
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-18

2006-01-01

MobiWork: Mobile Workflow for MANETs MobiWork: Mobile Workflow for MANETs

Gregory Hackmann, Rohan Sen, Mart Haitjema, Gruia-Catalin Roman, and Gill

The workflow model is well suited for scenarios where many entities work collaboratively

towards a common goal, and is used widely today to model complex business processes.

However, the fundamental workflow model is very powerful and can be applied to a wider variety

of application domains. This paper represents an initial investigation into the possibility of using

workflows to model collaboration in an ad hoc mobile environment. Moving to a mobile setting

introduces many challenges as the mobility of the participants in a workflow imposes

constraints on allocation of workflow tasks, coordination among participants, and marshaling of

results. We... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Hackmann, Gregory; Sen, Rohan; Haitjema, Mart; Roman, Gruia-Catalin; and Gill, "MobiWork: Mobile
Workflow for MANETs" Report Number: WUCSE-2006-18 (2006). All Computer Science and Engineering
Research.
https://openscholarship.wustl.edu/cse_research/167

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/167?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/167

MobiWork: Mobile Workflow for MANETs MobiWork: Mobile Workflow for MANETs

Gregory Hackmann, Rohan Sen, Mart Haitjema, Gruia-Catalin Roman, and Gill

Complete Abstract: Complete Abstract:

The workflow model is well suited for scenarios where many entities work collaboratively towards a
common goal, and is used widely today to model complex business processes. However, the fundamental
workflow model is very powerful and can be applied to a wider variety of application domains. This paper
represents an initial investigation into the possibility of using workflows to model collaboration in an ad
hoc mobile environment. Moving to a mobile setting introduces many challenges as the mobility of the
participants in a workflow imposes constraints on allocation of workflow tasks, coordination among
participants, and marshaling of results. We present an algorithm that heuristically allocates tasks to
participants based on their capabilities and mobility and discuss the architecture and implementation of
MobiWork, our prototype system that allocates and executes workflows in an ad hoc mobile environment.
An evaluation of the performance of our heuristic algorithm is also presented.

https://openscholarship.wustl.edu/cse_research/167?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/167?utm_source=openscholarship.wustl.edu%2Fcse_research%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-18

MobiWork: Mobile Workflow for MANETs

Authors: Gregory Hackmann, Rohan Sen, Mart Haitjema, Gruia-Catalin Roman, Christopher Gill

Corresponding Author: rohan.sen@wustl.edu

Abstract: The workflow model is well suited for scenarios where many
entities work collaboratively towards a common goal, and
is used widely today to model complex business processes.
However, the fundamental workflow model is very powerful
and can be applied to a wider variety of application domains.
This paper represents an initial investigation into the possibility
of using workflows to model collaboration in an ad
hoc mobile environment. Moving to a mobile setting introduces
many challenges as the mobility of the participants
in a workflow imposes constraints on allocation of workflow
tasks, coordination among participants, and marshaling of
results. We present an algorithm that heuristically allocates
tasks to participants based on their capabilities and mobility
and discuss the architecture and implementation of MobiWork,
our prototype system that allocates and executes
workflows in an ad hoc mobile environment. An evaluation
of the performance of our heuristic algorithm is also presented.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

MobiWork: Mobile Workflow for MANETs

Gregory Hackmann, Rohan Sen, Mart Haitjema, Gruia-Catalin Roman, and Christopher Gill
Department of Computer Science and Engineering

Washington University in St. Louis
Campus Box 1045, One Brookings Drive

St. Louis, MO 63130, U. S. A.
{ghackmann, rohan.sen, mart.haitjema, roman, cdgill}@wustl.edu

ABSTRACT
The workflow model is well suited for scenarios where many
entities work collaboratively towards a common goal, and
is used widely today to model complex business processes.
However, the fundamental workflow model is very powerful
and can be applied to a wider variety of application domains.
This paper represents an initial investigation into the pos-
sibility of using workflows to model collaboration in an ad
hoc mobile environment. Moving to a mobile setting intro-
duces many challenges as the mobility of the participants
in a workflow imposes constraints on allocation of workflow
tasks, coordination among participants, and marshaling of
results. We present an algorithm that heuristically allocates
tasks to participants based on their capabilities and mobil-
ity and discuss the architecture and implementation of Mo-
biWork, our prototype system that allocates and executes
workflows in an ad hoc mobile environment. An evaluation
of the performance of our heuristic algorithm is also pre-
sented.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Algorithms, Design

Keywords
Mobile Ad hoc Networks, Workflow Management, Software
Architecture, Algorithms

1. INTRODUCTION
Groupware is a special class of systems that support and

facilitate collaboration among people and stand-alone soft-
ware services. Groupware is becoming increasingly relevant
in today’s world given the growing need for teams of people
to collaborate with each other effectively while working on a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

common project. Workflow Management Systems (WfMSs)
[18] represent a type of groupware that has been widely suc-
cessful, especially in the domain of business computing as ev-
idenced by popular standardized languages such as BPEL [2]
and WfXML [6]. WfMSs are based on the workflow model,
which is informally defined in Wikipedia as “the operational
aspect of a work procedure: how tasks are structured, who
performs them, what their relative order is, how they are
synchronized, how information flows to support the tasks
and how tasks are tracked” [7]. In other words, WfMSs co-
ordinate and oversee the performance of tasks by multiple
active agents (people and/or software services) that result
in the realization of a common goal.

Traditionally, WfMSs have been used to model business
processes such as expense authorization, loan approval, and
insurance claim processing, to name a few. While these pro-
cesses require the input of multiple agents, they are consid-
ered fairly static, in that the group of agents collaborating
on such a process remains the same for long periods of time
and the execution of the workflow is seldom affected by ex-
ternal conditions. Additionally, the software that supports
the execution of such workflows is designed to work on high-
end servers connected by reliable wired connections.

This paper represents a first effort to apply the workflow
model to a more dynamic setting, specifically that of mobile
devices that interact with each other using a Mobile Ad hoc
Network (MANET). The benefit of engineering a workflow
based software system for mobile devices is that it opens the
door to a vast new application domain where collaboration
among individuals in the physical world is supported and
aided by collaborative software that runs on PDAs, cellu-
lar phones, and other such devices, and is not constrained
by the physical limitation of a wired network. For exam-
ple, consider a construction site where several tasks must
be completed by a group of workers in a particular order
to build a variety of structures. In such an environment,
there is no scope for setting up a centralized server and
a set of connected workstations for the workers to access.
Rather, it is much more practical for workers to carry small,
ruggedized PDAs that execute and manage the workflow
in a distributed manner. When it is time for a worker to
do a particular task, his or her PDA would play an audi-
ble alert and display the details of the task on the screen.
Once the work has been completed, the worker can use the
PDA to acknowledge completion of the task, attaching a
report if required. The underlying system would then file
the data and notify all relevant parties of the completion of
the task, which may trigger initiation of the next task in

the workflow and also inform the supervisor of the status
of that task. This approach allows the workers to focus on
the actual tasks at hand, leaving the system to absorb the
collaboration overhead.

Developing a WfMS targeted to a MANET setting is chal-
lenging because the fundamental workflow model relies heav-
ily on reliable and always available connections to coordinate
the distributed agents that take part in a workflow’s execu-
tion. In MANETs however, the network topology changes
rapidly resulting in frequent disconnections between partic-
ipants in the workflow and reducing the scope for coordina-
tion among them. In addition, tasks are likely to be con-
strained by location and time, e.g., “complete wiring on the
4th floor between 3PM and 4PM” cannot be done at any
other location at any other time. Given such constraints and
the dynamic execution environment, we were compelled to
re-examine the components of a WfMS in the context of a
mobile environment. Our investigations led to the develop-
ment of a basic WfMS architecture that retains the salient
features of current WfMSs and adds additional components
to support mobility and disconnected operation.

The contributions of this paper can be summarized as fol-
lows: (1) an allocation algorithm that assigns tasks in the
workflow to mobile hosts, using a dynamic constraint list
associated with each agent to choose agents based on their
capabilities as well as their ability to satisfy the spatiotem-
poral constraints of the task at hand; (2) a software archi-
tecture for WfMSs in mobile settings based on the concept
of knowledge exploitation, using freely-traded attributes of
agents to make allocation and execution decisions, and (3)
a Java implementation and simulation results of the perfor-
mance of our allocation algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 covers the basic aspects of MANETs and WfMSs as
well as related work. In Section 3 we introduce our workflow
model for mobile settings, and describe the algorithms that
we use to allocate tasks to entities that will perform them.
Section 4 describes the architecture and selected implemen-
tation details of our system. We evaluate our approach in
Section 5, and offer concluding remarks in Section 6.

2. BACKGROUND
Since this paper is concerned with providing workflow in

MANETs, in this section we present a brief overview of
workflow and MANET technologies.

2.1 Workflow Management
Workflows are a powerful model for describing collabora-

tion between individuals which has traditionally been very
popular in business contexts. Owing to this popularity, a
workflow has commonly been defined as the automation and
management of a business process where a business process
is the sequence of tasks which must be done to achieve a cer-
tain business goal [13]. The structure of a workflow can be
conceptualized as a directed graph where the nodes repre-
sent the individual tasks and the edges impose the relevant
ordering between the tasks. To provide a basic example, the
automation of a loan request represents a workflow since an
ordered sequence of tasks, such as credit checks and paper-
work, must be performed by various individuals to process
the request. Although such business processes are common
applications for workflow, the fundamental workflow model
itself is general and can be applied whenever a group of indi-

viduals must perform a set of tasks in some order to achieve
a common goal.

While a workflow defines how individuals collaborate by
describing the ordered series of tasks that must be per-
formed, the WfMS is the software system that actually sup-
ports the execution of the workflow. A WfMS accepts as
input a computerized representation of the workflow, called
the workflow specification, and manages the workflow, which
includes delegating tasks to be performed. Tasks defined
in the workflow specification are simply descriptions of the
work that needs to be performed along with the constraints
on its execution. At the heart of the WfMS is the work-
flow management engine which is responsible for allocating
agents (such as a human user or automated service) to per-
form tasks, and for providing the appropriate interfaces to
call the required services or user interactions to support the
execution of these tasks.

Workflow Management Systems have evolved from iso-
lated legacy systems designed to automate processes for in-
dividual businesses, to systems that support workflow in a
broader scope. In particular, the Web services community,
fueled by the e-commerce revolution, have used the concept
of a workflow as a tool for composing existing Web service in-
frastructure into orchestrated or choreographed distributed
applications. Several standardized workflow specification
languages such as WS-CDL [11], Wf-XML [6], and BPEL [2]
have surfaced to allow tasks to be defined in terms of Web
services descriptions. Commercial [3, 5] and open source [1]
workflow management engines then match Web services to
tasks to execute the workflow. While these WfMSs allow
tasks to be executed across geographic and organizational
domains, Web services depend on reliable permanent con-
nections and are not designed with mobility in mind.

Recently some systems have been developed to address
workflow in mobility explicitly. A series of systems such as
Exotica/FMDC [8], DOORS [16] and ToxicFarm [10], adapt
workflow to mobility by supporting workflows in the face of
network disconnections. Clients in these systems hoard the
needed data from a centralized server before they disconnect
from the network. Clients may then continue to perform
their task(s) while disconnected and the server merges any
changes upon reconnection. These systems, therefore, rely
on some fixed network infrastructure and assume disconnec-
tions are temporary. They also do not exploit the potential
for collaboration among clients which are not connected to
a central server but which may communicate directly with
each other. Another approach to workflows in mobile set-
tings has been through the use of mobile agent technology.
The Agent-based Workflow Architecture (AWA) [17] is a
workflow system that consists of mobile Task Agents which
can migrate to mobile devices to execute workflow tasks.
The task execution may occur while the device is discon-
nected provided the Task Agent eventually has the oppor-
tunity to migrate back to a Workflow Agent which oversees
the execution of the workflow. This agent-based approach is
more flexible and hence more appropriate for dynamic set-
tings but its single point of failure (the Workflow Agent)
makes it undesirable for MANETs.

2.2 MANETs
A MANET is a wireless network which is formed op-

portunistically by wireless, physically mobile devices called
hosts. These hosts act as routers and communicate with

each other via wireless radios, typically with a very limited
range. The network is decentralized and does not rely on
any fixed infrastructure. The hosts, therefore, must discover
the network topology for themselves and must form routes
to other hosts, perhaps in a multihop fashion. Since hosts
move freely, the network topology may change rapidly and
unpredictably. Disconnections occur frequently and hosts
may join and disconnect at any time as they move in and
out of communication range of other hosts in the network.

The goal of our work is to merge the concepts of workflows
and MANETs, and this represents a mostly unexplored area
of research. One emerging system is WORKPAD [15], which
supports workflows in MANETs but it is designed specifi-
cally for emergency/disaster scenarios. WORKPAD oper-
ates by centrally coordinating the activities of small teams
which perform various disaster recovery activities. These
teams operate in separate MANETS but the system assumes
that hosts in each MANET operate in tight proximity with
a central coordinating host that predicts disconnections and
reallocates tasks to other agents or replans the workflow
when disconnections occur. Additionally, WORKPAD as-
sumes that the coordinator in each MANET maintains a re-
liable satellite connection to a central system of P2P servers.

Having presented some of the basic concepts of workflows,
MANETs, and work related to our own, we now present
the technical aspects of MobiWork. In particular, the next
section describes an algorithm to allocate workflow tasks,
given the dynamic aspects of MANETs.

3. ALLOCATING TASKS IN THE PRESENCE
OF MOBILTY

For the purposes of this paper, we assume a scenario where
a group of individuals (group members) carrying mobile de-
vices comes together at the beginning of the day to work
together to complete some activity. The various tasks that
must be completed as part of the activity are specified in a
pre-defined workflow, which is loaded onto the PDA of the
group leader. Initially, all people involved in the workflow
(and therefore the mobile hosts they carry on their person)
are co-located. Each mobile host can run multiple software
processes, which we refer to as agents. However, for sim-
plicity of presentation, we assume that each host runs only
one agent, thereby eliminating the distinction between hosts
and agents, which we use interchangeably in the remainder
of this paper. Thus the planning stage, where individual
tasks in the workflow are assigned to agents on group mem-
bers’ hosts, can occur in a centralized fashion with the group
leader in charge of running the allocation algorithm. Once
the allocations are complete, the group disbands to do their
assigned tasks. We also assume that the mobility of the
hosts is flexible. By this we mean that a host can be di-
rected to a certain location at a certain time to perform
a particular task as per the requirements of the workflow:
for example, a construction foreman could send a worker to
the 5th floor to test the electrical fittings. However, agents,
which are the software processes running on the hosts have
their mobility pattern constrained to be identical to that
of the mobile host on which they are executing. Finally,
should an error occur after the group disbands, then any re-
planning required to re-assign tasks occurs in a decentralized
manner using only the knowledge available in the knowledge
base of the replanning host. In the remainder of this section,

we describe our basic mobile workflow model, and an algo-
rithm that allocates tasks to agents taking into account the
fact that the workflow executes in a mobile setting.

3.1 Basic Mobile Workflow Model
We use a simple mobile workflow model to illustrate our

algorithms and our system architecture and its implemen-
tation. We chose a simple model so that we could reason
about the implications of mobility on WfMSs without being
encumbered by implementation specific complications. In
this section, we briefly describe the model that we use and
then describe our algorithm to allocate tasks to hosts.

In our model, we conceptualize the workflow specification
for any activity as an annotated, directed graph that we call
a plan. The nodes in the graph represent the tasks that
need to be completed, while the edges impose an ordering
among these tasks. Each task has several attributes: (1) a
task identifier which is unique in the scope of the plan, (2) a
qualifications list which describes the qualifications an agent
must have to perform a particular task (for simplicity, we
assume that an agent must meet all the qualifications listed
to be considered as a candidate to perform a task), (3) a lo-
cation at which the task must be performed, (4) a start time
which represents the earliest time at which the task can be
started, (5) an end time which represents the deadline by
which the task must be completed, (6) a list of inputs speci-
fying the type of the input and the task from which the input
will arrive, and (7) a list of outputs specifying the type and
recipient task. Each node in the plan has two annotations,
allocation and completion status. The allocation annotation
indicates the agent to which a task has been allocated while
the completion status indicates whether a task is waiting to
be started, in progress, completed, or in an error state.

The mobile agents that participate in completing the tasks
in the workflow also conform to certain requirements. Each
mobile agent has (1) a unique identifier within the scope
of the group that is working on a particular plan, (2) a
list of qualifications that it possesses, and (3) the maximum
speed at which it can move. These qualifications determine
whether an agent is capable of completing a particular task.

3.2 Allocation Strategies
The key to a successful execution of a workflow is to find

group members that can do the various tasks associated with
the workflow. The process of assigning tasks to group mem-
bers is referred to as task allocation. Task allocation takes
on added significance in a MANET setting since proper al-
location results in fewer errors and therefore fewer instances
where expensive re-planning is required. We now describe
our allocation algorithm that takes into account the qual-
ifications of group members and mobility issues to create
well-formed allocations for workflows.

A well-formed allocation is a mapping of actions in the
graph to agents that can carry them out. Each action in the
graph may specify a set of requirements that agents must
meet in order to perform the action, and each agent adver-
tises its qualifications. We say that an agent may carry out
an action if its qualifications are a superset of the action’s
requirements. For example, consider a construction job that
requires a supervisor to inspect the work site before the job
is officially completed. The workflow for this job will contain
an “inspect” action that requires the corresponding agent to
have the appropriate job qualifications.

Action 1
Agent A 2, 3
Agent B 3, 4
Agent D 3, 4, 5

Action 2
Agent A 1, 4
Agent B 3, 4
Agent C 4, 5

Figure 1: Example constraint tables

Well-formed allocations are also subject to a series of
constraints. Constraints disallow certain undesirable allo-
cations, and can be divided into two categories. First, agent
constraints are constraints on agents’ behavior that may
change during the course of the allocation algorithm. Ex-
amples of agent constraints include:

• If Agent A is allocated to Action 1, then it must also
be allocated to Action 2.

• If Agent B is allocated to Action 2, then it cannot also
be allocated to Action 3.

• Agent C must be allocated to Action 4.

Second, spatiotemporal constraints are often a product of
mobility, and do not change as the graph is allocated. Ex-
amples of spatiotemporal constraints include:

• One agent cannot be allocated to two actions whose
start and end times overlap.

• One agent cannot be allocated to two actions with lo-
cation constraints that are infeasible. That is, if two
actions are separated by time t and distance d, then
only an agent with a maximum speed of at least d

t
can

be allocated to both.

• Two different agents cannot be allocated to two se-
quential actions if the second agent cannot reach the
first agent in time to receive and use its results.

For the purposes of illustration, we will only consider spa-
tiotemporal constraints in this section. Agent constraints
can be incorporated without changing the algorithm, by
representing them as functions of the current state of the
allocation.

We represent constraints as 3-tuples < a1, A, a2 >, which
indicate that the agent A cannot be allocated to action a2

if it is also allocated to action a1. This uniform representa-
tion simplifies the allocation algorithm, as discussed below.
For the sake of simplicity, we assume that all constraints
are symmetric, i.e., that the constraint < a1, A, a2 > im-
plies the constraint < a2, A, a1 >. This restriction could be
lifted with a few additions to our algorithm: when we collect
these constraints into tables as described below, we must add
annotations to indicate the “direction” of asymmetric con-
straints and take these directions into account when decid-
ing if an allocation will violate a constraint. These changes
are conceptually straightforward but add complexity to our
basic algorithm, and hence we do not discuss them here.

Once these constraints are established, we collect them in
a series of tables. For each action in the graph, we create
a table like the ones shown in Figure 1. We fill the first
column with the agents that are capable of performing the
action, constraints non-withstanding, and place an empty
list in the second column. The first column can be generated
using an existing agent matchmaking scheme, e.g., if agents’
capabilities and actions requirements are expressed using a
uniform ontology such as OWL-S [14], then matching actions
to capable agents is straightforward [12]. Then, for each
constraint < a1, A, a2 >, we check the table for action a1 to

see if it has a row for agent A. If it does, then we add a2

to the corresponding list in the second column. If not, we
ignore the constraint, since it is impossible to violate it.

Once the tables are populated, two important kinds of
data can be derived easily from them. First, for each action,
we have a list of agents to which it can be allocated. Then,
for each agent to which we can allocate a given action, we
have a list of future allocations that are made impossible by
that decision. For example, according to the first table in
Figure 1, we can allocate Action 1 to Agents A, B, or D.
If we choose to allocate Action 1 to Agent A, then we can
never choose later to allocate Actions 2 or 3 to the same
agent.

We will now discuss how these tables are used to per-
form the actual allocation. First, we will consider a simple
algorithm that simply iterates through all possible alloca-
tions until a suitable one is found. Then, we will discuss
some modifications and heuristic refinements to this näıve
algorithm which can greatly improve its average case per-
formance.

void createConstraintTables(actions, agents)
for each A in actions

for each G in agents
if G.capabilities ⊆ A.requirements

conflicts := computeConflicts(G, A)
addRow(A.table, [G, conflicts])

boolean allocateAction(actions, allocation, n)
A := actions[n]
for each row [G, conflicts] in A.table

for each C in conflicts
if [C, G] ∈ allocation

next row

if n = |actions| or allocateAction(actions, allocation, n + 1)
allocation := allocation ∪ [A, G]
return true

return false

map allocate(actions, agents)
allocation := ∅
createConstraintTables(actions, agents)

allocateAction(actions, allocation, 1)
return allocation

Figure 2: Psuedo-code for näıve allocation algorithm

3.2.1 Naı̈ve Algorithm
The näıve algorithm, which is shown as pseudo-code in

Figure 2, begins by populating the constraint tables as de-
scribed above. The tables are placed in a list, sorted by the
actions’ IDs. The algorithm then iterates through the list
as follows.

For each action, it selects the first agent in the correspond-
ing table, and marks its row in the table. This indicates that
it is attempting to allocate this action to the first agent.
Next, it collects the agent’s conflict list from the second col-
umn. For each conflicting action, it consults their tables to
find which row has been marked. (It ignores actions whose
IDs are greater than the current action’s, since they have
not yet been allocated.) If none of these actions have been
allocated to the agent that it has just selected, then it moves
on to the next action.

If at least one of these actions has already been allo-
cated, then it has just violated a constraint. It un-marks
the row it just marked, selects the next agent in the table,
and marks that agent’s row instead. Then, it repeats the

conflict-checking procedure described above with the newly-
selected agent. The algorithm continues iterating through
the agents until an acceptable one is found.

If the entire list of agents is exhausted without finding
an acceptable one, then it has made an error earlier in our
algorithm. It un-marks all of the rows in the current table,
and returns to the previous table in the list. Again, it un-
marks the previous table’s current row and proceeds to the
next agent.

This algorithm enumerates all possible action/agent pairs
until a well-formed allocation is found. At each step the
algorithm verifies that our decision will not violate any con-
straints. Therefore, any allocation that our algorithm pro-
vides will be valid; and if any valid allocation of all actions
exists, our algorithm will eventually find it. However, since
the algorithm blindly iterates through all actions and agents
in no particular order, its performance is often poor. If there
are m agents and n actions in a workflow, then the algorithm
may consider O(nm) allocations before finding a well-formed
one. This is unacceptable for all but the smallest plans.

We now discuss some enhancements to this algorithm which
aim to combat this poor performance. In the worst case,
this enhanced algorithm may still enumerate all possible al-
locations until an acceptable one is found; so its asymptotic
performance is also O(nm). However, the enhancements di-
rect the algorithm towards the most fruitful decision paths
first, greatly improving its average case performance.

boolean enhancedAllocateAction(actions, A, allocation)
for each row (G, conflicts) in A, ordered by |conflicts|

if |conflicts| = 0
allocation := allocation ∪ (A, G)
return true

myToken := new AllocationToken(A, G)
push(stack, myToken)
allocation := allocation ∪ (A, G)

for each C in conflicts
if C /∈ allocation

push(stack, new DisableRowToken(C, G))
disableRow(C.table, G)

for each C in conflicts, ordered by |conflicts|
if C /∈ allocation

if not enhancedAllocateAction(actions, C, allocation)
do

token := pop(stack)
undo(token)

until token = myToken

push(stack, new DisableRowToken(A, G))
next row

return true
return false

map enhancedAllocate(actions, agents)
allocation := ∅
createConstraintTables(actions, agents)

for each A in actions, ordered by |A.table|
if A /∈ allocation

enhancedAllocateAction(actions, allocation, A)
return allocation

Figure 4: Psuedo-code for enhanced allocation algo-
rithm

3.2.2 Enhanced Algorithm
The enhanced algorithm, shown in Figure 4, begins by

populating the constraint tables in the same way as the näıve

algorithm. The algorithm then places the actions in a list,
sorted in ascending order by the number of agents that can
carry each action out. Then, it sort the rows in each table
by the number of conflicts in the second column.

The algorithm begins by picking the first unallocated ac-
tion in the list. Again, it selects the first agent in the corre-
sponding table. If this agent has no conflicts, then it marks
this row in the table, and continues to the next unallocated
action.

If the first agent has at least one conflicting action, then
we must begin a “sub-algorithm” to handle this action. The
sub-algorithm creates a stack which represents its decisions,
as shown in Figure 3. It marks the first agent’s row in the
table, and pushes a token onto the stack reflecting this mark-
ing. Next, it collects the list of conflicting actions from the
table. For each conflicting action, its grays out its row in
the corresponding action’s table, and pushes onto the stack
a marker that represents this change. When it later visits
these actions, it will disregard all the rows that have been
grayed out, since they reflect decisions that would violate
a constraint. The sub-algorithm then recursively attempts
to allocate all the actions whose tables it has just modified.
Once all conflicting actions have been recursively allocated,
it returns to the original list of actions and continues se-
quentially allocating them as before.

While the sub-algorithm executes, it may encounter an
action with no capable agents left. This means that it has
made an incorrect decision earlier, and that it must roll its
state back to that place. It does this by popping elements
off the stack, undoing the changes that they represent, until
it reaches a change to a table that marked one of at least
two remaining rows. This indicates a place where it made
a decision that may have been incorrect. It un-marks the
agent chosen at this point, and grays out its row so that it
doesn’t try that agent again. (Again, it pushes a token onto
the stack to reflect the row that has just been grayed out.)
Finally, the sub-algorithm attempts to re-allocate the action
to the next un-grayed agent in the table.

This algorithm improves on the näıve algorithm’s perfor-
mance in two significant ways. First, rather than allocating
actions in an arbitrary order, it first allocates the actions
that are hardest to satisfy; also, these actions are first allo-
cated to the agents that will cause the fewest conflicts later.
This will reduce the amount of backtracking that the al-
gorithm must do, since it will first consider the paths that
are least likely to cause irresolvable conflicts. Second, the
improved algorithm recurses through agents’ conflict lists,
effectively dividing the workflow into sub-workflows. Be-
cause of the order that the algorithm recurses through ac-
tions, it is guaranteed to first consider the entire “conflict
closure” of an action, i.e., all the actions that recursively
conflict with it. Since by definition actions in one closure
cannot conflict with actions in another closure, they are al-
located completely independently of each other. So, once
a closure has been fully allocated, the algorithm will never
revisit any of the actions in it; this greatly reduces the cost
of backtracking.

Note that neither of these algorithms considers the actual
data flow when computing a well-formed allocation. This
decision has two implications. First, the constraint that
two agents must “meet up” before exchanging data becomes
more complex to describe when one agent must receive re-
sults from multiple predecessors. This constraint can be

Recursively allocate
Action 2 normally

Roll back to
last decision point

Mark mistake
and continue

Allocate Action 1
normally

Begin with
empty stack

Gray out A in
Table 2

Gray out A in
Table 3

Mark A in
Table 1

Gray out B in
Table 3

Error: can't allocate
Action 3, because all

rows in Table 3 are gray

Gray out A in
Table 2

Gray out A in
Table 3

Mark A in
Table 1

Mark B in
Table 2

Gray out B in
Table 3

Gray out A in
Table 2

Gray out A in
Table 3

Mark A in
Table 1

Mark B in
Table 2

Gray out A in
Table 2

Gray out A in
Table 3

Mark A in
Table 1

Mark B in
Table 2

Mark A in
Table 1

Gray out A in
Table 2

Gray out A in
Table 3

Gray out B in
Table 2

Mark C in
Table 2

Figure 3: An example allocation stack, and how it is used to track and roll back changes

simplified by requiring that all nodes that join to a common
node on the graph must take place in the same physical lo-
cation. This behavior can be enforced by adding “move to
a common location” actions to all the paths immediately
before the join point.

Second, our allocation is conservative: we assume that all
actions in the workflow will be executed, even though the
workflow may split into multiple, mutually-exclusive paths.
Thus, valid allocations may exist which do not execute all
actions, and which our algorithm will not find. This short-
coming can be worked around by enumerating all possible
traces through the workflow and attempting to allocate each
trace individually until one feasible allocation is found. As
we show in Section 5, the cost of running the enhanced al-
gorithm is low enough to make this approach feasible. Nev-
ertheless, in future work we may consider ways to better
incorporate data flow information into our algorithm’s deci-
sions.

4. THE MOBIWORK SYSTEM
Having described our basic mobile workflow model and

allocation algorithm, we now describe the architecture of
MobiWork, which is the system that implements the model
and algorithm. This section is organized as follows: we
first present details of the system architecture, highlight-
ing the separate planning and execution infrastructure and
how they work together. This is followed by descriptions of
sample runs of both the planning and execution activities
and select details of our Java implementation.

4.1 System Architecture
Recall that in Section 3 we made the assumption that

the group leader acts as a central planner and assigns tasks
to group members who are then responsible for the per-
formance of those tasks. This assumption ordinarily moti-
vates two discrete architectural designs, one targeted to the
planning role to be used by the group leader, and another
targeted towards execution of tasks, to be used by group
members. However, given that we are in a MANET setting,
we cannot rely on the central planner beyond the initial
planning stage. Thus, in the case of errors during the exe-
cution of tasks, all re-planning is conducted in a distributed
manner. Thus, each host must possess the infrastructure
to (re)allocate tasks as well as to execute them. Figure 5
shows the architecture of the MobiWork system that runs on
the PDAs of all group members as well as the group leader.
The system is differentiated into four kinds of components

based on their roles: (1) planning components, (2) execu-
tion components, (3) common components, and (4) external
components. We present details of the external components
first, before describing the common, planning, and execution
components.

External Components. The external components shown
in the figure represent components that are not part of the
MobiWork implementation but form an integral part of the
overall system. The Planning Application is a special ap-
plication that is used only by the group leader during the
initial planning stage. The planning application is used to
inject the plan for the activity to be completed, into the sys-
tem. The injection of the workflow begins the bootstrapping
process for MobiWork. The Monitoring Application can be
instantiated optionally by the group leader to monitor the
progress of the tasks in the plan. The monitoring appli-
cation gets all completion information from the Workflow
Manager. It should be noted however, that the completion
information may not be up-to-date all the time, as informa-
tion about group members that are disconnected from the
remainder of the group may not update until they rejoin the
group later. User Applications are instantiated by a person
using MobiWork in order to assist him or her in completing
an assigned task. The outputs of the user applications, e.g.,
a PDF file, a JPEG image, etc. must be uploaded manu-
ally into the system by the person using the UI component.
Communication Middleware is any third party software that
supports host discovery and communication between hosts
in a network. While our system is designed to work with
any such middleware, a communication middleware that is
capable of gracefully handling and recovering from frequent
disconnections is especially desirable in the MANET setting.

Common Components. The common components of
MobiWork represent centralized resources that are used by
both the planning and execution components of the sys-
tem and the components which form the bridge between the
planning and execution roles of the system. The Workflow
Manager is the central component of the MobiWork system
managing both planning and execution activities. During
the planning stage, the Workflow Manager accepts the plan
from the planning application and passes it on to the planner
for allocation. It reports the allocation information to the
monitoring applications (if they are instantiated). During
execution, the Workflow Manager gets regular progress up-
dates from the Executor (an execution component described
later) which it can also pass on to the monitoring applica-
tions. However, the most important role of the Workflow

Communication Middleware

Communication Adapter

Distribution Manager

Distribution Policy

Allocation Policy

Workflow Manager

Data
Mgr

Planner

Knowledge
Manager Executor

Sche
duler

Task
Mgr

Service Dir.

Services
UI

Plan
Mgr.

Data
base

Planning Applications Monitoring Applications User Applications

Workflow
Middleware

Layer

Comm.
Layer

Application
Layer

Planning Components Execution Components Common Components External Components

Figure 5: The architecture of MobiWork

Manager is during re-planning. If the Executor detects an
error in execution, it reports the error to the Workflow Man-
ager which determines the extent of the error and tasks the
planner to re-allocate that section of the plan and disburse
the new allocations.

The Plan Manager stores and maintains the plan. The
plan manager may contain the entire plan (in the case of
the group leader) or a portion of the plan (in the case of a
group member) which reflects the tasks that have been allo-
cated to the particular group member(s). The plan manager
is a common component, as the Planner (a planning com-
ponent described later) needs information about the plan
for allocating tasks while the Executor needs the plan infor-
mation to determine the hosts from which the inputs for a
task are going to come and the hosts to which the results
should be disbursed. The Plan Manager can be updated by
the Planner when a new plan is injected into the system (on
the group leader) or by the group leader via the Commu-
nication Middleware when task allocations are made. The
Knowledge Manager gathers information about hosts in a
MANET using an out of band gossiping protocol and stores
the gathered information within a knowledge base that it
owns. The knowledge base contains additional kinds of in-
formation such as group members’ capabilities and motion
patterns, among others. It also contains an instantaneous
acquaintance list of hosts within communication range. The
contents of the knowledge base is used by the allocation al-
gorithm to make allocation decisions as described in Section
3.2 as well as to predict potential errors during execution
(information that a host is not behaving as intended can
be used to re-allocate the plan preemptively so that the er-
rant host is not used). The Communication Adapter simply
adapts the communication interface of the MobiWork mid-
dleware to the interface of the communication middleware

being used.
Planning Components. The planning components of

the MobiWork architecture are responsible for allocating the
tasks in the plan among available group members and dis-
tributing the allocation information to the relevant group
members. The Planner is responsible for coordinating these
activities. The Workflow Manager initially provides the
planner with the plan, which it stores within the Plan Man-
ager. Subsequently, upon receiving the appropriate stimu-
lus from the Workflow Manager, the Planner retrieves the
stored plan from the Plan Manager. At the same time, it
retrieves the knowledge about various group members’ ca-
pabilities from the knowledge base and passes the plan and
the knowledge to the Allocation Policy component. The
Allocation Policy component contains the algorithm which
allocates tasks to hosts based on the knowledge provided by
the planner, an example of which was presented in Section
3.2. The Allocation Policy component returns the plan with
each task annotated with the host that has been assigned to
perform it. The Distribution Policy component is responsi-
ble for breaking the plan up into pieces that can be sent to
group members. By default, the Distribution Policy com-
ponent distributes to any host the tasks which have been
allocated to it along with the identifiers of the hosts that
provide the inputs to that task or take outputs from that
task. Alternate policies may distribute entire subsections of
the plan to facilitate more efficient distributed re-planning.
The Distribution Manager sends the pieces of the plan to
the recipients using the Communication Middleware.

Execution Components. The execution components of
MobiWork support the actual execution of tasks in the plan.
The Executor is the main coordinating entity during the ex-
ecution of a plan. It is responsible for setting up events
with the scheduler, executing tasks on time, and propagat-

ing the results to the recipients as indicated in the plan. The
Scheduler stores events corresponding to the start time of
each task assigned to the local host. The scheduler reports
to the Executor every time an event fires and provides the
identifier of the task to be started. The Data Manager is
the repository of input data to the task and output data
generated by the task. It also may provide other services
such as versioning. The Task Manager is responsible for ex-
ecuting any task provided to it. Tasks may be completed by
executing a software service on the host automatically or by
soliciting input from the person using the host. The Service
Directory contains listings of all available software services.
The UI component forms the link from the MobiWork sys-
tem to the person using the host should his or her input be
required in the course of completing a task.

4.2 Anatomy of Standard Runs
Having described the different architectural components,

we now describe how they interact with each other to deliver
the system functionality. For clarity, we separate the boot-
strapping, planning, and execution activities into sequential
phases.

Bootstrapping. During this phase, all system compo-
nents are initialized. The Knowledge Manager is populated
with information about the local host such as its capabili-
ties. Once the information about the local host is entered
into the Knowledge Manager, it initiates a gossiping protocol
via which it exchanges information about other group mem-
bers. Since all group members are assumed to be initially
co-located, the Knowledge Manager eventually has informa-
tion about all group members. At this time, the acquain-
tance list within the Knowledge Manager is also initialized
and updated. This concludes the bootstrapping phase.

:Planning Application

:WorkflowManager :Planner

:PlanManager

:DistributionPolicy :AllocationPolicy

:DistributionManager

:CommAdapter

1:inject(plan)

2:inject(plan)

3:install(plan)

5:update(planAllocated)
8:update(planDistributed)

4:allocPln :=
allocate(plan)

:MonitoringApplication

6:update(planAllocated)
9:update(planDistributed)

7:distribute(allocPln)

10*[while tasks remaining:
distribute(task)

11: send(task)

Figure 6: Sequence of actions during planning

Planning. The planning phase starts when a Planning
Application injects a plan into the system via the Work-
flow Manager. The Workflow Manager passes the plan to
the Planner which stores it in the Plan Manager. After
the plan has been injected, the Planning Application di-
rects the Workflow Manager to allocate the injected plan

to available group members. This request is channelled to
the Planner which retrieves the plan from the Plan Man-
ager, and passes it to the Allocation Policy, along with a
handle to the Knowledge Manager. The Allocation Policy
uses the knowledge base within the Knowledge Manager to
determine the allocation of tasks in the plan to group mem-
bers. It should be noted that it is during this phase that
MobiWork accommodates the mobility of the participating
hosts. The knowledge base contains information regarding
how fast hosts can move. Thus, by looking at the times and
locations at which tasks are to be performed (specified in
the plan) in combination with the maximum speed a host
can move, it can compute the effects of allocating a partic-
ular task to a host on its ability to be at a different location
at a different time to perform another task. After the al-
location is completed, the Allocation Policy It returns the
plan, with each action annotated with its allocation, to the
Planner. The Planner then informs the Workflow Manager
of a successful allocation (or generates an error if the allo-
cation failed). The Workflow Manager in turn notifies any
Monitoring Application(s) that may have been initialized.
The Planner then hands the allocated plan to the Distribu-
tion Policy. The Distribution Policy divides the plan into
smaller sub-plans that are distributed to the group mem-
bers. The sub-plan distributed to a group member contains
at a minimum the tasks allocated to him or her and may
contain additional tasks in the same region of the plan. The
Distribution Policy passes the sub-plans to the Distribution
Manager which sends out the sub-plans using the Communi-
cation Middleware. The collaboration diagram for planning
is shown in Figure 6.

Execution. The Plan Manager on every Group Member
listens for incoming sub-plans which are distributed by the
Distribution Manager. Similarly, the Data Manager listens
for incoming data. When a plan comes in, it is stored in the
Plan Manager, which notifies the Executor of the presence of
a new plan. The Executor then gets the plan from the Plan
Manager and examines the allocated tasks. The Executor
then sets up events with the Scheduler which coincide with
the start time of all allocated tasks. The system is quiescent
until the start time for the first task arrives. At that time,
the Scheduler notifies the Executor. The Executor fetches
the task specification from the Plan Manager. It then fetches
the input data for the task from the Data Manager (which
was listening for this data). If the data is not available, an
error is generated and the Executor notifies the Workflow
Manager to initiate re-planning. In the normal case, the Ex-
ecutor passes the task specification and the data to the Task
Manager. The Task Manager queries the Service Directory
for a suitable service. A match is generated by comparing
the required qualifications for the task with the capabilities
of the services. The Task Manager then invokes the chosen
service passing in the input data. Note that a qualifying
service is guaranteed to be present because the service list
is advertised as knowledge and the task allocation is based
partially on the availability of services that can perform the
task. Once the Service has finished executing, it passes its
output to the Data Manager and notifies the Executor of
completion. The Executor then fetches the output from the
Data Manager. The plan stored in the Plan Manager lists
the recipients of this task’s output. The Executor references
this information and uses the Communication Middleware
to send the data to the appropriate recipients. The entire

:CommHandler

:PlanManager

:Executor

:Scheduler :TaskManager

:ServiceDirectory :Service

:DataManager

:Database1:planRecd(plan)

2:install(plan)
7:task := getTask(taskID)

3:scheduleEvents(plan)
6:eventFired(taskID)

10:execute(task, data)

4:dataArrived(taskID, data)

5:put(taskID, data)
9:data := get(taskID)
16: output: =
get(taskID)8:data :=

getInputData(taskID)
15: output :=
getInputData(taskID)

11:service: =
findService(task)

12:invoke(data)

13:taskComplete(taskID)

17:distributeData(output)
18:notify(taskID)

14:taskComplete(output)

Figure 7: Sequence of actions during execution

process is shown pictorially in Figure 7.

4.3 Implementation Details
A prototype version of the MobiWork system has been

implemented in Java using Limone [9] as the communica-
tion middleware. Our choice of Java was motivated by its
cross-platform compatibility, which is desirable in MANETs
where devices may not be of a uniform type. Limone, a
lightweight communication middleware for MANETs was
developed previously by our research group and uses a tuple-
space based communication model to interact with hosts in
MANETs. The current implementation of MobiWork is tar-
geted towards laptops and the recently announced Origami
PCs [4]. Though we considered an implementation targeted
towards PDAs, we decided not to focus on those platforms
for the following reasons: (1) the Java Virtual Machines
(JVMs) available for PDAs are not as efficient and do not
offer the same degree of capabilities as the standard JVM;
(2) Java-based graphics and user interface performance on
PDAs is unacceptably slow; (3) the emergence of small PCs
that are only slightly bigger than PDAs but offer laptop-
like capabilities indicates that we are fast approaching the
point where the performance gap between PDAs and laptops
will shrink significantly; and (4) the screen sizes on PDAs
are currently, in our opinion, too small and low resolution.
Ultimately we favor the benefits of using Java and having
bigger screens to work with, and observe that PDA technol-
ogy appears likely soon to catch up to the technology level
for which we are currently implementing.

The MobiWork system has been implemented to ad-
dress the asynchronous interactions that are common in a
MANET. The CommAdapter is an abstract class that acts
as the interface between MobiWork and the communica-
tion middleware. In our case, we extended the abstract
CommAdapter to create a concrete LimoneCommAdapter class
that contains the specific implementation needed to inter-
act with Limone. The LimoneCommAdapter acts like a dis-
patcher, receiving messages from Limone, and dispatching
it to any MessageListeners registered with it. Any objects
registering with the LimoneCommAdapter as a listener can
specify the type(s) of messages in which they are interested.
Available options are KNOWLEDGE (information about other

hosts), PLAN (sub-plans distributed to hosts), DATA (data
that is transmitted from host to host as part of the data
flow of the plan), and HOST (information about a host com-
ing into or going out of communication range).

The KnowledgeManager registers itself as a listener
for KNOWLEDGE and HOST while the PlanManager, and
DataManager register themselves as listeners for PLAN, and
DATA respectively. When the PlanManager receives an event,
it alerts the Executor, which begins the execution pro-
cess that was described in Section 4.2. The execution
of tasks also occurs in an asynchronous fashion. The
TaskManager calls the executeService(...) method on
the ServiceDirectory which then finds a suitable service
and executes it. Both the Executor and DataManager

register themselves as TaskCompletionListeners on the
ServiceDirectory. Thus when a task is completed, the
DataManager is notified to retrieve the output data and the
Executor can then proceed with retrieving this data and
sending it to the host responsible for the next task.

On the planning side, AllocationPolicy and
DistributionPolicy are abstract classes for the algo-
rithms that implement the allocation and distribution
functionality. With our initial system, we provide a
StandardAllocationPolicy as we described in Section 3.2
and a StandardDistributionPolicy as we described in
Section 4.1. Additional implementations of these policies
can be added by users of the system and the system can
be directed to use the correct policy by way of command
line flags. At present, our system is a basic prototype
implementation. We plan to address code complexity as
well as performance as part of our ongoing research in this
area.

5. EVALUATION
We evaluated our mobile workflow approach by imple-

menting a prototype plan allocator in Java. This prototype
was deployed on a computer equipped with a 3.2 GHz Pen-
tium 4 CPU, 512 MB of RAM, Linux 2.6.16, and Java 2
Standard Edition 5.0 06. We tested this prototype by gen-
erating a series of random plans and measuring the time the
allocator spent to find a solution. The generation of these
plans is parameterized by several values, as we discuss be-

low. For comparison, our implementation allows selection
between the näıve and enhanced versions of the algorithm.

Randomly generating a set of realistic plans is difficult,
mainly because the “realism” of plans is hard to quantify.
Instead, our random plan generator generates a diverse range
of plans based on several parameters:

• r, the number of requirements that actions may draw
from

• a, the number of actions in the plan

• g, the number of agents in the system

• pr, the probability that an action has a specific re-
quirement

• pc, the probability that an agent has a specific capa-
bility

• po, the probability of an agent having a constraint be-
tween two actions

By varying these parameters, we can determine the effect
that certain properties of plans have on allocation perfor-
mance. For the sake of simplicity, we do not subdivide spa-
tiotemporal constraints from agent constraints. Rather, we
generate a set of constraint tuples directly, without first gen-
erating a set of causes for those conflicts.

We performed 50 allocations of fully random plans using a
wide range of values for these parameters, and recorded the
time taken for each version of the algorithm either to find
an allocation or to determine that the plan was impossible
to allocate. For comparison, we repeated this procedure
with 50 more random plans that were first filtered to ensure
that an allocation existed. Since the decision space that
the näıve algorithm traverses quickly becomes intractable
as the number of actions and agents increases, we enforced
an upper-bound of 30 seconds to find an allocation. In the
interest of space, we will not present here the results of all
combinations of parameters. However, we will note that
the parameters that had the greatest effect on algorithm
performance were the number of actions in the graph, the
ratio of actions to agents, and the probability of conflicts.
Figure 8 shows the effect of varying the first two of these
parameters with po = 0.1, r = 8, pr = 0.1, and pc = 0.1;
Figure 9 shows the effect of repeating these experiments with
po = 0.3 and the other parameters unchanged. We also
note that the enhanced algorithm required no more than 10
ms to allocate any plan of up to 24 actions, whereas the
näıve algorithm frequently required more than 30 seconds
to allocate the same plans.

The performance difference between the two versions of
the algorithm is striking, especially when they are provided
with plans that cannot necessarily be allocated. At first, we
were concerned that this gap was caused by a bug in the
implementation. However, after tracing through the execu-
tion of the two versions, we confirmed that their behavior
was correct, and discovered an explanation for the perfor-
mance gap. The algorithm would often make an incorrect
decision while allocating one of the first few actions. The
näıve version would then iterate through a large portion of
the decision space before it could return to that early mis-
take and correct it. As we noted in Section 3, the enhanced
version of the algorithm effectively divides the plan into sub-
plans, and allocates each sub-plan independently. Hence,
when it makes a mistake early in one sub-plan, it only has
to explore the relatively small decision space of that sub-
plan before revisiting the incorrect decision. Furthermore,

the näıve algorithm must traverse nearly the entire decision
space before it can conclude that plan is not allocatable. If
the enhanced algorithm traverses the smaller decision space
of one sub-plan and fails to find an allocation, then it imme-
diately concludes that the entire plan cannot be allocated.

6. CONCLUSION
Workflow-based collaborative technologies hold much

promise, but thus far systems supporting workflow based
collaborations (WfMSs), have been designed for stable wired
networks or nomadic mobile networks. In this paper we
sought to lay a foundation for WfMSs that can operate in
the unpredictable environment of a MANET without de-
pending on centralized resources or reliable links between
participants. We extended the algorithm for the allocation
of tasks from a simple one based only on task requirements
and agent capability matching to a necessarily more complex
one that additionally considers the mobility of all partici-
pants. We use a unified concept of constraints to determine
non-allocatability of a particular agent to a task due to mo-
bility, lack of capabilities, or plan-specific restrictions, with
the capacity to add any other types of constraints as nec-
essary. Our investigations showed that a heuristic version
of our algorithm which allocates tasks for which there are
fewest qualified agents first clearly outperforms the naive al-
gorithm which allocates tasks in a numerological order. Our
implementation of MobiWork in Java has served as a proof
of concept that workflow-based collaboration can be sup-
ported to a satisfactory degree in a MANET environment.
However, much work needs to be done to optimize the sys-
tems and improve their sophistication for greater reliability
and error handling.

7. ACKNOWLEDGMENTS
This research was supported by the National Science Foun-

dation Division of Information and Intelligent Systems re-
search award IIS-0534699. Any opinions, findings, and con-
clusions expressed in this paper are those of the authors and
do not represent the views of the research sponsors.

8. REFERENCES
[1] ActiveBPEL engine. http://www.activebpel.org/.

[2] OASIS web services business process execution
language (WSBPEL) TC. http://www.oasis-open.
org/committees/tc home.php?wg abbrev=wsbpel.

[3] Oracle BPEL process manager. http://www.oracle.
com/technology/products/ias/bpel/index.html.

[4] The origami project.
http://origamiproject.com/default.aspx.

[5] WebSphere process server. http:
//www-306.ibm.com/software/integration/wps/.

[6] Wf-XML 2.0.
http://www.wfmc.org/standards/wfxml demo.htm.

[7] Workflow. http://en.wikipedia.org/wiki/Workflow.

[8] G. Alonso, R. Gunthor, M. Kamath, D. Agrawal,
A. E. Abbadi, and C. Mohan. Exotica/FMDC:
Handling disconnected clients in a workflow
management system. In Proc. 3rd International
Conference on Cooperative Information Systems
(CoopIS), pages 99–110, Vienna, May 1995.

Fully random plans

0.01

0.1

1

10

100

1000

10000

4 6 8 10 12

of agents

M
e
a
n

 t
im

e
 t

o
 p

e
rf

o
rm

 a
ll
o

ca
ti

o
n

 (
m

s)

Naïve (a/g = 1/2) Enhanced (a/g = 1/2)

Naïve (a/g = 3/4) Enhanced (a/g = 3/4)

Naïve (a/g = 1) Enhanced (a/g = 1)

Naïve (a/g = 3/2) Enhanced (a/g = 3/2)

Naïve (a/g = 2) Enhanced (a/g = 2)

Only allocatable plans

0.01

0.1

1

10

100

1000

10000

4 6 8 10 12

of agents

M
e
a
n

 t
im

e
 t

o
 p

e
rf

o
rm

 a
ll
o

ca
ti

o
n

 (
m

s)

Naïve (a/g = 1/2) Enhanced (a/g = 1/2)

Naïve (a/g = 3/4) Enhanced (a/g = 3/4)

Naïve (a/g = 1) Enhanced (a/g = 1)

Naïve (a/g = 3/2) Enhanced (a/g = 3/2)

Naïve (a/g = 2) Enhanced (a/g = 2)

Figure 8: Algorithm performance when po = 0.1, r = 8, pr = 0.1, pc = 0.1. Left: mix of allocatable and unallo-
catable plans; Right: all plans are allocatable.

Fully random plans

0.01

0.1

1

10

100

1000

10000

4 6 8 10 12

of agents

M
e
a
n

 t
im

e
 t

o
 p

e
rf

o
rm

 a
ll
o

ca
ti

o
n

 (
m

s)

Naïve (a/g = 1/2) Enhanced (a/g = 1/2)

Naïve (a/g = 3/4) Enhanced (a/g = 3/4)

Naïve (a/g = 1) Enhanced (a/g = 1)

Naïve (a/g = 3/2) Enhanced (a/g = 3/2)

Naïve (a/g = 2) Enhanced (a/g = 2)

Only allocatable plans

0.01

0.1

1

10

100

1000

10000

4 6 8 10 12

of agents

M
e
a
n

 t
im

e
 t

o
 p

e
rf

o
rm

 a
ll
o

ca
ti

o
n

 (
m

s)

Naïve (a/g = 1/2) Enhanced (a/g = 1/2)

Naïve (a/g = 3/4) Enhanced (a/g = 3/4)

Naïve (a/g = 1) Enhanced (a/g = 1)

Naïve (a/g = 3/2) Enhanced (a/g = 3/2)

Naïve (a/g = 2) Enhanced (a/g = 2)

Figure 9: Algorithm performance when po = 0.3, r = 8, pr = 0.1, pc = 0.1.

[9] C.-L. Fok, G.-C. Roman, and G. Hackmann. A
lightweight coordination middleware for mobile
computing. In Proceedings of the 6th International
Conference on Coordination Models and Languages,
volume 2949 of LNCS, pages 135–151, Bologna, Italy,
February 2004. Springer-Verlag.

[10] C. Godart, P. Molli, G. Oster, O. Perrin,
H. Skaf-Molli, P. Ray, and F. Rabhi. The toxicfarm
integrated cooperation framework for virtual teams.
Distributed and Parallel Databases, 15(1):67–88, 2004.

[11] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher,
Y. Lafon, and C. Barreto. Web services choreography
description language version 1.0.
http://www.w3.org/TR/ws-cdl-10/, November 2005.

[12] L. Li and I. Horrocks. A software framework for
matchmaking based on semantic web technology. In
WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 331–339. ACM
Press, 2003.

[13] R. T. Marshak. Groupware: Technology and
Applications, chapter Workflow: Applying Automation

to Group Processes, pages 71–97. Prentice-Hall, 1995.

[14] D. Martin and et. al. OWL-S: Semantic markup for
web services.
http://www.w3.org/Submission/OWL-S/, November
2004.

[15] M. Mecella and et. al. Workpad: an adaptive peer to
peer software infrastructure for supporting
collaborative work of human operators in
emergency/disaster scenarios. In IEEE International
Symposium on Collaborative Technologies and
Systems, 2006.

[16] N. Preguiça, J. L. Martins, H. Domingos, and
S. Duarte. Integrating synchronous and asynchronous
interactions in groupware applications. Lecture Notes
in Computer Science, 3706:89–104, 2005.

[17] H. Stormer and K. Knorr. Pda- and agent-based
execution of workflow tasks. In Proceedings of the
Informatik 2001, pages 968–973, 2001.

[18] W. van der Aalst and K. van Hee. Workflow
Management : Models, Methods, and Systems. MIT
Press, March 2004.

	MobiWork: Mobile Workflow for MANETs
	Recommended Citation
	MobiWork: Mobile Workflow for MANETs

	tmp.1418149444.pdf.tS79w

