2,180 research outputs found

    Integrating shotgun proteomics and mRNA expression data to improve protein identification

    Get PDF
    Motivation: Tandem mass spectrometry (MS/MS) offers fast and reliable characterization of complex protein mixtures, but suffers from low sensitivity in protein identification. In a typical shotgun proteomics experiment, it is assumed that all proteins are equally likely to be present. However, there is often other information available, e.g. the probability of a protein's presence is likely to correlate with its mRNA concentration

    Bacterial riboproteogenomics : the era of N-terminal proteoform existence revealed

    Get PDF
    With the rapid increase in the number of sequenced prokaryotic genomes, relying on automated gene annotation became a necessity. Multiple lines of evidence, however, suggest that current bacterial genome annotations may contain inconsistencies and are incomplete, even for so-called well-annotated genomes. We here discuss underexplored sources of protein diversity and new methodologies for high-throughput genome re-annotation. The expression of multiple molecular forms of proteins (proteoforms) from a single gene, particularly driven by alternative translation initiation, is gaining interest as a prominent contributor to bacterial protein diversity. In consequence, riboproteogenomic pipelines were proposed to comprehensively capture proteoform expression in prokaryotes by the complementary use of (positional) proteomics and the direct readout of translated genomic regions using ribosome profiling. To complement these discoveries, tailored strategies are required for the functional characterization of newly discovered bacterial proteoforms

    Improvement of peptide identification with considering the abundance of mRNA and peptide

    Get PDF
    Scripts used for data analysis in this study. (DOCX 35ƂĀ kb

    Alternative translation initiation unraveled by N-terminomics and ribosome profiling

    Get PDF

    Different approaches to measuring gene expression and DNA methylation and their application in cancer research

    Get PDF

    Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: improving coverage and validity of -omics findings

    Get PDF
    Characterization of disease-associated proteins improves our understanding of disease pathophysiology. Obtaining a comprehensive coverage of the proteome is challenging, mainly due to limited statistical power and an inability to verify hundreds of putative biomarkers. In an effort to address these issues, we investigated the value of parallel analysis of compartment-specific proteomes with an assessment of findings by cross-strategy and cross-omics (proteomics-transcriptomics) agreement. The validity of the individual datasets and of a ā€œverifiedā€ dataset based on crossstrategy/omics agreement was defined following their comparison with published literature. The proteomic analysis of the cell extract, Endoplasmic Reticulum/Golgi apparatus and conditioned medium of T24 vs. its metastatic subclone T24M bladder cancer cells allowed the identification of 253, 217 and 256 significant changes, respectively. Integration of these findings with transcriptomics resulted in 253 ā€œverifiedā€ proteins based on the agreement of at least 2 strategies. This approach revealed findings of higher validity, as supported by a higher level of agreement in the literature data than those of individual datasets. As an example, the coverage and shortlisting of targets in the IL-8 signalling pathway are discussed. Collectively, an integrative analysis appears a safer way to evaluate -omics datasets and ultimately generate models from valid observations

    Genome-scale Precision Proteomics Identifies Cancer Signaling Networks and Therapeutic Vulnerabilities

    Get PDF
    Mass spectrometry (MS) based-proteomics technology has been emerging as an indispensable tool for biomedical research. But the highly diverse physical and chemical properties of the protein building blocks and the dramatic human proteome complexity largely limited proteomic profiling depth. Moreover, there was a lack of high-throughput quantitative strategies that were both precise and parallel to in-depth proteomic techniques. To solve these grand challenges, a high resolution liquid chromatography (LC) system that coupled with an advanced mass spectrometer was developed to allow genome-scale human proteome identification. Using the combination of pre-MS peptide fractionation, MS2-based interference detection and post-MS computational interference correction, we enabled precise proteome quantification with isobaric labeling. We then applied these advanced proteomics tools for cancer proteome analyses on high grade gliomas (HGG) and rhabdomyosarcomas (RMS). Using systems biology approaches, we demonstrated that these newly developed proteomic analysis pipelines are able to (i) define human proteotypes that link oncogenotypes to cancer phenotypes in HGG and to (ii) identify therapeutic vulnerabilities in RMS. Development of high resolution liquid chromatography is essential for improving the sensitivity and throughput of mass spectrometry-based proteomics to genome-scale. Here we present systematic optimization of a long gradient LC-MS/MS platform to enhance protein identification from a complex mixture. The platform employed an in-house fabricated, reverse phase long column (100 Āµm x 150 cm, 5 Āµm C18 beads) coupled with Q Exactive MS. The column was capable of achieving a peak capacity of approximately 700 in a 720 min gradient of 10-45% acetonitrile. The optimal loading amount was about 6 micrograms of peptides, although the column allowed loading as many as 20 micrograms. Gas phase fractionation of peptide ions further increased the number of peptides identified by ~10%. Moreover, the combination of basic pH LC pre-fractionation with the long gradient LC-MS/MS platform enabled the identification of 96,127 peptides and 10,544 proteins at 1% protein false discovery rate in a postmortem brain sample of Alzheimerā€™s disease. As deep RNA sequencing of the same specimen suggested that ~16,000 genes were expressed, current analysis covered more than 60% of the expressed proteome. Isobaric labeling quantification by mass spectrometry has emerged as a powerful technology for multiplexed large-scale protein profiling, but measurement accuracy in complex mixtures is confounded by the interference from co-isolated ions, resulting in ratio compression. Here we report that the ratio compression can be essentially resolved by the combination of pre-MS peptide fractionation, MS2-based interference detection and post-MS computational interference correction. To recapitulate the complexity of biological samples, we pooled tandem mass tag (TMT) labeled E. coli peptides at 1 : 3 : 10 ratios, and added in ~20-fold more rat peptides as background, followed by the analysis of two dimensional liquid chromatography-MS/MS. Systematic investigation indicated that the quantitative interference was impacted by LC fractionation depth, MS isolation window and peptide loading amount. Exhaustive fractionation (320 x 4 h) can nearly eliminate the interference and achieve results comparable to the MS3-based method. Importantly, the interference in MS2 scans can be estimated by the intensity of contaminated y1 product ions, and we thus developed an algorithm to correct reporter ion ratios of tryptic peptides. Our data indicated that intermediate fractionation (40 x 2 h) and y1 ion-based correction allowed accurate and deep TMT protein profiling, which represents a straightforward and affordable strategy in isobaric labeling proteomics High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma mouse models driven by mutated receptor tyrosine kinase (RTK) oncogenes, platelet-derived growth factor receptor alpha (PDGFRA) and neurotrophic receptor tyrosine kinase 1 (NTRK1), analyzing 13,860 proteins (11,941 genes) and 30,431 phosphosites by mass spectrometry. Systems biology approaches identified numerous functional modules and master regulators, including 41 kinases and 26 transcription factors. Pathway activity computation and mouse survival curves indicate the NTRK1 mutation induces a higher activation of AKT targets, drives a positive feedback loop to up-regulate multiple other RTKs, and shows higher oncogenic potency than the PDGFRA mutation. Further integration of the mouse data with human HGG transcriptome data determines shared regulators of invasion and stemness. Thus, multi-omics integrative profiling is a powerful avenue to characterize oncogenic activity. There is growing emphasis on personalizing cancer therapy based on somatic mutations identified in patientā€™s tumors. Among pediatric solid tumors, RAS pathway mutations in rhabdomyosarcoma are the most common potentially actionable lesions. Recent success targeting CDK4/6 and MEK in RAS mutant adult cancers led our collaborator Dr. Dyerā€™s group to test this approach for rhabdomyosarcoma. They achieved synergistic killing of RAS mutant rhabdomyosarcoma tumor cells by combining MEK and CDK4/6 inhibitors in culture but failed to achieve efficacy in vivo using orthotopic patient derived xenografts (O-PDXs). To determine how rhabdomyosarcomas evade targeting of CDK4/6 and MEK, we collaborated to perform large-scale deep proteomic, phosphoproteomic, and epigenomic profiling of RMS tumors. Integrative analysis of these omics data detected that RMS tumor cells rapidly compensate and overcome CDK4/6 and MEK combination therapy through 6 myogenic signal transduction pathways including WNT, HH, BMP, Adenyl Cyclase, P38/MAPK and PI3K. While it is not feasible to target each of these signal transduction pathways simultaneously in RMS, we discovered that they require the HSP90 chaperone to sustain the complex developmental signal transduction milieu. We achieved specific and synergistic killing of RMS cells using sub-therapeutic concentrations of an HSP90 inhibitor (ganetespib) in combination with conventional chemotherapy used for recurrent RMS. These effects were seen in the most aggressive recurrent RMS orthotopic patient derived xenografts irrespective of RAS pathway perturbations, histologic or molecular classification. Thus, multi-omics integrative cancer profiling using our newly developed tools is powerful to identify core signaling transduction networks, tumor vulnerability (master regulators) for novel cancer therapy

    Tissue Proteomes: Quantitative Mass Spectrometry of Murine Liver and Ovarian Endometrioma

    Get PDF
    A human genome contains more than 20 000 protein-encoding genes. A human proteome, instead, has been estimated to be much more complex and dynamic. The most powerful tool to study proteins today is mass spectrometry (MS). MS based proteomics is based on the measurement of the masses of charged peptide ions in a gas-phase. The peptide amino acid sequence can be deduced, and matching proteins can be found, using software to correlate MS-data with sequence database information. Quantitative proteomics allow the estimation of the absolute or relative abundance of a certain protein in a sample. The label-free quantification methods use the intrinsic MS-peptide signals in the calculation of the quantitative values enabling the comparison of peptide signals from numerous patient samples. In this work, a quantitative MS methodology was established to study aromatase overexpressing (AROM+) male mouse liver and ovarian endometriosis tissue samples. The workflow of label-free quantitative proteomics was optimized in terms of sensitivity and robustness, allowing the quantification of 1500 proteins with a low coefficient of variance in both sample types. Additionally, five statistical methods were evaluated for the use with label-free quantitative proteomics data. The proteome data was integrated with other omics datasets, such as mRNA microarray and metabolite data sets. As a result, an altered lipid metabolism in liver was discovered in male AROM+ mice. The results suggest a reduced beta oxidation of long chain phospholipids in the liver and increased levels of pro-inflammatory fatty acids in the circulation in these mice. Conversely, in the endometriosis tissues, a set of proteins highly specific for ovarian endometrioma were discovered, many of which were under the regulation of the growth factor TGF-Ī²1. This finding supports subsequent biomarker verification in a larger number of endometriosis patient samples.Siirretty Doriast

    Proteogenomic characterization of human colon and rectal cancer

    Get PDF
    Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA ā€˜microsatellite instability/CpG island methylation phenotypeā€™ transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.National Cancer Institute (U.S.). Clinical Proteomic Tumor Analysis Consortium (Award U24CA159988)National Cancer Institute (U.S.). Clinical Proteomic Tumor Analysis Consortium (Award U24CA160035)National Cancer Institute (U.S.). Clinical Proteomic Tumor Analysis Consortium (Award U24CA160034)National Cancer Institute (U.S.). Specialized Program of Research Excellence (Award P50CA095103)National Cancer Institute (U.S.) (Cancer Center Support Grant P30CA068485)National Institutes of Health (U.S.) (Grant GM088822)Leidos Biomedical Research, Inc. (Contract 13XS029
    • ā€¦
    corecore