302 research outputs found

    Addressing Dynamism in E-negotiations by Workflow Management Systems

    Get PDF
    Workflows (Wfs) are a major enabling technology for e-commerce. In our research, a Combined Negotiation (CN) is modeled and enacted using Wf technology. The modeling task captures the sequencing of the individual negotiations as well as the dependencies between them, and the enacting task runs the model. A CN support system (CONSENSUS) is used by the user to perform both tasks. Supporting dynamic modifications to the model during run-time should increase the benefits of our approach. In this paper, we highlight the need for such support by identifying the dynamic aspects that can occur while negotiating the different items of a package (i.e., the CN object). To address these aspects, we experimented using ADEPT, a Wf Management System supporting dynamism. This leads us to discuss the Wf Reference Model of the Wf Management Coalition, and suggest a "dynamic" extension to the current functional areas and architecture. La technologie des Workflows (Wfs) s'est avérée importante pour le commerce électronique. Dans le cadre de notre recherche, une négociation combinée (CN) est modélisée et exécutée utilisant un Wf. La phase de modélisation capture la séquence des différentes négociations ainsi que les dépendances qui existent entre elles. La phase d'exécution quant à elle, permet comme son nom l'indique, d'exécuter le modèle. Un système de support pour les CN (CONSENSUS) est utilisé pour accomplir ces deux tâches. Supporter les modifications dynamiques du modèle lors de l'exécution devrait augmenter les bénéfices de notre approche. Dans cet article, nous mettons l'emphase sur le besoin d'un tel support, ceci en identifiant les aspects dynamiques qui peuvent apparaître lors de la négociation des différents items d'un package (i.e., l'objet de la CN). Nous utilisons ADEPT - un système de gestion de Wf qui supporte le dynamisme - pour étudier ces aspects. Ceci nous mène à discuter le modèle de référence de la Wf Management Coalition, et à proposer une extension "dynamique" à l'architecture actuelle.e-Negotiations, Sourcing, Workflows, Workflow management systems, Dynamism, Négociations électroniques, Approvisionnement, Workflows, Systèmes de gestion de Workflow, Dynamisme

    Research on Role-Centric Collaborative Technology

    Get PDF
    With the development of e-business, the collaboration between enterprises is increasingly strengthened, which, at the same time, challenges coordination technologies in distributed enterprise transactions. Workflow management has as its priority the support of coordination functions and workflow interoperability points the way towards collaborative business environments. Though WfMC, Workflow Management Coalition, specifies the abstract interoperability, differences such as workflow concept models, ontology etc. cannot be dealt with effectively because the specification is only technical. On the other hand, portal technology focuses on the integration of information and application services customized according to roles. It can provide support for the interoperability of workflows. In this paper, workflows are integrated with portal technology. And a role centric collaborative environment is proposed which is a way out for problems existing in workflow interoperability

    Multi-Agent Models in Workflow Design

    Get PDF

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28

    Security Mechanisms for Workflows in Service-Oriented Architectures

    Get PDF
    Die Arbeit untersucht, wie sich Unterstützung für Sicherheit und Identitätsmanagement in ein Workflow-Management-System integrieren lässt. Basierend auf einer Anforderungsanalyse anhand eines Beispiels aus der beruflichen Weiterbildung und einem Abgleich mit dem Stand der Technik wird eine Architektur für die sichere Ausführung von Workflows und die Integration mit Identitätsmanagement-Systemen entwickelt, die neue Anwendungen mit verbesserter Sicherheit und Privatsphäre ermöglicht

    A novel workflow management system for handling dynamic process adaptation and compliance

    Get PDF
    Modern enterprise organisations rely on dynamic processes. Generally these processes cannot be modelled once and executed repeatedly without change. Enterprise processes may evolve unpredictably according to situations that cannot always be prescribed. However, no mechanism exists to ensure an updated process does not violate any compliance requirements. Typical workflow processes may follow a process definition and execute several thousand instances using a workflow engine without any changes. This is suitable for routine business processes. However, when business processes need flexibility, adaptive features are needed. Updating processes may violate compliance requirements so automatic verification of compliance checking is necessary. The research work presented in this Thesis investigates the problem of current workflow technology in defining, managing and ensuring the specification and execution of business processes that are dynamic in nature, combined with policy standards throughout the process lifycle. The findings from the literature review and the system requirements are used to design the proposed system architecture. Since a two-tier reference process model is not sufficient as a basis for the reference model for an adaptive and compliance workflow management system, a three-tier process model is proposed. The major components of the architecture consist of process models, business rules and plugin modules. This architecture exhibits the concept of user adaptation with structural checks and dynamic adaptation with data-driven checks. A research prototype - Adaptive and Compliance Workflow Management System (ACWfMS) - was developed based on the proposed system architecture to implement core services of the system for testing and evaluation purposes. The ACWfMS enables the development of a workflow management tool to create or update the process models. It automatically validates compliance requirements and, in the case of violations, visual feedback is presented to the user. In addition, the architecture facilitates process migration to manage specific instances with modified definitions. A case study based on the postgraduate research process domain is discussed

    FRODO: a framework for distributed organizational memories : Milestone M1; requirements and system architecture

    Get PDF

    MobiWork: Mobile Workflow for MANETs

    Get PDF
    The workflow model is well suited for scenarios where many entities work collaboratively towards a common goal, and is used widely today to model complex business processes. However, the fundamental workflow model is very powerful and can be applied to a wider variety of application domains. This paper represents an initial investigation into the possibility of using workflows to model collaboration in an ad hoc mobile environment. Moving to a mobile setting introduces many challenges as the mobility of the participants in a workflow imposes constraints on allocation of workflow tasks, coordination among participants, and marshaling of results. We present an algorithm that heuristically allocates tasks to participants based on their capabilities and mobility and discuss the architecture and implementation of MobiWork, our prototype system that allocates and executes workflows in an ad hoc mobile environment. An evaluation of the performance of our heuristic algorithm is also presented
    • …
    corecore