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Those of you who read a PhD thesis from time to time might 
notice that this particular one is not written like most others. 
From the moment I started writing, it has been my intention to 
create a book that is not only aimed at the people in my thesis 
committee. If somebody from my friends or family were to 
pick this book up (and I hope they do), then I want them to 
understand what I am writing about.

I have divided my research in three chapters and each chapter 
starts of with an introduction. The research itself is described 
as you would expect from a scientific paper, but I have tried to 
give the introductions a lighter tone, without oversimplifica-
tions.

I am happy with the way this thesis turned out and I hope that 
you, my reader, will find it both interesting and pleasant to 
read.

P R E F A C E
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The main objective of this PhD thesis was to try and better understand the link 
between epigenetics and gene expression using bioinformatics. Over the course 
of the past four years, this broad aim was narrowed down to a few specific re-
search questions.

The term epigenetics covers a number of distinct biological processes, such as 
histone modifications, micro RNA and DNA methylation. The research in this 
thesis was focused on the latter. It is well established that DNA methylation is a 
crucial player in the regulation of gene expression, but most studies on its rela-
tionship with expression concentrate on expression at the transcript level. We 
decided to take a different approach and examined expression at the protein level. 
As demonstrated by several studies, there are substantial differences between 
transcript and protein expression levels, partly explained by post-transcriptional 
modifications, which affirms the value of our protein-centric approach. However, 
high-throughput proteomics has some drawbacks of its own, such as sub-opti-
mal reproducibility and an inadequate sensitivity for low-abundant proteins. To 
address these drawbacks we turned to a novel technique known as ribosomal 
sequencing and investigated the potential benefits of integrating this method into 
our proteomics analyses.

Apart from these more fundamental and technical research questions, we also 
worked on (epi)genetic analyses in a clinical setting. Strict regulation of DNA 
methylation and gene expression is vital for the normal functioning of a cell 
and derangements of this regulation are linked to many diseases. Aberrant DNA 
methylation for instance has been found in virtually every type of human cancer. 
There are, however, many ways to take advantage of these aberrations. They can 
be used to better understand a disease, as targets for therapy or as biomarkers for 
diagnosis, prognosis or response prediction. The interesting thing about DNA 
methylation in particular is that the binding of a methyl group to DNA is revers-
ible. The possibility of treating a disease by fixing erroneous DNA methylation 
has opened the door for a variety of therapeutic opportunities. We studied the 
use of azacitidine, a demethylating drug, in combination with immunotherapy in 
the treatment of metastatic lung cancer. To understand how azacitidine-induced 
demethylation affects lung cancer cells, we analyzed both DNA methylation and 
gene expression data in several lung cancer cell lines.

Immunotherapy in itself holds a lot of promise for the treatment of cancer, but 
does not help every patient, comes at a high cost and has many severe side effects. 

R E S E A R C H
G O A LS
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The ability to select only those patients that will benefit from the treatment is 
therefore crucial. We tried to tackle this problem by comparing DNA methyla-
tion and expression profiles with response to immunotherapy in patients with 
metastatic melanoma.
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Chapter 1 introduces some of the basic principles of cellular biology and the 
fundamental elements of gene expression. Special attention is given to the role 
of epigenetics, and DNA methylation in particular, in the regulation of gene 
expression. The different techniques that we used in this thesis to study gene ex-
pression and DNA methylation are also presented to the reader. The second part 
of this chapter builds on this introduction and describes the integration of MBD-
sequencing with high-throughput proteomics to measure the genome-wide 
impact of DNA methylation on expression at the protein level.

Chapter 2 introduces a different technique to measure gene expression: ribosom-
al sequencing, or ribo-seq. The proteomics methods described in chapter 1 have 
some shortcomings, which we try to resolve with the use of ribo-seq. We explain 
how the combination of ribo-seq and proteomics improves the overall efficiency 
of protein identification and enables the discovery of alternative translation start 
sites.

Chapter 3 focuses on the practical application of gene expression and DNA 
methylation analysis in cancer research. The first part outlines the biology behind 
cancer, explains the importance of gene expression and DNA methylation in the 
development of tumors and introduces immunotherapy as a promising cancer 
treatment. The next part presents the effects of using azacitidine, a DNA demeth-
ylating drug, in the treatment of lung cancer, while the third part demonstrates 
how expression and DNA methylation analyses could be used to predict response 
to immunotherapy in melanoma patients. The final part introduces the reader to 
MEXPRESS, a web tool for the visualization of expression, DNA methylation and 
clinical data from TCGA, one of the major public cancer databases.

Chapter 4 offers a general conclusion and some future perspectives.

O U T LI  N E
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cell membrane

F I G U R E  1 . 1
T H E  C E N T R A L  D O G M A

This figure illustrates the central dogma of molecular biology. It shows how ge-
netic information is passed on from our DNA to RNA and to proteins in a process 
known as gene expression. First, the DNA sequence of gene is transcribed to RNA 
by RNA polymerase inside a cell’s nucleus. Once the transcription is finished, the 
mature mRNA molecule travels to the endoplasmic reticulum where the RNA se-
quence is translated to an amino acid sequence by a ribosome. Finally, the result-
ing string of amino acids folds itself into the correct three-dimensional structure 
and the protein is ready.
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Think about a human cell. A helper T cell, gall bladder epithelial cell or neuron, 
any cell. Unless you happened to pick a sperm or egg cell, which have 23 chro-
mosomes instead of the usual 46, your cell of choice contains the same genome as 
any other type of cell in the human body. All these cells obtain their (sometimes 
radically) different structures and wide range of functions from the exact same 
genetic information. This means there has to be a mechanism that controls which 
part of the genetic information is actively used at any given moment in the life of 
a cell. Let’s talk about some of the basic concepts of molecular biology before we 
discover what this control mechanism is and how it works.

Everything starts with a molecule known as deoxyribonucleic acid or DNA. Its 
basic building blocks are nucleotides, which consist of at least one phosphate 
group, a sugar (deoxyribose in the case of DNA) and one of the following four 
bases: adenine, thymine, cytosine and guanine or A, T, C and G. These four 
letters are all that is needed to write our complete genome and all the genetic 
information it contains. The central dogma of molecular biology describes how 
this genetic information is converted from DNA to proteins, the main functional 
elements in a cell (Crick, 1970, Figure 1.1). In short, the dogma states that the 
information in DNA can be passed on to another DNA molecule (replication) 
or an RNA molecule (transcription) from which it can then be transferred to a 
protein (translation). Generally, this is a one-way process, though there are some 
exceptions. Researchers have for example discovered that certain viruses, such as 
HIV, and even human enzymes, such as telomerase, can create DNA from an RNA 
template in a process called reverse transcription. Information transfer from a 
protein back to RNA or DNA has not been observed. So remember, from DNA to 
RNA to protein (but not always).

Let’s have a closer look now at some of the basic concepts of this central dogma. 
Our genome contains stretches of DNA that code for proteins and these stretches 
are what we call genes. The DNA sequence of a gene can be transcribed to a dif-
ferent molecule known as ribonucleic acid or RNA. Just as DNA, this molecule 
consists of a string of nucleotides. The two main differences between RNA and 
DNA are that RNA uses ribose as a sugar in its nucleotides (instead of deoxyri-
bose) and that thymine (T) is replaced by uracil (U). After successful transcription, 
the RNA molecule will contain a copy of the genetic information encoded by 
the gene’s DNA (with every T replaced by a U) and it will carry this information 
from the nucleus of a cell to the ribosomes. Because of its courier function and to 
separate it from other types of RNA molecules, this RNA copy of a gene is called 
messenger RNA or mRNA. The complete set of mRNA molecules or transcripts 
in a cell at a given time is called the transcriptome. Ribosomes are complex mo-
lecular machines that read the mRNA and translate the sequence of A, U, C and 
Gs to a sequence of amino acids, the building blocks of proteins. A sequence of 
three bases in the mRNA is known as a codon and every codon can be translated 
to a specific amino acid. There are 43 or 64 possible codons for 20 different amino 
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acids, meaning that on average each amino acid is specified by about three codons. 
Despite the fact that a single codon does not code for more than one amino acid, 
codons can sometimes be linked to an amino acid even if the last base (sometimes 
referred to as the “wobble” base) does not match.

Before an mRNA molecule is translated into a protein, it undergoes a process 
we call splicing. The DNA sequence of a gene is not entirely protein coding, 
it contains stretches of non-protein coding DNA known as introns. The parts 
that do code for a protein are called exons. Splicing removes the introns from 
a transcript and joins the remaining protein-coding exons together. Apart from 
the introns, genes also contain different regulatory elements which are not trans-
lated. Sometimes, the protein-coding part of a gene makes up only a tiny fraction 
of the gene’s total length.

Once translation is finished and the resulting protein has folded itself into the 
correct three-dimensional structure, has (if necessary) formed bonds with other 
proteins to create a protein complex and has received the appropriate side chains 
(such as carbohydrates), it is ready to perform its function in the cell or, in the case 
of membrane or extracellular proteins, outside of it. Similar to the transcriptome, 
the collection of all the proteins present in a cell at a given moment is called the 
proteome. When talking about the expression of a gene, we are actually talking 
about the transcription and translation of this gene. So when we say that a gene is 
highly expressed, this implies that there is either a lot of mRNA present or a lot of 
the protein, depending on how the expression was measured. We will discuss the 
different measurement techniques later on.

A cell is an incredibly intricate and busy system, but behind the apparent chaos 
of bustling proteins and whirling molecules you will find meticulous control 
mechanisms. Cells need a tight regulation of gene expression to respond to an 
ever-changing environment and to manage their life cycle. Once a cell has differ-
entiated into a specific cell type it must maintain its cell-type-specific expression 
pattern, while repressing all genes that are specific to other cell types, and it has to 
pass this pattern on to the next generation. The daughter cells of a liver cell for ex-
ample should also express the necessary liver-cell-specific genes so they maintain 
the characteristics of a liver cell. Gene expression is regulated on various levels 
and at different points during the expression process. Transcriptional regulation 
forms the first checkpoint and as the name suggests it controls the amount of 
RNA that is produced. A class of proteins known as transcription factors plays an 
important role in this type of regulation. They recognize special protein binding 
sites near a gene’s coding region: promoters, enhancers, insulators and inhibitors. 
The promoter of a gene is a cluster of short DNA sequence elements that act as 
recognition signals for transcription factors and can be found just before the start 
of a gene’s coding region. Once a transcription factor complex is formed at the 
promoter, an RNA polymerase molecule binds to it and transcription of the gene 
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can begin. RNA polymerases are enzymes that copy the DNA sequence of a gene 
into an RNA molecule. Their structure and function are very similar to those of 
DNA polymerases, the enzymes responsible for DNA replication. As you might 
have guessed, binding of a transcription factor to an enhancer region will enhance 
the transcription of the corresponding gene. Binding to an insulator or inhibitor 
will block or repress transcription. The transcription factors themselves are also 
regulated, for example by intracellular signaling pathways that change the activity 
of a transcription factor in response to environmental input.

Epigenetics is another major player in transcriptional regulation. According 
to the definition of Egger et al. (2004), “the term epigenetics defines all meioti-
cally and mitotically heritable changes in gene expression (phenotype) that are 
not coded in the DNA sequence itself”. In this quote, they basically say that epi-
genetics adds an extra layer of information to the genetic information encoded in 
the DNA sequence of our genome. A genetic change–a change in the sequence of 
a gene, for example a mutation that replaces a T with a G–can result in a change 
in the expression of this gene or even in a modified protein with a new function 
(this is one of the basic genetic mechanisms behind evolution). Genetic changes 
can have very negative results for a cell. They might result in the cell’s death or 
can cause severe diseases. Processes that affect the expression of a gene and that 
can pass this change on to future generations without actually changing the DNA 
sequence fall under epigenetics. Three well-known epigenetic mechanisms are 
DNA methylation, histone modifications and certain classes of non-coding RNA 
molecules such as micro RNA (miRNA, Bartel, 2004) or long non-coding RNA 
(lncRNA, Mercer et al., 2009). We will describe these three in more detail a bit 
further down.

Transcriptional regulation of gene expression manages how much mRNA is cre-
ated, but it is far from the only available control mechanism. After transcription, 
but before translation, an mRNA molecule goes through post-transcriptional 
regulation, a combination of several processing steps that influence the stabil-
ity and distribution of the transcript and therefore the expression level of the 
corresponding gene. Splicing is one of the most important processing steps. By 
including or excluding certain exons, one transcript can result in several different 
proteins or isoforms. Direct translation control through translational regulation 
also has an effect on the amount of protein that is produced, but is less common 
than (post-) transcriptional regulation. Common mechanisms include the control 
of ribosome recruitment to the first codon and direct adjustments of the pro-
tein synthesis process. Post-translational regulation is the final gene expression 
checkpoint and controls the levels of active protein through small modifications 
of these proteins. Phosphorylation for example (the addition of a phosphate 
group to a protein) acts as an “on/off” switch for many proteins, whereas adding 
ubiquitin to a protein labels it for degradation.
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Given that the main objective of this PhD thesis was to try and better understand 
the impact of epigenetics on gene expression, we must dive a bit deeper into the 
biology behind it. You could already read how miRNA, histone modifications and 
DNA methylation are the best-known epigenetic processes and in the following 
paragraphs we will take a closer look at all three.

Micro RNAs are a type of non-coding RNA molecules, which means that they do 
not get translated into a protein. The “micro” in their name refers to their short 
length of approximately 22 nucleotides. MiRNAs bind to specific mRNA targets, 
thereby marking the targeted mRNA for destruction, which in turn results in 
a lower expression level for the associated gene (Bartel, 2004). Members of the 
miR-15/107 group of miRNAs for example regulate gene expression in cell devi-
sion, metabolism, stress response and angiogenesis (Finnerty et al., 2010). Another 
well-known example is miR-21-5p, which is often expressed in colorectal cancer 
and has been linked to poor disease prognosis (Dong et al., 2014). There are sev-
eral other classes of non-coding RNAs that control gene expression, such as the 
lncRNAs, but we will not discuss them further here.

Before we explain how histone modifications regulate gene expression, we need 
a bit more background information. Our genome is incredibly long, over three 
billion base pairs long to be exact. If you could glue all of the 46 chromosomes 
in the nucleus of one of your cells together (head-to-tail) in one long string and 
stretch it out, you would end up with roughly 2 meters of DNA (Alberts et al., 
2002). This has to fit in a nucleus with a diameter of six micrometers, or 0.000006 
meters. This is where the histones come in. The basic structure of our DNA is that 
of a double helix, which consists of two intertwined DNA strands held together 
by hydrogen bonds between adenine-thymine and cytosine-guanine base pairs. 
The DNA helix itself is wrapped around complexes of eight histones each to form 
nucleosomes, the basic subunits of chromatin (the macromolecular complex of 
DNA and proteins our chromosomes are made of). Thanks to this conformation 
the DNA can be packed much tighter and the total combined length of our chro-
mosomes can be reduced to about 90μm.

The complex three-dimensional structure of our genome is not only important 
to make it fit in the nucleus, but also to control gene expression. There are two 
chromatin variations: an open form that enables gene expression, euchroma-
tin, and a tightly packed form that restricts gene expression, heterochromatin. 
Several functional groups, such as acetyl or methyl, can be added to or removed 
from histones and depending on the type and exact location of the modifications 
the chromatin will be open or closed (Table 1.1, Figure 1.2). Acetylation of lysine 
9 of histone H3 for example will create a more open structure that allows for 
transcription, while di or tri-methylation of the same lysine will result in a closed 
and transcriptionally inactive chromatin structure (Lachner & Jenuwein, 2002).
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A third well-known epigenetic mechanism, and the focus of much of the research 
described in this thesis, is DNA methylation. A methyl group can be bound to a 
cytosine, most often in a CpG dinucleotide (the “p” refers to the phosphodiester 
bond between a C and its neighboring G), converting this cytosine to 5-methyl-
cytosine, the so-called fifth base. Just like their unmethylated counterparts, these 
methylated cytosines can still base-pair with guanine in the complementary DNA 
strand, but there are also some differences. Methylated cytosines can sponta-
neously deaminate to thymines (Shen et al., 1994), which is why CpG dinucleotides 
are underrepresented in the human genome (1% instead of the expected 4.41%). 
Of the CpGs we have, roughly 60% is methylated which means that between 3 to 
6% of all cytosines in the genome of a normal human cell are methylated (Jabbari 
& Bernardi, 2004). The remaining unmethylated CpGs are often found in CpG 
islands, clusters of (mostly) unmethylated cytosines located in the regulatory re-
gions of many genes (Takai & Jones, 2002). The methylation of CpG-rich regions 
in the promoter region of a gene for example is generally linked to the repression 
of that gene’s expression (Miranda & Jones, 2007).

Methylated CpGs also attract various proteins, including the histone deacetylase 
enzymes, which will all collaborate to form a so-called transcription repressor 

Figure 1 .2 DNA methylation,  histone modifications and the 
chromatin structure.

This figure shows the two different chromatin arrangements, heterochromatin (the closed 
and transcriptionally inactive form) and euchromatin (the open and transcriptionally active 
form). The structure of chromatin is controlled by DNA methylation and various histone 
modifications. Typical characteristics of heterochromatin include DNA methylation (m), 
H3K9me3 (1) and H3K27me3 (2), while euchromatin is characterized by H3K9ac (3), 
H3K27ac (4) and a lack of DNA methylation (see Table 1.1 for an overview of some histone 
modifications).
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complex, transforming the surrounding chromatin into heterochromatin (Cedar 
& Bergman, 2009). As you could read earlier, the acetylation of histones “opens” 
the chromatin structure. Deacetylation (the removal of these acetyl groups) by the 
deacetylase enzymes results in the transcriptionally inactive heterochromatin. So 
besides their individual effects on transcription, there is some important interac-
tion between histone modifications and DNA methylation.

The role of DNA methylation as a controller of gene expression is vital for many 
biological processes. After an initial “reset” of the DNA methylation profile fol-
lowing fertilization, DNA methylation is used to control cellular differentiation 
during embryonic development (Jaenisch & Bird, 2003). It is responsible for 
parental imprinting, whereby one of the two copies of a gene (paternal or ma-
ternal) is silenced (Swain et al., 1987), and for the inactivation of one of the two 
X chromosomes in women (men only have one X chromosome) (Mohandas et al., 
1981). DNA methylation also protects our cells from the expression of viral genes 
(Jahner et al., 1982) and from the potentially disruptive effects of transposable 
elements (Yoder et al., 1997), stretches of “parasitic“, repetitive DNA sequences 
that can damage our genome by  inserting itself more or less randomly in it. The 
crucial role of DNA methylation in the normal functioning of our cells also im-
plies that if something goes wrong, the results can be disastrous. This is illustrated 
by the fact that abnormal DNA methylation is found in virtually every type of 
human cancer (Herman & Baylin, 2003). Chapter three describes the role of DNA 
methylation in cancer in detail.

15

Table 1 .1  Examples of common human histone modifications and 
their effect on gene expression.

Histone modifications have their own nomenclature. Each modification is named by 
the affected histone (for example histone 3 or H3), the single-letter abbreviation of the 
modified amino acid (K for lysine), the position of that amino acid in the protein, the type 
of modification (me for methylation, ac for acetylation) and the number of modifications. 
H3K27me3 for example denotes the tri-methylation of lysine 27 in histone 3.

Histone modification Link with transcription

H3K4me3 high levels have been detected in the promoter regions of 
active genes (Barski et al., 2007)

H3K27me3 elevated levels correlate with gene repression (Barski et al., 
2007)

H3K27ac associated with active enhancers (Creyghton et al., 2010)

H3K9me3 marks the transcriptionally inactive heterochromatin 
(Rosenfeld et al., 2009)

H3K9ac associated with the transcription start sites of genes (Koch et 
al., 2007)



T O  M E A SU  R E  IS
T O  K N O W

Now that you have been introduced to the concepts of gene expression and DNA 
methylation, we can discuss some of the techniques that are used to measure 
them. The overview that follows is by no means exhaustive and focuses on the 
techniques that were used in this thesis.

As mentioned earlier, gene expression can be measured at either the transcript 
or the protein level. Both options have their advantages and disadvantages and 
require very different techniques. Let’s start our measurements at the transcript 
level using microarrays (Figure 1.3). A microarray is basically nothing more than 
a small (think stamp-sized), flat piece of glass or silicone covered by miniscule 
DNA spots. These spots contain short (about 60 nucleotides), single-stranded 
DNA sequences known as probes or oligonucleotides. Researchers can design 
their own probes to create a fully custom microarray or they can buy one of the 
many commercially available arrays.

Imagine a simple lab experiment in which you want to compare the gene expres-
sion profiles of two samples using a microarray. The basic workflow will start 
with the extraction of the RNA from your two samples. Using a reverse tran-
scriptase enzyme (responsible for the reverse transcription described earlier) and 
the right conditions, you can specifically convert only the mRNA to DNA. The 
resulting DNA molecules are known as complementary DNA or cDNA. Scientists 
often convert RNA to DNA, because DNA molecules are less fragile, making them 
easier to work with or store. After the conversion, one sample is fluorescently 
labeled using a green dye (cyanine 3 or Cy3) and the other with a red dye (cyanine 
5 or Cy5). The differently labeled cDNA fragments from both samples are mixed 
and the mix is added to the microarray.

The probes on a typical gene expression microarray are designed in such a way 
that they cover a big part of the transcriptome. This means that their sequences 
must match parts of the sequences of the transcripts we want to detect with the 
array. Once the labeled cDNA fragments from the two samples have been added 
to the microarray they will bind to their corresponding probes by base-pairing 
(the same mechanism by which two complementary DNA strands bind to each 
other). When enough time has passed to allow for this binding, the array is 
washed to remove unbound cDNA and then dried. The dry array is now ready 
to be scanned by a detector. This machine uses a laser to excite the fluorescent 
dyes and then quantifies the intensity of the resulting fluorescence. Every DNA 
spot results in two intensities (green for one sample and red for the other) and by 
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comparing these intensities you can figure out which genes were differentially 
expressed between the two samples.

Microarrays have been around since the early nineties, so the technology is 
very well understood. They are relatively cheap and the later versions cover the 
known transcriptome quite well. However, despite these advantages a different 
gene expression analysis technique has gained a lot of popularity over the past 
years: RNA sequencing (RNA-seq). The basic idea behind this technology is that 
by determining the sequence of the transcripts in a sample and looking up the 

Figure 1 .3 A gene expression microarray.

This diagram illustrates the main steps of a gene expression microarray experiment. After 
the extraction of the RNA from two samples, the RNA fragments are converted to com-
plementary DNA or cDNA through a process we call reverse transcription. The resulting 
cDNA fragments are then labeled (using different labels for the two samples), mixed and 
added to the microarray slide. Once on the slide, the cDNA fragments will bind to their 
matching probes (hybridization). Thanks to the colored labels, we can measure whether a 
particular cDNA fragment was more present in sample A or in sample B (and thus indirectly 
whether the corresponding gene was differentially expressed between both samples).



location of these sequences in our genome, we can discover which genes were 
expressed. Because it does not depend on pre-designed probes, an RNA-seq 
experiment offers the possibility to discover new transcripts as well as genetic 
variations, such as mutations in the RNA sequence (an indication of a mutation 
in the corresponding DNA sequence), gene fusions and sample-specific isoforms 
(Costa et al., 2013). RNA-seq also provides a broad dynamic range, which means 
that it can be used to accurately measure both very low (only a few transcripts) 
and very high (thousands of transcripts) gene expression levels. Microarrays on 
the other hand are limited in their measurements of these extreme expression 
levels by background noise and signal saturation. When measuring fluorescence 
there will always be some background signal or “noise” and the signal of genes 
with very low expression levels might be indistinguishable from this noise. Signal 
saturation on the other hand can happen for highly expressed genes. At a certain 
fluorescence intensity, the microarray scanner will no longer be able to accurately 
tell the difference between two very high expression levels. A disadvantage of 
RNA-seq used to be the higher cost, but prices have plummeted since the arrival 
of the so-called next-generation sequencing techniques in the mid 2000s.

The current RNA-seq technology would not have been possible without the ini-
tial development of DNA sequencing techniques. By the late forties, the work of 
Gregor Mendel, Friedrich Miescher, Oswald Avery, Erwin Chargoff and many 

Table 1 .2 Overview of some of the most commonly used sequencing 
methods.

This table, which was adapted from Liu et al. (2012) and Pareek et al. (2011), lists a range 
of different techniques, from the classic Sanger to the recently developed single molecule 
sequencing.

Sequencing 
method

Machine Number 
of reads

Time/
run

Advantages Disadvantages

Sanger sequenc-
ing

Sanger 
3730xl

— 20 min 
to 3  h

high quality, 
long reads

high cost. low 
throughput

Pyrosequencing 454 GS 
FLX

1 M 24 h long reads, fast high cost, low 
throughput

Sequencing 
by synthesis 
(Illumina)

HiSeq 
2000

3 G ~10 days cheap, high 
throughput

short reads

Sequencing by 
ligation (SOLiD 
sequencing)

SOLiDv4 ~1.3 G 7 to 14 
days

cheap, accurate short reads

Single molecule 
sequencing

Heliscope < 8 M ~1.5 
days

cheap, fast homopolymer 
errors

Single molecule 
sequencing

SMRT 0.5 M 
per cell

< 1 h very long reads, 
can detect DNA 
methylation

high cost, low 
throughput
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other scientists had made DNA the most likely candidate in the search for the 
carrier of our genetic information. The discovery of the helical structure of DNA 
by Francis Crick, James Watson, Maurice Wilkins and Rosalind Franklin, one of 
the major milestones in science, sealed the deal (Watson & Crick, 1953, Franklin 
& Gosling, 1953, Wilkins, 1957). Scientists now realized that if they could find 
a way to read the sequence of A, T, C and Gs that makes up our genome, they 
would have access to all our genetic information. The sequencing race was on. 
In 1977 the first complete viral DNA genome was sequenced (Sanger et al., 1977), 
but for the first human genome we had to wait until 2001 and the completion of 
the billion-dollar human genome project (Lander et al., 2001, Venter et al., 2001).

Up until the mid 2000s Sanger sequencing was the most popular sequencing tech-
nology. Published by Frederick Sanger in 1977, this method is based on the use 
of labeled dideoxynucleotides (ddNTPs). These molecules are very similar to de-
oxyribonucleotides (dNTPs), the usual building blocks of DNA, but they lack the 
hydroxyl group that’s needed to string them together. The idea is that when you 
add a mixture of dNTPs and labeled ddNTPs together with a DNA polymerase 
to a sample of single-stranded DNA fragments of the genomic region you are 
interested in, these fragments will be elongated by the polymerase until a ddNTP 
is randomly incorporated in the growing DNA molecule. This will leave you with 
a mix of DNA strands of different lengths that all end with a labeled ddNTP (a 
different label is used for each of the four bases). If you now sort these fragments 
by length you will be left with a series of fragments that vary in length by just one 
nucleotide. With the help of the labeling and the right equipment you can now 
read the DNA sequence of your sample.

The push for faster and cheaper sequencing methods already started in the 
nineties with the arrival of pyrosequencing, but it wasn’t until 454 Life Sciences 
marketed their “massively parallel“ pyrosequencer in 2004 that the reign of the 
next-generation sequencing techniques started. Today, one of the most popu-
lar sequencing methods is the sequencing by synthesis technique developed by 
Solexa, now part of Illumina (Table 1.2 gives an overview of commonly used 
sequencing techniques). In this approach, the DNA fragments from a sample are 
attached to a slide and amplified by a DNA polymerase, resulting in a collection 
of clusters of identical single-stranded DNA fragments. This amplification will 
result in increased signal intensities and thus more accurate measurements later 
on. A mix of the four differently labeled nucleotides is then added to the slide. The 
labels ensure that only one nucleotide can be added to the fragment at a time (the 
label blocks DNA elongation) and they allow us to identify the nucleotide that 
paired with the nucleotide in our fragment. Once a labeled nucleotide has bound 
to a fragment on the slide and a sensitive camera has registered its signal, the label 
is removed and washed away together with the remaining labeled nucleotides. 
By repeating these steps over and over, we can read the DNA sequence of our 
fragment nucleotide by nucleotide. The process we just described deals with a 



single DNA fragment in one fragment cluster on one slide. A current “massively 
parallel” or next-generation sequencing machine can perform thousands of these 
processes in parallel over several slides, resulting in millions of reads at the end 
of the sequencing run.

In this thesis we used this Illumina sequencing method for our RNA-seq analyses. 
Just as in a microarray experiment the extracted mRNA needs to be converted 
to cDNA first. Once we have the cDNA, we can sequence it as described above. 
After sequencing, we are typically left with tens of millions of short reads, but 
we still don’t have any idea which genes were expressed. To figure this out we 
need specialized bioinformatics tools known as read mappers. One example 
of such a mapper is Bowtie (Langmead et al., 2009). These tools go through all 
our sequenced reads and try to map them to the reference human genome. This 
means that they scan the sequence of every read and then try to find the matching 
sequence in the reference genome. Given that our genome is about three billion 
base pairs long, that read sequences don’t necessarily exactly match the reference 
sequence (due to genetic variation or sequencing errors), that reads sometimes 
map to several locations in the genome and that they can overlap the border be-
tween two exons (meaning that we don’t have the sequence of the intron between 
the start and end of the read), read mapping is far from a trivial task. But once we 
have successfully mapped our reads we can use the number of reads that mapped 
to a certain gene as a measurement of the expression of this gene in our sample. 
Using the appropriate normalization and statistical techniques we can also rigidly 
compare these numbers between different samples.

Microarrays and RNA-seq are popular techniques that are widely used to mea-
sure gene expression. In the end though, transcript levels are only a proxy for the 
number of proteins that are produced in a cell. Several studies have found nota-
ble differences in gene expression measured at the transcript and at the protein 
level (Gry et al., 2009), which can be (partly) attributed to the post-transcriptional 
regulation we described earlier. So instead of using only the techniques we just 
described, it might be very useful to try and measure protein instead of transcript 
levels. Proteomics is the name that is used for the large-scale experimental anal-
ysis of protein expression. This term covers various techniques, but is often used 
to refer to the method we used in this thesis: protein extraction followed by mass 
spectrometry, also known as shotgun proteomics.

The extraction of proteins from a biological sample results in a complex mixture. 
To identify the individual proteins in this mix, they are first broken up into small-
er parts, known as peptides, by an enzyme such as trypsin. These peptides are 
then identified and from these identifications we can deduce which proteins were 
present in the sample. Because we work our way up from identifying the pep-
tide fragments to the identification of the corresponding protein, this is known 
as a bottom-up technique. The name shotgun proteomics also comes from this 

20



21

fragmentation step and refers to the firing pattern of an actual shotgun.

The next step in a shotgun proteomics experiment is a first separation of the re-
sulting peptides using reversed-phase high performance liquid chromatography 
(RP-HPLC). Chromatography is nothing more than a technique to separate a 
mixture of molecules, in our case peptides. The peptides are dissolved in a liquid 
solvent (hence liquid chromatography), which travels through a column filled 
with a solid absorbent material such as silica (known as the stationary phase). The 
more peptides interact with the column, the slower they will flow through it and 
the resulting differences in flow rate can be used to separate peptides. The high 
performance refers to the use of a pump to create a pressure to push the solvent 
through the column, resulting in a better separation of the peptides. In a normal 
HPLC experiment the solvent is hydrophobic (non-polar), while the stationary 
phase is hydrophilic (polar). This is reversed in a reversed-phase HPLC experi-
ment, where a polar solvent and non-polar stationary phase are used, meaning 

Figure 1 .4 The LC-MS/MS workf low.

1 Proteins are extracted from the sample we are interested in, fragmented and then mixed 
with a solvent. 2 The peptide/solvent mix is pumped through an HPLC column for a first 
separation. 3 Using the HPLC separation, the complex peptide mixture can be split in batch-
es of peptides with similar size and/or polarity (depending on the type of HPLC column 
that was used). 4 Each batch is fed into a tandem mass spectrometer, where it is ionized 
(a), filtered on mass and/or charge (b), fragmented in even smaller pieces (c), filtered again 
(d) and finally, the resulting peptide fragments are picked up by a detector (e). 5 The mass 
spectrometer produces mass spectra that are then compared to existing databases using spe-
cialized software (6) in order to identify the proteins that were present in our initial sample.



that more polar peptides will travel faster through the column. The solvent that 
comes out of the column is captured in separate batches and these batches are 
then used in a liquid chromatography tandem mass spectrometry (LC-MS/MS) 
experiment to identify the peptides they contain.

An LC-MS/MS analysis can be divided in three steps: separation, detection and 
identification (Figure 1.4). We start off with a second RP-HPLC. These consecu-
tive separation steps will ultimately improve the identification rate of the proteins 
in our sample. Next, the separated peptide fractions are fed into a mass spectrom-
eter. This machine vaporizes the solvent together with the peptides it carries, 
ionizes the peptides using an electron beam and sorts the resulting ions by their 
mass-to-charge ratio using a varying electromagnetic field. In a tandem mass 
spectrometry analysis the gas-phase ions from a first MS run are fragmented and 
then separated once more during a second MS run. The separated ions finally hit 
an electron multiplier, a small device that generates an electric current each time 
it is hit by an ion.

The end result of these complicated steps is a mass spectrum, a plot of the inten-
sity of the electrical current generated by ions hitting the electron multiplier as 
a function of the magnetic field strength (and thus the mass-to-charge ratio of 
the ionized peptides). These spectra act as a fingerprint for the peptides in our 
sample. Much like the police looking up the identity of a suspect using his or her 
fingerprints, we can use the mass spectra to look up the identity of the corre-
sponding peptides in existing protein sequence databases. And once we identified 
the peptides, we can find out which proteins were present in our sample. This 
gives you a rather qualitative measurement of the protein content (is protein A 
present in my sample?). If you are looking for a more quantitative comparison 
between two samples (how much more or less protein A is there in sample 1 com-
pared to sample 2?), you can label the two samples before the shotgun proteomics 
analysis. One popular labeling technique uses stable isotopes such as carbon-12 
and its heavier isotope carbon-13 (Ong et al., 2003). These isotopes are used to 
create two versions of an amino acid such as arginine (one with carbon-12 and 
one with carbon-13), one of which is then fed to the cells in the first sample and 
the other to the cells in the second sample. The growing cells will incorporate 
the labeled amino acids in the proteins they create during their normal life cycle. 
Once labeled, the proteins from both samples can be combined and the mix goes 
through the whole shotgun proteomics experiment. The labeling will allow you to 
distinguish the proteins and peptides from both samples at the end of the exper-
iment and special quantification software unveils the expression ratios between 
the two samples for the identified proteins.

Even though they measure gene expression at the functional protein level instead 
of the transcript level, these genome-wide proteomics techniques suffer from 
some shortcomings compared to RNA-seq. As you could read, the technique is 
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fairly complex and the reproducibility is far from perfect, especially for low-abun-
dant proteins (Fonslow et al., 2011). It can also not rival the massive throughput 
that can be achieved in a sequencing experiment.

Now that we know how to measure gene expression, we can move on to DNA 
methylation. The methods that we used in this thesis to measure genome-wide 
DNA methylation profiles are actually quite similar to the microarray and RNA 
sequencing techniques we just described. The Illumina Infinium 450k Human 
Methylation Assay was the specific microarray we used in one of our studies. The 
underlying principle is similar to the one behind an expression microarray: a glass 
slide is filled with probes (more than 450,000 probes in our case, as the 450k in 
the name indicates) whose sequences match the sequences of the genomic regions 
we are interested in. The binding of DNA fragments from our sample to these 
probes will give us information about the DNA methylation status of the corre-
sponding genomic regions. We are dealing with DNA molecules, so there is no 
need for a reverse transcription step. However, we do need to treat the DNA with 
bisulfite (Figure 1.5). This ion converts the cytosines in a DNA molecule to uracil, 
but leaves the methylated cytosines largely intact (Frommer et al., 1992). After 
bisulfite treatment the DNA in our sample is amplified and fragmented. During 
the amplification step all the uracils that arose from unmethylated cytosines are 
replaced by thymines. So in the end, the bisulfite treatment reduces the analysis of 
DNA methylation to a DNA sequence analysis. If we find a C in our sequence, we 
can assume that the original cytosine was methylated. If we find a T, the original 
cytosine was most likely not methylated.

The Infinium 450k microarray contains two different kinds of probes. The first 
type consists of two probes per genomic location, one for a methylated and one 
for an unmethylated fragment. These probes are designed in such a way that the 
exact genomic location or locus we are interested in lies at the end of the probe. 
So probes for the unmethylated loci end with an A (to pair with the T created 
by the bisulfite treatment) while the probes for the methylated loci end with a 
G (to pair with the methylated and therefore intact C). Once fragmented, DNA 

Figure 1 .5 Bisulf lte conversion.

Treatment of a DNA molecule with bisulfite 
will convert the unmethylated cytosines to 
uracil. Multiplication of the bisulfite-treat-
ed DNA by using for example polymerase 
chain reaction (PCR) converts the uracils to 
thymine. When the resulting DNA fragments 
are sequenced, the presence of a cytosine 
indicates that this particular cytosine was 
methylated (the unmethylated cytosines have 
been replaced by thymines).



sequences are allowed to hybridize to the probes after which a mix of labeled 
ddNTPs is added to the array for a single-base extension of the probe. If the hy-
bridization was perfect (meaning that a fragment with a methylated locus bound 
to the correct probe and not to the probe for the unmethylated locus, and vice 
versa), adding a single base to the probe sequence will work; if not, no base can be 
added. After the staining of the labeled ddNTPs, a scanner is used to examine the 
intensities of the different probes, which will tell us whether a certain locus was 
methylated or not.

The second type of probe on the microarray consists of a single probe for both 
methylated and unmethylated locations. This probe misses its last base (the base 
that would otherwise pair with the locus of interest), so when we add the labeled 
ddNTPs after hybridization of our fragment we can tell whether the locus was 
methylated or not by looking at which base was added to the probe (an A means it 
was unmethylated, a G means it was methylated). This microarray analysis gives 
us the methylation status for over 450,000 loci in our genome. Even though this 
is a lot, we are bound to the loci that are present on the array. If you want to look 
at the methylation status of other regions, you will have to turn to alternative 
methods. Several other techniques, such as the expensive but truly whole-genome 
bisulfite sequencing, are also based on the use of bisulfite treatment (combined 
with the sequencing of the treated DNA fragments). Reduced representation 
bisulfite sequencing or RRBS, developed by Meissner et al. in 2005, offers a 
cheaper alternative to whole-genome bisulfite sequencing. The technique is 
based on the use of a restriction enzyme, which is a protein that recognizes a 
specific DNA sequence and that cuts the DNA at or near this sequence. By using 
a methylation-insensitive restriction enzyme that recognizes a sequence with 
a CpG dinucleotide in it (such as MspI, which targets the CCGG sequence), we 
can cut the genomic DNA into fragments that contain a CpG at each end. These 
fragments then go through several processing steps, including size selection and 
bisulfite conversion, and are finally mapped back to the genome so we can deter-
mine which genomic locations were methylated. The use of a restriction enzyme 
reduces the amount of nucleotides to roughly 1% of the genome, which is why 
RRBS is cheaper than its whole-genome counterpart. The lower price tag comes 
at the cost of missing some CpGs, though RRBS still covers more than three quar-
ters of promoter regions as well as most CpG islands (Gu et al., 2011).

A different approach we used in this thesis employs an enrichment step instead of 
a bisulfite treatment. By using the methylated-cytosine-binding domain (MBD) 
of a naturally occurring protein we can filter out all methylated DNA fragments 
from a mixture of methylated and unmethylated fragments (Serre et al., 2010). By 
sequencing these selected fragments and mapping them back to the reference ge-
nome (comparable to an RNA-seq experiment) we can find out which regions of 
the genome were methylated. This particular method is known as MBD-seq, but 
several variations exist depending on the type of molecule that is used to enrich 
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for methylated DNA fragments.

Now that we have introduced you to some of the techniques that can be used to 
measure gene expression and DNA methylation, it is time to see them in action!
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Adapted from this reviewed, but not resubmitted manuscript:

Koch A, Van Damme P, Gevaert K, Trooskens G, Van Criekinge W, De Meyer T 
& Menschaert G. Measuring the genome-wide impact of DNA methylation at the 
proteome level in a DNMT knockout human cancer cell model. J Proteome Res 
2014

After the initial submission to Journal of Proteome Research and subsequent re-
view process, we decided to not resubmit. Instead we plan on integrating these 
results with RNA and ribo-seq data of the same cell lines. These analyses are cur-
rently ongoing and a manuscript is in preparation.
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A B S T R A C T

DNA methylation is a crucial epigenetic process involved in embryonic devel-
opment and cellular differentiation and the impact of specific changes in DNA 
methylation has been intensely investigated in a large number of diseases. In this 
study we aimed to investigate the link between DNA methylation and protein 
expression, both qualitative and quantitative, on a respectively genome and 
proteome-wide level. Genome-wide DNA methylation profiling was performed 
using reduced representation bisulfite sequencing (RRBS), while quantitative 
shotgun and positional proteomics (N-terminal COFRADIC) were used to ob-
tain protein expression data. These methodologies were applied on a wild type 
HCT116 cell line and a double DNMT knockout HCT116 cell line (DNMT1 
-/- and DNMT3b -/-). We found that there were significantly more up-regulat-
ed than down-regulated genes in the knockout cells and that these up-regulated 
genes were characterized by higher levels of promoter methylation in the wild 
type cells. The experiments also resulted in a list of previously unannotated 
translation start sites and hinted at the possible use of a methylation-controlled 
alternative promoter for certain genes. Together, these results confirm the inhibi-
tory effect of promoter methylation on protein expression and suggest a possible 
role for DNA methylation in alternative promoter control.
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I N T R O D U C T I O N

DNA methylation is a vital epigenetic process that regulates gene expression. It is 
involved in embryonic development (Jaenisch & Bird, 2003), parental imprinting 
(Swain et al., 1987), X chromosome inactivation (Mohandas et al., 1981) and cellu-
lar differentiation (Laurent et al., 2010); it provides a template for the chromatin 
structure (Cedar et al., 2009) and it protects a cell against the expression of viral 
genes (Jahner et al., 1982). Promoter hypermethylation inhibits gene expression 
and aberrant DNA methylation is a common feature of virtually every human 
cancer (Jones & Baylin, 2007, Esteller, 2007). On top of that, at least 90% of the 
protein-coding genes use alternative transcription and alternative splicing events 
(Pal et al., 2012), both of which have been linked to DNA methylation. Indeed, 
Maunakea et al. (2010) showed that intragenic DNA methylation plays a role in 
regulating alternative promoter usage and promoter switching (Maunakea et al., 
2010). Increased methylation has also been found at alternatively spliced sites 
(Anastasiadou et al., 2011, Maunakea et al., 2013); exon recognition is promot-
ed by the recruitment of MeCP2 (methyl CpG binding protein 2) to methylated 
alternatively spliced exons (Maunakea et al., 2013) and methylation of CTCF 
binding sites inhibits the binding of the transcription factor CTCF to these sites, 
which would otherwise lead to the inclusion of weak upstream exons through 

FIGURE 1 .3 Experimental overview and data interpretation.

Both the effect of promoter methylation on protein expression and the possible effect of 
gene-body methylation on translation initiation were investigated using a combination of 
RRBS, differential shotgun proteomics and N-terminal COFRADIC on two HCT116 colon 
cancer cell lines: a wild type line (WT) and a double knockout line (DKO). In the DKO line 
the DNA methyltransferases DNMT1 and DNMT3b are knocked out, removing most DNA 
methylation.
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PolII stalling (Shukla et al., 2011). These findings demonstrate that intragenic 
DNA methylation might be an important regulator of alternative splicing. Besides 
the increased molecular understanding of the link between DNA methylation and 
gene expression, recent research has led to a whole new arsenal of epigenetic bio-
markers and potential therapies (Claes et al., 2010).

The effects of DNA methylation on transcription have been described numerous 
times (Siegfried et al., 1999, Miranda & Jones, 2007, Ball et al., 2009). Evidence of 
this effect measured on the actual protein level, on the other hand, is scarcer. One 
advantage of using proteomics techniques for the analysis of gene expression is 
that compared to RNA sequencing or microarray analysis, protein analysis offers 
a more direct view on gene expression as most gene-encoded biological functions 
are controlled and performed by proteins. Translation, and not transcription, 
has also been identified as the single largest contributor to protein abundance 
(Schwanhausser et al., 2011). Gry et al. (2009) reported differences between ex-
pression at the transcript and the protein level, which they attributed to the effect 
of translational and post-translational modifications. Positional proteomics as 
used in this study also helps in the discovery of alternative translation initiation 
events (Menschaert et al., 2013, Van Damme et al., 2014).

Previously, Tang et al. (2010) used proteome profiling by 2-D gel electrophoresis 
(coupled to mass spectrometry) to investigate the effect of 5-aza-2’-deoxycytidine 
(DAC), a DNMT1 inhibitor, on protein expression in the acute myeloid leukemia 
HL-60 cell line, thereby identifying 35 candidates. However, the methylation 
levels of those genes whose protein expression level changed after the DAC 
treatment were not measured. Another study looked at the association between 
hepatitis B virus (HBV) modulated DNA methylation and the protein profile of 
hepatocellular carcinoma cells (Niu et al., 2009). A total of 15 genes silenced by 
HBV-mediated DNA methylation and reactivated after DAC treatment were 
identified. Promoter methylation of the identified genes was measured using 
bisulfite treatment and methylation specific PCR. Xu et al. (2013) employed a 
combination of 2-D gel electrophoresis and MS/MS analysis to find differentially 
expressed genes in mice testis after exposure to cigarette smoke. They found 31 
proteins and for one of these proteins, PEBP1, they examined the methylation 
status using both bisulfite sequencing and methylation sensitive PCR.
None of these studies offered a genome-wide DNA methylation analysis, unlike 
the work presented here. In fact, very few papers have been published in which 
the authors describe the integration of genome-wide protein expression and 
DNA methylation data. One example is the work by Orozco et al. (2015) where bi-
sulfite sequencing was correlated with mass spectrometry data from mouse livers. 
In our study we aimed to investigate both the effect of promoter methylation at 
the translational level and the possible effect of gene-body methylation on trans-
lation initiation (Figure 1). Reduced representation bisulfite sequencing (RRBS)
(Meissner et al., 2005) was used in combination with shotgun and positional 
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proteomics (N-terminomics) to determine the DNA methylation and protein 
expression profiles of the HCT116 DNA methyltransferase (DNMT) knockout 
model (DNMT1 -/- and DNMT3b -/-). Throughout the manuscript we use the 
terms up and down-regulated when discussing the differences in expression be-
tween the DKO and WT cell lines. We use them to refer to the differences in 
abundance between the two cell lines (up-regulated protein = more abundant in 
DKO than in WT, down-regulated protein = less abundant in DKO than in WT) 
and not to refer to any active process.

DNMTs are responsible for de novo DNA methylation (DNMT3a and DNMT3b) 
(Yoder et al., 1997) and the maintenance of DNA methylation (DNMT1) (Hsieh, 
1999). DNMT2 is a fourth, widely conserved DNMT gene. Though it has been 
linked to tRNA methylation, relatively little is known about its biological role 
(Goll et al., 2006, Schaefer et al., 2010). Inactivation of DNMT1 and DNMT3b 
causes the HCT116 cells to lose most of their DNA methylation (Rhee et al., 2002). 
However, as DNMT3a has not been knocked out in our HCT116 model, these 
cells still maintain a minimal level of methylation.

RRBS uses a methylation-insensitive restriction enzyme (such as BglII or MspI) to 
fragment the genome. These fragments are then treated with bisulfite, which de-
aminates unmethylated cytosines to uracil. Finally, the fragments are sequenced 
and mapped back to the reference genome, revealing which cytosines were meth-
ylated. The resulting methylation data is expressed as the percentage methylated 
reads of all the reads that mapped to a certain CpG dinucleotide.

The analysis of a cell’s complete set of proteins, or proteome, and the difference 
between two proteomes requires robust and sensitive techniques such as quan-
titative shotgun proteomics. Combining shotgun proteomics with metabolic 
labeling techniques like SILAC (Stable Isotope Labeling by Amino acids in Cell 
culture, Ong et al., 2002) allows for differential protein expression profiling 
when comparing cell lines or states using mass spectrometry. Next to the shot-
gun proteome analysis, the protein content of the HCT116 WT and DKO cell 
lines was also analyzed by means of positional proteomics. More specifically, 
N-terminal COFRADIC (COmbined FRActional DIagonal Chromatography, 
Staes et al., 2011) was used, which, unlike shotgun proteomics, enriches for pro-
tein N-terminal peptides by discarding internal peptides (i.e. negative selection 
of protein N-termini), thus revealing the (alternative) translation initiation land-
scape. Herein lies, next to a more direct view on the true expression levels as 
described above, one of the major advantages of the proteomics techniques over 
commonly used RNA-sequencing methods.

This study presents a novel approach to the genome-wide analysis of the effect 
of DNA methylation on protein expression by coupling RRBS to shotgun and 
positional (N-terminal) proteomics (Figure 1.3).
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M A T E R I A L  A N D  M E T H O D S

C E L L  L I N E  C U L T I V A T I O N

Both HCT116 colorectal carcinoma cell lines, the wild type (WT) and double 
knockout (DKO, DNMT1 -/-, DNMT3b -/-), were kindly provided by the Johns 
Hopkins Sidney Kimmel Comprehensive Cancer Center (Baltimore, USA). The 
DNMT1 and DNMT3b alleles were disrupted using homologous recombination 
as described by Rhee et al. (2002). The HCT116 cells were grown in DMEM medi-
um supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA), 
100 units/ml penicillin (Invitrogen) and 100 µg/ml streptomycin (Invitrogen) in 
a humidified incubator at 37°C and 5% CO2. For the N-terminal COFRADIC 
analysis (Figure 1.4a), the HCT116 cells were SILAC labeled (Ong et al., 2002) and 
grown in DMEM medium containing natural (DKO) or 13C6

15N4 L-arginine (WT) 

FIGURE 1 .4 N-terminal COFRADIC analysis .

a .  Experimental setup used for the N-terminome analysis. HCT116 DKO and WT cells 
were cultivated in 12C6 L-arginine and 13C6

15N4 L-arginine-containing medium respective-
ly. Cells were lysed and their isolated proteomes subjected to N-terminal COFRADIC. b . 
Representative MS spectra of N-termini hinting to unique or up-regulated protein expres-
sion in DKO cells. MS spectra of the database annotated (dbTIS) and database unanno-
tated (dTIS) N-terminus of the Ubiquitin carboxyl-terminal hydrolase isozyme L1 protein 
UCHL1 (1MQLKPMEINPEMLNKVLSR19 and 6MEINPEMLNKVLSR19; upper two panels) 
and the 59 kDa 2’-5’-oligoadenylate synthase-like protein OASL (2ALMQELYSTPASR14 and 
4MQELYSTPASR14; lower two panels) are shown. The dbTIS and dTIS-indicative peptides 
of UCHL1 were respectively partially N-terminally (Nt) acetylated (8%) and fully Nt-
acetylated (100%) and hinted at exclusive re-expression in the DKO setup, while the dbTIS 
and dTIS-indicative peptides of OASL were respectively fully Nt-acetylated and partially 
Nt-acetylated (94%) and hinted to significant up-regulation in the DKO setup.
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(Cambridge Isotope Labs, Andover, MA, USA) at a concentration of 140 µM (i.e. 
35% of the normal L-Arg concentration in DMEM) at which arginine to pro-
line conversion was not detected. For the shotgun proteome analyses, HCT116 
WT and DKO cells were grown in medium supplemented with natural or 13C6 
L-arginine (final concentration 140 µM), and natural or 13C6 L-lysine (final con-
centration 800 µM). Media were supplemented with 10% dialyzed fetal bovine 
serum, 100 units/ml penicillin and 100 µg/ml streptomycin. Cell populations 
were cultured for at least 6 population doublings.

R R B S

For each cell line, 1 μg genomic DNA was digested overnight using the MspI re-
striction enzyme (TrueMethyl RRBS protocol) and the resulting fragment mix 
was purified using the GeneJET PCR purification kit. Next, Illumina adapters 
were added to the fragments (protocol for use with NEBNext Ultra DNA library 
prep kit for Illumina), which were then treated with bisulfite using the EZ DNA 
methylation gold kit (Zymo Research). After PCR amplification and purification, 
the paired-end (2 × 50 bp) libraries were sequenced on the Illumina HiSeq 2000 
platform and finally mapped to the human genome (GRCh37) with Bismarck 
(Krueger et al., 2011).

S hotgun       pr�oteome         analyses      

Cells were lysed in 20 mM NH4CO3 (pH 7.9) by three rounds of freeze-thaw-
ing. The protein concentration of the cell extracts was measured using Biorad’s 
Protein Assay (Biorad Laboratories, Munich, Germany) and equal amounts of 
protein material (1 mg each) were mixed. During tryptic digestion, guanidini-
um hydrochloride (final concentration (f.c.) 0.5 M) and acetonitrile (f.c. 2%) were 
added. Protein material was digested overnight with sequencing-grade modified 
trypsin (Promega, Madison, WI, USA; enzyme/substrate, 1/50 (w/w)).

Methionines were uniformly oxidized to sulfoxides prior to RP-HPLC fraction-
ation by adding 20 µl of 3% (w/v) H2O2 to 100 µl sample (f.c. of  H2O2 was 0.06%) 
for 30 min at 30°C. 100 µl of this peptide mixture (500 µg peptide material) was 
subsequently injected onto the RP-column (Zorbax® 300SB-C18 Narrow-bore, 
2.1 mm (internal diameter, ID) × 150 mm, 5 µm particles, Agilent). Following 10 
min isocratic pumping with solvent A (10 mM ammonium acetate in water/ace-
tonitrile (98:2 v/v), pH 5.5), a gradient was started of 1% solvent B increase per 
minute (solvent B: 10 mM ammonium acetate in acetonitrile/water (70:30 v/v), 
pH 5.5). The flow was kept constant at 80 µL/min using Agilent’s 1100 series 
capillary pump with the 100 µL/min flow controller. Fractions of 30 s wide were 
collected from 20 to 80 min after sample injection. To reduce the LC-MS/MS 
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analysis time fractions eluting 12 min apart were pooled, resulting in a final set of 
24 samples that were vacuum dried and re-dissolved in 20 µl of 20 mM tris(2-car-
boxyethyl)phosphine (TCEP) in 2% acetonitrile and analyzed by LC-MS/MS.

N - T E R M I N A L  C O F R A D I C

WT and DKO cells were lysed in 50 mM HEPES pH 7.4, 100 mM NaCl, 0.8% 
CHAPS and protease inhibitors for 10 min on ice and centrifuged for 15 min at 
16,000 g at 4°C. Protein concentrations were measured and equal amounts of 
protein material (2 mg each) were mixed. This sample was subsequently subjected 
to N-terminal COFRADIC as described by Staes et al. (2011) in order to enrich 
for N-terminal peptides. For the primary RP-HPLC separation, the equivalent of 
1000 µg digested peptide material (before SCX fractionation) was injected onto 
the RP-column.

L C - M S / M S  analysis      

The peptide mixtures obtained from the shotgun proteome samples were in-
troduced into an LC-MS/MS system, the Ultimate 3000 RSLC nano (Dionex, 
Amsterdam, the Netherlands) in-line connected to an LTQ Orbitrap Velos 
(Thermo Fisher Scientific, Bremen, Germany), for peptide identification. The 
sample mixture was loaded on a trapping column (made in-house, 100 µm ID × 
20 mm, 5 µm beads C18 Reprosil-HD, Dr. Maisch). After back-flushing from the 
trapping column, the sample was loaded on a reverse-phase column (made in-
house, 75 μm ID × 150 mm, 5 µm beads C18 Reprosil-HD, Dr. Maisch). Peptides 
were loaded in solvent A’ (0.1% trifluoroacetic acid and 2% acetonitrile) and sepa-
rated with a linear gradient from 2% solvent A’’ (0.1% formic acid) to 50% solvent 
B’’ (0.1% formic acid and 80% acetonitrile) at a flow rate of 300 nl/min followed 
by a wash reaching 100% of solvent B’’. The mass spectrometer was operated in 
data-dependent mode, automatically switching between MS and MS/MS acqui-
sition for the ten most abundant peaks in a given MS spectrum. From the MS/MS 
data in each LC run Mascot Generic Files were created using Distiller software 
(version 2.3.2.0).

The generated MS/MS peak lists were searched with Mascot (Perkins et al., 1999) 
using the Mascot Daemon interface (version 2.3.01, Matrix Science). Searches were 
performed in the Swiss-Prot database with taxonomy set to human (UniProtKB/
SwissProt database versions 2011_05). For the shotgun analysis, methionine oxi-
dation to methionine-sulfoxide was set as fixed modification while pyroglutamate 
formation of N-terminal glutamine and acetylation of the protein N-terminus 
were selected as variable modifications. Mass tolerance on precursor ions was set 
to 10 ppm (with Mascot’s C13 option set to 1) and on fragment ions to 0.5 Da. 
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The peptide charge was set to 1+, 2+, 3+ and the instrument setting was set to 
ESI-TRAP. Trypsin/P was selected as the enzyme setting, 1 missed cleavage was 
allowed and cleavage was also allowed when arginine or lysine was followed by 
proline.

The N-terminal COFRADIC samples were analyzed on the LTQ Orbitrap XL 
(Thermo Fisher Scientific, Bremen, Germany). The mass spectrometer was 
operated in data-dependent mode, automatically switching between MS and 
MS/MS acquisition for the six most abundant peaks in a given MS spectrum. 
The generated MS/MS peak lists were searched with Mascot using the same 
parameters as described above but this time 13C2D3-acetylation on lysines, carba-
midomethylation of cysteine and methionine oxidation to methionine-sulfoxide 
were set as fixed modifications. Variable modifications were 13C2D3- acetylation 
and acetylation of peptide N-termini together with pyroglutamate formation of 
N-terminal glutamine. The reason we used the heavy 13C2D3-acetylation was to 
both distinguish between in vitro and in vivo N-terminal acetylation and to allow 
for the quantification of the degree of N-terminal acetylation. Endoproteinase 
semi-Arg-C/P (Arg-C specificity with arginine-proline cleavage allowed) was set 
as enzyme allowing for no missed cleavages. Quantification of the degree of Nt-
acetylation was performed as described previously (Van Damme et al., 2011).

All mass spectrometry data were converted using the PRIDE Converter (Barsnes 
et al., 2009) and have been deposited to the ProteomeXchange Consortium 
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 
(Vizcaino et al., 2013) with the dataset identifier PXD000304 and DOI 10.6019/
PXD000304 (http://www.ebi.ac.uk/pride/archive/login, PX reviewer account: 
username: review48267, password: TTewpyNH).

B ioinformatics              and    statistical           
analyses      

All quantifications (12C6 L-arginine versus 13C6
15N4 L-arginine) were carried out 

using the Mascot Distiller Quantitation software (version 2.2.1). Ratios for the 
peptides were calculated by comparing the XIC peak areas of all matched light 
versus heavy peptides and all ratios were verified by visual inspection of the MS 
spectra.

In the shotgun experiment, the methods of robust statistics (Huber, 1981) were 
applied to the base-2 logarithms of the ratios of the identified peptides to arrive 
at the protein expression levels. In summary, to identify statistically significant up 
or down-regulated proteins, a reference set was created using the complete set 
of true Mascot Distiller peptide ratio values. This resulted in a Huber estimated 
distribution with a 98% confidence interval (CI) between log2 ratio values 0.47 

http://proteomecentral.proteomexchange.org
http://www.ebi.ac.uk/pride/archive/login
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and 2.14. Only proteins with a ratio outside the 98% CI and that were identified 
by at least two peptides were initially retained for further analyses. The remaining 
proteins with only a single peptide were then manually investigated and the best 
identifications were also retained. For the N-terminal COFRADIC data, we also 
applied the methods of robust statistics to the log2 ratios of the identified pep-
tides. Both in the shotgun and COFRADIC experiment, peptides or proteins that 
displayed a ratio reflecting significant up or down-regulation (i.e., outside the 95% 
CI, p ≤ 0.05) were considered affected by the double DNMT1 -/-, DNMT3b -/- 
knock out. Alternative translation start sites were defined as those start sites that 
do not map to a canonical human Swiss-Prot annotated start site (UniProtKB/
SwissProt database version 2011_05).

Custom Perl (version 5.18.2) scripts that use the Biomart API and the Ensembl 
database (release 75) were created to map the peptides to the human genome (ver-
sion GRCh37.75). Peptides were mapped by linking their accession and UniProt 
IDs to Ensembl gene IDs using the Biomart API. Some of the peptides of the 
N-terminal COFRADIC experiment overlapped and mapped to position 1, 2 and/
or 3 (counting from the translation start site) of the same protein. In this case, we 
aggregated these peptides into a single peptide at position 1 and set its peptide 
ratio to the mean ratio of the combined peptides. We considered all peptides that 
mapped to position 1 as having a database-annotated translation initiation site 
(dbTIS) and the others as having a downstream translation initiation site (dTIS).

A promoter was defined as the region from 1 kb upstream to 200 bp downstream 
of the transcription start site of the consensus coding sequence. For peptides with 
an alternative translation start site, the corresponding putative alternative pro-
moter was chosen to range from 1 kb upstream to 200 bp downstream of the start 
site of the exon that encoded the mapped peptide. Promoter methylation was 
measured as the mean percentage methylation of all CpGs within the promoter 
region measured by RRBS.
Data processing and statistical analyses were performed in the R environment (R 
version 3.1.2, statistical tests used are the proportion test (prop.test) and Kruskal-
Wallis test (kruskal.test), both from the stats package).

R E SUL   T S

R R B S

Combining the DKO and WT RRBS data gave us the methylation status of 
2,544,642 CpGs. The double knockout of DNMT1 and DNMT3b resulted in a 
global demethylation as illustrated by the distributions of the RRBS methylation 
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values in the WT and DKO cell lines (Figure 1.5, Wilcoxon rank sum test (WRT), 
p value < 2.2e-16, 95% CI = 47.167, 47.368). For the easy comparison with the 
protein expression data, we created a single promoter methylation value for each 
protein by calculating the mean methylation of the covered CpGs within the pro-
moter. Using the maximal value was also considered, but resulted in more noise 
in the data, especially for the DKO cell line (Supplementary Figure 1.1).

S H O T G U N  P R O T E O M I C S

A single shotgun proteome analysis led to the identification of 3,308 unique pro-
teins of which 3,302 were successfully mapped to the human genome. As not all 
protein identifiers are linked to a gene ID, not all proteins could be mapped on 
the genome through BioMart. Of the mapped proteins, 244 were significantly 
up-regulated in the HCT116 DKO cell line and 76 were down-regulated (both p 
≤ 0.05, Table 1.3). The number of up-regulated proteins was significantly higher 
than the number of down-regulated proteins (proportion test, p value < 2.2e-16, 
95% CI = 0.711, 0.807), hinting at the repressive effect of DNA methylation on 
expression. We used the shotgun protein identifications represented by at least 
two peptides as well as the manually curated identifications represented by a 
single peptide for the stringent inspection of up and down-regulated proteins. 
The promoter regions of the up-regulated proteins were more methylated than 
the down-regulated proteins in the WT cell line (WRT, p value = 0.0129, 95% 
CI = -0.948, -4.66e-5) and they were more demethylated in the DKO line (WRT, 
p value = 0.00429, 95% CI = 5.71e-5, 0.0361). When comparing the promoter 
methylation in the DKO cells between the up and down-regulated proteins, there 
was no significant difference (WRT, p value = 0.0529, 95% CI = -0.436, 6.47e-5).

For the 119 up-regulated proteins of which the corresponding genes were de-
methylated in their promoter region in the DKO cell line (difference between 
DKO and WT mean promoter methylation > 10), the expression was classified 
as being under direct methylation control. We defined a demethylated promoter 
as having a difference in the mean methylation value between DKO and WT > 10 
based on the distribution of the methylation differences between DKO and WT 
(Supplementary Figure 1.2). We kept this cutoff relatively low, because we already 
reduced the greatest differences between WT and DKO by calculating the mean 
promoter methylation. Expression of some of these proteins was already known 
to be under methylation control and has been linked to cancer development. 
Examples include EML2 (Duong et al., 2012), PLK1 (Ward et al., 2015), ICAM1 
(Schuebel et al., 2007, Easwaran et al., 2010) and TRIP10 (Hsiao et al., 2010). Up-
regulated proteins whose promoters were not demethylated in the DKO line were 
considered to be under indirect methylation control.

Interestingly, amongst the up and down-regulated proteins, various interactions 
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networks were affected. Supplementary Figure 3 shows a string-db (http://string-
db.org) (Franceschini et al., 2013) interaction network of the significantly up and 
down-regulated proteins and illustrates the complexity of the affected networks. 
Examples include the immunity-linked TNF/NF-kappaB (NFKB2) and the ubiq-
uitin-mediated degradation pathway (UCHL1) and networks implicated in cell 
adhesion (ICAM1). Furthermore, the DAVID tool (Huang et al., 2009) was used 
to analyze the gene ontology enrichment in the up or down-regulated proteins. 
The best scoring gene ontologies included cytoskeleton organization (UBE2C, 
CORO1A, TRIP10…) and antigen processing and presentation (ICAM1, CALR, 
HLA-B…) (Supplementary Table 1.1).

N - T E R M I N A L  C O F R A D I C

N-terminal COFRADIC was used to map the (differential) translation initi-
ation landscapes of the DKO versus WT cells, resulting in the identification 
of 1,530 unique N-terminal peptides in total (a combination of peptides with 

Figure 1 .5 Distribution of the 
methylation data generated 
by RRBS for both the WT and 
the DKO cell  l ine.

The difference in distribution of the WT 
and DKO methylation data illustrates 
the successful demethylation in the DKO 
cells.

TABLE 1 .3 The number of proteins and peptides up and down-reg-
ulated in the DKO cell  l ine identif ied by shotgun proteomics and 
N-terminal COFRADIC experiments (DKO vs.  WT).

N-terminal peptides identified by means of COFRADIC are divided into a dbTIS (data-
base-annotated TIS) and dTIS (downstream TIS) group.

shotgun N-terminal COFRADIC

dbTIS dTIS total

up-regulated 244 78 18 96

down-
regulated

76 31 23 54

total 320 109 41 150

http://string-db.org
http://string-db.org
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database-annotated translation initiation sites (dbTIS) and peptides with 
downstream translation initiation sites (dTIS)). Of these, 1,525 N-termini were 
successfully mapped onto the human genome. Further filtering of the mapped 
peptides (cf. Materials and Methods) resulted in a final list of 1,283 peptides. Table 
1.3 summarizes the numbers of significantly up and down-regulated peptides 
after DNMT1 and DNMT3b knockout according to their TIS grouping, dbTIS 
or dTIS. Figure 1.4b shows two representative MS spectra of N-termini that were 
differentially expressed in the DKO cell line compared to the WT line.

One of the features of the N-terminal COFRADIC technology is its ability to iden-
tify N-termini pointing to (alternative) translation initiation sites (Menschaert 
et al., 2013, Van Damme et al., 2014). Although ribosome leaky scanning and al-
ternative splicing likely cause the majority of these N-terminal protein isoform 
identifications, the detection of alternative N-termini also enables us to analyze 
the influence of gene-body methylation on alternative promoter usage. Overall, 
our N-terminal COFRADIC experiment resulted in a set of 211 dTIS peptides, 
of which 18 were up and 23 down-regulated (Table 1.3). Interestingly, one of 
these dTIS peptides (M↓A123DANSPPKPLSKPR, found to be 100% Nt-acetylated) 
mapped to exon 4 of DNMT1 and was uniquely identified in the WT cell line. 
Exons 3, 4 and 5 of DNMT1 were disrupted by homologous recombination in the 
DKO cell line, so our data confirmed the successful knockout of DNMT1.

The number of dbTIS peptides up-regulated in the DKO cell line was higher 
than the number of down-regulated dbTIS peptides (proportion test, p value = 
1.053e-5, 95% CI = 0.620, 0.796). For the dTIS peptides no significant difference 
was found (proportion test, p value = 0.532, 95% CI = 0.288, 0.601). To deter-
mine if the expression of dTIS peptides was under methylation control, we made 
the same comparisons for the dTIS peptides as we did for the proteins from the 
shotgun experiment. The promoter regions of the up-regulated dTIS peptides 
were not more demethylated in the DKO line compared to the down-regulated 
dTIS peptides (WRT, p value = 0.179, 95% CI = -7.19e-6, 34.130). Despite the 
lack of a statistically significant difference in demethylation between the up and 
down-regulated dTIS peptides, there still was a notable difference in methylation 
between WT and DKO for the up-regulated dTIS peptides (paired WRT, p value = 
0.00253, 95% CI = 27.112, 63.972) (Figure 1.6). As we were interested in the pos-
sible influence of DNA methylation on the expression of alternative translation 
products, we tried to determine if the expression of any dTIS peptides could have 
been under methylation control. We aimed to identify those dTIS peptides that 
were both demethylated (difference between DKO and WT > 10) and up-regulat-
ed in the DKO cells. We identified 11 peptides, which mapped to the following 
genes: PTPN18, PLEKHG3, OASL, EPS8L2, SARG, ZNF511, STAU1, FPGS, 
DES, CCDC88C and BAIAP3. The alternative promoter regions surrounding the 
genomic location of these dTIS peptides were analyzed with the FlyBase eukary-
otic promoter prediction computational tool (http://www.fruitfly.org/seq_tools/

http://www.fruitfly.org/seq_tools/promoter.html
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promoter.html) (Reese et al., 2001) (Table 1.4). Furthermore, using data available 
through the UCSC genome browser (http://genome-euro.ucsc.edu/) (Kent et al., 
2002), the alternative promoter regions were inspected for the presence of CpG 
islands and the occurrence of trimethylated histone H3 lysine 4 (H3K4me3, Table 
1.4) (Santos-Rosa et al., 2002). The genomic regions surrounding the EPS8L2, 
PTPN18 and ZNF511 dTIS peptide locations showed the most promoter-like 
characteristics and EPS8L2 was visualized using the UCSC genome browser 
(Figure 1.7).

D IS  C USSI    O N

In this study a combination of genome-wide DNA methylation profiling and 
proteome analyses using a quantitative shotgun and an N-terminal positional 
proteomics strategy was used to study the impact of DNA methylation on pro-
tein expression and (alternative) translation initiation in a DNMT knockout 
model (WT and DKO (DNMT1 -/- and DNMT3b -/-) HCT116 colon cancer cell 
lines). The DNMT1 dTIS N-terminus M↓A123DANSPPKPLSKPR, which maps 
to isoforms 1 and 2 of DNMT1, was uniquely found in the WT cell line in the 
N-terminal proteomics data, thereby confirming the success of the knockout.
The shotgun proteomics data were searched for proteins up-regulated in the DKO 
cell line. Loss of DNA methylation in this cell line resulted in a set of significantly 
up or down-regulated proteins, including proteins that were uniquely expressed 
in either the DKO or WT cell line. The number of up-regulated proteins was 
significantly higher than the number of down-regulated proteins. Together with 

Figure 1 .6 Comparison of the promoter methylation for the 18 
up-regulated dTIS peptides.

Both the boxplot (a) and the scatter-and-line plot (b) show the demethylation in the DKO 
cell line compared to the WT cell line.

http://www.fruitfly.org/seq_tools/promoter.html
http://genome-euro.ucsc.edu/
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our finding that the promoter regions of these up-regulated proteins were more 
demethylated than those of the down-regulated or not differentially expressed 
proteins, this confirmed the inhibitory effect of promoter methylation on gene 
expression. Some of these genes, such as EML2 (Duong et al., 2012), PLK1 (Ward et 
al., 2015), ICAM1 (Schuebel et al., 2007, Easwaran et al., 2010) and TRIP10 (Hsiao 
et al., 2010) have previously been shown to be silenced in different cancer types 
through promoter methylation, which is reflected in our results, as the expression 
levels of these genes were higher in the DKO line than in the WT line, while the 
levels of promoter methylation were lower.

The list of up or down-regulated proteins was also analyzed for gene ontology 
enrichment and the best scoring gene ontologies included antigen processing and 
presentation and cytoskeleton organization. DNA hypomethylation has already 
been linked to the up-regulation of immune related pathways, including antigen 
processing, in several cancer studies (Wrangle et al., 2013, Li et al., 2014) and to 
cytoskeletal changes during prostate cancer progression (Schulz et al., 2007). 

Figure 1 .7 Visualization of the RRBS and N-terminal COFRADIC data 
for EPS8L2.

The different tracks in both a (the dbTIS peptide that was identified) and b (the dTIS pep-
tide) are from top to bottom: the dTIS/dbTIS peptide, RRBS data for the DKO cell line, 
RRBS data for the WT cell line, UCSC genes, human mRNA from GenBank, CpG islands 
and H3K4me3 data. The plots show how the level of methylation in the alternative pro-
moter for the mapped dTIS peptide is reduced in the DKO cell line as compared to the WT 
cell line, more than for the dbTIS peptide, which was not significantly up-regulated in the 
DKO cells.
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Reduced methylation also led to an up-regulation of several proteins involved 
in protein ubiquitination and proteasomal degradation and it has been described 
previously how DNMT inhibition leads to increased expression of STAT1 and 
STAT3 (Karpf et al., 1999), two genes found among the up-regulated proteins in 
our experiment, together with other proteins linked to inflammation.

The relatively high number of up-regulated proteins without promoter methyl-
ation in the WT cell line (97 out of 244) could have a biological and a technical 
explanation. Some proteins will be up-regulated in DKO–even though they are 
not under promoter methylation control themselves–through the possible com-
pensatory actions of the DKO cells to counteract the hypomethylation, indirect 
methylation control through transcription factors, signaling pathways or other 
complex interaction networks (as suggested by Supplementary Figure 1.3), other 
(post-) transcriptional or (post-) translational events and the possible DNA meth-
ylation independent function of DNMTs (Milutinovic et al., 2003, Espada et al., 
2011). Some of the promoter methylation might simply not have been picked up 
by the RRBS experiment.

Another goal of this study was to search the N-terminal COFRADIC and RRBS 
data for evidence of a correlation between DNA methylation and alternative 
transcription reflected by (alternative) translation initiation site selection. A com-
parison of the number of up and down-regulated peptides revealed that there 
were significantly more up-regulated peptides in the group of dbTIS peptides, 
which is in accordance with the known inhibitory effect of promoter methylation 

TABLE 1 .4 Analysis of promoter-l ike properties.

Possible alternative promoter regions were searched for typical promoter characteristics. 
The demethylation value was calculated by subtracting the mean promoter methylation in 
WT from the mean promoter methylation value in DKO.

gene CpG island H3K4me3 promoter 
predicted

expression 
ratio

demethylation

PTPN18 yes yes yes 3.49 -11.47

PLEKHG3 no yes yes 3.21 -46.94

OASL no yes yes 16.04 -42.51

EPS8L2 yes yes yes 41.39 -88.31

SARG no no yes DKO only -22.05

ZNF511 yes yes yes 7.16 -54.53

STAU1 no no yes 2.99 -59.25

FPGS no yes no 2.93 -69.30

DES no no yes 4.69 -50.10

CCDC88C no yes no DKO only -27.11

BAIAP3 no no no 7.31 -73.41
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on gene expression and thus translation. For the dTIS peptides on the other hand, 
there was no difference in the number of up and down-regulated peptides. Even 
though the comparison of the demethylation of alternative promoters between 
up and down-regulated dTIS peptides failed to produce a statistically significant 
result, we did observe a difference in the promoter methylation of the up-regu-
lated dTIS peptides between the DKO and WT cell lines (Figure 1.6). We would 
therefore be careful to dismiss the presence of a link between the expression and 
methylation of these peptides. Filtering the data for up-regulated dTIS peptides 
methylated in their alternative promoter returned 11 genes (PTPN18, PLEKHG3, 
OASL, EPS8L2, SARG, ZNF511, STAU1, FPGS, DES, CCDC88C and BAIAP3), 
hinting at the possible role of DNA methylation in the regulation of alternative 
transcription initiation in these cases. Especially the regions surrounding the dTIS 
site in PTPN18, EPS8L2 and ZNF511 demonstrated several promoter character-
istics, such as the presence of a CpG island, trimethylation of lysine 4 of histone 
3 and a predicted promoter sequence. Different isoforms of PTPN18 have been 
described (Gandhi et al., 2005), but no previous mention of an alternative promot-
er was found. PTPN18 is a member of the protein tyrosine phosphatase family, a 
group of signaling molecules that regulate cell growth, differentiation, the mitotic 
cycle and oncogenic transformation (Hunter, 1995). EPS8L2 has been linked to 
the regulation of actin cytoskeleton remodeling (Offenhauser et al., 2004), while 
the fusion protein ZNF511-PRAP1 acts as a transcription regulator (Qiu et al., 
2011). No mention of alternative promoter usage was found for these two genes 
either.

Despite certain shortcomings, such as undersampling (Hancock, 2007), pro-
teomics techniques offer an advantage over RNA-sequencing as they measure 
(differences in) protein abundance. On top of that, N-terminomics is well suited 
for the identification of N-terminal protein variants or proteoforms (Smith & 
Kelleher, 2013) and concomitantly enables the detection of alternative translation 
start sites (Van Damme et al., 2014, Helsens et al., 2011).

C O N C LUSI    O N

In this study, we demonstrated how whole-genome methylation profiling and 
proteomics can be combined to study the influence of DNA methylation on ex-
pression at the protein rather than the transcript level. Our findings confirmed 
the inhibitory effect of promoter methylation on protein expression and hinted at 
the potential role of DNA methylation in alternative promoter activity.
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C H A P T E R  2

O N 
R I B O S O M A L 

S E Q U E N C I N G



In the previous chapter we introduced several techniques to measure gene ex-
pression, both at the transcript and the protein level, together with some of their 
advantages and disadvantages. Not only have scientists been working hard on 
improving these existing techniques, they have also been trying to come up with 
new ones. Ribosome profiling or ribo-seq is such a new technique (Ingolia, 2010, 
2011). Developed at the Weissman lab in San Francisco in 2009, this method 
aims to combine the throughput, speed and dynamic range of RNA-seq with 
the biological relevance of measuring expression at the protein level found in 
proteomics. Ribo-seq uses next-generation sequencing techniques to find out 
which genes were expressed, just as in a typical RNA-seq experiment. But instead 
of sequencing the complete transcriptome, only the mRNA molecules that are 
bound to ribosomes are sequenced. These ribosome-bound mRNA molecules are 
in the process of being translated to proteins, so ribo-seq actually measures active 
protein synthesis at the transcript level and not just the amount of transcript that 
is present. This puts it somewhere halfway between measuring expression at the 
transcript level and measuring it at the protein level. Even though it is not the 
same thing as measuring protein levels (remember translational and post-transla-
tional regulation) it does come closer than RNA-seq.

Before we can isolate the mRNA molecules bound to ribosomes from the rest of 
the RNA in our sample, we have to stop translation. This can be achieved by treat-
ing the cells in our sample with an antibiotic like cycloheximide. Once we have 
successfully halted translation, we can add a nuclease to our sample. Nucleases 
are enzymes that can break the phosphodiester bond between two nucleotides 
and can therefore be used to dismantle DNA and RNA molecules. The nuclease 
we added to our sample will happily destroy all the RNA it can find, except for 
the short (around 30 nucleotides) stretches of mRNA that are protected from the 
nuclease by a ribosome. If we now isolate the ribosomes and then separate them 
from the mRNA fragments they sheltered from the nuclease attack, we can con-
vert these mRNA fragments to a cDNA library.

From this point on the experiment is comparable to a traditional RNA-seq exper-
iment. The fragments are sequenced and mapped back to the reference genome, 
resulting in what are known as ribosome footprints. You could say that every time 
a ribosome-protected mRNA fragment can be mapped to a genomic location the 
ribosome leaves a footprint at this location. We can deduce the expression level of 
a gene by counting the number of footprints we find within it, which is exactly the 
same as counting the number of RNA-seq reads that mapped to a gene. We can 

N E W  K I D  O N  T H E 
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also use ribo-seq to find the exact translation start site of a gene. Antibiotics such 
as harringtonine or lactimidomycin specifically halt translation at the initiation 
site instead of randomly during the translation process as with cycloheximide and 
can therefore be used to detect for example new translation start sites (Ingolia, 
2011, Lee et al., 2012).

In the previous chapter we mentioned that protein sequence databases are used 
to match the mass spectra from a shotgun proteomics experiment to the corre-
sponding peptides. Ensembl and Swiss-Prot are two examples of such publically 
available databases. They are priceless and reliable sources of information, but be-
cause they only contain protein sequences that have been experimentally verified 
(or at least predicted), these databases might not always contain all the proteins 
that are expressed in your specific sample. So to improve the number of identifi-
cations in a proteomics experiment scientists often integrate the public databases 
with their own custom protein sequence database.

This custom database can be created with data from an RNA or ribo-seq analysis 
of the same sample that was used for the proteomics experiment (Menschaert et 
al., 2013). Ribo-seq does offer some advantages over RNA-seq though. Because it 
is not affected by any post-transcriptional regulation, ribo-seq reflects the protein 
expression levels more closely than RNA-seq. Plus, in an RNA-seq experiment 
we don’t know the precise translation start site, so we need to translate the se-
quences we find in three or six different reading frames. As you could read in the 
previous chapter, an RNA molecule can be seen as a string of nucleotide triplets 
or codons, which can be translated into a string of amino acids. A reading frame 
is a way to divide the sequence of a transcript in a set of consecutive codons and 
because a codon is three nucleotides long, there are three possible reading frames 
in a single transcript. So depending on the exact location of the translation start 
site, one transcript could code for three possibly radically different proteins. This 
means that if you do not have any precise information on the translation start 
site, you have to include all three reading frames and their corresponding protein 
sequences in your custom database. If you also don’t know which DNA strand 
your transcript came from (remember how the basic structure of our DNA is that 
of a double helix, consisting of two intertwined DNA strands), you find yourself 
with six possible reading frames (three for each strand). This issue can be avoided 
by using ribo-seq, as it allows us to determine the exact translation start site with 
single-base resolution. Less reading frames to translate means a smaller protein 
sequence database and thus less time spent searching the database to identify the 
peptide spectra from the shotgun proteomics experiment.

In the following research paper we describe in detail how we used ribo-seq to 
create such a custom protein sequence database and how this approach can im-
prove both the number and the quality of protein identifications in a proteomics 
experiment.



Adapted from:

Koch A*, Gawron D*, Steyaert S, Ndah E, Crappé J, De Keulenaer S, De Meester 
E, Ming M, Shen B, Gevaert K, Van Criekinge W, Van Damme P and Menschaert 
G. A proteogenomics approach integrating proteomics and ribosome profiling 
increases the efficiency of protein identification and enables the discovery of al-
ternative translation start sites. Proteomics 14, 2688–2698 (2014)
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A B S T R A C T

Next-generation transcriptome sequencing is increasingly integrated with mass 
spectrometry to enhance MS-based protein and peptide identification. Recently, 
a breakthrough in transcriptome analysis was achieved with the development of 
ribosome profiling (ribo-seq). This technology is based on the deep sequencing of 
ribosome-protected mRNA fragments, thereby enabling the direct observation 
of in vivo protein synthesis at the transcript level. In order to explore the impact 
of a ribo-seq-derived protein sequence search space on MS/MS spectrum identi-
fication, we performed a comprehensive proteome study on a human cancer cell 
line, using both shotgun and N-terminal proteomics, next to ribosome profiling, 
which was used to delineate (alternative) translational reading-frames. By includ-
ing protein-level evidence of sample-specific genetic variation and alternative 
translation, this strategy improved the identification score of 69 proteins and 
identified 22 new proteins in the shotgun experiment. Furthermore, we discov-
ered 18 new alternative translation start sites in the N-terminal proteomics data 
and observed a correlation between the quantitative measures of ribo-seq and 
shotgun proteomics with a Pearson correlation coefficient ranging from 0.483 
to 0.664. Overall, this study demonstrated the benefits of ribosome profiling for 
MS-based protein and peptide identification and we believe this approach could 
develop into a common practice for next-generation proteomics.

D E E P  P R O T E O M E 
C O V E R A G E  B A S E D  O N 
R I B O P R O FILI    N G
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I N T R O D U C T I O N

A shotgun proteomics experiment typically involves the fractionation of a com-
plex peptide mixture followed by LC-MS/MS analysis and the identification 
of peptides using one of several protein or peptide sequence database search 
tools (Perkins et al., 1999, Craig & Beavis, 2004, Geer et al., 2004). N-terminal 
proteomics techniques such as N-terminal COFRADIC (combined fractional di-
agonal chromatography) expand on the results of a typical shotgun experiment 
by enriching for N-terminal peptides, thus revealing (alternative) translation start 
sites, while simultaneously measuring co-translational modifications of protein 
N-termini (Staes et al., 2011). Protein reference databases only contain experi-
mentally verified and/or predicted sequences and are therefore unlikely to contain 
a comprehensive representation of the actual protein content of a given sample. 
To resolve this shortcoming, recent efforts have been directed towards the com-
bination of proteomics and next-generation transcriptome sequencing (Nagaraj 
et al., 2011, Liu et al., 2013, Woo et al., 2014, Pinto et al., 2014). Proteogenomic 
approaches that delineate translation products based on mRNA sequencing data 
may improve protein identification in multiple ways. The transcriptome of a sam-
ple offers a more representative expression profile than could be obtained with a 
public database alone while at the same time reducing the search space through 
the elimination of unexpressed gene products (Wang et al., 2012). The transcript 
data also contains useful information about sequence variations such as single 
nucleotide polymorphisms (SNP) or mutations and RNA splice and editing vari-
ants (Wang et al., 2012, Ning et al., 2010, 2012), which increases the chances of 
detecting new proteins or protein forms (Beck et al., 2011, Djebali et al., 2012, 
Low et al., 2013). Despite the benefits of adding next-generation transcriptome 
sequencing to an MS-based proteomics experiment, there are still several im-
provements possible. Because of extensive translation regulation, the presence of 
a transcript does not necessarily imply the presence of the corresponding protein 
(Selbach et al., 2008, Sonenberg et al., 2007, Baek et al., 2008). On top of that, sever-
al factors, including internal ribosome entry sites, the presence of multiple ORFs 
per transcript, non-AUG start codons and leaky scanning on top of ribosome 
frameshifting and stop codon readthrough hamper the prediction of the exact 
protein sequence(s) from a single transcript sequence (Touriol et al., 2003, Michel 
et al., 2012, Namy et al., 2012).

Recently, a novel technique has been described that attempts to tackle these lim-
itations: ribosome profiling (Ingolia et al., 2010). Ribosome profiling, or ribo-seq, 
is based on the deep sequencing of ribosome-associated mRNA fragments, thus 
enabling the study of in vivo protein synthesis at the transcript level. In a ribo-seq 
experiment, eukaryotic translation is often halted using cycloheximide (CHX). 
The mRNA that is not protected by ribosomes after the translation halt is digest-
ed with nucleases and the monosome-mRNA complexes are isolated. Next, the 
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protected mRNA sequences are separated from the ribosomes and converted into 
a DNA library, ready to be sequenced. The sequencing results in a genome-wide 
snapshot of the mRNA that enters the translation machinery. Additionally, 
(alternative) translation initiation sites can be studied with sub-codon to single-nu-
cleotide precision through the use of antibiotics such as harringtonine (HARR) or 
lactimidomycin (LTM), which cause the ribosomes to halt at sites of translation 
initiation (Ingolia et al., 2011, Lee et al., 2012). When the exact translation start 
site is known, the ORF can be delineated, thus eliminating the need to translate 
the transcripts in three or six reading frames. The measurement of mRNA at the 
translation level, combined with the knowledge of the exact translation start sites, 
makes ribosome profiling an excellent choice for the creation of a custom protein 
sequence search space for MS/MS-based peptide identification (Menschaert et 
al., 2013). It has to be noted that ribo-seq does not generate direct evidence of 
mature proteins or protein stability and that some non-coding transcripts do not 
result in a protein product, despite being associated with ribosomes (Guttman et 
al., 2012, Volders et al., 2013, Bazzini et al., 2014). However, MS-assisted valida-
tion may help to resolve both issues. Apart from canonical translation products, 
ribosome profiling also aids in the identification of unannotated truncated and 
N-terminally extended protein variants and the validation of these variants can 
come from matching N-terminal COFRADIC data (Menschaert et al., 2013, Van 
Damme et al., 2014).

In this study we created a custom protein sequence database based on LTM 
ORF delineation for the HCT116 cell line, a widely used human colon cancer 
cell model, to serve as the search space for MS/MS spectra obtained by means 
of shotgun proteomics and N-terminal COFRADIC (Figure 2.1). Translation 
products derived from the ribosome profiling data of the HCT116 cells were 
combined with the public Swiss-Prot protein sequence database (Boeckmann et 
al., 2003) to build an optimal protein search space for our proteomics data. The 
addition of ribo-seq data resulted in the identification of 22 new proteins, i.e. 
proteins that were not contained in the Swiss-Prot database, out of a total of 2,816 
protein identifications in our shotgun proteomics experiment. On top of that, 
the inclusion of ribo-seq data improved the score of 69 proteins as a result of the 
discovery of proteins with a mutation, new isoforms and homologs and extended 
protein forms. Out of a total of 1,262 peptides, ribo-seq identified 18 extra N- ter-
mini in the COFRADIC experiment compared to Swiss-Prot alone, including 6 
N-termini originating from extended protein forms with a near-cognate start site 
(i.e. the protein does not start with the canonical AUG codon). It needs to be noted 
that in the shotgun proteomics experiment 312 proteins were uniquely identified 
using the Swiss-Prot database, emphasizing the importance of proteomics tech-
niques for the validation of next-generation transcriptome sequencing datasets. 
Finally, the correlation between the ribo-seq and shotgun proteomics data was 
calculated. Depending on the settings used, the Pearson correlation coefficient 
between the ribo-seq-derived normalized ribosome-protected fragments (RPF) 
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counts and the normalized spectral counts of the shotgun experiment (i.e. emPAI 
(Ishihama et al., 2005) and NSAF (Paoletti et al., 2006) values) ranged from 0.483 
to 0.664.

M A T E R I A L  A N D  M E T H O D S

C E L L  C U L T U R E  F O R  P R O T E O M I C S

The HCT116 cell line was kindly provided by the Johns Hopkins Sidney Kimmel 
Comprehensive Cancer Center (Baltimore, USA). Cells were cultivated in DMEM 
medium supplemented with 10% fetal bovine serum (HyClone, Thermo Fisher 
Scientific Inc.), 100 units/ml penicillin (Gibco, Life Technologies) and 100 μg/
ml streptomycin (Gibco) in a humidified incubator at 37°C and 5% CO2. Prior to 
the proteomics experiments, the HCT116 cells were subjected to SILAC labeling 
(Stable Isotope Labeling by Amino acids in Cell culture) (Ong et al., 2002) as part 
of another experiment that compared the wild type HCT116 cells to a double 

FIGURE 2.1  Proteogenomic strategy for the identif ication of proteins 
and peptides using a Swiss-Prot/ribo-seq-derived database.

Ribo-seq was performed twice on the human colon cancer cell line HCT116, once with 
CHX to halt translation globally and once with LTM to stop translation specifically at trans-
lation initiation sites. After translation initiation site (TIS) prediction, the ribo-seq-derived 
ORFs were translated to create a custom protein sequence database. This database was then 
combined with the human Swiss-Prot protein sequence database. Proteome samples were 
prepared from the same HCT116 cells and analyzed using both shotgun proteomics and 
N-terminal COFRADIC. The proteins and peptides in these samples were then identified 
using the custom combined protein search space.
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knockout line, which was differently labeled (manuscript in preparation, see chap-
ter 1, page 27). For the N-terminal COFRADIC analysis, cells were transferred to 
media containing 140 μM heavy (13C6

15N4) L-arginine (Cambridge Isotope Labs, 
Andover, MA, USA). For the shotgun proteome analysis, cells were cultured in 
medium supplemented with 140 μM medium heavy (13C6) L-arginine and 800 μM 
heavy (13C6) L-lysine. To achieve a complete incorporation of the labeled amino 
acids, cells were maintained in culture for at least 6 population doublings.

C E L L  C U L T U R E  A N D  S A M P L E 
P R E P A R A T I O N  F O R  R I B O S O M E 
P R O F I L I N G

The HCT116 cells for the ribosome profiling experiments were cultivated in 
McCoy’s 5A (Modified) Medium (Gibco) supplemented with 10% fetal bovine 
serum, 2 mM alanyl-L-glutamine dipeptide (GlutaMAX, Gibco), 50 units/ml 
penicillin and 50 μg/ml steptamycin at 37°C and 5% CO2. Cultures at 80–90% 
confluence were treated with 50 μM LTM (Ju et al., 2005, Schneider-Poetsch et 
al., 2010) or 100 mg/ml CHX (Sigma, USA) at 37°C for 30 min. Subsequently, 
cells were washed with PBS, harvested by trypsin-EDTA, rinsed again with PBS 
and recovered by 5 min of centrifugation at 300 × g, all in the presence of CHX 
to maintain the polysomal state. Cell pellets were resuspended in ice-cold lysis 
buffer, formulated according to Guo et al. (2010) (10 mM Tris-HCl, pH 7.4, 5 mM 
MgCl2, 100 mM KCl, 1% Triton X-100, 2 mM dithiothreitol (DTT), 100 mg/ml 
CHX, 1 × complete and EDTA-free protease inhibitor cocktail (Roche)), at a con-
centration of 40 × 106 cells/ml. After 10 min of incubation on ice with periodic 
agitation, lysed samples were passed across QIAshredder spin columns (Qiagen) 
to shear the DNA. Subsequently, the flow-throughs were centrifuged for 10 min 
at 16,000 × g and 4°C. The recovered supernatant was aliquoted, snap-frozen in 
liquid nitrogen and stored at -80°C for subsequent ribosome footprint recovery 
and cDNA library generation.

S H O T G U N  P R O T E O M E  A N A L Y S I S

4.2 × 106 cells were lysed in 20 mM NH4HCO3 pH 7.9 by three rounds of 
freeze-thawing. Total protein concentration in cell extracts was measured using 
Biorad’s Protein Assay (Biorad Laboratories, Munich, Germany) and 2 mg pro-
tein material was used for downstream processing. Digestion was performed 
overnight using trypsin (Promega, Madison, WI, USA; enzyme/substrate, 1/50) 
after adding 0.5 M guanidinium hydrochloride and 2% ACN to aid in protein 
denaturation. Methionines were uniformly oxidized to methionine sulfoxides by 
adding 20 μl of 3% (w/v) H2O2 to 100 μl sample (equivalent to 500 μg proteins) 
for 30 min at 30°C. For chromatographic separation 100 μl peptide mixture 
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was then immediately injected onto an RP-HPLC column (Zorbax® 300SB-
C18 Narrow- bore, 2.1 mm internal diameter × 150 mm length, 5 μm particles, 
Agilent). Following 10 min of isocratic pumping with solvent A (10 mM ammoni-
um acetate in water/ACN (98:2 v/v), pH 5.5), a gradient of 1% solvent B increase 
per minute (solvent B: 10 mM ammonium acetate in ACN/water (70:30 v/v), pH 
5.5) was started. The column was then run at 100% solvent B for 5 min, switched 
to 100% solvent A and re-equilibrated for 20 min. The flow was kept constant at 
80 μL/min using Agilent’s 1100 series capillary pump with the 100 μL/min flow 
controller. Fractions of 30 sec wide were collected from 20 to 80 min after sam-
ple injection. To reduce LC-MS/MS analysis time, fractions eluting 12 min apart 
were pooled, vacuum dried and re-dissolved in 20 μl 20 mM tris(2-carboxyethyl)
phosphine (TCEP) in 2% acetonitrile.

N - T E R M I N A L  C O F R A D I C  A N A L Y S I S

HCT116 cells were lysed in 50 mM HEPES pH 7.4, 100 mM NaCl and 0.8% 
CHAPS containing a cocktail of protease inhibitors (Roche) for 10 min on ice and 
centrifuged for 15 min at 16,000 g at 4°C. The protein sample was then subjected 
to N-terminal COFRADIC as described by Staes et al. (2011).

L C - M S / M S  A N A L Y S I S

The shotgun proteomics sample was subjected to LC-MS/MS analysis using 
an Ultimate 3000 RSLC nano HPLC (Dionex, Amsterdam, the Netherlands) 
in-line connected to an LTQ Orbitrap Velos (Thermo Fisher Scientific, Bremen, 
Germany). The sample mixture was loaded on a trapping column (made in-house, 
100 μm id × 20 mm, 5 μm beads C18 Reprosil-HD, Dr. Maisch). After back flush-
ing from the trapping column, the sample was loaded on a reverse-phase column 
(made in-house, 75 μm id × 150 mm, 5 μm beads C18 Reprosil-HD, Dr. Maisch). 
Peptides were loaded in solvent A’ (0.1% trifluoroacetic acid, 2% ACN) and sepa-
rated with a linear gradient from 2% solvent A’’ (0.1% formic acid) to 50% solvent 
B’ (0.1% formic acid and 80% ACN) at a flow rate of 300 nl/min followed by a 
wash reaching 100% solvent B’. The mass spectrometer was operated in data-de-
pendent mode, automatically switching between MS and MS/MS acquisition for 
the ten most abundant peaks in a given MS spectrum. Mascot Generic Files were 
created from the MS/MS data in each LC run using the Distiller software (version 
2.3.2.0).

The N-terminal COFRADIC sample was analyzed on the LTQ Orbitrap XL mass 
spectrometer (Thermo Fisher Scientific, Bremen, Germany) which was operated 
in data-dependent mode, automatically switching between MS and MS/MS ac-
quisition for the six most abundant peaks in a given MS spectrum.
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All the MS data were converted using the PRIDE Converter (Barsnes et al., 2009) 
and are available through the PRIDE database (Martens et al., 2005) with the data-
set identifier PXD000304 and DOI 10.6019/ PXD000304 (http://www.ebi.ac.uk/
pride/archive/login, PX reviewer account: username: review48267, password: 
TTewpyNH).

P E P T I D E  A N D  P R O T E I N  I D E N T I F I C A T I O N 
A N D  I N T E R P R E T A T I O N

The protein and peptide searches were performed against our custom database 
using X! Tandem Sledgehammer (2013.09.01.1) and OMSSA 2.1.9 in combination 
with the SearchGui (1.16.4) tool (Vaudel et al., 2011). For the shotgun proteomics 
experiment, pyroglutamate formation of N-terminal glutamine, acetylation of 
N-termini (both at peptide level) and methionine oxidation to methionine-sulf-
oxide were selected as variable modifications. Heavy labelled arginine (13C6) and 
lysine (13C6) were selected as fixed modifications. Mass tolerance was set to 10 
ppm on precursor ions and to 0.5 Da on fragment ions. The peptide charge was 
set to 2+, 3+, 4+. Trypsin was selected as the enzyme setting, one missed cleavage 
was allowed and cleavage was also allowed when arginine or lysine was followed 
by proline.
For the N-terminomics experiment, the generated MS/MS peak lists were 
searched with Mascot (version 2.3) (Hirosawa et al., 1993). Mass tolerance on 
precursor ions was set to 10 ppm (with Mascot’s C13 option set to 1) and to 
0.5 Da on fragment ions. The peptide charge was set to 1+, 2+, 3+ and the in-
strument setting to ESI-TRAP. Methionine oxidation to methionine- sulfoxide, 
13C2D3-acetylation on lysines and carbamidomethylation of cysteine were set as 
fixed modifications. Variable modifications were 13C2D3 acetylation of N-termini, 
acetylation of N-termini and pyroglutamate formation of N-terminal glutamine 
(all at peptide level). 13C6

15N4 L-arg was set as fixed modification. Endoproteinase 
semi-Arg-C/P (Arg-C specificity with arginine-proline cleavage allowed) was set 
as enzyme allowing for no missed cleavages.

Protein and peptide identification and data interpretation were done using the 
PeptideShaker algorithm (http://code.google.com/p/peptide-shaker, version 
0.26.2), setting the FDR to 1% at all levels (peptide-to-spectrum matching, peptide 
and protein).

R I B O S O M E  P R O F I L I N G

100 μl of the clarified HCT116 cell lysate (equivalent to 4 × 106 cells) was used 
as input for ribosome footprinting. The A260 absorbance of the lysate was mea-
sured with Nanodrop (Thermo Scientific) and for each A260, 5 units of ARTseq 

http://www.ebi.ac.uk/pride/archive/login
http://www.ebi.ac.uk/pride/archive/login
http://code.google.com/p/peptide-shaker
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Nuclease (Epicentre) were added to the samples. The nuclease digestion pro-
ceeded for 45 min at room temperature and was stopped by adding SUPERase. 
In Rnase Inhibitor (Life Technologies). Next, the ribosome protected fragments 
(RPFs) were isolated using Sephacryl S400 spin columns (GE Healthcare) accord-
ing to the procedure described in ‘ARTseq Ribosome Profiling Kit, Mammalian’ 
(Epicentre). The RNA was extracted from the samples using acid 125 phenol : 24 
chloroform : 1 isoamyl alcohol and precipitated overnight at -20°C by adding 2 μl 
glycogen, 1/10th volume of 5 M ammonium acetate and 1.5 volumes of 100% iso-
propyl alcohol. After centrifugation at 18,840 × g and 4°C for 20 min, the purified 
RNA pellet was resuspended in 10 μl nuclease free water.

L I B R A R Y  P R E P A R A T I O N  A N D 
S E Q U E N C I N G

Libraries were created according to the guidelines described in the ARTseq 
Ribosome profiling Kit, Mammalian protocol (Epicentre). The RPFs were ini-
tially rRNA depleted using the Ribo-Zero Magnetic Kit (Human/Mouse/Rat, 
Epicentre), omitting the 50°C incubation step. Cleanup of the rRNA depletion 
reactions was performed through Zymo RNA Clean & Concentrator-5 kit (Zymo 
Research) using 200 μl binding buffer and 450 μl absolute ethanol. The samples 
were separated on a 15% urea-polyacrylamide gel and footprints of 26 to 34 nu-
cleotides long were excised. RNA was extracted from the gel and precipitated. The 
pellet was resuspended in 20 μl nuclease-free water. Next, RPFs were end polished, 
3’ adaptor ligated, reverse transcribed and PAGE purified. Five μl of circularized 
template DNA was used in the PCR reaction and amplification proceeded for 11 
cycles. The libraries were purified with AMPure XP beads (Beckman Coulter) and 
their quality was assessed on a High Sensitivity DNA assay chip (Agilent technol-
ogies). The concentration of the libraries was measured with qPCR and they were 
single end sequenced on a Hiseq (Illumina) for 50 cycles. The ribo-seq libraries 
have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and 
are accessible through the GEO series accession number GSE58207 (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58207).

S W I S S - P R O T / R I B O - S E Q  I N T E G R A T E D 
D A T A B A S E  C O N S T R U C T I O N

The merged database was constructed using all human Swiss-Prot proteins 
(downloaded from http://www.uniprot.org, version 2014_03) and the trans-
lation products obtained from the ribosome profiling experiment (Figure 2.1). 
The ribo-seq-derived translation products were created from both the predicted 
(alternative) TIS genomic locations based on the LTM ribosome profiling infor-
mation (according to Lee et al., 2012) and the corresponding mRNA sequences 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi%3Facc%3DGSE58207
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi%3Facc%3DGSE58207
http://www.uniprot.org
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obtained from Ensembl (version 70) that displayed overall CHX ribosome pro-
tected fragment (RPF) coverage. After reconstructing the amino acid sequences, 
the Ensembl identifiers were mapped to Swiss-Prot identifiers (to safeguard uni-
formity) using the pBlast algorithm.

In order to remove redundancy introduced by the combination of the ribo-seq-de-
rived translation products and the Swiss-Prot protein sequences, duplicated 
sequences were removed, retaining the custom sequence. Moreover, only the 
longest form of a series of gene translation products (N-terminal extended or ca-
nonical) was withheld in the combined database. The custom database contained 
68,961 sequences as compared to the 20,264 proteins in UniProtKB-SwissProt 
version 2014_03. Extra information on the custom DB creation can be found in 
Menschaert et al. (2013).

C O R R E L A T I O N  A N A L Y S I S

Only the transcripts identified in both Swiss-Prot and the ribo-seq-derived trans-
lation products were selected for the correlation analysis. Ribo-seq measurements 
were expressed as the number of ribosomal footprints per CDS (RPF count), 
hereby correcting for a possible 3’UTR and 5’UTR bias as suggested by Ingolia 
et al. (2011). Two quantitative measures for protein abundance based on spectral 
counts (exponentially modified Protein Abundance Index or emPAI (Ishihama et 
al., 2005) and the Normalized Spectral Abundance Factor or NSAF (Paoletti et al., 
2006)) were calculated using the shotgun data. While the first method uses the 
number of peptides per protein normalized by the theoretical number of peptides, 
the so-called protein abundance index (PAI), the NSAF method takes both the 
protein length and the total number of identified MS/MS spectra in an experi-
ment into account. For each dbTIS transcript for which quantitative ribo-seq and 
shotgun proteomics information was available a Pearson correlation coefficient 
was calculated between its normalized RPF count and its normalized spectral 
count. When more than one ribo-seq-derived transcript corresponded with a 
particular Swiss-Prot protein sequence, the one with the highest normalized RPF 
count was used. The different normalization and identification approaches were 
combined with the following additional transcript filtering settings: i) no extra 
cutoffs, ii) only dbTIS transcripts with a validated MS/MS-based identification 
(meaning that the spectral count value was higher than 2), iii) only dbTIS tran-
scripts with a total RPF count ≥ 200, and iv) only dbTIS transcripts with both a 
validated MS identification and an RPF count ≥ 200. All correlation coefficients 
were computed using log-transformed RPF and emPAI/NSAF measures.
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R E SUL   T S

A regular shotgun and an N-terminal COFRADIC proteomics experiment were 
performed on a HCT116 cell line to determine the effect of the addition of ri-
bo-seq-derived translation products to the Swiss-Prot protein sequence database 
on MS/MS spectrum identification. The shotgun data were used for the overall 
assessment of protein expression, whereas the N- terminal COFRADIC data were 
specifically used for the validation of the ribo-seq-predicted translation initiation 
sites.

S H O T G U N  P R O T E O M I C S

Using the combination of Swiss-Prot and the ribo-seq-derived database, we iden-
tified a total of 2,816 proteins in the HCT116 cells (Figure 2.2a). The majority of 
these proteins (2,482 or 88.1%) were identified in both Swiss-Prot and the cus-
tom database. The addition of the ribo- seq data to the protein search space led 
to 22 extra identifications, which would not have been picked up with just the 
Swiss-Prot database. Besides 9 previously unannotated protein products, these 
new identifications included 13 proteins with a mutation and three alternatively 
spliced isoforms. The inclusion of ribo-seq data also improved protein identifi-
cation and score significance for 69 proteins since higher peptide coverage was 
obtained (Supplementary Figure 2.1 shows three examples). The proteins with an 
improved score coincided with mutation sites (52 proteins), alternatively spliced 
isoforms (14 proteins) and three N-terminal extensions. The ribo-seq experiment 
also missed 312 proteins, but these were still picked up thanks to the inclusion 
of Swiss-Prot in the search space. All the identified proteins and their respective 
annotations can be found in Supplementary Table 2.1. An approximate analysis of 
the turnover rate and half-lives of the 312 missed proteins using publically avail-
able datasets (Doherty et al., 2009, Sandoval et al., 2013) showed no significant 
difference between the missed and the other identified proteins (Wilcoxon rank-
sum test, p > 0.05). A gene ontology enrichment analysis using the DAVID tool 
(Huang et al., 2009) revealed that several biological process ontologies involving 
protein transport and localization were significantly enriched in the 312 missed 
proteins, just as the corresponding cellular localization ontologies linked to the 
cytoskeleton, cytosol and non-membrane-bounded organelles (Supplementary 
Table 2.2).

N - T E R M I N A L  C O F R A D I C

In order to validate the TISs identified by the ribo-seq experiment and thus the 
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corresponding N-terminal protein isoforms, positional proteomics in the form 
of N-terminal COFRADIC was applied to the HCT116 cells. After LC-MS/
MS analysis and the subsequent combined database search, we identified 1,289 
N-terminal peptides (Figure 2.2b). The greater part of these peptides mapped to 
canonical start sites (1,071 peptides or 83.1%), 208 peptides started downstream 
of the canonical start site (past protein position 2 in reference to Swiss-Prot), 
nine peptides mapped to a 5’-extension and one to an uORF. Two examples of 
proteins with an N-terminal extension or truncation are given in Figure 2.3. 
Ribo-seq uniquely identified 18 peptides, which would have been missed when 
only searching Swiss-Prot. Both the N-terminal COFRADIC and ribo-seq ex-
periment provided evidence of translation initiation at near-cognate start sites, 
which was also reported in previous COFRADIC and ribo-seq studies (Ingolia et 
al., 2011, Lee et al., 2012). A complete list of all identified N-terminal peptides is 
provided as Supplementary Table 2.1.

We compared the list of identified protein extensions starting at non-AUG start 
sites with the previously published list of non-AUG derived N-terminal exten-
sions predicted by Ivanov et al. (2011) and found matching evidence for one 
N-terminally extended protein (Swiss-Prot entry name HDGF_HUMAN; exten-
sion of 50 amino acids starting at GTG) out of 9 identified in our proteomics 
study.

C O R R E L A T I O N  A N A L Y S I S

We calculated a Pearson correlation coefficient to investigate the relation between 
the ribo-seq coverage and MS protein abundance measurements. Only transcripts 
for which quantitative information was available from both the ribo-seq and 
shotgun proteomics experiments were used in all the plots and calculations. The 

TABLE 2.1  Pearson correlation coefficients between MS protein abun-
dance and ribo-seq coverage.

MS protein identifications were performed with an FDR of 1% and protein abundances 
were calculated as emPAI and NSAF values. The correlation coefficients were computed 
for each of the following transcript filtering settings: i) all dbTIS transcripts without ad-
ditional thresholds, ii) only transcripts with a validated MS identification (i.e. transcripts 
with a spectral count value > 2), iii) only dbTIS transcripts with a total RPF count ≥ 200 and 
iv) only dbTIS transcripts with both a validated MS/MS-based identification and an RPF 
count ≥ 200.

i ii iii iv

emPAI 0.488 0.498 0.483 0.518

NSAF 0.608 0.642 0.634 0.664
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FIGURE 2.2 Bar charts showing the number of protein and pep-
tide identif ications obtained from the shotgun proteomics and 
N-terminal COFRADIC experiments.

a. The custom combined protein sequence database resulted in the identification of 2,816 
proteins. Most of these proteins (2,482 or 88.1%) were picked up by both databases inde-
pendently, while 312 and 22 proteins were uniquely identified in the Swiss-Prot and ri-
bo-seq databases respectively. The 22 unique ribo-seq identifications contained six new 
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Pearson correlation values for the different normalization and identification ap-
proaches are listed in Table 2.1 and Figure 2.4a shows the correlation plots for the 
NSAF values, which were better correlated with the ribo-seq coverage than the 
emPAI values. The highest correlation (r2 = 0.664) was obtained when using only 
validated dbTIS transcripts with a total RPF count ≥ 200. The correlation coeffi-
cients were also calculated for the 312 protein identifications that were present in 
Swiss-Prot, but not in our ribo-seq-derived search space (Supplementary Figure 
2.2). These 312 identifications were missing from the ribo-seq data because no 
TISs were identified in the LTM-treated cells, but, as there was coverage in the 
CHX-treated cells, the correlation could still be calculated. The Pearson correla-
tion coefficients ranged from 0.464 to 0.713, depending on the protein selection 
and normalization procedure, and were similar for the proteins identified in both 
the Swiss-Prot and ribo-seq database.

We also investigated the link between the correlation and the degree of protein 
stability. Figure 2.4b shows the correlation plot for validated dbTIS transcripts 
with an RPF ≥ 200 together with the instability indexes of the proteins. These in-
dexes were obtained with the ExPASy ProtParam tool (Wilkins et al., 1999), where 
a protein with an instability index < 40 is predicted to be stable and a protein 
with an index ≥ 40 is considered unstable. The majority of unstable proteins were 
characterized by lower NSAF and RPF values than the stable proteins. As reported 
previously, protein stability is among the most significant factors governing the 
correlation between gene expression and protein abundance (Ning et al., 2010).

D IS  C USSI    O N

The successful identification of proteins and peptides from MS/MS spectra de-
pends on a number of factors. A state-of-the-art mass spectrometer that provides 
high resolution and mass accuracy is a vital element of a proteomics experiment. 
Solid experimental design and a robust identification pipeline are two other 
important factors. As even small changes in database search algorithms can lead 
to different identification results, combining several search engines, such as 
X!Tandem (Craig et al., 2004) and OMSSA (Geer et al., 2004), helps to increase the 

proteins, 13 proteins with a mutation site and three unannotated isoforms. The ribo-seq 
data also improved the protein identification and score of 69 proteins. b. Most of the 1,289 
peptides that were found in the custom combined protein sequence database mapped to ca-
nonical, annotated N-termini (1,071 dbTIS peptides or 83.1%). Of the remaining N-termini, 
208 started downstream of the canonical start site (beyond protein position 2), nine mapped 
to a 5’-extension and one to an uORF. For both the up- and downstream start sites, we iden-
tified several near-cognate start sites.
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FIGURE 2.3 Depiction of two different N-termini that were predicted 
by ribo-seq and identif ied using N-terminal COFRADIC.

This figure shows a 5’-extension (Swiss-Prot entry name RBP2_HUMAN) and an N- ter-
minal truncation (Swiss-Prot entry name HNRPL_HUMAN). The UCSC genome browser 
(Kent et al., 2002) was used to create the plots of the ribo-seq and N-terminal COFRADIC 
data and the different browser tracks are from top to bottom: CHX treatment data, LTM 
treatment data, N-terminal COFRADIC data, UCSC genes, RefSeq genes and human mRNA 
from GenBank. The different start sites (a: alternative start site, b: canonical start site) are 
clearly visible in the zoomed genome browser views, just as the three-nucleotide periodicity 
of the ribo-seq data, especially in the N-terminal truncation image. The MS/MS spectra and 
sequence fragmentations indicate the confidence and quality of the peptide identifications.
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number of PSMs (Peptide Spectrum Match) (Searle et al., 2008). A more recent 
approach to improve the number of PSMs is based on the custom tailoring of the 
search space through the use of next-generation transcriptome sequencing (Woo 
et al., 2014, Menschaert et al., 2013). The new and improved protein identifications 
based on our ribo-seq-derived search space were a first indication of the success 
of our proteogenomics strategy. Especially the identification of N-terminally ex-
tended proteins would not have been possible when using only Swiss-Prot. The 
positive correlation between protein abundance (measured as NSAF and emPAI 
values) and the ribo-seq footprint coverage (measured as RPF counts) also justifies 
the usage of the described proteogenomics approach. It has been described before 
how NSAF gives a more accurate estimate of protein abundance than emPAI as it 
uses more information (e.g. fragment ion intensities and protein length) (Colaert 
et al., 2011, McIlwain et al., 2012). This could explain why the NSAF values cor-
related better with the ribo-seq data. Interesting to note is that proteins with a 
lower stability index displayed both lower protein abundances as well as lower 
RPF counts than their more stable counterparts (Figure 2.4b). Several studies have 
reported correlation values between mRNA-seq coverage and protein abundance, 
ranging from 0.41–0.44 (Schwanhausser et al., 2011) to 0.51 (Ning et al., 2012) 
in mouse and between 0.42 and 0.43 in rat [14]. Nagaraj et al. (2011) published 

FIGURE 2.4 Correlation plots of protein abundance estimates based 
on NSAF values and RPF counts.

a. Top left: all dbTIS transcripts; top right: dbTIS transcripts with a validated MS/MS- 
based identification (i.e. transcripts with a spectral count value > 2); bottom left: dbTIS 
transcripts with an RPF count ≥ 200; bottom right: dbTIS transcripts with both a validated 
MS identification and an RPF count ≥ 200. The regression line is shown in green. For each 
plot, the number of data points used (i.e. the number of dbTIS transcripts) as well as the 
corresponding Pearson correlation coefficient (r2) is shown. b. Correlation plot with the in-
clusion of stability data. Only dbTIS transcripts with both a validated MS/MS-based iden-
tification and an RPF count ≥ 200 were used (bottom right plot in Figure 2.4a). Instability 
indexes were determined with the ProtParam tool (Wilkins et al., 1999): proteins with an 
instability index < 40 were classified as stable and are shown in blue, whereas proteins with 
an instability index ≥ 40 were classified as unstable and are shown in orange.
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a Spearman’s correlation of 0.6 between FPKM-based transcript abundance 
(Fragments Per Kilobase per Million) and iBAQ-based protein abundance values 
for the human HeLa cell line. The improved correlation observed in our study 
(Table 2.1) can be explained by the fact that, because it measures transcripts after 
they have entered the translation machinery, ribosome profiling is less affected by 
transcriptional and translational regulation. The ability of ribo-seq to take alter-
native translation events into account leads to a better delineation of ORFs, which 
could also improve the correlation. Another advantage of the ribo-seq-derived 
database was that it allowed us to identify translation initiation from non-AUG 
start sites at the protein level, for which only limited evidence is available so far 
(Van Damme et al., 2014, Stern-Ginossar et al., 2012, Slavoff et al., 2013, Branca 
et al., 2014).

Without the addition of the Swiss-Prot database to our custom search space, a 
significant amount of proteins would have been missed (unique Swiss-Prot iden-
tifications in Figure 2.2). These proteins were missing from the ribo-seq-derived 
search space because no detectable LTM-signal could be observed. But since the 
CHX treatment resulted in coverage for these proteins, we could still calculate the 
correlation between protein abundance and RPF counts (Supplementary Figure 
2.2). The abundance values and RPF counts, together with their correlation values, 
ruled out low abundance or coverage as a reason for the missed identifications. 
A suboptimal LTM treatment and/or TIS calling could help explain the lack of 
TIS recognition and the resulting absence of the corresponding proteins from the 
ribo- seq-derived search space. These results demonstrate the importance of ref-
erence databases and MS for the identification and validation of next-generation 
sequencing-derived translation products.

The combination of N-terminal COFRADIC and ribo-seq data identified a num-
ber of alternative TISs. Translation via these start sites produces protein isoforms 
with a different N-terminus if the new start site maintains the reading frame (e.g. 
the 5’-UTR extension in Figure 2.3). If the start site is not in the same reading 
frame, completely different proteins will be generated. The selection of upstream 
TISs can also lead to the creation of uORFs, which influence the downstream 
protein synthesis from the main ORF (Wethmar et al., 2010, Medenbach et al., 
2011). Roughly half of all mammalian transcripts contain one or more upstream 
TISs, which are often associated with short ORFs (Lee et al., 2012). In contrast 
to the previously reported frequent occurrence of uORFs in human and mouse 
ribosome profiling data (Ingolia et al., 2011, Lee et al., 2012), we were able to iden-
tify only one N-terminal peptide of an upstream overlapping ORF in the PIDD 
gene (Supplementary Table 2.1). This limited evidence for uORF protein products 
could be attributed to several factors, such as a bias towards upstream (near-) 
cognate start site identification from ribosome profiling data (Michel et al., 2013) 
or the rapid degradation, small size and possibly low abundance of uORFs.
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C O N C LUSI    O N

As sequencing techniques become more generally accessible, ribosome profiling 
has become (Menschaert et al., 2013, Bazzini et al., 2014, Van Damme et al., 2014, 
Stern-Ginossar et al., 2012, Vasquez et al., 2014) and will continue to be a valuable 
addition to MS-based protein and peptide identification, possibly taking over the 
role of mRNA sequencing for ORF delineation. The benefits of ribo-seq include 
the positive correlation between protein abundance and ribo-seq footprint cov-
erage and the ability to predict TISs with single-nucleotide precision. Despite the 
advantages of ribo-seq, MS-based validation will remain indispensable, not only 
for the general identification of proteins (through shotgun proteomics), but also 
for the validation of ribo-seq-derived (alternative) TIS predictions (by means of 
N-terminomics techniques such as COFRADIC (Staes et al., 2011)). Furthermore, 
unlike ribo-seq or any other transcriptome sequencing technique, MS provides 
true in vivo evidence of proteins or peptides, while taking potential co- and 
post-translational modifications into account. We also found that both reference 
protein sequence databases and ribo-seq-derived search spaces can miss protein 
identifications and that the best results were obtained when these databases were 
combined. Overall, our results show the usefulness of a ribo-seq-based proteog-
enomics approach. Based on our findings, we constructed an automated pipeline 
for the easy conversion of ribo-seq data into a custom protein sequence search 
space that incorporates both sequence variation information and TIS prediction, 
ready to be searched for protein identifications. This pipeline has meanwhile been 
published in a follow-up paper (Crappé et al., 2015).
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F I G U R E  3 . 1
F R O M  N O R M A L  C E L L  T O  M E T A S T A T I C 

C A N C E R

This figure gives a general overview of the different steps that separate a normal 
cell from a tumor cell. It all starts when a a gene involved in cell growth gets hit 
by a genetic or epigenetic mutation. The cell will often detect these mutations 
and will then try to repair the damage or will initiate controlled cell death to 
prevent further mutations. If these control mechanisms fail and the cell acquires 
more (epi)genetic mutations, the cell might lose all growth inhibitions. After some 
time the initial mutated cell will have formed a lump of mutated daughter cells, 
a tumor. This tumor will start to attract blood vessels (angiogenesis) to provide 
itself with oxygen and nutrients (without it the tumor cells could die of hypoxia, a 
lack of oxygen) and at a certain point the tumor cells will grow into the surround-
ing tissues and will spread through the body. The tumor has become metastatic. 
We have several defence mechanisms to prevent a mutated cell from reaching 
this point, such as DNA repair and controlled cell death (apoptosis). Our immune 
system is another example. It is constantly on the lookout for cancer cells and will 
destroy them if it finds any, though sometimes a tumor cell will manage to escape 
the immune response.
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Cancer affects us all. The probability that you or someone close to you will at 
some point be confronted with cancer is unfortunately very high. Researchers 
from the World Health Organization estimated that in 2012 approximately 14 
million people were diagnosed with cancer and they expect this number to rise to 
22 million within the next two decades (WHO, 2014). But what is cancer exactly? 
And how can we use the gene expression and DNA methylation analysis tech-
niques described in the first chapter to study this dreadful disease?

As we mentioned earlier, a cell’s life cycle is very tightly regulated. Even death 
is a carefully orchestrated process, known as apoptosis. Cells can of course also 
die because of injury or disease, but this type of uncontrolled cell death is called 
necrosis (a classic example is gangrene). Our cells need the ability to grow and 
multiply to maintain our bodies. They also need apoptosis and other control 
mechanisms to keep this growth in check, because a defect in the growth control 
of a cell can kick-start a frantic proliferation (Figure 3.1). The resulting lump of 
cells, which usually inherit the growth defect of the original deviant cell, is called 
a tumor.

We say a tumor is malignant (as opposed to benign) if, on top the uncontrolled 
growth, it also acquires the ability to spread to other parts of the body (see 
Hanahan & Weinberg, 2011 for a detailed overview of the different characteristics 
of a cancer cell). This spreading of malignant tumor cells from one location to the 
other (often via blood or lymph circulation) is called metastasis. Most of the time 
it is not the initial tumor, but rather the metastasis that makes cancer so deadly. A 
primary tumor growing in breast tissue for example might not pose an immediate 
life-threatening risk, but the moment a metastatic tumor starts ravaging a vital 
organ like the brain the situation becomes dire. In fact, metastatic tumors are reg-
ularly found in crucial organs, such as the lungs, liver, brain or bones. You might 
also have heard or read about aggressive cancers. A cancer is said to be aggressive 
when the tumor cells divide and metastasize even faster than in a “normal” or 
non-aggressive cancer. Aggressive cancers generally have a worse prognosis than 
their less aggressive counterparts.

So in essence, cancer is a disease characterized by uncontrolled cell growth and 
the spreading of tumor cells throughout the body. It is actually a collection of 
diseases, rather than a single one, because different cancers can have very diverse 
biological backgrounds and often require specific therapies. We name cancers by 
the type of cell and the organ they originate from. Cancers that arise in epithe-
lial cells, which line the surfaces of our body (for example our skin or the lining 
of our intestines and lungs), are called carcinomas, whereas sarcomas arise in 
connective tissue (for example bone or fat cells). Lymphomas and leukemia start 
in blood-forming cells, while blastomas and germ cell tumors, which occur less 
often, originate in immature cells or embryonic tissue and in pluripotent cells 
(often in the testes or ovaries). There are many more subdivisions, but these are 



the main ones. So when a doctor diagnoses a patient with a carcinoma of the lung, 
this means that the primary tumor was found in the lung and that it started from 
an epithelial cell. 

We know that cancer is caused by uncontrolled cell growth, but what exactly 
makes a cell lose control over its own growth? On a cellular level, the transfor-
mation of a healthy cell to a tumor cell is caused by both genetic and epigenetic 
mutations. Genetic mutations range from single nucleotide polymorphisms or 
SNPs (when only a single base is changed) to large chromosomal rearrangements 
(when parts of a chromosome are deleted, duplicated or swapped out with a part 
from another chromosome) or even changes in the number of chromosomes. An 
epigenetic mutation, such as a change in the methylation status of the promot-
er region of a gene, can affect the expression of this gene. If such an epigenetic 
mutation deactivates a gene that controls cell growth or activates a gene that pro-
motes growth or metastasis, it can encourage the formation of a tumor (Herman 
& Baylin, 2003). Table 3.1 lists some genes that are known to be mutated and/or 
hypermethylated in cancer.  

A single mutation, genetic or epigenetic, is not enough for a cell to become can-
cerous, so a typical tumor cell will harbor multiple genetic as well as epigenetic 
changes. But where do these mutations come from? Between 90 and 95% of all 
cancers are caused by environmental factors and are known as sporadic cancers 
(Esteller et al., 2001). The remaining 5 to 10% are non-sporadic or hereditary can-
cers and have been linked to mutations that are passed on from one generation to 
next. One of the best-known examples is the mutation of the BRCA1 and BRCA2 
genes, which increases a woman’s chances of developing breast and ovarian can-
cer (Robson, 2002). If a woman has several family members with breast cancer, 
she might decide to get tested for BRCA mutations. In case of a positive test she 
could opt for more frequent checkups with a doctor or even for preventive sur-
gery (you might remember Angelina Jolie’s widely publicized decision to have 
preventive surgery after she found out she carried the BRCA mutations).

The single most important risk factor for cancer, sporadic or not, is age. It’s simple, 
the older you are, the more likely you are to develop cancer. Lifestyle is another 
major factor, so even though you cannot change how old you are, there are several 
ways you can minimize your risk. Smoking for example is to be blamed for almost 
a fifth of all cancer deaths worldwide (Kuper et al., 2002). Next in the list of things 
to avoid if you want to reduce your risk are a lack of physical exercise, obesity and 
an unhealthy diet (overeating, lots of alcohol and a lack of fruit and vegetables) 
(Kushi et al., 2006). Infectious diseases (human papilloma virus for example has 
been linked to cervical cancer) (zur Hausen, 1996) and radiation (don’t forget to 
wear sunscreen!) (Elwood & Jopson, 1997) are also significant cancer-causing en-
vironmental factors. In the end, all these different causes, whether it’s exposure to 
asbestos (Straif et al., 2009) or a hepatitis C virus infection (Waghray et al., 2015), 
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produce genetic and epigenetic changes on a cellular level. These changes result 
(directly or indirectly) in the up or down regulation of certain genes or even in 
the production of mutated proteins with a novel function, transforming a normal 
cell into a tumor cell.
There is an abundance of cancer treatments available, some very specific (only 
work for certain patients with a certain type of cancer), some more general (can 
be used in several types of cancer). We should also note that, because there are 
so many different cancer types, it is unlikely that we will ever have a single, one-
size-fits-all therapy for cancer. Before they decide which therapy or combination 
of therapies to use, doctors will try to collect as much information as they can 
about the patient and the cancer. Among many other things, they evaluate the 
type of cancer, tumor location and size, whether or not the tumor has metas-
tasized and the presence of certain mutations. Correct staging of the cancer is 

Table 3.1 .  A l ist  of genes with well-known mutations and/or abberant 
DNA methylation in cancer.

The genes listed in this table have well-described mutations or are hypermethylated (and 
therefore inactivated) in one or more cancer types (we give an example for each gene). Most 
of the genes that are listed here act as tumor suppressors and are inactivated in cancer cells. 
One exception is the oncogene BRAF. There is a particular mutation that increases the 
activity of BRAF, which leads to oncogenesis via unregulated MAPK signaling (Wan et al., 
2004).  For some of these genes, such as BRAF or BRCA1, clinical tests are commercially 
available.

Gene (epi)mutation information

BRCA1 mutations have been linked to increased risk of developing breast and ovarian 
cancer (King et al., 2003) and several clinical tests are available
inactivation of BRCA1 expression through promoter hypermethylation has also 
been detected (Tapia et al., 2008)

APC inactivating mutations can be found in most sporadic colorectal cancers 
(Markowitz & Bertagnolli, 2009)

CDKN2A (p16) frequently mutated in pancreatic cancer (Rozenblum et al., 1997)

BRAF frequently mutated in metastatic melanomas (Kainthla et al., 2013)
vemurafenib is a commercially available BRAF inhibitor (Bollag et al., 2012) 

KRAS mutations in this gene have been found in colorectal cancer and can be used to 
predict response to treatment with cetuximab (Lièvre et al., 2006)

GSTP1 promoter hypermethylation has been observed in more than 80% of prostate 
cancers (Bastian et al., 2004) 

MGMT epigenetic silencing of this DNA repair gene makes glioblastoma patients more 
susceptible to temozolomide treatment (Hegi et al., 2005)

PTEN together with TP53 one of the most commonly mutated genes in prostate 
cancer (Chen et al., 2005)

TP53 (p53) common mutations in a wide range of cancer types, including colon. lung, 
breast and liver cancer (Hollstein et al., 1991)

RASSF1 promoter methylation correlates with advanced tumor stage and poor 
prognosis in bladder cancer (Lee et al., 2001)
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also vital in choosing the correct treatment. During its development, a cancer 
goes through several phases or stages. These stages range from stage 0, an early, 
localized tumor, to stage 4, a metastasized tumor that has spread to other organs. 
While a tumor might be surgically removed without any further therapy if it is 
in an early stage, late stage tumors are much more difficult to treat and generally 
have a worse outcome.

Once the doctors have the information they need, they can decide how to treat 
their patient. The three predominant types of treatment are surgery, radiation 
therapy and chemotherapy. Especially in the early stages, a surgeon can try to 
cure a cancer by completely removing the tumor from a patient’s body. However, 
the moment a tumor has metastasized, it becomes very difficult to surgically re-
move all tumor cells. In blood cancers, such as leukemia, surgery is of little use 
even at the early stages, as these tumor cells circulate around the body through the 
bloodstream instead of forming a solid lump of cells.

Apart from surgery, doctors can also choose to use radiotherapy to kill malignant 
cells and shrink tumors. Irradiating tumor cells with X-rays causes DNA damage, 
which stops them from growing and kills them. To minimize any unwanted dam-
age, these X-rays are aimed at the tumor from different angles at once so that the 
radiation dose is higher in the tumor than in the surrounding healthy tissue. In 
addition to radiotherapy, doctors can also use chemotherapy to kill cancer cells. 
This type of treatment relies on the use of various drugs that interfere with cell 
division. Cancer cells divide faster than normal cells, so these drugs will mostly 
affect the fast-growing cancer cells. Chemotherapy can have severe side effects, 
because cancer cells are not the only fast-growing cells in our bodies. The epi-
thelial cells that line the stomach for example, or hair follicle cells, are naturally 
fast-dividing cells that can be killed by chemotherapy, resulting in the charac-
teristic gastrointestinal problems, such as nausea and vomiting, and hair loss. 
Patients generally receive a combination of the three predominant treatments. 
Chemo and radiotherapy are for example often used together to reduce the size 
of a tumor before a surgeon will try to remove it.

The therapies we just described come with severe side effects, so severe sometimes 
that the patient succumbs to the treatment instead of the cancer. It is actually not 
difficult to kill tumor cells, not at all. The big problem however, is to only kill 
tumor cells and not the healthy cells. In their search for a more targeted therapy 
that does not harm healthy cells, some scientists have set their sights on the im-
mune system. Our immune system is a very complex and intricate system that 
involves several organs and specialized cells. A detailed overview of these organs 
and cells along with their functions is beyond the scope of this introduction, so 
we will focus on the role of the immune system in cancer and why scientists have 
been trying to harvest its power in the battle against this disease.
Most people will immediately associate the immune system with infectious 
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diseases, for example caused by a bacterial infection, but it is also absolutely vital 
in the detection and destruction of tumor cells. Certain immune cells (natural 
killer and killer T cells) are constantly patrolling our bodies, looking for so-called 
non-self or foreign antigens (antigens are molecules that can bind to the receptors 
of certain immune cells). A bacterial or viral protein for example that is normally 
not present in our cells will be recognized as a foreign antigen. Our cells express 
a protein complex on their membranes known as the major histocompatibility 
complex (MHC). The function of this complex is to present a sample of the pro-
teins that are present within the cell to the extracellular environment (Janeway et 
al., 2001).

The proteins in a cell, whether they belong to the cell itself or to a pathogen that 
has invaded the cell, are constantly synthesized and dismantled. Some of the pro-
tein fragments or peptides that result from the destruction process are not further 
degraded to the individual amino acids the protein was made of, but are instead 
transported to the cell membrane where they bind to the MHC. When a natural 
killer or killer T cell comes by it checks the antigens presented by the MHC to see 
if any of these antigens are foreign. If it does not find a non-self antigen, the killer 
cell will move on to the next cell. If it does find a non-self antigen, it will destroy 
the cell it was inspecting.

If the immune cells only react to non-self antigens and tumor cells originate from 
our own “self” cells, how can our immune system recognize these tumor cells? 
Well, there are several possibilities. Tumor cells carry many genetic mutations 
and some of these mutations will change the corresponding proteins in such a 
way that they are recognized as foreign. We also mentioned earlier that some 
viruses are known to cause cancer, so in this case the tumor cells (which were 
infected by the virus) may express viral antigens that can be recognized by the 
immune system. Finally, the gene expression profile of a tumor cell is very dif-
ferent from a normal cell and sometimes genes that are normally expressed at a 
low level are highly expressed in a tumor cell. Our immune system can then use 
the antigens derived from these genes to separate tumor from normal cells. Frank 
Macfarlane Burnet, a Nobel Prize-winning giant of immunology, was the first 
scientist to propose the concept of immune surveillance, in which the immune 
system recognizes and destroys tumor cells, in the 1950s (Burnet, 1970).

Despite the constant immune surveillance, there are several ways for tumor cells 
to escape an immune response. Sometimes tumor cells express less MHC proteins 
and can therefore avoid recognition by the killer cells. Tumor cells also divide 
quickly and their genome is rather unstable, so there is a good chance that new 
mutations will pop up during the growth of a tumor. If these mutations hit the 
antigens that the killer cells were able to recognize, the tumor cells could become 
unrecognizable to the immune system. Tumors can also create a so-called im-
munotolerant microenvironment. By suppressing genes and signals that would 
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otherwise stimulate T cell proliferation and activation or by expressing certain 
genes that downregulate the immune system, a tumor can turn its close environ-
ment into a safe haven where it can’t be harmed by the immune system.

One example of a gene that downregulates the immune response is PD-1. This 
gene is expressed on the surface of T cells where it acts as an “off switch”. If a spe-
cific protein (encoded by the PD-L1 gene) binds to the PD-1 receptor, the T cell 
can’t be activated (Okazaki & Wang, 2005). The ability to prevent T cell activation 
is very useful, for example to reduce the risk of autoimmunity (when immune 
cells attack their own host body). The downside is that tumors can abuse this 
mechanism. Researchers have found that many tumors express PD-L1 and are 
therefore able to suppress T cell activation (Iway et al., 2002). CTLA-4 is another 
example of such an “off switch” on T cells that is used by some tumors to prevent 
T cell activation (Hodi et al., 2003).

The idea behind immunotherapy is that if we could somehow overcome the 
immune escape of tumor cells, if we could give the immune system of a cancer 
patient a nudge in the right direction, we would have a highly specific treatment at 
our disposal, much more specific than radio or chemotherapy. Researchers have 
already come up with a lot of different immunotherapy techniques, some more 
successful than others. The different types of immunotherapy can be split up in 
two main groups: active and passive immunity. Examples of passive immunother-
apy are the administration of tumor-specific antibodies or killer cells. Antibodies 
are specialized proteins that bind to specific antigens on pathogens, infected cells 
or tumor cells. By binding to a tumor cell, an antibody tags the cell for destruction 
by the immune system. The other passive immunity technique involves the iso-
lation of inactive killer cells from a patient and the activation of these cells in the 
lab, followed by their reinjection into the patient. Despite rapid initial responses 
to these treatments, they often fail to generate long-term immunity. They are 
called passive because there is no stimulation of any existing (but insufficient) 
immune responses, like in active immunity. Instead, the patient receives a sort of 
“ready-made” solution.

One way to actively stimulate a patient’s existing, but failing, immune response 
against a tumor is to administer non-specific immune system stimulants. Injecting 
certain bacteria or general antibodies into a patient will evoke an inflammatory 
response, which in turn might result in a general activation of T cells and the 
elimination of tumor cells. Two more common and more successful approaches, 
which we used in this thesis, are the vaccination of a patient with tumor cells 
or tumor antigens and the use of cytokines and costimulators. It is easy to un-
derstand how the vaccination against certain viruses that are known to cause 
cancer (such as the hepatitis B virus or the human papilloma virus) will reduce the 
incidence of these cancers, but this is not the only option. Vaccination against a 
tumor-inducing virus is often preventive, rather than therapeutic, which means 
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it will reduce the chance that a tumor will develop, but it might not help fight 
established tumors.

One example of a therapeutic vaccine involves an antigen-presenting immune 
cell we have not discussed yet: the dendritic cell (Timmerman & Levy, 1999). 
Immature dendritic cells patrol the tissues that are in contact with the outside 
world, like our skin and the lining of our lungs and stomach, where they con-
stantly sample the cells they meet, looking for foreign antigens (Banchereau & 
Steinman, 1998). When an immature dendritic cell stumbles across such an an-
tigen, it ingests the antigen, processes it and displays it on its surface using the 
MHC. The dendritic cell is now a mature dendritic cell and it travels to a lymph 
node where it shows the antigen it found to all the T cells in this node. Once they 
have been exposed to the antigen, the T cells become activated and they are ready 
to go after any cell that carries this antigen.

Before we can use a patient’s dendritic cells, we need to separate them from the 
patient’s blood. Next, the dendritic cells are incubated in the lab together with 
certain tumor antigens. One group of antigens that is often used is the MAGE 
gene family, a subgroup of the cancer-testis antigens (Wilgenhof et al., 2011). 
These genes are known as cancer-testis antigens, because they are normally only 
expressed in the germ cells of the testes. However, research has shown that they 
are also expressed in some cancers, for example in melanoma, hence the “cancer” 
in their name (Scanlan et al., 2004). Once the dendritic cells have processed the 
antigens, they can be reinjected in the patient where they will present the antigens 
to the T cells, which might initiate an immune response against the tumor. In the 
third part of this chapter you can read how we used dendritic cell vaccines to treat 
metastatic melanoma patients.

Another way to actively stimulate the immune system, besides the vaccination 
we just described, is based on the role of costimulators in the immune response. 
The recognition of an antigen by the T cell receptor is not the only thing that 
controls the activity of a T cell. Activation requires several other signals (from the 
so-called costimulators) and T cells also have different receptors that are respon-
sible for deactivation, such as PD-1 and CTLA-4. Earlier we explained how some 
tumors avoid destruction by using these “off-switches” to shut down T cells. In 
addition to the dendritic cell therapy, we also used an antibody to block CTLA-4 
and thus prevent tumor-induced T cell deactivation in our melanoma study.

In the second part of this chapter we describe a therapy that targets the PD-1/
PD-L1 interaction in lung cancer (Wrangle et al., 2013). Just as with the CTLA-4 
blocking therapy, the idea is that by interfering with the PD-1/PD-L1 interaction, 
we can stop a tumor from deactivating T cells. In our lung cancer project we 
actually focused on the combination of two treatments: the anti-PD-1/PD-L1 
immunotherapy and the demethylating drug azacytidine. Not all tumors express 
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PD-L1 and if they don’t, it doesn’t make sense to use a therapy that targets PD-L1, 
unless we could somehow increase the expression of PD-L1 in these tumors. As it 
turns out, we might actually be able to do just that.

Azacytidine is a molecule whose structure resembles that of cytosine, the nucleo-
tide in our DNA that can be methylated, and it can be used to remove methylation 
in living cells (Jones & Taylor, 1980). In low concentrations azacytidine inhibits 
the enzymes that are responsible for DNA methylation (the DNA methyltrans-
ferases or DNMTs) and in high concentrations it replaces cytosine in both DNA 
and RNA (Stresemann & Lyko, 2008). It is similar enough to cytosine to take its 
place, but different enough that it can’t be methylated like cytosine, so wherever 
a methylated cytosine is replaced by azacytidine, methylation will be removed. In 
our paper we describe how lung cancer patients might benefit from a treatment 
with azacytidine before they receive immunotherapy. We found that this initial 
demethylation treatment increased the expression of PD-L1 in some tumors, 
which made them more susceptible for the anti-PD-1/PD-L1 immunotherapy 
that followed.

The gene expression and DNA methylation analysis techniques we described in 
the previous chapter are a crucial part of cancer research. Among many other 
things, they are used to investigate the differences between normal and tumor 
cells, to study what effect treatments have or to figure out why some patients re-
spond to therapy and others don’t. One particularly active field of cancer research 
is focused on the development of expression and DNA methylation biomarkers. 
Biomarkers are certain biological characteristics that can be used to say some-
thing about a person’s health. The BRCA1 and BRCA2 mutations we mentioned 
earlier are examples of genetic biomarkers that can be used to predict a woman’s 
chances of developing breast cancer (Robson, 2002). For these two genes there is 
a well-known causal link between their mutation and the development of breast 
cancer. This is not always the case though. For a lot of biomarkers we do not 
know if and how they cause a certain disease, we only know they are associated 
with that disease.

If researchers find a gene that is expressed in tumor cells, but not in normal cells, or 
a certain region of a gene that is methylated in patients that respond to a treatment 
while patients without methylation don’t respond, they can use this information 
to develop new therapies or new methods to check whether a patient should get 
a certain therapy or not. The tailoring of treatments to individual patients is part 
of the relatively recent push towards personalized medicine. The idea behind 
personalized medicine is that instead of offering the same therapy to everyone 
who suffers from a certain disease, each patient should receive a treatment that is 
fully customized to her or his biologic background. In the early days of person-
alized medicine, the focus was mainly on the patient’s genetic background, but 
nowadays it encompasses many other features (such as gene expression and DNA 
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methylation). The ultimate goal is to improve diagnosis and therapy efficiency.

In our melanoma project, we used RNA-seq to find expression differences be-
tween patients that benefit from the immunotherapy and those that don’t. It 
would be extremely valuable to have an expression signature that separates re-
sponders from non-responders, because the current immunotherapies cost tens 
of thousands of euros and can have severe side effects. Such a signature could save 
some patients a costly and potentially dangerous therapy that wouldn’t even help 
them.

We will round off this introduction with a relatively recent development in can-
cer research. Over the last few years a lot of resources have been poured into 
large-scale cancer genomics projects such as The Cancer Genome Atlas (TCGA). 
Using the high-throughput technologies from chapter one these projects analyze 
hundreds of patient samples for dozens of different cancer types and bundle the 
results in publically available databases. The TCGA database for example con-
tains gene expression (at the transcript and the protein level), DNA methylation, 
mutation and clinical data. The goal of these projects is to enable researchers to 
test their hypotheses in much larger patient groups than they would otherwise 
have access to or even to come up with completely new ideas. Both in our lung 
cancer and melanoma project we used the TCGA database to check the findings 
from our small-scale studies. One downside of these databases is that they are 
often not easily accessible, especially to researchers without an informatics back-
ground. We decided to try and tackle this issue by developing an easy-to-use web 
tool for the visualization of the TCGA data on a single-gene level. MEXPRESS 
was born. The final part of this chapter describes this tool in detail.
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D and Baylin SB. Alterations of immune response of non-small cell lung cancer 
with azacytidine. Oncotarget 4, 2067–2079 (2013)
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A B S T R A C T

Innovative therapies are needed for advanced Non-Small Cell Lung Cancer 
(NSCLC). We have undertaken a genomics-based, hypothesis-driving approach 
to query an emerging potential that epigenetic therapy may sensitize to immune 
checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were 
treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and 
genes and pathways altered were mapped by genome-wide expression and DNA 
methylation analyses. AZA-induced pathways were analyzed in The Cancer 
Genome Atlas (TCGA) project by mapping the derived gene signatures in hun-
dreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA 
up-regulates genes and pathways related to both innate and adaptive immunity 
and genes related to immune evasion in several NSCLC lines. DNA hypermethyl-
ation and low expression of IRF7, an interferon transcription factor, tracks with 
this signature particularly in LUSC. In concert with these events, AZA up-regu-
lates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. 
Analysis of TCGA samples demonstrates that a significant proportion of primary 
NSCLC have low expression of AZA-induced immune genes, including PD-L1. 
We hypothesize that epigenetic therapy combined with blockade of immune 
checkpoints–in particular the PD-1/PD-L1 pathway–may augment response of 
NSCLC by shifting the balance between immune activation and immune inhibi-
tion, particularly in a subset of NSCLC with low expression of these pathways. 
Our studies define a biomarker strategy for response in a recently initiated trial 
to examine the potential of epigenetic therapy to sensitize patients with NSCLC 
to PD-1 immune checkpoint blockade.

A L T E R A T I O N S  O F 
I M M U N E  R E S P O N S E 
O F  N O N - S M A LL   C E LL  
LU  N G  C A N C E R  W I T H 
A Z A C Y T I D I N E
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I N T R O D U C T I O N

Innovative strategies are needed to treat the world’s most common cause of 
cancer death, non-small cell lung cancer (NSCLC) (Siegel et al., 2013, Youlden et 
al., 2008). Less than a quarter of lung adenocarcinomas (LUAD) harbor genetic 
abnormalities for which targeted therapies have been derived. Early responses are 
often robust for these but are generally followed by acquired resistance (Vadakara 
et al., 2012, Shepherd et al., 2005). Lung squamous cell carcinoma (LUSC) has 
no approved targeted therapies and few effective chemotherapeutic options be-
yond the first line of therapy. In the current study, we offer a genomics-based, 
hypothesis-driving analysis to suggest a rationale for a novel combinatorial 
therapeutic approach to efficacious treatments for advanced NSCLC. The back-
drop for the present study comes from our initial clinical trials in our Stand up 
to Cancer project (SU2C) in which patients with advanced, heavily-pretreated 
NSCLC received a form of “epigenetic therapy” combining low doses of the DNA 
hypomethylating agent azacytidine (AZA - Vidaza) and the HDAC inhibitor en-
tinostat (Juergens et al., 2011). Only two of now 65 patients treated to date have 
had RECIST (Response Evaluation Criteria In Solid Tumors) criteria responses 
to this therapy alone, but these were very robust and durable. A group of patients 
followed for 8 to 26 months responded to multiple different therapeutic regimens 
given subsequently, suggesting a “priming” effect of epigenetic therapy. Twenty-
five percent of these patients with both LUAD and LUSC experienced RECIST 
criteria responses to their subsequent regimens. These subsequent therapies in-
cluded not only standard chemotherapies but also immunotherapy targeting the 
PD-1 immune-checkpoint which when given alone has yielded responses in 16 
to 17% of patients with advanced NSCLC (Brahmer et al., 2012, 2013, Topalian 
et al., 2012) (Supplementary Figure 3.1). While the number of patients who have 
received epigenetic therapy followed by immune checkpoint blockade is small, 
a clinical trial to evaluate potential sensitization to PD-1 immune checkpoint 
blockade with epigenetic therapy in patients with NSCLC has now begun.

This trial will be biopsy driven and offer the opportunity to examine hypotheses 
generated in the present pre-clinical work in order to develop biomarker strat-
egies. In this regard, one of the key therapy agents being employed in the trial is 
AZA, a nucleotide analog DNA demethylating agent which blocks the activity of all 
three biologically active DNA methyltransferases (DNMT’s) and also triggers deg-
radation of these proteins in the nucleus (Gabbara & Bhagwat, 1995, Stresemann 
& Lyko, 2008). With respect to sensitization potential of this drug for immune 
responses, such targeting of DNMT’s is known to induce increased expression 
of promoter DNA hypermethylated cancer testes antigens and also is reported 
to up-regulate other individual facets of the tumor immune stimulating profile, 
including major histocompatibility antigens, and transcription factors IRF7 and 
IRF5 (Li & Tainsky, 2011, Kulaeva et al., 2003, Simova et al., 2011, Fonsatti et al., 
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2007, Claus et al., 2005, Karpf et al., 1999). In this regard, we previously reported 
that elements of such immune pathway activation were produced by low doses of 
DNA demethylating agents in a genomics based, pre-clinical approach (Tsai et al., 
2012). These studies demonstrated how low doses of AZA, which avoid early, cy-
totoxic and off-target effects, can provide a memory for a “reprogramming”-like 
effect on hematopoietic and selected examples of solid tumor cells (Tsai et al., 
2012). We hypothesize in this work that these effects may underlie the fact that 
significantly lowering doses of DNMT inhibitors in the clinic may account for 
the markedly decreased toxicity, and significant clinical efficacy, which has led to 
FDA approval of AZA for myelodysplasia (MDS) (Silverman et al., 2002).

Initially, we focused our pre-clinical studies for low dose AZA on NSCLC. By first 
deriving genomic signatures of gene expression responses and DNA methylation 
for treated NSCLC lines, we observed in most cell lines a complex, multi-fac-
eted up-regulation, involving hundreds of genes of the immune profile of these 
cells which includes the target of immune checkpoint therapy, the tumor ligand 
PD-L1. Moreover, using this extensive genomic signature, we have been able to 
specifically query hundreds of primary NSCLC samples in the Cancer Genome 
Atlas project (TCGA) for how basal expression of these immune genes and relat-
ed DNA methylation events group lung cancers. We define a stark clustering of 
subsets of primary LUAD and LUSC for an “immune evasion” signature, which 
relates highly to events for low interferon pathway signaling and includes low 
levels of PD-L1 (Khong & Restifo, 2002, Tomasi et al., 2006, Pardoll, 2012). Low 
expression of these genes closely matches those up-regulated by AZA treatment 
of the NSCLC cell lines. We hypothesize that these may be cancers which would 
benefit from AZA priming together with immune checkpoint therapy and outline 
a signature that may identify predictive biomarkers from biopsies forthcoming in 
the current trial.

M A T E R I A LS   A N D  M E T H O D S

C L I N I C A L  D A T A

Institutional review board approved informed consent signed by each patient 
allowed the collection of clinical data following treatment on trial with epigene-
tic therapy. Relevant data were obtained by chart review. Representative images 
demonstrating responses to therapy were obtained from computed tomography 
series employed in the assessment of patient responses to anti- PD1 or anti-PD-L1 
directed immune-checkpoint therapy. Assessment of response to treatment was 
performed by a single reference radiologist who employed (RECIST 1.0) to gen-
erate measurements for target lesions to be followed over the course of therapy. 
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Change in target lesions from baseline (%) is calculated by summing the diameter 
of all target lesions at each radiographic tumor evaluation and calculating per-
centage change at a given time point ([(Target Lesion SumTimepoint X/ Target 
Lesion SumBaseline)-1]*100).

T C G A  S A M P L E S

Level 3 RNA-Seq data (Illumina HiSeq RNA-Seq platform, Illumina, Inc., San 
Diego, CA, USA) were downloaded for 353 NSCLC samples (129 LUAD / 224 
LUSC) and 54 adjacent non-tumor lung tissue samples from the TCGA Data 
Portal (https://tcga-data.nci.nih.gov/tcga/). Similarly, level 1 DNA methylation 
data (Illumina Infinium HumanMethylation450 BeadChip, Illumina, Inc., San 
Diego, CA, USA) were downloaded for 353 NSCLC samples (222 LUAD / 149 
LUSC) and 74 adjacent non- tumor lung tissue samples. Among these, data for 
174 NSCLC samples (80 LUAD / 94 LUSC) and 21 adjacent non-tumor lung tis-
sue samples were available on both of the above platforms.

R N A - S E Q  D A T A  A N A L Y S I S

We used TCGA level 3 RNA-Seq data (already normalized and quantified at gene 
levels), and presented as RPKM values (Reads Per Kilobase per Million mapped 
reads). To construct heatmaps: 1) Values of 0 (indicating no reads observed for a 
gene) in the RPKM data were set to NA; 2) the remaining RPKM values were log2 
transformed; 3) genes from X and Y chromosomes were removed; and 4) heat-
maps were made using the “heatmap.2” function in “gplots” package from CRAN 
being centered and scaled in the row direction, and using the default functions 
for computing distance and hierarchical clustering (or being specifically ordered 
in column according to the order of other heatmaps). Expression spectrums for 
individual genes were displayed in five quartile intervals following the order of 
associated heatmaps of the RNA-Seq data.

I N F I N I U M  D N A  M E T H Y L A T I O N  D A T A 
A N A L Y S I S

TCGA level 1 DNA methylation data contain raw binary intensity data files. Raw 
data files were imported into R (http://www.r-project.org) to calculate beta val-
ues (beta value Infinium = M / [U + M], M: mean intensities of the Methylated 
bead type, U: mean intensities of the Unmethylated bead types), M values (M 
value Infinium = log2 [M / U]) and detection p values (calculated by comparing 
probes to negative control probes to determine if signals are significantly dif-
ferent from the background) using the “methylumi” package from Bioconductor 

https://tcga-data.nci.nih.gov/tcga/
http://www.r-project.org


85

(Gentleman et al., 2004). Beta values and M values for probes with detection p 
value > 0.05 were considered not significantly different from background and 
were masked as NA. TCGA methylation data were first assessed for batch effects 
by principle component analysis (PCA) on the M values. To accomplish this, data 
points from X chromosome and Y chromosome as well as data points that are 
associated with SNPs (Single Nucleotide Polymorphisms) were removed, and 
the first two principle components were used for plotting. Spearman’s correla-
tion coefficients between methylation (beta value of probe, Illumina Infinium 
HumanMethylation450 BeadChip) and gene expression (RPKM value of gene, 
Illumina HiSeq RNA-Seq platform) were calculated using TCGA samples with 
available data on both platforms. For a particular gene, only methylation probes 
that have a negative Spearman’s correlation coefficient and an adjusted p value 
(FDR) for the coefficient < 0.01 were considered informative and their relative 
distances to the corresponding transcriptional start site (TSS) of the genes were 
calculated from genomic coordinates obtained from the UCSC genome browser 
(http://genome.ucsc.edu). Heatmaps of the M values of informative probes were 
made using the “heatmap.2” function in “gplots” package from CRAN being cen-
tered and scaled in the row direction, and ordered according to the associated 
heatmaps of the RNA-Seq data in column and to the relative distances to TSS in 
row.

For in vitro DNA methylation values, DNA was extracted from cell lines that 
were either untreated or treated with AZA at day 3, at the end of treatment, and 
day 10 (7 days post end of treatment) and analyzed by the Illumina Infinium 
HumanMethylation450 BeadChips (Illumina, Inc., San Diego, CA, USA). Raw 
data were imported into R using the “methylumi” package from Bioconductor. 
Data points for probes with detection p value > 0.05 were masked as NA. Δ beta 
values (Δ beta value = beta value AZA – beta value Mock) were calculated and 
used to make boxplots. Heatmaps were made similarly like those for the TCGA 
data using informative probes defined by the TCGA data.

E X P R E S S I O N  M I C R O A R R A Y  D A T A

For in-vitro RNA extracted from cell lines treated with AZA, analyses were 
done at exactly the same time points as for DNA methylation above. Analyses 
from wild type colon cancer, HCT116 cells, and genetic knockout counterparts 
for DNA methyltransferases (DKO cells) were also performed. Expression mi-
croarrays were carried out using Agilent Human 4 × 44k expression arrays 
(Agilent Technologies, Santa Clara, CA, USA, Cat#: G4112F). Within-array and 
between-array normalization was performed using Loess and Aquantile normal-
ization, respectively (Smyth & Speed, 2003). Median of the M values (M value 
Expression = log2 [AZA / Mock] OR log2 [DKO / HCT116]) was determined for 
multiple probes associated with the same gene.

http://genome.ucsc.edu
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G E N E  S E T  E N R I C H M E N T  A N A L Y S I S 
( G S E A )

For each of the eight lung cancer cell lines (H838, H1299, H358, H1270, A549, 
H460, HCC4006, HCC827) a ranked gene list was created (genes were sorted by 
decreasing M value). These eight ranked gene lists were entered in the GSEA tool 
(Subramanian et al., 2005, 2007) and the enrichment of both Kegg (Nakaya et al., 
2013) and Reactome (Joshi-Tope et al., 2005) pathways in these lists was calculated 
(default parameters). A gene set was selected when it was enriched in any of the 
eight cell lines (p value < 0.05 and false discovery rate < 0.25). The normalized 
enrichment scores (NES) for the gene sets in each cell line were used to create the 
heatmaps. When a certain gene set was not significant in a cell line, it was assigned 
a NES of 0.

T R A N S C R I P T I O N  F A C T O R  A N A L Y S I S

Expression and methylation data were analyzed to find genes whose re-expres-
sion was linked to demethylation after AZA treatment. Genes were selected based 
on a set of cut-offs, both for the methylation and expression values: A gene was 
considered to be re-expressed when at day 3 or day 10 the median M value of all 
the probes linked to that gene was higher than 0.5. Infinium probes were analyzed 
separately at their distances from the transcription start site for each gene exam-
ined. For a probe to be called demethylated, it had to have a beta value higher than 
0.5 in the mock treatment and a difference in beta value between mock and AZA 
treatment had to be at least 0.25. Only probes that were associated with a CpG is-
land and that were located within 1000 bp upstream and 1000 bp downstream of 
the transcription start site were used in the analyses. The probes that passed these 
filters were validated using the TCGA methylation and expression data (see the 
definition of informative probes in the “Infinium DNA Methylation Data” section 
of Methods). Only genes that had an expression-methylation correlation value 
< -0.25 and a false discovery rate < 0.05 were retained. To better understand the 
biological implications of the re-expressed genes, the gene lists were searched for 
transcription factors. Two human transcription factor lists obtained from Ravasi 
et al. (2010) and Vaquerizas et al. (2011, 2012) were combined and the resulting 
list was matched to the lists of demethylated and re-expressed genes. The targets 
of IRF7 from the list of genes that are 4-fold or more up-regulated in H2170 by 
AZA were similarly identified using the TranscriptomeBrowser database (Lopez 
et al., 2008).

F L O W  C Y T O M E T R Y  M E T H O D S  ( F A C S )

Frozen cells were thawed in 37˚C and washed once with flow-washing buffer. 



87

Aliquots of single-cell suspension were then stained with fluorescent-labeled 
antibodies for 15 minutes at room temperature. Each sample was washed twice 
and re-suspended in flow-washing buffer and analyzed by FACSCalibur. The 
following antibodies were used: CD274 (12-5983- 42 Ebiosciences), HLA abc 
(12-9983-42 Ebiosciences), CD276(331606 Biolegend), CD119(558934 BD), B2 
microblogumin(551337BD), CD58(555921BD). Changes between AZA treated 
and mock cells are calculated using mean fluorescence intensities (MFI) and the 
formula
log2([(MFIantibody, treated)-(MFIisotype, treated)]/ [(MFIantibody, mock)- (MFIisotype, mock)]).

P S C A N

PSCAN (http://159.149.160.51/pscan/, Zambelli et al., 2009) is an online software 
tool that predicts the association of user defined gene-lists with transcription 
factors by scanning promoter sequences of co-regulated or co-expressed genes 
looking for over- or under-represented motifs. RefSeq IDs of the gene lists were 
obtained from BioMart (http://www. biomart.org/) and analyzed in PSCAN. 
Scanned promoter region was -450 to +50 base pairs around the transcription 
start site and employing TRANSFAC as the database for co-regulated or co-ex-
pressed genes.

R E SUL   T S

C L I N I C A L  D A T A

Six patients who received treatment on a clinical trial of epigenetic therapy for 
advanced treatment-refractory NSCLC were placed on trials for immunotherapy 
targeting the PD-1/PD-L1 immune tolerance checkpoint. Of these six patients 
three have experienced durable partial responses to immunotherapy now ongo-
ing for 14 to 26 months, and the other two had stable disease lasting 8.25 and 8.5 
months. (Supplementary Figure 3.1, Supplementary Table 3.1) For comparison, 
41-46% of NSCLC patients on these two trials of immunotherapy alone, one 
for anti-PD-1 and the other for anti-PD-L1 therapy, passed 24 weeks without 
progression and 16-17% had durable partial response rates (Brahmer et al., 2012, 
2013, Topalian et al., 2012).

http://159.149.160.51/pscan/
http://www.%20biomart.org/
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A Z A  I N D U C E D  I M M U N E  R E S P O N S E  I N 
N O N - S M A L L  C E L L  L U N G  C A N C E R  C E L L 
L I N E S

We used our previously validated pre-clinical model to examine how AZA al-
ters expression of key pathways in NSCLC cell lines (Tsai et al., 2012). Cells were 
treated in vitro with 500 nM AZA for 72 hours then harvested immediately after 
withdrawal of drug and again one week later for genome wide methylation and 
expression studies. To the point of the clinical suggestion that epigenetic therapy 
may provide sensitization to subsequent immune-checkpoint blockade, we ag-
nostically noted that one or more of the top ten pathways emerging for each cell 
line were immune related. The genes involved are important to the interaction 
of both innate and adaptive anti-tumor immunity. As earlier mentioned, other 
groups have described the ability of AZA to up-regulate individual immune path-
way steps relative to assembly of major histocompatibility antigens (HLA Class I), 
interferon pathway genes, and cancer-testis antigens (Li & Tainsky, 2011, Kulaeva 
et al., 2003, Simova et al., 2011, Fonsatti et al., 2007, Claus et al., 2005, Karpf et 
al., 1999). However, our current analysis reveals a more complex, concordant, 
broad immune gene signature. Gene Set Enrichment Analysis showed AZA in-
duced up-regulation of multiple immune-related pathways in a manner roughly 
correlating to the degree of demethylation in response to AZA treatment (Figure 
3.2a, Supplementary Table 3.2). Each of these components has a demonstrated 
role in immune tolerance pathways associated with immune checkpoints and 
immune evasion. Some of these genes have low expression associated with can-
cer-specific promoter region DNA hyper-methylation, and increased expression 
after treatment with DNA demethylating drugs (Li & Tainsky, 2011, Kulaeva et al., 
2003). In this regard, it is noteworthy that when compared to normal bronchial 
epithelial cells, NSCLC is known to exhibit diminished innate immune responses 
to viral-like stimuli involving intertwined pathways of cell- intrinsic responses to 
infection and inflammation (Li & Tainsky, 2011).

A N T I G E N  P R E S E N T A T I O N

A key step in tumor recognition and killing by cytotoxic T-cells involves recog-
nition of peptides derived from tumor-specific antigens or up-regulated shared 
antigens bound to HLA Class I antigens expressed by the tumor cells (Raghavan 
et al., 2008). As recognized by others, AZA increases expression of multiple can-
cer testes antigens including multiple MAGE family genes, whose expression has 
been shown to be suppressed by promoter hypermethylation (Fonsatti et al., 2007, 
Claus et al., 2005) (Figure 3.2g). AZA up-regulates not only transcripts of HLA 
Class I antigens but also a series of genes including, beta-2-microglobulin (B2M), 
CD58, TAP1, and the immuno-proteasome subunits PMSB9 and PSMB8 which 
encode proteins required for endoplasmic reticulum processing of, transport to, 
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FIGURE 3.2 Azacytidine alters gene expression in NSCLC cell  l ines for 
multiple immune related pathways.

a. Top panel: Gene Set Enrichment Analysis (GSEA) for pathways up-regulated by azacyti-
dine. Normalized enrichment scores are plotted as a heat map. Bottom panel: boxplot show-
ing degree of demethylation in each cell line, as measured by the difference in beta values 
between the AZA and mock-treated cells immediately after drug withdrawal and 7 days 
later. b. FACS analysis shows increased level of cell surface PD-L1 after AZA treatment by 
day 10 in NSCLC lines H838 and H1299. c. to j. AZA-mediated expression changes at day 
10 in key genes from pathways outlined in a. Y axis = Ratio of expression values (log2) of 
AZA -treated vs. mock-treated cells; X-axis = gene names.
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and anchoring to the cell surface , and recognition of surface HLA class I sub-
units (Raghavan et al., 2008, Procko & Gaudet, 2009, Challa-Malladi et al., 2011) 
(Figure 3.2d). We find generally good correlation between HLA Class I, B2M, 
CD58, and B7-H3 transcripts and protein on the cell surface by flow cytometry 
(Supplementary Figure 3.2). Importantly, mutations potentially contributing to 
immune evasion have been described in HLA-A in a small percentage of LUSC and 
of B2M and CD58 in other tumor types (Challa-Malladi et al., 2011, Hammerman 
et al., 2012).

T Y P E  I  A N D  I I  I N T E R F E R O N  S I G N A L I N G

A second key issue for immune cell interaction with tumor cells is that, in vivo, 
AZA administration to tumor-bearing mice has been shown to induce antigen 
processing and presentation genes, particularly when administered with CpG 
TLR9 agonists, and this is largely attributed to interferon-γ production by lym-
phocytes (Simova et al., 2011). While the lymphocyte-specific γ-interferon is not 
induced in NSCLC lines with AZA treatment, there is up-regulation of the inter-
feron-γ receptor (IFNGR1) as well as of multiple STAT genes, including STAT1, 
the major IFNGR1 signal transducer (Figure 3.2e).

P R O G R A M M E D  C E L L  D E A T H  A N D  V I R A L 
D E F E N S E

The re-expressed genes in the above mentioned pathways are downstream targets 
of interferon response pathways in a fashion closely linked to pro-inflammatory 
and viral defense responses (Strowig et al., 2012, Ishikawa et al., 2009, Sharma & 
Fitzgerald, 2010, Hsu et al., 2012). In turn, triggering of these responses can have 
both tumor repressing activities, such as apoptosis, or tumor promoting events 
and this paradox has been termed “the dual face” of inflammation (Ishikawa et 
al., 2009, Sharma & Fitzgerald, 2010, Dunn et al., 2002). In this regard, we see 
key subsets of immune related genes that are up-regulated by AZA with potential 
for inhibiting tumor growth including IFI27, which encodes a protein triggering 
apoptosis in late stages of chronic viral infection (Cheriyath et al., 2011) (Figure 
3.2f). Simultaneously, there is down-regulation of the anti-apoptotic gene, MAVS, 
a change which accompanies activation of the RIG I signaling pathway in re-
sponse to viral challenge (Sharma and Fitzgerald, 2010, Hsu et al., 2012, Xu et 
al., 2010) (Figure 3.2h). Downstream events in viral response include, especially 
in line H838, simultaneous increases for expression of BIRC family autophagy 
genes and simultaneous decreases in the anti-apoptotic genes BCL2 and BIRC5 
(SURVIVIN) (Yang & Klionsky, 2010) (Figure 3.2h). Indeed, suppression of 
SURVIVIN is known to be triggered by the viral induction of IRAK3, which en-
codes an IL-1 receptor associated kinase (De Carvalho et al., 2012). IRAK3 is, again 
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in H838 cells, up-regulated by AZA concordantly with the death related genes 
mentioned just above (Figure 3.2h). These dynamics are similar to those for colon 
cancer cells where IRAK3 is silenced in association with promoter-region DNA 
hypermethylation and when reactivated by induced demethylation, is associated 
with SURVIVIN down-regulation (De Carvalho et al., 2012).

P D - L 1  E X P R E S S I O N

The key to immune checkpoint therapy is antibody targeting of either the recep-
tor PD-1 on immune cells and or the ligand PD-L1 on tumor cells. In the clinical 
trials for immune check point blockade to date involving NSCLC patients, a sub-
set showed no responses when their tumors did not express cell surface PD-L1 
(Brahmer et al., 2012, Topalian et al., 2012, Pardoll, 2012). In this regard, when 
treated with AZA, several NSCLC cell lines up-regulate PD-L1, not only at the 
transcript level but also at the cell surface protein level (Figure 3.2b, c). Notably, 
this AZA increase of PD-L1 in cell lines is far more consistent than for PD-L2, a 
second dendritic cell/macrophage ligand for the CTL PD-1 receptor, or other 
checkpoint ligands such as B7- H3 and B7-H4 (Figure 3.2c). Similarly, CD80 and 
CD86, the ligands for CTLA4, another therapeutically targeted immune check-
point receptor, are not altered (Figure 3.2c). PD-L1 expression in tumor cells can 
either be driven by cell-intrinsic mechanisms or by a process termed adaptive 
resistance, through interferon-γ signaling and subsequent activation of STAT 
transcription factors, which we also see induced by AZA (Figure 3.2e).

A Z A  A L T E R S  T H E  I M M U N O - P H E N O T Y P E 
O F  N S C L C  T H R O U G H  I T S  E F F E C T  O N 
D N A  M E T H Y L T R A N S F E R A S E S

A key issue for all of the above responses is whether these represent attributes 
of AZA as a targeted therapy. In this regard, this drug, particularly at less toxic 
doses, specifically targets the three biologically active DNMT’s, acting to directly 
inhibit their catalytic sites and triggering degradation of these proteins in the 
nucleus (Gabbara & Bhagwat, 1995, Santi et al., 1984). We thus queried how our 
complex, immune-related, pharmacologic responses compare to simultaneous 
genetic depletion of two of the three DNMT’s. We compared HCT116 colon can-
cer cells and HCT116 double knock out (DKO) cells that have been genetically 
disrupted to give severe haplo-insufficiency of DNMT1, and complete absence 
of DNMT3B, enzymes for DNA methylation maintenance and de novo DNA 
methylation, respectively (Rhee et al., 2002). These cells have lost the majority of 
their genome-wide DNA methylation and have de-methylation of many cancer 
specific, promoter region, DNA hypermethylated CpG islands with correspond-
ing re-expression of genes silenced in the wild type HCT 116 cells (Rhee et al., 
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2002). From the standpoint of the present studies, the immune-related expression 
alterations in DKO versus wild type HCT116 are remarkably similar to the AZA 
induced changes in NSCLC cells (Figure 3.3). We conclude that previously de-
scribed off target effects of high dose AZA including incorporation into RNA and 
DNA as an abnormal nucleotide (Stresemann & Lyko, 2008) do not appear to be 
required for the drug’s effect that we have defined.

FIGURE 3.3 Genetic knock out of DNA Methyltransferases mimics the 
effects of azacytidine mediated immune pathway up-regulation.

Gene expression alterations when comparing wild-type HCT116 colon cancer cells to their 
isogenic DNMT1 and 3B knockout counterpart (DKO). The gene expression differences 
are given as the log2 ratio of expression in DKO over wild-type HCT116 (Y-axis) and the 
gene panels, A-H correspond to panels c to j in Figure 3.2 for the NSCLC cell lines treated 
with AZA.
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U P - R E G U L A T I O N  O F  I M M U N E  R E L A T E D 
T R A N S C R I P T I O N  F A C T O R S  B Y 
A Z A C Y T I D I N E

In order to find specific genes re-expressed in response to AZA which may be driv-
ing immune-related changes we extensively filtered our genome-wide expression 
and methylation data from cell line experiments to identify transcription factors 
meeting criteria of epigenetically re-expressed genes. We found approximately 
300 genes with high baseline promoter region CpG island methylation, promoter 
demethylation of 25% or more after treatment and an increase in expression of 
log2(0.5) (1.4- fold) or greater after treatment (Figure 3.4a, Supplementary Table 
3.3). Nearly 17% are in an interferome database (Samarajiwa et al., 2009) (http://
www.interferome.org), and 19% are transcription factors. The transcription fac-
tor IRF7 has been reported by others to be hypermethylated in cancer, as it is in 
our NSCLC line with the lowest basal expression (Li & Tainsky, 2011, Bidwell et 
al., 2012, Jee et al., 2009, Lu et al., 2000). It is up-regulated in response to AZA in 
several cell lines, most prominently in the LUSC cell line H2170, showing a 9-fold 
increase (Figure 3.2j). IRF7 is an upstream activator of functions in cellular path-
ways recognizing the virus response element VRE-A to increase transcription of 
genes involved in type 1 IFN signaling (Li & Tainsky, 2011). There is a significant 
association of IRF7 transcription targets with genes driving several of our GSEA 
enrichment scores for the immune pathway alterations observed in response to 
AZA (Figure 3.4b).

I M M U N E - P H E N O T Y P E S  W I T H I N 
H I S T O L O G I E S  I N  T H E  C A N C E R  G E N O M E 
A T L A S

From our analysis suggesting IRF7 to be a potentially important cancer-specific 
hypermethylation induced down-regulation event, we sought to create a list of 
functionally derived genes closely associated with its re-expression. Examining 
H2170, the LUSC cell line with the greatest up-regulation of IRF7 we hypoth-
esized that other genes highly up-regulated in this cell line might be targets of 
this transcription factor (Figure 3.2j). Filtering expression array data, 114 genes 
where found to be 4-fold or more up-regulated in response to AZA in the H2170 
(Supplementary Table 3.4). The association of this functionally derived gene 
list with IRF7 is confirmed by PScan analysis (p = 7.6e-18) (Figure 3.4b). These 
data suggest that IRF7 silencing by DNA methylation in tumors could result 
in suppression of immune-regulatory genes important for the surveillance of 
tumors by cytotoxic immune mechanisms. Other studies have reported an im-
mune-evasion signature dependent on IRF7 in breast and melanoma (Bidwell 
et al., 2012, Carretero et al., 2012). To test if such relation between IRF7 and 

http://%20www.interferome.org
http://%20www.interferome.org
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FIGURE 3.4 Identif ication of azacytidine up-regulated transcription 
factors and interferon signaling related genes,  and their clustering 
of primary Non-Small  Cell  Lung Cancer in TCGA.

a. Identification of genes in Non-Small Cell Lung Cancer cell lines with low basal expres-
sion and high basal promoter region DNA methylation which are demethylated and re-ex-
pressed after AZA treatment. The red box encompasses genes meeting these criteria which 
are described specifically in methods. Among these, IRF7, a key immune-related transcrip-
tion factor, was up-regulated in multiple cell lines. b. Pathways up-regulated in NSCLC 
cell lines in response to AZA are enriched for IRF7 targets as determined by PScan analysis 
(-log10 of p-values) and gene set enrichment analysis. c. Heatmap of RNA-Seq expression 
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levels in primary lung cancers from TCGA for genes 4-fold or more induced by AZA in 
the LUSC cell line H2170, the cell line with the greatest degree of IRF7 up-regulation. Top 
bar: red indicates LUAD and orange indicates LUSC samples. Genes used in the heatmap 
are listed in supplemental table 4. d. Bar panels show expression of PD-L1 and IRF7 in five 
quantile intervals (red for lower and green for higher expression). Heatmap immediate-
ly below IRF7 expression bar shows corresponding Infinium platform DNA-methylation 
levels (Z-scores, red for more and green for less methylated) across the promoter region. 
Positions relative to transcription start site are shown to the right. CpG-island probes are 
labeled in green. Sample order in bar plots and methylation heatmap is maintained from the 
main heatmap.

immune-regulatory genes exist in primary LUAD and LUSC tumors, we analyzed 
the expression of these genes as a function of IRF7 expression, and its promoter 
methylation status. We found that low expression of these genes describes a sub-
group, particularly among LUSC, in TCGA samples which clusters tightly with 
high promoter region DNA methylation and low expression of IRF7 (Figures 3.4c, 
3.4d and 3.5). Finally, expression levels of PD-L1, the key tumor ligand targeted 
in the anti-checkpoint immunotherapy trials, tracks quite well with the above 
immune evasion signature in subgroups of not only LUSC, but also LUAD, as 
especially well visualized in heatmaps for individual immune related pathways, 
which each track closely with an immune evasion signature in the LUSC and 
LUAD (Figure 3.5).

D IS  C USSI    O N

In the present work, we have used an in-vitro model to derive a pre-clinical un-
derstanding of the immunomodulatory effects of clinically relevant doses of AZA 
in NSCLC that may underpin its potential to “prime” for subsequent response to 
PD-1 pathway blockade. We characterize an AZA induced expression signature of 
immune genes and pathways in NSCLC known to play a role in the down-regula-
tion of immune surveillance of cancer. However, concomitant with induction of 
the immune genes comprising both innate and adaptive immunity is the up-regu-
lation of a primary immune inhibitory ligand, PD-L1. Our data therefore suggest a 
mechanism by which epigenetic therapy might improve the outcome of treatment 
of patients with NSCLC with PD-1/ PD-L1immune checkpoint blockade. By 
matching these basal gene expression and DNA methylation patterns, including 
that of a core interferon pathway transcription factor, IRF7 in the TCGA project, 
we extrapolate our in vitro AZA-induced gene signature to hundreds of primary 
NSCLC cancers. These results suggest that a major effect of AZA treatment is the 
alteration of tumor immune-inducing pathways that could lead to susceptibility 
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FIGURE 3.5 Relationship of azacytidine-induced, immune-related 
pathways to primary lung tumors grouped by expression of IRF7-
associated genes.

TCGA samples are ordered by unsupervised clustering based on genes highly up-regulated 
in H2170, which are enriched for IRF7-targets, represented in the topmost heat map. Order 
of samples is maintained in all lower heat maps. PD-L1 and IRF7 expression are depicted 
in the top bar panels as in Figure 3.4d. Supplemental Table 3.5 table shows the overlaps 
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of tumor cells themselves to immune attack by T cells. In particular, because the 
inhibitory ligand PD-L1 is up-regulated by AZA in our cell lines, and subsets of 
primary tumors have concordant low-expression of AZA induced immune genes 
and PD-L1, we suggest that combination of epigenetic therapy and PD-1 pathway 
blockade might produce a synergistic anti-tumor response.

Our findings provide a basis for biomarker approaches that we will test in a just 
initiated trial for patients with advanced LUAD and LUSC, aimed at validating the 
promise for sensitization by epigenetic therapy to immune checkpoint therapy. If 
we continue to see robust patient efficacy, our data may prove key to determining 
which individuals are likely to benefit from the epigenetic therapy approaches 
we are testing in clinical trials by evaluating gene panels for expression and DNA 
methylation in pre and post-drug administration biopsies.
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A B S T R A C T

Ipilimumab (ipi) improves the survival of patients with advanced melano-
ma and combination of ipi with an autologous monocyte-derived DC therapy 
(TriMixDC-MEL) may further improve patient outcome. A predictive melanoma 
tissue signature for the clinical efficacy of ipi and TriMixDC is needed to optimize 
individualized treatment strategies. We analyzed the expression and DNA meth-
ylation profiles of metastatic tumors from melanoma patients who were treated 
with ipi, TriMixDC-MEL or a combination of both, using immunohistochem-
istry, RNA sequencing and MBD sequencing. Patients were classified in three 
groups (high, intermediate and no clinical benefit, or HCB, ICB and NCB) based 
on their response to therapy. We found a higher number of CD8+, PD-L1+ and 
CD20+ cells in the HCB group compared to the NCB group. The RNA sequenc-
ing experiment resulted in a list of 195 genes that were differentially expressed 
between HCB and NCB samples (false discovery rate < 0.05). This gene list was 
enriched for immune-related ontologies and included many genes that reflect a 
humoral (IGHM, IGHA1, IGHV3-23, BANK1, SELL, IGLV3-1, IGHG1, IGSF6) and 
cellular (CD69, FYB, CARD11, CD244, TIGIT) immune response. Differential ex-
pression did not appear to be driven by differences in DNA methylation. Together 
with the immunohistochemistry results, the RNA sequencing analysis revealed a 
distinct immune system-related expression profile in metastatic melanoma pa-
tients that responded to immunotherapy. These results are a first step towards the 
development of gene signature for the prediction of therapy response, but further 
validation is needed.

A  P R E D I C T I V E 
SIG   N A T U R E  F O R 
R E S P O N S E  T O 
I M M U N O T H E R A P Y 
I N  M E L A N O M A 
M E T A S T A S E S
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I N T R O D U C T I O N

Melanomas are antigenic tumors against which most melanoma patients spon-
taneously mount T cell responses. Immunotherapy aims at increasing these 
spontaneous responses or at stimulating new ones. The first drug that improved 
the survival of metastatic melanoma patients was ipilimumab (ipi), a CTLA-4 
targeting monoclonal antibody and T cell activation checkpoint inhibitor (Hodi 
et al., 2010). Ipi improves overall survival (OS) of melanoma patients and induc-
es a long-term survival benefit with a plateau at 3 years in 20% of the patients 
(Maio et al., 2015, Schadendorf et al., 2015). Different strategies to improve the 
efficacy of ipi are currently being investigated, including combinatorial schemes 
with vaccination approaches as well as its use together with antibodies that block 
PD-1, another T cell activation checkpoint inhibitor (Postow et al., 2015). In our 
center we established an autologous monocyte-derived dendritic cells (DC) vac-
cination approach combining intradermal and intravenous administration. The 
DC were electroporated with synthetic messenger RNA (mRNA) that encodes a 
CD40 ligand, a constitutively active Toll-like receptor 4 and CD70, together with 
mRNA encoding fusion proteins of a human leukocyte antigen (HLA)-class II tar-
geting signal (DC-LAMP) and a melanoma-associated antigen, either MAGE-A3, 
MAGE-C2, tyrosinase or gp100 (TriMixDC) (Van Lint et al., 2014). This vacci-
nation therapy already showed anti-tumor activity in patients with advanced 
melanoma (Wilgenhof et al., 2013).

We conducted a phase II clinical trial to investigate the activity of the TriMixDC 
in combination with ipi. This combination showed superior activity compared to 
ipi alone with a 38% best overall response rate (BORR) (Neyns et al., 2014), indi-
cating that combining DC vaccination with immunomodulatory agents translates 
in a better clinical outcome. One difficulty in clinical practice is to identify the 
patients that will have a good outcome on immunotherapy. Recent findings 
showed that a specific neoantigen landscape is present in tumors that respond to 
ipi (Snyder et al., 2014). The identification of this neoantigen landscape involves 
a complex analysis that requires both whole-exome sequencing and patient-spe-
cific HLA typing to identify candidate tumor neoantigens for each patient. We 
need predictive biomarkers that are easier to test in the clinical setting in order to 
further optimize individualized treatment strategies. In the present study we used 
immunohistochemical (IHC), RNA-sequencing (RNA-seq), and whole genome 
DNA methylation analyses in order to characterize the profile that identifies 
long-term responders to ipi and TriMixDC-based immunotherapy. 
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M A T E R I A L  A N D  M E T H O D S

P A T I E N T S  A N D  T I S S U E  S A M P L E S

Melanoma metastases samples were collected between January 2011 and May 
2013 from patients who received immunotherapy in academic trials carried 
out at the VUB university hospital (http://clinicaltrials.gov NCT01676779 and 
NCT01302496) or ipi outside of a clinical trial after its approval. Informed con-
sent has been obtained from all patients. The metastatic tumors were divided in 
three or two parts depending on their size. In general one part was processed 
for formalin-fixed, paraffin-embedded (FFPE) preservation, the second part was 
frozen immediately and the third part was preserved in RNAlater stabilization 
reagent. Samples were collected before or after therapy onset when progression 
occurred. The FFPE samples were used for diagnosis confirmation in the Pathol-
ogy Department of our hospital and further automated quantification of immune 
cells with Definiens platform in HistoGeneX Laboratories, while freshly frozen 
and RNAlater samples were used for translational research. The first clinical trial 
was a 2-arm 1-stage randomized and controlled phase II study for disease-free 
patients without any prior systemic therapy. The second clinical trial was a 
2-stage phase II single-arm trial for patients with AJCC stage III (unresectable) or 
stage IV melanoma of the skin, or unknown primary site.

In the first trial patients received combined intradermal and intravenous admin-
istration of autologous monocyte-derived DCs electroporated with synthetic 
messenger RNA (mRNA) encoding a CD40 ligand, a constitutively active Toll-
like receptor 4 and CD70, together with mRNA encoding fusion proteins of a 
human leukocyte antigen (HLA)-class II targeting signal (DC-LAMP) and a mel-
anoma-associated antigen, either MAGE-A3, MAGE-C2, tyrosinase or gp100 
(TriMixDC). In the second trial (TriMixIpi) patients received TriMixDC vacci-
nation (4 × 106 cells id and 20 × 106 iv, q3wks × 4) combined with ipi (10 mg/kg 
q3wks × 4), followed by ipi maintenance therapy (10 mg/kg q12w, in patients who 
were progression-free at week 24) (Supplementary Figure 3.3). For the purpose 
of biomarker analyses, clinical activity was defined as a three-level clinical benefit 
derived from investigator assessment of BORR: high clinical benefit (complete 
responders and long-term partial responders), intermediate clinical benefit (sta-
ble disease or partial response < 24 weeks) and no clinical benefit (progressive 
disease).

http://clinicaltrials.gov
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P A T I E N T  A N D  S A M P L E 
C H A R A C T E R I S T I C S

Table 3.2a illustrates the clinical characteristics of the 25 patients included in the 
analysis. The median age of this patient population almost equally distributed 
by gender was 44 years and ranged from 25 to 67. The majority of the patients 
(56%) received concomitant administration of ipi and TriMixDC in the TriMixIpi 
trial (https://clinicaltrials.gov NCT01302496) (Supplementary Figure 3.3), while 
36% received ipi alone. Two patients received TriMixDC vaccination as first im-
munotherapy in the randomized controlled phase II trial available at the VUB 
university hospital (http://clinicaltrials.gov NCT01676779). Five patients (20%) 
presented durable partial or complete response and these were considered to 
have high clinical benefit (HCB).  Among them four patients were included in the 
TriMixIpi trial, and one patient received ipi alone (Supplementary Table 3.1). 14 
patients (56%) showed no clinical benefit (NCB) from immunotherapy, while six 
patients (24%) showed a partial response or stable disease as BORR, but no longer 
than 24 weeks. These six patients were grouped in an intermediate clinical benefit 
(ICB) group. The overall survival in the HCB was 34 months with four responses 
still ongoing compared with 10 months in the NCB group (Kruskal-Wallis test, 
p value = 0.001), while the overall survival for ICB was 26,5 months with only 
two still ongoing (Kruskal-Wallis test, p value = 0.03) (Figure 3.4). The majority 
of the samples (73,1%) were skin, subcutaneous or lymph node metastases that 
are accessible and can be easily removed by surgery. The remaining samples were 
from lung, liver, small intestine, brain, and adrenal gland metastatic tumors (Table 
3.2b).

I mmunohistochemistry                 

Seven µm-thick cryosections were obtained from frozen OCT-embedded tissue 
samples, air dried, and stored at -80°C until use. The cryosections were thawed 
and fixed in 4% paraformaldehyde before staining. Consecutive sections from 
the same tumor sample were stained on the automated Dako Autostainer system 
using Dako/Thermo reagents. Sections were incubated with unlabeled primary 
antibody, washed, and incubated with a secondary polyclonal goat anti-mouse 
antibody coupled to horseradish peroxidase. Staining was performed for HE and 
12 markers: PanMel, MCSP, CD3, CD8, CD20, CD163, DC-LAMP, Casp-3, Ki-
67, PHH3, HLA class I and vWF.

Stained slides were digitized by automated whole-slide image capture, using a 
Mirax Midi scanner (Carl Zeiss MicroImaging), equipped with a Zeiss Plan-Apo-
chromat 20_ NA 0.80 objective lens and a Hitachi HV-F22 acquisition camera, 
providing an object pixel size of 0.23 µm. Image acquisition was controlled with 
the Mirax Scan software (Zeiss). Image files were analyzed with the Mirax Viewer 

https://clinicaltrials.gov
http://clinicaltrials.gov
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software (Zeiss) and Pannoramic Viewer (http://www.3dhistech.com/pannoram-
ic_viewer).

D N A  and    R N A  extraction           from    
frozen       tissue       samples     

RNAlater samples or, when RNAlater samples were not available, a series of 10 
cryosections of 20 µm thickness from frozen metastases, were processed for the 
simultaneous extraction of DNA and RNA by ultracentrifugation through a cae-
sium chloride (CsCl) gradient, followed by extraction and purification with the 
NucleoSpin RNA II kit. A first assessment of the RNA and DNA concentration 
was performed by spectrophotometry with the NanoDrop tool.

M B D - S E Q

MBD-sequencing was performed using the MethylCap kit (Diagenode, Belgium) 
as described by De Meyer et al. (2013) with some minor modifications. After qual-
ity control (QC) of the extracted genomic DNA with the picogreen dsDNA assay 
(Life Technologies, USA) the DNA was sheared using the Covaris S2 ultrasoni-
cator to obtain 200 bp fragments (intensity 5, duty cycle 10%, 200 cycles/burst, 

Table 3.2 Clinical characteristics of the melanoma patients.

a .  This table lists the number of patients in function of their gender, the therapy they received 
and their response to this treatment. b .  Here we list the number of samples together with 
their tissue origin. There are more samples than patients, because we sometimes obtained 
more than one sample from the same patient.

a . variable # patients b . variables # samples

gender biopsy time point

male 12 before treatment 15

female 13 after treatment 11

type of immunotherapy tissue type

TriMixIpi 13 lymph node 8

Ipi 10 skin 4

TriMixDC 2 nodule sc 7

response to immunotherapy adrenal gland 1

HCB 5 liver 1

ICB 6 small intestine 2

NCB 14 brain 1

lung 2

http://www.3dhistech.com/pannoramic_viewer
http://www.3dhistech.com/pannoramic_viewer
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190 s). A second QC step was performed using the high sensitivity DNA chip (Di-
agenode) and 300 ng of the sheared DNA of each sample was subjected to MBD 
capture with the MethylCap kit. This kit uses the methyl-binding domain of the 
MeCP2 protein to enrich for methylated DNA fragments. Next, the fragment 
library for the sequencing experiment was prepared using the NEBNext Ultra 
DNA library prep kit (New England Biolabs, USA) and the NEBNext Multiplex 
Oligos for Illumina protocol (index primers set 1). Adapters were diluted 1/10 
before ligation and fragments were size selected on an E-Gel EX agarose 2% gel 
(Invitrogen, Life Technologies) by cutting out 300 ± 50 bp fragments and puri-
fying them with the Zymoclean Gel DNA recovery kit (Zymo Research, USA). 
The library was amplified with 13 PCR cycles and purified a second time using 
AMPureXP beads. A High Sensitivity DNA Chip (Agilent Technologies, USA) was 
used for a final QC of the libraries and the concentrations were assessed by qPCR 
according to the Illumina protocol “qPCR quantification protocol guide”. The 
samples were sequenced on an Illumina Genome Analyzer IIx and the resulting 
paired-end reads (2 × 50 bp) were mapped to the human genome (GRCh37) using 
Bowtie (Langmead et al., 2009). We have previously created a map of the human 
methylome (available online at http://www.biobix.be/sample-page/) based on the 
DNA methylation profiling of 80 different cell line and tissue samples. This map 
was used to delineate a list of a finite number of genomic locations where meth-
ylation can be observed (referred to as methylation cores), thereby reducing data 
complexity. The mapped reads of the different melanoma samples were convert-
ed to methylation cores and for each core the peak height was calculated as the 
maximum coverage within this core. The full list of methylation cores that were 
used can be found at http://www.biobix.be/map-of-the-human-methylome/.

R N A - S E Q

The QC of the extracted total RNA was performed using the RNA 6000 pico chip 
(Agilent Technologies) and the Ribogreen assay (Life Technologies). Isolation of 
mRNA, synthesis of cDNA and library preparation were carried out using the 
NEBNext Ultra Directional RNA Library Prep kit and the NEBNext Multiplex 
Oligos for Illumina protocol (index primers set 1, New England Biolabs). 14 PCR 
cycles were used to amplify the libraries and the DNA 1000 chip (Agilent Tech-
nologies) was used for the QC. The final mRNA concentrations were assessed by 
qPCR (as described for MBD-seq). The libraries were sequenced on the HiSeq 
2000 platform (2 × 50bp) and the resulting paired-end reads were mapped to 
the human genome (GRCh37) using TopHat 2 (Kim et al., 2013). Per-gene count 
values were calculated with the HTSeq-count software (Anders et al., 2015). 
Two technical repeats were available for each sample and both read counts were 
summed to combine the repeats. Finally, the read counts were aggregated per 
gene by considering the maximal value.

http://www.biobix.be/sample-page/
http://www.biobix.be/map-of-the-human-methylome/


D ata    analyses         and    statistical           
methodology         

The immunohistochemical evaluation of the samples provided categorical data 
as well as continuous data when quantification of the different cells types was 
made. Fisher’s exact test was used for the analyses of the contingency tables for 
the categorical variables. The continuous variables were characterized by median, 
percentile 25 and percentile 75, and the Kruskal-Wallis test was used for statistical 
analyses of the IHC results. The analyses were performed using R and SPSS soft-
ware. Before the differential analysis both the MBD and RNA-seq datasets were 
filtered to remove low coverage data points (average coverage > 1 and 25% of the 
samples must have a coverage > 1). The differential analysis of the MBD and RNA-
seq data was performed in R (version 3.1.2) with the edgeR package (version 3.8.5, 
Robinson et al., 2010), which was developed for differential expression analysis of 
RNA-seq data, and which also works well for other types of genome-scale count 
data such as MBD-seq data. Before the differential analysis, the MBD-seq data 
was normalized using quantile normalization (towards average profile, rounding 
was used to maintain count character of the data), while the RNA-seq data was 
normalized using the trimmed mean of M values method available in the edgeR 
package. The complete-linkage clustering method was used to create heatmaps of 
the MBD and RNA-seq data. For the gene ontology enrichment analysis, single 
lists of genes ranked by their false discovery rates were entered into the GOrilla 
tool (Eden et al., 2009).

R E SUL   T S

A N  I M M U N E  G E N E  S I G N A T U R E  T H A T 
D I F F E R E N T I A T E S  B E T W E E N  H C B  A N D 
N C B  P A T I E N T S

The analysis of the differences in expression between the HCB patients and the 
NCB patients resulted in a list of 195 genes with an FDR < 0.05 (Figure 3.6a). In 
order to understand the biological significance of these genes, we looked at their 
biological function and found 42 immune system-related genes (Figure 3.6a).  The 
majority of the differentially expressed genes reflected a humoral (IGHM, IGHA1, 
IGHV3-23, BANK1, SELL, IGLV3-1, IGHG1, IGSF6) and cellular immune response 
(CD69, FYB, CARD11, CD244, TIGIT). Likewise, the gene ontology enrichment 
analysis using the full list of 195 genes ranked by their FDR produced a list of 65 
significantly enriched (FDR < 0.05) biological process ontologies (Supplementary 
Table 3.2). Many of these ontologies were linked to immune system processes 

105



106

and immune cell migration. Three further comparisons were made between the 
three groups of patients: HCB vs. ICB vs. NCB, HCB+ICB vs. NCB, and HCB vs. 
ICB+NCB (239, 58, and 253 differentially expressed genes respectively). These 
comparisons showed that the expression profile of the HCB group was different 
from both the NCB and the ICB groups (Figure 3.6b).

E xploratory           analysis        
of   immune       infiltrate           by  
immunohistochemistry                     on   frozen      
sections      

In order to see whether the RNA-seq-based immune signature reflected the 
presence of immune cells in the tumor samples, IHC analysis was performed on 
frozen sections available from the same block that was used for RNA-seq. 26 sam-

FIGURE 3.6 Gene expression analysis of HCB, ICB and NCB patients.

a .  Supervised hierarchical clustering of patients with high clinical benefit (HCB) and those 
with no clinical benefit (NCB) using the list of 195 genes that were differentially expressed 
between these two groups (FDR < 0.05). We manually investigated this list and found 42 im-
mune-related genes. b .  These three heatmaps show the supervised clustering of the three 
response groups (HCB, ICB and NCB) using the results from the following comparisons: 
HCB vs. ICB vs. NCB, HCB & ICB vs. NCB and HCB vs. ICB & NCB. We found that when 
HCB and ICB samples were combined in a single group or when we compared the groups 
against eachother, the HCB and NCB samples were no longer perfectly separated. When the 
ICB and NCB groups were combined, the HCB group clustered separately again. Together, 
these results indicate that the expression profile of the ICB samples resembled the NCB 
profile more than the HCB.
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ples from 24 patients were evaluated by immunohistochemistry for tumor and 
immune markers (Supplementary Table 3.1). These included 17 samples from the 
18 samples analyzed by RNA-seq. Sample MEL27 was only used for RNA/DNA 
extraction, and not for IHC due to its small tissue size. First, the infiltration of T 
cells in the tumors was assessed by CD3 and CD8 immunostainings. We observed 
five patterns of T cell infiltration, including a heterogeneous one with two differ-
ent patterns present within the same tumor sample (Figure 3.7). The infiltration 
patterns were annotated with capital letters from A to E based on the following 
characteristics: the number of T cells present at the invasive margin (the border 
between tumor nets and immune infiltrate), the level of T cell confinement at the 
invasive margin and the number of T cells present inside of the tumor nests. The 
majority of the samples presented infiltration pattern B or C (86% in the HCB 
group, 80% in the ICB group, and 50% in the NCB group respectively). We did 
not observe statistically significant differences in terms of infiltration patterns 
between the three patient groups (Supplementary Table 3.3). For further anal-
yses, the patterns A and B were combined in pattern 1 and the patterns C, D 
and E in pattern 2 (Figure 3.7). In the NCB group, we observed that infiltration 
pattern 2 (high number of T cells, not confined to the invasive margin) was only 
present in samples that were removed after immunotherapy onset (Fisher’s exact 
test, p = 0.01). Only pattern 1 and the heterogeneous infiltration were observed 
in the samples collected before therapy onset in the NCB group (Supplementary 
Table 3.4). Additionally, CD20+ cells were present in 71,4% of the samples from 
the HCB group, whereas in the NCB group only 25% of the samples contained 
CD20+ cells (Supplementary Table 3.4).

A utomated         quantification               of   C D 8 + 
and    P D - L 1 +  cells      on   F F P E  sections      

FFPE sections obtained from the same tumor samples were stained for CD8 and 
PD-L1 markers, and computerized image analysis was performed. An overall per-
centage of infiltration that takes the number of CD8+ cells at the invasive margin 
and the number of PD-L1+ cells at the center of the tumor into consideration 
was attributed to every sample. The median CD8+ infiltration values in the three 
groups were 4.3 for HCB, 3.6 for ICB and 2.4 for NCB (Supplementary Table 
3.5). A tendency for higher infiltration of CD8+ cells was observed in the HCB 
compared to NCB samples. However, the differences across the three clinical 
benefit groups were not statistically significant when a Kruskal-Wallis test was 
performed, mainly due to the small sample size (data not shown). Furthermore, 
a higher overall percentage of PD-L1+ cells was observed in the HCB compared 
to NCB samples (median of 11.1 vs. 6.8) without reaching statistical significance. 
Two independent pathologists evaluated the percentage of PD-L1+ cells in the 
tumor component as well as in the immune component (Supplementary Table 
3.5). Again the same trend was observed: a higher number of PD-L1+ cells in 
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both tumor and immune components in the HCB group as compared to the NCB 
group (a median of 17.5 vs. 0 for the tumor component and 4.5 vs. 1 for the im-
mune component).

D ifferential            methylation            for    high    
clinical         benefit        vs  .  no   clinical        
benefit        patients      

The differential analysis of all annotated methylation cores (intron, exon and pro-
moter regions) between HCB and NCB resulted in a list of 107 cores, associated 
with 92 genes (FDR < 0.05, Supplementary Figure 3.5). Of these cores, 70 were 
located in introns, 19 in exons and 18 in promoter regions. The gene ontology 
enrichment analysis on the genes linked to the differentially methylated cores 
resulted in a list of 56 ontologies with an FDR < 0.001 (Supplementary Table 3.6). 
Many of these ontologies were associated with the development and function of 
neurons. No overlap was found between the lists of differentially expressed and 
differentially methylated genes. The list of differentially expressed genes was used 
in the unsupervised clustering of the methylation data for these genes (and vice 
versa), but no clustering of the HCB and NCB in separate groups was observed 
(data not shown).

FIGURE 3.7 Infi ltration patterns of immune cells in melanoma 
metastases.

Representative sections are shown for patterns A through E, as well as for the heterogeneous 
infiltration pattern observed in 2 samples from the NCB group. A schematic drawing and 
two IHC stainings illustrate each pattern type: PanMel or MCSP for tumor cells and CD3 
for T cells. Both tumor and T cells are shown in red in IHC sections. Additional zoomed-in 
images are shown for patterns C, D, E and the heterogeneous patterns. Infiltration patterns 
A and B were combined in pattern 1 and patterns C, D and E were combined in pattern 2.
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D IS  C USSI    O N

Using RNA-seq we identified differences in the gene expression profile of tumors 
of metastatic melanoma patients who experienced high clinical benefit from ipi 
and/or TriMixDC therapy compared to the tumors of patients with no clinical 
benefit. These differences were linked to immune system genes, and reflected a 
complex humoral and cellular immune response. The gene expression differences 
could also be partly attributed to the infiltration of immune cells in the tumors. 
However, the mere presence of immune cells within a tumor was in itself not 
enough to elicit a response, as evidenced by the presence of immune cells in the 
NCB samples.

The subcutaneous nodule MEL2 that was removed from a long-term responder 
during the lesion-regression period showed a very high infiltration by T and B 
cells. This lesion illustrated the “perfect” immune response that takes place when 
a tumor is efficiently attacked and eliminated by the immune system. It also sug-
gested that a humoral immune response is needed for tumor eradication and that 
this humoral response contributes to an appropriate adaptive immune response 
at the tumor site, while at the same time counteracting immune tolerance towards 
the tumor cells. Additionally, CD20+ B cells were found in close proximity to 
CD8+ T cells similar to the observations of Nielsen et al. (2012) in ovarian cancer, 
where the presence of both CD20+ and CD8+ lymphocytes was associated with 
prolonged survival. Moreover, large numbers of peritumoral B cells in metastatic 
lymph nodes were associated with favorable outcome in oro and hypopharyngeal 
carcinoma (Pretscher et al., 2009). 

The role of B cells in anti-tumor immunity is still a matter of debate (Germain et 
al., 2015) although, over the last three years, several clinical studies have shown a 
positive association between better clinical outcome and high B cell tumor den-
sities in hepatocellular carcinoma (Shi et al., 2013), metastatic colorectal cancer 
(Meshcheryakova et al., 2014), lung cancer (Germain et al., 2014), and oral squa-
mous cell carcinoma (Wirsing et al., 2014). Furthermore, Yuan et al. (2011) showed 
that patients with pre-existing serological immunity (in this case to NY-ESO1 
antigen) and detectable specific CD8+ T cells were twice as likely to experience 
clinical benefit after ipilimumab treatment (Yuan et al., 2011). One additional 
question is whether immune responses are originally primed locally at the tumor 
site or if they are generated in lymphoid organs and migrate to the disease site. 
Our results suggested that a complex humoral immune response in the invaded 
lymph nodes might indicate a better response to ipi combined with a DC vac-
cination. Nevertheless, the specificity of the humoral immune response within 
primary or metastatic tumor sites still needs to be proven.

We did not find a link between the gene expression and DNA methylation anal-
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yses. The differentially expressed genes did not show differences in methylation 
between the HCB and NCB groups, and vice versa, suggesting that the expression 
of differentially expressed genes was not under DNA methylation control. In-
terestingly, a gene ontology enrichment analysis revealed that the differentially 
methylated genes were enriched for ontologies linked to the nervous system. This 
result might reflect the fact that melanocytes are derived from the neural crest, 
just like peripheral and enteric neurons (Huang & Saint-Jeannet, 2004, Cichorek 
et al., 2013). Given that there are elaborate interactions between the immune and 
nervous system (Steinman, 2004) and that several genes are involved in both these 
systems (Lepelletier et al., 2007, Guo et al., 2013), the differential methylation 
might also hint at the role of the immune system in patient response, even though 
there was no clear overlap with the RNA-seq results.

C O N C LUSI    O N

The differences in gene expression between HCB group (long-term responders 
to ipi-based immunotherapy) and NCB translated in a list of immune genes re-
flecting both a humoral and cellular immune response. The differential analysis 
of methylation between HCB and NCB resulted in a list of 107 cores, associated 
with 92 genes. No link could be established between the RNA-seq and MBD-seq 
analyses due to the fact that the expression of differentially expressed genes was 
not under DNA methylation control. A trend for higher number of CD8+ cells, 
PD-L1+ cells (both in the tumor and immune component) as well as CD20+ cells 
was observed in the samples from the HCB group compared to NCB group. Fur-
thermore the melanoma metastases from the NCB that presented with a higher 
immune infiltrate (pattern 2) were all removed after therapy onset. The results 
presented in this manuscript offer a first hint at the biological differences between 
HCB and NCB metastatic melanoma patients treated with immunotherapy as 
well as a starting point for further experiments to find an actual biomarker for the 
prediction of this response.
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Adapted from:

Koch A, De Meyer T, Jeschke J, Van Criekinge W. MEXPRESS: Visualizing 
Expression, DNA Methylation and clinical TCGA Data. BMC Genomics 16, 636 
(2015)
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A B S T R A C T

B A C K G R O U N D
In recent years, increasing amounts of genomic and clinical cancer data have 
become publicly available through large-scale collaborative projects such as The 
Cancer Genome Atlas (TCGA). However, as long as these datasets are difficult to 
access and interpret, they are essentially useless for a major part of the research 
community and their scientific potential will not be fully realized. To address 
these issues we developed MEXPRESS, a straightforward and easy-to-use web 
tool for the integration and visualization of the expression, DNA methylation and 
clinical TCGA data on a single-gene level (http://mexpress.be).

R E S U L T S
In comparison to existing tools, MEXPRESS allows researcher to quickly vi-
sualize and interpret the different TCGA datasets and their relationships for a 
single gene, as demonstrated for GSTP1 in prostate adenocarcinoma. We also 
used MEXPRESS to reveal the differences in the DNA methylation status of the 
PAM50 marker gene MLPH between the breast cancer subtypes and how these 
differences were linked to the expression of MPLH.

C O N C L U S I O N S
We have created a user-friendly tool for the visualization and interpretation of 
TCGA data, offering clinical researchers a simple way to evaluate the TCGA data 
for their genes or candidate biomarkers of interest.

M E X P R E SS

http://mexpress.be
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B A C K G R O U N D

Over the last few years, large-scale cancer genomics projects have had a significant 
impact on cancer research. The goal of these projects is to create extensive, public-
ly available and multidimensional oncogenomic datasets using high-throughput 
technologies. These datasets allow researchers to compare the genomic sequenc-
es, epigenetic profiles and transcriptomes of cancer cells to those of normal cells 
or cells of different cancer (sub)types. The Cancer Genome Atlas (TCGA), a joint 
effort of the National Cancer Institute and the National Human Genome Research 
Institute, is an example of such a project (http://cancergenome.nih.gov/).

New findings derived from the statistical and data mining analysis of TCGA 
data are published regularly and have already proven to be a valuable addition to 
cancer research (The Cancer Genome Atlas Network, 2008, 2011, 2013, 2014). 
Large-scale datasets like TCGA also provide a validation platform for newly iden-
tified biomarkers and they are becoming a standard tool for current biomarker 
research. Another powerful aspect of the TCGA data is the possibility to correlate 
different types of data. Promoter DNA methylation for example influences gene 
expression, and aberrant methylation is found in almost every human cancer 
(Herman & Baylin, 2003). The ability to compare these data in a large number of 
cancer patients is therefore extremely valuable, especially for the identification 
of DNA methylation biomarkers. Given the growing importance of large-scale 
datasets for cancer research, intuitive data visualization tools are increasingly 
crucial to help researchers understand the data, especially when multiple samples 
and datasets have to be compared.

A number of visualization tools, each focused on one or more specific research 
questions, are available for TCGA data and offer a wide range of visualiza-
tion methods (Zhang et al., 2007, Cerami et al., 2012, Goldman et al., 2013, 
Thorvaldsdottir et al., 2013). There is however no tool available that offers fast 
and straightforward visualization and interpretation of the expression, methyla-
tion and clinical data in TCGA, as well as the relation between these different data 
types. Such a tool could be of particular use to the large community of clinical re-
searchers without bioinformatics expertise who are looking for a way to explore 
genes of interest or candidate biomarkers in the TCGA data.

Here we introduce MEXPRESS, an intuitive web tool for the fast and straight-
forward querying and visualization of the clinical, expression and methylation 
data in TCGA and the relationship between these datasets on a single-gene level. 
MEXPRESS was designed after the principles of graphical excellence as described 
by Edward Tufte (Tufte, 1983) to ensure that the complex and multidimensional 
TCGA data would be presented in a clear, precise and efficient way to the user. 
It is generally accepted that analysis and visualization tools intended for a broad 

http://cancergenome.nih.gov/
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research audience should be easy to use and should not require computational or 
bioinformatics expertise (Cerami et al., 2012, Thorvaldsdottir et al., 2013, Perez-
Llamas & Lopez-Bigas, 2011, Schroeder et al., 2013). MEXPRESS was therefore 
developed to have virtually no learning curve, allowing especially clinical re-
searchers to get their results fast without having to invest time in learning yet 
another tool.

I M P L E M E N T A T I O N

Ease of use is a key feature of MEXPRESS. Just three simple steps are needed to 
create a plot: a user has to enter a gene name, select one of the available cancer 
types and click the plot button. The resulting figure (Figures 3.8 and 3.9) shows 
the selected gene together with its transcripts and any CpG islands. Next to 
the gene, blue line plots illustrate the methylation data for each probe location 
(Infinium HumanMethylation450 microarray data). A yellow line plot displays 
the RNA-seq-derived expression data and grey bar plots represent the values of 
the clinical parameters. The numbers on the far right indicate the significance 
of the relation (correlation coefficient or p value, depending on the data types 
compared) between each row of data (clinical, expression or methylation) and the 
selected “sorter”. By default, expression is the selected “sorter”, which means that 
the samples are ordered by their expression value. Clicking on one of the clinical 
parameters will reorder the samples based on the selected variable and the rela-
tionships will be recalculated. The resulting images can be downloaded in PNG 
or SVG file format.

T C G A  D A T A

We downloaded the following TCGA data from the TCGA ftp site: level 3 per-
gene RNA-seq v2 expression data (UNC IlluminaHiSeq_RNASeqV2), level 3 
DNA methylation data (JHU_USC HumanMethylation450) and clinical data in 
Biotab format (both clinical patient and tumor sample data). Bash scripts running 
on the back-end Linux server check the TCGA ftp site monthly for any data up-
dates, which are then automatically uploaded to the database. Whenever TCGA 
publishes data for new cancer types, these will also be included in MEXPRESS. 
Before the upload, R scripts (R version 3.0.2) process the data to address missing 
values, to combine separate files into one where necessary, to reformat the data and 
to generate SQL scripts for the data upload. The RNA-seq data is log-transformed 
before being used to draw the plots and only a selection of the most relevant clin-
ical parameters (for which data is available) is shown in the MEXPRESS plots in 
order to reduce data clutter.
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O T H E R  D A T A  S O U R C E S

For the breast invasive carcinoma samples, we downloaded a table with the ex-
pression subtype (normal, basal, luminal A, luminal B and Her2) for each sample 
from the UCSC cancer genome browser (Goldman et al., 2013). The CpG island 
data was downloaded from the UCSC genome browser (Kent et al., 2002) using 
the table browser with the following settings: clade: Mammal, genome: Human, 
assembly: Feb. 2009 (GRCh37/hg19), group: Regulation, track: CpG Islands, table: 
cpgIslandsExt. The exon and transcript annotation was obtained from Ensembl 
using the BioMart tool (Ensembl Genes 75, Homo sapiens genes GRCh37.p13). We 
designed MEXPRESS in such a way that it will be easy in the future to include 
new types of data, such as mutation or proteomics data.

S T A T I S T I C A L  A N A L Y S E S

We recreated all the statistical functions used in MEXPRESS in Javascript, with 
the Pearson correlation and the non-parametric Wilcoxon’s rank-sum test being 
the two main functions. The former is used to compare two types of data that 
both have more than 2 levels (e.g. expression and methylation data), whereas the 
latter is used to calculate the difference of a variable between two groups (e.g. 
the difference in expression between male and female). To correct for multiple 
comparisons, we included a false discovery rate correction step (Benjamini & 
Hochberg, 1995).

M E X P R E S S  W E B S I T E

The MEXPRESS site runs on an Apache server and uses PHP to interact with 
the back-end database. It employs Javascript, the jQuery Javascript library (ver-
sion 1.11.0), Ajax autocomplete for jQuery (version 1.2.10, https://github.com/
devbridge/jQuery-Autocomplete) and the d3.js Javascript library (version 3.0.6, 
http://d3js.org/) to create the interactive plots and to perform the calculations for 
the statistical analyses. When a user downloads a figure, the SVG image is con-
verted into a PNG image using Inkscape, an open source vector graphics editor 
(http://www.inkscape.org/). The backbone of MEXPRESS is a MySQL database 
that contains the TCGA data needed for the visualizations. PHP scripts handle the 
database queries, package the results in JSON and send them back to the user. All 
the MEXPRESS code (back-end, front-end and data processing) can be cloned or 
downloaded from this GitHub repository: https://github.com/akoch8/mexpress.

https://github.com/devbridge/jQuery-Autocomplete
https://github.com/devbridge/jQuery-Autocomplete
http://d3js.org/
http://www.inkscape.org/
https://github.com/akoch8/mexpress
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R E SUL   T S  A N D  D IS  C USSI    O N

One of the best-studied examples of epigenetic aberrations in human cancer is 
the hypermethylation of the GSTP1 promoter region in prostate cancer, leading 
to the transcriptional silencing of GSTP1 (Brooks et al., 1998, Millar et al., 1999, 
Henrique & Jeronimo, 2004). Using MEXPRESS, this effect can be observed in 
the TCGA data. Figure 3.8a shows the default MEXPRESS plot for GSTP1 in 
prostate adenocarcinoma with the samples sorted by their GSTP1 expression 
value. It is immediately clear that the normal samples cluster towards higher 
GSTP1 expression and that there is a negative correlation between expression 
and methylation around the promoter region. The p value for the comparison 
of expression between normal and tumor samples (Wilcoxon rank-sum test, P 
= 0.001) and the Pearson correlation coefficients (ranging from -0.675 to -0.792 
around the promoter region) confirm the visual interpretation of the data. When 
the samples are rearranged based on the sample type (normal vs. tumor), this dif-
ference in methylation and expression between normal and tumor samples stands 
out even more (Figure 3.8b). It is not possible to create a similar figure that allows 
a comparable interpretation using one of the existing tools, as they lack the nec-
essary data implementation and/or features, making them less suitable for clinical 
researchers (Table 3.3, Supplementary Figures 3.6, 3.7, 3.8 and 3.9).

Breast cancer is a heterogeneous disease that covers a myriad of subtypes. Each 
subtype has distinct biological features, leading to differences in clinical outcome 
and response to treatment. Perou et al. (2000) were the first to describe breast 
cancer subtypes based on gene expression patterns and it was found that these 
subtypes (luminal-like, basal-like, Her2-enriched and normal-like) have signifi-
cantly different survival times (Sorlie et al., 2001). The classification of breast 
cancer samples into these subtypes (based on the PAM50 gene signature (Parker 
et al., 2009)) is available in MEXPRESS, allowing users to compare expression, 
methylation and clinical data between the different subtypes. One member of the 
PAM50 signature is the gene MLPH. Using MEXPRESS, it becomes clear that 
MLPH expression is negatively correlated with DNA methylation in the promoter 
region (a so far unpublished result) and that expression and methylation, as well 
as HER2, estrogen and progesterone receptor status, differ between the breast 
cancer subtypes (Figure 3.9).

Traditional genome browsers, such as the UCSC genome browser (Kent et al., 
2002), present data as horizontally stacked genomic tracks, which is very useful 
to display different types of location-bound genomic data. This allows users to 
observe differences within a track or between a limited number of tracks from 
different samples. MEXPRESS rotates this more traditional “genome browser 
view” and organizes samples vertically and the different data types horizontal-
ly. This simple transformation offers a very different view of the data, resulting 
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FIGURE 3.8 Visualization of the TCGA data for GSTP1 in prostate ade-
nocarcinoma using MEXPRESS.

a. In the default MEXPRESS plot, the samples are ordered by their expression value. This 
view shows how GSTP1 expression and promoter methylation are negatively correlated, 
which is confirmed by the Pearson correlation coefficients on the right. It also indicates 
that normal samples tend to have higher GSTP1 expression than tumor samples. b. When 
reordered by sample type, the differences in expression and methylation between normal 
and tumor samples become even more apparent.
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in an easier interpretation of the differences between samples than could be 
achieved through a conventional genome browser, especially when comparing 
hundreds of samples at the same time. It also allows for the easy comparison of 
location-bound genomic features, such as DNA methylation, to expression data 
or clinical information. The combination of this visualization approach with a 
simple user interface and the strengths listed in Table 1 sets MEXPRESS apart 
from existing tools when it comes to visualizing and integrating the expression, 
DNA methylation and clinical TGCA data.

C O N C LUSI    O N

Along with their expanding size, the value and significance of large-scale oncog-
enomics datasets will continue to rise in the coming years. This growth creates 
a need for intuitive and straightforward tools that enable researchers to quickly 
analyze and visualize the data of interest. The tool presented here offers a unique 
set of features, including its ease of use and the integrated visualization of dif-
ferent data types over hundreds of samples. It may therefore help to quickly test 
hypotheses that concern the discovery of DNA methylation or expression-based 
biomarkers.

TABLE 3.3 A comparison of different tools for the visualization of 
TCGA data.

As illustrated by the supplementary figures (Supplementary Figures 1, 2, 3 and 4), there 
are obvious differences between existing tools and MEXPRESS in both the data and the 
features these tools offer. This table lists the most relevant of these differences, thereby 
highlighting some of the strengths and weaknesses of each tool. (CGW = Cancer Genomics 
Workbench, IGV = Integrative Genomics Viewer)

UCSC genome 
browser

cBioPortal CGW IGV MEXPRESS

All TCGA cancer and data 
types available

yes yes no no no

Integration of expression, 
DNA methylation and 
clinical data

no no no no yes

Statistical interpretation of 
the relationships

no yes no no yes

Registration and download 
required

no no no yes no



120

A C K N O W L E D G E M E N T S

We would like to thank Gerben Menschaert for his help in revising this manuscript.

FIGURE 3.9 MEXPRESS view of the TCGA data for MLPH in breast 

invasive carcinoma.

The samples are ordered by breast cancer subtype, revealing clear differences in expression 
and methylation, as well as HER2, estrogen and progesterone receptor status, between the 
different subtypes.
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Throughout this thesis we introduced several different methods that are com-
monly used to measure gene expression and DNA methylation and we described 
how these methods are applied in clinical cancer research. Every chapter had its 
own focus. The first one presented a combination of genome-wide protein (shot-
gun proteomics and N-terminal COFRADIC) and DNA methylation (reduced 
representation bisulfite sequencing or RRBS) measurement techniques, which we 
used to study the effect of DNA methylation on expression at the protein level. 
Not only did this experiment confirm the inhibitory effect of promoter DNA 
methylation on gene expression (thereby validating our approach), it also offered 
some insight into the possibility of DNA methylation-controlled alternative tran-
scription. This integration was only the first step in a larger project. The final 
goal is to combine the protein and DNA methylation data with RNA and ribo-seq 
data in order to create a truly comprehensive overview of gene expression in 
our model cell lines. These analyses will include some possibly very interesting 
correlation studies as well as the merging of all the datasets with pathway infor-
mation and their visualization in Cytoscape (Shannon et al., 2003).

In the second chapter we examined how we can improve protein identifications 
in a proteomics experiment by using ribosomal sequencing. Looking at the re-
sults of our analyses, we believe that a proteogenomics approach that combines 
proteomics and transcriptomics (particularly ribosome profiling) offers some 
distinct advantages over the separate use of these methods and that this type of 
approach will be more widely used in the future. Our lab has already acted on this 
belief by developing PROTEOFORMER (Crappé et al., 2015), an automated pipe-
line for the integration of proteomics and ribosomal profiling data that we made 
available to other researchers through the Galaxy platform (Goecks et al., 2010). 
Proteogenomics is a relatively new field of research and is still evolving rapidly. 
The arrival of ribosome profiling for example has had and will continue to have 
an important impact on the field. We will keep following up on these evolutions 
and have for example already planned a new release of our PROTEOFORMER 
tool (support of other species, option to select transcripts…).

The combination of the work presented in the first two chapters could lead to some 
interesting biological and technical insights. Every technique we used has its in-
herent shortcomings. By integrating them, we can use each technique’s strengths 
to overcome another technique’s weaknesses. One example is the combination 
of transcriptomics and proteomics. Compared to proteomics, RNA-seq offers a 
higher throughput and better reproducibility, whereas proteomics provides gene 
expression measurements at the functional protein level. This is quite relevant, 
especially knowing that the correlation between transcript and protein levels is 
not always perfect (Ning et al., 2012). The combination of the two techniques not 
only gives us a more complete view of the expression profile of a sample, it can 
also tell us something about the control of gene expression. It will be interesting 
to see what the result of adding ribo-seq data to our RNA-seq, proteomics and 
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RRBS data will be. We have to keep in mind that we are working with a single 
cell line model (wild type and double knockout), but despite this limited setup we 
should still be able to demonstrate the feasibility of the integration of the different 
techniques (RRBS, proteomics, RNA-seq and ribo-seq). We are not saying that the 
experiment could not benefit from additional cell lines, but the complete analysis 
of just our model cell line could already result in some interesting hypotheses.

The third chapter described how high-throughput transcriptomics and DNA 
methylation profiling techniques can be used to better understand cancer biol-
ogy and to develop new treatment strategies. The two cancer research projects 
described in chapter three also touched on two other important subjects, im-
munotherapy and personalized medicine. Cancer cells can sometimes evade or 
alter the immune response that would normally kill them and a lot of research is 
focused on stimulating and enhancing the immune response of cancer patients to 
their tumors. In the lung cancer study for example, we described how the treat-
ment of lung cancer patients with a demethylating drug might sensitize them to 
anti-PD-1/PD-L1 immunotherapy. Just as with the more traditional treatments 
such as chemo or radiotherapy, some patients will benefit from immunotherapy 
while others will not. In our melanoma study, patients were treated with a den-
dritic cell-based therapeutic vaccine and/or ipilimumab, a CTLA-4 inhibitor. By 
analyzing the gene expression differences between the patients that responded 
positively to the treatment and those who did not, we took a first step towards 
the development of an expression signature that could be used to predict a pa-
tient’s response. This concept of using a biomarker to select the most appropriate 
treatment for a patient is one of the main ideas behind personalized medicine. 
Genetic mutations, gene expression, DNA methylation and many other types of 
markers are already used in hospitals to tailor treatment strategies to individual 
patients, saving some of them from expensive, ineffective and potentially harmful 
treatments (Tian et al., 2012).

The results from both the lung cancer and the melanoma study are first steps in 
the development of new treatment strategies. Ultimately, the goal is to improve 
patient care, but it is obvious that despite their interesting results, these two stud-
ies are preliminary and they should be interpreted as such. The main goal of the 
lung cancer project was to better understand the biology behind the improved re-
sponse of patients to anti-PD-1/PD-L1 treatment after they received azacytidine, 
not the development of a gene expression or DNA methylation biomarker. The 
clinical part of the study would have been much too small to achieve that. How-
ever, our pre-clinical findings (immune stimulation after azacitidine treatment) 
have already been confirmed in other studies and cancer types, for example by Li 
et al. (2014). If these results are to improve patient care, they will first have to be 
validated in independent, large-scale clinical studies. 

Just as for the lung cancer project, the final goal of the melanoma project is to im-



prove patient care, but through the development of a biomarker for response to 
immunotherapy rather than a new treatment strategy. The main take-away from 
our study is that the difference between responders and non-responders seems to 
be linked to the immune response and the presence of CD8+, PD-L1+ and CD20+ 
cells within the tumor. One of the next steps should be repeating the experiment 
in a larger patient cohort, followed by the selection of potential markers and their 
validation in a separate group of patients. Once a promising gene expression sig-
nature has been found (for example through the analysis of RNA-seq data), the 
best gene expression biomarkers will have to be further validated using a different 
technique such as immunohistochemistry, PCR, proteomics or western blot. A 
publically available dataset like the one from TCGA could also be used, but the 
problem with our melanoma study is that we are specifically interested in the 
response to immunotherapy and there is almost no such response data available 
in TCGA. Some more experiments are already planned for the melanoma project, 
including the immunohistochemical analysis of about 40 FFPE (formalin fixed 
and paraffin embedded) patient samples. This analysis will give us more infor-
mation on the different (immune) cells present in and around the tumors. There 
will also be another RNA-seq analysis of about 50 patients that were treated with 
anti-PD-1/PD-L1 therapy.

Given our experience with proteogenomics, it might also be a good idea to in-
tegrate this technique in the melanoma project. The proteogenomic analysis of 
tumors is a still largely unexploited research domain and could give some very in-
teresting results. Boja & Rodriguez (2014) explain how proteogenomic approaches 
could be a valuable addition to cancer research and how they can be used to better 
understand the disease. Polyakova et al. (2015) and Shukla et al. (2015) look at 
proteogenomics from a more practical and applied point of view and describe 
how proteogenomics techniques can be used to identify tumor neoantigens, 
which could be used in immunotherapy, or to develop sensitive diagnostic and 
prognostic biomarkers. Snyder et al. (2015) for example describe how melanoma 
tumors with a higher mutational load (i.e. a higher number of neoantigens) are 
more susceptible to the immune response, a finding that–when confirmed–could 
have important implications for our understanding of the complex interplay be-
tween a tumor and our immune system. These types of analyses will also greatly 
benefit from appropriate data processing tools, such as PROTEOFORMER, and 
visualization tools, like MEXPRESS.

It needs to be noted that biomarker research is very difficult, with roughly 1% of 
all proposed and investigated biomarkers making it to the clinical practice. As 
we described above, if we want the results from our lung cancer and melanoma 
studies to have an impact on cancer therapy and the well-being of cancer patients, 
further analyses and validation, ideally in several studies using patients from dif-
ferent hospitals or even countries, are vital. A biomarker that is validated in one 
study will not necessarily validate in another one. Yi et al. (2011) describe how one 
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of their colorectal cancer DNA methylation biomarkers could not be validated in 
a patient cohort from a different country. They cite possible biological differences 
between the patient groups (there are epigenetic differences between different 
populations and races) and differences in screening programs as possible expla-
nations. This finding perfectly illustrates the complexity of biomarker research as 
well as the importance of independent validation studies

Both the search for personalized treatments and the rise of immunotherapy are 
partly fueled by the ever-improving high-throughput “omics” techniques and 
show no signs of slowing down. Large-scale projects, such as the Cancer Genome 
Atlas (TCGA, http://cancergenome.nih.gov), offer researchers unprecedented 
opportunities, but as the size of these cancer databases keeps growing, the devel-
opment of specialized analysis methods will become increasingly important. In 
an attempt to respond to this need, we created MEXPRESS (http://mexpress.be), 
an online visualization tool for the TCGA data. MEXPRESS offers researchers 
a very fast and straightforward way to check the expression and DNA methyla-
tion levels of the gene they are interested in, as well as the correlation with the 
available clinical data. The examples presented in this thesis clearly show how 
MEXPRESS could be used to generate hypotheses. The first one illustrates the 
known correlation between gene expression and DNA methylation for the gene 
GSTP1 in prostate cancer. This example acts as a “proof-of-concept”. We chose 
the gene MLPH for the second example, because it allows us to demonstrate the 
potential power of MEXPRESS. MPLH is a member of the PAM50 gene expres-
sion signature that distinguishes the different breast cancer subtypes (Parker et 
al., 2009), so we know that the expression of MLPH should vary between the 
subtypes. The MEXPRESS plot confirms this gene expression variation, but it 
also clearly displays the link between gene expression and DNA methylation 
for MLPH. No papers have been published on the DNA methylation control 
of MLPH expression or on how this gene is differentially methylated between 
the breast cancer subtypes. Therefore, this plot demonstrates how MEXPRESS 
could be used to generate a new hypothesis. MEXPRESS makes it very easy for 
researchers to check the results of a small-scale study in the hundreds of samples 
offered by TCGA. Even if they are only interested in for example the expression 
of a certain gene, any potential link between their gene’s expression and its DNA 
methylation status or even some clinical characteristics will immediately stand 
out. Of course, we intend to keep MEXPRESS up-to-date with latest TCGA data 
releases and plan to add new types of data whenever possible.

Even though the different chapters of this thesis deal with quite diverse fields 
of research, they do share a common theme, namely the integration of various 
“omics” datasets. I believe that the integration of such -omics data presents the 
next big step forward in cancer research (see Cui et al. (2015) for a recent review 
on the subject). Over the last few years, several factors, such as ever-improving 
high throughput techniques, increasing computer power and an impressive drop 
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in sequencing costs, have both enabled and stimulated this data integration trend, 
creating exciting opportunities as well as significant bottlenecks along the way, 
especially in the medical field. As we have tried to demonstrate in this thesis, this 
evolution touches on many fields of research, from basic biology and methodolo-
gy to applied clinical studies.
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A photoreceptor cell in your retina and one of your heart muscle cells carry the 
same genome with virtually the same genetic information. How can our cells 
achieve such a spectrum of looks and functions from a single genetic blueprint? 
Or on a more basic level, how can a cell control which genes to express and which 
ones not? This question can be (partly) answered by epigenetics, the collection of 
heritable changes in gene expression that are not encoded in the DNA sequence 
itself. DNA methylation is one of the main epigenetic processes and its role in 
the control of gene expression is well established. For example, when a stretch of 
DNA around the start of a gene (known as that gene’s promoter) is methylated, 
the gene will often not be expressed. Gene expression can be measured in multi-
ple ways and at different points in the expression process. A gene’s DNA sequence 
is first transcribed to an RNA molecule, which is subsequently translated by a 
ribosome to a stretch of amino acids that will compose the final protein. Most of 
the studies that investigate the link between DNA methylation and gene expres-
sion measure the expression at the RNA or transcript level. Because of numerous 
control mechanisms that stand between a transcript and the protein it encodes, 
this measurement is just an approximation of the expression at the functional 
protein level. We performed a study in which we integrated genome-wide DNA 
methylation data with the protein-level gene expression data from a proteom-
ics experiment. The results confirmed the known inhibitory effect of promoter 
methylation on gene expression, thereby validating our approach.

Despite its advantages, such as the biological relevance of measuring the func-
tional end product of gene expression instead of intermediary transcripts, 
high-throughput proteomics comes with some notable drawbacks. Poor repro-
ducibility and inadequate sensitivity for low-abundant proteins are the two main 
ones. We tried to improve the number of identified proteins in a proteomics 
experiment using ribosomal profiling (ribo-seq). This technique is similar to the 
more common RNA-sequencing approaches in that it measures gene expression 
at the transcript level. The novelty of ribo-seq is that only the small stretches 
of RNA that are bound to ribosomes are sequenced. The result is that ribo-seq 
does not just measure gene expression at the transcript level, it measures active 
protein synthesis. In a typical high-throughput proteomics experiment, a protein 
sequence database is used to identify the proteins in a sample. We combined ex-
isting public protein databases with a custom database we created using our own 
ribo-seq data. This approach helped improve the identification of proteins in our 
samples and it allowed us to identify proteins that we would have missed without 
the ribo-seq analysis.
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In addition to this more basic and methodology-focused research, we also studied 
the role of gene expression and DNA methylation in cancer. Cancer cells arise 
when the expression of genes that control cell growth is disrupted. This disruption 
can have many different causes, from small mutations over large chromosomal 
rearrangements to changes in the DNA methylation status of a gene. Researchers 
have in fact found abnormal DNA methylation profiles in almost every known 
type of cancer. We used several techniques to analyze gene expression and DNA 
methylation in two different projects. In the first one, we tried to understand the 
effects of a treatment with azacytidine, a demethylating chemical, on lung cancer 
cells. In a small-scale clinical trial we noticed that patients who received azacyt-
idine before they received immunotherapy (anti-PD-1/PD-L1) responded better 
to the latter than those who did not. PD-1 is a receptor found on T cells and when 
a PD-L1 molecule binds to this receptor, the T cell is inactivated. Some tumor 
cells use this system to their advantage by expressing PD-L1, thereby deactivating 
the T cells that might otherwise kill them. The anti-PD-1/PD-L1 therapy blocks 
this interaction and prevents tumor cells from evading the immune response. 
Our analyses revealed that a significant number of lung cancer tumor cells have a 
low expression of PD-L1 and will therefore not respond to the anti-PD-1/PD-L1 
therapy. However, we also noticed that the azacytidine treatment increased the 
expression PD-L1, making the previously non-responsive tumor cells sensitive to 
the immunotherapy. Together, these results suggest that epigenetic therapy (such 
as the removal of DNA methylation using azacytidine) could be used to sensitize 
a patient’s tumors to immunotherapy.

Our second cancer project involved two different types of immunotherapy, this 
time for the treatment of metastatic melanoma. The first therapy blocks the T cell 
receptor CTLA-4, which acts as an “off switch” for the T cell, similar to the PD-1 
receptor. The second therapy is based on the use of dendritic cells, which help T 
cells recognize tumor cells. Sometimes, dendritic cells fail to recognize the tumor 
cells in a cancer patient. To resolve this problem, dendritic cells can be isolated 
from the patient’s blood, sensitized in the lab to a gene that is specifically expressed 
by the tumor cells and then injected back into the patient. In some patients these 
two approaches work very well, while in others we see no response. Because these 
treatments are very expensive and potentially harmful it would be very useful to 
know which patients will benefit from the therapy before they receive it. This 
is why we compared gene expression and DNA methylation profiles between a 
group of patients that responded to the therapies and a group that did not. Our 
analyses resulted in a list of immune system-related genes whose expression 
varied between the responders and the non-responders. We also found several T 
cell markers among the differentially expressed genes, which reflected the higher 
number of infiltrating immune cells in the tumors that responded. These results 
are a first step towards the development of a gene signature that could be used to 
predict a patient’s response. Furthermore, they indicate that the immune system 
likely plays an important role in the treatment of melanoma.



In recent years, a lot of effort in cancer research has been focused on the creation 
of large-scale cancer databases that contain the data of hundreds or even thou-
sands of patients. The Cancer Genome Atlas (TCGA) is an example of such an 
initiative and its publically available database contains a wide range of genomic, 
clinical, gene expression and DNA methylation datasets. Databases like TCGA 
are a valuable resource for cancer researchers and have already generated a lot of 
discoveries. Their usability and accessibility could still be improved though, espe-
cially for clinical researchers without a bioinformatics background. That is why 
we developed MEXPRESS, a web tool for the quick and simple visual integration 
of the clinical, gene expression and DNA methylation data in the TCGA database.
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Een fotoreceptorcel in jouw netvlies en een van de cellen in jouw hartspier bev-
atten hetzelfde genoom met nagenoeg identiek dezelfde genetische informatie. 
Hoe kunnen onze cellen zo een brede waaier aan vormen en functies uit één 
enkel genetisch bouwplan halen? Of op een meer fundamenteel niveau, hoe kan 
een cel controleren welke genen tot expressie komen en welke niet? Epigenetica, 
de overerfbare veranderingen in genexpressie die niet door het DNA gecodeerd 
worden, vormt (voor een deel) het antwoord op deze vraag. DNA-methylatie is 
een van de voornaamste epigenetische processen en de rol er van in de controle 
van genexpressie is welgekend. Wanneer bijvoorbeeld een stukje DNA rond de 
start van een gen (gekend als de promoter regio) gemethyleerd is, dan komt dit 
gen vaak niet tot expressie. Genexpressie kan op verschillende manieren en op 
verschillende momenten tijdens het expressieproces gemeten worden. De DNA-
sequentie van een gen wordt eerst gekopieerd naar een RNA molecule. Deze 
RNA molecule wordt op zijn beurt door een ribosoom vertaald naar een sliert 
aminozuren, die dan uiteindelijk het eiwit vormt. Studies die het verband tussen 
DNA-methylatie en genexpressie onderzoeken meten de genexpressie meestal op 
het RNA of transcriptniveau. Aangezien er verschillende controlemechanismen 
actief zijn voor, tijdens en na de vertaling van een transcript naar een eiwit, is deze 
meting slechts een benadering van de hoeveelheid eiwit die er uiteindelijk in een 
cel aanwezig is. Daarom hebben we een studie uitgevoerd waarin we genoom-wi-
jde DNA-methylatie data gelinkt hebben aan expressiedata op proteïneniveau uit 
een proteomics experiment. Onze resultaten bevestigden het gekende remmende 
effect van promoter methylatie op genexpressie en valideerden bijgevolg onze 
aanpak.

Ondanks de voordelen, zoals  bijvoorbeeld de biologische relevantie van 
expressiemetingen op het niveau van het functionele eiwit in plaats van de tus-
senliggende transcripten, hebben de zogenoemde high-throughput proteomics 
technieken ook enkele nadelen. De gebrekkige reproduceerbaarheid en de lage 
gevoeligheid voor eiwitten die slechts in geringe mate voorkomen zijn de be-
langrijkste. We hebben geprobeerd het aantal identificaties in een proteomics 
experiment te verhogen door gebruik te maken van ribosoomprofilering (ri-
bo-seq). Net zoals de vaak gebruikte RNA sequencing technieken meet ribo-seq 
genexpressie op het transcriptniveau. Het grote verschil is dat bij ribo-seq enkel 
de stukjes RNA die gebonden zijn aan ribosomen gesequenced worden. Hierdoor 
meet ribo-seq niet zomaar gen expressie op het transcript niveau, maar meet het 
in feite de eigenlijke eiwitsynthese. In een typisch high-throughput proteomics 
experiment wordt een eiwitsequentie databank gebruikt om de proteïnen in een 
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staal te identificeren. In onze studie hebben we bestaande databanken gecombi-
neerd met een aangepaste databank gebaseerd op onze eigen ribo-seq data. Deze 
aanpak verbeterde de identificatie van eiwitten in onze stalen en het zorgde er 
voor dat we eiwitten konden identificeren die we zonder de ribo-seq data niet 
zouden gevonden hebben.

Naast dit meer fundamenteel en op methodologie gefocust onderzoek hebben 
we ook de rol van gen expressie en DNA-methylatie in kanker onderzocht. 
Kankercellen ontstaan wanneer de expressie van genen die de celgroei controler-
en verstoord wordt. Deze storing kan verschillende oorzaken hebben, van kleine 
mutaties in de DNA-sequentie over grootschalige chromosomale herschikkin-
gen tot veranderingen in de DNA-methylatie status van een gen. Zo hebben 
onderzoekers afwijkende DNA-methylatieprofielen gevonden in nagenoeg elk 
type kanker. We hebben verschillende technieken gebruikt om genexpressie en 
DNA-methylatie te analyseren in twee projecten. In het eerste project hebben 
we geprobeerd de gevolgen van een behandeling met azacytidine, een demeth-
ylerende molecule, op longkankercellen beter te begrijpen. In een kleinschalig 
klinisch onderzoek stelden we vast dat patiënten die azacytidine toegediend 
hadden gekregen voor ze met immunotherapie (anti-PD-1/PD-L1) behandeld 
waren beter reageerden op deze immunotherapie. PD-1 is een receptor die zich 
op het celmembraan van T cellen bevindt. Wanneer een PD-L1 molecule met deze 
receptor bindt, dan wordt de T cel gedeactiveerd. Sommige tumorcellen slagen er 
in dit systeem uit te buiten door zelf PD-L1 te produceren en zo de T cellen die 
hen anders zouden kunnen vernietigen uit te schakelen. De anti-PD-1/PD-L1 be-
handeling blokkeert de interactie tussen de PD-1 receptor en PD-L1 en voorkomt 
zo dat tumor cellen kunnen ontsnappen aan het immuunsysteem. Onze analyses 
toonden aan dat een beduidend deel van de longkankertumorcellen weinig of 
geen PD-L1 produceren en bijgevolg niet vatbaar zijn voor de anti-PD-1/PD-L1 
therapie. We stelden echter ook vast dat de behandeling met azacytidine de 
expressie van PD-L1 kan verhogen en de tumor cellen dus toch gevoelig zou kun-
nen maken voor de immunotherapie. Deze resultaten geven aan dat epigenetische 
therapieën (zoals het verwijderen van DNA methylatie met azacytidine) zouden 
kunnen gebruikt worden om de tumoren van een patiënt gevoeliger te maken 
voor immunotherapie.

In ons tweede project hebben we twee verschillende soorten immunotherapie 
voor de behandeling van uitgezaaide huidkanker onderzocht. De eerste therapie 
blokkeert de T cel receptor CTLA-4 die, net zoals PD-1, als een soort “uit-knop” 
voor de T cel functioneert. De tweede therapie is gebaseerd op het gebruik van 
dendritische cellen. Dit zijn een type immuuncellen die T-cellen helpen bij het 
herkennen van tumorcellen. Soms lukt het de dendritische cellen echter niet om 
de kankercellen te herkennen. Om dit probleem op te lossen worden de den-
dritische cellen uit het bloed van een huidkankerpatiënt gefilterd en in het lab 
in contact gebracht met een gen dat specifiek op de tumorcellen tot expressie 
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komt, waarna ze terug in de patiënt geïnjecteerd worden. In sommige patiënten 
werken beide behandelingen goed, maar in veel patiënten zien we geen effect. 
Omdat het hier over bijzonder dure en potentieel gevaarlijke therapieën gaat, zou 
het zeer waardevol zijn om te weten welke patiënten voordeel kunnen halen uit 
de behandeling alvorens er mee te starten. Daarom hebben we de genexpressie en 
DNA-methylatieprofielen vergeleken tussen een groep patiënten die reageerde 
op de behandelingen en een groep waarbij dit niet het geval was. Deze analyse 
resulteerde in een lijst van genen gerelateerd aan het immuunsysteem waarvan 
de expressie verschilde tussen beide groepen. We vonden ook verschillende 
T-cel-specifieke genen in deze lijst, wat overeenstemde met het hogere aantal im-
muuncellen in de tumoren die reageerden op de immunotherapie. Deze resultaten 
zijn een eerste stap in de ontwikkeling van een set genen waarvan de expressie 
kan gebruikt worden om de patiënten te identificeren die zullen reageren op de 
behandeling. Verder geven ze ook aan dat er waarschijnlijk een belangrijke rol is 
weggelegd voor het immuunsysteem van een huidkankerpatiënt in zijn of haar 
behandeling.

De laatste jaren zijn er veel middelen naar de ontwikkeling van grootschalige 
kankerdatabanken gegaan. Deze databanken bevatten informatie over honderden 
tot duizenden patiënten. The Cancer Genome Atlas (TCGA) is een voorbeeld van 
een dergelijk initiatief en de publiek beschikbare TCGA databank bevat een breed 
gamma aan genomische, klinische, genexpressie en DNA-methylatiedatasets. 
Dergelijke databanken vormen een uiterst waardevol instrument voor 
onderzoekers en hebben reeds tot verscheidene ontdekkingen geleid. Hun 
gebruiksvriendelijkheid kan wel nog een stuk beter, zeker voor klinische onder-
zoekers zonder bio-informatica-achtergrond. Daarom hebben we MEXPRESS 
ontwikkeld. MEXPRESS is een online applicatie voor de snelle en eenvoudige 
visuele integratie van de klinische, genexpressie en DNA-methylatie data uit de 
TCGA databank.





R E F E R E N C E S

137



Alberts B, Johnson A, Lewis J, Raff M, Roberts K et al. Molecular biology of the cell, 4th edition. Garland 
Science (2002)

Anastasiadou C, Malousi A, Maglaveras N & Kouidou S. Human epigenome data reveal increased CpG 
methylation in alternatively spliced sites and putative exonic splicing enhancers. DNA Cell Biol 30, 
267–275 (2011)

Anders S, Pyl PT & Huber W. HTSeq--a Python framework to work with high-throughput sequencing 
data. Bioinformatics 31, 166–169 (2015)

Baek D, Villen J, Shin C, Camargo FD, Gygi SP et al. The impact of microRNAs on protein output. Nature 
455, 64–71 (2008)

Ball MP, Li JB, Gao Y, Lee JH, LeProust EM et al. Targeted and genome-scale strategies reveal gene-body 
methylation signatures in human cells. Nat Biotechnol 27, 361–368 (2009)

Banchereau J & Steinman RM. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE et al. High-resolution profiling of histone methyla-
tions in the human genome. Cell 129, 823–837 (2007)

Barsnes H, Vizcaino JA, Eidhammer I & Martens L. PRIDE Converter: making proteomics data- sharing 
easy. Nat Biotechnol 27, 598–599 (2009)

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

Bastian PJ, Yegnasubramanian S, Palapattu GS, Rogers CG, Lin X et al. Molecular biomarker in prostate 
cancer: the role of CpG island hypermethylation. Eur Urol 46, 698–708 (2004)

Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B et al. Identification of small ORFs 
in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J 33, 981–993 (2014)

Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A et al. The quantitative proteome of a human cell 
line. Mol Syst Biol 7, 549 (2011)

Benjamini Y & Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. J R Stat Soc Series B Methodol 57, 289–300 (1995)

Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y et al. Silencing of Irf7 pathways in breast cancer 
cells promotes bone metastasis through immune escape. Nat Med 18, 1224–1231(2012)

Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A et al. The SWISS-PROT protein knowl-
edgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31, 365–370 (2003)

Boja ES & Rodriguez H. Proteogenomic convergence for understanding cancer pathways and networks. 
Clin Proteomics 11, 22 (2014)

Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P et al. Vemurafenib: the first drug approved for BRAF-
mutant cancer. Nat Rev Drug Discov 11, 873–886 (2012)

Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL et al. Safety and activity of anti-PD-L1 antibody 
in patients with advanced cancer. N Engl J Med 366, 2455–2465 (2012)

Brahmer JR, Horn L, Antonia SJ, Spigel DR, Gandhi L et al. Survival and long-term follow-up of the phase 
I trial of nivolumab (Anti-PD-1; BMS-936558; ONO-4538) in patients (pts) with previously treated ad-
vanced non-small cell lung cancer (NSCLC). ASCO Meeting Abstracts 31, 8030 (2013)

Branca RM, Orre LM, Johansson HJ, Granholm V, Huss M et al. HiRIEF LC-MS enables deep proteome 
coverage and unbiased proteogenomics. Nat Methods 11, 59–62 (2014)

Brooks JD, Weinstein M, Lin X, Sun Y, Pin SS et al. CG island methylation changes near the GSTP1 gene 
in prostatic intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev 7, 531–536 (1998)

Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 13, 1–27 (1970)

Carretero R, Wang E, Rodriguez AI, Reinboth J, Ascierto ML et al. Regression of melanoma metastases 
after immunotherapy is associated with activation of antigen presentation and interferon-mediated re-
jection genes. Int J Cancer 131, 387-395 (2012)

Cedar H & Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat 
Rev Genet 10, 295–304 (2009)

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO et al. The cBio cancer genomics portal: an open 
platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401–404 (2012)

Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G et al. Combined genetic inactivation of 
beta2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell 
lymphoma. Cancer Cell 20, 728–740 (2011)

Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA et al. Crucial role of p53-dependent cellular senes-
cence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005)

138



139

Cheriyath V, Leaman DW & Borden EC. Emerging roles of FAM14 family members (G1P3/ISG 6-16 and 
ISG12/ IFI27) in innate immunity and cancer. J Interferon Cytokine Res 31, 173–181 (2011)

Cichorek M, Wachulska M, Stasiewicz A & Tyminska A. Skin melanocytes: biology and development. 
Postepy Dermatol Alergol 30, 30–41

Claes B, Buysschaert I & Lambrechts D. Pharmaco-epigenomics: discovering therapeutic approaches and 
biomarkers for cancer therapy. Heredity (Edinb) 105, 152–160 (2010)

Claus R, Almstedt M & Lubbert M. Epigenetic treatment of hematopoietic malignancies: in vivo targets 
of demethylating agents. Semin Oncol 32, 511–520 (2005)

Colaert N, Vandekerckhove J, Gevaert K & Martens L. A comparison of MS2-based label-free quanti-
tative proteomic techniques with regards to accuracy and precision. Proteomics 11, 1110–1113 (2011)

Costa V, Aprile M, Esposito R & Ciccodicola A. RNA-Seq and human complex diseases: recent accom-
plishments and future perspectives. Eur J Hum Genet 21, 134–142 (2013)

Craig R & Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–
1467 (2004)

Crappé J, Ndah E, Koch A, Steyaert S, Gawron D et al. PROTEOFORMER: deep proteome coverage 
through ribosome profiling and MS integration. Nucleid Acids Res 43, e29 (2015)

Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW et al. Histone H3K27ac separates active 
from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107, 21931–21936 (2010)

Crick F. Central dogma of molecular biology. Nature 227, 561–563 (1970)

Cui H, Dhroso A, Johnson N & Korkin D. The variation game: cracking complex genetic disorders with 
NGS and omics data. Methods 79, 18–31 (2015)

De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC et al. DNA methylation screening identifies driver 
epigenetic events of cancer cell survival. Cancer Cell 21, 655–667 (2012)

De Meyer T, Mampaey E, Vlemmix M, Denil S, Trooskens G et al. Quality evaluation of methyl binding 
domain based kits for enrichment DNA-methylation sequencing. PloS One 8, e59068 (2013)

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T et al. Landscape of transcription in human cells. 
Nature 489, 101–108 (2012)

Doherty MK, Hammond DE, Clague MJ, Gaskell SJ & Beynon RJ. Turnover of the human proteome: 
determination of protein intracellular stability by dynamic SILAC. J Proteome Res 8, 104–112 (2009)

Dong Y, Yu J & Ng SS. MicroRNA dysregulation as a prognostic biomarker in colorectal cancer. Cancer 
Manag Res 6, 405–422 (2014)

Dunn GP, Bruce AT, Ikeda H, Old LJ & Schreiber RD. Cancer immunoediting: from immunosurveillance 
to tumor escape. Nat Immunol 3, 991–998 (2002)

Duong CV, Emes RD, Wessely F, Yacqub-Usman K, Clayton RN et al. Quantitative, genome-wide analysis 
of the DNA methylome in sporadic pituitary adenomas. Endocr Relat Cancer 19, 805–816 (2012)

Easwaran HP, Van Neste L, Cope L, Sen S, Mohammad HP et al. Aberrant silencing of cancer-related 
genes by CpG hypermethylation occurs independently of their spatial organization in the nucleus. Cancer 
Res 70, 8015–8024 (2010)

Eden E, Navon R, Steinfeld I, Lipson D & Yakhini Z. GOrilla: a tool for discovery and visualization of 
enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009)

Edgar R, Domrachev M & Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization 
array data repository. Nucleic Acids Res 30, 207–210 (2002)

Egger G, Liang G, Aparicio A & Jones PA. Epigenetics in human disease and prospects for epigenetic 
therapy. Nature 429, 457–463 (2004)

Elwood JM & Jopson J. Melanoma and sun exposure: an overview of published studies. Int J Cancer 73, 
198–203 (1997)

Espada J, Peinado H, Lopez-Serra L, Setien F, Lopez-Serra P et al. Regulation of SNAIL1 and E-cadherin 
function by DNMT1 in a DNA methylation-independent context. Nucleic Acids Res 39, 9194–9205 (2011)

Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16, R50–59 
(2007)

Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I et al. DNA methylation patterns in heredi-
tary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10, 3001–3007 (2001)

Finnerty JR, Wang WX, Hébert SS, Wilfred BR, Mao G et al. The miR-15/107 group of microRNA genes: 
evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 402, 491–509 (2010)

Fonsatti E, Nicolay HJ, Sigalotti L, Calabro L, Pezzani L et al. Functional up-regulation of human 



140

leukocyte antigen class I antigens expression by 5-aza-2’-deoxycytidine in cutaneous melanoma: immu-
notherapeutic implications. Clin Cancer Res 13, 3333–3338 (2007)

Fonslow BR, Carvalho PC, Academia K, Freeby S, Xu T et al. Improvements in proteomic metrics of low 
abundance proteins through proteome equalization using ProteoMiner prior to MudPIT. J Proteome Res 
10, 3690–3700 (2011)

Franklin RE & Gosling RG. Molecular configuration in sodium thymonucleate. Nature 421, 400–401 
(1953)

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M et al. STRING v9.1: protein-protein 
interaction networks, with increased coverage and integration. Nucleic Acids Res 41, D808–815 (2013)

Frommer M, McDonald LE, Millar DS, Collis CM, Watt F et al. A genomic sequencing protocol that 
yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 
89, 1827–1831 (1992)

Gabbara S & Bhagwat AS. The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 
5-azacytosine is likely to involve methyl transfer to the inhibitor. Biochem J 307, 87–92 (1995)

Gandhi TK, Chandran S, Peri S, Saravana R, Amanchy R et al. A bioinformatics analysis of protein tyro-
sine phosphatases in humans. DNA Res 12, 79–89 (2005)

Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M et al. Open mass spectrometry search algorithm. J 
Proteome Res 3, 958–964 (2004)

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M et al. Bioconductor: open software develop-
ment for computational biology and bioinformatics. Genome Biol 5, R80 (2004)

Germain C, Gnjatic S & Dieu-Nosjean MC. Tertiary lymphoid structure-associated B cells are key play-
ers in anti-tumor immunity. Front Immunol 6, 67 (2015)

Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R et al. Presence of B cells in tertiary lymphoid 
structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care 
Med 189, 832–844 (2014)

Goecks J, Nekrutenko A, Taylor J & the Galaxy Team. Galaxy: a comprehensive approach for supporting 
accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11, R86 
(2010)

Goldman M, Craft B, Swatloski T, Ellrott K, Cline M et al. The UCSC Cancer Genomics Browser: update 
2013. Nucleic Acids Res 41, D949–954 (2013)

Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL et al. Methylation of tRNAAsp by the DNA meth-
yltransferase homolog Dnmt2. Science 311, 395–398 (2006)

Gry M, Rimini R, Stromberg S, Asplund A, Ponten F et al. Correlations between RNA and protein expres-
sion profiles in 23 human cell lines. BMC Genomics 10, 365 (2009)

Gu H, Smith ZD, Bock C, Boyle P, Gnirke A et al. Preparation of reduced representation bisulfite se-
quencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6, 468–481 (2011)

Guo H, Ingolia NT, Weissman JS & Bartel DP. Mammalian microRNAs predominantly act to decrease 
target mRNA levels. Nature 466, 835–840 (2010)

Guo XK, Liu YF, Zhou Y, Sun XY, Qian XP et al. The Expression of Netrin-1 in the Thymus and Its Effects 
on Thymocyte Adhesion and Migration. Clin Dev Immunol 462152 (2013)

Guttman M & Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 
(2012)

Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R et al. Comprehensive genomic character-
ization of squamous cell lung cancers. Nature 489, 519–525 (2012)

Hanahan D & Weinberg RA. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

Hancock WS. An analytical chemist’s perspective. J Proteome Res 6, 1633 (2007)

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N et al. MGMT gene silencing and benefit from 
temozolomide in glioblastoma. N Engl J Med 352, 997–1003 (2005)

Helsens K, Van Damme P, Degroeve S, Martens L, Arnesen T et al. Bioinformatics analysis of a 
Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation 
and post-translational N-terminal acetylation. J Proteome Res 10, 3578–3589 (2011)

Henrique R & Jeronimo C: Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. 
Eur Urol 46, 660–669 (2004)

Herman JG & Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl 
J Med 349, 2042–2054 (2003)



141

Hirosawa M, Hoshida M, Ishikawa M & Toya T. MASCOT: multiple alignment system for protein se-
quences based on three-way dynamic programming. Comput Appl Biosci 9, 161–167 (1993)

Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M et al. Biologic activity of cytotoxic T lympho-
cyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian 
carcinoma patients. Proc Natl Acad Sci USA 100, 4712–4717 (2003)

Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA et al. Improved survival with ipilimumab in 
patients with metastatic melanoma. N Engl J Med 363, 711–723 (2010)

Hollstein M, Sidransky D, Vogelstein B & Harris CC. p53 mutations in human cancers. Science 253, 49–53

Hsiao SH, Lee KD, Hsu CC, Tseng MJ, Jin VX et al. DNA methylation of the Trip10 promoter accelerates 
mesenchymal stem cell lineage determination. Biochem Biophys Res Commun 400, 305–312 (2010)

Hsieh CL. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol 19, 
8211–8218 (1999)

Hsu TH, Chu CC, Jiang SY, Hung MW, Ni WC et al. Expression of the class II tumor suppressor gene 
RIG1 is directly regulated by p53 tumor suppressor in cancer cell lines. FEBS Lett 586, 1287–1293 (2012)

Huang da W, Sherman BT & Lempicki RA. Bioinformatics enrichment tools: paths toward the compre-
hensive functional analysis of large gene lists. Nucleic Acids Res 37, 1–13 (2009)

Huang da W, Sherman BT & Lempicki RA. Systematic and integrative analysis of large gene lists using 
DAVID bioinformatics resources. Nat Protoc 4, 44–57 (2009)

Huang X & Saint-Jeannet JP. Induction of the neural crest and the opportunities of life on the edge. Dev 
Biol 275, 1–11 (2004)

Huber PJ. Robust statistics. Wiley (1981)

Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. 
Cell 80, 225–236 (1995)

Ingolia NT. Genome-wide translational profiling by ribosome footprinting. Methods Enzymol 470, 
119–142 (2010)

Ingolia NT, Lareau LF & Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the 
complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011)

Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T et al. Exponentially modified protein abundance index 
(emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides 
per protein. Mol Cell Proteomics 4, 1265–1272 (2005)

Ishikawa H, Ma Z & Barber GN. STING regulates intracellular DNA-mediated, type I interferon-depen-
dent innate immunity. Nature 461, 788–792 (2009)

Ivanov IP, Firth AE, Michel AM, Atkins JF & Baranov PV. Identification of evolutionarily conserved 
non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res 39, 4220–4234 
(2011)

Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T et al. Involvement of PD-L1 on tumor cells in the escape 
from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99, 
12293–12297 (2002)

Jabbari K & Bernardi G. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 333, 
143–149 (2004)

Jaenisch R & Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and 
environmental signals. Nat Genet 33, 245–254 (2003)

Jahner D, Stuhlmann H, Stewart CL, Harbers K, Lohler J et al. De novo methylation and expression of 
retroviral genomes during mouse embryogenesis. Nature 298, 623–628 (1982)

Janeway CA, Travers P, Walport M & Shlomchik MJ. Immunology, 5th edition: the immune system in 
health and disease. Garland Science (2001)

Jee CD, Kim MA, Jung EJ, Kim J & Kim WH. Identification of genes epigenetically silenced by CpG 
methylation in human gastric carcinoma. Eur J Cancer 45, 1282–1293 (2009)

Jones PA & Baylin SB. The epigenomics of cancer. Cell 128, 683–692 (2007)

Jones PA & Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93 
(1980)

Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E et al. Reactome: a knowledgebase of bio-
logical pathways. Nucleic Acids Res 33, D428–432 (2005)

Ju J, Lim SK, Jiang H, Seo JW & Shen B. Iso-migrastatin congeners from Streptomyces platensis and 
generation of a glutarimide polyketide library featuring the dorrigocin, lactimidomycin, migrastatin, and 



142

NK30424 scaffolds. J Am Chem Soc 127, 11930–11931 (2005)

Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M et al. Combination epigenetic therapy has 
efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1, 598–607 (2011)

Kainthla R, Kim KB & Falchook GS. Dabrafenib for treatment of BRAF-mutant melanoma. Pharmgenomics 
Pers Med 7, 21–29

Karpf AR, Peterson PW, Rawlins JT, Dalley BK, Yang Q et al. Inhibition of DNA methyltransferase stim-
ulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor 
cells. Proc Natl Acad Sci USA 96, 14007–14012 (1999)

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH et al. The human genome browser at UCSC. 
Genome Res 12, 996–1006 (2002)

Khong HT & Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” pheno-
types. Nat Immunol 3, 999–1005 (2002)

Kim D, Pertea G, Trapnell C, Pimentel H, Kelly R et al. TopHat2: accurate alignment of transcriptomes in 
the presence of insertions, deletions and gene fusions. Genome Biol 14, R36 (2013)

King MC, Marks JH, Mandell JB & New York Breast Cancer Study Group. Breast and ovarian cancer 
risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643–646 (2003)

Koch CM, Andrews RM, Flicek P, Dillon SC, Karaöz U et al. The landscape of histone modifications 
across 1% of the human genome in five human cell lines. Genome Res 17, 691–707 (2007)

Krueger F & Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applica-
tions. Bioinformatics 27, 1571–1572 (2011)

Kulaeva OI, Draghici S, Tang L, Kraniak JM, Land SJ et al. Epigenetic silencing of multiple interferon 
pathway genes after cellular immortalization. Oncogene 22, 4118–4127 (2003)

Kuper H, Adami HO & Boffetta P. Tobacco use, cancer causation and public health impact. J Intern Med 
251, 455–466 (2002)

Kushi LH, Byers T, Doyle C, Bandera EV, McCullough M et al. American Cancer Society Guidelines on 
Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food 
choices and physical activity. CA Cancer J Clin 56, 254–281 (2006)

Lachner M & Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol 14, 286–298 
(2002)

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. Initial sequencing and analysis of the 
human genome. Nature 409, 860–921 (2001)

Langmead B, Trapnell C, Pop M & Salzberg SL. Ultrafast and memory-efficient alignment of short DNA 
sequences to the human genome. Genome Biol 10, R25 (2009)

Laurent L, Wong E, Li G, Huynh T, Tsirigos A et al. Dynamic changes in the human methylome during 
differentiation. Genome Res 20, 320–331 (2010)

Lee MG, Kim HY, Byun DS, Lee SJ, Lee CH et al. Frequent epigenetic inactivation of RASSF1A in human 
bladder carcinoma. Cancer Res 61, 6688–6692 (2001)

Lee S, Liu B, Lee S, Huang SX, Shen B et al. Global mapping of translation initiation sites in mammalian 
cells at single-nucleotide resolution. Proc Natl Acad Sci USA 109, E2424–2432 (2012)

Lepelletier Y, Smaniotto S, Hadj-Slimabe R, Villa-Verde DM, Nogueira AC et al. Control of human thy-
mocyte migration by Neuropilin-1/Semaphorin-3A-mediated interactions. Proc Natl Acad Sci USA 104, 
5545–5550 (2007)

Li H, Chiappinelli KB, Guzzetta AA, Easwaran H, Yen RW et al. Immune regulation by low doses of 
the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 5, 
587–598 (2014)

Li Q & Tainsky MA. Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased 
sensitivity to oncolytic viruses. PLoS One 6, e28683 (2011)

Lièvre A, Bachet JB, Le Corre B, Boige V, Landi B et al. KRAS mutation status is predictive of response to 
cetuximab therapy in colorectal cancer. Cancer Res 66, 3992–3995 (2006)

Liu S, Im H, Bairoch A, Cristofanilli M, Chen R et al. A chromosome-centric human proteome project 
(C- HPP) to characterize the sets of proteins encoded in chromosome 17. J Proteome Res 12, 45–57 (2013)

Lopez F, Textoris J, Bergon A, Didier G, Remy E et al. Transcriptome-Browser: a powerful and flexible 
toolbox to explore productively the transcriptional landscape of the Gene Expression Omnibus database. 
PLoS One 3, e4001 (2008)

Low TY, van Heesch S, van den Toorn H, Giansanti P, Cristobal A et al. Quantitative and qualitative 



143

proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep 
5, 1469–1478 (2013)

Lu R, Au WC, Yeow WS, Hageman N & Pitha PM. Regulation of the promoter activity of interferon 
regulatory factor-7 gene. Activation by interferon snd silencing by hypermethylation. J Biol Chem 275, 
31805–31812 (2000)

Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C et al. Five-Year Survival Rates for Treatment-Naive 
Patients With Advanced Melanoma Who Received Ipilimumab Plus Dacarbazine in a Phase III Trial. J 
Clin Oncol 33, 1191–1196 (2015)

Markowitz SD & Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N 
Engl J Med 361, 2449–2460 (2009)

Martens L, Hermjakob H, Jones P, Adamski M, Taylor C et al. PRIDE: the proteomics identifications 
database. Proteomics 5, 3537–3545 (2005)

Maunakea AK, Chepelev I, Cui K & Zhao K. Intragenic DNA methylation modulates alternative splicing 
by recruiting MeCP2 to promote exon recognition. Cell Res 23, 1256–1269 (2013)

Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C et al. Conserved role of intragenic DNA 
methylation in regulating alternative promoters. Nature 466, 253–257 (2010)

McIlwain S, Mathews M, Bereman MS, Rubel EW, MacCoss MJ et al. Estimating relative abundances of 
proteins from shotgun proteomics data. BMC Bioinformatics 13, 308 (2012)

Medenbach J, Seiler M & Hentze MW. Translational control via protein-regulated upstream open read-
ing frames. Cell 145, 902–913 (2011)

Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES et al. Reduced representation bisulfite sequenc-
ing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33, 5868–5877 (2005)

Menschaert G, Van Criekinge W, Notelaers T, Koch A, Crappé J et al. Deep proteome coverage based on 
ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence 
of alternative translation products and near-cognate translation initiation events. Mol Cell Proteomics 12, 
1780–1790 (2013)

Mercer TR, Dinger ME & Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 10, 
155–159 (2009)

Meshcheryakova A, Tamandl D, Bajna E, Stift J, Mittlboeck M et al. B cells and ectopic follicular struc-
tures: novel players in anti-tumor programming with prognostic power for patients with metastatic 
colorectal cancer. PloS One 9, e99008 (2014)

Michel A, O’Connor P, Choudhury RK, Firth A Li GW et al. Elucidating mechanisms of translation 
with computational analysis of ribo-seq data. EMBO Conference Series: Protein Synthesis and Translational 
Control. Heidelberg, Germany (2013)

Michel AM, Choudhury KR, Firth AE, Ingolia NT, Atkins JF et al. Observation of dually decoded regions 
of the human genome using ribosome profiling data. Genome Res 22, 2219–2229 (2012)

Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL et al. Detailed methylation analysis of the glutathione 
S-transferase pi (GSTP1) gene in prostate cancer. Oncogene 18, 1313–1324 (1999)

Milutinovic S, Zhuang Q, Niveleau A & Szyf M. Epigenomic stress response. Knockdown of DNA 
methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response 
genes. J Biol Chem 278, 14985–14995 (2003)

Miranda TB & Jones PA. DNA methylation: the nuts and bolts of repression. J Cell Physiol 213, 384–390 
(2007)

Mohandas T, Sparkes RS & Shapiro LJ. Reactivation of an inactive human X chromosome: evidence for 
X inactivation by DNA methylation. Science 211, 393–396 (1981)

Nagaraj N, Wisniewski JR, Geiger T, Cox J et al. Deep proteome and transcriptome mapping of a human 
cancer cell line. Mol Syst Biol 7, 548 (2011)

Nakaya A, Katayama T, Itoh M, Hiranuka K, Kawashima S et al. KEGG OC: a large-scale automatic 
construction of taxonomy-based ortholog clusters. Nucleic Acids Res 41, D353–357 (2013)

Namy O, Rousset JP, Napthine S & Brierley I. Reprogrammed genetic decoding in cellular gene expres-
sion. Mol Cell 13, 157–168 (2004)

Neyns B, Wilgenhof S, Corthals J, Heirman C & Thielemans K. Phase II study of autologous mRNA elec-
troporated dendritic cells (TriMixDC-MEL) in combination with ipilimumab in patients with pretreated 
advanced melanoma. ASCO Annual Meeting (2014)

Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ et al. CD20+ tumor-infiltrating lymphocytes have 
an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in 



144

ovarian cancer. Clin Cancer Res 18, 3281–3292 (2012)

Ning K & Nesvizhskii AI. The utility of mass spectrometry-based proteomic data for validation of novel 
alternative splice forms reconstructed from RNA-Seq data: a preliminary assessment. BMC bioinformatics 
11, S14 (2010)

Ning K, Fermin D & Nesvizhskii AI. Comparative analysis of different label-free mass spectrometry 
based protein abundance estimates and their correlation with RNA-Seq gene expression data. J Proteome 
Res 11, 2261–2271 (2012)

Niu D, Sui J, Zhang J, Feng H & Chen WN. iTRAQ-coupled 2-D LC-MS/MS analysis of protein profile 
associated with HBV-modulated DNA methylation. Proteomics 9, 3856–3868 (2009)

Offenhauser N, Borgonovo A, Disanza A, Romano P, Ponzanelli I et al. The eps8 family of proteins links 
growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac 
pathway. Mol Biol Cell 15, 91–98 (2004)

Okazaki T & Wang J. PD-1/PD-L pathway and autoimmunity. Autoimmunity 38, 353–357 (2005)

Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H et al. Stable isotope labeling by amino acids 
in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 
1, 376–386 (2002)

Ong SE, Kratchmarova I & Mann M. Properties of 13C-substituted arginine in stable isotope labeling by 
amino acids in cell culture (SILAC). J Proteome Res 2, 173–181 (2003)

Orozco LD, Morselli M, Rubbi L, Guo W, Go J et al. Epigenome-wide association of liver methylation 
patterns and complex metabolic traits in mice. Cell Metab 21, 905–917 (2015)

Pal S, Gupta R & Davuluri RV. Alternative transcription and alternative splicing in cancer. Pharmacol Ther 
136, 283–294 (2012)

Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D et al. Quantitative proteomic analysis of dis-
tinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci 
USA 103, 18928–18933 (2006)

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252–
264 (2012)

Parker JS, Mullins M, Cheang MC, Leung S, Voduc D et al. Supervised risk predictor of breast cancer 
based on intrinsic subtypes. J Clin Oncol 27, 1160–1167 (2009)

Perez-Llamas C & Lopez-Bigas N. Gitools: analysis and visualisation of genomic data using interactive 
heat-maps. PloS One 6, e19541 (2011)

Perkins DN, Pappin DJ, Creasy DM & Cottrell JS. Probability-based protein identification by searching 
sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS et al. Molecular portraits of human breast 
tumours. Nature 406, 747–752 (2000)

Pinto SM, Manda SS, Kim MS, Taylor K, Selvan LD et al. Functional annotation of proteome encoded by 
human chromosome 22. J Proteome Res 13, 2749–2760 (2014)

Polyakova A, Kuznetsova K & Moshkovskii S. Proteogenomics meets cancer immunology: mass spectro-
metric discovery and analysis of neoantigens. Expert Rev Proteomics 15, 1–9 (2015)

Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M et al. Distribution of immune cells in 
head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with 
favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer 9, 292 (2009)

Procko E & Gaudet R. Antigen processing and presentation: TAPping into ABC transporters. Curr Opin 
Immunol 21, 84–91 (2009)

Qiu GH, Leung CH, Yun T, Xie X, Laban M et al. Recognition and suppression of transfected plasmids by 
protein ZNF511-PRAP1, a potential molecular barrier to transgene expression. Mol Ther 19, 1478–1486 
(2011)

Raghavan M, Del Cid N, Rizvi SM & Peters LR. MHC class I assembly: out and about. Trends Immunol 
29, 436–443 (2008)

Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB et al. An atlas of combinatorial transcriptional 
regulation in mouse and man. Cell 140, 744–752 (2010)

Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila mela-
nogaster genome. Comput Chem 26, 51–56 (2001)

Rhee I, Bachman KE, Park BH, Jair KW, Yen RW et al. DNMT1 and DNMT3b cooperate to silence genes 
in human cancer cells. Nature 416, 552–556 (2002)



145

Robinson MD, McCarthy DJ & Smyth GK. edgeR: a Bioconductor package for differential expression 
analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010)

Robson ME. Clinical considerations in the management of individuals at risk for hereditary breast and 
ovarian cancer. Cancer Control 9, 457–465 (2002)

Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R et al. Determination of enriched histone modifica-
tions in non-genic portions of the human genome. BMC Genomics 10, 143

Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S et al. Tumor-suppressive pathways in pancre-
atic carcinoma. Cancer Res 57, 1731–1734 (1997)

Samarajiwa SA, Forster S, Auchettl K & Hertzog PJ. INTERFEROME: the database of interferon regulat-
ed genes. Nucleic Acids Res 37, D852–857 (2009)

Sandoval PC, Slentz DH, Pisitkun T, Saeed F, Hoffert JD et al. Proteome-wide measurement of pro-
tein half- lives and translation rates in vasopressin-sensitive collecting duct cells. J Am Soc Nephrol 24, 
1793–1805 (2013)

Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR et al. Nucleotide sequence of bacteriophage 
φX174 DNA. Nature 265, 687–695 (1977)

Sanger F, Nicklen S & Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad 
Sci USA 74, 5463–5467 (1977)

Santi DV, Norment A & Garrett CE. Covalent bond formation between a DNA-cytosine methyltransfer-
ase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA 81, 6993–6997 (1984)

Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE et al. Active genes are tri-methylated 
at K4 of histone H3. Nature 419, 407–411 (2002)

Scanlan MJ, Simpson AJ & Old LJ. The cancer/testis genes: review, standardization, and commentary. 
Cancer Immun 4, 1 (2004)

Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K et al. Pooled Analysis of Long-Term Survival 
Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin 
Oncol 33, 1889–1894 (2015)

Schaefer M & Lyko F. Solving the Dnmt2 enigma. Chromosoma 119, 35–40 (2010)

Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S et al. Inhibition of eukaryotic translation elongation 
by cycloheximide and lactimidomycin. Nat Chem Biol 6, 209–217 (2010)

Schroeder MP, Gonzalez-Perez A & Lopez-Bigas N. Visualizing multidimensional cancer genomics data. 
Genome Med 5, 9 (2013)

Schuebel KE, Chen W, Cope L, Glockner SC, Suzuki H et al. Comparing the DNA hypermethylome with 
gene mutations in human colorectal cancer. PLoS Genet 3, 1709–1723 (2007)

Schulz WA, Alexa A, Jung V, Hader C, Hoffmann MJ et al. Factor interaction analysis for chromosome 
8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal 
changes in prostate cancer. Mol Cancer 6, 14 (2007)

Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J et al. Global quantification of mammalian 
gene expression control. Nature 473, 337–342 (2011)

Searle BC, Turner M & Nesvizhskii AI. Improving sensitivity by probabilistically combining results from 
multiple MS/MS search methodologies. J Proteome Res 7, 245–253 (2008)

Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R et al. Widespread changes in protein 
synthesis induced by microRNAs. Nature 455, 58–63 (2008)

Serre D, Lee BH & Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and com-
prehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38, 391–9 (2010)

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003)

Sharma S & Fitzgerald KA. Viral defense: it takes two MAVS to Tango. Cell 141, 570–572 (2010)

Shen JC, Rideout WM & Jones PA. The rate of hydrolytic deamination of 5-methylcytosine in dou-
ble-stranded DNA. Nucleic Acids Res 22, 972–976 (1994)

Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V et al. Erlotinib in previously treated non-
small-cell lung cancer. N Engl J Med 353, 123–132 (2005)

Shi JY, Gao Q, Wang ZC, Zhou J, Wang XY et al. Margin-infiltrating CD20(+) B cells display an atypical 
memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res 
19, 5994–6005 (2013)

Shukla HD, Mahmood J & Vujaskovic Z. Integrated proteo-genomic approach for early diagnosis and 



prognosis of cancer. Cancer Lett (2015)

Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B et al. CTCF-promoted RNA polymerase II 
pausing links DNA methylation to splicing. Nature 479, 74–79 (2011)

Siegel R, Naishadham D & Jemal A. Cancer statistics. CA Cancer J Clin 63, 11–30 (2013)

Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ et al. DNA methylation represses transcription 
in vivo. Nat Genet 22, 203–206 (1999)

Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC et al. Randomized controlled trial of 
azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. 
J Clin Oncol 20, 2429–2440 (2002)

Simova J, Pollakova V, Indrova M, Mikyskova R, Bieblova J et al. Immunotherapy augments the effect of 
5-azacytidine on HPV16-associated tumours with different MHC class I-expression status. Br J Cancer 
105, 1533–1541 (2011)

Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J et al. Peptidomic discovery of short open reading 
frame-encoded peptides in human cells. Nat Chem Biol 9, 59–64 (2013)

Smith LM, Kelleher NL & Consortium for Top Down Proteomics. Proteoform: a single term describing 
protein complexity. Nat Methods 10, 186–187 (2013)

Smyth GK & Speed T. Normalization of cDNA microarray data. Methods 31, 265–273 (2003)

Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM et al. Genetic basis for clinical response to 
CTLA-4 blockade in melanoma. N Engl J Med 371, 2189–2199 (2014)

Sonenberg N & Hinnebusch AG. New modes of translational control in development, behavior, and 
disease. Mol Cell 28, 721–729 (2007)

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S et al. Gene expression patterns of breast carcinomas 
distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98, 10869–10874 (2001)

Staes A, Impens F, Van Damme P, Ruttens B, Goethals M et al. Selecting protein N-terminal peptides by 
combined fractional diagonal chromatography. Nat Protoc 6, 1130–1141 (2011)

Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol 5, 575–581 
(2004)

Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY et al. Decoding human cytomegalovirus. 
Science 338, 1088–1093 (2012)

Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B et al. A review of human carcinogens—Part C: 
metals, arsenic, dusts, and fibres. Lancet Oncol 10, 453–454 (2009)

Stresemann C & Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decit-
abine. Int J Cancer 123, 8–13 (2008)

Strowig T, Henao-Mejia J, Elinav E & Flavell R. Inflammasomes in health and disease. Nature 481, 
278–286 (2012)

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL et al. Gene set enrichment analysis: a 
knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 
102, 15545–15550 (2005)

Subramanian A, Kuehn H, Gould J, Tamayo P & Mesirov JP. GSEA-P: a desktop application for Gene Set 
Enrichment Analysis. Bioinformatics 23, 3251–3253 (2007)

Swain JL, Stewart TA & Leder P. Parental legacy determines methylation and expression of an autosomal 
transgene: a molecular mechanism for parental imprinting. Cell 50, 719–727 (1987)

Takai D & Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl 
Acad Sci USA 99, 3740–3745 (2002)

Tang C, Tan T, Xiao Y, Ruan L, Li C et al. Screening for methylation-silenced genes in acute myeloid 
leukemia HL-60 cell line by a quantitative proteomic approach. Zhong Nan Da Xue Xue Bao Yi Xue Ban 
35, 641–648 (2010)

Tapia T, Smalley SV, Kohen P, Muñoz A, Solis LM et al. Promoter hypermethylation of BRCA1 correlates 
with absence of expression in hereditary breast cancer tumors. Epigenetics 3, 157–163 (2008)

The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human 
glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)

The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 
474, 609–615 (2011)

The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo 
acute myeloid leukemia. N Engl J Med 368, 2059–2074 (2013)

146



147

The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarci-
noma. Nature 511, 543–550 (2014)

Thorvaldsdottir H, Robinson JT & Mesirov JP. Integrative Genomics Viewer (IGV): high-performance 
genomics data visualization and exploration. Brief Bioinform 14, 178–192 (2013)

Tian Q, Price ND & Hood L. Systems cancer medicine: towards realization of predictive, preventive, 
personalized and participatory (P4) medicine. J Intern Med 271, 111–121 (2012)

Timmerman JM & Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50, 507–529 
(1999)

Tomasi TB, Magner WJ & Khan AN. Epigenetic regulation of immune escape genes in cancer. Cancer 
Immunol Immunother 55, 1159–1184 (2006)

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC et al. Safety, activity, and immune correlates 
of anti-PD-1 antibody in cancer. N Engl J Med 366, 2443–2454 (2012)

Touriol C, Bornes S, Bonnal S, Audigier S, Prats H et al. Generation of protein isoform diversity by 
alternative initiation of translation at non-AUG codons. Biol Cell 95, 169–178 (2003)

Tsai HC, Li H, Van Neste L, Cai Y, Robert C et al. Transient Low Doses of DNA-Demethylating Agents 
Exert Durable Antitumor Effects on Hematological and Epithelial Tumor Cells. Cancer Cell 21, 430–446 
(2012)

Tufte ER. The visual display of quantitative information. Graphics Press (1983)

Ulloa-Montoya F, louahed J, Dizier B, Gruselle O, Spiessens B et al. Predictive gene signature in 
MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol 31, 2388–2395 (2013)

Vadakara J & Borghaei H. Personalized medicine and treatment approaches in non-small-cell lung carci-
noma. Pharmgenomics Pers Med 5, 113–123 (2012)

Van Damme P, Gawron D, Van Criekinge W & Menschaert G. N-terminal proteomics and ribosome 
profiling provide a comprehensive view of the alternative translation initiation landscape in mice and 
men. Mol Cell Proteomics 13, 1245–1261 (2014)

Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J et al. NatF contributes to an 
evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segrega-
tion. PLoS Genet 7, e1002169 (2011)

Van Lint S, Wilgenhof S, Heirman C, Corthals J, Breckpot K et al. Optimized dendritic cell-based immu-
notherapy for melanoma: the TriMix-formula. Cancer Immunol Immunother 63, 959–967 (2014)

Vaquerizas JM, Akhtar A & Luscombe NM. Large-scale nuclear architecture and transcriptional control. 
Sub-cellular biochemistry 52, 279–295 (2011)

Vaquerizas JM, Teichmann SA & Luscombe NM. How do you find transcription factors? Computational 
approaches to compile and annotate repertoires of regulators for any genome. Methods Mol Biol 786, 3–19 
(2012)

Vasquez JJ, Hon CC, Vanselow JT, Schlosser A & Siegel TN. Comparative ribosome profiling reveals 
extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res 42, 
3623–3637 (2014)

Vaudel M, Barsnes H, Berven FS, Sickmann A & Martens L. SearchGUI: An open-source graphical user 
interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11, 996–999 (2011)

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al. The sequence of the human genome. Science 
291, 1304–1351 (2001)

Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A et al. The PRoteomics IDEntifications (PRIDE) 
database and associated tools: status in 2013. Nucleic Acids Res 41, D1063–1069 (2013)

Volders PJ, Helsens K, Wang X, Menten B, Martens L et al. LNCipedia: a database for annotated human 
lncRNA transcript sequences and structures. Nucleic Acids Res 41, D246–251 (2013)

Waghray A, Murali AR & Menon KN. Hepatocellular carcinoma: From diagnosis to treatment. World J 
Hepatol 7, 1020–1029 (2015)

Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D et al. Mechanism of activation of the RAF-ERK 
signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004)

Wang X, Slebos RJ, Wang D, Halvey PJ, Tabb DL et al. Protein identification using customized protein 
sequence databases derived from RNA-Seq data. J Proteome Res 11, 1009–1017 (2012)

Ward A, Sivakumar G, Kanjeekal S, Hamm C, Labute BC et al. The deregulated promoter methylation 
of the Polo-like kinases as a potential biomarker in hematological malignancies. Leuk Lymphoma, 1–11 
(2015)



148

Watson JD & Crick FH. The structure of DNA. Cold Spring Harb Symp Quant Biol 18, 123–131 (1953)

Wethmar K, Begay V, Smink JJ, Zaragoza K, Wiesenthal V et al. C/EBPbetaDeltauORF mice–a genetic 
model for uORF-mediated translational control in mammals. Genes Dev 24, 15–20 (2010)

Wilgenhof S, Van Nuffel AM, Corthals J, Heirman C, Tuyaerts S et al. Therapeutic vaccination with an au-
tologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 
34, 448–456 (2011)

Wilgenhof S, Van Nuffel AM, Benteyn D, Corthals J, Aerts C et al. A phase IB study on intravenous syn-
thetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. 
Ann Oncol 24, 2686–2693 (2013)

Wilkins MH. Physical studies of the molecular structure of deoxyribose nucleic acid and nucleoprotein. 
Cold Spring Harb Symp Quant Biol 21, 75–90 (1957)

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL et al. Protein identification and analysis 
tools in the ExPASy server. Methods Mol Biol 112, 531–552 (1999)

Wirsing AM, Rikardsen OG, Steigen SE, Uhlin-Hansen L & Hadler-Olsen E. Characterisation and prog-
nostic value of tertiary lymphoid structures in oral squamous cell carcinoma. BMC Clin Pathol 14, 38 
(2014)

Woo S, Cha SW, Merrihew G, He Y, Castellana N et al. Proteogenomic database construction driven from 
large scale RNA-seq data. J Proteome Res 13, 21–28 (2014)

World Health Organization. World Cancer Report 2014. IARC (2014)

Wrangle J, Wang W, Koch A, Easwaran H, Mohammad HP et al. Alterations of immune response of Non-
Small Cell Lung Cancer with Azacytidine. Oncotarget 4, 2067–2079 (2013)

Xu W, Fang P, Zhu Z, Dai J, Nie D et al. Cigarette smoking exposure alters pebp1 DNA methylation and 
protein profile involved in MAPK signaling pathway in mice testis. Biol Reprod 89, 142 (2013)

Xu Y, Zhong H & Shi W. MAVS protects cells from apoptosis by negatively regulating VDAC1. Mol Cell 
Biochem 375, 219 (2010)

Yang Z & Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr 
Opin Cell Biol 22, 124–131 (2010)

Yi JM, Dhir M, Van Neste L, Downing SR, Jeschke J et al. Genomic and epigenomic integration identifies 
a prognostic signature in colon cancer. Clin Cancer Res 17, 1535–1545 (2011)

Yoder JA, Soman NS, Verdine GL & Bestor TH. DNA (cytosine-5)-methyltransferases in mouse cells and 
tissues. Studies with a mechanism-based probe. J Mol Biol 270, 385–395 (1997)

Yoder JA, Walsh CP & Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends 
Genet 13, 335-340 (1997)

Youlden DR, Cramb SM & Baade PD. The International Epidemiology of Lung Cancer: geographical 
distribution and secular trends. J Thorac Oncol 3, 819–831 (2008)

Yuan J, Adamow M, Ginsberg BA, Rasalan TS, Ritter E et al. Integrated NY-ESO-1 antibody and CD8+ 
T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. 
Proc Natl Acad Sci USA 108, 16723–16728 (2011)

Zambelli F, Pesole G & Pavesi G. Pscan: finding over- represented transcription factor binding site motifs 
in sequences from co-regulated or co-expressed genes. Nucleic Acids Res 37, W247–252 (2009)

Zhang J, Finney RP, Rowe W, Edmonson M, Yang SH et al. Systematic analysis of genetic alterations in 
tumors using Cancer Genome WorkBench (CGWB). Genome Res 17, 1111–1117 (2007)



149

A  B IG
T H A N K  Y O U



150

Writing these acknowledgements was more difficult than I thought it would be. 
Not because I have a hard time thanking people for their friendship and support 
(far from it), but because I couldn’t stop thinking back on everything that hap-
pened these past few years and how I ended up where I am today (sitting here 
at my desk struggling to get these words on paper and to keep my mind from 
drifting of).

My hopes of becoming a world-class rower crashed and burned in the fall of 
2010. Ready to revive the aspiring scientist in me, I started looking for interesting 
PhD positions. I had only two demands, the PhD had to be bioinformatics related 
(computers are the future!) and I wanted to go abroad. Finding a position abroad 
proved to be more difficult than I thought, but when I talked to Wim about the 
possibility of starting a PhD in his lab he told me he was looking for someone to 
keep his collaboration with Johns Hopkins in Baltimore going. Wim, I want to 
thank you for the opportunities you gave me. I had a great time at Hopkins and 
met many wonderful people there. Hari, Subodh, Tina, Ben and Stacy, thank you 
for all the good times in Baltimore! And who in the world would open up his 
house for a lonely Belgian kid without a roof over his head? Calvin, that’s who. 
You’re the best.

There are many exciting moments throughout a PhD, just as there are mind-numb-
ingly boring days. It was a pleasure to have a nice group of colleagues on my 
side to enjoy the good days with and to get me through the bad ones. Thank you 
Klaas, Sandra, Jeroen & Jeroen, Joachim, Geert, Vladimir, Elvis, Simon and Daisy. 
Tim and Gerben, I want to thank you for your guidance and support. This thesis 
would not have existed without it. And Gerben, thank you for your infectious 
enthusiasm for science. I’m not the first and will not be the last to be inspired by it. 
Without Gerben, I would not have participated in the 2013 ASMS conference in 
Minneapolis. I would not have met David, Kelly and Jennifer and I would not have 
spent two months in David’s lab at NYU. David, thank you for taking me in. I did 
not have to cross the Atlantic Ocean to find more excellent collaborators though. 
Petra, Bart and Teo, it was a pleasure to work with you.

There is of course more to life than just academia (luckily!) and what better way 
to take your mind off research than to enjoy the company of your best friends? 
Karen, Karel, Thomas, Evi and Christophe, it was great to work my way through 
university by your side. Despite a shattered dream or two, rowing has continued 
to be an important part of my life, not in the least for the friends it gave me. Vera, 
Jolien, Wouter, Jo and Renne, nothing beats a night out at Ozman’s or some time 
on the water together to push an irritating software bug or a rejected paper to the 
back of my mind. And then there’s the Zebrastraat boys. Kristof, Pieter, Lander 
and Henryk, I guess I have to thank you for not calling me a nerd every single 
day? Above all, I consider myself very lucky to have such an international group 
of amazing people around me.



151

Last but not least, from friends to family. Mama, papa, my favorite brother and 
Eve, thank you for supporting me, no matter what I choose to do, through success 
and failure. I could have introduced you as part of the Baltimore gang, but, Jana, 
you’re part of the family now.  Who would have thought I’d find my girl in the 
greatest city in America? Jana, I admire your intelligence and strength. You are 
an inspiration. And you know what they say, don’t you? A couple that publishes 
together stays together!

Four years ago I could have never predicted where I would be today. I can’t wait 
to see what the next years will bring! Thank you all for sharing this beautiful ride 
with me.





155

C U R R I C ULU   M 
V I T A E



156

P E R S O N A L  I N F O R M A T I O N

Alexander Koch
º 22/07/1986 Gent, Belgium
Patijntjestraat 150
9000 Gent
Belgium
+32 (0)485/90 42 70
alexander_koch86@hotmail.com

E D U C A T I O N  &  E X P E R I E N C E

F ebruary        2 0 1 1  –  now 

PhD student at the lab of bioinformatics and computational genomics, depart-
ment of mathematical modeling, statistics and bioinformatics, Ghent University 
(Ghent, Belgium).
Visiting trainee at the Baylin lab, Johns Hopkins University School of Medicine 
(Baltimore, USA, Aug – Oct 2011 & June – Sep 2012).
Visiting trainee at the Fenyö lab, New York University (New York, USA, Oct – 
Dec 2014).

J uly    2 0 0 9  –  S eptember         2 0 1 0

Member of the Belgian national rowing team. Raced at three world cup races and 
the European championships.

S eptember         2 0 0 4  –  J une    2 0 0 9

Bachelor and Master’s degree in bioscience engineering, major in biotechnology, 
at Ghent University (Ghent, Belgium).
International student at the University of Natural Resources and Applied Life 
Sciences (Vienna, Austria, fall semester of 2008).

S eptember         1 9 9 8  –  J une    2 0 0 4

Royal Athenaeum Voskenslaan (Ghent, Belgium), studying science and 
mathematics.
Finalist at the Flemish mathematics Olympiad (2001).



157

P U B LI  C A T I O N S

Seremet T*, Koch A*, Jansen Y, Schreuer M, Wilgenhof S, Del Marmol V, Liènard 
D, Thielemans K, De Meyer T, Van Criekinge W, Coulie P, Van Baren N, Neyns B. 
Identification of a predictive signature based on immunohistochemical, RNA-seq 
and epigenetic profiling of melanoma metastases for response to ipilimum-
ab-based immunotherapy. (2015) – in preparation

Koch A, De Meyer T, Jeschke J, Van Criekinge W. MEXPRESS: Visualizing 
Expression, DNA Methylation and clinical TCGA Data. BMC Genomics 16, 636 
(2015)

Crappé J, Ndah E, Koch A, Steyaert S, Gawron D, De Keulenaer S, De Meester E, 
De Meyer T, Van Criekinge W, Van Damme P, Menschaert G. PROTEOFORMER: 
deep proteome coverage through ribosome profiling and MS integration. Nucleic 
Acids Res 43, e29 (2015)

Koch A*, Gawron D*, Steyaert S, Ndah E, Crappé J, De Keulenaer S, De Meester E, 
Ma M, Shen B, Gevaert K, Van Criekinge W, Van Damme P, Menschaert G. A pro-
teogenomics approach integrating proteomics and ribosome profiling increases 
the efficiency of protein identification and enables the discovery of alternative 
translation start sites. Proteomics 14, 2688–2698 (2014)

Menschaert G, Van Criekinge W, Notelaers T, Koch A, Crappé J, Gevaert K, 
Van Damme P. Deep proteome coverage based on ribosome profiling aids mass 
spectrometry-based protein and peptide discovery and provides evidence of al-
ternative translation products and near-cognate translation initiation events. Mol 
Cell Proteomics 12, 1780–1790 (2013)

Wrangle J*, Wang W*, Koch A*, Easwaran H, Helai PM, Xiaoyu P, Vendetti F, 
Van Criekinge W, De Meyer T, Du Z, Parsana P, Rodgers K, Yen R, Zahnow CA, 
Taube JM, Brahmer JR, Tykodi SS, Easton K, Carvajal RD, Jones PA, Laird PW, 
Weisenberger DJ, Tsai S, Juergens RA, Topalian SL, Rudin CM, Brock MV, Pardoll 
D and Baylin SB. Alterations of immune response of non-small cell lung cancer 
with azacytidine. Oncotarget 4, 2067–2079 (2013)

Jeschke J, Van Neste L, Glöckner SC, Dhir M, Calmon MF, Deregowski V, Van 
Criekinge W, Vlassenbroeck I, Koch A, Chan TA, Cope L, Hooker CM, Schuebel 
KE, Gabrielson E, Winterpacht A, Baylin SB, Herman JG, Ahuja N. Biomarkers 
for detection and prognosis of breast cancer identified by a functional hyper-
methylome screen. Epigenetics 7, 701–709 (2012)

* these authors contributed equally



158

C O N F E R E N C E S

American Society of Clinical Oncology (ASCO): Annual Meeting. Chicago, USA 
(May 29 – June 2, 2015) – P

Big Data Science Symposium. Gent, Belgium (May 11, 2015) – A
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M ea  s u r i n g  t h e  g enome     - w i de  
i mpact      o f  D N A  met   h y l at  i on   at  
t h e  proteome         l eve   l  i n  a  D N M T 
knocko      u t  h u man    cancer       ce  l l 
mode    l

Supplementary Figure 1.1 histograms of the WT (blue) and DKO (yellow) promoter 
methylation data for the up-regulated proteins (a), the down-regulated proteins (b) and 
the proteins that were not differentially expressed between DKO and WT (c). The two left 
columns show the histograms of the mean promoter methylation data, whereas the two 
columns on the right show the maximal promoter methylation value. When comparing 
the mean to the maximal values, we noticed a higher amount of noise for the latter and 
particularly for the up and down-regulated proteins. Based on these histograms, we decided 
to use the mean promoter methylation values and not the maximal values in the subsequent 
analyses.



Supplementary Figure 1.2 Distribution 
plot of the differences in promoter 
methylation between DKO and WT. We 
calculated the difference in promoter 
methylation for all the proteins we 
identified in the shotgun experiment 
by subtracting the WT from the DKO 
promoter methylation. The peak 
around zero corresponds to promoters 
that were not demethylated and we 
decided to put our cutoff to call a 
promoter demethylated in DKO to 
the left of the base of this peak. Given 
that calculating the mean promoter 
methylation already reduced the 
greatest differences between WT and 
DKO, we kept the cutoff close to the 
peak.

Supplementary Figure 1.3 STRING protein interaction network of the up and down-
regulated proteins as deduced from the shotgun proteome analysis (http://string-db.org) 
(Franceschini et al., 2013). The proteins without any connections are not shown in this plot.
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Category Term PValue Genes Fold En-
richment

FDR

GOTERM_
BP_FAT

GO:0007010~cytoskeleton 
organization

1.86E-5 P31146, Q9UPN3, Q9NYT0, P35611, 
Q9BX66, Q15642, P52566, Q96ED9, 
Q96R06, Q5TZA2, P35222, P41208, Q16352, 
Q99661, P35580, Q8TCU6, Q05682, P15153, 
Q27J81, O00762, Q9UJC3, Q9Y5S2, Q96AC1

2.855 0.032

GOTERM_
BP_FAT

GO:0006511~ubiquitin-de-
pendent protein catabolic 
process

4.25E-5 P09936, Q9UL46, P40306, Q13107, Q06323, 
P46934, O95260, P14635, P28062, Q13620, 
O00762, Q9UK22, O43294, Q9BZK7, 
P28065, Q13049

3.578 0.073

GOTERM_
BP_FAT

GO:0007017~microtu-
bule-based process

7.03E-5 Q9UPN3, P09936, Q12756, Q96ED9, 
Q96R06, Q12840, O60282, Q5TZA2, 
P35222, P41208, Q99661, Q13748, O00762, 
Q9UJC3, P52292, Q9BW19

3.422 0.121

GOTERM_
BP_FAT

GO:0044093~positive 
regulation of molecular 
function

8.17E-5 P42224, P40306, Q9NX02, P84022, 
Q9UDY8, P53350, P28062, P23497, P28065, 
Q13586, Q9UL46, P35611, P05362, Q06323, 
Q12933, O60825, P15531, P14635, P21980, 
Q05682, Q07812, O00762, O60869, P31431, 
Q16512, P29590

2.401 0.140

GOTERM_
BP_FAT

GO:0019882~antigen 
processing and presentation

1.41E-4 P61769, Q01201, P28062, P01892, P05362, 
Q06323, Q9NZ08, P28065, P13284

5.868 0.242

GOTERM_
BP_FAT

GO:0051437~positive 
regulation of ubiquitin-pro-
tein ligase activity during 
mitotic cell cycle

2.45E-4 P14635, Q9UL46, P53350, P28062, P40306, 
O00762, Q06323, P28065

6.366 0.420

GOTERM_
BP_FAT

GO:0051443~positive 
regulation of ubiquitin-pro-
tein ligase activity

2.94E-4 P14635, Q9UL46, P53350, P28062, P40306, 
O00762, Q06323, P28065

6.184 0.504

GOTERM_
BP_FAT

GO:0051439~regulation 
of ubiquitin-protein ligase 
activity during mitotic 
cell cycle

3.21E-4 P14635, Q9UL46, P53350, P28062, P40306, 
O00762, Q06323, P28065

6.097 0.550

GOTERM_
BP_FAT

GO:0051351~positive 
regulation of ligase activity

3.81E-4 P14635, Q9UL46, P53350, P28062, P40306, 
O00762, Q06323, P28065

5.930 0.653

GOTERM_
BP_FAT

GO:0031396~regulation of 
protein ubiquitination

5.10E-4 P14635, Q9UL46, P53350, P28062, P40306, 
Q9UK22, O00762, Q06323, P28065

4.870 0.872

GOTERM_
BP_FAT

GO:0051098~regulation of 
binding

5.35E-4 Q05682, Q9GZT9, P35611, Q07812, O60869, 
P05362, P30533, P23497, P84022, Q9UDY8, 
P15531

3.890 0.915

GOTERM_
BP_FAT

GO:0051438~regulation 
of ubiquitin-protein ligase 
activity

5.72E-4 P14635, Q9UL46, P53350, P28062, P40306, 
O00762, Q06323, P28065

5.550 0.978

GOTERM_
BP_FAT

GO:0043161~proteasomal 
ubiquitin-dependent 
protein catabolic process

5.82E-4 P14635, Q9UL46, P28062, P40306, Q9UK22, 
O00762, Q06323, Q9BZK7, P28065

4.775 0.996

GOTERM_
BP_FAT

GO:0010498~proteasomal 
protein catabolic process

5.82E-4 P14635, Q9UL46, P28062, P40306, Q9UK22, 
O00762, Q06323, Q9BZK7, P28065

4.775 0.996

GOTERM_
BP_FAT

GO:0051340~regulation of 
ligase activity

7.18E-4 P14635, Q9UL46, P53350, P28062, P40306, 
O00762, Q06323, P28065

5.344 1.227

GOTERM_
BP_FAT

GO:0031398~positive 
regulation of protein 
ubiquitination

8.93E-4 P14635, Q9UL46, P53350, P28062, P40306, 
O00762, Q06323, P28065

5.154 1.524

GOTERM_
BP_FAT

GO:0048871~multicellular 
organismal homeostasis

9.58E-4 P31146, P35611, P15153, Q07812, P01583, 
P07203, P35222, P40763

5.093 1.634

GOTERM_
BP_FAT

GO:0030036~actin 
cytoskeleton organization

9.95E-4 P35580, P31146, Q9NYT0, Q8TCU6, 
Q05682, P35611, Q27J81, P15153, Q9BX66, 
Q15642, P52566, Q9Y5S2, Q96AC1

3.113 1.697

Supplementary Table 1.1
Result of the gene ontology enrichment analysis using the DAVID tool on the list of genes 
that were found to be significantly up or down-regulated in the shotgun experiment.
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D E E P  P R O T E O M E  C O V E R A G E 
B A S E D  O N  R I B O P R O FILI    N G

Supplementary Figure 2.1 Examples of improved identifications in the shotgun proteomics 
experiment. The addition of ribo-seq data to the proteomics experiment improved the 
identification and score significance for 69 proteins and three representative examples are 
depicted here. The left column shows the Clustal Omega alignment of the ribo-seq-derived 
amino acid sequences to the Swiss-Prot sequences with the relevant peptide identifications 
highlighted in cyan. The column on the right shows the corresponding fragmentation 
spectra and peptide sequence fragmentations.

The supplementary tables for this paper can be found online: http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4391000/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391000/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391000/


−14 −12 −10 −8 −6 −4

−1
0

−6
−4

−2
0

2
Uniques

r2 = 0.557
293 data points

log(NSAF)

lo
g(

no
rm

 R
PF

)

−9 −8 −7 −6 −5 −4 −3

−6
−4

−2
0

2

Uniques & Exon_coverage = Yes

r2 = 0.464
209 data points

−9 −8 −7 −6 −5 −4 −3

−3
−2

−1
0

1
2

Uniques & RPF >= 200

r2 = 0.69
222 data points

−9 −8 −7 −6 −5 −4 −3

−3
−2

−1
0

1
2

Uniques & Exon_coverage = Yes & RPF >= 200

r2 = 0.687
175 data points

Supplementary Figure 2.2 Correlation plots of protein abundance based on NSAF values 
and RPF counts for the proteins uniquely identified in Swiss-Prot. Some transcripts were 
not contained in our custom database because the LTM treatment and/or TIS calling failed 
to identify these TISs. Correlations could still be calculated as the CHX treatment did result 
in detectable coverage for these transcripts. The number of data points used in every plot was 
lower than the total number of unique Swiss-Prot identifications (312), because whenever 
a Swiss-Prot protein corresponded to multiple transcripts only the transcript with the 
highest normalized RPF value was used. Top left: all transcripts; top right: transcripts with 
ribo-seq coverage in all exons; bottom left: all transcripts with an RPF count ≥ 200; bottom 
right: transcripts with both coverage in all exons and an RPF count ≥ 200. The regression 
line is shown in green. For each plot, the number of data points used (i.e. the number of 
dbTIS transcripts) as well as the corresponding Pearson correlation coefficient (r2) is shown.
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A L T E R A T I O N S  O F  I M M U N E 
R E S P O N S E  O F  N O N - S M A LL   C E LL  
LU  N G  C A N C E R  W I T H  A Z A C Y T I D I N E

The supplementary tables for this paper can be found online: http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3875770/

Pre Rx 19 Months
A Pt. 1

Pre Rx 21 Months
Pt. 3

B

Pre Rx 10 Months
Pt. 2

Supplementary Figure 3.1 Outcomes for five patients treated with immune checkpoint 
immunotherapy after epigenetic therapy. (A) Scans for 3 patients (Pt.) with RECIST criteria 
responses to either PD-1 or PD-L1 therapy. All scan interpretations were performed by a 
single radiologist and lesions used to measure tumor shrinkage between pre- and during 
immunotherapy at specified times are shown by red arrows (metastasis in the spleen- Pt.1; 
lung tumor lesions- Pt.2; lymph node in right central chest with metastases –Pt. 2. Green 
arrow denotes large area of the right lung collapsed behind airway obstruction by tumor 
and resolving by the 10 month period after immunotherapy. (B) Spider plot of sequential 
scan measurements (Y-axis) of lesions relative to time of treatment initiation with anti- 
PD-1 or anti-PD-L1 shown in panel (A) by weeks (X-axis) with a decrease of 30% qualifying 
as RECIST criteria response (green circles). Blue crosses indicate tumor increase of > 20% 
qualifying as disease progression. The 24 weeks point denoted by the dashed vertical line 
represents a duration of treatment after which disease stabilization is conventionally 
considered to represent clinical benefit.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875770/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875770/
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Supplementaray Figure 3.2 Comparison of expression array data to flow cytometry for 
select cell surface Protein proteins in H838. Clear bars represent the log2 ratio of mRNA 
mean fluorescence intensity of AZA over mock treated cells. Hashed bars represent the 
M-values of expression array (log2[AZA:Mock]). For HLA Class I, the antibody used in flow 
cytometry does not discriminate subtypes of class I molecules. Individual class I molecule 
subtype transcript data are available from the Agilent array platform and is presented. 
Changes between AZA treated and mock cells are calculated using mean fluorescence 
intensities (MFI) and the formula
log2([(MFIantibody, treated)-(MFIisotype, treated)]/ (MFIantibody, mock)-(MFIisotype, mock)]
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A  P R E D I C T I V E  SIG   N A T U R E  F O R 
R E S P O N S E  T O  I M M U N O T H E R A P Y 
I N  M E L A N O M A  M E T A S T A S E S

Supplementary Figure 3.3 Study design for the TriMixIpi trial (http://clinicaltrials.gov 
NCT01302496)
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O
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Supplementary Figure 3.4 Comparison of the overal survival for the three response groups.

http://clinicaltrials.gov


Supplementary Figure 3.5 Result of the differential DNA methylation analysis. 107 
methylation cores were found to be differentially methylated between the HCB and NCB 
groups (edgeR analysis, FDR < 0.05). This corresponded to the list of 92 genes shown on 
the image.

Supplementary Table 3.1 Patient clinical benefit and characterization of melanoma 
metastases samples. (LN = lymph node)
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Supplementary Table 3.2 Result of the gene ontology enrichment analysis of the genes that 
were differentially expressed between HCB and NCB patients. The analysis was performed 
using the online GOrilla tool. Gene ontologies that are linked to the immune system are 
marked in blue.

Supplementary Table 3.3 Melanoma metastases immune infiltration analyses in the three 
clinical benefit groups.
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Supplementary Table 3.4 Pattern of T cell infiltration in the NCB group in samples removed 
before or after therapy onset.

Supplementary Table 3.5 Automated image analysis and quantification of CD8+ and PD-
L1+ cells. The median with percentile 25 and percentile 75 for overall CD8+ cells and PD-
L1+ cells infiltration are shown for the three clinical benefit group. The same parameters 
are shown for the pathologist assessment of the PD-L1 staining in the tumor compartment 
as well as in the immune compartment.
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GO PROCESS

Description FDR q-value Description FDR q-value

developmental process 2.49E-9 regulation of cell projection organization 3.09E-5

single-organism developmental process 4.7E-9 positive regulation of multicellular 
organismal process

3.2E-5

neuron projection guidance 3.95E-9 positive regulation of developmental 
process

3.24E-5

axon guidance 2.96E-9 regulation of cell morphogenesis involved 
in differentiation

4.4E-5

anatomical structure development 4.24E-9 cellular developmental process 6.35E-5

multicellular organismal process 1.02E-8 cell-cell signaling 8.16E-5

regulation of multicellular organismal process 8.78E-9 biological regulation 8.55E-5

single-multicellular organism process 1.04E-8 positive regulation of molecular function 8.46E-5

regulation of neurogenesis 2.16E-8 single organism signaling 9.05E-5

regulation of developmental process 3.69E-8 system development 9.23E-5

regulation of neuron differentiation 5.15E-8 signaling 9.27E-5

regulation of nervous system development 9.21E-8 positive regulation of cell differentiation 9.92E-5

synaptic transmission 1.47E-7 positive regulation of biological process 9.91E-5

single-organism process 2.06E-7 positive regulation of cell development 1.2E-4

regulation of multicellular organismal 
development

2.25E-7 cell differentiation 1.31E-4

regulation of cell differentiation 2.52E-7 pattern specification process 1.46E-4

movement of cell or subcellular component 3.37E-7 cell development 1.45E-4

regulation of neuron projection development 4.32E-7 positive regulation of cellular process 1.56E-4

regulation of cell development 5.16E-7 regulation of biological process 1.97E-4

single-organism cellular process 1.06E-6 positive regulation of neuron projection 
development

2.15E-4

neuron differentiation 3.06E-6 neurological system process 3.17E-4

positive regulation of neurogenesis 5.69E-6 anatomical structure morphogenesis 3.6E-4

organ development 5.56E-6 regulation of cellular process 4.26E-4

positive regulation of neuron differentiation 1.21E-5 regulation of dendrite development 5.03E-4

regulation of anatomical structure 
morphogenesis

1.19E-5 positive regulation of metabolic process 6.41E-4

positive regulation of nervous system 
development

1.2E-5 cell communication 7.93E-4

cell adhesion 1.87E-5 regulation of small GTPase mediated 
signal transduction

8.32E-4

biological adhesion 2.5E-5 inorganic cation transmembrane transport 8.48E-4

Supplementary Table 3.6 – part 1
Result of the gene ontology enrichment analysis of the genes that were differentially 
methylated between HCB and NCB patients. The analysis was performed using the online 
GOrilla tool. Note the numerous neuron-related ontologies



GO FUNCTION GO COMPONENT

Description FDR q-value Description FDR q-value

cytoskeletal protein binding 2.55E-4 neuron part 4.59E-11

cation channel activity 2.7E-4 synaptic membrane 2.18E-9

sequence-specific DNA binding 2.18E-4 postsynaptic membrane 3.68E-9

actin binding 2.79E-4 neuron projection 1.1E-8

carbohydrate derivative binding 3.63E-4 synapse part 3.92E-8

gated channel activity 3.47E-4 cell junction 3.29E-8

motor activity 5.97E-4 postsynaptic density 1.63E-7

ion channel activity 5.56E-4 cell projection 1.91E-7

substrate-specific channel activity 6.95E-4 axon part 1.46E-5

sequence-specific DNA binding RNA 
polymerase II transcription factor activity

6.63E-4 plasma membrane part 3.17E-5

ion binding 6.31E-4 synapse 1.87E-4

calcium ion transmembrane transporter activity 7.26E-4 plasma membrane 2.09E-4

metal ion transmembrane transporter activity 8.24E-4 ion channel complex 2.35E-4

cation channel complex 3.22E-4

transmembrane transporter complex 7.8E-4

receptor complex 8.45E-4

Supplementary Table 3.6 – part 2
Result of the gene ontology enrichment analysis of the genes that were differentially 
methylated between HCB and NCB patients. The analysis was performed using the online 
GOrilla tool. Note the numerous neuron-related ontologies
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M E X P R E SS
  

PRAD  DNA  methylation  (Methylation450k)

  

PRAD  gene  expression  (IlluminaHiSeq)

  

Add  Datasets TCGA  prostate  adenocarcinoma  (PRAD)  DNA  methylation  (HumanMethylation450)
0.50 0 -­0.50

TCGA  prostate  adenocarcinoma  (PRAD)  gene  expression  by  RNAseq  (IlluminaHiSeq)
1.0 0 -­1.0

Supplementary Figure 3.6 UCSC Cancer Genome Browser (CGB) visualization of the 
GSTP1 methylation, expression and clinical TCGA data in prostate adenocarcinoma as 
shown in Figure 3.8. Like MEXPRESS, the CGB allows the samples to be ordered by a 
clinical parameter, showing differences in methylation and expression between for example 
the normal and tumor samples. Unlike MEXPRESS however, it is not possible to rank the 
samples by their expression values or to integrate the expression and methylation data.
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Supplementary Figure 3.7 
cBioPortal visualization of the 
correlation between the TCGA 
expression and methylation 
data for GSTP1 in prostate 
adenocarcinoma. Using the 
cBioPortal tool the correlation 
between the expression and 
methylation data for a gene 
can be visualized, though only 
for one probe. It is not possible 
to integrate the expression 
and methylation data with 
clinical parameters or to 
compare the methylation data 
to the genomic location of the 
probes as shown in Figure 3.8.
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Supplementary Figure 3.8 A Cancer Genome Workbench 
(CGWB) view of the TCGA expression data for GSTP1 
in prostate adenocarcinoma. The CGWB is based on 
the UCSC genome browser and allows a user to plot 
the expression data for a (limited) number of samples. 
It offers a more detailed profile of the expression data 
as compared to the per-gene aggregated expression 
value shown in MEXPRESS, but cannot integrate the 
expression profiles with methylation and clinical data.

Supplementary Figure 3.9 Integrative Genomics Viewer 
(IGV) visualization of the GSTP1 expression and 
methylation TCGA data in glioblastoma multiforme. 
The IGV only offers TCGA expression and methylation 
data for glioblastoma multiforme and ovarian serous 
cystadenocarcinoma, so no direct comparison could be 
made to the visualization of the GSTP1 data in prostate 
adenocarcinoma as shown in Figure 3.8. Instead, the 
GSTP1 (a) expression and (b) methylation data is plotted 
for glioblastoma. The IGV does not offer a direct 
comparison of the expression and methylation data 
and does not integrate these datasets with the clinical 
parameters available in TCGA.




