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ABSTRACT 
 
 
Mass spectrometry (MS) based-proteomics technology has been emerging as an 
indispensable tool for biomedical research. But the highly diverse physical and chemical 
properties of the protein building blocks and the dramatic human proteome complexity 
largely limited proteomic profiling depth. Moreover, there was a lack of high-throughput 
quantitative strategies that were both precise and parallel to in-depth proteomic 
techniques. To solve these grand challenges, a high resolution liquid chromatography 
(LC) system that coupled with an advanced mass spectrometer was developed to allow 
genome-scale human proteome identification. Using the combination of pre-MS peptide 
fractionation, MS2-based interference detection and post-MS computational interference 
correction, we enabled precise proteome quantification with isobaric labeling. We then 
applied these advanced proteomics tools for cancer proteome analyses on high grade 
gliomas (HGG) and rhabdomyosarcomas (RMS). Using systems biology approaches, we 
demonstrated that these newly developed proteomic analysis pipelines are able to (i) 
define human proteotypes that link oncogenotypes to cancer phenotypes in HGG and to 
(ii) identify therapeutic vulnerabilities in RMS. 
 
Development of high resolution liquid chromatography is essential for improving the 
sensitivity and throughput of mass spectrometry-based proteomics to genome-scale. Here 
we present systematic optimization of a long gradient LC-MS/MS platform to enhance 
protein identification from a complex mixture. The platform employed an in-house 
fabricated, reverse phase long column (100 μm x 150 cm, 5 μm C18 beads) coupled with 
Q Exactive MS. The column was capable of achieving a peak capacity of approximately 
700 in a 720 min gradient of 10-45% acetonitrile. The optimal loading amount was about 
6 micrograms of peptides, although the column allowed loading as many as 20 
micrograms. Gas phase fractionation of peptide ions further increased the number of 
peptides identified by ~10%. Moreover, the combination of basic pH LC pre-
fractionation with the long gradient LC-MS/MS platform enabled the identification of 
96,127 peptides and 10,544 proteins at 1% protein false discovery rate in a postmortem 
brain sample of Alzheimer’s disease. As deep RNA sequencing of the same specimen 
suggested that ~16,000 genes were expressed, current analysis covered more than 60% of 
the expressed proteome.  
 
Isobaric labeling quantification by mass spectrometry has emerged as a powerful 
technology for multiplexed large-scale protein profiling, but measurement accuracy in 
complex mixtures is confounded by the interference from co-isolated ions, resulting in 
ratio compression. Here we report that the ratio compression can be essentially resolved 
by the combination of pre-MS peptide fractionation, MS2-based interference detection 
and post-MS computational interference correction. To recapitulate the complexity of 
biological samples, we pooled tandem mass tag (TMT) labeled E. coli peptides at 1 : 3 : 
10 ratios, and added in ~20-fold more rat peptides as background, followed by the 
analysis of two dimensional liquid chromatography-MS/MS. Systematic investigation 
indicated that the quantitative interference was impacted by LC fractionation depth, MS 
isolation window and peptide loading amount. Exhaustive fractionation (320 x 4 h) can 
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nearly eliminate the interference and achieve results comparable to the MS3-based 
method. Importantly, the interference in MS2 scans can be estimated by the intensity of 
contaminated y1 product ions, and we thus developed an algorithm to correct reporter ion 
ratios of tryptic peptides. Our data indicated that intermediate fractionation (40 x 2 h) and 
y1 ion-based correction allowed accurate and deep TMT protein profiling, which 
represents a straightforward and affordable strategy in isobaric labeling proteomics 
 
High throughput omics approaches provide an unprecedented opportunity for dissecting 
molecular mechanisms in cancer biology. Here we present deep profiling of whole 
proteome, phosphoproteome and transcriptome in two high-grade glioma mouse models 
driven by mutated receptor tyrosine kinase (RTK) oncogenes, platelet-derived growth 
factor receptor alpha (PDGFRA) and neurotrophic receptor tyrosine kinase 1 (NTRK1), 
analyzing 13,860 proteins (11,941 genes) and 30,431 phosphosites by mass spectrometry. 
Systems biology approaches identified numerous functional modules and master 
regulators, including 41 kinases and 26 transcription factors. Pathway activity 
computation and mouse survival curves indicate the NTRK1 mutation induces a higher 
activation of AKT targets, drives a positive feedback loop to up-regulate multiple other 
RTKs, and shows higher oncogenic potency than the PDGFRA mutation. Further 
integration of the mouse data with human HGG transcriptome data determines shared 
regulators of invasion and stemness. Thus, multi-omics integrative profiling is a powerful 
avenue to characterize oncogenic activity. 
 
There is growing emphasis on personalizing cancer therapy based on somatic mutations 
identified in patient’s tumors. Among pediatric solid tumors, RAS pathway mutations in 
rhabdomyosarcoma are the most common potentially actionable lesions. Recent success 
targeting CDK4/6 and MEK in RAS mutant adult cancers led our collaborator Dr. Dyer’s 
group to test this approach for rhabdomyosarcoma. They achieved synergistic killing of 
RAS mutant rhabdomyosarcoma tumor cells by combining MEK and CDK4/6 inhibitors 
in culture but failed to achieve efficacy in vivo using orthotopic patient derived 
xenografts (O-PDXs). To determine how rhabdomyosarcomas evade targeting of 
CDK4/6 and MEK, we collaborated to perform large-scale deep proteomic, 
phosphoproteomic, and epigenomic profiling of RMS tumors. Integrative analysis of 
these omics data detected that RMS tumor cells rapidly compensate and overcome 
CDK4/6 and MEK combination therapy through 6 myogenic signal transduction 
pathways including WNT, HH, BMP, Adenyl Cyclase, P38/MAPK and PI3K. While it is 
not feasible to target each of these signal transduction pathways simultaneously in RMS, 
we discovered that they require the HSP90 chaperone to sustain the complex 
developmental signal transduction milieu. We achieved specific and synergistic killing of 
RMS cells using sub-therapeutic concentrations of an HSP90 inhibitor (ganetespib) in 
combination with conventional chemotherapy used for recurrent RMS. These effects 
were seen in the most aggressive recurrent RMS orthotopic patient derived xenografts 
irrespective of RAS pathway perturbations, histologic or molecular classification. Thus, 
multi-omics integrative cancer profiling using our newly developed tools is powerful to 
identify core signaling transduction networks, tumor vulnerability (master regulators) for 
novel cancer therapy. 
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CHAPTER 1.    INTRODUCTION 
 
 

Mass Spectrometry Based Proteomics 
 
 The era of whole genomic-sequencing has made ‘proteomics’ research possible. 
As most of biological functions are executed and transmitted through proteins, 
proteomics studies provide complementary knowledge to genomics, shedding new light 
on understanding biology and disease. Development of diverse technologies has allowed 
the exploration of different aspects of protein function and structure. Numerous 
proteomic methods encompassing protein microarray1, yeast two-hybrid assay2 and high-
throughput protein crystallization3 have made great impact on our understanding of 
protein structure, interaction, activity and function. Among these technologies, mass 
spectrometry has been emerging as a mainstream tool for analyzing protein production, 
modification and function in distinct biological systems4,5. 
  
  
Principles 
  
 The main purpose of mass spectrometry-based proteomics has been focusing on 
the systematic identification and characterization of protein sequences and protein 
posttranslational modifications and on the quantification of proteins in a biological 
system6. The most well-established proteomic platform relies on tandem mass 
spectrometry, a method also known as bottom-up proteomics6. During bottom-up 
proteomics analysis, proteins are first extracted from tissues or cells and then digested 
into peptides using proteinases such as trypsin. Peptides in samples are then separated by 
different peptide separation strategies, often by liquid chromatography and then are 
ionized and loaded on a mass spectrometer, where peptide ion spectra are scanned and 
further fragmented into peptide fragment ions. Fragment ion spectra are then assigned to 
peptide sequences to infer proteins. Fragment ion spectra can also be used to identify 
amino acids with modifications and to localize the modification sites. Numerous tools 
and methods have been developed for each step of the procedure6, these including sample 
preparation, fractionation strategy, MS settings, quantification and data analysis. 
Individual options can be combined into distinct MS workflows from the numerous 
available choices for each procedure step to address different types of biological 
questions. The most widely used approach is known as shotgun proteomics or discovery 
proteomics. During shotgun proteomics, precursor ions are scanned and selected 
automatically via a strategy known as data-dependent analysis. There, top abundant 
precursor peptides are selected, collected and further broken into fragment peptide ions 
sequentially. This allows identification of a vast amount of proteins and also enables 
quantitative comparison between samples, either with stable isotope labeling, isobaric 
labelling or without labeling, an approach referred to as label free quantification.  
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Towards genome-scale proteomic profiling 
  

The central dogma of molecular biology (i.e. the flow of information from DNA 
to RNA to proteins) is fundamental in biological studies. Proteomic analysis is 
indispensable for understanding how cells function, however, collecting information at 
the global proteome level has proven to be challenging compared to data collection at the 
whole genome and transcriptome level7. One intrinsic limitation of proteomic analysis is 
the highly diverse physical and chemical properties of amino acids, the building blocks of 
proteins, in contrast to the linear array of genomic information7. Another inherent 
limitation of human proteome study concerns the dramatic proteome complexity and the 
large dynamic protein abundance range, which spans more than eight orders of 
magnitude in human tissues and cells7,8. MS technologies have enjoyed rapid 
development in the last decade; modern mass spectrometers are sensitive enough to 
detect the lowest abundant proteins present in human cells7,8. However, when a complex 
human proteome is loaded on a mass spectrometer, the signal of low abundant proteins 
can easily be buried in the dominant signals of highly abundant proteins9. Thus 
approaches to improve the separation capacity of high-performance liquid 
chromatography to reduce the sample complexity before MS analysis became a 
prerequisite for achieving genome-scale proteomic profiling. 
 
 
Towards accurate quantification with high-throughput 
 
 One central component beyond protein identification for proteomic analysis is 
quantification. MS-based proteomics can determine the relative change of proteins in two 
or more conditions, this is referred to as relative quantification. It can also study the 
absolute amount of each protein in a mixture sample, also known as absolute 
quantification. Often it is the relative changes of protein amounts upon a specific 
perturbation that are of more biological interest10. Traditionally, relative quantitative 
information can be obtained from a labelling free strategy. Labelling free quantifications 
based on spectral counting and /or intensity of detected peptides seem to be the easiest 
approaches to obtain quantitative information, however large variations can easily be 
introduced during sample handling. Moreover, it works in a sequential manner which 
shows much lower throughput compared to highly parallel genomics profiling. More 
recently, isobaric labeling methods, such as isobaric tags for relative and absolute 
quantitation (iTRAQ)11, tandem mass tags (TMT)12 and DiLeu isobaric tags13, are 
emerging as mainstream strategies for quantitative proteomic analysis largely due to the 
multiplexed capacity of processing up to 12 samples14. For example, isobaric labeling 
enables the analysis of hundreds of mammalian samples in tens of batches, detecting a 
total of more than 15K proteins (from 12K genes) and 60K phosphosites in mammalian 
samples15-17. Despite the advances of isobaric labeling, the method often suffers from 
high noise levels due to co-eluted interfering ions, leading to quantitative ratio 
compression that underestimates the difference, particularly in complex protein 
samples18-22. Thus strategies to eliminate this effect become essential for accurate 
quantification of high throughput proteomics data22. 
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Protein phosphorylation 
 
 Our understanding of the players in different signal transduction pathways has 
been rapidly accumulated in recent decades, largely via high-throughput approaches such 
as microarray analysis23. Many downstream transcriptional responses following diverse 
stimuli have been elucidated through these studies23. However, protein posttranslational 
modifications rather than transcriptional alterations have been demonstrated to mediate 
critical events in distinct cellular responses through controlling enzymatic activity, 
protein-protein interaction, protein confirmation and cellular localization23. It is estimated 
that protein phosphorylation, the most widely studied posttranslational modification, 
affects one-third of all proteins24. Unfortunately, only a small portion of total in vivo 
phosphorylation sites have been revealed so far. Traditionally, phosphorylation has been 
analyzed mainly by in vitro assays, such as protein chip array25. Similarly, synthetic 
peptides have been used as kinase substrates to explore consensus kinase motifs26. 
However, Kinases are in general much less specific in vitro than in vivo, necessitating 
additional approaches23. Therefore, the development of a global and quantitative strategy 
for elucidating phosphorylation events becomes essential for systematic understanding of 
cellular behaviors. 
 
 

Systems Proteomics in Cancer 
 
 
Cancer proteomics 
 
 Advances in genomic sequencing technologies in the last decade enable large-
scale genomic profiling of cancers. Comprehensive genomic landscapes have been 
generated for numerous types of cancers via genomic sequencing projects such as The 
Cancer Genome Atlas (TCGA) and The Pediatric Cancer Genome Project (PCGP), 
resulting in hundreds of cancer driver genes. Despite these extraordinary achievements, 
how these genomic alterations lead to deregulation of proteins, which result in cancers 
remains largely unclear. As genomic landscapes are accomplished for major cancer types 
today, large-scale proteomic profiling becomes essential for the next phase of cancer 
omics study, which is to decipher the oncogenesis processes for filling the gap between 
genotypes and phenotypes. 
 
 The quest to explore global protein changes in cancers started half a century ago. 
However, the large dynamic range of protein abundance, a plethora of protein isoforms, 
and paradigmatic sample and disease heterogeneity have been the grand challenges that 
largely limited the outcomes of early cancer proteomics studies27. Fortunately, recent 
advances in analytical techniques and strategies to de-complex the cancer proteome is 
making the genome-scale proteomic profiling for cancers possible6,7,10. The massive data 
that can be collected with the advanced proteomics workflows are expected to reveal the 
signaling networks downstream of cancer drivers, guiding the discovery of tumor 
vulnerability and new drug targets. Recent successes on large-scale cancer proteomics 
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projects28,29 demonstrate that, with the constant technique advancements, MS-based 
proteomics are ready to carry the torch to push cancer research forward. 
 
 
Integration of proteomics data with other omics 
 
 Traditionally, scientists solve biomedical problems based on reductionism or 
“divide and conquer”. That is, to learn a complex system by dividing it to simpler, 
smaller and hence more manageable units of the whole. This approach has been 
successful and will continue to be crucial for biomedical research30. However, it cannot 
deliver a comprehensive view of biological processes with complex disorders such as 
cancers. Meanwhile, High-dimensional biology (HDB), also refered to as the 
simultaneous analysis of changes in genome, transcriptome, proteome, or metabolome in 
a sample, has emerged as a powerful alternative paradigm. The main rationale for this 
approach is that omics data are complementary to each other. For example, multiple 
processes beyond transcript concentration (e.g. the spatial and temporal variations of 
mRNA levels, the availability of local resources for protein biosynthesis) strongly impact 
the relationship between protein amounts and their coding transcripts level31-34. As a 
result, the transcript levels by themselves are not adequate to accurately infer protein 
amounts in many scenarios35,36. Also, sequencing of DNA and RNA does not capture 
information on post transcriptional regulations including protein translation, protein 
degradation, posttranslational modifications (e.g. phosphorylation)37. Indeed, numerous 
protein functions including enzymatic activity, protein-protein interaction, protein 
confirmation and cellular localization23 are mediated by protein PTMs rather than protein 
expression alone. 
 
 As mentioned in the previous section, high-throughput, quantitative MS-based 
proteomics is becoming as powerful as other well established omics technologies. 
Collecting large-scale and high quality proteomics data has never been easier than today. 
Obviously, combination of proteomic with other omics data will provide the largest 
benefit for a systematic view of cancer cells. Indeed, as proteins are intrinsic carriers of 
biological functions, proteomic data provides an ideal scaffold for integrating 
multidimensional data10 to define the inter-relationships of all the components in cancers. 
 
 Numerous strategies to integrate multiple omics data are emerging in recent 
years28,29,38. However, when compared to the remarkable advancements of omics 
sequencing technologies, it is still left largely behind. Indeed, most biomedical 
researchers only utilize a small portion of large-scale omics data. As a result, the majority 
of information collected in omics data are wasted. With the rapid development of 
technologies and accumulation of big omics datasets, it is obvious that the lack of 
bioinformatics tools to make full use of the massive omics data will become the next 
bottleneck to limit the outcomes of biomedical research. For complex diseases with 
systematic reprogramming of genome and proteome such as cancers, it is essential to 
develop novel bioinformatics pipelines to prioritize master regulators and core signaling 
networks from thousands of passenger changes for illuminating the complex oncogenic 
processes and potential therapeutic vulnerabilities.  
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High-grade Glioma 
 
 HGGs are the most prevalent malignant tumors that develop in the central nervous 
system, and confer devastating mortality39,40. Histologically, gliomas display similarities 
to glial cells (e.g. astrocytes and oligodendrocytes) and can be classified to astrocytomas, 
oligodendrogliomas, oligoastrocytomas, etc. More than 50% of gliomas are grade IV 
astrocytoma (glioblastoma multiforme), one of the most aggressive human cancers41. 
Despite advances in treatment strategies including radiation, chemotherapy and surgery, 
the overall five year survival rate of glioblastoma multiforme remains < 5%, making 
glioma an urgent focus of cancer research. Significant efforts in glioma genome 
sequencing including the TGCA projects42,43 have already revealed comprehensive HGG 
genomic landscapes39,40,43-48, these include three core signaling pathways (i.e. the RTK 
pathway, the P53 pathway and the RB pathway) that are frequently activated in 
HGGs42,43. Genetic alterations in all three pathways are often presented in most of HGG 
tumors, promoting enhanced cell proliferation and survival while aiding tumor cells to 
escape apoptosis, senescence and cell-cycle checkpoints. Nevertheless, how genomic 
mutations in these core pathways lead to dysregulation of particular master regulators and 
specific pathways remains unclear. On the other hand, HGG proteomic and 
phosphoproteomic studies have extended our understanding of HGG signaling44,49. Yet, 
most of these attempts have used proteomic approaches of relatively shallow depth. 
There is essentially no deep HGG proteomic landscape available for the cancer research 
community. Therefore, comprehensive profiling of the HGG proteome becomes essential 
to define the global HGG proteotypes, filling the gap between genotypes and phenotypes.  
 
 Laboratory mice display extensive physiological and molecular similarities 
compared to human40. Dr. Suzanne Baker’s group reported a comprehensive genomic 
analysis on a mouse HGG model and unveiled an astounding similarity of gene copy 
number and molecular subtypes in HGG mouse models and those found in human HGGs. 
While the paradigmatic inter- and intratumoral heterogeneity of HGG largely confounded 
the power of surgical tumor samples to dissect the global proteome and signaling 
network49, HGG mouse models with a much clearer genomic background become 
valuable alternatives for deep proteomic profiling40. 
 
 

Rhabdomyosarcoma 
 
 Rhabdomyosarcoma (RMS) is a childhood solid tumor with molecular and 
cellular features of skeletal muscle. Approximately 75% of patients with localized disease 
are cured with conventional multimodal therapy but patients with recurrent or metastatic 
disease have overall survival rates of 17% and 30%, respectively50. Historically, RMS 
was divided into two histopathologic subtypes: embryonal rhabdomyosarcoma (ERMS), 
which accounts for about 60% of all RMS patients, and alveolar rhabdomyosarcoma 
(ARMS), which accounts for 25% of patients51. The majority of tumors classified as 
ARMS by histopathology, also have a translocation between the FOXO1 gene on 
chromosome 13q14 and either PAX3 on chromosome 2q35 or PAX7 on chromosome 
1p3652,53. However, a subset of ARMS tumors are translocation negative and have 
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molecular features more similar to ERMS despite their ARMS histopathologic 
classification54. This is important because patients with ERMS have a relatively good 
prognosis55,56 and many of the current clinical trials are focused on stratifying molecular 
subgroups (translocation positive and negative) rather than the ARMS/ERMS histologic 
subgroups.  
 
 Previous genomic characterization showed that the molecular differences between 
translocation positive and negative rhabdomyosarcomas extend beyond the FOXO1-
PAX3/7 translocation. Translocation negative ERMS tumors have a loss of 
heterozygosity at the 11p15 locus, a high rate of structural variations (SVs), copy number 
variations (CNVs) and single nucleotide variations (SNVs) leading to recurrent genetic 
lesions in oncogenes and tumor suppressor genes57,58. In contrast, translocation positive 
ARMS tumors have relatively few SVs, CNVs and SNVs and few if any recurrent 
mutations in cancer consensus genes57,58. The most commonly mutated genes in 
translocation negative ERMS are in the RAS pathway57,58. In some adult RAS mutant 
cancer types, targeting kinases in the RAS and PI3K pathways has shown promise in 
laboratory studies59-61. However, efforts to target the RAS pathway alone or in 
combination with PI3 kinase pathway inhibitors in RMS have been unsuccessful to 
date58,60,61. Moreover, it is not known if translocation positive ARMS tumors have a 
completely different molecular profile that requires a unique treatment approach or if 
they have the same fundamental vulnerabilities as translocation negative ERMS tumors. 
Another important consideration is disease recurrence. Previous analyses of clonal 
evolution in RMS patients demonstrated that rare clones of cells in the diagnostic tumor 
can survive and contribute to recurrent rhabdomyosarcoma. However, it is not known 
how tumor evolution impacts sensitivity to molecularly targeted therapy. 
 
 

Research Aims 
 
 
Aim 1: to develop a genome-scale proteomic analysis platform 
 
 Although significant progress has been achieved to identify the deep mammalian 
proteome7,62, there is no systematic report on the adjustment of parameters for ultra-long 
LC-MS/MS runs to optimize protein identification at a genome wide scale. To obtain an 
in-depth coverage of the mammalian proteome and provide a comprehensive genome-
scale proteomic analysis workflow, we determined to engineer a 150 cm LC column to 
couple with Q Exactive MS and further optimize key steps and systematically tune 
shotgun proteomics parameters in the LC-MS/MS platform, following our previous 
optimization work using a regular short column (75 μm x 12 cm)63. Finally, we will use 
the optimized LC/LC-MS/MS platform to process a human brain specimen and to 
examine the proteome profiling depth by comparing it to the transcriptome of the same 
sample. 
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Aim 2: to develop an accurate quantitative strategy by isobaric labelling and mass 
spectrometry for high-throughput genome-scale proteomic analysis 
  
 Quantitative proteomics has been an essential tool in biomedical research4,64 and 
shows high potential for clinical application65. Despite the advances of isobaric labeling, 
the method often suffers from high noise levels due to co-eluted interfering ions, leading 
to quantitative ratio compression that underestimates the difference, particularly in 
complex protein samples18-21. We seek to address the ratio compression issue by 
extensive high resolution fractionation and a novel y1 ion-based interference correction 
method. To mimic real biological samples, we will mix TMT-labeled E. coli proteins at 
known ratios, in the presence of a 20-fold excess amount of background peptides from rat 
proteins. The mix will be analyzed under multiple LC-MS/MS conditions by adjusting 
key parameters, including fraction number collected in the offline pre-fractionation, MS2 
isolation window, peptide loading amount and online RP fractionation depth (gradient 
length). We will also develop a computational method that uses the known E. coli protein 
ratios to estimate interference levels from rat proteins. Finally, we will try to eliminate 
the interference by pre-MS fractionation, optimization of MS parameters, and post-MS y1 
ion-based correction and introduce a general pipeline for accurate isobaric labeling 
quantification. 
 
 
Aim 3: to apply the techniques developed above to define the proteotypes to link the 
genotypes and phenotypes in HGG mouse models 
 
 A central gap in cancer biology concerns how oncogenes drive the 
reprogramming of molecular signaling networks to execute phenotypic changes28,29,38. 
Significant efforts in glioma sequencing have unveiled comprehensive genome-wide 
mutation landscapes39,40,43-48. These include mutations and/or amplifications of PDGFRA 
and fusion genes of the NTRK family of neurotrophin receptors identified in pediatric 
and adult HGG39,46,48,66,67. However, a complete understanding of how these genomic 
alterations lead to dysregulation of particular master regulators and specific pathways 
remains unclear. Here we seek to perform genome-scale proteomic and 
phosphoproteomic profiling on two HGG mouse models driven by PDGFRA mutations 
or NTRK fusions using pipelines developed above to first evaluate the strength of the 
novel pipeline. Following that we will use global proteomic data to identify functional 
modules and master signaling networks reprogrammed in HGGs, validate these 
discoveries through in vitro and in vivo experiments to further explore phenotype 
differences driven by these two genotypes. Finally, we will assess how the global 
proteotype can explain the phenotype differences driven by different genotypes.  
 
 
Aim 4: to develop a bioinformatics pipeline to prioritize master regulators in cancer 
through integrating multi-omics data 
 
 With the rapid development of technologies and accumulation of big omics 
datasets, there is a growing request for novel bioinformatics pipelines to handle these data 
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and to prioritize master regulators and core signaling networks from thousands of 
passenger changes for illuminating the complex oncogenic processes and potential 
therapeutic vulnerabilities. To address this, we seek to develop approaches to integrate 
proteome, phosphoproteome, and transcriptome data collected in Aim 3 with human 
HGG transcriptome and numerous publicly available databases to prioritize master 
regulators including kinases and transcription factors in cancers. Kinase activity will be 
inferred from phosphorylation of substrates using a machine learning approach. 
Transcription factor activity will be derived from target gene expression and will be 
validated by proteome and phosphoproteome data. We will further define a core kinase to 
transcription factor network in cancer by examining the expression patterns of master 
regulators in reported kinase to transcription factor relationships in databases. Finally we 
will perform cross-species analysis to match the changes prioritized in mouse omics data 
to corresponding human HGG data to search for consensus master regulators.  
 
 
Aim 5: to apply the techniques and bioinformatics tools developed above to identify 
therapeutic vulnerabilities in rhabdomyosarcoma 
 
 Recent success targeting CDK4/6 and MEK in RAS mutant adult cancers led us 
to test this approach for rhabdomyosarcoma68-71. We achieved synergistic killing of RAS 
mutant rhabdomyosarcoma tumor cells by combining MEK and CDK4/6 inhibitors in 
culture but failed to achieve efficacy in vivo using orthotopic patient derived xenografts 
(O-PDXs). In this section, we seek to apply the pipelines, methodologies and 
bioinformatics tools developed above to perform large-scale profiling on 
rhabdomyosarcoma (RMS) using orthotopic patient derived xenografts. A cohort consists 
of two subtypes of RMS (i.e. ERMS and ARMS), normal myoblasts and myotube will be 
profiled in 3 TMT batches (total 30 samples) to provide a deep proteomic and 
phosphoproteomic landscape for RMS. Through integrative analysis of genomic and 
epigenomic data, we aim to determine the pathways that enable the rhabdomyosarcoma 
cells to evade the targeting of CDK4/6 and MEK and to identify a therapeutic 
vulnerability in rhabdomyosarcoma. 
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CHAPTER 2.    DEVELOPMENT OF A TMT-LC/LC-MS/MS PLATFORM FOR 
GENOME-SCALE PROTEOMIC ANALYSIS WITH HIGH-THROUGHPUT 

AND ACCURATE QUANTIFICATION* 
 
 

A Genome-scale Proteomic Analysis Platform 
 
 
Introduction 
 
 In the post genomic era, next generation sequencing technology is now widely 
used to characterize the alterations of the genome and transcriptome in the context of 
human diseases72,73. Although gene expression can be analyzed by transcriptomic 
profiling, transcriptomic data do not always correlate well with protein expression in 
biological samples and often lack the information of protein posttranslational 
modifications. Thus, development of proteomics platforms for deep proteome coverage 
becomes an urgent task to provide systematic and comparable protein expression 
information complementary to DNA and RNA data. 
 
 Mass spectrometry (MS)-based shotgun proteomics is predominantly used for 
complex proteome analysis4,5,74. In a typical shotgun experiment, complex protein 
samples extracted from cells or tissues are digested with protease(s) and the resulting 
peptide mixtures are fractionated by organic gradient on HPLC columns followed by 
tandem mass spectrometry analysis. The MS/MS spectra are then searched against 
protein databases for the identification of proteins and posttranslational modifications. 
With the advent of high resolution MS and the improvement of LC performance, current 
platforms of shotgun proteomics can routinely identify thousands of proteins in 
mammalian cells in a single LC-MS/MS analysis. One of the key measurements of LC 
performance is the peak capacity that is defined as the number of peaks separated within 
a resolution of unity in a given LC gradient time75. Peak capacity is estimated to be 
proportional to the root square of LC column length and inversely proportional to the root 
square of LC particle size76. Several reports demonstrated the benefits of small particles 
(<2 μm) with ultra-high pressure solvent delivery (up to 70 000 psi)77-80. High values of 
peak capacities were obtained on these columns (i.e. 75 μm x 50 cm) depending on the 

                                                 
 
* Reprinted with permissions from ACS under the ACS AuthorChoice license, further 
permission requests should be directed to the ACS. Wang, H. et al. Systematic 
optimization of long gradient chromatography mass spectrometry for deep analysis of 
brain proteome. J. Proteome Res. 2015, 14 (2), pp 829–838. 
http://pubs.acs.org/doi/abs/10.1021%2Fpr500882h; 
Niu, M. et al. Extensive peptide fractionation and y1 ion-based interference detection 
enable accurate quantification by isobaric labeling and mass spectrometry. Analytical 
Chemistry, doi:10.1021/acs.analchem.6b04415 (2017). 
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04415 
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gradient length80-86. However, column heating and ultra-high system pressure (> 10,000 
psi) are usually required for running long columns packed with sub 2 μm beads,  
compromising the robustness of the system. Alternatively, when HPLC time is not a 
limiting factor, longer LC columns improve resolving power but with a higher 
backpressure. For instance, several reports have shown comparable peak capacity using 5 
μm C18 particles and up to a 1 meter long column within regular HPLC pressure 
limits87,88. When long LC was coupled with Q Exactive MS, it resulted in more than 
4,000 identified proteins in the human proteome under optimized conditions16,89. 
However, due to the large (>107) dynamic range of proteins in mammalian cells, 
additional pre-fractionation step(s) (e.g. SDS-PAGE, strong anion exchange (SAX), 
strong cation exchange (SCX), basic pH LC and isofocusing) were applied to reduce 
peptide complexity and deepen the mammalian proteomic analysis7,62,90-92. Further 
peptide separation was also achieved through gas phase fractionation (GPF) through MS1 
ion selection on mass spectrometer93,94. 
 
 To date, a few studies lead to the detection of more than 10,000 proteins in 
several human cancer cell lines using SAX fractionation and analysis on LTQ Orbitrap 
Velos MS and about a month of instrument time95,96. The Marto group identified 11,352 
mouse genes-derived proteins using LTQ XL MS and Triple TOF 5600 MS in 8 days 
from murine embryonic stem cells62. The Lehtio group reported the identification of 
13,078 human proteins and 10,637 mouse proteins from cancer cell lines using high 
resolution isofocusing fractionation and LTQ Orbitrap Velos MS with ~15 days of 
instrument time89,92. While we were preparing this manuscript, Mann’s group reported 
the identification of ~10,000 proteins on Q Exactive MS using 4 day instrument time and 
a long column coupled with UPLC system96. Most recently, drafts of the entire human 
proteome (identifications of ~18,000 gene products in varieties of human tissues and 
hematopoietic cells) were completed from ~2,000 LC-MS/MS runs using several months 
of MS instrument time by two research groups97,98. 
 
 Although significant progress has been achieved to identify the deep mammalian 
proteome, there is no systematic report on the adjustment of parameters for ultra-long 
LC-MS/MS runs to optimize protein identification at a genome wide scale. To obtain an 
in-depth coverage of the mammalian proteome, we determined to further optimize key 
steps in the LC-MS/MS platform, following our previous optimization work using a 
regular short column (75 μm x 12 cm)63. In this study, we described a step-wise analysis 
to tune shotgun proteomics parameters using an in-house manufactured 150 cm LC 
column coupled with Q Exactive MS. The optimization process consisted of more than 
30 LC-MS/MS runs of analyzing mammalian tissue (e.g. rat brain). Finally, we used the 
optimized LC/LC-MS/MS platform to process a human brain specimen of Alzheimer’s 
disease (AD) and identified more than ten thousand proteins, covering more than 60% of 
the expressed proteome. 
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Methods and materials 
 
 Construction of 100 μm × 150 cm analytical columns. Capillary column of 150 
cm in length and 100 m inner diameter (ID) was packed in house following the 
previously reported protocol with modifications88. This column consisted of two 
segments, namely, one 110 cm long blunt end capillary column and one 40 cm long 
capillary column with a 15 μm opening tip. To make the blunt end column, 100 μm ID 
fused silica tubing was dipped into the activated silicate solution (Next Advance Inc., 
NY) briefly followed by heating to 100oC on a heater plate for one min before the 
ejection of excess silicate solution. Then the frit was further heated for another hour at 
100oC and cut to 2 mm in length. The capillary tubing was washed with methanol 
thoroughly. The blunt end column was then packed a with slurry of Magic C18 AQ 200 
beads (5 μm) at a concentration of 30 mg/ml in methanol. Bed length of 110 cm was 
obtained after 6 h of continuous packing at 2,800 psi using a Pressure Injection Cell 
system (Next Advance Inc, NY). The second segment of the capillary column was 
packed similarly to 40 cm in length using Self-Pack PicoFrit column (New Objective, 15 
μm tip opening, 100 μm inner diameter, cat # PF360-100-N-5). Finally two columns 
were connected through a metal union with zero dead volume (Upchurch Scientific, NY). 
 
 Protein extraction and digestion from the rat brain and AD brain. Human 
tissues of prefrontal cortical regions were provided by the Brain and Body Donation 
Program at Banner Sun Health Research Institute. The AD case with a short post-mortem 
interval (< 3 h) was clinically and pathologically characterized in accordance with 
established criteria99. This study was approved by Banner Sun Health Research Institute. 
Adult rat brains were purchased from Pel Freez Biologicals, and rat brain peptides were 
prepared as previously described100. The cerebral cortex of AD brain was homogenized in 
100 μl of lysis buffer (0.1 M Tris, pH 8.5, 8 M urea, 0.15% sodium deoxycholate) at 4oC 
using 0.5 mm glass beads for 5 min in a Bullet Blender instrument (Next Advance 
Inc.)100,101. The entire cell lysate without clarification of the insoluble materials was 
digested with Lys-C (Wako, 200:1 by weight) at room temperature for half hour in the 
lysis buffer followed by trypsin digestion (Promega, 200:1 by weight) in 2 M urea, 0.1 M 
Tris-HCl , pH 8.5 at room temperature overnight. The peptides were then acidified with 
0.15% TFA, pre-cleared by centrifugation, desalted with Sep-Pak C18 SPE column 
(Waters), and eluted with 40% acetonitrile (ACN) plus 0.1%TFA. The eluent was dried 
and stored at -80 oC for further usage86. Protein quantification was carried out by short 
SDS-gel based staining and BCA method63. 
 
 Basic pH LC fractionation of peptides. The desalted peptides from AD brain 
were re-suspended in 10 mM ammonium formate pH 8 at a concentration of 10 mg/ml. 
Basic pH HPLC was performed on a 4.6 mm x 250 mm Xbridge C18 column (Waters, 
3.5 μm bead size) using an Agilent 1270 HPLC instrument. About 400 μg peptides were 
loaded on the column and HPLC gradient started at 90% solvent A (10 mM ammonium 
formate, pH 8.0) for 5 min and went up to 50% solvent B (90% acetoniltrile, 10 mM 
ammonium formate, pH 8.0) during a 50 min time period followed by a steep increase to 
90% B within 5 min at a flow rate of 0.4 ml/min. The eluted peptides were collected into 
60 fractions and every 6 fractions were combined into ten sub-fractions in a concatenated 
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pattern to ensure that each sub-fraction contained similar complexity of hydrophilic and 
hydrophobic peptides102-104. The sub-fractions were then dried and stored at -80oC for 
further analysis. 
 
 Protein identification by LC−MS/MS. Dried peptides were dissolved in 5% 
formic acid and 0.1% TFA. Peptides were loaded on a 100 μm x 150 cm column using 
nano ACQUITY UHPLC (Waters) system which was interfaced to a Q Exactive MS 
(Thermo Fisher Scientific) through a nanoelectrospray ion source105. Peptides were 
separated by a designed gradient as indicated (solvent A: 0.2% formic acid, and solvent 
B: 70% acetonitrile, 0.2% formic acid). The peak capacity at each gradient time was 
calculated using formula p = 1 + tg/w, where tg is the time of the gradient and w is the 
average peak width across entire LC runs63. The peak width of an individual LC run was 
estimated by averaging the chromatographic peak width (4σ, where 2σ is defined as 
FWHM of the corresponding extracted ion chromatograms) of major peptide ions. 
Peptides in the ten basic pH LC sub-fractions were resolved similarly on this long column 
using a 540 min, 15-65% buffer B linear gradient. The Q Exactive was operated in a data 
dependent mode switching between full scan MS and up to 20 MS/MS acquisitions. The 
survey scans with a m/z range of 300-1600 were acquired in the Orbitrap with 35,000 
resolution at m/z = 200 and a predicted AGC value of 1 x 106 with maximal ion time of 
60 ms. The ions detected in survey scans were then sequentially isolated and fragmented 
by HCD at normalized collision energy of 28 eV. The maximal ion injection time for 
MS/MS was set to 60 ms at a resolution of 17,500 or 128 ms with a resolution of 35,000. 
Isolation of precursor ions was performed at 1.6 m/z window. Different dynamic 
exclusion times were evaluated to maximize peptide identification including 10 s, 20 s, 
40 s and 60 s. At last 20 s was chosen for AD brain samples. For the GPF method, the 
operation of Q Exactive MS was similar to the non GPF method with minor 
modifications. The entire m/z range for MS1 was 300–1600 but divided into multiple m/z 
subsections which were described in the results section. Each m/z subsection had 10 m/z 
overlapping with adjacent subsections94,106. For data acquisition of GPF, the cycle started 
at the first m/z subsection of MS1 acquisition and its data dependent MS/MS followed by 
the 2nd m/z subsection of MS1 acquisition and its data dependent MS/MS until the full 
m/z range in MS1 was covered. 
 
 Database search and analysis. The acquired raw MS data were processed with 
an in-house data processing pipeline as previously reported63. Briefly, the MS raw data 
were converted to mzXML format using ReAdW software. Up to six precursor ions were 
selected for a mixed MS/MS spectrum. The search was performed by the SEQUEST 
algorithm (version 28 revision 13)107 against a composite target / decoy human or rat 
protein database108,109. The target human protein database was generated from Uniprot 
(combined Swissprot and Tremble) human database containing 71,809 protein entries. 
The target rat protein database contained 35,570 protein entries. Spectra were searched 
with ±10 ppm for precursor ion mass tolerance, ±0.02 Da for fragment ion mass 
tolerance, fully tryptic restriction, dynamic mass shift for oxidized Met (+15.9949), two 
maximal missed cleavages, and three maximal modification sites. Only a, b and y ions 
were considered during the search. The peptide spectrum matches (PSMs) were first 
filtered by the length of matched peptides (removal of PSMs with 6 or less amino acids) 
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and then by mass accuracy. The survival PSMs were further filtered by matching scores 
to achieve unique protein identification (grouped using a parsimony algorithm) at 1% 
FDR. To perform integrative analysis with RNAseq data, UniProt IDs were converted to 
official gene symbols according to UCSC annotation (downloaded on 01/23/14). For each 
gene, the number of accepted PSMs was calculated and further normalized by gene 
length. 
 
 RNA-seq analysis. Total RNA was extracted from ~20 mg inferior frontal cortex 
of the same AD brain for proteomics study using the RNeasy mini kit (Qiagen)110. On-
column DNA digestion was performed to eliminate the endogenous genomic DNA 
contaminants. The mRNA samples were purified by poly(dT) beads and then fragmented 
before reverse transcription. The paired end adaptors were used to ligate the processed 
double stranded cDNA fragments. The sequencing was carried out on the Illumina 
Genome Analyzer IIx platform. Using BWA (0.5.10) aligner, RNAseq reads were 
aligned to multiple databases, including human genome (GRCh37), human transcriptome 
(RefSeq and AceView), and all possible combinations of RefSeq exons. Finally, the reads 
mapped to the transcriptome were converted to genomic mapping, and merged together 
in the final output BAM files. 
 
 
Results and discussion 
 
 Installation of a long gradient LC-MS/MS platform. We packed a 100 μm x 
150 cm nano LC column using 5 μm C18 beads and interfaced this column with a Q 
Exactive MS for deep shotgun proteomic analysis of a mammalian proteome 
(Figure 2-1A). Recently, the Marto group62,88 has shown that nano LC columns packed 
with large beads (e.g. 5 μm) in extended length (up to 1 meter) performs as efficiently as 
nano HPLC columns packed with sub 2 μm C18 beads for separation of mammalian 
protein digest complexes, but the one meter column was operated at a flow rate of 5-10 
nl/min under 1,500 psi with a regular HPLC system. Although the extremely low flow 
rate may improve ionization sensitivity, it is not optimal for resolving peptides on the 
majority of nano LC-MS/MS platforms that typically run in the range of 150 to 300 
nl/min111,112. The current long LC system normally flowed at 300 nl/min with 
backpressure of 7,500 psi. When heating the column to 60oC with lower flow rate of 150 
nl/min, this backpressure was reduced to ~3,000 psi. To achieve stable electrospray 
ionization of the eluted peptides, the column was split into two portions (110 cm and 40 
cm) and connected by a metal zero dead volume union where the voltage was applied. 
 
 To evaluate the reproducibility of this system, we examined the run to run 
variation by repeated LC-MS/MS analyses. The rat brain tryptic peptide mixture was 
used for the optimization of the system because of similar compositions and dynamic 
ranges between human and rat brain proteomes. The rat brain peptide mixture (~1 μg) 
was analyzed three times on this column during a 4 h run. Base peak profiles for the 
replicates were almost identical (Figure 2-1B) with the retention time shifts of less than 1 
min. After database search and filtering, the relative standard deviations of accepted 
peptide-spectrum matches (PSMs), unique peptides, and proteins were 2.5%, 2.1% and 
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Figure 2-1. Evaluation of the reproducibility of long LC column coupled with Q 
Exactive MS. 
(A) Illustration of the setup of long LC column (100 μm x 150 cm, 5 μm C18 particles) 
coupled with Q Exactive MS. (B) Base peak chromatographs of three technically 
repeated runs. About 1 μg of rat brain tryptic peptide mixture was loaded on the column 
and then eluted in a 10-45% acetonitrile gradient over 4 h. (C) Comparison of accepted 
peptide-spectrum matches (PSMs), peptide and protein identifications.  
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0.6%, respectively (Figure 2-1C). This result strongly indicated high reproducibility of 
the LC-MS/MS platform. The same column was used for the entire optimization process, 
comprising of more than 100 runs, and no obvious column deterioration was observed. 
 
 Optimization of LC parameters. Increasing LC loading capacity is one of the 
leading approaches to maximize peptide detection in shotgun proteomics analysis113. We 
examined the effect of peptide loading amount on peptide and protein identifications 
using this ultra-long capillary LC column. When the loading amount of rat brain peptides 
were increased from 0.2 μg to 6 μg, the identified peptides and proteins were increased 
by 60.6% (from 12,159 to 19,529), and 39.9% (from 2,105 to 2,948), respectively 
(Figure 2-2A, B). However, further addition of loading amount to 20 μg resulted in only 
1.4% gain of peptides and 0.9% gain of proteins. Consistently, the ion intensities of 
peptides exemplified by one 14-3-3 peptide and one TBB3 peptide were increased by ~10 
fold or 3.8 fold, respectively, when the loading amount was increased from 0.6 μg to 6 μg  
(Figure 2-3). However, further increasing the loading to 20 μg did not lead to stronger 
ion intensity. This result suggested that the optimal loading amount of peptides for the 
current system was ~6 μg which was 6 times higher than the optimal loading amount on a 
regular capillary LC column (e.g. 75 μm x 12 cm) and twice as much as the regular 
loading amount reported on other long LC columns63,91,95. 
 
 Next we examined the impact of increased peptide loading amount on the LC 
peak width (Figure 2-2C). In general, the average peak width only increased ~20% (from 
0.65 min to 0.77 min) when the loading amount varied from 0.6 to 20 μg, indicating that 
this column has high loading capacity and reasonable performance during 
chromatography. Interestingly, when loading 20 μg of peptides, we found that a fraction 
of strong peaks showed significant peak broadening (Figure 2-2D), which may result in 
ion suppression of adjacent weak peptides. This observation may also contribute to no 
gain of identified peptides at 20 μg loading. To balance the benefit of peak intensity and 
disadvantage of peak broadening, we selected ~6 μg peptides as a standard loading level 
on this LC-MS/MS platform. 
 
 To utilize the MS instrument efficiently in the shotgun proteomics platform, it is 
desirable to select a LC gradient range in which the number of identified peptides in unit 
time across the entire LC gradient region is similar 63. We evaluated the LC gradient for 
the long column and found that the optimal gradient was in a linear gradient range of 10-
45% acetonitrile (Figure 2-4). Over 98% of the identified peptides were eluted within 
this gradient range during a 4 h run and about 78.3 ± 21.6 peptides were identified per 
min. Interestingly, the reported optimal LC gradient range for mammalian cellular tryptic 
peptide mixture was about 10-30% of acetonitrile for both a regular 12 cm column and a 
long LC column (up to 50 cm )63,79,84,85. However, only about half of the peptides were 
eluted at 30% of acetonitrile on this extra-long column, suggesting that higher organic 
gradient was required for efficient elution of mammalian cellular peptide complexes on 
ultra-long C18 LC columns76. This observation may be explained by the increasing 
interaction between peptides and C18 beads created by the long distance through which 
peptides have to travel.   
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Figure 2-2. Optimization of the loading amount of rat brain peptides for LC-
MS/MS identification. 
Various amounts of rat brain peptides were loaded on the long column and analyzed by a 
4 h gradient. (A) The number of detected peptides with different loading levels. (B) 
Protein identification with different loading levels. (C) The effect of different peptide 
loading amount on the global distribution of peak width for major peptide ions. 
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Figure 2-3. Extracted base peak ion intensity of peptide LAEQAER of 14-3-3  
protein and NSSYFVEWIPNNVK of TBB3 protein on different loading amounts. 
 
 
 
 

 
 
Figure 2-4. Optimization of the LC gradient buffer for peptide elution. 
~2 μg of peptides was loaded on the long column and eluted in a 10-45% gradient of 
acetonitrile over 4 h. The LC elution profile was represented by total ion current (solid 
black line) along with the gradient (dotted black line). The number of identified peptides 
every two min was plotted (solid red line). About 157 ± 42 peptides were identified in 
every two min. 
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 To determine optimal gradient time for peptide and protein identifications on this 
system, we tested various LC gradients ranging from 2 h to 12 h. We first calculated the 
average peptide peak width of major peptide ions across the entire elution, and then 
derived the corresponding peak capacity for each gradient (Figure 2-5A). When the peak 
capacities were plotted as a function of gradient time, a positive correlation was observed 
between peak capacity and gradient time. The peak capacity reached its maximum of 
730, similar to the reported peak capacities of other nano LC columns used for in-depth 
proteomics analysis84,88. Next, we investigated whether the increased peak capacities can 
lead to more peptide identifications. As expected, the number of PSMs was increased 
proportionally to the extended gradient time while the number of identified peptides and 
proteins also followed this trend (Figure 2-5B). The number of detected peptides and 
proteins almost reached plateau at 12 h gradient with the identification of 23,884 peptides 
and 3,484 proteins from 46,711 PSMs. Interestingly, there was a linear correlation (R2 = 
0.985) between the peak capacity and the number of identified peptides (Figure 2-5C), 
supporting the notion that peak capacity is a major factor for optimizing LC-MS/MS 
based peptide identification84. 
 
 Evaluation of MS parameters. One interesting finding was that MS sequencing 
efficiency was reduced when LC gradient time was extended on the long column, 
evidenced by a steady decline of the ratios of summed MS2 scans versus MS1 scans 
(Figure 2-6A). This result suggested that there was not sufficient number of ions detected 
in survey MS1 scans to trigger MS2 scans. Since GPF is capable of detecting weak 
sample ions within a narrow m/z range but it takes multiple MS1 scans to cover a full 
scan region93,94, we assessed the function of GPF to improve the MS sequencing 
efficiency. The m/z subsections of GPF were determined experimentally to contain the 
same number of PSMs in each subsection of m/z windows using rat brain peptides as a 
testing sample. During a 4 h LC-MS/MS analysis, one, two, three and four m/z 
subsections in a full m/z range of MS1 were tested. Compared to no GPF, the 
implementation of GPF of three subsections exhibited the highest ratio of MS2/MS1 
scans (Figure 2-6B) and led to 11.3% and 15.4% increase in the number of identified 
peptides and proteins, respectively (Figure 2-6C). Thus, the GFP of three subsections 
was chosen for later experiments. 
 
To further optimize the sequencing efficiency of MS, we evaluated the effect of different 
dynamic exclusion time of MS on the identification of peptides and proteins. In a 4 h LC 
gradient on the long LC column, the number of PSMs, peptides and proteins was the 
highest at 20 s dynamic exclusion time (Figure 2-6). Since the calculated average peak 
width was approximately 40 s for the 4 h LC gradient, each m/z ion would be analyzed 
about twice. Reduction of the dynamic exclusion time from 20 s to 10 s leads to 22% and 
15 % drop in the number of peptide and protein identifications respectively, even though 
the MS2/MS1 ratio reached the highest number of 10. This result clearly showed the 
redundant sampling at 10 s dynamic exclusion time because of repetitive sequencing of 
the same peptide ions. We observed 1.9% decrease of the number of peptide and protein 
identifications and more than 23% dropping of PSMs at 40 s dynamic exclusion time. 
Therefore the dynamic exclusion time was set at 20 s for the 4 h LC gradient.
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Figure 2-5. Optimization of the LC gradient time for peptide elution. 
(A) Peak capacities plotted against gradient time. Peak capacities were calculated by 
dividing the average peak width of major peptide ions in a LC run over entire gradient 
time. (B) The correlation between the number of identified peptides/proteins and gradient 
time. (C) The number of detected peptides was in a linear relationship with the peak 
capacity. 
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Figure 2-6. Impact of dynamic exclusion time on the number of protein and 
peptide identifications. 
~ 6 μg of peptides was loaded on the long column and eluted in a 10% to 45% gradient of 
acetonitrile for 4 hr gradient time. 
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 Deep proteomic analysis of AD brain. We then used the optimized conditions to 
explore the entire proteome of AD brain (Figure 2-7A). About 400 μg of protein was 
extracted from the tissue and subjected to Lys-C and trypsin digestion. We digested the 
entire cell lysate without removal of cell debris to increase the coverage of membrane and 
nucleus proteins as a recent study suggested86. Basic pH reverse phase LC was performed 
to pre-fractionate AD brain peptides because it provides better resolution and loading 
capacity than other methods (e.g. SCX, HILIC) and good orthogonality to acidic reverse 
phase LC (Figure 2-7B)91,102. We collected 10 basic pH LC fractions and analyzed each 
fraction on the acidic pH LC-MS/MS system in a 9 h gradient time. Total MS instrument 
time was about four days which is comparable to other reported instrument times 
required for in-depth proteomes analysis varying from one to two weeks62,95,114. A total of 
1,695,626 high resolution MS/MS spectra was acquired, identifying 629, 747 PSMs (37% 
successful rate), 96,127 peptides and 10,544 proteins when protein FDR was controlled at 
1%. On average, each peptide was identified by MS for about seven times. In each basic 
pH LC fraction, the average number of detected peptides and proteins were 11,9303 ± 
651 and 4701 ± 119, respectively (Figure 2-7C). Nearly 80% of peptides were solely 
identified in one fraction and about 95% of peptides were only found in one or two 
fractions, suggesting high partitioning of peptides within each fraction (Figure 2-7D). 
 
 To evaluate the depth of AD brain proteome analyzed in this pilot study, we 
performed deep RNA-seq analysis of the same sample, and compared the proteome data 
with transcriptome results. We identified 16,670 protein coding genes by RNA 
expression, similar to the result in previous transcriptomic analysis of human brain115. 
The abundance of each transcript was calculated as reads in fragment per kilobase of 
exon per million fragments mapped (FPKM). A total of 10,161 human genes were 
detected in AD brain proteome, corresponding to 61% of the expressed genes  
(Figure 2-8A). Next we investigated the correlation between transcript and protein levels 
in our study. The protein level was indicated by a spectral counting based method116, in 
which the total number of spectral counts for every protein was summed and normalized 
by the length of protein sequence (spectral counts per thousand amino acids) to adjust the 
bias created by protein size. We observed a modest correlation between the RNA and 
protein levels (Spearman correlation = 0.62, Figure 2-8B), which was consistent with the 
conclusions of other studies (Spearman correlation = 0.4-0.6)100. Taken together, our data 
suggested that the utilization of the current optimized LC/LC-MS/MS platform covers the 
majority of the AD brain proteome. 
 
 The multidimensional LC-MS/MS system presented here was robust with no 
instrument down time during the entire process of deep proteomic analysis. By heating 
the LC column to 60oC, this LC/MS/MS system can be operated under a regular pressure 
limit (~3,000 psi with 0.15 μl/min flow rate), reducing potential problem of overpressure. 
To further enhance the identification of extremely low-abundance proteins, it is 
conceivable that extensive pre-fractionation of peptides during basic pH LC separation 
would further reduce sample complexity and improve dynamic range in the pre- 
fractionated pools. At last, combination of our long column LC/LC-MS/MS platform 
with the newly introduced Orbitrap Fusion Tribrid mass spectrometer would also allow 
considerably deeper proteomics analysis, due to its higher scan rate and peptide
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Figure 2-7. Deep proteomics analysis of AD brain tissue. 
(A) Flow chart of the procedure. (B) Chromatograph of basic pH RPLC pre-fractionation 
of peptides (upper panel) monitored at 214 nm and an example base peak chromatograph 
of acidic pH long gradient PRLC-MS/MS (lower panel).(C) Basic pH RPLC fractionation 
yielded even partitioning of peptides which led to similar number of identified proteins in 
concatenated, pooled fractions. (D) Majority of the peptides was solely identified in one 
fraction. 
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Figure 2-8. Comparison of deep proteomics and RNA-seq data from the same AD 
brain tissue. 
(A) Histogram of FPKM distribution of RNA-seq and proteomics data. The open bar 
represents the distribution of protein coding gene numbers detected by RNAseq and the 
grey bar indicates the distribution of protein coding gene numbers validated by MS with 
different FPKM values. (B) Scatter plot of spectra counts per thousand amino acid of 
proteomic data versus FPKM of RNA-seq data. 



 

24 

identification efficiency than the Q Exactive MS instrument used in this study82,117. 
 
 

Strategies to Enable Accurate Quantification by Isobaric Labelling and Mass 
Spectrometry for High-throughput Genome-scale Proteomic Analysis 

 
 This portion of chapter 2 will be the publication on the strategies to enable 
accurate quantification by isobaric labelling and mass spectrometry. Quoted text was 
taken from the manuscript. This study was led by two co-first authors Mingming Niu and 
Dr. Ji-Hoon Cho. Mingming Niu performed the proteomics experiments and data 
analysis. Ji-Hoon Cho developed the algorithm for y1 ion based interference correction. I 
contributed to the proteomics experiments and data analysis. 
 
 
Introduction 
 
 “Quantitative proteomics has been becoming an essential tool in biomedical 
research4,64 and shows high potential for clinical application65. The integration of liquid 
chromatography and tandem mass spectrometry (LC-MS/MS) is the mainstream 
approach for global measurement of proteins and posttranslational modifications. 
Numerous MS strategies have been developed for large-scale profiling, including label 
free quantification and stable isotope labeling technologies118. More recently, isobaric 
labeling methods, such as isobaric tags for relative and absolute quantitation (iTRAQ)11, 
tandem mass tags (TMT)12 and DiLeu isobaric tags13, gain popularity largely due to 
multiplexed capacity of processing up to 12 samples14. For example, isobaric labeling 
enables the analysis of hundreds of mammalian samples in tens of batches, detecting a 
total of more than 15K proteins (from 12K genes) and 60K phosphosites in mammalian 
samples15-17. 
 
 Despite the advances of isobaric labeling, the method often suffers from high 
noise levels due to co-eluted interfering ions, leading to quantitative ratio compression 
that underestimates the difference, particularly in complex protein samples18-21. This 
drawback is ameliorated by some proposed approaches, which may be classified into 
three categories: pre-MS fractionation, MS setting modification, and post-MS correction. 
While pre-MS fractionation (e.g. 2D LC) partially reduced the co-elution of interfering 
peptides119, 3D LC of basic pH reversed-phase (RP), strong anion exchange and acidic 
pH RPLC120, yielded a more efficient platform for peptide separation. However, this 
platform involves complex LC settings that are not commonly used in other groups. The 
co-elution ions can also be reduced by a narrow isolation window121, gas-phase 
purification122 and complement reporter ion cluster quantification during MS analysis123, 
usually at the expense of decreased information output. Some post-MS corrections were 
also reported by subtracting interference to enhance quantitation124-126. Moreover, a 
multistage MS3-based technique was developed to nearly eliminate the ratio 
compression, but has low sensitivity to detect weak peptide ions and requires expensive 
MS instrumentation21,127,128. Although all of these approaches improve quantitative 
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accuracy, the application is still limited by instrument dependency, time consumption, 
and computer algorithm availability. 
 
 In this study, we attempted to address the ratio compression issue by extensive 
high resolution fractionation and a novel y1 ion-based interference correction method. To 
mimic real biological samples, we mixed TMT-labeled E. coli proteins at known ratios, 
in the presence of a 20-fold excess amount of background peptides from rat proteins. The 
mix was analyzed under multiple LC-MS/MS conditions by adjusting key parameters, 
including the fraction number collected in the 1st LC, MS isolation window, peptide 
loading amount and the 2nd LC fractionation depth (gradient length). We also developed 
a computational method that uses the known E. coli protein ratios to estimate the 
interference levels from rat proteins. Finally, the interference can be essentially 
eliminated by pre-MS fractionation, optimization of MS parameters, and post-MS y1 ion-
based correction, leading to a general pipeline for accurate isobaric labeling 
quantification. 
 
 
Methods and materials 
 
 Preparation of E. coli and rat protein samples. Proteins in E. coli cells or adult 
rat brain were extracted and digested as previously described129. Protein concentration 
was measured by the BCA method (Thermo Scientific); and the desalted tryptic peptides 
were resuspended in HEPES buffer (50 mM, pH 8.5) and labeled by individual 10-plex 
MT reagents (Thermo Scientific, E. coli peptides by 10 channels, and rat peptides by 8 
channels from 126 to 130N). These peptides were pooled as specified (Figure 2-9). 
 
 Basic pH LC prefractionation. The pooled TMT-labeled sample was 
fractionated on a long reverse phase column (concatenated two Waters 4.6 mm × 25 cm 
Xbridge C18 columns, totaling 50 cm, 3.5 μm beads, Agilent 1270 HPLC, flow rate of 
~0.4 ml/min). The gradient included 5 min of 95% buffer A (10 mM ammonium, pH 
8.0), 215 min of 13%-35% buffer B (10 mM ammonium and 90% acetonitrile, pH 8.0), 
90 min of 35-55% buffer B, and 10 min of 55-95% buffer B. A total of 320 fractions (one 
min each) were collected, dried and stored at -80ºC for further analysis. 
 
 Acidic pH LC-MS/MS analysis. Dried peptides were dissolved in 0.2% formic 
acid for LC-MS/MS analysis on an optimized platform130,131 with modifications. Peptides 
were separated on a 75 μm x ~50 cm column (1.9 μm C18 beads, Dr. Maisch GmbH) and 
operated at 70ºC to reduce back pressure (solvent A: 0.2% formic acid, solvent B: 0.2% 
formic acid and 70% acetonitrile, 240 min gradient from 12-65% solvent B unless 
specified). The analysis used an Ultimate 3000 RSLC nano system coupled with an 
Orbitrap Fusion mass spectrometer (Thermo Scientific). The Orbitrap Fusion acquired 
data in a data-dependent manner alternating between full scan MS and MS/MS scans. 
The MS spectra (400-1600 m/z) were collected with 60,000 resolution, AGC of 2 x 105 
and 50 ms maximal injection time. Selected ions were sequentially fragmented in a 3 sec 
cycle by HCD with 38% normalized collision energy, specified isolated windows (0.4-1.6 
m/z, 0.3 m/z offset), 60,000 resolution. AGC of 1 x 105 and 150 ms maximal injection  
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Figure 2-9. Experimental design and procedures for evaluating TMT analysis. 
Digested rat and E. coli peptides were TMT-labeled and mixed at known ratios, 
fractionated by basic pH RPLC, and analyzed by acidic pH RPLC-MS/MS. The 
interference of the TMT analysis was assessed by computational approaches, including a 
novel y1 ion-based correction method.  
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time. Dynamic exclusion was set to 20 sec. 
 
 For MS3 analysis, the precursors for MS2 analysis were isolated with a 1.6 m/z 
window (0.3 m/z offset). The CID-MS2 spectra were acquired in the ion trap with AGC 
of 1 x 104, 50 ms maximal injection time and 35% normalized collision energy. For 
HCD-MS3 mode, the setting were 65% normalized collision energy, 2 m/z isolated 
windows (0.3 m/z offset), 60,000 resolution. AGC of 1 x 105 and 500 ms maximal 
injection time. Dynamic exclusion was set to 30 sec. 
 
 Protein/peptide identification and quantification. The analysis was performed 
by our recently developed JUMP engine to improve sensitivity and specificity, which 
combines the advantages of pattern matching and de novo sequencing during a database 
search132,133. The JUMP hybrid algorithm was used to process numerous published large 
datasets134-136. RAW files were converted to mzXML format and MS2 spectra were 
searched against rat and E. coli target-decoy Uniprot databases to estimate the false 
discovery rate (FDR)137,138. Search parameters included precursor and product ion mass 
tolerance (6 ppm), fully tryptic restriction, two maximal missed cleavages, static TMT 
modification (+229.162932 Da on N-termini and Lys residues), dynamic Met oxidation 
(+15.99492 Da), and three maximal dynamic modification sites. Only a, b, and y ions 
were considered during the search. Peptide-spectrum matches (PSMs) were filtered by 7 
minimal peptide length, mass accuracy (~2.5 ppm) and matching scores to achieve 1% 
protein FDR. For each accepted PSM, the peaks of TMT reporter ions were extracted for 
quantification 
 
 Quantitative data analysis and post-MS computational correction approach. 
To evaluate the levels of interference, TMT reporter ion intensities of each PSM were 
converted into relative intensities. For rat peptides that were equally mixed, the relative 
intensities were calculated by dividing individual reporter ion intensity by the mean 
intensity of eight reporters (126-130N). For E. coli peptides of three groups with known 
ratio, (126, 128C):(127N, 128N, 129N, 130N):(127C, 129C) to be 1:3:10 (Figure 2-9), 
the relative intensities were converted by dividing each channel intensity by the mean 
intensity of 126 and 128C. Then the relative intensity of each group was averaged in two 
steps: 
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Finally, the group mean was used to calculate interference level by compared to 
the expected ratio of the three groups (r1 = 1, r2 = 3 and r3 = 10) 

 
We also developed a post-MS computational approach to correct interference 

based on y1 ion in MS2 scans. As K-TMT- and R-C-terminal tryptic peptides generate 
different y1 ions (376.27574 Da and 175.11895 Da, respectively). If only one y1 ion is 
detected and consistent with the identified peptide, the MS2 is termed a clean scan. If 
both y1 ions are detected, the MS2 is termed a noisy scan. Assuming that the y1 ion 
intensity is proportional to the reporter ion intensity, we computed their linear 
relationship from the “clean” scans, and then used the contaminated y1 ion intensity in the 
“noisy” scans to derive the interference level. 
 
 
Results and discussion 
 
 Generation of a cross-species peptide mix to mimic complex biological 
samples. As ratio compression in isobaric labeling is largely influenced by sample 
complexity, we attempted to replicate the complexity of real biological samples by 
mixing cross-species peptides from E. coli and rat brains in a 10-plex TMT experiment 
(Figure 2-9). The E. coli peptides were labeled by 10 TMT reagents with known ratios 
(1 : 3 : 10 : 3 : 1 : 3 : 10 : 3 : 1 :10), while rat peptides were labeled in 8 channels and 
equally mixed as background, leaving 2 channels without the interference. 
 
 In the vast majority of proteomic comparison, proteins of high abundance are 
usually expressed from house-keeping genes and do not alter under experimental 
conditions, whereas changed proteins are likely to play regulatory roles and exist at low 
abundance. To simulate this scenario, we markedly increased the levels of background rat 
peptides, approximately 20-fold more than the targeted E. coli peptides, although in many 
of previous reports127,139, the background and targeted peptides were pooled at 
comparable amounts. 
 
 This cross-species peptide mix was used for systematically dissecting the effect 
on ratio compression in three major steps, including pre-MS fractionation, MS settings 
and post-MS correction. The pre-MS fractionation was carried out by the combination of 
basic pH RPLC and acidic pH RPLC. During post-MS analysis, peptides shared between 
E. coli and rat were removed, and only species-specific peptides were considered  
(Figure 2-9). 
 
 Confirmation of ratio compression and interference computation by known 
E. coli peptide ratios. We initially analyzed the pooled peptide sample by one 
dimensional (1D) LC-MS/MS (Figure 2-10). As expected, rat peptide intensities in the 8 
channels were almost equal, suggesting that these rat peptide measurements were not 
significantly affected by the E. coli peptides of low abundance (Figure 2-10A). In 
contrast, a clear ratio compression was observed for the E. coli peptides in the 8 channels 
in the presence of ~20-fold background rat peptides, but not in the 2 channels without rat 
peptides (i.e. 130C and 131, Figure 2-10B). Averaged ratios of 1 : 3 : 10 E. coli channels  
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Figure 2-10. Interference analysis of TMT data based on known peptide ratios. 
(A) The averaged relative intensities of rat peptides in each TMT channel. (B) The 
averaged relative intensities of E. coli peptides in all TMT channels. (C) The summed 
relative intensities of E. coli peptides in three groups: the lowest level (126 and 128C), 
the medium level (127N, 128N, 129N and 130N) and the highest level (127C and 129C). 
(D) Schematic diagram showing the interference definition and its effect on ratio 
compression. The interference is defined as the proportion of maximal reporter intensity. 
If the interference is equal to 5% of maximal intensity (5% x 10 = 0.5) in each TMT 
channel, the intensities are elevated, resulting in ratio compression. The cases of 
interference of 20% and 50% are also shown. (E) Given theoretical ratios between 
reporters, the interference can be inferred by experimental ratios. For example, when 
theoretical and measured ratios are 1:10 and 1:4 respectively, the interference should be 
~20% of maximal reporter intensity   
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were found to be 1 : 1.6 : 4.1 (Figure 2-10C), consistently with previously reported 
effects of ratio compression19,21,121. 
 
 We then developed a method to calculate the level of interference based on 
known peptide ratios. Assuming the level of interference was stable among channels, 
defined as the percentage of maximum reporter ion intensity (e.g. 10, Figure 2-10D), if 
there was no interference, the relative intensities were 1, 3 and 10; if the interference was 
20% (10 x 20% = 2), the relative intensities increased to 3, 5 and 12, resulting in 
compressed ratios (1 : 1.7 : 4.0); and so on. Such analyses were performed over various 
interference levels to generate a standard curve, describing the relationship among 
interference, experimental ratios and theoretical ratios (Figure 2-10E). With this standard 
curve, experimental and theoretical ratios, the interference could be calculated. For 
example, when experimental 1 : 4 ratio was detected for theoretical 1 : 10, we concluded 
that the interference was about 20% of maximum reporter ion intensity. If there were 
multiple experimental and theoretical ratios, the interference could be derived by 
minimizing errors with generalized equations 
 
 Interference level affected by core LC/LC-MS/MS parameters. With the 
interference computation method, we examined the effects of a number of core 
parameters in LC/LC-MS/MS, including the 1st LC resolution, MS2 isolation window, 
the 2nd LC loading amount, and the 2nd LC resolution. To change the resolution during 
the 1st LC, we separated the complex mix into 320 fractions, and then combined some of 
the fractions together to adjust the separation power. For instance, combination of every 4 
adjacent fractions would yield 80 fractions, and so on. Thus, the 1st LC resolution was 
reflected by different number of collected fractions (1, 5, 10, 20, 40, 80, and 320), under 
which the interference levels decreased gradually from 16.4% to 2.8%, suggesting that 
extensive fractionation in the 1st LC alleviated co-eluted peptides but could not totally 
remove the interference (Figure 2-11A). 
 
 As to the 2nd LC-MS/MS analysis, we examined the effect of MS2 isolation 
window and found that the interferences were almost proportional to the size of the 
isolation window (Figure 2-11B), in agreement with previous studies121,124. For example, 
4-fold difference of window size (1.6 to 0.4 Da) resulted in 4-fold difference of inference 
level (14.4% to 3.7%). We also observed a visible impact of peptide loading amount on 
the interference. When the loading level decreased from 900 ng to 100 ng, the 
interference reduced from 9.4% to 3.3%, implying that high loading led to peak 
broadening140 and therefore raised the interference (Figure 2-11C). Finally, we adjusted 
the 2nd LC resolution by gradient length (1, 2, and 4 h) on a long column. The 4 h 
gradient nearly eliminated the interference (down to 0.4%) and gave the best result 
(averaged ratios of 1 : 2.8 : 9.9, Figure 2-11D). This result was comparable with that of 
the accurate MS3 strategy15 (the interference of 0.6%, averaged ratios of 1 : 2.8 : 9.7, 
Figure 2-11E), although the MS3 analysis usually has limited sensitivity of analyzing 
weak peptide ions, requires more MS acquisition time and uses low-resolution MS2 for 
protein identification64. Taken together, our data demonstrated that the combination of 
extreme fractionation (320 x 4 h = 1,280 h, 53 days) and narrow isolation window was 
able to solve the issue of ratio compression.  
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Figure 2-11. Effects of LC-MS parameters on interference in the TMT analysis. 
The summed relative intensities of E. coli peptides in three groups under different 
conditions of (A) the first LC, (B) isolation window, (C) peptide loading, (D) the 2nd LC 
gradient, and (E) MS3 setting. The interference level under each condition was computed 
from the known 1 : 3 : 10 ratios. 
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 We also analyzed the effects of these core parameters on peptide/protein 
identification in this analysis. As anticipated, pre-MS fractionation reduced sample 
complexity, leading to low peptide/protein identification per fraction. However, if all 
fractions were analyzed, the combined number of identifications would be 
improved120,131. Interestingly, the reduction of MS2 isolation window had minor effect on 
peptide/protein identification, which may be due to high isolation efficiency of 
quadrupole mass filters that were installed in newly developed MS instruments (e.g. Q 
Exactive HF)141. The effect of sample loading was also relatively small, as even 100 ng 
of fractionated peptides (one of 80 fractions, Figure 2-11C) contained concentrated 
peptides from the initial 8,000 ng total peptides (80 x 100 ng). When some of the 320 
fractions were analyzed by different gradient time, detected peptides were similar from 1 
h to 2 h, but decreased in 4 h, because the long gradient might result in peak broadening 
and decreased the sensitivity of identifying weak peptides140. 
 
 In summary, we could eliminate ratio compression by utilizing extreme separation 
power (LC/LC fractionation and narrow isolation window), but this strategy required >50 
days instrument time. To compromise the effects of these core parameters on the 
interference and protein identification, we recommended the final setting of a narrow 
isolation window (0.4 Da), medium fractionation (~40 x 2 h, 3.3 days) and ~100 ng of 
fraction sample loading, which resulting in a low level of interference (3.4%,  
Figure 2-11A). 
 
 Interference correction by y1 ion-based post-MS method. We devised a post-
MS computational approach to calculate and remove the interference based on the 
information in MS2 scans, in contrast to MS1-based correction methods125,126. In the 
MS1-based strategies, the intensity of co-eluted peptides is estimated from the precursor 
isolation window in MS1 scans, but these MS1 survey scans are acquired at different 
time points from the MS2 scans during real time LC-MS/MS analysis. Therefore, the 
exact co-eluted peptides in MS2 are not directly measured. 
 
 In our method, the level of interference was directly analyzed in the same MS2 
scan for reporter ion quantification. When examining TMT MS2 scans of tryptic peptides 
(Figure 2-12A), we found that some MS2 scans (clean scans) displayed only one y1 ion 
(K-TMT or R residue) consistent with the matched peptide sequences. The other MS2 
scans (noisy scans) had the two y1 ions, indicative of contaminated peptides. In the clean 
scans, the y1 ion intensity tended to be proportional to the measured TMT reporter 
intensities because they originated from the same precursor ions. Therefore, the 
relationship between intensities of either K-TMT- or R-y1 ion and TMT reporter ions was 
modeled as a linear form. This linear relationship enabled the calculation and correction 
of interference level in the noisy scans (Figure 2-12A). 
 
 The performance of this post-MS correction approach was evaluated in the dataset 
of varying LC resolution (e.g. different fractions in the 1st LC), and showed unanimous 
improvement in precision. For example, under our recommended condition of 40 
fractions, the interference level decreased from 3.4% to 1.3%. The measured ratio was 
1:2.7:9.1, nearly reaching the expected ratio of 1:3:10 (Figure 2-12B). The analysis  
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Figure 2-12. Post-MS computational approach for interference removal. 
(A) Schematic diagram. MS2 scans of tryptic peptides can be divided into clean and 
noisy scans based on the detected y1 ions. The relationship between y1 ions and TMT 
reporter ion intensities is modeled by the clean scans. Then the relationship is used to 
calculate the interference in the noisy scans. (B) The summed relative intensities of E. 
coli peptides in the three groups, before and after the post-MS computational correction. 
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indicated that the use of our optimized LC-MS parameters and post-MS correction almost 
eliminated ratio compression commonly observed in the TMT-based quantification.”  
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CHAPTER 3.    DEEP MULTI-OMICS PROFILING OF BRAIN TUMORS TO 
IDENTIFY SIGNALING NETWORKS DOWNSTREAM OF CANCER 

DRIVER GENES 
 
 

Introduction 
 
 A central gap in cancer biology concerns how oncogenes drive the rewiring of 
molecular signaling networks to execute phenotypic changes28,29,38. Initial attempts to 
decode the molecular networks were through proteomic characterization via an antibody-
based approach (e.g. the reverse phase protein array)142,143. However, this targeted 
approach is restricted by profiling breadth and depth, largely due to antibody availability 
and specificity. The signaling networks are highly regulated by protein posttranslational 
modifications, such as phosphorylation, and thus phosphoproteomic measurement is 
indispensable for studying cancer signaling144. Recently, mass spectrometry (MS)-based 
proteomics technology has been emerging as the mainstream strategy for unbiased 
analysis of the genome-wide proteome and phosphoproteome. Together with advanced 
DNA sequencing, these methodologies provide an unprecedented opportunity of deep 
omics analysis. It is now possible to integrate transcriptome, deep proteome and 
phosphoproteome to dissect oncogenic signaling networks, broadening our understanding 
of cancer biology28,29,38,145. 
 
 High-grade gliomas (HGGs) are the most prevalent malignant brain tumors, and 
confer devastating mortality39,40. Although significant efforts in glioma sequencing have 
unveiled comprehensive genome-wide mutation landscapes39,40,43-48, a complete 
understanding of how genomic alterations lead to dysregulation of particular master 
regulators and specific pathways remains unclear. Previous HGG proteomic and 
phosphoproteomic studies extend our understanding of HGG signaling44,49, but most of 
these attempts have used proteomic approaches of relatively shallow depth. There is 
essentially no deep HGG proteomic landscape available for the cancer research 
community. Here, for the first time, we present a new paradigm of identifying ~12,000 
gene products (proteins) and >30,000 phosphosites for dissecting HGG cancer biology.  
 
 In the present paper, we have compared two HGG mouse models driven by 
oncogenic receptor tyrosine kinases (RTKs: PDGFRA D842V and TPM3-NTRK1 
fusion) respectively, using integrative systems biology analyses of proteome, 
phosphoproteome and transcriptome. Mutations and/or amplifications of PDGFRA and 
fusion genes of the NTRK family of neurotrophin receptors have been identified in 
pediatric and adult HGG39,46,48,66,67. Human surgical HGG specimens exhibit 
paradigmatic inter- and intra-tumoral heterogeneity, dramatically undermining the power 
to dissect the global proteome and signaling networks49,142,146,147. To improve sample 
quality, we have used engineered mouse HGGs expressing the mutated RTKs in the same 
cell type to minimize confounding factors40,47. With a novel bioinformatics pipeline, we 
identify various functional modules and master regulators rewired in HGGs and 
demonstrate that the TPM3-NTRK1 oncogene upregulates multiple other RTKs to form a 
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positive feedback loop within the PI3K-AKT pathway, driving more rapid tumor 
development compared with the PDGFRA-driven HGG. 
 
 

Methods and Materials1 
 
 
Mutated RTK driven HGG mouse models and tissue collection 
 
 Mouse experiments were approved by Institutional Animal Care and Use 
Committee that are in compliance with national and institutional guidelines. Mouse 
HGGs were generated as previously described46,48. Briefly, a pooled population of p53-
deficient primary mouse astrocytes was transduced with retrovirus expressing either 
human TPM3-NTRK1 fusion or PDGFRA D842V mutation along with an IRES-GFP, 
and then 2 × 106 cells per mouse were intracranially implanted into athymic nude mice. 
Mice were anesthetized and perfused with PBS on the manifestation of brain tumor 
symptoms. GFP-labeled HGG tumors were dissected with fluorescent dissecting 
microscope followed by snap freezing for proteome and transcriptome analyses. 
 
 
Antibodies and other reagents 
 
 Antibodies against the following proteins were used for Western blotting: FLAG 
(Sigma-Alrdrich, F1804), Tubulin (Santa Cruz, 23948), pEphA2 (Cell Signaling 6347), 
EphA2 (Cell Signaling 6997), p-C-Myc (Abcam, 32029), C-Myc (Cell Signaling, 9402), 
PDGFRA (Santa Cruz, 338). PhosStop phosphatase inhibitor (Roche); Lys-C (Wako, 
peptides: Lys-C = 100:1); Trypsin (Promega, peptides: Trypsin = 100:1); TiO2 beads 
(GL sciences, TiO2: peptides = 4:1); and C18 1.9 μm resin (Dr. Maisch GmbH) 
 
 
RNAseq analysis 
 
 RNAs were extracted by Trizol (Invitrogen) from about 20 mg aliquots of the 
same tumor samples for proteomics analyses. The mRNA samples were purified by 
poly(dT) beads. Paired end adaptors were used for ligation. RNAseq reads were aligned 
to multiple databases encompass human genome (GRCh37), human transcriptome 
(RefSeq and AceView), and all other possible combinations of RefSeq exons. The reads 
mapped to the transcriptome were converted to genomic mapping and merged in the final 
BAM files.  

                                                 
 
1 I would like to acknowledge my collaborators from Dr. Suzanne Baker’s group for their 
support on materials and experiments. Alex Diaz and others from Dr. Baker’s group 
provided the mouse models and RNAseq, performed IHC and immunoblot experiments. 



 

37 

Deep proteomics profiling by two-dimensional reverse phase LC-MS/MS 
 
 Whole proteome and phosphoproteome analyses were processed similarly as 
previously described148. Tissue samples (~10 mg each) were homogenized at 4°C in 0.3 
ml of lysis buffer (50 mM HEPES, pH 8.5, 8 M urea, 0.5% sodium deoxycholate, 1 x 
PhosStop Phosphatase Inhibitor). Cell lysate including insoluble debris was digested with 
Lys-C followed by trypsin overnight at room temperature. Peptides from each sample 
were labelled with TMT10-plex reagents and then pooled together with equal amount. 
Pooled peptides were pre-fractionated with a 2 hour gradient basic pH liquid 
chromatography. A nano UHPLC (Waters) system was applied to load peptides on a 
heated 75 μm × 110 cm column packed in house with C18 1.9 μm resin (Dr. Maisch 
GmbH) and interfaced to a Q Exactive MS. A long gradient of up to 9 hours for peptides 
separation was carried out in a buffer system with 5% DMSO added. Q Exactive was 
operated with m/z range 420−1600, MS1 resolution 70,000 at m/z = 200. MS2 resolution 
was set at 35,000 and a predicted AGC of 2 × 105 with maximal ion time of 128 ms, top 
10, isolation window of 1.6 m/z, NCE of 31 or 33, dynamic exclusion of 45s or 60s. MS 
data was processed using our in house developed tool JUMP suites as previously 
described149,150. Briefly raw MS files were analyzed by JUMP version 12.1.0, peptide 
lists were searched against the database downloaded from Uniprot mouse database 
(52,490 protein entries) with methionine oxidations as dynamic modifications. FDR was 
set to 0.02 at protein level with a minimum amino acids length 7 and was determined by 
searching a reverse database. Initial precursor and fragment mass tolerance was set to 6 
PPM and 10 PPM respectively. Minimal percentage of precursor peak intensity (PPI) was 
set to 70%; minimum and median TMT channel intensities were set to 2,000 and 10,000 
respectively to guarantee only high quality PSMs were applied for quantification. 
 
 
Phosphoproteome analysis with an additional step of phosphopeptide enrichment 
 
 95% of peptides were applied for phosphoproteome analysis with similar 
parameters as the whole proteome method. An extra step of phosphopeptide enrichment 
was performed with TiO2 using our refined phosphopeptide enrichment strategy151. 
Briefly, peptides were incubated with 0.5 mM KH2PO4 non-phosphopeptides competitor 
and TiO2 beads with a peptides-to-beads ratio of 1:4 for 20min to allow efficient and 
specific phosphopeptide enrichment. Stepped NCE was applied at 30±15%. For data 
processing, Minimal percentage of PPI was set to 50%; minimum and median TMT 
channel intensities were set to 1,000 and 5,000 respectively.  
 
 It is often problematic to pinpoint the location of phosphosites when there are 
presence of consecutive serine (S), threonine (T) or tyrosine (Y)152. As a result, 
randomness of phosphosites assignment occurs which often also results in inflation of 
total amount of phosphosites reported. In this study, to define a reasonable biological 
base for prioritization of sites that are essentially indistinguishable to reduce randomness 
of phosphosites assignment, we borrowed information from sites that already confidently 
assigned to the same protein to guide the assignment of indistinguishable sites. The 
algorithm of phosphoRS152 was used to calculate phosphorylation site scores (between 
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0~100) in a peptide. We assigned the phosphorylation site when its peptide-level score 
was higher than the second-highest site by at least 10, which prevented the situation that 
the identical sites identified by multiple scans (peptides) were differently localized 
because of subtle differences of scores. In addition, we newly introduced a protein-level 
site score defined as the highest value of peptide-level scores corresponding to the site in 
a protein. Since, for each site, the protein-level score consolidated the scores from 
peptides, it was particularly useful when the peptide-level score of a site was not 
distinguishable from others. Nevertheless, phosphorylation sites in a peptide might not be 
determined when multiple sites had the exact same score in both peptide and protein-
level. To address the problem, a heuristic priority was given to the amino acid residue of 
a site in the following order: SP-motif > S > T > Y. 
 
 
Evaluation of proteomic profiling depth 
 
 Theoretically observable peptides were determined by three main factors 
including peptide mass, peptide hydrophobicity and corresponding minimal RNA FPKM 
value. In silico digestion of peptides was performed. Distributions of the mass, 
hydrophobicity and FPKM of detected peptides against all in silico digested peptides 
were evaluated sequentially to determine the cutoff of mass range, hydrophobicity range, 
and minimal FPMK for theoretically observable peptides. As a result, mass range was 
determined as 800 Da – 3200 Da, Hydrophobicity was set as -52 to 17, and minimal 
FPKM was set as 0.005. After applying these cutoffs, distribution of percentage of 
detected peptides against in silico digested peptides passed filters was plotted to 
determine coverage of theoretically observable peptides for each protein. As a result, a 
mean coverage of 42% of theoretically observable protein sequences was achieved 
through our deep proteomic profiling. It is often challenging to evaluate depth of 
phosphoproteome because the total amount of phosphorylation events in one specific cell 
or tissue is unknown. To provide a reasonable estimation of phosphoproteome depth, we 
compared our data to all mouse phosphosites reported previously in the PhosphoSitePlus 
database153. Phosphosites with at least two independent evidences of MS-based 
identifications in the database were accepted to evaluate the coverage of the amount of 
our phosphosites against the total reported mouse phosphosites. 
 
 
Differential expression analyses of whole proteome and phosphoproteome 
 
 ANOVA was performed for differential expression analysis comparing cortex, 
NTRK HGG, and PDGFRA HGG with a P value determined by permutation and then 
adjusted by Benjamin Hochberg method to handle relative small sample size (n = 10). A 
cutoff of P value 0.05 was applied. Qualified proteins were further filtered by fold change 
of 1.5 in at least one comparison among 3 sample groups; a final FDR was estimated by 
permutation using resulted differential expression (DE) genes. DE phosphosites were 
identified by the same procedure with a fold change of 2. Principal component analyses 
and hierarchical clustering analyses detected a NTRK HGG sample outlier  
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(Figure 3-1e, f) which was also supported by the evidence of low transduced TPM3-
NTRK1 expression (Figure 3-1d). This was probably caused by normal brain tissue 
contamination. To avoid possible false discoveries, this sample outlier was excluded from 
differential expression analyses. 
 
 
Pathway and network module analysis 
 
 Following DE analysis, WGCNA R package154 was utilized to perform weighted 
DE gene co-expression clustering analysis. Briefly, a Pearson correlation matrix was 
calculated using all samples, correlation type was set to “signed” to allow only positive 
correlation. A hybrid dynamic tree-cutting method with a minimum height for merging 
modules at 0.15 was applied to define co-expression clusters. The first principal 
component, also known as eigengene, was calculated as a consensus trend for each co-
expression cluster. DE Proteins were assigned to the co-expression cluster with the 
highest correlation based on Pearson R value. Pathway and network module analyses 
were carried out using ClueGO155, a software package based on cytoscape156. ClueGO 
can detect pathways utilizing diverse statistical tests and then apply Kappa statistics to 
link deregulated pathways to construct network modules according to their connections. 
DE proteins or phosphosites from each co-expression cluster were applied for this 
analysis. Pathway analysis was performed using a right-sided hypergeometric test, a 
Benjamin Hochberg corrected P value of 0.05 was set as cutoff. Pathways from KEGG, 
WikiPathways, and Reactome databases were combined to construct network modules. 
Kappa score cutoff was set to 0.5 to ensure stringent network module construction. 
 
 
Kinase activity analysis based on whole proteome normalized phosphoproteome 
using IKAP 
 
 Kinase activity analysis was carried out using IKAP, a heuristic machine learning 
algorithm that infers the activities of kinases from substrate phosphorylation. Kinase-
substrate relationship was extracted from the PhosphoSitePlus database157. With our deep 
phosphoproteome data, phosphosites instead of phosphopeptides can be applied as data 
input to increase the accuracy of IKAP analysis. The phosphorylation level in each tumor 
sample was first normalized against normal cortex samples, and then these normalized 
samples were normalized against the whole proteome to retain only the phosphosite 
changes driven by phosphorylation (Remove the contribution of protein expression 
change). We repeated the simulation process 10 times and assessed the solution’s 
variation to overcome limitation of gradient descent optimization algorithm that could get 
stuck in a local minimum. And then, we applied a cutoff of 0.2 SD to filter results that 
failed to converge into a stable solution. Kinase activities derived from substrate size <3 
were filtered out except ones that were supported by upstream kinases with co-activation 
patterns. Finally, we applied a cutoff of B.H. adjusted P value 0.05 to determine kinase 
with altered activity. A kinase-to-kinase network was constructed based on kinase co-
activation patterns (e.g. according to database, PRKCE phosphorylates AKT1 on S473 
and this phosphorylation activates AKT1 enzymatic activity; PRKCE shows activity 
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Figure 3-1. Work flow of MS-based proteomic analyses and data quality 
evaluation. 
(a) Overview of HGG mouse models. 2 × 106 p53-null primary mouse astrocytes 
transduced with human TPM3-NTRK1 fusion or PDGFRA D842V mutation genes were 
implanted intracranially into athymic nude mice to generate HGG tumors for proteome, 
phosphoproteome and transcriptome analyses. (b) Mouse gliomas have high-grade 
features. 160 x H&E images highlight PDGFRA-driven HGG with mitotic figures (top) 
and a multinucleated giant cell (bottom); NTRK-driven HGG with mitotic figures (top) 
and tumor invasion of normal parenchyma as evidenced by entrapped native neurons 
(bottom). (c) Proteomic analysis work flow. 3 normal mouse cortex samples, 4 
PDGFRA-driven HGG tumors, and 3 NTRK-driven HGG tumors were applied for whole 
proteome and phosphoproteome analyses using combination of TMT 10-plex labeling, 
extensive 2D-LC peptides separation and Q Exactive MS analysis. (d) Validation of 
cancer driver genes expression. MS-based quantification of human-specific peptides 
expression agreed with the HGG genotypes. (e) Principal component analyses (PCA) 
separate sample groups by genotypes. Graphs show PCA analyses results (PC1 and PC2) 
for whole proteome and phosphoproteome. (f) Unsupervised hierarchical clustering 
analyses cluster samples by genotypes. Heatmap shows hierarchical clustering analyses 
using top 1,000 most variable proteins and top 3,000 most variable phosphosites 
respectively. 
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pattern of NTRK > PDGFRA >cortex according to IKAP. We accept this kinase-to-
kinase relationship if IKAP inferred AKT1 activity shows the same pattern as PRKCE. 
Moreover, since AKT1 S473 phosphorylation is detected in our data, we further require 
the measurement of phosphorylation on S473 follow the same DE pattern). 
 
 
TF activity inference by integrative analysis of transcriptome, proteome and 
phosphoproteome 
 
 TF activity was derived from target gene expression in transcriptome and whole 
proteome clusters and was further validated by the measurements of TF whole protein 
expression and phosphorylation. Proteins from each WP-C were first overlapped with 
targets of TFs according to publicly available TF-target relationship from the Encode 
database158 to search for TFs with differential activity among samples. Fisher exact test 
was performed to determine the significance of this overlapping, which was followed by 
B.H. FDR correction. P value cutoff was set to 0.05. Similarly, we overlapped the known 
target genes of TFs with differentially expressed genes determined by student T test 
comparing HGG samples with normal cortex in the transcriptome data with the same 
criteria. We only accepted TFs that passed cutoffs in both transcriptome data and whole 
proteome data. This list was then further filtered by the measurements of whole protein 
and phosphorylation data. We require that either the protein or phosphorylation is 
differentially expressed among sample groups. To construct a putative HGG network that 
links signal cascades to TF regulations. We applied similar rules as construction of 
kinase-to-kinase network introduced above. For the interplays between kinases and TFs, 
we incorporated relationship of kinase-substrate phosphorylation and TF-target 
information from PhosphoSitePlus and Encode database respectively. 
 
 
Pathway activity measurement using alterations of annotated functional 
phosphosites 
 
 Most of pathway activity inference strategies were based on gene expression at 
transcripts level or proteins expression level, which are not accurate indexes of protein 
activity, especially for signal transduction proteins whose activity are mainly regulated by 
protein phosphorylation. Here we modified a transcripts expression based pathway 
activity inference strategy159 to compute PI3K-AKT pathway activity using 
phosphorylation changes. Instead of defining a subset of genes in the pathway to optimize 
discriminative power through computational training, we directly selected proteins that 
have differential activity according to phosphorylation changes in reported functional 
sites compare HGG tumors to cortex to summarize pathway activity. Formula is as 
below: 
 

a(P) =  
 

 Where k is the number of proteins with different activity. Fi is calculated in two 
steps: average log2 fold changes of proteins with multiple activation and/or inhibition 
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sites that are differentially phosphorylated between protein  in tumors over normal 
cortex was first calculated, and then this averaged value of each protein was applied for 
the formula above.  is the functional annotation of phosphorylation. If the 
phosphorylation is reported to play a positive role in tumor biology,  is +1; a negative 
role,  is -1. Bootstrap was performed with replications of 10,000 times to determine the 
significance of pathway activity difference compare NTRK HGG to PDGFRA HGG. 
 
 
Combination of mouse and human HGG data to prioritize putative cancer genes 
 
 Since we demonstrated the distinct oncogenic potency of the two RTK cancer 
drivers in mice, oncogene-responsive changes can be restricted to genes with an 
expression pattern that correlates with the distinct oncogenic potency of two RTKs. 
Mouse transcripts expression that follow the expression of NTRK > PDGFRA > Cortex 
was first extracted. To be stringent, we require the fold difference between NTRK HGG 
and PDGFRA HGG larger than or equal to 2 and B.H. adjusted student T test P value 
<0.05. Moreover, only genes that have consistent expression pattern in either whole 
proteome or phosphoproteome were accepted as final oncogene-responsive changes in 
mice HGG. A list of genes that have higher expression in human cases with NTRK 
fusions than cases with PDGFRA mutations in transcriptome data were pulled out with a 
cutoff of P value 0.05 and fold change 2. Finally, the two lists of genes from mice and 
human were overlapped for convergent oncogene-responsive changes. 
 
 

Results 
 
 
Deep quantitative analysis of whole proteome and phosphoproteome of multiple 
HGG mouse models and immunoblotting validation 
 
 To provide a deep mouse HGG proteome and phosphoproteome landscape we 
used our newly developed MS pipeline with extensive peptide separation power and high 
mass resolution148,150,151. Mouse HGG samples were generated by intracranial 
implantation of p53-null primary astrocytes transduced with either PDGFRA D842V 
mutation or the TPM3-NTRK1 fusion, two oncogenic RTKs found in human HGGs46,48 
(Figure 3-1a, b, referred to as PDGFRA HGG and NTRK HGG, respectively). The HGG 
and normal mouse cortex (control) samples were submitted to proteome, 
phosphoproteome and transcriptome profiling. Multiplexed isobaric labeling was used to 
enable massively parallel proteome and phosphoproteome quantification of ten samples 
(Figure 3-1c). A total of 30 whole proteome peptide fractions and 20 phosphoproteome 
peptide fractions were acquired through a basic pH reverse phase liquid chromatography 
(LC) pre-fragmentation followed by an up to 9 hour acidic pH reverse phase LC to allow 
the maximum peptide separation62,160. As a result, 13,860 proteins (11,941 gene products, 
200,454 peptides and 3,264,804 MS2 scans) and 30,431 phosphosites (5,959 
phosphoproteins, 45,574 phosphopeptides, 1,829,889 MS2 scans) were identified (<1% 
false discovery rate, Figure 3-1c). Among them, 13,567 proteins (11,718 gene products) 
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and 28,527 phosphosites were quantified, representing the deepest HGG proteomic 
datasets available. 
 
 To evaluate the quality of the datasets, we examined the MS-based results of the 
two transduced human oncogenes and some well-known phosphorylation events, as well 
as the classification of all measurements. The protein expression levels of human  
PDGFRA D842V and TPM3-NTRK1 agreed with the HGG genotypes (Figure 3-1d). 
MS data of specific phosphosites were also consistent with immunoblot assays described 
previously in these HGG mouse models: AKT S473, PRAS40 T247, PDGFRA Y742, S6 
S235 and S6 S236 (Figure 3-2)46. Principal component analysis and hierarchical 
clustering analysis revealed that the two RTK oncogenes drive distinct proteome, 
phosphoproteome and transcriptome profiles (Figures 3-1e, f, and 3-3a, b). In the MS 
analysis, the intra-group replicated samples showed minimal variations with small 
standard deviation, whereas the inter-group comparisons exhibited differences with much 
larger standard deviation (Figure 3-4a, b). For transcriptome profiling, RNAseq 
replicates from a second cohort of HGGs displayed high reproducibility of these HGG 
mouse models (R2 > 0.95, Figure 3-5). Together, these results indicate the high quality of 
our omics data sets and demonstrate that the two oncogenic RTKs drive HGGs with 
reproducibly distinct global proteome and phosphoproteome profiles. 
 
 We further analyzed the correlation and profiling depth of proteome and 
transcriptome. The transcript levels and protein abundances showed a moderate 
correlation (Figure 3-3c, R2 = 0.5), consistent with previously reported datasets35,161. In 
12,842 detected transcripts (FPKM > 1), 10,838 (84%) corresponding proteins were 
mapped by MS (Figure 3-3d). Deep proteomic profiling depth was also exemplified by 
high coverage of low abundance regulatory proteins, such as kinases (84%)62,162. In 
addition, we investigated peptide coverage of each protein in this shotgun proteomics 
analysis. More than 96% of proteins were identified by at least two peptides  
(Figure 3-3e), and the average coverage of theoretically observable protein sequences 
reached 42% (Figure 3-3f). Moreover, we estimated the phosphoproteomic profiling 
depth by comparing to all previously curated mouse phosphosites in the PhosphositePlus 
database, the most comprehensive protein modification database153. Our 
phosphoproteome covered approximately 68% of the mouse phosphosites collected from 
all cell types and tissues, and contained 12,354 novel phosphosites not in the database. In 
summary, these data present a paradigm of one of the deepest proteome and 
phosphoproteome analyzed in cancer studies. 
 
 
Globally differential regulation of the proteome and functional modules in the HGG 
tumors 
 
 We first identified differentially expressed (DE) proteins among mouse cortex, 
PDGFR and NTRK HGGs, and performed gene coexpression clustering, pathway 
analysis, and functional module classification by WGCNA154 and ClueGO packages155,156 
(Figure 3-6a). A total of 4,703 DE proteins and 6,768 DE phosphosites (2,301 
phosphoproteins) were identified and distributed into 5 whole proteome coexpression 



 

45 

 
 
Figure 3-2. MS-based quantification is accurate. 
MS measurements of phosphorylation events are highly consistent with previous 
immunoblot assays comparing PDGFRA-driven HGGs to normal cortex46. 
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Figure 3-3. Deep proteomic data achieved through extensive peptide 
fractionation. 
(a) Principal component analysis (PCA) of transcriptome separates samples by 
genotypes. Graph shows PCA analysis result (PC1 and PC2) for transcriptome. (b) 
Unsupervised hierarchical clustering of transcriptome clusters samples by genotypes. 
Heatmap shows hierarchical clustering of transcriptome using top 3,000 most variable 
transcripts. (c) Transcriptome abundance and proteome abundance displays moderate 
correlation. Scatter plot shows log2 level transcripts FPKM and their corresponding 
proteins scans per thousand amino acids. (d) High percentage (84%) of transcripts shows 
corresponding protein expression. Histogram distribution of the log2 level FPKM value 
of transcripts and the log2 level FPKM value of proteins. A threshold of FPKM equals 1 
is marked. (e) Pie plot illustrates particularly high number of peptides identified for each 
protein using our MS-based analysis platform. (f) High percentage of theoretically 
observable amino acid sequence coverage achieved through our MS-based analysis 
platform. Histogram distribution shows amino acid sequence coverage of theoretically 
observable peptides for whole proteome. 
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Figure 3-4. MS-based proteomic analyses specify particularly small quantitative 
variations between replicates. 
(a) Pairwise standard deviation matrix of whole proteome and phosphoproteome displays 
particularly small variations between replicates. (b) Examples show distributions of 
representative Log2 level whole proteome and phosphoproteome variations between 
PDGFRA-driven HGG biological replicates and between two HGG tumors. 
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Figure 3-5. HGG mouse models are reproducible. 
Comparisons of RNAseq results on batch2 and batch1 HGG mouse models show highly 
consistent transcript abundance from tumors generated by independent experiments. 
Scatterplots show FPKM values of genes in batch1 and batch2 HGG mouse models. 
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Figure 3-6. Global network analyses using coexpression clustering and pathway 
functional grouping identify both canonical HGG network modules and multiple 
new pathways and network modules in HGGs. 
(a) Overview of pathway and network module analysis strategy. Differential expression 
(DE) analysis was carried out through ANOVA with a cutoff of BH adjusted p value 
0.05. Fold change cutoff was set to 1.5 and 2 for proteome and phosphoproteome 
respectively. WGCNA package was applied for coexpression clustering analysis using 
DE genes. Each coexpression cluster was utilized for pathway and network module 
analysis using ClueGO. (b, c) Coexpression clustering analysis detects multiple DE 
protein or phosphoprotein coexpression clusters with distinct expression patterns. 
Heatmap shows expression patterns of DE proteins in whole proteome and 
phosphoproteome clusters identified through WGCNA. (d, e) Heavily interconnected 
network modules are identified in WP-C1 and PP-C2 respectively. Graphs show top 
network modules detected in WP-C1, PP-C2 respectively. Each node represents a 
pathway. Circular layout was applied to present network modules. Pathways that are 
functionally related are connected by edges and then grouped to network modules 
represented by distinct colors. Node size represents pathway enrichment significance. (f) 
Summary of pathways detected in each co-expression cluster. Representative pathways 
detected in each cluster were organized based on their general biological processes. Color 
scale represents B.H. adjusted p value derived from pathway analysis. 
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clusters (WP-C) and 5 phosphoproteome coexpression clusters (PP-C) respectively 
(Figure 3-6b, c), leading to 67 functional modules. As expected, the two largest modules 
rewired in tumors compared with normal cortex are cell cycle (in WP-C1, Figure 3-6d) 
associated with tumor cell proliferation, and the PI3K signaling cascade (in PP-C2, 
Figure 3-6e), which transduces signals downstream of RTKs. Collectively, a series of 
module groups including cancer signaling, gene expression, cell adhesion, metabolism, 
and neuronal functions are rewired in HGG tumors (Figure 3-6f). Notably, three clusters 
(WP-C1, PP-C1, and PP-C2) display similar alteration patterns: cortex < PDGFRA HGG 
< NTRK HGG (Figure 3-6b, c), and the majority of known glioma pathways are 
enriched in these 3 clusters (Figure 3-6f), suggesting that NTRK HGG activates similar 
oncogenic pathways but with a greater magnitude of response at the global pathway level 
than PDGFRA HGG. Moreover, the majority of HGG cancer signaling pathways are only 
altered in the phosphoproteome but not in the whole proteome (Figure 3-6f), underlining 
the indispensable role of phosphoproteome profiling to decode oncogenic signaling. 
Thus, these results suggest RTK oncogenes drive massive rewiring of signaling networks 
at phosphorylation and/or protein expression level in the HGG mice. 
 
 We then investigated the global changes of regulatory family proteins including 
transcription factors (TFs), epigenetic genes, kinases and cancer genes in the HGG 
tumors. Regulatory proteins in general are present at low abundance62, thus are difficult 
to analyze without highly sensitive methods. Nevertheless, our deep profiling 
systematically characterized both whole protein and phosphorylation levels of a large 
number of regulatory proteins (Figure 3-7). Strikingly, we observed a global increase of 
protein expression and phosphorylation of most of regulatory protein families in HGG 
tumors (P value <0.001). The majority of these proteins are expressed and 
phosphorylated even higher in NTRK HGG tumors when compared with PDGFRA 
HGGs. Indeed, most top DE genes show the expression pattern of NTRK > PDGFRA > 
cortex (Figure 3-7b, c, d, e, f, g, and h), including well-known master regulators (e.g. 
CHEK1, MAP3K1, PRKD1, INSR, and RB1) of HGG oncogenic pathways. Numerous 
other regulatory proteins (LYN, HMGB2, HMGA2, CD74, and CTNNB1) also fall into 
this pattern. Lyn (Figure 3-7b) is a SRC family tyrosine kinase that enhances Glut-4 
translocation to the cell membrane to increase glucose uptake163, a hallmark of cancer 
metabolism164. HMGB2 and HMGA2 (Figure 3-7c, d) are transcription and chromatin 
modulators that promote stemness and tumorigenicity in HGG165. CD74 (Figure 3-7e) is 
an attractive candidate target for immunotherapy that is present in limited amounts in 
normal tissues but high levels on a variety of hematological tumors166,167. CTNNB1 
(Figure 3-7f) regulates cell adhesion and WNT signaling168. Thus, our results indicate an 
active role for TFs, epigenetic genes, kinases and cancer genes to reprogram signaling 
networks and maintain tumor homeostasis. Specifically, the NTRK genotype drives 
stronger global reprogramming than the PDGFRA genotype. 
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Figure 3-7. Deep proteomic and phosphoproteomic profiling shows a global 
increase of protein expression and phosphorylation of most of regulatory protein 
families in HGG tumors. 
(a - h) Deep proteomic data analyses show a global increase of protein expression and 
phosphorylation of most of regulatory protein families (Kinase, epigenetic genes, 
transcription factors and cancer genes) in HGG tumors compare to cortex, with higher 
magnitude of increase in NTRK-driven HGG than PDGFRA-driven HGG. Scatter-
histogram graphs of regulatory family proteins expression and phosphorylation 
comparing both HGG tumors to cortex and NTRK-driven HGGs to PDGFRA-driven 
HGGs. B.H. adjusted Student T test p values of 0.05 in both pairwise comparisons plus 
fold change (FC) cutoff of FC(NTRK/PDGFRA) * FC(HGG/cortex) > 1.52 for proteome 
and >2 for phosphoproteome are applied for differential expression analyses. DE genes 
are shown in red. Magnitude of change is represented by dot size. Top five altered 
proteins and phosphoproteins with the largest magnitude of alterations are labeled. The 
distributions of pairwise differences are shown by histograms. 
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Figure 3-7. Continued.  
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Multiple omics integration identifies master regulators (kinases and TFs) in the 
HGG models 
 
 Since protein kinase activity can be inferred by substrate phosphorylation levels 
using computer programs, we used IKAP157, a machine learning algorithm, to evaluate 
the activities of 187 kinases, 41 of which are reprogrammed in HGGs. Hierarchical 
clustering analysis classified these kinase activities into 3 major clusters (Figure 3-8a), 
all showing differential regulation among cortex, PDGFRA, and NTRK HGGs. Multiple 
known kinases in gliomagenesis are identified in HGGs, encompassing AKT, PKC, MAP 
Kinase cascade, and SRC family Kinases39,169-171. Other kinases regulating key 
intracellular systems are rewired as well, including AMPK (PRKAA1, PRKAA2) and 
p21-activated kinases (PAK1, PAK3). AMPK is a metabolic master sensor regulating 
glucose transporter GLUT4 production, fatty acid β-oxidation, and mitochondria 
biogenesis172. PAKs regulate cytoskeleton reorganization and cell motility173. HGGs also 
show higher levels of CDK5, CAMK2A, and CAMK2D, compared with normal cortex. 
Although these kinases are well-characterized regulators of neuronal function and 
synaptic plasticity, they are also expressed in glioblastoma, where they play roles in 
migration, invasion, mitochondrial regulation, and calcium signaling174-176. We further 
summarized the activities of these kinases at the level of kinase superfamilies. While 
AGC (cyclic nucleotide dependent family, protein kinase C family, ribosomal S6 family 
and related kinases), CMGC (cyclin-dependent kinases, mitogen-activated protein 
kinases, glycogen synthase kinases and cdk-like kinases) and CAMK (primarily kinases 
modulated by calcium/calmodulin) superfamily kinases are turned on significantly in 
HGG tumors (P value <0.001, Figure 3-9), NTRK HGGs display even higher activity in 
AGC and CMGC superfamilies than PDGFRA HGGs, supporting stronger cell 
proliferation signaling and cell cycle rewiring177 (Figure 3-8b).  
 
 We constructed a kinase activation network by incorporating known kinase-to-
kinase connections in the PhosphositePlus database, with consistent co-activation patterns 
in our datasets. This kinase activation network can be classified into 3 major functional 
groups (Figure 3-8c). Group 1 shows the co-activation of PKC, PKA, SRC, MAPK, and 
AKT, indicating strong and coordinated activation of the RTK-PI3K-AKT oncogenic 
pathway. Group 2 manifests co-activation of AMPKA1 and EEF2K, suggesting the 
rewiring of energy metabolism. In contrast, group 3 displays consistent attenuation of 
ATM, ATR, PRKDC, and CHEK2 activities, highlighting the inhibition of DNA repair, 
apoptosis, and cell cycle checkpoint functions in HGG tumors. Considering that AKT is 
the central node of this core HGG kinase network, we further analyzed the output of 
kinase activation on AKT substrates (Figure 3-8d). 34 AKT substrates (70% of DE 
substrates) show a phosphorylation pattern in agreement with AKT activity  
(Figure 3-10). The top activated AKT substrates are cell cycle and proliferation 
regulators (CHEK1 S280 and BRCA1 S686), central glucose metabolism regulators (e.g. 
AMPKA1 S496 and AS160 T649) and migration and angiogenesis regulators (e.g. eNOS 
S1176, VIM S39, and FLNC S2234, Figure 3-8d). Similar results were obtained for the 
co-regulation of other kinase-substrate connections (AMPKA1, CDK5, MAPK3, ATR, 
ATM, PAK1, and FYN, Figure 3-11). Collectively, our comprehensive kinase activity 
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Figure 3-8. Deep phosphoproteome analysis reveals active kinases, kinase families 
and a central kinase-to-kinase network in HGG tumors. 
(a) Heatmap of hierarchical clustering of reprogrammed kinases with activity derived 
from substrate phosphorylation in HGG tumors. Kinase activity was inferred from 
substrate phosphorylation via a machine learning algorithm called IKAP. (b) 
Summarization of individual kinase activity into kinase superfamily shows stronger 
rewiring of AGC and CMGC superfamily in NTRK-driven HGG than PDGFRA-driven 
HGG. Kinome tree map shows pairwise kinase activity comparison inferred by 
phosphorylation of substrates. Chi-square P value of differentially phosphorylated kinase 
superfamilies are shown. Magnitudes of kinase activity difference are represented by 
length of bars located outside of the kinome tree circle. (c) Construction of core HGG 
kinase-to-kinase network. A kinase activation network was constructed by incorporating 
known kinase-to-kinase connections in the PhosphositePlus database, with consistent co-
activation patterns in our datasets. The heat map keys show changes in protein expression 
(Whole), phosphorylation (Phospho.) and substrates-inferred activity (activity). Kinase 
activation network were constructed based on activity. This network can be further 
classified to three groups circled by colored ovals. Red and blue ovals indicate groups 
that are activated and inhibited in HGG respectively. (d) Substrates activated by AKT, 
the central hub of kinase-to-kinase network in HGGs. Figure shows AKT regulated 
substrates and their corresponding phosphosites that are organized according to their 
annotated functions. The magnitude of change is represented by substrate font size. 
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Figure 3-9. AGC, CAMK and CMGC kinase superfamilies display higher activity 
in both HGG tumors compare to cortex. 
Kinome tree maps show kinase activity comparing NTRK-driven HGG to cortex and 
PDGFRA-driven HGG to cortex respectively. Pairwise comparisons of Kinase 
superfamilies with a Chi-square P values < 0.05 are labelled. Magnitude of kinase 
activity difference is represented by length of bars located outside of the kinome tree 
circles. 
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Figure 3-10. Evaluation of AKT regulated substrates. 
(a) A high percentage of known AKT substrate sites were identified in the deep 
phosphoproteome. Bar graph shows reported substrate sites, quantified phosphosites and 
differentially phosphorylated sites in our data. (b) Differentially phosphorylated 
substrates that are regulated by AKT in HGGs. Scatter plot of log2 level changes 
compare HGG tumors to cortex and compare NTRK-driven HGG to PDGFRA-driven 
HGG. Substrates with the same phosphorylation pattern as the AKT active site (S473, 
located at upper right) were accepted as AKT regulated substrates. 
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Figure 3-11. Heatmaps display differentially phosphorylated substrates (with up-
regulated phosphorylation in HGG tumors) of other active kinases derived from 
kinase-substrate analysis.  
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analysis enables the identification of master kinases and central kinase activation 
networks in HGG tumors.  
 
 We also explored the activity of TFs through integrative analysis of 
transcriptome, proteome and phosphoproteome via a systems biology approach in 
multiple steps (Figure 3-12a). (i) TF activities were derived from target gene expression 
in either transcriptome or clustered proteome (WP-Cs), resulting in two lists of 47 and 46 
TFs. (ii) Factors common to both lists showed consistent changes of 33 TFs. (iii) 
Additional data from whole proteome or phosphoproteome supported the activation of 26 
out of 33 TFs (Figure 3-12b). For instance, 5 TFs show active status based upon the 
increase of phosphorylation at the activation sites (c-MYC S62, JUND S100, JUN S73, 
BRCA1 S686, and EP300 S2312). Among the most activated TFs, were the TFII family 
(GTF2B, TAF1, TAF7, and TBP) of general transcription factors, which assemble the 
RNA polymerase II pre-initiation complex and control general transcription rate; and the 
transcription suppressor REST, a chromatin modifier in brain178. Consistently, REST 
target gene expression was low in the tumors and high in normal cortex (Figure 3-12b, 
WP-C1, WP-C5), implicating a possible role of REST in HGG tumor transformation 
through suppression of target gene expression. Similar to REST, we also found the up-
regulation of SUZ12, a polycomb repressive complex 2 (PRC2) component associated 
with silent chromatin179 and CTBP2, a repressor that recruits histone deacetylases and 
methylases to target genes180. Thus, this integrative analysis reveals the activation of both 
TF activators and suppressors, which lead to distinct reprogramming of tumor cell 
transcriptome and proteome. 
 
 Finally, we developed a kinase-TF network by linking the 41 deregulated kinases 
with 26 TFs and gene targets (Figure 3-12c). This core network consists of TFs (c-MYC, 
JUND, JUN, EP300, BRCA1, and CEBPB) and kinases (e.g. AKT, MAPK, AMPK and 
CDK5). The c-MYC family (MYC, MAX) and AP-1 family (JUN, JUND) regulate a 
variety of central biological processes in tumorigenesis. Indeed, more than 100 c-MYC 
targets were transcriptionally active, strongly supporting the central role of c-MYC in 
HGG tumors. It is likely that c-MYC is activated by transcriptional up-regulation by JUN 
and/or JUND, as well as phosphorylation by MAPK3 and/or CDK5 (Figure 3-12c). We 
further validated c-MYC protein expression and phosphorylation in the HGG tumors by 
immunoblot assays (Figure 3-12d). 
 
 Close examination of 5 master TFs (c-MYC, JUND, JUN, EP300, and BRCA1) 
uncovered major target genes in HGGs (Figure 3-12c). The most transcriptionally 
activated biological processes are related to proliferation including ribosome biogenesis, 
translation, and mRNA processing (targets of c-MYC and BRCA1), energy metabolism 
including mitochondrial and metabolism (targets of c-MYC, JUN and EP300), and cell 
migration including extracellular matrix and focal adhesion (targets of JUN and EP300). 
In the kinase-TF network, c-MYC, JUN and EP300 are activated via phosphorylation by 
master energy and proliferation sensors kinases (AMPK and MAPK). Notably, multiple 
metabolic enzymes activated by these 3 TFs are rate-limiting during proliferation and 
energy stress, such as adenine phosphoribosyltransferase (APRT), regulating a nucleotide 
salvage pathway to synthesize purines de novo181, and ornithine decarboxylase (ODC1) 
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Figure 3-12. Integration of multiple deep omics data enables identification of active 
TFs and construction of a core kinase to transcriptional regulation network in 
HGGs. 
(a) Overview of the integrative analysis strategy for TF activity inference and 
construction of kinase to transcriptional regulation network by incorporating 
transcriptome, whole proteome, phosphoproteome, kinase-substrate database and TF-
target database. (b) Active TFs in HGGs identified by integrative analysis. TF activities 
are indicated by the B.H. adjusted FDR values derived from either differential expressed 
target mRNAs or differential expressed target proteins in whole proteome clusters. MS-
based quantification of protein expression and phosphorylation of TFs are also shown. (c) 
Integrative analysis reveals a putative core signaling network encompassing active 
kinases, active TFs, and transcriptionally activated target genes. Black arrows represent 
activation through phosphorylation. Red arrows represent TFs transcriptionally activate 
targets gene expression. Representative target genes that are transcriptionally activated 
are organized according to their functions. (d) Immunoblot assay on c-MYC validates the 
overexpression and activation of c-MYC. Western blotting was performed on c-Myc 
protein expression and c- -tubulin is shown as a loading 
control 
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for polyamine biosynthesis in response to growth stimulation. In summary, our systems 
biology approaches utilize multi-layer information to prioritize central HGG TFs, kinases 
and their interplay in HGG tumors. 
 
 
NTRK HGG display stronger PI3K-AKT signaling activity, higher proliferation 
index and shorter latency than PDGFRA HGG 
 
 The bioinformatics analysis suggests stronger global cancer network rewiring in 
NTRK HGG than PDGFRA HGG, indicating higher oncogenic potency of NTRK than 
PDGFRA mutations. To evaluate the oncogenic potency of the RTK cancer driver genes, 
we modified the PAC algorithm that was initially designed for gene expression 
analysis159, to compute the summed PI3K-AKT signaling activity. The protein activity 
was derived from the levels of its phosphosites with known functions, which either 
promote or inhibit tumorigenesis (see Methods). In both HGGs, the PI3K-AKT pathway 
was clearly active and invoked similar downstream pathways, such as protein synthesis 
(S6, 4EBP1 and EIF4B), cell cycle progression (RB1, MYC and RBl2), cell proliferation 
and angiogenesis (BRCA1, eNOS, ERK) (Figure 3-13a). When comparing 27 regulatory 
phosphosites of these proteins that were statistically different between NTRK and 
PDGFRA HGGs, the majority (n = 23) showed higher alteration in NTRK HGG than 
PDGFRA HGG (Figure 3-13b). Consistently, the NTRK HGG exhibited 1.45-fold 
greater PI3K-AKT signaling activity (P value < 0.05), suggesting that the TPM3-NTRK1 
fusion gene harbors stronger oncogenic potency than the PDGFRA D842V. 
 
 To experimentally validate our predicted oncogenic potency of TPM3-NTRK1 
and PDGFRA D842V, we analyzed cellular proliferative indexes and Kaplan-Meier 
survival curves of both HGG mice. The proliferative index was defined by the proportion 
of tumor cells that expressed the proliferation marker Ki67 (Figure 3-13c). Consistent 
with enhanced level of PI3K-AKT signaling, the proliferative index of NTRK HGG (0.32 
± 0.04) was 1.4 fold higher than that of PDGFRA HGG (0.22 ± 0.07, Figure 3-13d). 
NTRK HGG mice developed with much shorter latency than PDGFRA mice (median 
survival time of 16 days and 30 days, respectively, Figure 3-13e).  
 
 TPM3-NTRK1 and PDGFRA D842V both activated PI3K-AKT signaling, but 
with different potency. Strikingly, MS measurement showed higher PDGFRA protein 
expression in NTRK HGG than PDGFRA HGG. This was validated by Western blotting 
(Figure 3-14a). To distinguish human PDGFRA D842V oncogene product from mouse 
PDGFRA, we quantified endogenous mouse PDGFRA peptides and found that the 
TPM3-NTRK1 induced dramatic overexpression of mouse PDGFRA (Figure 3-14b). 
Many other RTKs (EphA2, Egfr, Flt4, Ptk7 and Ror2) also showed higher expression in 
NTRK HGG than PDGFRA HGG (Figure 3-14c). Transcriptomic measurement 
consistently indicated the up-regulation of these RTKs (Figure 3-15). Western blotting 
further confirmed EphA2 overexpression and activation reflected by concomitant 
phosphorylation (Figure 3-14d). To identify the mechanism driving increased RTK 
expression, we analyzed TF activities that promote RTK transcription according to the 
MSigDB database182. The TF activities were estimated by phosphorylation of active sites 
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Figure 3-13. NTRK-driven HGG displays stronger PI3K-AKT signaling activity, 
higher cell proliferation index and shorter mice tumor onset latency than PDGFRA-
driven HGG. 
(a) PI3K-AKT pathway is active in both PDGFRA-driven HGG and NTRK-driven HGG. 
Simplified PI3K-AKT pathway diagram shows activity change according to 
phosphorylation (Protein expression change of PTEN is included). Color scale represents 
difference between HGGs and cortex. (b) MS-based measurements of phosphorylation on 
reported activation or inhibition sites show that NTRK-driven HGGs in general have 
stronger PI3K-AKT pathway dysregulation than PDGFRA-driven HGGs. (c) 
Representative Ki-67 IHC-stained sections on PDGFRA- and NTRK-driven HGGs to 
examine the proliferative indexes of HGG tumors. (d) Bar plots of proliferation indexes 
according to Ki-67 IHC demonstrate more rapid tumor growth in NTRK-driven HGG (n 
= 4) than PDGFRA-driven HGG (n = 5, p< 0.05), consistent with higher oncogenic 
potency in NTRK-driven HGG derived from PI3K-AKT pathway activity computation. 
(e) K-M curve confirms more rapid mice tumor onset of NTRK-driven HGGs (n = 12) 
compared to PDGFRA-driven HGGs (n = 12). 
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Figure 3-14. NTRK fusion gene induces an enhanced overexpression and 
activation of other RTKs, suggesting a forward feedback loop within PI3K-AKT 
signaling. 
(a) Immunoblot assay on total PDGFRA expression is consistent with MS measurement. 
α-tubulin is included as a loading control. (b) NTRK fusion gene induces overexpression 
of endogenous mouse PDGFRA in NTRK-driven HGG. Mouse specific PDGFRA 
peptides were extracted and applied for quantification of endogenous PDGFRA 
expression. (c) NTRK fusion gene induces up regulation of multiple other RTKs in 
NTRK-driven HGG. Other RTKs that show differential expression between NTRK- and 
PDGFRA-driven HGGs are shown in bar plot. (d) Immunoblot assay on EPHA2 protein 
expression and phosphorylation (S898) demonstrates its overexpression and activation in 
NTRK-driven HGG. α-tubulin is included as a loading control. (e) TFs that promote the 
expression of the differentially expressed RTKs are also more active in NTRK- than 
PDGFRA-driven HGGs. Bar plot shows MS measurements of phosphorylation on 
activation sites of the TFs that promote the expression of differentially expressed RTKs. 
(f). Model shows NTRK fusion induces overexpression of other RTKs to form a positive 
feedback loop within PI3K-AKT pathway.  
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Figure 3-15. NTRK fusion induces up-regulation of other RTKs at transcriptome 
level. 
Boxplots show corresponding transcripts expression of differentially expressed RTK 
proteins in cortex, PDGFRA- and NTRK-driven HGGs  
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(Figure 3-14e) and the target gene expression (Figure 3-12). Together, these 
bioinformatics and experimental findings demonstrate that the NTRK fusion gene 
induced an enhanced overexpression and activation of other RTKs, suggesting a forward 
feedback loop within PI3K-AKT signaling, resulting in a more aggressive tumor than 
PDGFRA-driven HGG (Figure 3-14f). 
 
 
Combination of mouse and human HGG data prioritizes putative cancer genes 
 
 As mouse modeling of human cancer is an effective avenue to define gene 
alterations for cancer initiation and progression183, we used a cross species approach to 
integrate multi-omics mouse data with human cancer genomics data to explore cancer 
genes (Figure 3-16a). We first identified cancer driver responsive gene products (n = 
138) that are consistent across multi-omics data in mice HGG, and differentially 
expressed genes in cases with NTRK fusions compared to cases with PDGFRA mutations 
(transcriptome, n = 375) in human pediatric HGG. The overlapping genes with consistent 
changes were accepted as putative HGG cancer driver responsive genes (n = 20,  
Figure 3-16b). The majority of these genes were reported to function in cancer-related 
processes, including the regulation of cancer cell stemness, angiogenesis, tumor 
microenvironment, and invasion. For example, EPHA2 regulates cancer stem-like 
properties, drives self-renewal184,185, mediates ligand-independent promotion of cell 
migration and invasion in human HGG186 (Figure 3-16c). The expression of CD74 is 
associated with enhanced proliferation and invasion of multiple tumors, as well as patient 
survival and microglial response in glioblastoma187 (Figure 3-16d). This analysis 
underlines the strength of inter-species analysis to prioritize a core subset of cancer-
relevant candidates from massive multi-omics datasets. 
 
 

Discussion 
 
 As mRNA level is often moderately correlated with protein level35, there is a need 
to profile both the transcriptome and proteome to obtain a full picture of gene expression 
in cancer biology. Here we demonstrate the power of deep proteomics coverage and 
integration of multi-omics datasets to probe molecular mechanisms underlying 
tumorigenicity. Recent developments of optimized long gradient LC-MS/MS system148, 
refined phosphopeptide enrichment151, and advanced bioinformatics tools149,150 greatly 
improve the depth of proteomics profiling for cancer studies, detecting almost all of the 
expressed proteins. Such a high coverage allows the systematic analysis of proteins of 
low abundance, as exemplified by transcription factors and kinases. In parallel, a 
comprehensive phosphoproteome analysis offers complementary information about 
pathway/network activities, because many components in pathways are not changed at 
the protein level, but altered in phosphorylation states during signaling transduction. 
Although some known phosphosites are missed due to intrinsic limitations of the shotgun 
proteomics approach162, we have detected nearly all NTRK and PDGFRA regulating 
pathways in the KEGG database in the deep phosphoproteome dataset. 
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Figure 3-16. Combination of mouse and human HGG data prioritizes putative 
cancer genes. 
(a) Overview of multi-omics analysis across species. We used RTK mutations identified 
in human HGGs to develop the mouse HGG models under study. Cancer driver 
responsive changes detected in multiple omics data in mouse were incorporated with 
human omics data to prioritize conserved cancer genes. (b) Cancer driver responsive 
changes identified through cross species integrative analysis are well-reported cancer 
genes in HGG. Genes that show consistent changes across mouse and human omics data 
were classified according to their cancer relevant functions. Mouse transcripts expression 
that follow the expression pattern of NTRK > PDGFRA > Cortex and the fold difference 
between NTRK HGG and PDGFRA HGG were larger than or equal to 2 and P value 
<0.05 with consistent whole protein level or phosphoprotein level changes were accepted 
as oncogene responsive changes in mouse. Human transcripts expression that show 
NTRK > PDGFRA with fold change larger than or equal to 2 and P value <0.05 were 
intersected with oncogene responsive changes identified in mouse to prioritize cross 
species conserved changes in human.(c, d) Boxplots show Epha2 and CD74 expression in 
multi-omics data in human and mouse. Human mRNA boxplots compare expression 
levels of EPHA2 or CD74 between pediatric HGGs with mutated PDGFRA and HGGs 
with NTRK fusion genes.  
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 Isobaric labelling (e.g. TMT, and iTRAQ) is a powerful quantitative strategy for 
multiplexed deep proteomics profiling with high throughput and reproducibility22,29 
Although quantitative ratio compression often occurs with this method22,188,189, it also 
reduces experimental variations, and therefore has almost no impact on differential 
expression analysis after scale normalization22,29 (Figure 3-17). Moreover, our strategies 
of extensive peptide separation148 with biological replicates facilitate statistical inference 
and largely reduce the effect of ratio compression. 
 
 Recurrent mutations in the RTK/RAS/PI3K signaling axis occur frequently in 
virtually all adult glioblastomas, more than half of pediatric glioblastomas, and diverse 
other tumor types39,43,45. While this implies that the PI3K pathway is an important 
therapeutic target, the response to small molecule inhibitors of the pathway is highly 
variable and often difficult to predict, likely due to varied consequences of specific 
mutations within the pathway, combinatorial effects with co-occurring mutations, 
complex feedback regulation within the pathway and cross-talk with other signaling 
pathways. In the present study, we investigated the sensitivity of integrated analysis of 
multiple omics datasets to identify differences in HGGs driven by two different glioma-
associated RTK mutations in the same p53-null primary astrocyte population. 
  
 We presented a generic bioinformatics pipeline for prioritizing core signaling 
networks and master regulators in cancer proteomics studies. Massive reprogramming of 
molecular components occurs during the evolution from mortal to immortal status in 
cancer cells38. As improvement of profiling technologies allows the identification of 
thousands of these changes, prioritizing drivers and core regulators from the enormous 
amount of passenger changes becomes a rating-limiting step. Here, we first performed 
weighted co-expression clustering analysis to extract 10 proteome and phosphoproteome 
clusters from 4,703 differentially expressed proteins and 6,768 differentially 
phosphorylated phosphosites, which dramatically reduced the data complexity. This 
readily identified major pathways with well-established roles in glioma growth as well as 
clear connections with PI3K and mTOR signaling downstream of RTK activation43,67. 
Subsequently, co-regulated genes in each of the clusters were summarized to pathways 
and networks using the network analysis method, which further narrowed down these 
massive changes to 67 network modules. We also developed systematic protein activity 
inference strategies for kinases and transcription factors by integrating multi-omics data 
and a variety of databases to further prioritize 41 kinases, 26 TFs, and a core network 
consisting of 13 master regulators from these gene clusters and network modules. 
Importantly, this integrated approach extended beyond simple identification of pathways 
to illustrate differences between the two oncogenes. While oncogenic NTRK fusion 
genes are found in adult and childhood HGGs carrying multiple other mutations, they are 
also found in infant HGGs and childhood low-grade gliomas in which very few non-
synonymous mutations can be detected39,48,66,190,191. NTRK-driven HGGs showed a 
higher amplitude of pathway activation compared with PDGFRA-driven HGGs including 
a feed-forward upregulation of other RTKs consistent with the higher proliferative index 
and shorter tumor latency of the mouse HGGs, and the ability of NTRK fusions to act as 
potent oncogenic drivers in primary human tumors with minimal co-occurring mutations. 
Finally, we overlapped the most significantly altered omics datasets in mouse HGGs back 
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Figure 3-17. TMT-based quantification using MS2 method has essentially no 
impact on protein differential expression analysis after Z scale normalization. 
(a). Quantitative ratio compression occurred in TMT labeling strategy using MS2 
compare to MS3 method. MS3 strategy can essentially eliminate ratio compression with 
the cost of more duty cycles and the use of low resolution MS2 data for identification, 
which often compromise peptide/protein identification. Comparison between MS2 and 
MS3 methods on the same sample using TMT labeling shows smaller difference/variance 
measured in MS2 method compare to MS3 method, suggesting quantitative ratio 
compression in MS2 analysis of TMT labeling. (b). Z scale normalization essentially 
eliminates the effect of ratio compression on protein differential expression analysis. Z 
scale transformation of the same data shows almost exact same Z value distribution in 
MS2 and MS3 method, suggesting similar amount of DE proteins with the same Z value 
cutoffs for differential expression analysis comparing MS2 and MS3 methods.  
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to human transcriptome data to search for consistent alterations driven by NTRK and 
PDGFRA mutations across species, resulting in a list of 20 convergent alterations in 
mouse and human. Indeed, many of the prioritized networks (e.g. AMPK-EEF2K) and 
proteins (e.g. EPHA2, CD74) are reported to be functional in HGGs184,185,192. 
 
 With rapid improvement in omics technologies and accumulation of big datasets, 
this novel bioinformatics pipeline provides a general platform for prioritizing of master 
genes and core signaling networks in cancer omics study that will provide enhanced 
mechanistic understanding of the oncogenic process and illuminate potential therapeutic 
vulnerabilities. 
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CHAPTER 4.    INTEGRATED MULTI-OMICS ANALYSIS TO IDENTIFY A 
THERAPEUTIC VULNERABILITY IN RHABDOMYOSARCOMA 

 
 
 This study was a collaboration project between Dr. Michael Dyer’s group and our 
group. Michael Dyer’s group performed the genomic and epigenomic analyses, carried 
out drug screen assay and pre-clinical trials. Junmin and I designed the proteomics 
analysis experiments, and I performed the large-scale proteomics and phosphoproteome 
experiments and did the data analyses and integration. 
 
 

Introduction 
 
 To gain a better understanding of RMS disease recurrence and to provide 
additional preclinical models of pediatric solid tumors for the biomedical research 
community, Dr. Michael Dyer’s group has established a unique collection of orthotopic 
patient derived xenografts (O-PDX) over the past 6 years193. RMS tumors had the most 
efficient engraftment rate and the fastest time to engraftment. They have established and 
characterized O-PDX tumors of translocation negative ERMS tumors and translocation 
positive ARMS tumors from diagnosis and recurrence193. They performed whole genome 
sequencing (WGS), whole exome sequencing (WES) and RNA-Seq of the patient tumor 
and the matched O-PDX. They also performed clonal analysis to profile the clonal 
distribution in the O-PDX tumors relative to the patient’s tumor. This provides a unique 
resource to identify tumor vulnerabilities through integrative analysis with deep 
proteomic and phosphoproteomic data and test them in preclinical models in order to 
inform new clinical trails for RMS. This is particularly important because overall survival 
rates for RMS have not significantly improved in the past 20 years194. 
 
 Dr. Michael Dyer’s group attempted to target the RAS pathway in RMS by 
incorporating CDK4/6 inhibitors with MEK inhibitors as done for adult cancers with 
oncogenic RAS mutations68-71. While they achieved synergistic killing of a RAS mutant 
rhabdomyosarcoma cells in culture, there was no significant anti-tumor effect in vivo 
using O-PDX models of recurrent RMS (Figure 4-1). To determine how tumor cells 
escape the treatment and to identify a novel therapeutic vulnerability, we collaborated to 
perform epigenetic and proteomic/phosphoproteomic analysis of 17 RMS O-PDX tumors 
using advanced profiling strategies developed above148-151,168 and integrated those data 
with genomic and gene expression data to identify tumor vulnerabilities  
 
 To define the chromatin states and more efficiently analyze the transitions thereof 
across the genome, Dr. Dyer’s group performed chromatin Hidden Markov Modeling 
(chromHMM)195 using all 756 ChIP-seq datasets. And they focused our analysis of the 
epigenomic landscape of rhabdomyosarcoma on 3 broad categories and integrated those 
with the DNA methylation analysis. The found that there were 98 genes upregulated in 
ERMS relative to ARMS that had a ERMS specific superenhancer and there were 174 
genes that were downregulated in ERMS relative to ARMS that had an ARMS specific 
superenhancer (Figure 4-2). Many of these genes are implicated in myogenesis. Overall, 
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Figure 4-1. Targeting CDK4/6 in Rhabdomyosarcoma. 
(A) Simplified pathway map for the RAS and CDK4/6 pathways. Recurrent mutations 
have been reported in the genes encoding the proteins highlighted in purple and those in 
bold (MEK and CDK4/6) were targeted with small molecule inhibitors in this study. 
(B,C) Boxplot of gene expression (FPKM) from RNA-seq for each of the indicated cell 
cycle genes across ERMS (B) and ARMS (C) tumors. The gray bars represent the 
expression of each gene in primary human myoblasts. (D-I) Representative micrographs 
of ERMS and ARMS patient tumor sections with H&E staining, immunohistochemical 
staining for cyclin D2 (E) and cyclin D3 (H) and phosphorylated RB1 (F,I). A magnified 
view is shown in each corner. (J) Representative combination drug sensitivity study for 
the RD RMS cell line showing 10 different concentrations of palbociclib and 4 different 
concentrations of trametinib. Survival is plotted relative to untreated cells (100% 
survival) and complete killing (0% survival) with a positive control cytotoxic compound. 
(K) Plot of concentration versus time for palbociclib in orthotopic RMS tumor xenografts 
(blue) and plasma (red) for 3 independent mice per treatment group. The mean and 
standard deviation are plotted for each time point. These data were used to calculate the 
MED by comparison to plasma levels for palbociclib from patients. (L) Representative 
plot of tumor burden as measured by bioluminescence over time during a preclinical 
phase II study with the SJRHB013759_X1 O-PDX tumor. M) Representative images of 
mice with progressive disease in the placebo treatment group and the 
palbociclib+trametinib treatment groups   
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Figure 4-2. Differences in epigenetic profiles correlate with promoter/enhancer 
activity. 
A) Heatmap of the 18 chromHMM states used in this analysis. B) Heatmap showing the 
proportion of the 18 chromHMM states in ERMS and ARMS for the annotated regions of 
the genome. For the heatmaps in A and B, the proportion of individual marks or regions 
is directly proportional to the intensity of the blue color. C) Heatmap of the correlation 
between the ratio of gene expression (ERMS/ARMS) on the y-axis and the ratio of HMM 
state difference for ERMS/ARMS. D) Representative chromHMM for the GAS2 gene 
that is selectively expressed in ERMS. The gene boundaries are marked by dashed lines 
and the colors for each state are indicated in panel (A). The 2 states that are the highest 
proportion are full-height bars, and the remaining states are half the height. The intensity 
of each bar is proportional to the percentage of each state across all stages for that gene. 
For the bars that are half the height, the intensity is scaled starting at 50% of maximum 
intensity. E) Representative chromHMM for the NOS1 gene that is selectively expressed 
in ARMS and has a tumor type specific superenhancer upstream of the gene (boxed 
H3K27me3 region). F) Representative chromHMM for the AXL gene that is selectively 
expressed in myoblasts. G) Venn diagram for the genes that are upregulated in ERMS 
relative to ARMS and those that are downregulated (green). The overlap with genes that 
have differences in chromHMM state (blue) or tumor type specific superenhancers (red) 
are shown. Abbreviations: chromHMM, chromatin hidden markov modeling; FPKM, 
fragments per kilobase million.
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the ERMS tumors had epigenetic upregulation of genes enriched in pathways involved in 
extracellular matrix organization and morphogenesis during embryogenesis including 
limbs and the skeletal system. The ARMS tumors had epigenetic upregulation of genes 
enriched in pathways involved in muscle differentiation suggesting they have progressed 
further along the myogenic lineage than ERMS tumors. However, ARMS tumors also 
had upregulation of genes enriched in pathways involved in neurogenesis suggesting 
these tumors may have a mixed developmental phenotype. To further refine the 
myogenic lineage differences between ARMS and ERMS, these integrated analyses of 
the epigenome suggest that ARMS tumors are arrested at a later stage of muscle 
development (myogenic differentiation) than ERMS tumors (myogenic 
specification/determination). 
 
 Recently, mass spectrometry (MS)-based proteomics is emerging as the 
mainstream approach for unbiased analysis of the cancer proteome and 
phosphoproteome38,196. Together with advanced epigenetic profiling and DNA 
sequencing technologies, these methodologies provide an unprecedented opportunity for 
illuminating cancer therapeutic targets. 
 
 

Methods and Materials 
 
 Isobaric labeling, such as iTRAQ and TMT, is emerging as a powerful strategy 
for deep multiplexed proteomics analysis with high throughput and 
reproducibility29,62,188,189,197. One limitation associated with this method is that target 
peptide ions often co-isolated with other co-eluted peptide ions during LC-MS/MS 
analysis, which causes high noise level to compress quantitative ratios and decrease 
measurement accuracy. Fortunately, the ratio compression effect also alleviates 
experimental variations, and hence has only minor impact on protein differential 
expression analyses29,198. Moreover, the ratio compression can be diminished by 
extensive peptide fractionation, narrow isolation window, and post-MS correction188. 
Alternatively, the MS3 method can almost eliminate this ratio compression, but it 
requires longer duty cycles, specific MS settings, and the use of low resolution MS2 for 
identification, which often compromise the peptide/protein identification189,199. To 
balance the pros and cons associated with isobaric labeling, we implemented extensive 
fractionation through long gradient high resolution LC/LC-MS/MS to achieve deep 
proteome coverage and to reduce ion compression during quantification. In addition, we 
employed sample replicates to facilitate statistical inference of differentially expressed 
proteins, a widely adopted strategy used in proteomics analyses200-202. 
 
 
RMS O-PDX tumor tissue, myoblast and myotube cells for proteome and 
phosphoproteome profiling 
 
 108 Myoblast and myotube cells per sample were collected, washed twice with 10 
ml ice cold PBS, and followed by snap freezing. These processes were managed to be 
completed in 5 minutes. PDX-engrafted mice were anesthetized and perfused with 10 ml 
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PBS before sacrifice, center section of PDX tumor tissues were collected, homogenized, 
and followed by snap freezing. These steps were finished within 10 minutes. 
 
 
Protein extraction, digestion, labeling and pooling 
 
 Protein extraction, digestion, labeling and pooling were performed similarly as 
previously described201. RMS PDX tissues, myoblast and myotube cells per sample were 
lysed in freshly prepared lysis buffer (50 mM HEPES, pH 8.5, 8 M urea, 0.5% sodium 
deoxycholate and phosphatase inhibitor cocktail (PhosphoSTOP, Roche)). Protein 
concentration of sample lysates were quantified by BCA protein assay (Thermo Fisher 
Scientific) with titrated BSA as a standard. ~1 mg proteins per sample were first digested 
with Lys-C (Wako, 1:100 w/w) at room temperature for 2 h, diluted 4 times with 50 mM 
HEPES, pH 8.5, and then further digested with trypsin (Promega, 1:100 w/w) for 
overnight at room temperature. 1% trifluoroacetic acid was added to quench the digestion 
reaction, followed by desalting with Sep-Pak C18 cartridge (Waters), and the desalted 
peptides were dried by speedvac. Samples were then resuspended in 50 mM HEPES, pH 
8.5, and were labeled with 10-plex TMT reagents following the manufacturer’s 
instruction. Lastly, 10 isobaric labeled samples were pooled together with equal amount, 
desalted again by Sep-Pak C18 cartridge and then speedvac dried. 
 
 
Offline basic pH reverse phase liquid chromatography 
 
 The basic pH reverse phase liquid chromatography peptides pre-fractionation 
were performed on Agilent 1220 LC system as previously introduced201. The pooled 
TMT labeled sample was solubilized in buffer A (10 mM ammonium formate, pH 8) and 
separated on two XBridge C18 columns (3.5 μm particle size, 4.6 mm × 25 cm, Waters) 
into around 180 fractions with a 220 min long gradient started from 15% to 65% buffer B 
(95% acetonitrile, 10 mM ammonium formate, pH 8, flow rate: 0.4 ml/min). 5% of each 
combined fraction was dried for whole proteome analysis and the remaining 95% was 
dried by speedvac for phosphoproteome analysis. 
 
 
Refined phosphopeptide enrichment by TiO2 
 
 Phosphopeptide enrichment was performed following the refined protocol as 
previously introduced198. Briefly, peptides were added to clean TiO2 beads (GL sciences) 
with a peptide-to-beads weight ratio of 1:4 in binding buffer (65% acetonitrile, 2% TFA, 
and 0.5 mM KH2PO4) and incubate for 20 min. Enriched phosphopeptides were washed, 
eluted, dried, and dissolved in 5% formic acid for LC-MS/MS analysis. 
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Long gradient acidic pH reverse phase LC-MS/MS 
 
 The analysis was carried out based on our optimized platform as previously 
introduced198,201,203. The dried peptide fractions were reconstituted in loading buffer (5% 
formic acid), loaded on a reverse phase column (75 μm × 50 cm, 1.9 μm C18 resin (Dr. 
Maisch GmbH, Germany)) interfaced with an FUSION or Q Exactive HF mass 
spectrometer (Thermo Fisher Scientific). Peptides were eluted by an up to 6h 15-65% 
gradient of buffer B. (buffer A: 0.2% formic acid, 5% DMSO; buffer B: buffer A plus 
65% acetonitrile, flow rate: 0.25 μl/min). A butterfly portfolio heater (Phoenix S&T) was 
applied to heat the column at 65°C to reduce backpressure. The mass spectrometer was 
operated in data-dependent mode with MS1 settings of 60,000 resolution, 1 × 106 AGC 
target and 50 ms maximal ion time and top 20 MS/MS high resolution scans with MS2 
settings of 1 m/z isolation window with offset 0.2, 60,000 resolution, 100 ms maximal 
ion time, 1 × 105 AGC target, HCD, 33 normalized collision energy, and 40 s dynamic 
exclusion (35 normalized collision energy and 20s dynamic exclusion for 
phosphoproteome). 
 
 
Peptide identification by JUMP, a tag-based hybrid search engine 
 
 Peptide identification was performed using our recently developed JUMP search 
engine with improved sensitivity and specificity150. Commercially available database 
search engines can be divided into two categories: tag-based De novo sequencing (e.g. 
PEAKS with limited sensitivity) and pattern-based database search (e.g. SEQUEST, 
MASCOT). The JUMP software integrates these two methods to score putative peptides, 
showing significant improvements compared with these commercially available tools150. 
The JUMP software has already been used in numerous publications202,204-209. Analysis 
was done similarly as previously described201, MS/MS raw files were first converted into 
mzXML format and searched against a composite target/decoy database108 for FDR 
estimation. The target protein database was compiled from the Uniprot mouse and human 
database (Human database: 88,965 protein entries; Mouse database: 52,738 protein 
entries, downloaded in February 2015), the decoy database was generated by reversing 
target protein sequences. Spectra were searched with ± 10 ppm mass tolerance for both 
precursor ions and product ions with fully tryptic restriction, static modification for TMT 
tag on N-terminus and lysine (+229.16293), dynamic modification for serine, threonine 
and tyrosine (+79.96633, for phosphoproteome analysis), three maximal modification 
sites, two maximal missed cleavages, and the assignments of a, b, and y ions. Peptide 
spectrum matches (PSM) were first filtered by MS mass accuracy (~2 ppm, ± 4 standard 
deviations). PSMs of doubly charged peptides with JUMP Jscore of > 30 were applied for 
global mass recalibration prior to the filtering. The qualified PSMs were first grouped by 
precursor ion charge state and then further filtered by Jscore and dJn values. Cutoffs were 
applied on these values and were adjusted until a protein FDR < 1% was achieved. If one 
peptide was shared by multiple proteins, the protein with the highest PSM will represent 
the peptide according to the rule of parsimony202,210. 
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Phosphosite assignment by the Lscore from the JUMP software suite 
 
 To determine the reliability of phosphosites localization on peptides, we adopted 
the concept of the phosphoRS algorithm211 to compute phosphosite localization scores 
(Lscore, 0-100%) in each PSM the same as previously described201, Phosphosites were 
aligned to protein sequences to generate protein level Lscores in addition to the PSM 
Lscores. The protein Lscore was represented by the highest PSM Lscore if multiple 
PSMs were identified for one specific phosphosite. Since random assignments of PSMs 
containing ambiguous phosphosites often causes an excessively high number of 
unreliable phosphosites on proteins, we implemented series rules to alleviate the problem: 
(i) If the gap of PSM Lscores between the 1st and 2nd site > 10% for a singly 
phosphorylated peptide in one PSM, the top Lscore site was selected; (ii) Otherwise, we 
inspect the phosphosites in the corresponding proteins instead to select the sites with the 
highest protein Lscore. This allows low quality PSMs to borrow information inferred 
from the high quality PSMs; (iii) If both PSM and protein level Lscores were 
indistinguishable, a heuristic priority was assigned to phosphosites according to the order 
of occurrence: SP-motif, S, T and Y; (iv) If the PSMs did not satisfy any rule above, 
these PSMs were first sorted by JUMP Jscores, and then we selected protein phosphosites 
that had been determined by other PSMs of high Jscores. 
 
 
TMT-based protein and phosphosite quantification using the JUMP software suite 
 
 This analysis was carried out in the following steps similarly as previously 
reported201,212: (i) TMT reporter ion intensities of each PSM were extracted; (ii) the raw 
intensities were corrected according to isotopic distribution of each labeling reagent; (iii) 
PSMs with very low reporter ion intensities were excluded (e.g. minimum intensity < 
1,000 and median intensity < 5,000); (iv) sample loading bias was corrected by 
normalization with the trimmed median intensity of all PSMs; (v) the mean-centered 
intensities across samples were calculated; (vi) protein or phosphosite relative intensities 
were summarized by averaging related PSMs; (vii) protein or phosphosite absolute 
intensities were derived by multiplying the relative intensities by the grand-mean 
intensity of top three most highly abundant PSMs. To generate a combined quantification 
table from batches 1-3, a common sample (ARMS10468X) was included in each batch as 
internal standard. The batch effect was normalized for each protein or phosphosite by 
assuming that the abundance of the internal standard sample was equal among different 
batches. To generate a combined quantification table for batches 4 and 5, it was assumed 
that the mean of protein/peptide abundance across the ten sample of each batch was equal 
and batch-effect normalization was implemented by fitting a linear model of 
protein/peptide abundance (log-transformed intensity) on batch information using the 
removeBatchEffect function in the LIMMA R package213. 
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Differential expression analyses of proteome and phosphoproteome 
 
 Differential expression analyses of whole proteome and phosphoproteome were 
carried out using LIMMA R package, a software designed for the analysis of gene 
expression involving comparisons between many gene targets simultaneously213,214. 
LIMMA borrows information across genes by fitting linear models to overcome the 
problem of small sample size and complex experimental design215, hence is ideal for 
differential expression analysis of TMT-based deep proteomic data. Briefly, (i) Linear 
models were fitted for expression data of each protein or phosphosite; (ii) Empirical 
Bayes method was used to borrow information across genes; (iii) P values were adjusted 
by the Benjamin Hochberg method; (iv) The adjusted P value cutoff of 0.05 was then 
applied; (v) Remaining proteins were further filtered by a fold change of 1.5 and 2.0 
(equivalent to around 3 × SD of tumor biological replicates) in at least one group 
comparison for proteome and phosphoproteome respectively. 
 
 
Weighted gene co-expression network analysis (WGCNA) and pathway annotation 
 
 The analysis was done by the WGCNA R package154,216 similarly as previously 
described (Tan, H. et al., 2017). Only DE proteins and phosphosites were applied to 
define the proteome and phosphoproteome co-expression clusters (i.e. WPCs and PPCs) 
respectively. (i) A Pearson correlation matrix was generated by calculating correlation 
between proteins (only positive correlations were considered), and was further raised to a 
power of 16 using the scale free topology principle to calculate an adjacency matrix216. 
(ii) Co-expression clusters were then determined by the hybrid dynamic tree-cutting 
method217 with a height cutoff (e.g. 0.2) for merging modules; (iii) A consensus trend 
(eigengene) was calculated based on the first principal component for each co-expression 
cluster. Proteins were then assigned to the co-expression cluster with the highest 
correlation; (iv) Each co-expression cluster was then annotated using the Hallmark 
pathway database downloaded from MsigDB218, Myogenic regulatory pathways that were 
not annotated in Hallmark database were manually extracted from KEGG database and 
added in) by Fisher’s exact test. Pathways with a B.H. adjusted P value less than 0.05 
were selected as deregulated pathways in each co-expression cluster. 
 
 

Results 
 
 
Quantitative analysis of whole proteome and phosphoproteome in 
rhabdomyosarcoma 
 
 To determine if the developmental arrest identified in epigenomic analysis is also 
reflected in the signal transduction cascades in RMS, we used the newly developed high-
throughput MS pipeline with extensive peptide separation power and high mass 
resolution38,148-151,201 to quantify the proteome and phosphoproteome of 12 O-PDX 
tumors (8 ERMS and 4 ARMS), normal human myoblasts and myotube using biological 
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duplicates. Batches of 10 samples were lysed, digested and labeled with 10 different 
TMT tags (Figure 4-3). To facilitate comparison across batches, we included a replicate 
across each batch (SJRHB010468_X1) to serve as an internal control. Together, we were 
able to quantify 13,403 proteins products from 10,332 genes and 12,653 phosphosites 
presented in all batches and validated several proteins and phosphoproteins by 
immunoblot (Figure 4-3B, C).  The intra-batch reproducibility was 0.98 for both the 
whole proteome and phosphoproteome (Figure 4-3D). The inter-batch reproducibility 
was 0.95 for whole proteome and 0.94 for phosphoproteome (Figure 4-3E). Principle 
component analysis demonstrated clear separation of ARMS from ERMS and normal 
(myoblasts and myotube) samples for whole proteome and phosphoproteome  
(Figure 4-3F, G). Weighted gene co-expression network analysis (WGCNA)154 of 
differentially expressed proteins and phosphoproteins identified 6 groups of proteins and 
phosphoproteins with differences across ARMS, ERMS and normal samples  
(Figures 4-3H, I and 4-4). 
 
 We performed pathway analysis on the differentially expressed proteins and 
phosphoproteins between the normal cells (myoblasts and myotube) and the RMS 
samples (ARMS and ERMS). As expected from our initial analysis of cyclin D–
CDK4/6–RB signaling (Figure 4-1), the E2F target proteins and phosphoproteins were 
significantly upregulated in RMS relative to the normal cells (Figure 4-5A). Several 
other pathways associated with proliferation, cell cycle checkpoint regulation and DNA 
repair were also significantly altered in the tumor cells relative to normal human muscle 
(Figure 4-5A). Importantly, among the pathways that showed significant perturbation in 
RMS relative to normal muscle were those important for myogenesis including the 
WNT219-221, HH222,223, BMP224-226, adenyl cyclase227, p38/MAPK228-231 and PI3K232-234 
pathways (Figures 4-5A and 4-6). However, one of the limitations of pathway analysis 
using these types of consensus generic pathway maps is the lack of tissue or lineage 
specific signaling relationships. Therefore, we manually curated each of these 6 
fundamental signal transduction pathways based on published literature for myogenesis 
and integrated our genomic, epigenomic, proteomic and phosphoproteomic data to 
advance our understanding of the developmental arrest in each RMS tumor. For example, 
BMP4 signaling through BMPR1A,B is implicated in patterning the early somite by 
blocking MYF5 and MYOD1 transcriptional programs required for myogenic 
specification in the early dermomyotome cells235-238. The BMP antagonists (NOG, 
CHRD, GREM1,2 and FST) are expressed in cells that will give rise to the muscle 
lineage at this early stage and are downregulated later during muscle maturation  
(Figure 4-5B). GREM1 and NOG mRNA are expressed at higher levels in myoblasts 
than myotubes and are variable across RMS samples (>5-fold). BMP4 mRNA levels are 
similar across normal muscle cells and RMS samples while BMPR1A,B are upregulated 
in RMS (Figure 4-5C). Importantly, the BMP antagonist (NOG, CHRD and GREM1) 
are significantly downregulated in RMS relative to myoblasts while BMPR1A is 
upregulated (Figure 4-5D). 
 
 In concert with BMP signaling, SHH is released from the notochord to specify 
muscle progenitors expressing MYF5 from the multipotent dermomyotome cells  
(Figure 4-5B). SHH is not expressed in the normal human muscle or RMS cells  



 

83 

Figure 4-3. The proteome and phosphoproteome are distinct across ERMS, 
ARMS and myogenic precursors. 
A) Workflow for the proteomic and phosphoproteomic profiling of RMS and normal 
myotube and myoblasts. B) Representative immunoblots showing validation of 
differences in protein expression and phosphoprotein expression for NOS1, HMGA2 and 
phospho-S235/S236 of RPS6. C) Normalized relative fold of the proteins in (B) from the 
proteomic and phosphoproteomic analysis for each sample. The myotubes are indicated 
by (mt). D) Scatterplot of the quantitation of proteins across replicate samples in the same 
batch and replicate samples in different batches. E) Scatterplot of the quantitation of 
phosphoproteins across replicate samples in the same batch and replicate samples in 
different batches. F,G) Principle component analysis of the myoblasts (light green), 
myotubes (dark green), ERMS (red) and ARMS (purple) samples for the whole proteome 
(F) and the phosphoproteome (G). (H) Heatmap of the 6 groups of proteins that show 
significant differences across samples by sample grouping (normal, ERMS, ARMS). (I) 
Expression patterns of cluster 3 as a representative. Boxplots show log2 level abundance 
of RMS tumors samples relative to myoblasts. N indicates the normal myotubes (mt) and 
myoblasts (mb). Abbreviations: PC1 and PC2 are principle components 1 and 2, 
respectively 
  



 

84 

 



 

85 

Figure 4-4. Weighted gene co-expression network analysis of whole proteome and 
phosphoproteome.  
(A, C) Heatmap of the 6 groups of proteins and phosphoproteins that show significant 
differences across samples by sample grouping (normal, ERMS, ARMS). (B, D) 
Expression patterns of 6 whole proteome clusters (WPC) and 6 phosphoproteome clusters 
(PPC). Boxplots show log2 level abundance of RMS tumors samples relative to 
myoblasts.  
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Figure 4-5. Myogenic pathways are deregulated in RMS. 
(A) Heatmap of pathway analysis for the whole proteome groups (WP1-6) and the 
phosphoproteome (PPC1-6) groups. The intensity of each box if inversely proportional to 
the Log of the p-value. (B) Representative BMP and HH pathways for muscle 
development. Arrows indicate interactions that promote activity and bars represent 
interactions that block activity. The green boxed N represents perturbations in 
transcriptional targets. (C) The individual family members that are expressed in the 
cohort analyzed in this study are shown. The cutoff for inclusion in (C) is > FPKM of 
1.0. Genes shown in gray are between FPKM of 1.0 and 10.0. Those in bold vary by 
more than 5-fold across samples in our analysis. (D) Heatmap of the protein and 
phosphoproteins normalized to myoblasts. The intensity is proportional to the Log2 of 
protein or phosphoprotein expression relative to myoblasts. The asterisk indicates those 
proteins that have statistically significant differences across samples. (E,F) Histogram of 
RNA expression (FPKM) for MYF5 and MYOG across normal samples, ARMS and 
ERMS. The red line indicates the expression in normal human myoblasts. FQ21 indicates 
fetal quadriceps at 21 weeks. Abbreviations: FPKM, fragments per kilobase million. 
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Figure 4-6. Heatmaps of deregulated genes at protein expression and 
phosphorylation levels in pathways that are important for myogenesis. 
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SHH binds the PTCH1/2 receptors, releases the SMO protein and this leads to activation 
of GLI transcription factors. Only PTCH1 mRNA is expressed in normal muscle and 
RMS but it expressed at low levels (<10 FPKM). There are 3 GLI family member and all 
3 mRNAs are expressed in normal muscle and RMS (Figure 4-5C). GLI1,2 are 
activators of transcription and GLI3 is a repressor. Signaling through this pathway is 
implicated in transcriptional activation of MYF5 and formation of the MYOD+, MYF5+ 
committed myoblasts (Figure 4-5B). The GLI proteins are upregulated in RMS relative 
to myoblasts and levels in pathways that are important for myogenesis myotubes but the 
expression of MYF5 is lower in most of the RMS tumors relative to the normal human 
myotubes and myoblasts. This may be due to the GLI3 repressor and/or the 
downregulation of the BMP antagonist (Figure 4-5D). Indeed, both phosphorylation sites 
(S1006 and S849) on GLI3 required for transcriptional repressor activity are significantly 
enriched in the RMS phosphoproteome relative to myoblasts (Figure 4-5D). This 
example highlights the value of integrating proteome, phosphoproteome, transcriptome 
and epigenomic data.  
 
 To determine if there is variability across samples, we analyzed MYF5 expression 
and its transcriptional targets in each individual tumor because of the restricted window 
of expression of MYF5 in proliferating myoblasts during myogenic determination in 
development. All of the ARMS tumors had low levels of MYF5 expression relative to 
normal muscle and a subset of ERMS tumors had higher levels of MYF5 mRNA and 
protein (Figure 4-5E). The transcriptional target genes of MYF5 were also activated in 
the same pattern (Figure 4-5F). These data suggest that ARMS tumors have features of a 
later developmental stage than ERMS tumors after MYF5 is downregulated during 
myogenic differentiation. Consistent with this interpretation, the expression of MYOG 
protein and mRNA was significantly higher in ARMS tumors than in ERMS tumors 
(Figure 5D, G) as shown previously for patient tumors239. A similar analysis was carried 
out for the other deregulated myogenic pathways (Figures 4-7, 4-8, and 4-9). 
 
 
Identification of an RMS vulnerability through integrated analysis 
 
 It is not feasible to simultaneously target the 6 myogenic signal transduction 
pathways with molecular targeted therapeutics in a clinically relevant manner. Therefore, 
we focused on identifying a common regulatory mechanism such as a master 
transcription factor, kinase or phosphatase, protease or chaperone that also showed RMS 
selective drug sensitivity in our large high throughput screening drug database from the 
Childhood Solid Tumor Network193. Using this approach, we identified the HSP90 
chaperone as an RMS specific vulnerability. Under normal conditions, an abundance of 
HSP90 protects cells from stress240-242. However, under disease conditions such as 
malignant transformation, the HSP90 reservoir is depleted and further stress such as 
chemotherapy can overload the protein homeostasis system, leading to cell death240-242. 
Many bona fide HSP90 clients are involved in signal transduction including key 
regulators of the WNT, HH, BMP, adenyl cyclase, p38/MAPK and PI3K pathways 
(Figure 4-10A)241 243,244. In addition, the transcription factor HSF1 has increased protein 
expression, increased phosphorylation and increased expression of its target genes in  
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Figure 4-7. Deregulation of WNT pathway for muscle development. 
A) WNT pathways for muscle development. Arrows indicate interactions that promote 
activity and bars represent interactions that block activity. The green boxed N represents 
perturbations in transcriptional targets. (B) The individual family members that are 
expressed in the cohort analyzed in this study are shown. The cutoff for inclusion in (B) 
is > FPKM of 1.0. Genes shown in gray are between FPKM of 1.0 and 10.0. Those in 
bold vary by more than 5-fold across samples in our analysis. Heatmap of the protein and 
phosphoproteins normalized to myoblasts. The intensity is proportional to the Log2 of 
protein or phosphoprotein expression relative to myoblasts. The asterisk indicates those 
proteins that have statistically significant differences across samples.  
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Figure 4-8. Deregulation of adenyl cyclase pathway for muscle development. 
A) Adenyl cyclase pathways for muscle development. Arrows indicate interactions that 
promote activity and bars represent interactions that block activity. The green boxed N 
represents perturbations in transcriptional targets. (B) The individual family members 
that are expressed in the cohort analyzed in this study are shown. The cutoff for inclusion 
in (B) is > FPKM of 1.0. Genes shown in gray are between FPKM of 1.0 and 10.0. Those 
in bold vary by more than 5-fold across samples in our analysis. Heatmap of the protein 
and phosphoproteins normalized to myoblasts. The intensity is proportional to the Log2 
of protein or phosphoprotein expression relative to myoblasts. The asterisk indicates 
those proteins that have statistically significant differences across samples.  
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Figure 4-9. Deregulation of MAPK pathway for muscle development. 
A) MAPK pathways for muscle development. Arrows indicate interactions that promote 
activity and bars represent interactions that block activity. The green boxed N represents 
perturbations in transcriptional targets. (B) The individual family members that are 
expressed in the cohort analyzed in this study are shown. The cutoff for inclusion in (B) 
is > FPKM of 1.0. Genes shown in gray are between FPKM of 1.0 and 10.0. Those in 
bold vary by more than 5-fold across samples in our analysis. Heatmap of the protein and 
phosphoproteins normalized to myoblasts. The intensity is proportional to the Log2 of 
protein or phosphoprotein expression relative to myoblasts. The asterisk indicates those 
proteins that have statistically significant differences across samples  
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Figure 4-10. HSP90 is a therapeutically relevant vulnerability in RMS. 
(A) Drawing of the 6 myogenic pathways that are deregulated in RMS that involve 
HSP90 regulation. (B,C) Histograms of HSF1 and HSP70 protein (blue lines) and 
phosphoprotein (black bars) expression across RMS samples relative to myoblasts (red 
line). (D) Quantitative expression of HSF1 target genes in RMS normalized relative to 
myoblasts as measure by RNA-Seq. (E) ChromHMM of HSP70 and corresponding gene 
expression by RNA-Seq (FPKM). (F) Heatmap of drug EC50 for a subset of the drugs 
tested in this study. The samples in bold are primary cultures of O-PDX tumors and those 
that are non-bold are established cell lines. (G) Immunoblot for HSP70 for the RMS RD 
cell line following treatment with ganetespib (GSP), irinotecan with vincristine 
(IRN+VCR) or untreated. The intensity of was quantitated and normalized to actin to 
calculate the fold difference for the treated samples relative to the control untreated 
sample. These data were used to calculate the MED by comparison to plasma levels for 
GSP from patients (see Supplemental Information). Abbreviations: GSP, ganetespib; 
IRN, irinotecan; VCR, vincristine; MED, murine equivalent dose.
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RMS (Figure 4-10B, C, D, and E). Indeed, hyperphosphorylation of HSF1 is a hallmark 
of cellular stress (Figure 4-10B)245. Importantly, RMS cell lines and primary cultures of 
RMS O-PDXs are more sensitive to an HSP90 inhibitor (ganetespib) than other pediatric 
solid tumors (Figure 4-10F) and treatment of an RMS cell line (RD) led to rapid 
induction of HSP70 and other HSF1 target genes (Figure 4-10G). These data are 
consistent with recently published data showing that HSP70 is a vulnerability in RMS246 
and our unbiased proteome/phosphoproteome data indicating that the unfolded protein 
response which includes HSP90, was one of the most significantly deregulated pathways 
in RMS relative to normal developing muscle (Figure 4-5A). 
 
 To determine if the HSP90 inhibitor, ganetespib could potentiate the cytotoxic 
activity of conventional chemotherapeutic agents used to treat recurrent RMS or kinase 
inhibitors that are relevant to RMS, we performed combination drug screening 
experiments. Briefly, a set of 156 drugs were plated in 10-concentration dose response in 
triplicate and tested in combination with several different concentrations of ganetespib 
(100 nM, 32.4 nM, 10.8 nM and 3.5 nM). The drug combinations were tested on an RMS 
cell line (RD) and an RMS O-PDX (SJRHB00026_X1) in biological duplicates. Using 
the BRAID algorithm, we found that ganetespib could potentiate the killing of RMS cells 
lines and O-PDX tumors with conventional chemotherapeutic agents used to treat RMS.  
 
 To establish a clinically relevant murine equivalent dose for ganetespib (GSP), we 
performed pharmacokinetic studies of O-PDX tumor-bearing mice. We measured the 
plasma levels at 10 minutes, 1, 4, 8 and 16 hours after injection and then used the area 
under the concentration time curve (AUC) to calculate a murine equivalent dose 
matching the exposure in patients. We also measured the tumor penetration of GSP to 
relate exposure in vivo to sensitivity in vitro. The sustained levels of GSP in vivo were 
above those required in culture to potentiate the cytotoxic effect of conventional 
chemotherapeutic agents used to treat recurrent RMS (irinotecan (IRN) and vincristine 
(VCR)). 
 
 Preclinical phase I studies were then performed on CD1 non-tumor–bearing mice 
to establish the tolerability of GSP in combination with VCR and IRN at clinically 
relevant doses and schedules as described previously247,248. Briefly, we administered 4 
courses (3 weeks per course) of therapy for 2 treatment groups. One treatment group had 
the low dose protracted schedule of IRN (daily x 5 x 2; equivalent to 200 mg/m2 total in 
patients) and the other group had a shorter schedule of IRN (daily x 5; equivalent to 250 
mg/m2 total in patients). Both of these protracted schedules of IRN are commonly used 
to treat children with RMS and other solid tumors249. We measured body weight weekly 
and CBC-D with each course and we performed a necropsy at the end of the study. We 
found that at the MED of GSP was well tolerated in this triple drug combination in both 
treatment groups. 
 
 
 
 



 

96 

Discussion 
 
 With the successful launch of the NCI-MATCH and other precision medicine 
trials an increasing number of cancer patients are receiving personalized treatment 
regimens based on the molecular characterization of their tumors. While several trials 
have demonstrated the feasibility of precision medicine for children with cancer250,251, 
there are multiple challenges that are unique to pediatric cancer. First, the number of 
patients is small so molecular targeted therapy is prescribed based on the genetic lesion 
irrespective of the cancer type. If the cellular context of the targeted mutation impacts the 
effect of molecular targeted therapy, the responses will be difficult to interpret. Second, 
there are fewer actionable mutations in pediatric tumors that are currently druggable with 
available therapeutics making it difficult to accrue enough patients to provide statistically 
significant results. Taken together, these barriers will make it difficult to discern the 
benefit of precision medicine for children with cancer from clinical trials alone and 
complementary efforts in preclinical studies may help to identify the patients most likely 
to benefit from such interventions. 
 
 In this study, we sought to study one of the most common potentially druggable 
mutations in pediatric cancer—RAS mutant RMS. Based on previous genomic studies, 
approximately 50-75% of intermediate and high-risk RMS patients possess a mutation in 
the RAS pathway. In some adult cancers, oncogenic mutations in the RAS pathway 
promote tumorigenesis in part by increasing expression and activity of cyclin 
D/CDK4/6252. Therefore, in the pediatric NCI-MATCH trial that is under development, 
RAS mutant tumors may be treated with a CDK4/6 inhibitor (palbociclib) alone or in 
combination with an upstream inhibitor of the MEK kinase (trametinib). Consistent with 
this proposed mechanism, Dr. Dyer’s group showed that RMS tumors have robust 
signaling through the RAS pathway leading to hyperphosphorylation of RB and 
deregulated proliferation (Figure 4-1). While the combination of CDK4/6 inhibitors 
(palbociclib and abemaciclib) with trametinib led to synergistic killing of RMS cells in 
culture, they failed to achieve efficacy in vivo. The pharmacokinetic and 
pharmacodynamics studies suggested that this was not due to a failure of the drugs to 
penetrate the tumor and alter target activity but rather compensatory changes in other 
signal transduction pathways that allow the tumors to continue to grow. 
 
 These disappointing results led us to consider the alternative hypothesis that 
signal transduction and transcriptional networks may be significantly different in 
pediatric solid tumors as compared to adult tumors because of their developmental 
origins. The dynamic and robust signaling that takes place during development may by 
co-opted in pediatric solid tumors making it much more difficult to target any single 
oncogenic pathway such as RAS.  
 
 In order to gain a deeper understanding of the transcriptional networks and the 
signal transduction pathways in RMS and to compare them to normal human muscle, we 
performed integrated epigenetic and proteomic/phosphoproteomic profiling of O-PDX 
RMS tumors and human myoblasts, myotubes and fetal skeletal muscle. The epigenetic 
analysis was instrumental in precisely mapping the developmental stage for each tumor 
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and the proteomic/phosphoproteomic profiling was used to identify deregulated signal 
transduction pathways. Taken together, using our newly developed bioinformatics 
pipelines, we showed that at least 6 pathways required for myogenesis were deregulated 
in RMS during the transition from myogenic determination to differentiation. It is not 
feasible to target each of these pathways simultaneously so we sought other more 
fundamental cellular pathways that are required to maintain this complex signaling 
milieu. We discovered that the unfolded protein response (UPR) is particularly important 
in RMS cells and HSP90 in particular is a key regulator of UPR. While HSP90 and UPR 
are deregulated in many cancers, our data suggest that it is a particular vulnerability in 
RMS due to the complex signaling pathways as a result of their developmental origins. 
We performed comprehensive pharmacokinetics and preclinical testing of an HSP90 
inhibitor (ganetespib) and demonstrated efficacy in vivo.  
 
 Importantly, targeting HSP90 was efficacious across multiple aggressive and 
recurrent RMS tumors irrespective of their genetic lesions. These data suggest that for 
some tumor types, targeting fundamental pathways vulnerabilities may provide a greater 
anti-tumor effect than individualized molecular targeted therapy based on the somatic 
mutations found in the tumor. 
 
 
Elucidating the core signal transduction networks from proteomic and 
phosphoproteomic profiling of RMS 
 
 Recent advances in proteomics has led to remarkable new insights into the 
complexity of the proteome and phosphoproteome in cancer and other cell types. In this 
study, we further advanced our understanding of the proteome by incorporating 10-plex  
isobaric labelling (TMT), extensive 2D LC peptide separation, high resolution mass 
spectrometer and comprehensive bioinformatics tools148-151,201. This powerful quantitative 
strategy enabled ultradeep proteome and phosphoproteome profiling with high 
throughput and reproducibility. Although quantitative ratio compression often occurs 
with MS/MS based isobaric labelling21,253, experimental variations are also reduced, and 
therefore it has only a minor impact on differential expression analyses120, moreover, the 
extensive peptide separation 150 coupled with biological replicates130,201 facilitates 
statistical inference and largely diminishes the effect of ratio compression.  
 
 In our study, the proteomic and phosphoproteomic data were essential for 
interpreting the signal transduction networks in RMS and identifying an RMS specific 
tumor vulnerability. While we could infer the transcriptional outcome of several key 
myogenic signal transduction pathways in RMS from the RNA-Seq and epigenomic 
profiling, those data are very difficult to interpret because of complex interplay between 
multiple transcription factors at particular target genes. However, by integrating the 
proteomic and phosphoproteomic data, we were able to more accurately establish the 
status of the upstream signal transduction pathways and then validate those signaling 
networks by tracking key downstream transcriptional networks. Thus, by integrating the 
proteomic/phosphoproteomic data with the gene expression and epigenetic data, we 
increased our ability to advance our understanding of the developmental origins of RMS 
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and the activity of signal transduction pathways that are deregulated in these 
developmental tumors. 
 
 It is important to emphasize that while we used an unbiased approach to identify 
the deregulated pathways in RMS initially, it was essential to refine those pathway 
analyses in the context of the cellular lineage. That is, we refined the generic pathway 
gene and protein lists from the unbiased approach to incorporate the specific signaling 
molecules at each developmental stage in myogenesis. This type of manual analysis 
based on the extensive published literature on myogenesis was crucial for elucidating the 
6 deregulated pathways in RMS and was made possible with the extensive quantitative 
proteomic and phosphoproteomic data in our study. Our data suggest that the complex 
signal transduction pathways that are altered in RMS reflect the key developmental stage 
when the tumors transition from myogenic determination to myogenic differentiation. For 
example, some tumor cells are arrested before the transition to myogenic differentiation 
and express higher levels of MYF5 and lower levels of MYOG. Other tumor cells 
exhibited further progression and expressed low levels of MYF5 and higher levels of 
MYOG. MYOD1, PAX3 and PAX7 were expressed more consistently across the 
individual tumors and showed no significant correlation with other developmental 
genes/proteins. An alternative interpretation is that both ERMS and ARMS tumors arise 
from muscle satellite cells and the transformation occurs at different stages along the 
pathway from satellite cell to myogenic differentiation. In either case, the ERMS tumors 
expressing high levels of MYF5 and low levels of MYOG are less mature than the 
ARMS tumors and the subset of ERMS tumors with low MYF5 and higher MYOG. 
 
 The proteomic/phosphoproteomic data also facilitated identification of 
deregulated pathways that may be targeted with novel therapeutic combinations. Beyond 
the developmental pathways, we identified DNA repair, G2/M checkpoint and mitotic 
spindle pathways among the most significantly altered pathways in RMS along with the 
UPR pathway. The DNA repair, G2/M and mitotic spindle pathways were exploited with 
molecular targeted therapy targeting the WEE1 kinase in a separate study (Stewart et al., 
in revision). The UPR pathway was exploited in this study with the HSP90 inhibitor. 
Under normal conditions, an abundance of HSP90 protects cells from stress. However, 
under extreme conditions, the HSP90 reservoir is rapidly depleted, leading to cell death. 
Many bona fide HSP90 clients are involved in signal transduction241,243,244. In RMS, 
HSP90 clients are significantly enriched, and HSP90 is upregulated. For example, when 
cells experience stress, the HSF-1 transcription factor is released from HSP90 and 
activates transcription of target genes such as HSP70245. Hyperphosphorylation of HSF1 
is an indicator of cellular stress220, and we found that HSF1 is hyperphosphorylated in 
RMS relative to myoblasts. Moreover, the direct target genes of HSF1, such as HSP70, 
are upregulated. Taken together, our data suggest that this protein-homeostasis pathway 
is an RMS vulnerability due in part to the burden on the HSP90 system of maintaining 
the 6 myogenic signal transduction pathways in RMS242,254,255. That is, the HSP90 levels 
are barely sufficient to manage the cellular stress in RMS and by increasing cellular stress 
with chemotherapy we may achieve synthetic lethality with low levels of HSP90 
inhibitors such as GSP. Indeed, our drug sensitivity data demonstrated that RMS cell 
lines and O-PDX tumors are more sensitive to GSP than are other pediatric solid tumors. 
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In fact, the combination of GSP with chemotherapeutics at subtherapeutic doses that have 
no effect on their own led to synergistic killing of RMS cells in culture and in vivo. This 
is a particularly exciting result because another research group recently published a study 
confirming that the protein homeostasis pathway is a fundamental vulnerability in 
RMS246. 
 
 
Implications for precision medicine 
 
 Large-scale cancer genomics projects have revealed an unprecedented high-
resolution map of the mutational landscape of diverse cancer types, ranging from 
common adult cancers to rare pediatric cancers. In parallel with these advances in cancer 
genomics, there is an expanding collection of molecularly targeted agents that have 
proven effective in various cancers. For some, an individualized treatment plan based on 
validated molecular diagnostic tests can be lifesaving such as the treatment of 
gastrointestinal stromal tumors with imatinib256. With the enormous demand for more 
effective and less toxic anticancer treatments, there are now several major efforts to 
aggressively expand genomic-based precision medicine in oncology. Indeed, the National 
Cancer Institute recently launched the Molecular Analysis for Therapy Choice (NCI-
MATCH) trial for the treatment of recurrent or refractory adult solid tumors, and this 
initiative will soon be expanded to include pediatric solid tumors.  However, there are 
many challenges in applying precision genomic based medicine for pediatric solid 
tumors. First, there are very few druggable mutations. Second, the NCI-MATCH trials 
are focused primarily on single drug treatment regimens with multiply recurrent or 
refractory disease. Thus, it is unlikely there will be improvement in outcomes for these 
heavily pretreated patients. Third, the match for each drug will be applied based on 
genomic data irrespective of tumor type. This is challenging because the oncogenic 
drivers and/or redundant/compensatory pathways may be dramatically different across 
diverse pediatric cancer types. Finally, there is very limited scientific justification or 
translational relevance for most of the molecular targeted agents used in the pediatric 
NCI-MATCH trial.  
 
 Our study provides an alternative to genomic-based precision medicine that is 
built on a foundation of comprehensive integration of diverse datasets and robust 
scientific justification and translational relevance for a new treatment regimen. We 
showed that the NCI-MATCH treatment regimen that may be used for recurrent RMS 
patients with oncogenic RAS mutations (CDK4/6 inhibitor+MEK inhibitor) is not 
effective in validated O-PDX models of recurrent RMS irrespective of RAS mutation 
status. Indeed, integrated analysis showed that at least 6 signal transduction pathways that 
are essential for myogenesis are active in RMS and this corresponds with the 
developmental stage when the myogenic program is halted in rhabdomyosarcomas. 
Drugs that target those individual pathways are not effective nor are combinations that 
target 2 pathways simultaneously. It is not feasible to attempt to target each of those 
pathways simultaneously so we turned to our integrated database to identify an upstream 
master regulatory mechanism that may be required across the diverse pathways. Our 
discovery that HSP90 is required for signal transduction through those pathways 



 

100 

provided an opportunity to take advantage of a unique vulnerability in 
rhabdomyosarcoma. More importantly, this vulnerability was present across RMS tumors 
in our analysis from intermediate and high risk ARMS and ERMS from diagnosis and 
recurrence. We provided scientific justification and translational relevance for targeting 
this pathway in RMS and the optimal treatment regimen is based on standard treatment 
for recurrent disease. This alternative of identifying fundamental vulnerabilities in a 
particular pediatric tumor type is a rational alternative to single agent, genomic based 
precision medicine across pediatric solid tumor histology that is proposed for pediatric 
NCI-MATCH. Importantly, this is an approach that can be readily applied to diverse 
pediatric solid tumors including very rare tumors because of the resources now available 
to the biomedical research community through the CSTN. By identify fundamental 
vulnerabilities that can be targeted with combinations of molecular targeted therapeutics 
and conventional chemotherapy that lead to synergistic killing as shown here or synthetic 
lethality as shown for Ewing sarcoma and providing scientific justification and 
translational relevance, we can advance new treatment regimens that have a much better 
chance of improving outcomes for children with solid tumors. 
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CHAPTER 5.    CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

Conclusions 
 
 
We established a robust proteomic analysis platform that enables near complete 
human proteome analysis 
 
 We have demonstrated a reverse phase-based, multidimensional long gradient 
LC-MS/MS platform suitable for deep proteomics analysis. We systematically examined 
and optimized various parameters of a 100 μm x 150 cm LC column packed with 5 μm 
reverse phase C18 beads. The column exhibits great robustness and reproducibility 
together with high peak capacity (~700) and loading capacity (optimal at 6 μg). Using 
this column in conjunction with basic pH LC and Q Exactive MS, the identification of a 
deep proteome of AD brain (>10,000 proteins) was achieved in about 4 days of MS 
instrument time. 
 
 
We developed a pipeline for accurate proteome quantification with high-throughput 
and genome-scale coverage 
 
 Multiplex isobaric labeling provides an efficient mass spectrometry technology 
for quantitative proteomics, but a common limitation of ratio compression leads to 
quantitative inaccuracy and often constrains its application. We demonstrate that the 
optimization of LC/LC-MS/MS settings, in combination of y1 ion-based post-MS 
correction, is capable of virtually removing the effect of interference and substantially 
enhancing the precision of measurements. The extensive LC/LC fractionation also allows 
deep profiling of proteome and protein modifications. Although we only analyzed TMT-
labeled samples in this study, the principle of y1 ion-based correction is anticipated to be 
applicable to all other isobaric labeling approaches for analyzing a trypsinized proteome. 
 
 
We defined the cancer proteotypes, which successfully filled the gap between 
genotypes and phenotypes in different mouse HGGs 
 
 Using our novel proteomics pipelines, we analyzed 13,860 proteins (11,941 
genes) and 30,431 phosphosites, representing the deepest proteomics study in a single 
mass spectrometry experiment. Two high-grade glioma (HGG) mouse models driven by 
mutated receptor tyrosine kinase (RTK) oncogenes, platelet-derived growth factor 
receptor alpha (PDGFRA) and neurotrophic receptor tyrosine kinase 1 (NTRK1) were 
analyzed and showed distinct global proteome and phosphoproteome landscapes. These 
proteome and phosphoproteome data showed that NTRK fusion genotype induces 
stronger deregulation of HGG pathways and drives a positive feedback loop compare to 
PDGFRA mutation genotype in mouse HGGs. Pathway activity computation, in vitro Ki-
67 cell proliferation index, and in vivo mouse survival curve confirmed that HGG driven 
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by the NTRK1 genotype has more severe HGG phenotypes than the PDGFRA genotype, 
and demonstrated that the NTRK1 fusion has stronger oncogenic potency than the 
PDGFRA mutation. Together, these results present a new paradigm of the newly 
developed proteomics profiling techniques to successfully define cancer proteotypes, 
filling the gap between genotypes and phenotypes in cancers. 
 
 
We developed a bioinformatics pipeline to prioritize master regulators in cancer 
through integrating deep multi-omics data 
 
 Massive reprogramming of molecular components occurs during the evolution 
from mortal to immortal status in cancer cells. As improvement of profiling technologies 
allows the identification of thousands of these changes, prioritizing drivers and core 
regulators from the enormous amount of passenger changes becomes a rate-limiting step. 
Here we presented a generic bioinformatics pipeline for prioritizing core signaling 
networks and master regulators in cancer proteomics studies. 10 proteome and 
phosphoproteome clusters were extracted from 4,703 differentially expressed proteins 
and 6,768 differentially phosphorylated phosphosites through weighted co-expression 
clustering analysis, which dramatically reduced the data complexity. This readily 
identified major pathways with well-established roles in glioma growth as well as clear 
connections with PI3K and mTOR signaling downstream of RTK activation. 
Subsequently, co-regulated genes in each of the clusters were summarized to pathways 
and networks using the network analysis method, which further narrowed down these 
massive changes to 67 network modules. We also developed systematic protein activity 
inference strategies for kinases and transcription factors by integrating multi-omics data 
and a variety of databases to further prioritize 41 kinases, 26 TFs, and a core network 
consisting of 13 master regulators from these gene clusters and network modules. Finally, 
we overlapped the most significantly altered omics datasets in mouse HGGs back to 
human transcriptome data to search for consistent alterations driven by NTRK and 
PDGFRA mutations across species, resulting in a list of 20 convergent alterations in 
mouse and human. Indeed, many of the prioritized networks (e.g. AMPK-EEF2K) and 
proteins (e.g. EPHA2, CD74) are reported to be functional in HGGs. Together, we 
demonstrated that our multi-omics integrative pipeline successfully extracted master 
regulators from thousands of passenger changes. Many of them being well-reported 
master regulators involved in HGG confirmed the robustness of our bioinformatics 
pipeline to handle big omics data in cancer. 
 
 
Integrative multi-omics analysis using our newly developed techniques and tools 
identified therapeutic vulnerabilities in rhabdomyosarcoma 
 
 Encouraged by the success achieved on mouse HGGs analysis, we further 
advanced the application of these tools and technologies on large-scale, human specimen 
analysis on RMS O-PDX samples. 6 deregulated pathways in RMS that are essential for 
myogenesis were elucidated through comprehensive analysis of the proteome and 
phosphoproteome data. By integrating the proteomic/phosphoproteomic data with the 
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gene expression and epigenetic data, we advanced our understanding of the 
developmental origins of RMS and the activity of signal transduction pathways that are 
deregulated in these developmental tumors. These data aided the identification of a 
common tumor vulnerability (i.e. HSP90) in RMS. Using a combination of the HSP90 
inhibitor GSP and chemotherapeutics reagents (i.e. VCR and IRN), we showed that the 
combination of GSP with chemotherapeutics at subtherapeutic doses that have no effect 
on their own led to synergistic killing of RMS cells in culture and in vivo. 
 
 

Future Directions 
 
 
The newly developed proteomic analysis pipeline is applicable to other complex 
biological systems 
 
 With the advances of genomic sequencing technologies, numerous comprehensive 
genomic landscapes have been generated for cancers. While we already know the 
oncogenic genome alterations for most cancers, how these cancer drivers lead to different 
proteotypes which end up with distinct cancers remains largely unclear. In this work, we 
presented a new paradigm of systems cancer proteome analysis. The strengths of this 
generic pipeline were exemplified by the applications on two cancer studies for defining 
cancer proteotype, revealing signaling networks and master regulators, and identifying 
cancer vulnerabilities. Although we only showed the cases on cancers, the principle of 
this approach is anticipated to be applicable to all other complex biological systems. 
Indeed, applications of our techniques on several other biological systems have been 
successful110,205,207,208,257. Since major genomic sequencing projects such as TCGA and 
PCGP have been largely accomplished, there are urgent demands of our techniques to 
explore cancer proteomic landscapes, we would like to continue applying this powerful 
technique on exploring the global proteomes of other cancers  
 
 
To provide a dynamic view of the molecular circuits, by which the targeted 
therapeutic strategy kills the rhabdomyosarcoma cells, through a time-resolved 
proteomic analysis 
 
 Although the large-scale proteomic analysis on rhabdomyosarcoma provided a 
comprehensive proteomic landscape of RMS. It only captured a snapshot of the global 
proteomic changes, there is no time-resolved information on the molecular circuits by 
which the oncogenomic alterations induce signaling transductions, activate downstream 
transcriptional reprograms, and result in systematic reprogramming of global cancer 
proteomes. To provide an enhanced mechanistic understanding of the oncogenic process 
and the molecular responses of cancer to drug treatments to overcome tumor recurrence , 
for the next step of the rhabdomyosarcoma project, we would like to study the time points 
resolved responses of rhabdomyosarcoma to the novel treatment strategies using 
GSP+VCR +IRN combination 
 



 

104 

To identify cancer-derived proteins in the serum of xenograft-bearing 
rhabdomyosarcoma mice 
 
 Most of established clinical cancer biomarkers are proteins produced by tumor 
cells258. Indeed, proteins that derived from cancer cells are considered as the best 
biomarkers to determine the status, size, and progression of the tumor258,259. Currently, 
the widely used cancer biomarker discovery protocols use comparisons of body fluid (e.g. 
serum) from cases with and without disease using mass spectrometry technologies259,260. 
While the strength of these approaches are limited by the fact that proteins detected are 
less likely to be produced by cancer cells, instead it is more likely to be introduced by 
secondary body defense mechanisms. The cancer xenograft model, in which human 
rhabdomyosarcoma are generated in an immune-deficient nude mice, can essentially 
eliminate these problems because proteins that presented in mouse serum that are 
identified to be human protein will, by definition, originate from human cancer cells. One 
inherent challenge of biomarker discovery study is the high dynamic range of proteins 
presented in serum. Fortunately, our novel deep proteomic profiling techniques with 
extraordinary sensitivity will largely diminish this problem. Moreover, the cancer 
proteome reference has already been produced through our large-scale proteomic 
landscape study on RMS tumors. Together, the RMS O-PDX tumor provides a perfect 
model and a unique opportunity to explore cancer biomarker discovery using our 
advanced MS-based proteomic pipeline. 
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