3,417 research outputs found

    Overlay networks for smart grids

    Get PDF

    Review of multicast QoS routing protocols for mobile ad hoc networks

    Get PDF
    A Mobile Ad hoc NETwork (MANET) is consisting of a collection of wireless mobile nodes, which form a temporary network without relying on any existing infrastructure or centralized administration. Since the bandwidth of MANETs is limited and shared between the participating nodes in the network, it is important to efficiently utilize the network bandwidth. Multicasting can minimize the link bandwidth consumption and reduce the communication cost by sending the same data to multiple participants. Multicast service is critical for applications that need collaboration of team of users. Multicasting in MANETs becomes a hot research area due to the increasing popularity of group communication applications such as video conferencing and interactive television. Recently, multimedia and group-oriented computing gains more popularity for users of ad hoc networks. So, effective Quality of Service (QoS) multicasting protocol plays significant role in MANETs. In this paper, we are presenting an overview of set of the most recent QoS multicast routing protocols that have been proposed in order to provide the researchers with a clear view of what has been done in this field

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Quality of service on ad-hoc wireless networks

    Get PDF
    Over the last years, Mobile Ad-hoc Networks (MANETs) have captured the attention of the research community. The flexibility and cost savings they provide, due to the fact that no infrastructure is needed to deploy a MANET, is one of the most attractive possibilities of this technology. However, along with the flexibility, lots of problems arise due to the bad quality of transmission media, the scarcity of resources, etc. Since real-time communications will be common in MANETs, there has been an increasing motivation on the introduction of Quality of Service (QoS) in such networks. However, many characteristics of MANETs make QoS provisioning a difficult problem.In order to avoid congestion, a reservation mechanism that works together with a Connection Admission Control (CAC) seems to be a reasonable solution. However, most of the QoS approaches found in literature for MANETs do not use reservations. One reason for that, is the difficulty on determining the available bandwidth at a node. This is needed to decide whether there are enough resources to accommodate a new connection.This thesis proposes a simple, yet effective, method for nodes in a CSMA-based MANET to compute their available bandwidth in a distributed way. Based on this value, a QoS reservation mechanism called BRAWN (Bandwidth Reservation over Ad-hoc Networks) is introduced for multirate MANETs, allowing bandwidth allocation on a per flow basis. By multirate we refer to those networks where wireless nodes are able to dynamically switch among several link rates. This allows nodes to select the highest possible transmission rate for exchanging data, independently for each neighbor.The BRAWN mechanism not only guarantees certain QoS levels, but also naturally distributes the traffic more evenly among network nodes (i.e. load balancing). It works completely on the network layer, so that no modifications on lower layers are required, although some information about the network congestion state could also be taken into account if provided by the MAC (Medium Access Control) layer. The thesis analyzes the applicability of the proposed reservation mechanism over both proactive and reactive routing protocols, and extensions to such protocols are proposed whenever needed in order to improve their performance on multirate networks. On mobile scenarios, BRAWN also achieves high QoS provisioning levels by letting the nodes to periodically refresh QoS reservations. This extension of the protocol for mobile nodes is referred as BRAWN-R (BRAWN with Refreshments).Summarizing, the outstanding features of the reservation mechanism proposed by this thesis are: (i) Multirate, i.e. it allows wireless nodes to choose among different transmission rates, in order to accommodate to different channel conditions. (ii) Targeted to CSMA-based wireless MAC protocols, e.g. 802.11. (iii) Reservation based, allowing the network nodes to pro-actively protect ongoing QoS flows, and applying an effective CAC. (iv) Adaptive to topology changes introduced by the mobility of the nodes, re-routing QoS flows to more efficient paths. (v) Feasible and simple to implement over existing MANET routing protocols (as it is shown by the prototype presented at the end of the study).Postprint (published version

    Experimental evaluation of the usage of ad hoc networks as stubs for multiservice networks

    Get PDF
    This paper describes an experimental evaluation of a multiservice ad hoc network, aimed to be interconnected with an infrastructure, operator-managed network. This network supports the efficient delivery of services, unicast and multicast, legacy and multimedia, to users connected in the ad hoc network. It contains the following functionalities: routing and delivery of unicast and multicast services; distributed QoS mechanisms to support service differentiation and resource control responsive to node mobility; security, charging, and rewarding mechanisms to ensure the correct behaviour of the users in the ad hoc network. This paper experimentally evaluates the performance of multiple mechanisms, and the influence and performance penalty introduced in the network, with the incremental inclusion of new functionalities. The performance results obtained in the different real scenarios may question the real usage of ad-hoc networks for more than a minimal number of hops with such a large number of functionalities deployed
    • …
    corecore