is possible to
connect related data there. In the implementation, we only supported HTTP requests as
a working prototype. However, this could easily be extended to other communication
methods. We used a Java agent that modi�es all HTTP requests so that the current
serviceExecutionID and the externalCallID (see Section 4.4.2) are appended using HTTP
header attributes. These IDs are used at the receiver to determine and recover the current
state of the monitoring. This allows us to build service calls traces across the boundaries
of di�erent computers in the network. The request tracing is a prerequisite for some
transformations within the transformation pipeline, which is explained in more detail
in Section 4.7. In order to make request tracing more understandable, it is visualized in
Figure 4.6.

HTTP-Request
URL: ...

Headers:
Keep-Alive: ...
Caller-ID: 1
ExternalCallID: ex1

Service Call 1
(ID: 1,

Caller-ID: <none>,
ExternalCallID: <none>)

Service Call 2
(ID: 7,

Caller-ID: 1,
ExternalCallID: ex1)

Figure 4.6.: Basic demonstration of request tracing by means of an HTTP request

4.5. Service-Call-Graph (SCG)

An important structure which is used at design-time but also at run-time is the Service-
Call-Graph (SCG). Conceptually, we want to describe “calls-to” relationships between
services. We also consider the resource container on which the respective services are
executed. Graphically, this can be displayed as a directed graph where a service/resource
container pair is a node and an edge indicates that a service on a particular container calls
a service on a certain container. Figure 4.7 shows an exemplary SCG for the Running
Example introduced in Section 4.2.

With the help of this structure, the analysis of the system composition can be sig-
ni�cantly simpli�ed, which is why we have implemented it as a metamodel using the

39

4. Approach

ServerContainer

CachedPrimeServer.providePrimes

GeneratorContainer

NaivePrimeGenerator.calculatePrimes

DBContainer

SQLiteDB.getCurrentUpperLimit

SQLiteDB.requestPrimes

Figure 4.7.: Sample representation of a basic Service-Call-Graph for the Running Example

Eclipse Modeling Framework (EMF). Figure 4.8 shows the design of the metamodel. Due to
technical reasons, the implementation became a bit more complicated in order to provide
an e�cient access to the edges of a certain node. But we hide these technical details here
to keep the concept understandable.

<<EClass>>
ServiceCallGraph

<<EClass>>
ServiceCallGraphNode

*

nodes

org.palladiosimulator.pcm.seff

<<EClass>>
ResourceDemandingSEFF

1
service

<<EClass>>
ServiceCallGraphEdge

1

from1
to

org.palladiosimulator.pcm.resourceenvironment

<<EClass>>
ResourceContainer

0..1host

*

edges

Figure 4.8.: Structure of the Service-Call-Graph Metamodel based on the Eclipse Modeling
Framework (EMF)

The structure is straightforward, the ServiceCallGraph class serves as root container and
represents the whole graph. It consists of an arbitrary number of ServiceCallGraphNode
and ServiceCallGraphEdge elements, which represent the nodes/edges of the graph. A
ServiceCallGraphNode must have a reference to a service in the Repository Model and
optionally a reference to a resource container in the PCM Resource Environment Model.

40

4.6. Design-Time

The reference to a resource container is not mandatory, as we may not yet have information
about the resource environment (for example at design-time). A ServiceCallGraphEdge
refers to two ServiceCallGraphNode elements that represent the start and end of the edge.

4.6. Design-Time

First, Section 4.6.1 gives an overview of design-time activities and strategies for maintaining
consistency, followed by Section 4.6.2, which presents the concept for extracting a System
Model at design-time.

4.6.1. Overview

Our approach considers di�erent strategies to ensure consistency between source code
and architecture model at design-time. Figure 4.9 shows an overview of the parts of our
approach that contribute to maintaining consistency.

A key component of this is Langhammer’s co-evolution approach [50], which has
been integrated. This makes it possible to keep the Repository Model, together with the
Correspondence Model, synchronized with the source code. Monitors are used to observe
the architecture model and the source code. The instrumentation process, which was
already prototypically implemented in a previous work [17], was extended. The extensions
of the instrumentation process have already been introduced and explained in Section
4.4.3.

Furthermore, an entirely new process for extracting a system model has been added. It
can be triggered manually by a developer or an architect. The process is not completely
automated, i.e. a "user" is needed, who knows the application under investigation. This
procedure is introduced and discussed in detail in the following Section 4.6.2.

4.6.2. System Composition Derivation

The extraction of the system composition is based on the previously introduced Service-
Call-Graph (SCG) structure (cf. Section 4.5). It is not a fully automated process, a developer
who knows the structure of the system must be available to resolve con�icts. Why and
to which extent this is necessary is explained in more detail below. Additionally, it is
necessary that a consistent Repository Model is available together with a correspondence
model which maps the elements from the Repository Model to the source code (and vice
versa, i.e. bidirectionally). For example, these two models can be extracted automatically
using the approach of Langhammer [50]. The derivation of the system composition can be
divided into two tasks: the extraction of an SCG from the source code and the construction
of the System Model from the SCG.

SCG Extraction As a starting point we use a points-to analysis based on the Soot frame-
work [73]. The goal is to build a SCG that re�ects which services call each other. To
do this, we examine all services of the Repository Model and resolve the corresponding
parts in the code. For all subordinate external calls we perform a points-to analysis on

41

4. Approach

Developers

Correspondence
Model Repository Model System Model ...

edit

Coevolution
approach [22]

updates updates

Source Code

Code monitor

monitors

triggers

Architecture
monitor

monitors

triggers

Instrumentation

triggers

edit

Architects

updates

Architects

System model
extraction

trigger
trigger

updates

Activity Extended/ ContributionIndividual Model instance

Figure 4.9.: Activities and strategies that are used to maintain consistency between source-
code and architectural models at design-time; based on the co-evolution ap-
proach of Langhammer [50]

the code. The result is a list of methods that might be called at runtime. We map these
methods back to services in the Repository Model using the Correspondence Model. We
can then use this information to construct a SCG. A very important characteristic of such
analysis is that we tend to overestimate in a points-to analysis and in static code analysis in
general. In fact, we often do not know exactly at design time which methods are called at
runtime. This is an important di�erence between design-time and run-time as introduced
in Section 3.2. This is one reason why we need the support of a developer to deduce
the system composition. We also leave out information about the hosts in the generated
SCG, since this information is usually not available at design-time. When deriving the
system composition, this also leads to situations where a developer has to intervene. To
illustrate and understand the points-to analysis we use a small code snippet from the
running example which is shown in Listing 4.2.

1 public class CachedPrimeServer implements PrimeServer {

2 private PrimeGenerator generatorService;

3 private PrimeDB database;

4

42

4.6. Design-Time

5 @Override

6 public int[] providePrimes(int upperLimit) {

7 if (database.getCurrentUpperLimit() < upperLimit) {

8 int[] primes = generatorService.calculatePrimes(database.getCurrentUpperLimit

(), upperLimit);

9 database.storePrimes(primes);

10 }

11 return database.requestPrimes(upperLimit);

12 }

13 }

Listing 4.2: The CachedPrimeServer component from the Running Example implemented
in Java

To build the SCG for this example the following steps are executed:

1. We iterate over all services of the CachedPrimeServer component. It only contains
the service providePrimes in our example. To do so, we use the repository model
which is the prerequisite for the system composition extraction.

2. We create a node for the service without an associated host in the SCG.

3. We use the correspondence model to �nd the associated parts of the service in the
source code. This is the part that spans from line 6 to 12 in Listing 4.2.

4. Then we search this part of the code for external calls, i.e. for method calls which
are de�ned outside the current class. As result we obtain the four calls
“database.getCurrentUpperLimit” (lines 7 and 8), “ generatorService.calculatePrimes”
(line 8), “database.storePrimes” (line 9) and database.requestPrimes (line 11).

5. As these are calls to an interface, we perform a points-to analysis for the instance
variables database and generatorService. This gives us a list of types that the instance
variables can have at runtime. The list is overestimated, i.e. it is not guaranteed that
all these types will actually occur at runtime. For each type in the list, we resolve
the method that would be called and check whether a corresponding service can be
found in the correspondence model.

6. Finally, we create a node in SCG for each of the services found in the previous step
(if it does not already exist). Additionally, we create an edge from the providePrimes
service of the CachedPrimerServer component to the newly created nodes.

The resulting SCG is shown in Figure 4.10. It should be mentioned, that no information
about the associated hosts is embedded here (c.f. Section 4.5). The extraction of a SCG
from the source code using a Repository Model and a Correspondence Model is fully
automated. The assistance of a person who knows the system structure is only required in
the subsequent steps.

43

4. Approach

CachedPrimeGeneratorService
<<providePrimes>>

SQLiteDB
<<getCurrentUpperLimit>>

SQLiteDB
<<requestPrimes>>

SQLiteDB
<<storePrimes>>

MySQLDB
<<getCurrentUpperLimit>>

MySQLDB
<<requestPrimes>>

MySQLDB
<<storePrimes>>

NaivePrimeGeneratorService
<<calculatePrimes>>

EratosthenesPrimeGeneratorService
<<calculatePrimes>>

Figure 4.10.: Sample Service-Call-Graph (SCG) for the service providePrimes of component
CachedPrimeGeneratorService (see running example in Section 4.2), extracted
by using code analysis

Construction of the SystemModel In the second stage, the extracted SCG is used to build
a System Model. As mentioned before, we need the help of a developer who knows the
structure of the system at least to a large extent. Primarily, this developer has to resolve
con�icts which result from the lack of information at design-time. In the following we
will refer to the developer as “user”.

First, the user has to specify which interfaces should be provided by the system in the
end (the so-called provided roles). For each of the speci�ed interfaces, the Repository
Model is used to determine all components that o�er this interface. If there are several
components that o�er this interface, the user decides which one is actually used. Then, we
initialize an assembly context in the System Model for each of the selected components
and create the delegations for the provided interfaces.

In the next step, the required interfaces of the selected components are examined (the
so-called required roles). To satisfy these required roles the previously built SCG is used.
All called services of the component are analyzed and assigned to the corresponding
required roles. The services will then be grouped together to the components to which
they belong. If there are various components available for a required role, there is a
so-called Connection Con�ict. The user has to resolve this con�ict by specifying the
component to be used. Afterwards, it is checked whether there is already an assembly
context of this component in the System Model. If this is the case, a so-called Assembly
Con�ict arises. The user has to decide whether a new assembly context should be created
or which of the existing ones should be used. Subsequently, the provided role and the
required role are connected with an AssemblyConnector. This procedure is repeated until
all required roles are satis�ed.

44

4.6. Design-Time

At this point the construction of the Repository Model is completed. Because the
description of the derivation process is very theoretical, we have illustrated it using
pseudocode in Algorithm 2. For the sake of simplicity, we assumed that a provided role
and a required role belong directly to an assembly context, which is normally not the case
in the PCM. To be correct, the provided and required roles would have to be determined
using the component that belongs to an assembly context. But in our case this would just
make the pseudo code more complicated and was therefore omitted.

An important part of the system model extraction is the source code analysis. The
number of con�icts strongly depends on the quality and accuracy of it. Even with the
best possible code analysis, not all con�icts can be solved automatically. Later on in the
evaluation, this assumption is con�rmed (see Section 5). It follows from the nature of
the di�erence between design-time and run-time that this process cannot work without
potential con�icts (see Section 3.2).

45

4. Approach

Algorithm 2 System Model Extraction at design-time using a Service-Call-Graph
Input: Repository Model (REPO), Correspondence Model (CM), Service-Call-Graph (SCG)
Output: PCM System Model (result)

1: result = createEmptyPCMSystemModel()
2: openProvidedRoles ← emptyList()
3: openRequiredRoles ← emptyList()
4: outerProvidedInter f aces ← askUserForSystemProvidedInter f aces()
5:
6: for all opr ∈ outerProvidedInter f aces do
7: outerProvidedRole ← createSystemProvidedRole(opr)
8: innerProvidedRole ← supplyProvidedRole(outerProvidedRole,null)
9: createProvidedDeleдation(outerProvidedRole, innerProvidedRole)

10: end for
11:
12: while openRequiredRoles.size > 0 do
13: currentRequiredRole ← openRequiredRoles .pop()
14: r ← currentRequiredRole
15: currentProvidedRole ← supplyProvidedRole(r , r .component)
16: createAssemblyConnector (currentRequiredRole, currentProvidedRole)
17: end while
18:
19: function supplyProvidedRole(target, source)
20: selectedComp ← supplyComponent(tarдet , source)
21: existinдProvRoles ← emptyList()
22:
23: for all role ∈ openProvidedRoles do
24: if role .component = selectedComp & role .inter f ace = inter f ace then
25: existinдProvidedRoles .add(role)
26: end if
27: end for
28:
29: if existinдProvRoles .size > 0 then . Assembly Con�ict
30: resultRole ← askUserForExistinдRoles(existinдProvRoles)
31: if resultRole <> null then
32: return resultRole
33: else . User decided to create a new one
34: return supplyNewAssemblyContext(selectedComp, inter f ace)
35: end if
36: else
37: return supplyNewAssemblyContext(selectedComp, inter f ace)
38: end if
39: end function

46

4.6. Design-Time

40: function supplyNewAssemblyContext(selectedComp, interface)
41: newAssembly ← createAssemblyContext(selectedComp)
42: for all providedRole ∈ newAssembly.providedRoles do
43: if providedRole .inter f ace = inter f ace & result = null then
44: result ← providedRole
45: end if
46: openProvidedRoles .add(providedRole)
47: end for
48: for all requiredRole ∈ newAssembly.requiredRoles do
49: openRequiredRoles .add(requiredRole)
50: end for
51: return result
52: end function
53:
54: function supplyComponent(role, source)
55: possComps ← дetComponentsW ithProvidedInter f ace(role .inter f ace)
56: f ilteredComps ← f ilterComponents(possComps, SCG, role, source)
57: . Filter the conforming components by using the Service-Call-Graph
58:
59: if possComps .size > 1 then . Connection Con�ict
60: return askUserForComponent(possComps)
61: else if possComps .size = 1 then
62: return possComps[0]
63: else
64: return
65: end if
66: end function

47

4. Approach

4.7. Run-Time

Section 4.7.1 �rst gives an overview of the design of the consistency maintenance at
run-time. Afterwards, Section 4.7.2 explains how the monitoring data is collected and
grouped, Section 4.7.3 describes how the simulations of the PCM architecture models are
performed. Next, Section 4.7.4 illustrates how the self-validations were woven into the
approach as a central building block. Section 4.7.5 introduces the Runtime Environment
Model (REM), which is used to represent the runtime environment, consisting of hosts
and links between them.

4.7.1. Overview

The core at run-time is a transformation pipeline that processes the monitoring data
(similar to iObserve [29]). An important feature of our approach is that the simulation
and validation of the derived models are an integral part. The results of the validations
are used as input for the transformations. This enables them to adapt and for example to
perform a strategy change. This characteristic is called Validation Feedback Loop (VFL)
hereinafter and is described in more detail in Section 4.7.4.

Figure 4.11 provides an insight into the architecture of our approach which we use at
run-time.

Montitoring Data
Collector

Transformation
Pipeline

Monitoring Data
Server

Pipeline
Blackboard

PCM
Simulator

IMonitoringServer

IMonitoringDataCollector

IPCMSimulatorIBlackboard

Figure 4.11.: Overview of all components that are involved at runtime

As already mentioned, the focus is on the transformation pipeline, which processes
the monitoring data and derives updates of the models. In addition, the transformation
pipeline uses a blackboard, which can be written and read by all transformations. The
following data is stored in the blackboard:

• Current PCM instance

• Resource Environment Model (REM)

• Simulation and validation data

• Current state of the transformation pipeline

48

4.7. Run-Time

The REM re�ects the run-time environment with all participating hardware. The structure
of this model is described in Section 4.7.5. At di�erent points within the transformation
pipeline the current models are evaluated and compared to the monitoring data (further
information is provided in sections 4.7.4 and 4.8). The results are written to the blackboard
so that they are available for the transformations. To perform the validation, the transfor-
mation pipeline must be able to simulate the current PCM models. For this purpose an
isolated simulator is used, which is accessed via a RESTful interface [21]. Section 4.7.3 deals
with the simulator in more detail. The monitoring data is received and bundled by a server.
Kieker is used as monitoring framework and the records are sent from the monitored
application to the server via TCP. The Monitoring Data Collector then preprocesses these
and partitions them using a sliding window mechanism. How exactly this mechanism
works is described in Section 4.7.2. The partitioned monitoring data is then used as input
for the transformation pipeline.

4.7.2. Monitoring Data Collector

The Monitoring Data Collector is a very important component for the performance of
the approach as a whole. If the transformation pipeline is executed very frequently or
triggered with too much monitoring data, this could lead to a performance decrease of the
pipeline. More monitoring data also means more information in most cases, nevertheless it
does not make sense to keep using very old monitoring data as input for the transformation
pipeline.

To acknowledge the importance of this component, we used the strategy pattern. As a
result, the strategy used to group the monitoring data is easily exchangeable. As standard
procedure we implemented a sliding window mechanism. It uses a sliding window whose
size is a customizable time interval (WindowSize). The mechanism is demonstrated in
Figure 4.12 in a simpli�ed form. The transformation pipeline is not executed permanently,
instead it is always executed after a certain time (TriggerSize) with the monitoring data
which is currently in the sliding window. It is important to ensure that the following is true:
TriддerSize <WindowSize . Otherwise, some monitoring data will not be considered at
any time. On the other hand, if this assumption is valid, all monitoring data is considered
several times. For example, if WindowSize = 2 ∗ TriддerSize , then all monitoring data
is analyzed exactly twice. This is an important point to note, because it means that all
transformations in the pipeline must be robust against multiple occurrences of the same
monitoring data. Furthermore, at no time is it guaranteed that the current monitoring data
is complete. For instance, it can often happen that a trace is not yet completely re�ected
in the monitoring data, especially in distributed systems that are monitored. Therefore,
this must be taken into account when designing and implementing the transformations.

Furthermore, we split up the data within the sliding-window, before using it as input
for the pipeline. The data is divided into two groups: �rst the training data and second
the validation data. The purpose of this is to avoid falsifying the self-validations within
the pipeline. If we execute all transformations on the complete data and then execute a
validation on the same data, this is not informative. For example, it would be possible to
adjust the model so that exactly the values from the data are reproduced. In this case, the
self-validation assumes a high model quality, which is not intended. The ratio between

49

4. Approach

Monitoring Data

Time

Sliding Window

WindowSize

Figure 4.12.: Illustration of how the sliding window mechanism for partitioning the moni-
toring data works

training and validation data can be customized according to the speci�c use case. During
the splitting process, care is taken to ensure that no sessions are fragmented, otherwise
this could lead to incorrect results (e.g. Usage Model transformation).

At this point it is important to note that some transformations are always executed on
all data (training data + validation data). This includes, for example, those transformations
that are responsible for extracting the system composition and the resource environment.
Here it does not make sense to distinguish between training and validation data, since all
data is needed to derive consistent models.

4.7.3. PCM Simulator

The simulations of the PCM models are performed completely isolated from the approach
itself. This ensures that simulation strategies remain easily exchangeable and expandable in
the future. The transformation pipeline accesses the simulation component via a RESTful
interface [21]. Using this interface the models are transferred and the simulation results
are retrieved. We use a headless implementation for the simulations because it is mostly
independent of Eclipse and therefore very lightweight2. The simulation component can
also be virtualized (e.g. using Docker). Furthermore, the parameters of the simulations are
fully con�gurable (simulation engine, simulation time, number of measurements, etc.).

4.7.4. Validation Feedback Loop

An important innovation of the approach is the so-called Validation Feedback Loop (VFL).
The idea is that the behaviour of the transformations does not have to be strictly static.
Based on the accuracy of the current models it should be possible for the transformations
to adapt. For most approaches there are scenarios where the accuracy of the models is
constantly very poor. Since these inaccuracies are not known without a proper validation
procedure, the models remain permanently inaccurate, i.e. inconsistent. Moreover, this
approach opens the door to machine learning techniques which could be used, for example,
to learn from inaccuracies in the past. In addition, the transformations could adapt
individually to a certain application and “learn” its behavior.

The VFL covers all processes involved in the simulation and evaluation of the models. In
this section, we will only explain the process of the model validation and not at which points

2https://github.com/dmonsch/PCM-Headless

50

4.7. Run-Time

in the transformation pipeline it is executed. This will be discussed in the following Section
4.8. To determine the accuracy of a model, it is always necessary to have comparable values
as a reference. We assume that the monitoring data re�ects the reality and therefore use
them as a reference. Figure 4.13 displays the interaction of the VFL and the transformation
pipeline graphically. The simulation results are grouped into so-called measuring points,
i.e. the points at which measurements were taken. For example, a typical measuring point
is the CPU load of a computer. In addition, the type of the associated metric is recorded for
each measurement (e.g. response time in seconds). To be able to compare the simulation
results with the monitoring data, we have to map the monitoring data to the corresponding
measuring points in an upfront step.

Current PCM ModelMonitoring Data

Transformation Pipeline

PCM Simulation

Validation Process

Validation Results

Simulation Results
output

input

Figure 4.13.: Illustration of how the Validation Feedback Loop (VFL) works in combination
with the transformation pipeline

After the monitoring data has been mapped to the corresponding measuring points
of the simulation results, we have two distributions for each measuring point. These
are compared and di�erent metrics are calculated to determine how close the simulation
results are to the actual measured values. We have used the following metrics to compare
the two distributions:

• Wasserstein distance [66]

• Kolmogorov–Smirnov test (KS test) [41]

• di�erence of conventional statistical measures:
– average

51

4. Approach

– minimum and maximum
– standard deviation and variance
– quartiles (Q1, Q2, Q3)

The implementation was done in such a way that it is easily possible to add further metrics.
The KS test measures the discrepancy between two distributions using the maximum
distance between the Cumulative Distribution Functions (CDFs). Usually it is used to
check whether an empirical distribution conforms to a theoretical assumption. Therefore
it is not the perfect metric for our use case, but gives a good indication of how much
simulation and monitoring di�er. The Wasserstein distance on the other hand is very well
suited for our use case, but gives only an absolute value that is di�cult to interpret.

Because we also compare the accuracy of two models within the transformation pipeline,
we need to combine these metrics into one metric. This is very important for the approach
as a whole, because it can be used, for example, to make statements about whether the
accuracy of the models is increasing or decreasing. This metric has to express which model
does represent the monitored behaviour better. We used a simple method to calculate this
metric. We compare the metric values pairwise and assign one point for each metric to
the more accurate model. So we only need to be able to decide for each metric which
value is the better one. Finally, the model that scores more points is considered more
accurate. The priority of the individual metrics can be con�gured as required, which is
especially helpful because we want to compare the values of di�erent measuring point
types. For example, when comparing CPU utilizations, the meaningfulness of the metrics
is signi�cantly di�erent than when comparing response times. A more mathematical
representation of this comparison is shown below:

CompareMetrics(M1,M2) =
|M1|∑
i=1

wi ∗ siдn(compare(M1i ,M2i))

w Priorities of the individual metrics
M1 set of metrics
M2 set of metrics with the same size as M1
compare calculates the distance, taking into account the properties of the metric

4.7.5. Runtime Environment Model (REM)

The Runtime Environment Model (REM) is mainly used for two reasons: �rst, to create the
mapping between the resource containers in the PCM and the computers in the physical
run-time environment. Second, to keep the properties of the mapped elements consistent
(for example, the number of the CPU cores). The REM is generated at run-time from
monitoring data and then synchronized with the PCM resource environment model using
Vitruvius.

The corresponding metamodel of the REM is outlined in Figure 4.14.

52

4.8. Transformation Pipeline

<<EClass>>
RuntimeEnvironmentModel

<<EClass>>
ResourceContainer

+ hostname: EString
+ hostID: EString

*

<<EClass>>
HardwareInformation

+ cores: EInt
+ mainMemorySize: EInt

1

hardware

hosts

Figure 4.14.: Structure of the Runtime Environment metamodel based on the Eclipse Mod-
eling Framework (EMF)

Like the Resource Environment Model of the PCM, the REM also consists of resource
containers (ResourceContainer). These have a host name and also a “host ID”. In contrast to
the host name, the host ID should remain unchanged over a longer period of time. In the
implementation we used a hash of the MAC address of the respective machine. However,
the actual strategy used for the generation is not relevant in this context. The idea is that
the mapping between the resource containers in the PCM and the machines in the REM is
established just once via the host name. Subsequently, the mapping is maintained based
on the host ID. We therefore assume that at the time of deployment, the names of the
resource containers in the PCM match the host names of the associated computers in the
physical environment. But this assumption can be slightly softened, as it is only necessary
for those containers that have not yet been mapped. In addition, hardware information
is assigned to each container in the REM (HardwareInformation). This information is
currently incomplete and is intended for future work. The purpose of this is to keep the
properties of the containers consistent (e.g. number of CPU cores, main memory size etc.).
At the moment we only considered the number of cores and the size of the main memory,
as a proof of concept. In the future, this could be extended to enhance the automated
consistency maintenance.

4.8. Transformation Pipeline

The transformation pipeline is the main component that is used at run-time. It contains
the complete logic for updating the architectural model parts. We used a tee and join
pipeline architecture [15] and complemented it with a blackboard that can be written and
read by all transformations.

4.8.1. Overview

Figure 4.15 shows the entire transformation pipeline in a very simpli�ed version.

53

4. Approach

Blackboard

Monitoring Data

Preprocessing

Pre-processed
Monitoring Data

Transformation Pipeline

Update Resource
Environment

Update System
Composition

Calibrate Repository and
extract Usage

Finalize

Updated
Performance Model

written into

Artefact Control flow Composite functional unitData flow

Figure 4.15.: Overview of the transformation pipeline structure which is triggered at run-
time

Within the pipeline, the architectural model is simulated and validated several times.
For this reason, we have completely encapsulated the simulations from the pipeline and
use a headless simulation approach to keep the e�ort as low as possible (see Section 4.7.3).

The pipeline is structured as follows:

54

4.8. Transformation Pipeline

1. In a pre-processing step (Preprocessing), the monitoring data is �ltered and converted
into suitable data structures. Furthermore, the initial PCM instance is simulated and
validated. The exact structure and functionality of this functional unit is explained
in more detail in Section 4.8.2.

2. After the monitoring data has been pre-processed, the current run-time environment
is analyzed. This step is based on Vitruvius and the already introduced Runtime
Environment Model (REM). The procedure is discussed in Section 4.8.3.

3. Next, the system composition and the associated deployment is examined. Compared
to iObserve, this is a major innovation, iObserve only considers the deployment, not
the system composition. The exact design and implementation of this procedure is
introduced in Section 4.8.4.

4. In the next step, the stochastic expressions in the Repository Model are calibrated
and the user behavior is evaluated. This functional unit is much more complex than
it appears at �rst glance. Section 4.8.5 describes the internal structure.

5. In the �nal step (Finalize), the updated model is put together and validated one last
time. In addition, the Instrumentation Model is adjusted based on the validation
results. This step is explained in more detail in Section 4.8.6.

4.8.2. Preprocessing

In the pre-processing step, the monitoring data is �ltered and transformed into suitable
data structures. In addition, the current model is simulated and validated. The exact
structure is shown graphically in Figure 4.16. The results of the preprocessing step are the

Monitoring Data Filtered
Monitoring DataFEntry

Training Data

Service Call Traces
TTrace

Validation DataFSplit

FSplit

Self-Validation
Results (1)

TSelfValidation1

Preprocessed
Monitoring Data

Blackboard

Figure 4.16.: In-depth view of the transformations that are executed during the preprocess
step

partitioned monitoring data (training and validation data) and the outcome of the �rst
self-validation.

In the following, all involved transformations are brie�y introduced and explained.

55

4. Approach

FEntry In this pre-processing step, we simply �lter out all monitoring data that is not
needed and/or used in the pipeline. In addition, parts of the blackboard are reset and
initialized for the subsequent transformations.

TSel f Validation1 This is the �rst of four validation steps. The current PCM is simulated and
compared with the monitoring data, as described in Section 4.7.4. The validation results
are written to the blackboard and can be read by the subsequent transformations.

TTrace Within this transformation, the service calls are combined into traces. These
can also span several hosts using the request tracing technique (see Section 4.4.4). All
subordinate information (such as the execution time of an internal action) is then attached
to the service calls in the traces. Due to the sliding window mechanism, it is possible
that we notice incomplete traces or traces where the root call is no longer present in the
monitoring data. Traces where the root call is missing are not considered and discarded.
Furthermore, the subsequent transformations are designed to be robust against incomplete
traces. The procedure for building the traces is quite simple, it iterates over all monitoring
records and the service calls are assigned to their parent via the callerExecutionID. If
additional data about the execution of a service (internal actions, loops, branches) is
available, this is simply assigned to the corresponding service call.

An exemplary service call trace could look like this:

• Service Call Record
– Internal Action Record
– Internal Action Record
– Service Call Record

∗ Internal Action Record
∗ Branch Action Record
∗ Loop Action Record
∗ Internal Action Record
∗ ...

FSplit This �lter transformation splits the data into training and validation data (see
Section 4.7.2). The ratio between training data to validation data is customizable.

4.8.3. Resource Environment Update

This functionality consists of a single transformation (TResourceEnvironment). It modi�es the
Runtime Environment Model (REM) based on the monitoring data. With the help of
Vitruvius, the de�ned consistency rules automatically maintain the consistency of the
respective Resource Environment Model.

As input, the transformation requires all monitoring data (training and validation data).
First, we write all hosts and their associated information that appear in the service call

56

4.8. Transformation Pipeline

traces into the Runtime Environment Model (REM). If a host does not yet exist in it, it is
created. A host in the REM is addressed by its host ID, which is designed to be unique over
a long period of time. The consistency rules which are executed after each change are
used to update the corresponding Resource Environment Model. This process is realized
with Vitruvius. We recognize connections between several hosts by searching within
the traces for host changes. If there is a change, we can conclude that there must be a
connection between two containers.

A sample service call trace that contains a host change looks similar to this example:

• Service Call Record (Hostname: Logic Server)

– ...

– Service Call Record (Hostname: DB Server)

Figure 4.17 summarizes once again the procedure for updating the resource environment.

Training Data

Validation Data

Preprocessed
Monitoring Data

Runtime Environment
Model (REM) consistency rules

Palladio Component
Model Instance

Resource
Environment Model

TResourceEnvironment

Figure 4.17.: Graphical overview of the process for updating the Resource Environment
Model

In the following transformations we assume that the Resource Environment Model is
consistent with the actual run-time environment.

4.8.4. System Compositon Update

This functional unit is responsible for updating the System Model and the Allocation Model.
However, this can only be accomplished if the assumptions A2 and A3 from Section 3.4.2
are satis�ed. Figure 4.18 shows all involved transformations.

TServiceCallGraphs The procedure for deriving the system composition at run-time is similar
to the procedure which is used at design-time. For each service call trace, we build a
Service-Call-Graph (SCG) which re�ects the calls-to relationships between the services.
In contrast to the SCG we are building at design-time, we also attach the information
about the host to the nodes in the SCG. We also update the Allocation Model within this
transformation by analyzing the information about the corresponding hosts.

57

4. Approach

Training Data

Validation Data

Preprocessed
Monitoring Data

Service-Call-Graphs

TServiceCallGraphs

Service-Call-Graph
TMerge

System Model
Updates

Allocation Model
Updates

TSystem

TAllocation

Figure 4.18.: Detailed view of the transformations within the functional unit that is re-
sponsible for deriving the updates of the System Model and the Allocation
Model

TMerдe The next step is to combine all SCGs into one. For this purpose, we create an SCG
that contains all nodes and all edges from all SCGs to be merged. In addition, the time of
their appearance is added to all nodes and edges as metadata. This allows us to resolve
con�icts in later stages automatically by preferring the more recent information.

TAllocation For each node in the SCG, the corresponding assembly context in the current
System Model is resolved. This works as follows: a node in SCG is a pair of a resource
container and a service. First, we determine the component to which the service belongs.
Then we check all assembly contexts that are allocated on the container to see if they
match this component type. According to our assumption (A3), this can be a maximum
of one assembly context. If there is no associated assembly context, we create a new one
with the respective component type and also create a corresponding allocation context in
the Allocation Model. The newly created assembly contexts will additionally be �agged as
“new”.

TSystem Next, the actual derivation of changes in the system composition begins:

1. We start at the entry nodes of the merged SCG and examine all outgoing edges. The
“entry nodes” are all nodes with input degree 0. We assume that there are always
nodes without incoming edges. If this is not the case there is a loop within the SCG,
but we decided to exclude these scenarios because they are very unlikely to occur.

2. It is checked whether the source node is a newly created assembly context. The
same is done for the target node.

3. If the associated assembly context is marked as new for both nodes, we identify the
associated provided role and the associated required role and connect them with an
assembly connector.

4. If only one or none of the two associated assembly contexts is a newly created one,
we determine the associated provided role and the required role as before and check
whether an assembly connector already exists for one of them. If so, we delete the
previous one and �nally create a new assembly connector that connects the required
role and the provided role.

58

4.8. Transformation Pipeline

5. We continue this procedure recursively for all target nodes until all outgoing edges
of the SCG are processed.

6. We check for each provided role of the system which open provided roles �t to it.
Then we select one of these provided roles, preferring those that belong to a "new"
assembly context. Here we use the metadata that we annotated during the merging
of the SCGs. In this way it is possible to always select the role that was used most
recently. Then we create or adjust the delegation from the outer provided role of
the system to the one of the selected assembly context.

7. Finally, we start with each provided role of the system and trace the paths through
the System Model. We do this by following the connectors of the system. This
allows us to locate assembly contexts that are not reachable and these are marked as
deprecated. We chose a soft approach, meaning that not all assembly contexts
are deleted immediately. It is possible to de�ne conditions when an assembly
context should be deleted. For example, it is possible to con�gure that an assembly
context is only deleted if it is marked as unreachable for three consecutive pipeline
executions. When an assembly context is deleted, the associated allocation context
in the Allocation Model is also removed.

In order to make the procedure more clear, we will demonstrate it using a sample
scenario from the Running Example (c.f. Section 4.2). Figure 4.19 shows an initial system
model of the running example.

<<CompositeStructure>>

PrimeGeneratorSystem

Assembly <PlainPrimeServer>

Assembly <NaivePrimeGenerator>

PrimeGenerator

PrimeServer

Figure 4.19.: Initial System Model taken from the running example

Also, we assume that both assembly contexts are deployed on the same container named
“Server”. Assuming that we extracted the following service call trace from the monitoring
data:

• Service Call (Component: PlainPrimeServer, Signature: providePrimes, Host: Server)
– Serivce Call (Component: EratostehensPrimeGenerator, Signature: calculatePrimes,

Host: Server)

59

4. Approach

This service call trace indicates that the service for generating the prime numbers has
changed from the “NaivePrimeGeneratorService” component to the “EratostehensPrimeGen-
eratorService” component. Figure 4.20 shows the corresponding SCG.

Server

PlainPrimeServer.providePrimes

EratosthenesPrimeGenerator.calculatePrimes

Figure 4.20.: Exemplary Service-Call-Graph (SCG) of the running example

Following the procedure described above, the �rst step is to �nd the assembly context for
each node. For the root call we �nd the corresponding assembly context, for the node "Er-
atosthenesPrimeGenerator.calculatePrimes" we have to create a new one. Then we start at
the node “PlainPrimeServer.providePrimes” and process all outgoing edges. In our example,
there is only one edge, which points to the “EratosthenesPrimeGenerator.providePrimes”
node. Because only the corresponding assembly context of the target node has been newly
created, we search the old connector (for the required role of the assembly context that
belongs to the source node) and remove it. In the next step, a new connector is created,
which connects the required role of the source node with the provided role of the target
node. Finally, the assembly context “Assembly <NaivePrimeGeneratorService>” is marked
as deprecated because it is no longer in use. The �nal updated system model is shown in
Figure 4.21.

<<CompositeStructure>>

PrimeGeneratorSystem

Assembly <PlainPrimeServer>

Assembly <NaivePrimeGenerator>

PrimeGenerator

PrimeServer

Assembly <EratosthenesPrimeGenerator>

Figure 4.21.: Updated System Model after the exemplary execution of the TSystemComposition

transformation

Algorithm 3 in the appendix shows the functionality of the transformations TSystem and
TAllocation in a more structured way with pseudocode.

60

4.8. Transformation Pipeline

4.8.5. Repository and Usage Model Update

Within this functional unit the Repository Model is calibrated and the user behavior is
extracted.

Unlike iObserve, all transformations can access the current validation data. This leads
to di�erent characteristics that must be taken into account in the sequence and structure
of the transformations. For example, the parallelism of transformations that use validation
data can cause oscillations. To illustrate this with an example: during the validation it is
recognized that the deviation between measured and simulation values is high. Therefore,
transformation 1 adapts its behavior to overcome these inaccuracies. Transformation
2 is executed in parallel and also adapts its behavior. Under certain circumstances, it
is possible that both transformations have counteracted each other and the resulting
model is even less accurate. To avoid exactly these oscillation e�ects we �rst perform
the transformations that consider the system composition and the runtime environment
(see previous sections). For these we assume that they are very performant and therefore
do not block the execution of the pipeline for a long time. Subsequently, the Repository
Model and the Usage Model are updated.

In order to avoid the oscillation e�ects, we decided to use a more complex structure.
Figure 4.22 summarizes the entire inner structure of the procedure for updating the
repository and the usage model.

First, the training data is used as input for the calibration of the resource demands in the
repository model (TRepository) and for the transformation which extracts the user behavior
(TUsaдe). These two tasks are executed simultaneously. The exact behavior of these two
transformations will be described in the following, since they are also relatively complex.
TSel f Validation2 and TSel f Validation3 simulate and validate the updated models following the
procedure as described in Section 4.7.4. TSel f Validation2 validates the model where the Usage
Model has already been updated and TSel f Validation3 validates the model where only the
repository has been calibrated. Next, the validation results are compared by means of
TCrossValidation (also with the procedure which is explained in Section 4.7.4). According to
the accuracy of the two models theTCrosswise transformation behaves di�erent. If the model
resulting from the execution ofTRepository is considered to be superior, we execute theTUsaдe

transformation on this model. As input we use the validation results of TSel f Validation3.
Similarly, if the model resulting from TUsaдe is more accurate, we execute TRepository . As
input we use the validation results from TSel f Validation2. Ultimately, we get a set of updates
for the Usage Model and for the Repository Model.

With the help of this structure we avoid the oscillation e�ects mentioned above, because
the transformations do not operate on the same model simultaneously. In the �rst step, we
can execute both transformations in parallel, which results in an additional overhead of one
transformation execution (TUsaдe orTRepository is executed twice) and two model simulations.
Since the approach integrates the validations as an integral part, these simulations not
only increase transparency across the pipeline but also provide more accurate input for
the transformations. In addition, the validation is designed to minimize the impact on the
pipeline performance.

61

4. Approach

Training Data

Preprocessed
Monitoring Data

Validation Data

Repository Model
Updates

Usage Model
Updates

TUsage TRepository

Validation Results (2) Validation Results (3)

TSelfValidation2 TSelfValidation3

Cross-Validation
Results

TCrossValidation

Final Repository
Model Updates

Final Usage Model
Updates

TCrosswise

Figure 4.22.: Visual representation of the structure within the procedure for updating the
Repository Model and the Usage Model

TRepository This transformation calibrates the stochastic expressions which describe the
resource demands. The calibration is based to a large extent on the preliminary work in the
context of the CIPM approach [56, 55]. It uses regressions and also considers dependencies
on the parameters of the service calls. In order to make this procedure more dynamic, we
have implemented several small extensions in our approach. An important characteristic
of the customized calibration process is that we include the validation results.

The extended procedure works as follows:

1. Building a graph that re�ects which services call each other. For this purpose, only
the Repository Model is used. We iterate over all edges and create an edge for each
external call within the services. This graph helps us to group the services according
to levels. In addition, we annotate each node (service) of this graph to indicate
whether it is currently instrumented with �ne or coarse granularity.

2. Identify all nodes that are not yet instrumented coarse-grained under the condition
that all nodes that are reachable via outgoing edges are already instrumented coarse-
grained. We call this set of nodes adjustment set. For these nodes (services), the

62

4.8. Transformation Pipeline

regression is modi�ed with the goal to improve the accuracy of the Repository
Model.

3. For each service from the adjustment set we examine the validation data and compare
it with the monitoring data. We evaluate whether the response times in the validation
data are higher than in the monitoring data. If this is the case, we scale up the values
for the regression by a factor fadjustment . Analogously, if the response times in the
validation are higher than in the monitoring, we scale the values down. The factor
fadjustment can be con�gured.

4. We carry out the normal procedure for calibrating the resource demands, as it was
used in previous work [56, 55].

The idea behind this method is that we want to prevent that the accuracy of the simula-
tions remains permanently low. One could apply much more complicated procedures here,
this strategy is more to be seen as a proof of concept. Especially with machine learning
methods, such as reinforcement learning, much more advanced methods could be used
here in the future (see Section 7 about future work).

TUsaдe The extraction of user behaviour is based on the preliminary work done in the
context of iObserve [29]. However, because the structure of the monitoring data is very
di�erent in our approach, the concept had to be adapted. In iObserve, the monitoring data is
bundled into sessions and these are clustered into groups with similar user behavior based
on their behavior. As iObserve does not weave the information about the corresponding
PCM directly into the monitoring, the run-time architecture correspondence model (RAC) is
used to bridge the gap between elements in the source code and elements in the architecture
model. This step is not necessary in our approach, as the required information is directly
available through the customized monitoring. The adaptation of the procedure from
iObserve to our monitoring data structures was already implemented in the context of
CIPM [56]. In our approach, it was reused, only due to the changes in the monitoring data
types there were minor adjustments.

Figure 4.23 provides a visual compressed overview of the procedure.

Service call traces

...

Entry calls

...

User session

User session

User session

User clusters

...

User session

User session

Usage scenarios

...
Figure 4.23.: Overview of the process that is used to extract the usage scenarios (based on

iObserve [29])

63

4. Approach

4.8.6. Finalization

In the last step the �nal PCM model is built, then validated and �nally the Instrumentation
Model (IM) is updated. Figure 4.24 shows all transformations that are part of this step.

Validation Data

Preprocessed
Monitoring Data

Model Updates

PCM Model Updates Final PCM Model Final Validation
Reuslts

Blackboard

Updated
Instrumentation Model

TInstrumentationModel

TFinalValidation

TModelComposition

Figure 4.24.: Detailed view on the transformations that are triggered in the last step of the
pipeline execution (Finalization)

TModelComposition This transformation constructs the �nal model. The updates from the
previous steps are merged and applied to the �nal PCM instance.

TFinalValidation This step is logically equivalent to the previous validations. The monitoring
data is compared to the simulation results of the current model and validation results
are calculated. Based on these validation results, the IM is updated in the subsequent
transformation TInstrumentationModel .

TInstrumentationModel This transformation is used to adjust the current IM at the end of the
pipeline execution. The validation results ofTFinalValidation are used and depending on that,
the �ne-grained monitoring for a service is either disabled or enabled. The corresponding
validation results are evaluated for each service. Based on con�gurable criteria, the �ne-
granular monitoring is then activated or deactivated. It is possible to specify composite
criteria. The sub-criteria can be combined with a logical “And” or a logical “Or”. In this
way, all criteria that are relevant in practice can be realized. If the superior criterion is
met, the service will be instrumented coarse-grained. Within the criteria, conditions can
be speci�ed using Java syntax. An example of such criteria looks as follows:

KSTest < 0.2 OR Wasserstein < 10

This criterion is met if the KS test metric is lower than 0.2 or the Wasserstein distance
is lower than 10. If a service should be instrumented coarse-granular it means that all
AbstractInstrumentationPoints are deactivated for the corresponding ServiceInstrumenta-
tionPoint in the instrumentation model.

The monitoring clients poll the IM at regular intervals and thus adjust the monitoring.
The goal is that after a certain period of time the accuracy speci�cations for all services
are ful�lled and therefore all of them are instrumented coarse-grained. This reduces the
monitoring overhead to a minimum.

64

5. Evaluation

In this chapter the evaluation of the thesis is presented. We decided to use a case study
based approach because it allows us to make profound statements about the applicability
and practicability of our approach in a real world setting.

5.1. Overview

First, the objectives of the evaluation are derived and outlined in Section 5.2. Section
5.3 then presents the Goal Question Metric (GQM) plan for the evaluation. As the name
suggests, it introduces the goals, the related scienti�c questions and metrics to answer
these questions. The goals are imported from the previous section, where they were
deduced. Section 5.4 presents the metrics that are used in the evaluation. A distinction
is made between metrics for comparing models and metrics for comparing distributions.
Section 5.5 introduces the evaluation procedure and de�nes requirements for the case
studies to be used. Based on these requirements, the concretely selected case studies are
named. Then, in Section 5.6, the selected case studies are described. Thereafter, Sections
5.7, 5.8 and 5.9 present the results for the respective goals. Finally, Section 5.10 summarizes
the evaluation results and Section 5.11 discusses the threats to validity.

5.2. Evaluation Objectives

In this section we introduce the goals for the evaluation and discuss the reasoning behind
them.

The primary goal is to ensure the accuracy of the derived architecture models (G1). This
is also the most important quality feature of our approach. In order to use the approach
in a meaningful way, it is necessary that the resulting architecture models represent the
actual application as well as possible. To measure the accuracy we use example systems.
We compare the derived models with reference models and use the monitoring data for
benchmarking. We also simulate changes of the systems. For this purpose we are using
the scenarios from Section 3.3. With the help of these scenarios we want to simulate the
run-time adaptation of the software system under investigation. The support of software
adaptation is an integral part of the approach and therefore it is important that the accuracy
of the models is preserved, even after the execution of change scenarios. We will not
examine the accuracy of the extracted usage models in detail, because the procedure was
migrated from iObserve and has therefore already been evaluated [30].

The second objective of the evaluation addresses the performance of the approach (G2).
We focus on the performance of the components that are used at run-time. These parts of

65

5. Evaluation

the approach have to be e�cient enough to process the monitoring data in an acceptable
time. If this is not the case, no consistent models can be generated because the processing
is lagging behind. In this context, we also focus on the overhead of monitoring. It must be
guaranteed that the monitoring does not signi�cantly in�uence the performance of the
application under investigation, otherwise the approach cannot be used in practice. We
will not examine the performance of the components used at design time (e.g. extraction
of the system model) regarding performance characteristics. The execution time is not
crucial here, since the behavior of the application under investigation does not change in
the short term.

The third and �nal goal is to investigate the scalability of the transformations within
the pipeline (G3). The execution time of the transformation pipeline depends heavily on
the amount and structure of the monitoring data. As a result, the performance of our
approach highly depends on the scalability of the transformations. In G2, we only consider
the behavior for example systems; here we examine the run-times of the transformations
in more detail. We use best and worst case scenarios to evaluate the scalability. This
ultimately allows us to make accurate statements about the behavior of our approach in
general.

5.3. Goal Question Metric (GQM) Plan

The evaluation is based on the Goal Question Metric (GQM) approach [3]. First, we de�ne
goals, which are based on the previous section. Afterwards, we de�ne questions concerning
the goals and �nally we introduce metrics to answer these questions. The metrics are
discussed in more detail in Section 5.4, in the following list they are only mentioned.

G1 To ensure the applicability of our approach as a whole, it is necessary that the ex-
tracted and updated models are accurate. In this context, we consider two di�erent
types of accuracy. First, the di�erence between the actual behaviour of the applica-
tion (monitoring) and the behaviour of the models within a simulation (analysis).
Second, the comparison of the actual models with reference models, that represent
the ground truth. The �rst goal is therefore that the extracted and updated models
represent the application under consideration well.
Q1.1 How accurate are the system models that are extracted at design-time?
M1.1.1 Number of the extracted elements in the resulting System Model (Assem-

blyContexts, AssemblyConnectors, . . .), compared to the reference model.
M1.1.2 Content-related conformance of the elements in the extracted system

model, compared to the reference model. Conformity is determined by
using the Jaccard coe�cient (JC).

Q1.2 How many con�icts must be resolved by the developer when extracting the
system models at design-time and how many con�icts can be resolved auto-
matically based on a static code analysis?

M1.2.1 Ratio of the number of con�icts in relation to the total number of elements
in the resulting model (without preceding code analysis)

66

5.3. Goal Question Metric (GQM) Plan

M1.2.2 Ratio of the number of con�icts in relation to the total number of elements
in the resulting model (with preceding code analysis)

Q1.3 Are the Resource Environment Model, the allocation model and the system
model adjusted correctly at run-time when applying software adaption scenar-
ios?

M1.3.1 Content-related conformance of the elements in the updated system model,
compared to the reference model. Conformity is determined by using the
JC.

M1.3.2 Content-related conformance of the elements in the updated Resource
Environment Model, compared to the reference model. Conformity is
determined by using the JC.

M1.3.3 Content-related conformance of the elements in the updated allocation
model, compared to the reference model. Conformity is determined by
using the JC.

Q1.4 How accurate is the combination of all models that are adjusted at run-time?
As ground truth, the monitoring data is used.

M1.4.1 Distances of traditional statistical measures between the response times of
the services in analysis and monitoring. As traditional statistical measures
the average, the standard deviation and the quartiles (Q1, Q2 and Q3) are
used.

M1.4.2 Wasserstein distance between the response time distributions of analysis
and monitoring.

M1.4.3 Kolmogorov–Smirnov test (KS test) of the response time distributions of
analysis and monitoring.

G2 It is necessary that the transformation pipeline is able to quickly eliminate inconsis-
tencies within the models. Therefore, the second objective of the evaluation is to
con�rm that the transformation pipeline as a whole performs well. It is also essential
that the monitoring does not noticeably a�ect the response times of the observed
application.
Q2.1 How long does it take to execute the transformation pipeline for a certain

number of monitoring records?
M2.1.1 Execution time of the transformation pipeline as a whole.
M2.1.2 Execution times of the individual transformations within the pipeline.

Q2.2 To what extent does the instrumentation model help to reduce pipeline execu-
tion times in the long run (by supervising the �ne grained monitoring)?

M2.2.1 The time that elapses until the models are accurate enough to disable the
�ne grained monitoring.

M2.2.2 The percentage by which the number of monitoring records is reduced
(after the �ne grained monitoring has been disabled).

67

5. Evaluation

M2.2.3 The percentage by which the execution time of the transformation pipeline
has decreased due to the reduction of the monitoring data.

Q2.3 How signi�cant is the overhead that is caused by the monitoring?
M2.3.1 The absolute time required to generate and process the monitoring records

(per service execution).
M2.3.2 The percentage by which the execution times of the individual services

increase.
M2.3.3 The di�erence between the quanti�ed overhead caused by the �ne-grained

monitoring and that caused by the coarse-grained monitoring.

G3 The third goal is to examine the scalability of the individual transformations in
general. In particular, worst-case scenarios are considered in order to ensure that
the scalability of the approach is guaranteed.
Q3.1 How does the transformation which calibrates the Repository Model scale in

worst case scenarios?
M3.1.1 Execution times of the calibration for an increasing number of monitoring

records.
Q3.2 How do the transformations for updating the Resource Environment Model,

the System model and the Allocation model scale in worst case scenarios?
M3.2.1 Execution time of the transformations for an increasing number of moni-

toring records.
Q3.3 How does the extraction of the usage scenarios react to an increasing number

of monitoring records in worst case scenarios?
M3.3.1 Execution time of the Usage Model extraction for an increasing number

of monitoring records.

5.4. Evaluation Metrics

In the evaluation we mainly used two types of metrics. These are introduced and explained
in more detail within this section. On the one hand these are metrics that quantify the
equality of PCM models (see Section 5.4.1) and on the other hand there are metrics that
are used to compare two distributions (see Section 5.4.2).

5.4.1. Model Conformity

In general, there are two di�erent approaches to examine the equality of models. The
�rst approach directly analyzes the model elements and compares them with each other.
The second approach is based on simulating both models and comparing the results. We
decided to use the �rst approach, because it is possible that two Palladio Component
Model (PCM) models (that are completely di�erent) produce the same analysis results for
a given user scenario. The reason for this is that a simulation of a PCM model depends on

68

5.4. Evaluation Metrics

the interaction of several model parts (e.g. Usage Model and Repository Model). If, for
example, the user behavior changes and we adjust the Usage Model in both PCM instances,
it is still possible that the analysis results of the models are completely di�erent, even if
the simulation results were similar in advance.

For our evaluation we need to be able to compare System Models, Resource Environment
Models and Allocation Models. For all model types, the resulting metric is based on the
Jaccard index [20] or also called Jaccard coe�cient (JC). The JC is de�ned as follows:

J (A,B) =
|A ∩ B |

|A ∪ B |

In this context, A and B are sets. If the two sets are exactly identical, the JC is equal to 1
and if no single element matches it is 0. Normally, the JC is used to quantify the equality
of sets. However, we can also apply this concept to models by considering the model as
a set of model elements. In order to apply the JC it is necessary that we de�ne equality
conditions for all element types. If the resulting JC is equal to 1, then the two models under
investigation are completely identical. In our implementation we perform a greedy search
for the intersection of the model elements. In other words, we iterate over all elements in
the �rst model and look for elements in the second model that are equal. As soon as we
found the �rst match, both elements are added to the intersection and are not considered
in the remaining process. Theoretically it is possible that such a greedy search algorithm
underestimates the intersections. However, since we always strive for a value of 1 in the
evaluation, i.e. that the models are completely identical, this fact is not important.

In the following paragraphs, the details for the comparison of the individual model
types are explained.

SystemModel The idea is that we map all elements in the System Model to elements in
the Repository Model. The referenced elements are considered as static and can therefore
be used as anchor for the equality de�nition. For the elements in the Repository Model, the
de�nition of equality is particularly easy, we just need to compare the IDs of the elements.
For example, two assembly contexts are equal if the IDs of the underlying components are
the same. This concept has been extended to all types of model elements within System
Models.

Resource EnvironmentModel andAllocationModel The Resource Environment Model and
the Allocation Model are analyzed in a combined procedure. As a consequence, we calculate
only one JC for both models together. Similar to the JC calculation for the System Model,
we use other parts of the architectural model as anchors. We also assume here that the
Repository Model is static.

Next, we de�ne the equality on the resource containers within the Resource Environment
Model. Two resource containers are considered equal if the same components are deployed
on both of them. This means that the number of deployments on the respective containers
are the same and the component types that have been deployed are also the same. In
addition, the de�ned hardware resources must be identical, i.e. amongst other things the
number of CPU cores and the processing rate must be equal. Of course, this must not only

69

5. Evaluation

apply to the CPU but also to all other hardware resources, because if this is not the case,
both containers will behave di�erently in simulations. With the help of this de�nition, we
can then also specify equality for links between containers: they are equal if the linked
containers are equal.

If all containers and links in both models are the same according to these de�nitions,
both Allocation Models and Resource Environment Models are identical.

5.4.2. Distribution Comparison

To compare distributions we mainly use three types of metrics: conventional statistical
measures, non parametric tests (KS test) and distance functions (Wasserstein). In the follow-
ing, we go into more detail about the actually used metrics and explain their informative
value in general. These metrics are used to compare the distributions of the monitored
response times (reality) with the simulated response times of the models (prediction).

Conventional statistical measures The classic statistics metrics are calculated for both
distributions and afterwards the distance is calculated. The following metrics are used:

• average

• quartiles (Q1, Q2, Q3)

• standard deviation

The higher the distance between these metrics, the less similar the two distributions.

Kolmogorov–Smirnov test (KS test) The KS test is a non-parametric test that checks
whether two distributions match [41]. This is done by calculating the maximum dis-
tance between the Cumulative Distribution Functions (CDFs). The minimum is 0 (if both
distributions are perfectly identical) and the closer it is to 1, the more di�erent are the
distributions.

Normally, this non-parametric test is used to check whether two random variables
originate from the same underlying distribution. Therefore, this metric is not ideal for our
use case. In particular, higher values are not very meaningful because shifts of distributions
are not considered. This phenomenon can be illustrated using Figure 5.1. Both are normal
distributions, the second one is only shifted to the left on the x-axis. Here the KS test
outputs a very high value, although the distributions are not signi�cantly di�erent. This
fact was taken into account in the evaluation and is also a reason why we will not make
any statements based on the KS test solely.

Wasserstein metric The Wasserstein metric is a distance measure for distributions [54].
In simple terms, it describes how much a distribution must be changed in order to be
transformed into the other one. An advantage of this metric is that, unlike the KS test, it
is not sensitive to shifts of the distributions. A drawback, however, is that the result is an
absolute number that cannot be easily interpreted. In the evaluation we often consider
several Wasserstein distances to have a baseline for comparison.

70

5.5. Evaluation Setup and Procedure

0 5 10 15 20

0.05

0.10

0.15

0.20

x

PD
F(

x)

Distribution 1 Distribution 2

Figure 5.1.: Two separate normal distributions with di�erent mean value (µ), visualized as
probability density functions (PDFs) [24].

A notable disadvantage of the Wasserstein distance (and all other metrics that are
considered in the evaluation) is that they all tend to be higher when the distributions
have a high variance. Especially during the monitoring of applications, many in�uencing
factors can cause the response times of services to be strongly spread temporarily. This
fact was compensated in the evaluation by performing all simulations, calculations and
measurements several times and calculating average values. Consequently, certain outliers
are negligible. Another drawback is that two distributions with di�erent numbers of data
points cannot be compared without further ado. It is possible to assign penalty points for
each additional data point, but this would not be reasonable in our use case, because the
size of the distributions should not in�uence the distance. If no penalty points are used,
the Wasserstein distance is no longer a valid distance metric [52]. For this reason we make
sure that the compared distributions always have the same number of data points within
the evaluation.

5.5. Evaluation Setup and Procedure

For the evaluation we decided to follow a case study based approach. However, due to
the design and structure of the GQM plan, there are also some requirements for the case
studies:

[R1] The source code of the application must be available. Otherwise, we are only able to
perform the procedure for extracting the system model at design-time to a limited
extent. A code analysis is then not possible and therefore Q1.2 can not be answered.

71

5. Evaluation

[R2] The implementation of the instrumentation and the monitoring is based on the
widely used Kieker Framework [32]. Therefore, it must be possible that the case
study can be monitored with the help of Kieker.

[R3] It is possible to simulate the scenarios from Chapter 3 at run-time. Since the approach
should also support software evolution and adaptation scenarios, it is necessary that
we can simulate them by means of the case study.

R3 is not a mandatory requirement here if several case studies are used and at least one
of them meets this requirement. In addition, it is also advantageous if there are already
initial architecture models (PCM) and related work has already dealt with the same case
studies. This makes it possible to compare the results with each other.

For these reasons, we decided to use the following case studies: CoCoME [65] and
TeaStore [39]. R3 is only partially ful�lled for CoCoME, since not all change scenarios
can be realized. Therefore we used CoCoME to get preliminary results and reports.
Afterwards we use the TeaStore to provide detailed conclusions. There were already
existing architecture models for CoCoME, for TeaStore most parts had to be modelled from
scratch. In the following sections 5.6.1 and 5.6.2 these two case studies are introduced in
more detail.

The evaluation procedure is based on the GQM Plan and can be divided into the experi-
ments displayed in Table 5.1. The table gives a rough description of the experiments and
also lists the research questions that were addressed. Furthermore, it is mentioned which
case studies were used for the experiments.

The procedure used to runExperiment 3 (E3) is visualized in Figure 5.2. The foundation
for this procedure is a number of de�ned change scenarios which can be executed. The
Scenario Generator selects a certain number from these input scenarios (a scenario can
also be selected several times). For each of the selected scenarios, a reference model is
generated. It re�ects how the model has changed compared to the previous one. Since
the Scenario Generator knows the executed change, it also knows how the model must
change. Another output is the Change Orchestration component, which applies the selected
changes at run-time. The arising monitoring data is then used as input for the pipeline of
our approach. Finally, the resulting models are compared with the reference models and
possible deviations are detected.

For Experiment 2 (E2) and Experiment 3 (E3) we use the transformation pipeline, which
must be con�gured before it can be used. There are the following �ve important con�gu-
ration parameters:

• Sliding window size: The size of the sliding window which contains the monitoring
data that is used as input for the transformation pipeline (see Section 4.7.2).

• Sliding window trigger : The time interval between the executions of the transforma-
tion pipeline.

• Simulation con�guration: Since the simulation of the PCM models is an integral part
of the pipeline it is necessary to con�gure them. In particular, the simulation time
and the number of measurements are required.

72

5.5. Evaluation Setup and Procedure

Preparation

Monitoring

Change Scenario (C1)

Change Scenario (Cn) <<output>>

<<output>>Scenario Generator<<input>>

<<compare>>

Reference Models <<apply>>

Change Orchestration

<<output>> Application under
observation<<input>> Monitoring Data

<<output>>

Pipeline

Run-Time Models

Figure 5.2.: Overview of the procedure that is used to simulate change scenarios of the
application

• Validation split: Within the transformation pipeline, the monitoring data is divided
into two sets: training and validation. The ratio between them can be con�gured
using this parameter. A common value here is 80/20, which means 80% training data
and 20% validation data [75].

• Validation predicates: The activation and deactivation of �ne-grained monitoring is
controlled by validation predicates. These are the rules (based on the metrics) that
must be ful�lled in order to deactivate �ne-grained monitoring for a service (see
Section 4.8.6). In the evaluation these predicates were selected manually. For this
purpose, several tests were performed and di�erent combinations have been tried
out to determine the most suitable settings.

Depending on these parameters, the behaviour and possibly also the results of the evalua-
tion will change. For this reason, we will always provide the parameters that were used.
For most of the experiments we tried out various parameter values, but we concentrate on
those that turned out to be the best.

73

5. Evaluation

ID Description Research
Questions

Casestudys used

E1 Execution of the System Model extraction at
design-time, based on the source code of the
respective application.

Q1.1, Q1.2 CoCoME,
TeaStore

E2 Monitoring of the application under
examination and execution of a load test.
Meanwhile, metrics about the monitoring are
collected and the monitoring data is used as
input for the pipeline. The monitoring data is
then compared with the simulation results of
the derived models. Finally, metrics are
calculated to quantify the deviation between
the monitoring data and the simulation results.
Since we are deriving newer models over time,
the metrics can be plotted over time.

Q1.4, Q2.1,
Q2.2, Q2.3

CoCoME,
TeaStore

E3 Similar to E2, but change scenarios are
simulated to emulate the software adaptation.
Here, we use the scenarios described in Section
3.3. Initially, a sequence of changes is
generated, which are then applied to the
application at run-time. In this way, we want
to ensure that our approach also derives
accurate models if the observed system
changes at run-time. The procedure is
summarized visually in Figure 5.2.

Q1.3, Q1.4,
Q2.1, Q2.2,

Q2.3

TeaStore

E4 Synthetic generation of monitoring data and
using it as input for the transformations of the
pipeline. The monitoring data is generated in
such a way that it causes worst-case execution
times. The goal is to examine the scalability of
the pipeline.

Q2.1, Q3.1,
Q3.2, Q3.3

-

Table 5.1.: Description of the experiments that were conducted to answer the scienti�c
questions of the evaluation

74

5.6. Evaluation Environments

5.6. Evaluation Environments

The following Sections 5.6.1 and 5.6.2 introduce the two case studies that we used within
the evaluation. Especially the structure is explained as well as how they are used for the
evaluation.

5.6.1. CoCoME

CoCoME (Common Component Modeling Example) is a software system as it can be
observed in supermarket chains [65]. It is possible to scan products at cash desks, the
purchases can be paid by credit card or cash. In addition, administrative tasks are also
covered, e.g. it is also possible to reorder and create products, but also to generate reports
[65].

There are several implementations of the case study. The oldest one is the plain Java
implementation1. Furthermore, there is a cloud-based version2 and an implementation
that was realized via REST interfaces3. Within the evaluation we used the cloud-based
implementation. Figure 5.3 shows all components of CoCoME. The Application.Store
component is highlighted in particular; it is the entry point and provides the main functions
of the system to the outside.

Application.Store Application.
ProductDispatcher

Data.
Persistence_Store Data.Enterprise

Data.Store

Data.
Persistence_Enterprise

Figure 5.3.: Overview of all components of the cloud based implementation of CoCoME

The associated Palladio Component Model (PCM) had already been used in previous
work and therefore it was not necessary to create it in the context of this thesis [29, 30, 56].
The mapping between source code elements and elements in the architectural model had to
be established manually, since CoCoME was not developed with the support of Vitruvius.
The subsequent instrumentation of the source code was performed automatically, as
described in the conception of this thesis.

1https://github.com/cocome-community-case-study/cocome-plain-java
2https://github.com/cocome-community-case-study/cocome-cloud-jee-platform-migration
3https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest

75

https://github.com/cocome-community-case-study/cocome-plain-java
https://github.com/cocome-community-case-study/cocome-cloud-jee-platform-migration
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest

5. Evaluation

In the evaluation we consider the “bookSale” service of CoCoME. This is the service
with the most consecutive service calls and almost all components are involved. Moreover,
this service has the highest complexity of all services included in the model. Consequently,
if we have re�ected this service well in the model, it provides well-founded information
about the quality of our approach.

The environment for the run-time measurements and pipeline executions (Experiment
E2) is designed to avoid mutual in�uences. In particular, this is important for a meaning-
ful evaluation of the performance characteristics of our approach. For this purpose, the
pipeline (core of our approach), the PCM simulations and the application under investiga-
tion (CoCoME) are executed on di�erent computers. Additionally, we use Apache JMeter
[26] to put load on the system. As a result, we bring the system into a state as it occurs
under realistic conditions in the production environment. This signi�cantly increases
the meaningfulness of the evaluation. Figure 5.4 summarizes the experiment setup for
CoCoME graphically.

Computer 3

CoCoME case study

Computer 1 Computer 2

Transformation Pipeline

Monitoring data

PCM Simulator
(virtualized)

Current models

Simulation results

Load testingRequests

Figure 5.4.: Summary of the experiment setup in the context of the CoCoME case study

5.6.2. TeaStore

The TeaStore is a web-based application which, as the name already implies, implements a
shop for all kinds of tea [39]. The application is designed to be suitable for the evaluation
of approaches in the �eld of performance modeling [39]. The TeaStore is based on a
distributed microservice architecture. The participating components can be replicated
and de-replicated. A load balancer distributes the load to components of the same type.
In addition, the TeaStore can be easily extended. These features make the TeaStore very
suitable for our evaluation (especially for Experiment E2 and Experiment E3).

Figure 5.5 shows all components of the TeaStore and visualizes their interaction. All
components register themselves at the registry, which remembers all instances and makes
them available for the individual components. This enables client-side load balancing,
which was implemented using Ribbon4. Communication between the components is

4https://github.com/Netflix/ribbon

76

https://github.com/Netflix/ribbon

5.6. Evaluation Environments

based on the widely used representational state transfer (REST) standard. The WebUI
uses all other components and assumes that they are operational. There are four di�erent
Recommender components (implementations) with identical functionality, which are used
to suggest related products to the users. All recommenders o�er two di�erent services,
“train” and “recommend”. The "train" service is used to learn the recommender with orders
from the past. The “recommend” service, on the other hand, is used to suggest products to
the user that are related to his current shopping cart.

Registry

WebUI

Image Provider Auth Persistence Recommender

Figure 5.5.: Overview of all TeaStore components and visualization of the interaction
between them[39]

So far, no comprehensive PCM models for the TeaStore existed. In previous work, parts
of it had already been modelled and examined, but the entire system was not covered.
Therefore, the case study was modelled extensively in the context of this thesis. In
the evaluation, we consider the service “con�rmOrder” which is o�ered by the WebUI.
This service is executed when a user places an order. We examine this service in the
evaluation because it has the highest complexity of all included services. Furthermore,
almost all components are involved in the execution (except the Image Provider and
the Recommender). In order to include the Recommender as well, the TeaStore was
slightly modi�ed. After the order has been processed within the “con�rmOrder” service,
the Recommender is re-trained. As a result, all components, except the Image Provider,
are involved in the “con�rmOrder” service. Figure 5.6 shows a simpli�ed version of the
corresponding Service E�ect Speci�cation (SEFF). For reasons of clarity, the modeling of the
overheads caused by the REST calls and the detailed representation of the load balancing
were omitted. Nevertheless, the �gure gives a good indication about the complexity of the
service and the extension that has been added (training the recommender after placing
the order).

Due to the introduced extension, the run-time of the “train” service directly in�uences
the response time of the “con�rmOrder” service. The di�erent implementations of the
Recommender have di�erent performance characteristics, but in the majority of them, the
response time increases proportionally to the orders stored in the database. This leads to

77

5. Evaluation

WebUI.confirmOrder (int cartSize)

<<ExternalCallAction>>
Registry.placeOrder

<<ExternalCallAction>>
Registry.trainRecommender

Registry.placeOrder (int cartSize)

<<ExternalCallAction>>
Auth.placeOrder

Auth.placeOrder (int cartSize)

Responsible for
load balancing

<<InternalAction>>
prepareOrder

<<ExternalCallAction>>
Registry.persistOrder

<<LoopAction>>

<<ExternalCallAction>>
Registry.persistOrderItem

<<InternalAction>>
finalizeOrder

Figure 5.6.: Simpli�ed presentation of the Service E�ect Speci�cation (SEFF) of the ex-
tended “con�rmOrder” service and some selected subsequent service calls (the
extensions are highlighted in red)

the fact that the response time of the “train” service increases with the number of persisted
orders. Logically, the execution time of the “con�rmOrder” service also increases. This
adds an additional level of di�culty to the evaluation, as the approach must also recognize
the dependency between the number of orders and the increasing response times.

All components except the registry are replicable and can therefore be used to simulate
change scenarios concering the deployment. Because we want to run Experiment E3 with
the help of the TeaStore, it is necessary that we can simulate the scenarios from Section
3.3. In order to be able to realize the changes of the run-time environment easily, we use
Docker5 for virtualization. This makes it possible to create and remove containers with
certain components in a simple way. The following list shows how the change scenarios
from Section 3.3 are executed by means of the TeaStore case study:

[U1| Allocation/De-Allocation: Start-up or shut-down of a container via Docker. When
shutting down it must be ensured that no component is deployed on the selected
container.

[U2| Migration: First the component is removed on the source container, then it is de-
ployed on an already existing container. Again, this is achieved by using Docker.

[U3| Replication/De-Replication: Either we select a previously replicated component and
dereplicate it, i.e. we delete the deployment using Docker. Otherwise, we select one of
the �ve replicable components (Auth, Persistence, Image Provider or Recommender)
and deploy it on an existing container. We exclude the WebUI here, otherwise

5https://www.docker.com/

78

https://www.docker.com/

5.6. Evaluation Environments

the load testing would also have to be adjusted so that the load is distributed over
all instances. In this context it was ensured that the WebUI does not become a
bottleneck, which itself is very unlikely, since the requests are passed directly to the
Registry.

[U4| Changes of the system composition: Change of the used Recommender implemen-
tation at run-time. In addition, replications and de-replications implicitly trigger
changes to the system composition, since components are connected to/ or discon-
nected from the load balancer.

[U5| Usage behavior; We use di�erent load test scenarios, which di�er for example in
how many products a user buys on average. The more products are purchased, the
higher the response time of the “con�rmOrder” service. Thus a change of the load
test scenario has a direct impact on the performance characteristics of the system.

[U6| Workload: The number of users can be easily modi�ed in the load test. We use
three di�erent numbers of users: 20 (default), 30 and 40. The higher the number of
users, the faster the database �lls up and thus the run-time of the services under
observation increases.

An illustration of the �nal setup for the experiments based on the TeaStore case study is
shown in Figure 5.7.

Computer 3

TeaStore WebUI

Computer 1 Computer 2

Transformation Pipeline

Monitoring data

PCM Simulator
(virtualized)

Current models

Simulation results

Load testingRequests

Other TeaStore
Components
(virtualized)

<<interaction>>

apply changes Change Orchestration

Figure 5.7.: Summary of the setup of the TeaStore case study for carrying out the evaluation
experiments

First, we generate a sequence of change scenarios with the procedure shown in Figure
5.2. As input we use the speci�ed change scenarios for the TeaStore. These changes are

79

5. Evaluation

then applied to the system at �xed time intervals; this task is performed by the Change
Orchestration. The actual components of the TeaStore are all virtualized using Docker,
allowing us to easily apply changes to the run-time environment. The remaining setup is
similar to the setup for CoCoME (see Figure 5.4).

5.7. Model Accuracy

In order to evaluate the quality of the models (G1) we use the experiments introduced
in Section 5.5. In the following sections the performed experiments and their results are
explained in more detail.

5.7.1. Experiment 1 (E1)

Experiment 1 concerns the accuracy of the System Model extraction at design-time. The
corresponding concept was introduced in detail in Section 4.6.2. For this purpose, we
need the source code and the mapping between source code elements and elements in the
architecture model (PCM) as input. The resulting models are compared with reference
models and we use the Jaccard coe�cient (JC) to quantify the equality (see Section 5.4.1).
As case studies we use both CoCoME and TeaStore.

The designed procedure for the derivation of the system model works, as mentioned be-
fore, semi-automatically. Con�icts that cannot be handled automatically must be resolved
manually by a developer. In order to keep the number of con�icts as low as possible, the
�rst step is to synthesize a Service-Call-Graph (SCG) from the source code using a code
analysis. This SCG is used to automatically resolve as many con�icts as possible. To esti-
mate the e�ect of the code analysis on the number of con�icts, we ran the experiment once
with and once without a preceding code analysis. Figure 5.8 summarizes the procedure
and the evaluation of Experiment 1 (E1) graphically.

The following paragraphs examine the results of the experiment, broken down according
to the respective case studies.

CoCoME Table 5.2 lists the number of elements in each model and indicates whether
they match. Only the most important element types are included in the table; for example,
the roles provided by the system were ignored. These are speci�ed by the user at the
beginning of the procedure and should therefore always conform to the reference model.
In the subsequent calculation of the JC, however, all elements were taken into account.

Model Assembly Contexts Assembly Connectors Delegations
Derived Model 6 6 2

Reference Model 6 6 2
Matching X X X

Table 5.2.: Number of model elements grouped by element type for the extracted System
Model and the reference model; concerning the CoCoME casestudy

80

5.7. Model Accuracy

Developer/ User

Source Code

Correspondence Model

System Model
Derivation

Build SCG System Model
Building Process

Service-Call-Graph (SCG)
Conflicts Solutions

System Model

<<compare>>

Reference Model

output

input

Figure 5.8.: Overview of the procedure and the evaluation of Experiment 1 (E1)

JCCoCoME(A,B) =
|A ∩ B |

|A ∪ B |
=

16
16 = 1.0

A Set of all elements of the extracted model
B Set of all elements of the reference model

The method for the calculation of the JC was introduced and described in Section 5.4.1.
In this case it is calculated as follows: The result, a Jaccard index of 1.0, indicates that both
models are completely identical. Consequently, we can also conclude that both models
behave equally in a simulation.

The extraction without prior code analysis resulted in 5 con�icts that had to be resolved
manually. With a previous code analysis the number of con�icts could be reduced to 2.
This corresponds to a reduction of 60% of the number of con�icts. Putting the con�icts in
relation to the total number of elements in the �nal model gives a ratio of 5

16 = 0.3125 for
the case without code analysis and 2

16 = 0.125 for the case with code analysis. It becomes
clear that, depending on the application, the code analysis can help to signi�cantly reduce
the number of con�icts. As a result, the manual e�ort can also be reduced to a minimum.
Therefore, the higher the quality of the code analysis, the more con�icts can be handled
automatically. An excerpt of the SCG that was extracted by means of the code analysis is
visualized in Figure 5.9. With the help of this SCG it was possible to resolve three con�icts
automatically.

TeaStore The procedure for the TeaStore is the same as that used for the CoCoME case
study. Table 5.3 shows the counts of the most important element types in the extracted
model and in the reference model.

Also, as before with CoCoME, we calculated the JC in the same way: We can conclude

81

5. Evaluation

Inventory.Data.Store

Inventory.Application.Store

Inventory.Application.ProductDispatcher

Inventory.Data.Enterprise

createStockItem

queryEnterpriseById

queryStoreById

queryStockItem

queryOrderById

orderProducts

rollInReceivedOrder

Figure 5.9.: Part of the Service-Call-Graph (SCG) that was obtained from the source code
of CoCoME by applying a code analysis

JCTeaStore(A,B) =
|A ∩ B |

|A ∪ B |
=

18
18 = 1.0

A Set of all elements of the extracted model
B Set of all elements of the reference model

that both models are identical based on the value 1.0 for the Jaccard coe�cient.
There were �ve con�icts during the extraction of the system model for TeaStore. It

did not matter whether a code analysis was performed before or not. In both cases �ve
con�icts occurred. In other words, the code analysis and the resulting SCG could not
contribute to the automatic resolution of some con�icts. The ratio between the number of
con�icts and the number of elements in the extracted model corresponds to 5

18 = 0.27.
The reason that the code analysis has no e�ect is the architecture of the TeaStore. The

components of the case study communicate exclusively via REST interfaces. Therefore, the
code only contains the HTTP addresses and no direct method calls that can be traced. The
mapping between the HTTP addresses and the REST interfaces cannot be resolved solely
by a code analysis. Consequently, developer knowledge is required to build a meaningful
SCG.

Summary In conclusion, the accuracy of the extracted model was optimal in both con-
sidered case studies. Furthermore, it became clear that a preceding code analysis can help
to minimize the number of con�icts. However, it also turned out that there are cases in
which the code analysis does not provide any bene�t (TeaStore). For both case studies
the number of con�icts was signi�cantly lower than the number of elements in the �nal

82

5.7. Model Accuracy

Model Assembly Contexts Assembly Connectors Delegations
Derived Model 7 7 2

Reference Model 7 7 2
Matching X X X

Table 5.3.: Number of model elements grouped by element type for the extracted System
Model and the reference model; concerning the TeaStore casestudy

model. This means that the manual e�ort for modeling has been reduced signi�cantly
by the system extraction procedure. In addition, the con�icts can be prepared in such a
way that the developer/ user no longer needs any knowledge of architecture modeling at
all. For example, it would be possible to provide a list of possible components directly to
the developer and ask which one is used in the present case. Then the developer is not
responsible for the concrete modeling by means of a PCM, he only has to answer questions
about the system composition.

5.7.2. Experiment 2 (E2)

In the second evaluation experiment we put the case studies under load and monitor them.
On the one hand, the monitoring data is used to derive updates in the PCM. On the other
hand it is used within the evaluation to estimate the accuracy of the simulation results. If
the simulation results are accurate, it can be concluded that the derived models re�ect the
actual system well. The simulations of the models were carried out after the experiment
itself, i.e. not the simulation results from the pipeline were used. The simulations were
executed in such a way that the distributions of the response times contain exactly the
same number of data points as in the monitoring. This must be ensured, otherwise there
might be undesired e�ects when calculating the Wasserstein distance (see Section 5.4.2).
In this experiment, we do not consider change scenarios, which means that the experiment
environment does not change at run-time.

The following paragraphs go into more detail about the procedure and the results of
the experiment, separately for the two case studies.

CoCoME As already mentioned in the introduction to CoCoME, we focus on the “book-
Sale” service here. The behavior of this service does not change over time, so we proceed
with the experiment as follows:

1. Initial run which uses the transformation pipeline and the monitoring data as input
to derive up-to-date PCM models.

2. Independent additional run during which CoCoME is only monitored and no models
are derived.

3. Comparison of the monitoring data from the second run with the simulation results
of the models from the �rst run.

83

5. Evaluation

Through this procedure we ensure that the transformation pipeline has not yet seen the
data used for evaluation. Otherwise it would be possible for the transformation pipeline
to build models that simply re�ect the input. If one would then use the same data again
for the evaluation, one attests the models a high accuracy, which is not intended.

The con�guration of the parameters for the transformation pipeline is summarized in
Table 5.4. The second part of the validation predicate is intended to ensure that services with
very low execution times, which are rarely measured, are only instrumented with coarse
granularity. It does not make sense to instrument these services with a �ne granularity
although the deviations are very small and therefore do not in�uence the actual services
under consideration. Each run of the experiment was carried out for 3 hours. To obtain
meaningful results, the experiments were performed several times (in this case 25 times).
Afterwards, the data of the individual experiments were combined to be able to make �nal
statements.

Con�guration Paramter Value
Sliding window size 15 minutes

Sliding window trigger 5 minutes
Simulation engine SimuCom[9]

Maximum simulation time 300000 time units
Simulation measurements 20000

Validation split 80/20 (80% training, 20% validation)

Validation predicates
(KS test <= 0.2 AND Wasserstein distance < 20)

OR
(Average distance <= 2 AND Wasserstein distance < 5)

Table 5.4.: Con�guration parameters for the transformation pipeline in the context of the
CoCoME case study (see Section 5.5)

Figure 5.10 and Figure 5.11 both show examples of two randomly selected distributions
from the experiment. Hereby, the response times of the “bookSale” service were considered.
Figure 5.10 shows the density plot for a distribution of the response times in the monitoring
and Figure 5.11 shows the density plot for a distribution of the response times in the
simulation.

It is easy to see that both distributions look almost identical, which is a �rst indication
for a good quality of the simulated model. Table 5.5 shows the corresponding quartiles
and the average of the two distributions.

Table 5.5.: Quartiles for the sample distributions of the monitoring and the simulation
Distribution Min Q1 Q2 Q3 Max Avg
Monitoring 29ms 240ms 322ms 453ms 1521ms 364ms
Simulation 21ms 229ms 339ms 427ms 1529ms 363ms

Again, it can be seen that both distributions are very close to each other. This impression
can be con�rmed by looking at the Cumulative Distributive Functions (CDFs) shown in

84

5.7. Model Accuracy

0 200 400 600 800 1,0000

1

2

3

·10−3

Service response time in milliseconds

Figure 5.10.: Sample density plot for a distri-
bution of the response times of
the “bookSale” service in mon-
itoring

0 200 400 600 800 1,0000

1

2

3

·10−3

Service response time in milliseconds

Figure 5.11.: Sample density plot for a distri-
bution of the response times of
the “bookSale” service in sim-
ulation

Figure 5.12. From this �gure it is possible to retrieve the KS test metric, it results to the
maximum distance between the two curves. In this case, the KS test is 0.075947 and the
Wasserstein distance amounts to 12.384184.

0 200 400 600 800 1,0001,2001,4001,6000

0.2

0.4

0.6

0.8

1

Service response time in milliseconds

CD
F

Monitoring Simulation

Figure 5.12.: Cumulative Distribution Functions (CDFs) for the “bookSale” service

85

5. Evaluation

In this experiment we perform these comparisons for all derived models and aggregate
the results. The results are plotted over time and this allows us to make statements
about whether the models become more accurate over time or not. In order to eliminate
outliers, the experiment was carried out 25 times, as already mentioned. When presenting
the metrics over time, the medians of all runs were calculated. The used metrics were
introduced in Section 5.4.2 and their informative value was explained in more detail.

Figure 5.13 (a) shows the Wasserstein distance between the simulations of the derived
models and the monitoring data for the response times of the “bookSale” service. We
always look at the PCM models at a certain point in time and compare the simulation
results with the monitoring data from the additional, independent monitoring run.

It can be seen that the Wasserstein distance decreases very rapidly at the beginning and
then settles below a value of 20 with minor �uctuations. This means that the accuracy of
the simulations increases over time and consequently the accuracy of the derived PCM
models increases too. This observation conforms to the charts on the KS test (Figure 5.13
(b)) and on the distances between the conventional statistics metrics (Figure 5.13 (c)). In
both graphs it can be seen that the metrics decrease over time and then stabilize at a
low level. The �uctuations in the graphs are caused by the fact that the simulations are
stochastic processes. In other words, it is very unlikely that two simulations produce
identical results, even if the used models are equal. Although this was compensated by
executing simulations and calculating the metrics several times, the �uctuations could still
not be completely eliminated. This means that the accuracy of the models increases over
time and then remains at a constant, solid level. The improvement in accuracy over time
can be explained by two factors. First, the pipeline receives more and more data over time
and thus information about the performance characteristics of the application. Second, the
repository transformation learns over time from the monitoring data (see Section 4.8.5).

TeaStore The procedure for the TeaStore case study is similar to the procedure with
CoCoME. We examine the “con�rmOrder” service and focus on its response time. For the
TeaStore, each run of the experiment was carried out for 2 hours. An important di�erence
compared to CoCoME is that the response time of the considered service increases over
time (see Section 5.6.2). As a result, we cannot use the same procedure as with CoCoME.
Actually, it does not make sense to compare the complete monitoring data from the second
run with the simulations of the models from the �rst run. Otherwise, particularly the
models at the beginning would perform very poorly, just because they have not yet seen the
increasing response times. Therefore we slightly adjust the procedure. For the evaluation
of the models, we only use the monitoring data that has already been gathered at this
point in time. As with CoCoME, we run the whole experiment 25 times in order to be able
to make well founded statements and to eliminate outliers.

The con�guration parameters for the transformation pipeline are summarized in Table
5.6. Here, we used a smaller sliding window for the monitoring data and the pipeline is
also executed more frequently (compared to the experiment with CoCoME). In this way,
we want to take care of the fact that the behavior of the service is constantly changing.
The validation predicates are similar to the ones used for CoCoME, because they have
proven to be very solid.

86

5.7. Model Accuracy

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

Elapsed time in minutes (m)

W
as

se
rs

te
in

di
st

an
ce

(a) Wasserstein distance over time

0 20 40 60 80 100 120 140 160 1800

0.2

0.4

0.6

0.8

1

Elapsed time in minutes (m)

KS
te

st

(b) KS test over time

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

Elapsed time in minutes (m)

D
ist

an
ce

Mean Q1 Q2 Q3 Standard deviation
(c) Distance between conventional statistical measures over time

Figure 5.13.: Overview of the metrics over time for the CoCoME case study (comparing
the distributions which result from the analysis and the monitoring)

87

5. Evaluation

Con�guration Paramter Value
Sliding window size 6 minutes

Sliding window trigger 3 minutes
Simulation engine SimuCom[9]

Maximum simulation time 300000 time units
Simulation measurements 20000

Validation split 80/20 (80% training, 20% validation)

Validation predicates
(KS test <= 0.2 AND Wasserstein distance < 40)

OR
(Average distance <= 2 AND Wasserstein distance < 5)

Table 5.6.: Con�guration parameters for the transformation pipeline in the context of the
TeaStore case study (see Section 5.5)

Figure 5.14 visualizes the increasing execution time of the considered service. This
increase is implicitly caused by the growing number of orders that are stored in the
database.

0 20 40 60 80 1000
200
400
600
800

1,000
1,200
1,400
1,600
1,800

Elapsed time in minutes (m)

Av
er

ag
e

re
sp

on
se

tim
e

Figure 5.14.: Average response time of TeaStore’s “con�rmOrder” service over time (aver-
aged over ten experiment executions)

To evaluate the accuracy of the derived models, we use the same approach as for
CoCoME. In order to compare the simulation results with the monitoring data, we use
the metrics introduced in Section 5.4.2. Figure 5.15 summarizes the Wasserstein distance
throughout the execution of the experiment, the KS test and the distances between the
conventional statistical metrics of both distributions (monitoring and analysis).

The graphs about the Wasserstein distance and the KS test depict the same trend, all
metrics decrease over time. Consequently, the accuracy of the derived models increases
over time. These observations are consistent with the results of the CoCoME case study.
However, in the case of the TeaStore, the results are more meaningful, as the increasing

88

5.7. Model Accuracy

0 20 40 60 80 100 1200

20

40

60

80

100

120

140

Elapsed time in minutes (m)

W
as

se
rs

te
in

di
st

an
ce

(a) Wasserstein distance over time

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

Elapsed time in minutes (m)

KS
te

st

(b) KS test over time

0 20 40 60 80 100 1200

20

40

60

80

100

120

140

Elapsed time in minutes (m)

D
ist

an
ce

Mean Q1 Q2 Q3 Standard deviation
(c) Distance between conventional statistical measures over time

Figure 5.15.: Overview of the accuracy metrics over time for the TeaStore case study
(Experiment 2)

89

5. Evaluation

response time of the considered service adds an additional degree of di�culty. The classic
statistical measures should be treated with caution, as a trend towards increasing gaps
between monitoring and analysis can be observed. However, these are due to the fact that
the average response time increases (see Figure 5.14), hence the absolute distances tend
to become larger. In relation, this is not the case and therefore does not signal a loss of
accuracy. Therefore, the meaningfulness of this graph is very limited.

During this experiment no change scenarios were applied, this is covered by Experiment
E3 (see Section 5.7.3).

Summary Summarizing, it can be stated that for both case studies (CoCoME and TeaStore),
the quality (accuracy) of the derived PCM models increases over time and then remains
stable at a good level. Furthermore, the changing behaviour of the TeaStore case study’s
“con�rmOrder” service was taken into account and the models were adapted properly.

5.7.3. Experiment 3 (E3)

In the third and �nal experiment on the accuracy of the derived models, only the TeaStore
case study was considered. In contrast to the second experiment, we now also include
the change scenarios introduced in Section 5.6.2. The procedure for generating and
orchestrating the change scenarios is summarized graphically in Figure 5.2. The setup and
con�guration of the case study is exactly the same as in Experiment 2. The values of the
pipeline con�guration parameters have already been summarized in Table 5.6.

One run of the experiment lasts for 120 minutes and 40 randomly generated change
scenarios are applied. Every 3 minutes the next change scenario is executed. This corre-
sponds to the interval at which the pipeline is executed, so after each time the pipeline
has been executed, a change is triggered. The changes to the workload and user behavior
(U5 and U6) are rolled back when the next change scenario is executed. The goal is to
simulate peak loads. Like E2, the experiment was executed several times. In other words,
we randomly selected 40 change scenarios multiple times. For each set of change scenarios,
the experiment was performed several times, in order to eliminate outliers and obtain
meaningful results. In the following, we will discuss individual results in detail, but also
show aggregated data. Table A.1 in the appendix shows an exemplary list of change
scenarios that are executed during an experiment run.

First, we investigated the accuracy of the models by comparing them with the generated
reference models and calculating the Jaccard coe�cient (JC). Table 5.7 shows the lowest
observed JC for the di�erent change types and the considered model types. As already
mentioned, the Usage Model was not examined here, as it has already been intensively
assessed in the context of iObserve [30, 29]. The experiment was executed 50 times and
each run applied 40 change scenarios. Because the minimal Jaccard coe�cient is equal
to one in all cases, it indicates that there was not a single situation where the derived
models di�ered from the reference models. Thus, research question Q1.3 can be answered
as well: in the considered experiment no deviations and consequently no errors in model
adaption could be identi�ed over a period of 50 runs. Thus it can be concluded that the
model transformations provided accurate results and re�ected the software adaptions at
run-time.

90

5.7. Model Accuracy

Change Type Minimum Jaccard Index
System Allocation / Resource Environment

Allocation 1.0 1.0
De-Allocation 1.0 1.0

Replication 1.0 1.0
De-Replication 1.0 1.0

Migration 1.0 1.0
System Composition 1.0 1.0

Usage Behavior 1.0 1.0
Workload 1.0 1.0

Table 5.7.: Overview of the minimum Jaccard coe�cients for Experiment 3, representing
the accuracy of the di�erent models when executing change scenarios at run-
time

In the second step, as in Experiment 2 (E2), the accuracy of the combination of all models
was examined. The monitoring data is used as ground truth and compared to the simulation
results. The applied metrics are also the same as in Experiment E2: the Wasserstein distance,
the KS test and the classical statistical measures. As already mentioned, the experiment
was executed 50 times, i.e. we simulated 50 di�erent lists of change scenarios by means
of the TeaStore. For each list of change scenarios multiple iterations were performed to
eliminate outliers and measurement errors. We �rst calculated the median for each list of
change scenarios and then the median of the metrics over time for all experiment runs.
Hence we obtain results comparable to those of Experiment 2. Figure 5.16 summarizes the
metrics over time of the experiment runs.

It can be seen that the results are almost identical to those of Experiment 2. Consequently,
it is reasonable to assume that the change scenarios have no signi�cant in�uence on the
accuracy of the updated models. However, it has to be considered that the in�uence of
certain change scenario types can be hidden by forming the median. Especially because
the change scenarios are randomly selected in each experiment run. As a result, if certain
change scenarios would have a strong negative in�uence on the accuracy, this could be
hidden in these graphs. Therefore, the meaningfulness of these �gures is limited and in a
subsequent step the impact per change scenario type was analyzed.

A distinction was made between each change type and the in�uence on the accuracy
was examined. For this purpose the Wasserstein distance and the KS test were used as
metrics. The classical statistical measures were omitted, because it already became clear
that the signi�cance is limited.

The procedure to measure the loss of accuracy is slightly di�erent. We can not use
the data from Experiment 3 here because we do not know when the e�ect of a certain
change scenario will become apparent. For example, the increase of the load does not
have an immediate e�ect, but rather a delayed one. Since we cannot estimate the timing
of these e�ects, an additional experiment is required. In this experiment we used a
system con�guration where all di�erent change scenarios can be executed (i.e. there are
components that have already been replicated and can be de-replicated). For each change

91

5. Evaluation

0 20 40 60 80 100 1200

20

40

60

80

100

120

140

Elapsed time in minutes (m)

W
as

se
rs

te
in

di
st

an
ce

(a) Wasserstein distance over time

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

Elapsed time in minutes (m)

KS
te

st

(b) KS test over time

0 20 40 60 80 100 1200

20

40

60

80

100

120

140

Elapsed time in minutes (m)

D
ist

an
ce

Mean Q1 Q2 Q3 Standard deviation
(c) Distance between conventional statistical measures over time

Figure 5.16.: Overview of the accuracy metrics over time for the TeaStore case study
(Experiment 3)

92

5.7. Model Accuracy

type, we carry out 10 runs and only perform one change of the speci�ed type. In contrast
to the previous experiment setup, the changes of the types U5 (Workload) and U6 (Usage
behavior) are not rolled back. Before we execute the change, the unchanged system is
observed for 45 minutes. After the change has been executed, the system is observed for
another 45 minutes. Finally, to quantify the loss of accuracy, we calculate the distances
between the metrics before the change and those after the change. In order to avoid
extreme outliers due to measurement errors, the upper and lower 5% of the measured
distances were removed. Without this correction the resulting box plot would be very
confusing and di�cult to interpret.

The box plots in Figure 5.17 show the ranges of the loss of accuracy, grouped according
to the change types. As already mentioned, the Wasserstein distance and the KS test
were used and shown separately. For the graphics concerning the Wasserstein metric, the
maximum was capped at 60 to improve the readability.

The graphs indicate that both the allocation and the de-allocation of resource containers
have no signi�cant negative or positive e�ect on the accuracy of the run-time models.
The same applies for replications, de-replications, migrations and changes to the system
composition. In the case of workload changes and changes to the user behavior, it can
be seen that the accuracy of the models decreases noticeably. The reason for this is that
the TeaStore can encounter an overload situation due to these changes. In this case, the
performance characteristics depend on many factors (operating system, hardware, ...).
For a performance model it is therefore very di�cult to make precise statements about
the response times. It does indeed depict the overload, but the metrics then logically
deviate signi�cantly, because the model can no longer represent the high complexity of
the software system in reality. Since workload changes and changes of the usage behavior
can lead to exactly these excessive loads, the results are reasonable. It should be noted
that we have not examined the e�ect of combinations of changes here. Due to the fact
that certain types of changes only have an e�ect after an inde�nite period of time, more
complex experiments would be necessary.

Summary In summary, it can be stated that the accuracy of the models can be preserved
or improved to a large extent, even when change scenarios occur. For certain change types
a negative impact on the accuracy of the models was observed, caused by bringing the
system into an overload situation. However, this is not a problem of our approach, but
rather a general problem. In such situations, it is almost impossible to predict the exact
performance behavior of today’s systems, because numerous factors in�uence it. These
include, for example, the operating system, the scheduling strategy and the hardware.
In future work, the in�uence of certain change scenarios could be investigated further,
especially the e�ect of speci�c combinations of change scenarios has not been considered
yet.

93

5. Evaluation

Allo
cat

ion
De-A

llo
cat

ion
Rep

lic
ati

on
De-R

ep
lic

ati
on

Migr
ati

on

Sy
ste

m
Com

po
sit

ion
Usag

e Beh
av

ior
Work

loa
d

−20

0

20

40

60

0

Ac
cu

ra
cy

lo
ss

(a) Wasserstein distance

Allo
cat

ion
De-A

llo
cat

ion
Rep

lic
ati

on
De-R

ep
lic

ati
on

Migr
ati

on

Sy
ste

m
Com

po
sit

ion
Usag

e Beh
av

ior
Work

loa
d

−0.4

−0.2

0

0.2

0.4

0

Ac
cu

ra
cy

lo
ss

(b) KS test

Figure 5.17.: Aggregated representation of the loss of accuracy caused by the di�erent
change types by means of box plots, which visualize the quartiles

94

5.8. Transformation Pipeline Performance

5.8. Transformation Pipeline Performance

The second objective of the evaluation (G2) concerns the performance of the transformation
pipeline under realistic conditions. Furthermore, it is intended to examine the overhead
that arises from monitoring the application under consideration. Additional attention is
also paid to the observation of the �ne and coarse granular monitoring. In this context,
it is interesting to see how the Instrumentation Model (IM) can be used to minimize the
extent of the �ne-granular monitoring and how this a�ects the execution times of the
transformations. For this purpose, no separate experiments were performed, instead the
observations were integrated into the experiments already shown. In other words, we
evaluate the performance of the pipeline on the basis of the experiments on the accuracy
of the derived models (see Section 5.7). In the following sections the results are presented,
split up according to the two case studies.

5.8.1. CoCoME

First of all, we analyzed the number of monitoring records entering the pipeline as input
for CoCoME. For this purpose, after each pipeline iteration the number of processed
monitoring records was recorded. This allows us to plot the amount of monitoring
data over time. It should be noted that a sliding window is used, that decides which
monitoring data is actually considered (see Section 4.7.2). Since we collect the performance
data together with the previous data about the accuracy, measurements from several
experiment executions are available. Therefore, as in the evaluation of the accuracy of the
models, we calculate medians to eliminate outliers and measurement errors. Figure 5.18
shows the number of monitoring records in the sliding window over time. It also shows
the point in time when the �ne grained monitoring was deactivated for the “bookSale”
service (indicated by a dashed vertical line). We used the performance measurements from
Experiment 2 and formed the median values (for both the number of monitoring records
and the time until the �rst deactivation of the �ne granular monitoring).

In the graphic it can be seen that the �ne grained monitoring is deactivated after
approximately 25 minutes of operation. Within this time span 5 pipeline executions
were triggered in the experiment. After deactivating the �ne-grained monitoring for the
“bookSale” service the number of monitoring records decreases to about 22000 and remains
steady thereafter. The time span of 25 minutes until the �rst deactivation of �ne granular
monitoring is relatively short when considering that it takes time until the sliding window
is �lled with representative monitoring data. At the peak of the curve there are 31518
monitoring records in the sliding window. After deactivating the �ne-granular monitoring
the number drops to an average of 22304, which is a reduction of about 29.23%. This clearly
shows that a signi�cant improvement can be achieved by controlling the �ne granular
monitoring via the IM. The reduction in the number of monitoring records reduces the
load on the pipeline and also lowers the monitoring overhead.

Figure 5.19 shows the medians of the execution times of the pipeline parts over time.
For reasons of simplicity, not all pipeline executions were shown, only every second one.
The execution time is divided into the three parts with the highest shares: the model

95

5. Evaluation

0 20 40 60 80 100 120 140 160 1800

1

2

3

·104

Elapsed time in minutes (m)

N
um

be
ro

fm
on

ito
rin

g
re

co
rd

s

Number of records Deactivations of the �ne-grained monitoring

Figure 5.18.: Number of monitoring records in the sliding window over time while observ-
ing CoCoME

validations, the usage model derivation and the repository model calibration. All other
parts have been grouped together as " miscellaneous".

30 60 90 120 150 180

5

10

15

Ex
ec

ut
io

n
tim

e
in

se
co

nd
s(

s)

Model Validations Repository Calibration Usage Model Extraction Miscellaneous
Elapsed time in minutes (m)

Figure 5.19.: Detailed performance information on the transformation pipeline over time
(while executing Experiment 2 for CoCoME).

At �rst glance, it can be seen that the execution times of the pipeline are dominated
by the validations. More precisely, by the simulations of the models within the pipeline.
For each pipeline execution, four simulations are performed which cause the major part
of the execution time in the experiment with CoCoME. Furthermore, it is apparent that

96

5.8. Transformation Pipeline Performance

the deactivation of the �ne granular monitoring does not have a signi�cant e�ect on the
execution time. The reason for this is that a reduction of the monitoring data volume
mainly a�ects the calibration of the repository model. Since the execution time of the
calibration is negligible in this case, the improvement by lowering the monitoring records
is negligible as well. Table 5.8 recapitulates the execution times of the individual parts of
the pipeline.

Pipeline Part Min Q1 Q2 Q3 Max
Model Validations 7.876s 11.441s 11.691s 11.866s 12.060s

Repository Calibration 0.097s 0.111s 0.144s 0.161s 0.877s
Usage Model Extraction 0.004s 0.006s 0.010s 0.013s 0.118s

Miscellaneous 0.006s 0.065s 0.071s 0.079s 0.167s
Accumulated 7.983s 11.623s 11.916s 12.119s 13.222s

Table 5.8.: Overview of the aggregated execution times of the individual pipeline parts in
the context of Experiment 2 for the CoCoME case study

Finally, the monitoring overhead was examined for CoCoME, i.e. the time required to
generate and send the monitoring records. This is particularly relevant since it directly
a�ects the application under observation and may a�ect its performance characteristics.
For the “bookSale” service an average monitoring overhead of 1.45ms (�ne-grained) and
259µs (coarse-grained) per call was measured. Given an average execution time of 250ms
(of the “bookSale” service) this corresponds to 0.58% (�ne-grained) and 0.1036% (coarse-
grained) of the total execution time. In this speci�c case it can be seen that deactivating the
�ne granular monitoring signi�cantly reduces the monitoring overhead. In the CoCoME
case study, the overhead was reduced by up to 82.14% on average.

5.8.2. TeaStore

The performance analysis for the TeaStore is structurally identical to the previous one for
CoCoME. First, the number of monitoring records per pipeline execution was analyzed,
then the execution times of the functional units in the pipeline and �nally the arising
monitoring overhead. We only present the results for Experiment 3 and not for Experiment
2, because they are similar to a large extent. Experiment 3 also deals with a more di�cult
case (with change scenarios), so the results are more meaningful.

Figure 5.20 shows the number of monitoring records that are entered as input into the
pipeline at certain points in time.

As with CoCoME, it can be seen that the number of monitoring records in the sliding
window increases at the beginning until the point is reached where the �nely granular
monitoring is deactivated. Afterwards, the amount of monitoring data decreases and then
settles at a constant level. At the peak, there are 120546 monitoring records in the sliding
window and after deactivating the �ne granular monitoring, the average decreases to
approximately 90000, which corresponds to a reduction of the monitoring data by 25.34%.

Figure 5.21 shows the execution times for the complete pipeline and for the respective
functional units.

97

5. Evaluation

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

1.2
·105

Elapsed time in minutes (m)

N
um

be
ro

fm
on

ito
rin

g
re

co
rd

s

Number of records Deactivations of the �ne-grained monitoring

Figure 5.20.: Number of monitoring records in the sliding window over time while observ-
ing TeaStore

30 60 90 120

5

10

15

Ex
ec

ut
io

n
tim

e
in

se
co

nd
s(

s)

Model Validations Repository Calibration Usage Model Extraction Miscellaneous
Elapsed time in minutes (m)

Figure 5.21.: Detailed performance information on the transformation pipeline over time
(while executing Experiment 3 for TeaStore).

The conclusion here is similar to CoCoME, it can be clearly seen that the execution time
of the pipeline is dominated by the validations of the models. Furthermore, it can be seen
that the execution times tend to be slightly higher than with CoCoME, which is mainly
due to the fact that the PCM model of the TeaStore is more complex. Logically, this also
leads to an increase in simulation time. Again, the e�ect of the decreasing monitoring
data volume on the execution time cannot be observed. The reason for this is again the
very short execution time of the transformations within the pipeline. Because only these

98

5.8. Transformation Pipeline Performance

are positively in�uenced by the decreasing number of monitoring records, no signi�cant
impact on the execution time is visible in the chart. Table 5.9 summarizes the aggregated
data about the execution times once again in tabular form.

Pipeline Part Min Q1 Q2 Q3 Max
Model Validations 10.745s 11.245s 11.705s 12.228s 14.635s

Repository Calibration 0.102s 0.141s 0.208s 0.295s 0.704s
Usage Model Extraction 0.021s 0.043s 0.074s 0.126s 0.449s

Miscellaneous 0.095s 0.190s 0.205s 0.239s 0.651s
Accumulated 10.963s 11.619s 12.192s 12.888s 16.439s

Table 5.9.: Overview of the aggregated execution times of the individual pipeline parts in
the context of Experiment 3 for the TeaStore case study

The monitoring overhead was also examined for the TeaStore case study. The analyzed
service is “con�rmOrder”, like in Experiment 2 and 3. The following values were obtained
regarding the overhead caused by the monitoring:

• Absolute (�ne-grained): 2.8551ms

• Absolute (coarse-grained): 949.59µs

Assuming an average response time of 500ms of the “con�rmOrder” service, the following
relative values (percentages) for the ratio between monitoring overhead and total execution
time of the service result:

• Relative (�ne-grained): 0.571%

• Relative (coarse-grained): 0.19%

It can be stated that neither the coarse granular nor the �ne granular monitoring has a
signi�cant in�uence on the response time of the service. Furthermore, as with CoCoME,
it can be seen that the e�ort for the coarse-granular monitoring is signi�cantly lower than
for the �ne-granular monitoring. Comparing the two types of monitoring in this case
shows that coarse-grained monitoring causes up to 66.741% less overhead. Therefore, it
can also be concluded for the TeaStore that the monitoring overhead can be signi�cantly
reduced by controlling the �ne granular monitoring via the Instrumentation Model.

5.8.3. Summary

By means of Experiment 2 and 3 of the evaluation (E2 and E3), su�cient metrics are
available to answer all scienti�c questions regarding Goal 2 (G2).

For both case studies (CoCoME and TeaStore), we measured the time needed for the
pipeline to complete. In both cases the execution time was almost always less than 15
seconds and was dominated by the model validations. It can therefore be concluded that
with typical time intervals between pipeline executions (several minutes) no bottlenecks
occur and the data can always be processed in time (Q2.1). If the performance of the

99

5. Evaluation

simulations would be improved even further, the execution times of the complete pipeline
could be reduced in the future (see Section 7).

Regarding the control of the monitoring via the Instrumentation Model (Q2.2), it became
clear that in both case studies the models were accurate enough to deactivate parts of the
�ne granular monitoring after about 25 minutes. In both cases this resulted in a reduction
of the monitoring volume. However, a drop of the execution time of the transformations
within the pipeline could not be observed. As already mentioned in the previous sections,
the execution times of the considered transformations were too low, so no clear correlation
could be proven.

The third and last question (Q2.3) addresses the overhead caused by the monitoring. In
both case studies it turned out that the overhead is negligible for the considered services.
Furthermore, it became clear that the overhead can be signi�cantly reduced by switching
from �ne to coarse granular monitoring. In the presented scenarios, it was possible to
save up to 90% of the monitoring overhead.

5.9. Scalability of the transformations

The third and �nal goal of the evaluation (G3) focuses on the theoretical scalability of
the transformations within the pipeline. It is especially interesting how the execution
times behave when we generate the input data in such a way that a worst-case scenario
occurs. Because even under these circumstances it is important that the performance of
the pipeline does not collapse. To achieve this, it must be ensured that the transformations
within the pipeline have acceptable execution times even in realistic worst-case scenarios.
In order to evaluate this, we examined all transformations individually. The procedure is
identical for all of them, �rst the worst-case scenarios are identi�ed and then synthetically
generated monitoring data is used as input. The monitoring data is built in such a way
that it covers exactly the identi�ed worst-case scenarios. Next, the amount of monitoring
data is successively increased and the execution times of the transformations are observed.
This provides insights on how the execution times of the transformations scale in the
worst-case scenarios. In order to reduce measurement errors and outliers, the analyses
were carried out several times and the mean value was calculated. We decided to do 20
repetitions per experiment. With the help of this analysis, reliable statements can be made
about the upper limits of the execution times.

5.9.1. Repository Model Transformation

First of all, the scalability of the repository model transformation has been analyzed. It
is responsible for the calibration of the resource demands and the adaptation of other
stochastic expressions in the model (for example, the number of loop iterations). The
transformation can roughly be divided into two parts. In the �rst part the validation results
are analyzed and the results of this analysis are used as input for the second step which
executes the regressions. The analysis of the validation results is negligible regarding the
execution times. The results are iterated only once and scaling factors are calculated. Even
if the simulations are con�gured with excessive simulation times and measuring points,

100

5.9. Scalability of the transformations

an execution time of one second is never exceeded. Therefore we will only consider the
second part in the following scalability analysis.

A regression is performed for each stochastic expression that needs to be calibrated.
The number of data points within a regression is variable and depends on the monitoring
data. This can be well illustrated using the example of internal actions whose resource
demands need to be calibrated. There are two factors that in�uence the execution time of
the transformation: the number of internal actions that were observed and the number of
data points that were recorded for each internal action. The number of observed internal
actions corresponds to the number of triggered regressions and the number of data points
directly a�ects the duration of the regressions. Based on this, we built the scenarios that
are considered in the scalability analysis. First, we examined the execution times of the
transformation for an increasing number of internal actions. Subsequently, we observed
the run-times for an increasing number of data points for a single internal action. The
results are summarized in Figure 5.22.

In both cases it can be seen that the duration of the transformation scales linearly with
the increasing parameter. Even for a high number of Internal Actions (a), the growth of
the execution time remains linear. In addition, the considered number of Internal Actions
will probably not occur in practice. In the PCM model of CoCoME there are 15 Internal
Actions and in the PCM of the TeaStore there are 17. Exactly the same can be observed
when increasing the data points per internal action. It should also be noted here, that
the duration of the regression is entirely dependent on the used implementation. In our
realization we use the Waikato Environment for Knowledge Analysis (Weka)6. Again, the
numbers of considered data points are unrealistic, in both case studies such a data volume
was never reached. The transformation took less than 4 seconds to execute in both cases
(see Section 5.8).

In summary, it can be concluded that the transformation also scales linearly in the
worst-case scenarios and therefore no unexpected side-e�ects emerge.

5.9.2. Resource Environment Transformation

The resource environment transformation identi�es changes to the hosts and the network
connections within the run-time environment. The �rst step is to scan all service call
traces for new hosts and new connections. The detected hosts and connections are then
inserted into the run-time Environment Model (REM). Using the consistency rules based
on Vitruvius, the corresponding resource containers and linking resources are created
in the Resource Environment Model. In the third and �nal step, a check is made for
each container in the Resource Environment Model to see whether it still exists in the
run-time environment. The run-time of the transformation is dominated by the second
step, which is the change propagation via Vitruvius. In the following, we will examine
the executiom time of the entire transformation. With an increasing number of new hosts
and connections in the run-time environment, the execution times rise as well. Therefore,
we consider two scenarios in this scalability analysis:

6https://www.cs.waikato.ac.nz/ml/weka/

101

https://www.cs.waikato.ac.nz/ml/weka/

5. Evaluation

0 200 400 600 800 1,0000

4

8

12

16

20

Number of executed, distinct internal actions

Ex
ec

ut
io

n
tim

e
[s

]

(a) Scalability of the transformation with an increasing number
of executed distinct internal actions (each of them is executed
1000 times)

2 · 105 4 · 105 6 · 105 8 · 105 1 · 106

4

8

12

16

20

Number of executions of a single internal action

Ex
ec

ut
io

n
tim

e
[s

]

(b) Scalability of the transformation with an increasing number of
executions of a single internal action

Figure 5.22.: Exploration of the scalability of the repository transformation under various
circumstances

1. Increasing number of new hosts; sparse meshed - indicating that each of the new
hosts has only one network connection

2. Increasing number of new hosts; fully meshed - indicating that each of the new
hosts has a connection all other hosts

The results for both scenarios are visualized in Figure 5.23.
In the chart that shows the scalability of sparse meshed run-time environments (a), it

can be seen that the run-time scales almost perfectly linear with up to 180 new hosts. Such

102

5.9. Scalability of the transformations

40 80 120 160
1

5

10

15

Number of newly added hosts

Ex
ec

ut
io

n
tim

e
[s

]

(a) Scalability of the transformation with an increasing num-
ber of newly added hosts; each new host has only one
connection to another host

1 5 10 15 20
1

5

10

15

Number of newly added hosts

Ex
ec

ut
io

n
tim

e
[s

]

(b) Scalability of the transformation with an increasing number
of newly added hosts; each new host has a connection to
all other hosts (fully meshed)

Figure 5.23.: Analysis of the scalability of the resource environment transformation in
di�erent scenarios

a scenario seems very unrealistic in practice. For realistic values of about 40 hosts or less,
an execution time of 4 seconds is not exceeded. In contrast, the graph on the scalability
when adding fully meshed hosts shows that execution times increase exponentially. This is
simply because the connections between hosts need to be synchronized one by one. With
the hosts, the number of connections increases exponentially when considering a fully
meshed network. This results in an exponential increase of the execution time. However,
it can still be concluded that the transformation provides adequate execution times for

103

5. Evaluation

practical use cases. An appearance of more than 15 new fully meshed hosts between two
pipeline executions will probably never occur in practice.

In summary, the scalability analysis for the resource environment transformation has
shown that the execution times scale appropriate for common use cases.

5.9.3. SystemModel and Allocation Model Transformation

The transformations that are responsible for updating the Allocation Model and the System
Model were reviewed together within the scalability analysis. The reason for this is that
both transformations address the system composition and were designed to operate in
conjunction with each other (see Section 4.8.4). For the derivation of updates in the system
model, the number of changes in the component composition is crucial. On the other
hand, for the derivation of updates in the allocation model, the number of changes in
the deployments is crucial. Consequently, these two parameters determine the design
of the scalability analysis. First, we synthetically generate a Repository Model with a
large number of components and afterwards a Resource Environment Model with a large
number of resource containers. The exact number of components and containers is not
important, but it must be ensured that su�ciently large change scenarios can be created.
Then the actual change scenarios are generated. First, the number of changes is determined,
one half is populated with deployment changes and the other half with changes to the
component composition. These change scenarios are generated with di�erent sizes and
used as input for the combination of both transformations (TAllocation and TSystem). Figure
5.24 shows the cumulated execution time of both transformations for an increasing number
of changes in system composition.

300 600 900 1,200 1,5000

2

4

6

8

Number of changes in the system composition

Ex
ec

ut
io

n
tim

e
[s

]

Figure 5.24.: Execution times of System Model transformation with an increasing number
of changes in the system composition

The chart shows that the execution times are relatively low for all considered cases.
Even for a total number of 1500 Changes (750 deployment changes and 750 component
composition changes) the execution time barely exceeds 6 seconds. Because such a number

104

5.9. Scalability of the transformations

of changes between two pipeline executions probably never occurs in practice, it can be
concluded that both transformations scale well. For a realistic number of changes of less
than 300, the execution time is signi�cantly lower than one second.

5.9.4. Usage Model Transformation

The usage model transformation was adopted from iObserve and ported to our monitoring
data structure. Hence, both approaches are conceptually identical. A detailed scalability
analysis has already been done for iObserve [30]. The goal of the scalability analysis in the
context of this thesis is to show that the results are consistent with those of iObserve. We
consider two di�erent cases. Firstly, an increasing number of users, all of them triggering
exactly one service call and secondly, an increasing number of service calls triggered by a
single user. Figure 5.25 shows the scalability analysis for both scenarios. Here, (a) shows
the increase in execution times for a rising number of users and (b) shows the growth
for an increasing number of service calls initiated by a single user. When looking at the
sub �gure (b) it should be noted that the axes are scaled logarithmically. In this way, we
wanted to ensure that the results can be compared to those obtained from the iObserve
scalability analysis.

The �rst experiment shows that the execution time scales almost perfectly linear with
an increasing number of users (sessions). The same conclusion can be drawn from the
results of iObserve’s scalability analysis [30]. We also obtained consistent results when
analyzing the execution time for an increasing number of service calls initiated by a single
user. For 100 or less initiated service calls, the execution time increases sublinearly and
thereafter superlinearly with an explosive growth in execution time above 10000 initiated
service calls. In the superlinear segment, the execution time is dominated by the loop
detection [30]. The extreme increase of the execution time with a high number of triggered
service calls is not critical, because such a user behavior is very unlikely in practice.

In summary, it can be stated that the results of our scalability analysis are in line with
those of iObserve. Therefore, it can also be concluded that the execution times of the usage
model transformation are appropriate.

105

5. Evaluation

0.3 0.6 0.9 1.2 1.5
·106

1

3

5

Number of user sessions

Ex
ec

ut
io

n
tim

e
[s

]

(a) Scalability of the transformation when the number of users
increases; each user triggers a single service call

100 101 102 103 104 105
100

101

102

103

104

105

Number of services called

Ex
ec

ut
io

n
tim

e
[m

s]

(b) Scalability of the transformation with an increase in the
number of triggered service calls for a single user (axes
are scaled logarithmically)

Figure 5.25.: Scalability analysis of the Usage Model transformation

5.10. Evaluation Summary

The evaluation is based mainly on case study research. For this purpose the cloud based
webshops CoCoME and TeaStore were used. The objectives of the evaluation focused
on ensuring the accuracy of the derived models (G1), examining the performance of the
transformation pipeline (G2), and �nally analyzing the scalability of the transformations
(G3).

First, the accuracy of the models was investigated. Therefore three experiments were
performed. In the �rst experiment the system extraction at design time was examined

106

5.10. Evaluation Summary

and it was shown that the extracted models match with reference models. Furthermore, it
became clear that the manual e�ort, which is necessary in this procedure, can be reduced by
a static code analysis. In the second experiment both case studies were used and monitored
under load. The monitoring data were then used as input for the transformation pipeline
and the output models were evaluated for accuracy. As ground truth the monitoring data
was used. For both case studies it was shown that the accuracy of the models increases over
time and then remains very solid. The third experiment is conceptually almost identical to
the second one, the only di�erence is that we performed change scenarios to the case study
during the monitoring. In this case, only the TeaStore was considered. The results were
similar to those of Experiment 2 for the TeaStore and showed that the accuracy is preserved
despite changes at run-time. The only exceptions were changes in workload and user
behavior, where the TeaStore experienced an overload situation. As a result, the simulation
results drifted strongly away from the actual response times. The reason for this is that in
such scenarios many parameters have an in�uence on the performance characteristics.
These include, for example, the operating system, the scheduling strategy and the hardware.
A performance model can hardly represent these complex interrelationships, which leads
to a loss of accuracy. Therefore this is not a problem of our approach, but rather a general
problem in performance modeling.

In the second step the performance of the pipeline and the monitoring overhead was
evaluated. For this purpose we used the measurements that were already collected during
Experiment 2 and 3. In other words, we use the performance measurements that were
collected during the evaluation of the accuracy of the models. It was shown that the
execution times are low enough to eliminate inconsistencies quickly and to avoid bottle-
necks. It became clear that the execution times are dominated by the simulations of the
models. In addition, the in�uence of the Instrumentation Model on the execution times
was investigated. No positive e�ect could be shown, because the execution times of the
transformations was too low. To quantify the e�ect of the monitoring on the applica-
tion under observation, we also measured the monitoring overhead. It was shown that
the monitoring overhead is negligible for both case studies. Furthermore, it was shown
that the coarse granular monitoring causes signi�cantly less overhead. Therefore, the
Instrumentation Model can help to minimize the monitoring overhead in the long run.

In the third and last step the scalability of the transformations was analyzed in general.
For the repository calibration it was shown that it always scales linearly with the number
of monitoring records to be processed. For the transformations concerning the resource
environment, the allocations and the system composition it was shown that they provide
low run-times and a good scalability for realistic scenarios. Finally, for the usage model
transformation it was shown that the scalability is identical to iObserve. Although we use
large parts of iObserve, this relationship was not trivial. The underlying monitoring data
structure is di�erent and so is the necessary preprocessing.

In summary, it can be concluded that the proposed approach is suitable for maintaining
consistency for software adaptation and evolution scenarios.

107

5. Evaluation

5.11. Threats to validity

The identi�cation of the threats to validity is based on guidelines for evaluations in the
context of case study research [64]. Therefore, we distinguish between four dimensions of
validity: internal validity, external validity, construct validity and conclusion validity. In the
following, we discuss the individual aspects in the context of our approach.

• Internal Validity: A threat to validity is the selection of metrics within the evalua-
tion. These include the metrics introduced in Section 5.4. Strengths and weaknesses
have already been analyzed in that section. For the comparison of distributions we
used the Wasserstein distance, the KS-test and conventional statistical measures.
These have been used in many related studies and by combining them we minimize
the risk that a single metric can distort the evaluation results. By aggregating the re-
sults over several experiment executions it is possible that certain e�ects are hidden.
Especially if not every experiment execution is identical (as for example in Experi-
ment 3), then the impact of certain change scenarios can be masked by forming the
median. This was compensated by the fact that the results of the experiments were
grouped by change scenario type and not by the execution time in an additional
experiment. Thus, the impact of the di�erent change scenarios on the accuracy of
the models was determined. This risk does not exist for the experiments where each
run is identical in terms of execution (Experiment 2). In future work, the in�uence
of the change scenarios on the accuracy of the models could be investigated with
further experiments and case studies to make even more meaningful statements.
The Jaccard coe�cient was used to compare PCM models and has also been used in
related work (e.g. iObserve). The equality de�nition of model elements was de�ned
recursively and static model elements are used as anchors (see Section 5.4). Thus,
an equality of two PCM models can be shown.

• External Validity: Another threat to validity is the selection of case studies. It
may be possible that the results obtained from the case studies are not valid in
general. To avoid this, we �rst performed a requirements analysis for the case
studies (see Section 5.5) and then selected suitable case studies. This led to the
selection of CoCoME and TeaStore. Both are widely used in research and address
common use cases (cloud-based web stores). This ensures that the case studies
cover common business use cases. Furthermore, the TeaStore has been designed to
compare approaches in the areas of performance modeling and performance analysis
[39]. By combining the two selected case studies, the risk of non-representative
results is further reduced. In the future, the approach could be tested in further case
studies, but the current evaluation based on CoCoME and TeaStore already allows
to make substantiated statements.

• Construct Validity: In the evaluation we rely on a combination of synthetically
generated monitoring data and monitoring data generated directly by executing a
case study. For the synthetically generated data, external factors such as the run-time
environment or the type of load testing can be excluded. In addition, an arbitrary
amount of monitoring data can be generated and thus also extreme cases can be

108

5.11. Threats to validity

analyzed. When observing the case study, however, the quality of the monitoring
events must be ensured. Since we transfer the monitoring records via the network to
the pipeline, it is also necessary that the latency is as low as possible to ensure that
the monitoring data is up-to-date. To guarantee the quality of the monitoring events
we use the Kieker Framework with extensions that have already been implemented
in previous projects [32, 56, 35]. As load driver JMeter [26] is used and executed
directly on the container that also handles the execution of the case study. This
ensures a low latency. Furthermore, the pipeline and the monitored case study
are connected to the same local network, which minimizes the network overhead.
Finally, the monitoring was implemented in a way that the resulting monitoring
overhead is eliminated from the execution times. As a result, it can be made sure
that the behavior of the application with monitoring is almost the same compared
to the one without.

• Conclusion Validity: The subjectivity of a researcher must be avoided when
interpreting the evaluation results. Many di�erent, well known metrics have been
used, which are easy to understand and interpret. In addition, these have been
introduced and explained in a separate section in order to enhance the reader’s
understanding. Through the quanti�cation with the help of the metrics there is not
much room for interpretation of a researcher. All conclusions and arguments are
well structured and based on the metrics, making them easy to understand. Due to
this design of the evaluation hardly any other interpretations and conclusions are
possible.

109

6. RelatedWork

In this section we focus on approaches that also deal with the automated consistency
preservation between architectural software artefacts. In addition, we also mention ap-
proaches in the area of view-based modeling, since some aspects of our work are also
related to this area.

6.1. Consistency Preservation of Architectural Models and
Source Code

Konersmann proposed a solution which creates a connection between architecture im-
plementation and architecture speci�cations (e.g. architecture models) [42]. It integrates
information about the architecture model directly into the program code via annotations
[42]. The approach uses Intermediate Architecture Description Language (IAL) to decouple
the representation of architecture information from concrete architecture and implementa-
tion models [42]. The focus of this approach lies on providing an explicit mapping between
implementation elements and elements in the architecture model via annotations, whereas
our approach concentrates on automated consistency management between software
artefacts.

ArchLint [53] is an approach that supports the automated detection of architectural
violations. To do so, ArchLint uses static and historical source code analysis techniques.
Internally, a graph is built that maps the dependencies between the classes. This graph
and heuristics are used to detect “architectural violations” [53]. The consistency check is
performed in an extra step at design-time, in contrast to our approach which also considers
adaptation scenarios at run-time and adjusts the models automatically.

Just-In-Time Tool for Architecture Consistency (JITTAC) [11] also deals with the consis-
tency checking between architecture models and their corresponding Java implementation.
It is organized as an Eclipse plugin and allows the user to visualize the components of the
architecture and interdependencies in a graph with nodes and edges. The components can
now be mapped to the source code and JITTAC checks if all dependencies are satis�ed. Like
ArchLint, this is a static approach that helps keeping models consistent at design-time, but
also does not consider run-time data and is not able to automatically maintain consistency
throughout adaption scenarios.

There are a number of approaches in the area of architecture model extraction at run-
time. As we do not want to name them all, we refer to [72] for a detailed list. However, these
approaches all work exclusively with run-time data (for example, extraction of information
from method call traces). Our approach, on the other hand, takes run-time and design-time
into account. Furthermore, these approaches do not take the system composition into
account when maintaining consistency; this was included in our approach.

111

6. Related Work

6.2. View-based Consistency

A view-based approach was developed by Meier and Winter [57]. It uses a so-called Single
Underlying MetaModel (SUMM) which covers all data within a domain. Additionally, the
initial models are migrated to views of the SUM. In contrast to Vitruvius, it supports the
elimination of initial inconsistencies. The approach is operator-based, i.e. the transforma-
tions between the initial models and the single underlying model (SUM) are broken down
into small, understandable operations with the help of the so-called operators [57]. The
approach was implemented in Java as a prototype and will most likely be extended in the
future. However, consistency is only considered at design-time.

A slightly older approach has been presented by Mens et al. [58], it supports the
consistency preservation between high-level structural views and the source code. But
only the path from source code to high-level design is supported, i.e. the consistency
is unidirectional. Relations between elements in the high-level view are de�ned and
managed with the help of the "Relation Editor". In addition, known deviations between
source code and high-level structural view are stored in the Relation Editor. The so-called
Relation Checker then veri�es these relationships and outputs violations. In contrast to
our approach, no run-time data is taken into account and the violations are not �xed
automatically.

112

7. Future Work

While working on the thesis, it turned out that there is still potential for extensions and
improvements in many areas. Especially the validations that were integrated within the
pipeline open up many opportunities for enhancements. But also the limitations and
assumptions from Chapter 3 may be eliminated by future work. The following list names
and describes the identi�ed future work tasks with the highest potentials:

• Extraction of the repository model from the bytecode of the application:
Langhammer’s approach to the synchronization between the repository model and
the application assumes that the corresponding source code is available. However, it
would also be conceivable to derive the repository model directly from the bytecode
of the application. Although some information is lost when the source code is
translated into bytecode (e.g. loops), there are already analysis tools that can reliably
reconstruct this information [73]. In this way, the initial overhead for model-driven
development could be lowered even more.

• Consideration of the performance characteristics of the elements in the Re-
source Environment Model: As already mentioned in Section 3.4.1 among the
limitations (L2), the current approach does not consider performance attributes of
links and containers within the resource environment model. For instance, by fully
monitoring the network requests, one could calculate accurate values for latency
and throughput. Also, by measuring the performance of the containers itself, one
could estimate the capabilities of their hardware resources.

• Machine learning approaches for model updates within the pipeline: With
the help of machine learning techniques, it would be possible to further re�ne the
transformation of the repository model and the transformation of the usage model.
Furthermore, with the validations that have been woven into the pipeline as an
integral part, it is possible to use the deviations of the models as input for the trans-
formations. This makes it possible to design continuously learning transformations,
for example with Reinforcement Learning [71]. Another place where machine learn-
ing can be helpful is directly in the Repository Model. The resource demands within
the Repository Model could be designed as neural networks with continuous output.
The monitoring data would then be used for training, and as a result the neural
network would “learn” the behavior of the resource demand over time. For this,
however, the simulation engine would have to be extended, since it must be able to
calculate the output of a neural network.

• Optimization of the PCM simulations in order to reduce the execution time:
In the evaluation it became clear that the simulations of the derived models have

113

7. Future Work

a major impact on the performance of the pipeline. Within this thesis a headless
variant of the simulation engines has been used which signi�cantly reduces the
execution time. For most use-cases the faster simulation engine SimuLizar [4] is
unfortunately not su�cient and SimuCom [9] has to be used. If the simulations
would be more performant, more validations could be added to the pipeline and
maybe even a world of models could be simulated. Finally, the model that performs
best within the validation could be selected.

• Support of composite components in the automated extraction of the sys-
tem model: Another limitation of the current approach is that composite compo-
nents are not supported in the actual implementation (see L3 in Section 3.4.1). As
already mentioned there, this is not a conceptual limitation, but rather an enormous
implementation e�ort, which is why it has been omitted in this thesis. However,
it would be conceivable to eliminate this limitation, e.g. when deriving the Sys-
tem Model at run-time, the service call graph could be searched for composite
components.

• Merging the approach with existing work in this area: There are already many
approaches and related projects in the context of this thesis. For example, build-
ing blocks of iObserve [29] have been integrated into our approach. For example,
Grohmann et. al. have already developed an approach that detects parametric de-
pendencies using feature selection techniques [25]. It would make sense to combine
the advantages of the approaches in this area with future extensions.

114

8. Conclusion

In this thesis we presented an approach for maintaining the consistency between software
artifacts, with a special focus on supporting evolution and adaptation scenarios. We
pointed out gaps of current approaches and explained how they are closed within this
thesis. Our approach combines di�erent approaches concerning consistency maintenance
and introduces new features. In particular, it is intended to ensure consistency between
architecture models and source code at design-time and between architecture models and
a running application at run-time. In this context, the widely used and acknowledged
Palladio Component Model (PCM) was applied to represent the architecture models [6].
The implementation is based on iObserve, Vitruvius and the CIPM approach. In a
comprehensive case study based evaluation, various aspects were evaluated, including the
accuracy of the models, the performance and the scalability.

First of all, the thesis clearly de�ned the objectives of the work, explained the most
important terms and introduced limitations. Afterwards the conception of the approach
itself was described. First, the extensions of the Virtual Single Underlying Model (VSUM)
were introduced, compared to the already existing approaches of Mazkatli and Langhammer
[55, 50]. Subsequently, the changes and extensions of the monitoring were described. The
Instrumentation Metamodel was extended in order to be able to �ne-tune the monitoring
at run-time and thus control the overhead. In addition, the monitoring record types, which
de�ne the data structure of the monitoring data, were adapted. By means of the Eclipse
Modeling Framework (EMF), two new model types were developed: the Service Call Graph
(SCG) and the Runtime Environment Model (REM). The SCGs are used to represent call
relationships between services. On the other hand, the REM is used to represent the
run-time environment and to synchronize it with the architecture model via consistency
rules.

Based on these extensions and adaptations, the concepts of design-time and run-time
consistency preservation were introduced. Thereby we focused on the consistency man-
agement of the system composition, as this was not covered by existing approaches. At
design-time, our approach is largely based on consistency rules, which have been es-
tablished with the help of Vitruvius (see coevolution approach of Langhammer [50]).
At run-time, a transformation pipeline is used, which was inspired by the preliminary
work of the CIPM approach and iObserve [56, 29]. To create the mapping between el-
ements of di�erent models, the correspondence model of Vitruvius is used. It replaces
the run-time architecture correspondence model (RAC) [62], which was introduced and
used by iObserve for this purpose. In total, consistency is supported for all PCM model
parts at run-time and at design-time only the Repository Model and the System Model are
supported.

In the evaluation, the developed approach was examined using two di�erent case studies:
CoCoME [65] and TeaStore [39]. Both are widely used systems that have been applied

115

8. Conclusion

for evaluating a number of related approaches in the �eld of performance modeling and
analysis. The accuracy and applicability of the System Model extraction at design-time
have been analyzed and demonstrated. Furthermore, the accuracy of the models at run-
time was evaluated. It was shown that the quality of the models increases signi�cantly
in the beginning and then stabilizes at a very good level. For TeaStore, change scenarios
were taken into account during this analysis, i.e. changes were carried out at run-time
and their in�uence on the model accuracy was observed. It turned out that most of the
changes have no signi�cant in�uence. A notable negative impact on the accuracy of
the models was found only for workload changes and changes in user behavior. In both
cases this is because the changes can cause the system to enter an overload situation,
making the response times unpredictable. For both case studies, the performance of the
transformation pipeline was examined and it was discovered that the execution times were
below 15 seconds in almost all cases. A major part of the execution times were caused
by the simulations of the PCM models. However, the results also showed that the times
are low enough to not endanger the applicability in practice. The monitoring overhead
was also reviewed and we obtained a similar result as in the performance analysis. By
continuously adjusting the monitoring, the overhead is reduced as much as possible and
therefore the performance characteristics of the observed application are not signi�cantly
a�ected. Furthermore, the scalability of the transformations in extreme situations was
evaluated. The results indicated that all transformations scale adequately for a large
number of real-world use cases.

In summary, it can be stated that this thesis developed an extensive approach to the
consistency management of software artifacts. It combines advantages and features of
di�erent approaches and extends them by aspects that have not been considered so far.
In particular, it is designed to cover and support design-time (evolution) and run-time
(adaptation) changes. Special attention was also paid to extensibility, as the approach
was implemented in the form of a framework. This means that new functions can be
added and existing features adapted in the future without much e�ort. By selecting two
representative case studies for the evaluation of the approach, the practical applicability
could be shown. However, this does not guarantee that our approach works as intended
for all possible systems. Therefore, it makes sense to further develop and evaluate the
approach in future work.

116

Bibliography

[1] C. Atkinson and T. Kuhne. “Model-driven development: a metamodeling foundation”.
In: IEEE Software 20.5 (2003), pp. 36–41.

[2] Luciano Baresi. “Activity Diagrams”. In: Encyclopedia of Database Systems. Ed. by
LING LIU and M. TAMER ÖZSU. Boston, MA: Springer US, 2009, pp. 41–45. isbn:
978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9_9. url: https://doi.org/
10.1007/978-0-387-39940-9_9.

[3] Victor R. Basili, Gianluigi Caldiera, and Dieter H. Rombach. “The Goal Question
Metric Approach”. In: vol. I. John Wiley & Sons, 1994.

[4] Matthias Becker, Markus Luckey, and Ste�en Becker. “Performance Analysis of Self-
Adaptive Systems for Requirements Validation at Design-Time”. In: Proceedings of the
9th International ACM Sigsoft Conference on Quality of Software Architectures. QoSA
’13. Vancouver, British Columbia, Canada: Association for Computing Machinery,
2013, pp. 43–52. isbn: 9781450321266. doi: 10.1145/2465478.2465489. url: https:
//doi.org/10.1145/2465478.2465489.

[5] Ste�en Becker. “Coupled model transformations for QoS enabled component-based
software design”. PhD thesis. 2008. 297 pp. isbn: 978-3-86644-271-9. doi: 10.5445/
KSP/1000009095.

[6] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio Component Model
for Model-driven Performance Prediction”. In: J. Syst. Softw. 82.1 (Jan. 2009), pp. 3–22.
issn: 0164-1212. doi: 10.1016/j.jss.2008.03.066. url: http://dx.doi.org/10.
1016/j.jss.2008.03.066.

[7] Lorenzo Bettini. Implementing Domain Speci�c Languages with Xtext and Xtend -
Second Edition. 2nd. Packt Publishing, 2016. isbn: 1786464969.

[8] Walter Binder, Jarle Hulaas, and Philippe Moret. “Advanced Java Bytecode Instru-
mentation”. In: ACM International Conference Proceeding Series 272 (Jan. 2007). doi:
10.1145/1294325.1294344.

[9] Fabian Brosig et al. “Quantitative Evaluation of Model-Driven Performance Analysis
and Simulation of Component-based Architectures”. In: Software Engineering, IEEE
Transactions on 41.2 (Feb. 2015), pp. 157–175. issn: 0098-5589. doi: 10.1109/TSE.
2014.2362755.

[10] Yuriy Brun et al. “Engineering Self-Adaptive Systems through Feedback Loops”. In:
Software Engineering for Self-Adaptive Systems. Ed. by Betty H. C. Cheng et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 48–70. isbn: 978-3-642-02161-9.
doi: 10.1007/978-3-642-02161-9_3. url: https://doi.org/10.1007/978-3-642-
02161-9_3.

117

https://doi.org/10.1007/978-0-387-39940-9_9
https://doi.org/10.1007/978-0-387-39940-9_9
https://doi.org/10.1007/978-0-387-39940-9_9
https://doi.org/10.1145/2465478.2465489
https://doi.org/10.1145/2465478.2465489
https://doi.org/10.1145/2465478.2465489
https://doi.org/10.5445/KSP/1000009095
https://doi.org/10.5445/KSP/1000009095
https://doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1145/1294325.1294344
https://doi.org/10.1109/TSE.2014.2362755
https://doi.org/10.1109/TSE.2014.2362755
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02161-9_3

Bibliography

[11] Jim Buckley et al. “JITTAC: A Just-in-Time tool for architectural consistency”. In:
2013 35th International Conference on Software Engineering (ICSE) (2013), pp. 1291–
1294.

[12] Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse Modeling Framework.
Pearson Education, 2003. isbn: 0131425420.

[13] Erik Burger. “Flexible Views for Rapid Model-driven Development”. In: Proceedings
of the 1st Workshop on View-Based, Aspect-Oriented and Orthographic Software Mod-
elling. VAO ’13. Montpellier, France: ACM, 2013, 1:1–1:5. isbn: 978-1-4503-2070-2.
doi: 10.1145/2489861.2489863. url: http://doi.acm.org/10.1145/2489861.
2489863.

[14] Erik Burger. “Flexible Views for View-based Model-driven Development”. PhD
thesis. Karlsruhe, Germany: Karlsruhe Institute of Technology, July 2014. isbn:
978-3-7315-0276-0. doi: 10.5445/KSP/1000043437. url: http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000043437.

[15] F. Buschmann. Pattern-orientierte Software-Architektur: ein Pattern-System. Profes-
sionelle Softwareentwicklung. Addison-Wesley, 1998. isbn: 9783827312822. url:
https://books.google.de/books?id=o2nuK0qpo3QC.

[16] Jordi Cabot and Martin Gogolla. “Object Constraint Language (OCL): A De�nitive
Guide”. In: Formal Methods for Model-Driven Engineering: 12th International School
on Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced Lectures. Ed. by Marco Bernardo,
Vittorio Cortellessa, and Alfonso Pierantonio. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 58–90. isbn: 978-3-642-30982-3. doi: 10.1007/978-3-642-
30982-3_3. url: https://doi.org/10.1007/978-3-642-30982-3_3.

[17] Noureddine Dahmane. “Adaptive Monitoring for Continuous Performance Model
Integration”. Master Thesis. Karlsruher Institut für Technologie Fakultät für Infor-
matik, Mar. 14, 2019.

[18] Martin Davis. Computability & Unsolvability. Dover Publications, 1958.
[19] Peter J. Denning and Je�rey P. Buzen. “The Operational Analysis of Queueing

Network Models”. In: ACM Comput. Surv. 10.3 (Sept. 1978), pp. 225–261. issn: 0360-
0300. doi: 10.1145/356733.356735. url: https://doi.org/10.1145/356733.
356735.

[20] Hans-Friedrich Eckey, Reinhold Kosfeld, and Martina Rengers. Multivariate Statistik.
Jan. 2002. doi: 10.1007/978-3-322-84476-7.

[21] Otávio Freitas Ferreira Filho and Maria Alice Grigas Varella Ferreira. “Semantic Web
Services: A RESTful Approach”. In: IADIS International Conference WWWInternet
2009. IADIS, 2009, pp. 169–180. url: http://fullsemanticweb.com/paper/ICWI.
pdf.

[22] The Eclipse Foundation. Eclipse desktop & web IDEs. https://www.eclipse.org/
ide/. visited on 05/09/2020. 2020.

118

https://doi.org/10.1145/2489861.2489863
http://doi.acm.org/10.1145/2489861.2489863
http://doi.acm.org/10.1145/2489861.2489863
https://doi.org/10.5445/KSP/1000043437
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043437
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043437
https://books.google.de/books?id=o2nuK0qpo3QC
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1145/356733.356735
https://doi.org/10.1145/356733.356735
https://doi.org/10.1145/356733.356735
https://doi.org/10.1007/978-3-322-84476-7
http://fullsemanticweb.com/paper/ICWI.pdf
http://fullsemanticweb.com/paper/ICWI.pdf
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/

Bibliography

[23] The Eclipse Foundation. Xtext - Language Engineering Made Easy! https://www.
eclipse.org/Xtext/index.html. visited on 05/09/2020. 2020.

[24] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. AMS, 2003.
url: http://www.dartmouth.edu/~chance/teaching_aids/books_articles/
probability_book/book.html.

[25] Johannes Grohmann et al. “Detecting Parametric Dependencies for Performance
Models Using Feature Selection Techniques”. In: 2019 IEEE 27th International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). Oct. 2019, pp. 309–322. doi: 10.1109/MASCOTS.2019.00042.

[26] Emily Halili. Apache JMeter. Packt Publishing, 2008. isbn: 1847192955.
[27] Lucia Happe et al. “Software Engineering Processes”. In: Modeling and Simulating

Software Architectures – The Palladio Approach. Ed. by Ralf H. Reussner et al. Cam-
bridge, MA: MIT Press, Oct. 2016. Chap. 9, pp. 195–225. url: http://mitpress.mit.
edu/books/modeling-and-simulating-software-architectures.

[28] Florian Heidenreich et al. “Closing the Gap between Modelling and Java”. In: Software
Language Engineering. Ed. by Mark van den Brand, Dragan Gašević, and Je� Gray.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 374–383. isbn: 978-3-642-
12107-4.

[29] R. Heinrich. “Architectural run-time models for performance and privacy analysis
in dynamic cloud applications”. In: ACM SIGMETRICS performance evaluation review
43.4 (2016), pp. 13–22. issn: 0163-5999, 1557-9484. doi: 10.1145/2897356.2897359.

[30] Robert Heinrich. “Architectural runtime models for integrating runtime observations
and component-based models”. In: Journal of Systems and Software 169 (2020). issn:
0164-1212. doi: https://doi.org/10.1016/j.jss.2020.110722. url: http:
//www.sciencedirect.com/science/article/pii/S016412122030159X.

[31] Robert Heinrich. “Architectural Run-time Models for Performance and Privacy Anal-
ysis in Dynamic Cloud Applications”. In: ACM SIGMETRICS Performance Evaluation
Review 43.4 (2016), pp. 13–22. issn: 0163-5999. doi: 10.1145/2897356.2897359. url:
http://doi.acm.org/10.1145/2897356.2897359.

[32] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. “Kieker: A Framework
for Application Performance Monitoring and Dynamic Software Analysis”. In: Pro-
ceedings of the 3rd ACM/SPEC International Conference on Performance Engineering
(ICPE 2012). Boston, Massachusetts, USA, April 22–25, 2012: ACM, Apr. 2012, pp. 247–
248. isbn: 978-1-4503-1202-8.

[33] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. “Kieker: A Framework
for Application Performance Monitoring and Dynamic Software Analysis”. In: Pro-
ceedings of the 3rd joint ACM/SPEC International Conference on Performance En-
gineering (ICPE 2012). ACM, Apr. 2012, pp. 247–248. url: http://eprints.uni-
kiel.de/14418/.

119

https://www.eclipse.org/Xtext/index.html
https://www.eclipse.org/Xtext/index.html
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
https://doi.org/10.1109/MASCOTS.2019.00042
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/10.1145/2897356.2897359
https://doi.org/https://doi.org/10.1016/j.jss.2020.110722
http://www.sciencedirect.com/science/article/pii/S016412122030159X
http://www.sciencedirect.com/science/article/pii/S016412122030159X
https://doi.org/10.1145/2897356.2897359
http://doi.acm.org/10.1145/2897356.2897359
http://eprints.uni-kiel.de/14418/
http://eprints.uni-kiel.de/14418/

Bibliography

[34] André van Hoorn et al. Continuous Monitoring of Software Services: Design and
Application of the Kieker Framework. Tech. rep. TR-0921. Department of Computer
Science, Kiel University, Germany, Nov. 2009, 27 pages.

[35] Jan-Philipp Jägers. “Iterative Performance Model Parameter Estimation Consider-
ing Parametric Dependencies”. Master Thesis. Karlsruher Institut für Technologie
Fakultät für Informatik, May 13, 2019.

[36] Frédéric Jouault and Ivan Kurtev. “Transforming Models with ATL”. In: Proceedings
of the 2005 International Conference on Satellite Events at the MoDELS. MoDELS’05.
Montego Bay, Jamaica: Springer-Verlag, 2005, pp. 128–138. isbn: 3540317805. doi:
10.1007/11663430_14. url: https://doi.org/10.1007/11663430_14.

[37] Reiner Jung, Robert Heinrich, and Eric Schmieders. “Model-driven Instrumentation
with Kieker and Palladio to Forecast Dynamic Applications”. In: Symposium on
Software Performance. CEUR Vol-1083, 2013, pp. 99–108.

[38] Alexander Keller and Heiko Ludwig. “The WSLA Framework: Specifying and Mon-
itoring Service Level Agreements for Web Services”. In: J. Netw. Syst. Manage.
11.1 (Mar. 2003), pp. 57–81. issn: 1064-7570. doi: 10.1023/A:1022445108617. url:
https://doi.org/10.1023/A:1022445108617.

[39] Jóakim von Kistowski et al. “TeaStore: A Micro-Service Reference Application for
Benchmarking, Modeling and Resource Management Research”. In: 2018 IEEE 26th
Int. Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). IEEE. 2018, pp. 223–236.

[40] Heiko Klare. “Designing a Change-Driven Language for Model Consistency Repair
Routines”. Master’s Thesis. Karlsruhe: Karlsruhe Institute of Technology (KIT), 2016.
doi: 10.5445/IR/1000080138. url: http://dx.doi.org/10.5445/IR/1000080138.

[41] “Kolmogorov–Smirnov Test”. In: The Concise Encyclopedia of Statistics. New York, NY:
Springer New York, 2008, pp. 283–287. isbn: 978-0-387-32833-1. doi: 10.1007/978-
0-387-32833-1_214. url: https://doi.org/10.1007/978-0-387-32833-1_214.

[42] Marco Konersmann. “Explicitly Integrated Architecture - An Approach for Integrat-
ing Software Architecture Model Information with Program Code”. en. PhD thesis.
May 2018. url: https://duepublico2.uni-due.de/receive/duepublico_mods_
00045949.

[43] Heiko Koziolek et al. “Evaluating Performance of Software Architecture Models with
the Palladio Component Model”. In: Model-Driven Software Development: Integrating
Quality Assurance. Ed. by Jörg Rech and Christian Bunse. IDEA Group Inc., Dec.
2008, pp. 95–118.

[44] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-centric Engineering
with Synchronized Heterogeneous Models”. In: Proceedings of the 1st Workshop on
View-Based, Aspect-Oriented and Orthographic Software Modelling. VAO ’13. Mont-
pellier, France: ACM, 2013, 5:1–5:6. isbn: 978-1-4503-2070-2. doi: 10.1145/2489861.
2489864. url: http://doi.acm.org/10.1145/2489861.2489864.

120

https://doi.org/10.1007/11663430_14
https://doi.org/10.1007/11663430_14
https://doi.org/10.1023/A:1022445108617
https://doi.org/10.1023/A:1022445108617
https://doi.org/10.5445/IR/1000080138
http://dx.doi.org/10.5445/IR/1000080138
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://duepublico2.uni-due.de/receive/duepublico_mods_00045949
https://duepublico2.uni-due.de/receive/duepublico_mods_00045949
https://doi.org/10.1145/2489861.2489864
https://doi.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864

Bibliography

[45] Max Emanuel Kramer. “Speci�cation Languages for Preserving Consistency between
Models of Di�erent Languages”. PhD thesis. Karlsruhe, Germany: Karlsruhe Institute
of Technology (KIT), 2017. 278 pp. doi: 10.5445/IR/1000069284. url: http://nbn-
resolving.org/urn:nbn:de:swb:90-692845.

[46] Max E. Kramer et al. Realizing Change-Driven Consistency for Component Code, Archi-
tectural Models, and Contracts in Vitruvius. Tech. rep. Karlsruhe: Karlsruhe Institute of
Technology, Department of Informatics, 2015. url: http://nbn-resolving.org/urn:
nbn:de:swb:90-456541.

[47] Max E. Kramer et al. Realizing Change-Driven Consistency for Component Code,
Architectural Models, and Contracts in Vitruvius. Tech. rep. 4. Karlsruher Institut für
Technologie (KIT), 2015. doi: 10.5445/IR/1000045654.

[48] Klaus Krogmann. “Reconstruction of Software Component Architectures and Be-
haviour Models using Static and Dynamic Analysis”. PhD thesis. 2012. 371 pp. isbn:
978-3-86644-804-9. doi: 10.5445/KSP/1000025617.

[49] Ivan Kurtev. “State of the Art of QVT: A Model Transformation Language Standard”.
In: Applications of Graph Transformations with Industrial Relevance. Ed. by Andy
Schürr, Manfred Nagl, and Albert Zündorf. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 377–393. isbn: 978-3-540-89020-1.

[50] Michael Langhammer. “Automated Coevolution of Source Code and Software Ar-
chitecture Models”. PhD thesis. Karlsruhe, Germany: Karlsruhe Institute of Tech-
nology (KIT), 2017. 259 pp. doi: 10 . 5445 / IR / 1000069366. url: http : / / nbn -
resolving.org/urn:nbn:de:swb:90-693666.

[51] Michael Langhammer et al. “Automated Extraction of Rich Software Models from
Limited System Information”. In: 2016 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA), Venice, Italy, 5–8 April 2016. IEEE, Piscataway (NJ), 2016,
pp. 99–108. isbn: 978-1-5090-2131-4. doi: 10.1109/WICSA.2016.35.

[52] Longjie Li et al. “A Linear Approximate Algorithm for Earth Mover’s Distance with
Thresholded Ground Distance”. In: Mathematical Problems in Engineering 2014 (Mar.
2014), pp. 1–9. doi: 10.1155/2014/406358.

[53] Cristiano Ma�ort et al. “ArchLint: Uma Ferramenta para Detecção de Violações
Arquiteturais usando Histórico de Versões”. In: Congresso Brasileiro de Software:
Teoria e Prática (CBSoft), Sessão de Ferramentas. submitted. 2013, pp. 1–6.

[54] Szymon Majewski et al. “The Wasserstein Distance as a Dissimilarity Measure for
Mass Spectra with Application to Spectral Deconvolution”. In: 18th Int. Workshop on
Algorithms in Bioinformatics (WABI 2018). Ed. by Laxmi Parida and Esko Ukkonen.
Vol. 113. Leibniz Int. Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 25:1–25:21. isbn: 978-3-95977-
082-8.

121

https://doi.org/10.5445/IR/1000069284
http://nbn-resolving.org/urn:nbn:de:swb:90-692845
http://nbn-resolving.org/urn:nbn:de:swb:90-692845
http://nbn-resolving.org/urn:nbn:de:swb:90-456541
http://nbn-resolving.org/urn:nbn:de:swb:90-456541
https://doi.org/10.5445/IR/1000045654
https://doi.org/10.5445/KSP/1000025617
https://doi.org/10.5445/IR/1000069366
http://nbn-resolving.org/urn:nbn:de:swb:90-693666
http://nbn-resolving.org/urn:nbn:de:swb:90-693666
https://doi.org/10.1109/WICSA.2016.35
https://doi.org/10.1155/2014/406358

Bibliography

[55] Manar Mazkatli and Anne Koziolek. “Continuous Integration of Performance Model”.
In: Proc. of the 4th International Workshop on Quality-Aware DevOps in Companion of
the 2018 ACM/SPEC International Conference on Performance Engineering. ICPE ’18.
Berlin, Germany: ACM, 2018, pp. 153–158. isbn: 978-1-4503-5629-9. doi: 10.1145/
3185768.3186285. url: http://doi.acm.org/10.1145/3185768.3186285.

[56] M. Mazkatli et al. “Incremental calibration of architectural performance models
with parametric dependencies”. In: IEEE 17th International Conference on Software
Architecture (ICSA 2020); Salvador, Brazil, November 2-6, 2020. 17th International
Conference on Software Architecture. ICSA 2020 (Salvador da Bahia, Brasilien,
Nov. 2–6, 2020). IEEE Computer Society, Los Alamitos, 2020, pp. 23–34. isbn: 978-1-
7281-4659-1. doi: 10.1109/ICSA47634.2020.00011.

[57] Johannes Meier and Andreas Winter. “Model Consistency ensured by Metamodel
Integration”. In: 6th International Workshop on The Globalization of Modeling Lan-
guages (GEMOC), co-located with ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems (MODELS 2018). Ed. by Regina Hebig and
Thorsten Berger. Copenhagen: CEUR Proceedings of MODELS 2018 Workshops,
Oct. 2018, pp. 408–415.

[58] Kim Mens et al. “Co-evolving Code and Design with Intensional Views”. In: Comput.
Lang. Syst. Struct. 32.2-3 (July 2006), pp. 140–156. issn: 1477-8424. doi: 10.1016/j.
cl.2005.09.002. url: http://dx.doi.org/10.1016/j.cl.2005.09.002.

[59] David Monschein, Robert Heinrich, and Christoph Heger. “Diagnosis of Privacy and
Performance Problems in the Context of Mobile Applications”. In: Companion of
the 2018 ACM/SPEC International Conference on Performance Engineering. ICPE ’18.
Berlin, Germany: ACM, 2018, pp. 167–172. isbn: 978-1-4503-5629-9. doi: 10.1145/
3185768.3186283. url: http://doi.acm.org/10.1145/3185768.3186283.

[60] OMG. OMG Meta Object Facility (MOF) Core Speci�cation, Version 2.4.1. Object
Management Group, June 2013. url: http://www.omg.org/spec/MOF/2.4.1.

[61] Felipe Pezoa et al. “Foundations of JSON schema”. In: Proceedings of the 25th Interna-
tional Conference on World Wide Web. International World Wide Web Conferences
Steering Committee. 2016, pp. 263–273.

[62] R. Heinrich, E. Schmieders, R. Jung, K. Rostami, A. Metzger, W. Hasselbring, R.
Reussner, and K. Pohl. “Integrating run-time observations and design component
models for cloud system analysis”. In: 9th Int’l Workshop on Models@run.time (2014),
pp. 41–46.

[63] James Rumbaugh, Ivar Jacobson, and Grady Booch. Uni�ed Modeling Language Ref-
erence Manual, The (2nd Edition). Pearson Higher Education, 2004. isbn: 0321245628.

[64] Per Runeson et al. Case Study Research in Software Engineering: Guidelines and
Examples. 1st. Wiley Publishing, 2012. isbn: 1118104358.

[65] S. Herold et al. “CoCoME – the common component modeling example”. In: The
Common Component Modeling Example (2008), pp. 16–53.

122

https://doi.org/10.1145/3185768.3186285
https://doi.org/10.1145/3185768.3186285
http://doi.acm.org/10.1145/3185768.3186285
https://doi.org/10.1109/ICSA47634.2020.00011
https://doi.org/10.1016/j.cl.2005.09.002
https://doi.org/10.1016/j.cl.2005.09.002
http://dx.doi.org/10.1016/j.cl.2005.09.002
https://doi.org/10.1145/3185768.3186283
https://doi.org/10.1145/3185768.3186283
http://doi.acm.org/10.1145/3185768.3186283
http://www.omg.org/spec/MOF/2.4.1

Bibliography

[66] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Varia-
tions, PDEs, and Modeling. Progress in Nonlinear Di�erential Equations and Their
Applications. Springer International Publishing, 2015. isbn: 9783319208282. url:
https://books.google.de/books?id=UOHHCgAAQBAJ.

[67] Yves R. Schneider and Anne Koziolek. “Towards Reverse Engineering for Component-
Based Systems with Domain Knowledge of the Technologies Used”. In: Proceedings
of the 10th Symposium on Software Performance (SSP). Softwaretechnik Trends. 2019,
pp. 35–37.

[68] H. Stachowiak. Allgemeine Modelltheorie. Springer, 1973. isbn: 9783211811061. url:
https://books.google.de/books?id=DK-EAAAAIAAJ.

[69] Thomas Stahl et al. Modellgetriebene Softwareentwicklung: Techniken, Engineering,
Management. 2nd ed. Heidelberg: dpunkt, 2007. isbn: 978-3-89864-448-8.

[70] David Steinberg et al. EMF: Eclipse Modeling Framework 2.0. 2nd. Addison-Wesley
Professional, 2009. isbn: 0321331885.

[71] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. 1st.
Cambridge, MA, USA: MIT Press, 1998. isbn: 0262193981.

[72] Michael Szvetits and Uwe Zdun. “Systematic Literature Review of the Objectives,
Techniques, Kinds, and Architectures of Models at Runtime”. In: Softw. Syst. Model.
15.1 (Feb. 2016), pp. 31–69. issn: 1619-1366. doi: 10.1007/s10270-013-0394-9. url:
http://dx.doi.org/10.1007/s10270-013-0394-9.

[73] Raja Vallée-Rai et al. “Soot: A Java Bytecode Optimization Framework”. In: CASCON
First Decade High Impact Papers. CASCON ’10. Toronto, Ontario, Canada: IBM Corp.,
2010, pp. 214–224. doi: 10.1145/1925805.1925818. url: https://doi.org/10.
1145/1925805.1925818.

[74] Michael Weiss. “XML Metadata Interchange”. In: Encyclopedia of Database Systems.
Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA: Springer US, 2009, pp. 3597–
3597. isbn: 978-0-387-39940-9. doi: 10 . 1007 / 978 - 0 - 387 - 39940 - 9 _ 902. url:
https://doi.org/10.1007/978-0-387-39940-9_902.

[75] Yun Xu and Royston Goodacre. “On Splitting Training and Validation Set: A Compar-
ative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating
the Generalization Performance of Supervised Learning”. In: Journal of Analysis
and Testing 2.3 (July 2018), pp. 249–262. issn: 2509-4696. doi: 10.1007/s41664-018-
0068-2. url: https://doi.org/10.1007/s41664-018-0068-2.

123

https://books.google.de/books?id=UOHHCgAAQBAJ
https://books.google.de/books?id=DK-EAAAAIAAJ
https://doi.org/10.1007/s10270-013-0394-9
http://dx.doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1007/978-0-387-39940-9_902
https://doi.org/10.1007/978-0-387-39940-9_902
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1007/s41664-018-0068-2

A. Appendix

A.1. SystemModel Derivation at Runtime

Algorithm 3 System Model extraction at run-time using a Service-Call-Graph
Input: Repository Model (REPO), System Model (SYS), Allocation Model (ALLOC), Re-

source Environment Model (ENV), Correspondence Model (CM), Service Call Traces
(SCTS)

Output: Updated PCM System Model
1: createdAssemblyMappinд← emptyMap()
2: for all sct ∈ SCTS do
3: scд← createServiceCallGraph(sct)
4: entryPoint ← дetEntryNode(scд)
5: processNode(entryPoint)
6: end for
7: updateExposedRoles()
8: removeUnusedAssemblys()
9:

10: function processNode(node)
11: for all outдoinдEdдe ∈ node .outдoinдEdдes do
12: f romAssembly ← дetCorrespondinдAssembly(outдoinдEdдe . f rom)
13: toAssembly ← дetCorrespondinдAssembly(outдoinдEdдe .to)
14: provRole ← дetProvidedRole(toAssembly,outдoinдEdдe .to.service .inter f ace)
15: reqRole ← дetRequiredRole(f romAssembly,outдoinдEdдe . f rom.service .inter f ace)
16: if isNew(f romAssembly) & isNew(toAssembly) then
17: SYS .createConnector (f romAssembly, reqRole, toAssembly,provRole)
18: else if isNew(f romAssembly) or isNew(toAssembly) then
19: if isNew(f romAssembly) then
20: oldConnector ← SYS .дetConnector (toAssembly,provRole))
21: else if isNew(toAssembly) then
22: oldConnector ← SYS .дetConnector (f romAssembly, reqRole))
23: end if
24: SYS .deleteConnector (oldConnector)
25: SYS .createConnector (f romAssembly, reqRole, toAssembly,provRole)
26: end if
27: processNode(outgoingEdge.to) . start recursion
28: end for
29: end function

125

A. Appendix

30: function getCorrespondingAssembly(service, container)
31: for all ac ∈ ALLOC .allocationContexts do
32: if ac .container = container & ac .assembly.component = service .component

then
33: . according to the assumptions this can only occur once in the for-loop
34: return ac .assembly
35: end if
36: end for
37: if createdAssemblyMappinд.containsKey([service, container]) then
38: return createdAssemblyMappinд.дet([service, container])
39: else
40: nass ← createAssembly(service .component)
41: ALLOC .createAllocationContext(nass, container)
42: createdAssemblyMappinд.put([service, container],nass)
43: end if
44: end function
45:
46: function updateExposedRoles
47: outerRoles ← SYS .providedRoles
48: innerRoles ← дetOpenProvidedRoles(SYS)
49: for all outerRole ∈ outerRoles do
50: matchinдRoles ← дetMatchinдRoles(outerRole, innerRoles)
51: for allmatchinдRole ∈matchinдRoles do
52: if isNew(matchinдRole .assembly) then
53: oldDeleдation ← дetDeleдationFor (outerRole)
54: SYS .removeDeleдation(oldDeleдation)
55: SYS .createDeleдation(outerRole,matchinдRole)
56: end if
57: end for
58: end for
59: end function
60:
61: function removeUnusedAssemblys
62: unusedAssemblys ← дetUnreachableAssemblys(SYS)
63: for all unreachable ∈ unusedAssemblys do
64: markAsUnreachable(unreachable)
65: if shouldDelete(unreachable) then
66: ALLOC .removeAllocation(unreachable)
67: SYS .removeAssembly(unreachable)
68: end if
69: end for
70: end function

126

A.2. Change Scenarios of Experiment 3

A.2. Change Scenarios of Experiment 3

ID Type Concrete Change
#1 Migration Migration of component Registry from container C6

to C2
#2 Deallocation Deallocation of container C6
#3 Migration Migration of component WebUI from container C1 to

C3
#4 Behavior Change Change usage behavior
#5 Allocation Allocation of container C7
#6 Deallocation Deallocation of container C7
#7 Migration Migration of component Registry from container C2

to C5
#8 Behavior Change Change usage behavior
#9 Replication Replication of component Recommender

(Recommender#2)
#10 Allocation Allocation of container C8
#11 System Composition Change of recommender implementation to Order

Based
#12 Replication Replication of component Auth (Auth#2)
#13 Workload Change Change workload to 30 concurrent users
#14 Allocation Allocation of container C9
#15 System Composition Change of recommender implementation to

Preprocessed Slope One
#16 Migration Migration of component WebUI from container C3 to

C2
...
#27 Workload Change Change workload to 40 concurrent users
#28 System Composition Change of recommender implementation to

Popularity Based
#29 Behavior Change Change usage behavior
#30 Allocation Allocation of container C10
#31 Dereplication Dereplication of component Auth#2
#32 System Composition Change of recommender implementation to Order

Based
#33 Dereplication Dereplication of component Recommender#2
#34 System Composition Change of recommender implementation to

Preprocessed Slope One
#35 Allocation Allocation of container C11
...

Table A.1.: Truncated example of an exemplary set of change scenarios used for Experiment
3 of the evaluation

127

	Abstract
	Zusammenfassung
	Introduction
	Goal of the Thesis
	Structure of the Thesis

	Foundations
	Model-Driven Software Development
	Metamodels
	Eclipse Modeling Framework

	Palladio Component Model
	Vitruvius
	Application Monitoring
	Coevolution of Source Code Behaviour and Architectural Elements
	iObserve
	CIPM Approach
	Monitoring
	Incremental Calibration
	Self-Validation

	Objectives and Boundaries
	Objectives
	Terminology
	Scope and Usage Scenarios
	Assumptions and Limitations
	Limitations
	Assumptions

	Approach
	Overview
	Running Example
	VSUM Extensions
	Monitoring
	Instrumentation Metamodel Extension
	Monitoring Record Types Extension
	Instrumentation Process
	Request Tracing

	Service-Call-Graph (SCG)
	Design-Time
	Overview
	System Composition Derivation

	Run-Time
	Overview
	Monitoring Data Collector
	PCM Simulator
	Validation Feedback Loop
	Runtime Environment Model (REM)

	Transformation Pipeline
	Overview
	Preprocessing
	Resource Environment Update
	System Compositon Update
	Repository and Usage Model Update
	Finalization

	Evaluation
	Overview
	Evaluation Objectives
	Goal Question Metric (GQM) Plan
	Evaluation Metrics
	Model Conformity
	Distribution Comparison

	Evaluation Setup and Procedure
	Evaluation Environments
	CoCoME
	TeaStore

	Model Accuracy
	Experiment 1 (E1)
	Experiment 2 (E2)
	Experiment 3 (E3)

	Transformation Pipeline Performance
	CoCoME
	TeaStore
	Summary

	Scalability of the transformations
	Repository Model Transformation
	Resource Environment Transformation
	System Model and Allocation Model Transformation
	Usage Model Transformation

	Evaluation Summary
	Threats to validity

	Related Work
	Consistency Preservation of Architectural Models and Source Code
	View-based Consistency

	Future Work
	Conclusion
	Bibliography
	Appendix
	System Model Derivation at Runtime
	Change Scenarios of Experiment 3

