
Security Mechanisms for Workflows in

Service-Oriented Architectures

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Jens Müller

aus Henstedt-Ulzburg

Tag der mündlichen Prüfung: 16. Januar 2015

Erster Gutachter: Prof. Dr.-Ing. Klemens Böhm

Zweiter Gutachter: Prof. David W. Chadwick, PhD

Acknowledgement

The completion of this thesis would not have been possible without the support
of and exchange with so many people to whom I owe lots of gratitude.

First of all, I would like to thank my advisor Prof. Klemens Böhm. He
guided me with patience and encouragement. His comments on the drafts of
my publications were plenty and always helpful. Thanks also go to my co-
advisor, Prof. David Chadwick for his helpful suggestions regarding security
mechanisms, especially security architectures.

I also thank my colleagues at the Information Systems Group for fruitful
discussions and the good working atmosphere. I only mention the TAS3 project
team here: Thorsten Haberecht, Jutta Mülle, Dr. Silvia von Stackelberg and
my office mate Dr. Christian Hütter. I also want to thank my other colleagues
from the TAS3 project. The many occasions when we met are certainly ones I
will remember.

My special thanks go to my parents and my friends Dorothée, Hanka, Hen-
ning, Katrin, Oliver and Susanne, who always had an open ear for me and
helped me with their advice or just by listening.

i

Kurzfassung

Motivation und Zielsetzung

Zur Beherrschung der immer komplexeren Informationverarbeitung und gleich-
zeitiger Bewahrung von Flexibilität sind neue Paradigmen notwendig. Für die
dabei gerade in verteilten Umgebungen auftretenden Probleme sind serviceori-
entierte Architekturen ein vielversprechender Ansatz. Diese basieren auf Ser-
vices (Diensten) mit abgrenzbarer und gekapselter Funktionalität, die sich un-
abhängig von anderen Diensten entwickeln können. Service-Kompositionen auf
hoher Abstraktionsebene zur Umsetzung von Geschäftsprozessen einer Orga-
nisation werden durch Workflow-Technologie ermöglicht.

Insbesondere in Anwendungen mit sensiblen personenbezogenen Daten ist
Sicherheit wichtig. Diese muss in Workflow-Management-Systeme integriert
werden, um sichere Service-Kompositionen zu gewährleisten. Um benutzerzen-
trierte Workflows möglich zu machen, ist auch die Integration identitätsbasier-
ter Services erforderlich. Damit dieses Ziel erreicht werden kann, ist zunächst
eine systematische Analyse der entsprechenden Sicherheitsanforderungen not-
wendig. Darauf kann dann der Grobentwurf einer entsprechenden Architek-
tur aufsetzen. In technischer Hinsicht ist außerdem das Zusammenspiel mit
existierenden Spezifikationen und deren Implementierungen zu klären. Dies
ermöglicht Sicherheit in einer größeren serviceorientierten Gesamtarchitektur.

Insgesamt ist die in der vorliegenden Arbeit betrachtete Forschungsfrage,
wie sich Unterstützung für Sicherheit und Identitätsmanagement in ein Work-
flow-Management-System integrieren lässt. Dabei stehen Anwendungen im Zu-
sammenhang mit personenbezogenen Daten im Fokus. Teilprobleme stellen die
Ermittlung der Sicherheitsanforderungen von Workflow-Anwendungen und die
Bewertung existierender Ansätze, der Entwurf einer entsprechenden Architek-
tur, sowie die Untersuchung von Verbesserung für die Privatheit von Benutzern
in der Praxis dar.

Herausforderungen

Auf unterschiedlichen Ebenen ergeben sich eine Reihe von Herausforderungen.
Dies erfordert eine sorgfältige Kombination verschiedener Methoden.

Die Anforderungsanalyse muss zum einen auf einer realen Anwendung basie-
ren, um realistische Anforderungen zu liefern. Zugleich soll das Ergebnis re-
präsentativ und generisch anwendbar sein. Diese widersprüchlichen Ziele er-
fordern einen kombinierten Ansatz basierend auf einer sorgfältig ausgesuchten
Anwendung und einer ergänzenden strukturierten Analyse auf Basis von ab-
schließend aufzählbaren Kriterien. Bei der Bewertung hinsichtlich des Stands

iii

iv KURZFASSUNG

der Technik stellt die große Zahl von Lösungsvorschlägen in diesem Gebiet,
deren Unterschiede in Abstraktionsniveau und Ausgereiftheit sowie ihre Aus-
richtung auf jeweils unterschiedliche Facetten der in dieser Arbeit betrachteten
Probleme sowie zum Teil auf andere Einsatzfelder eine besondere Herausforde-
rung dar. Entsprechendes gilt auch für die Entwicklung der Architektur. Diese
muss bekannte und neue Lösungen integrieren, Entscheidungen von Benutzern
(auch in Form von Policies) einbeziehen und sich durch Nutzung von Kontext-
informationen flexibel an die jeweilige Situation anpassen. Insbesondere ist es
ggf. nötig, die anzuwendenden Sicherheitsspezifikationen dynamisch zu bestim-
men. Außerdem muss ihre Struktur generisch, also nicht auf eine bestimmte
Technologie festgelegt, sein. Nicht zuletzt gibt es eine Lücke zwischen einer
notwendigerweise abstrakt und generisch gehaltenen Architektur und darauf
basierenden konkreten Anwendungen, die einen Zusatznutzen für die Privat-
heit und Sicherheit von Endanwendern bieten können. Die Herausforderung
besteht darin zu zeigen, dass die Architektur solche Anwendungen ermöglicht.

Beiträge der Arbeit

Der erste Beitrag der vorliegenden Arbeit besteht in einer Anforderungsanalyse
anhand eines Beispiels aus der beruflichen Weiterbildung. Ergänzend werden
die Einteilung von Sicherheitseigenschaften aus [ITU95c] sowie wohlbekann-
te Workflow-Aspekte (vgl. [JB96]) herangezogen. Den zweiten Beitrag stellt
der Abgleich der Anforderungen mit dem Stand der Technik dar. Ein Schwer-
punkt liegt dabei auf Zugriffskontrollmechanismen mit Bezug auf verschiedene
Workflow-Aspekte. Es zeigt sich eine nicht ausreichende Berücksichtigung von
Workflow-Kontext in existierenden Ansätzen für Sicherheit in serviceorientier-
ten Architekturen.

Der dritte und wichtigste Beitrag der Arbeit ist die Entwicklung der Ar-
chitektur. Diese erfolgt in zwei Schritten. Im ersten Schritt geht es um die
sichere Ausführung von Workflows in allgemeinen. Um bestehende Workflow-
Engines nutzen zu können, wird ein aspektorientierter Ansatz mit entsprechen-
den Transformationen der Workflow-Definitionen beschrieben. In einem zweiten
Schritt geht es um die Integration mit Identitätsmanagement-Systemen. Für
die einzelnen Konzepte werden dafür der Fluss von Identitätsinformationen
durch das Workflow-Management-System sowie der Einfluss von Workflow-
Kontext untersucht. In beiden Teilen werden Entwurfsgrundsätze aufgestellt
und verschiedene Entwurfsalternativen untersucht. Außerdem werden Konfi-
gurationsmechanismen entwickelt.

Insgesamt werden damit neue Anwendungen mit verbesserter Sicherheit und
Privatsphäre ermöglicht. Beispielhaft wurde der Prototyp eines Werkzeugs im-
plementiert und evaluiert, mit dem Benutzer die Workflow-Ausführung nach-
vollziehen können. Das Thema

”
Sicheres Workflow-Management in serviceori-

entierten Architekturen“ wurde damit umfassend von der Anforderungsanalyse
bis hin zu Anwendungen behandelt.

Aufbau

Nach der Einleitung in Kapitel 1 werden in Kapitel 2 die Grundlagen erläutert.
Dazu gehören die Charakteristika von serviceorientierten Architekturen sowie

v

ihre technische Umsetzung mit Web-Services und der Einsatz von Workflow-
Management für Service-Kompositionen, außerdem ausführbare Workflows und
Workflow-Aspekte. Was Sicherheitsaspekte angeht, werden verschiedene Defi-
nitionen und Einteilungen vorgestellt. Besonders wird auf Zugriffskontrolle und
Identitätsmanagement eingegangen. Kapitel 3 stellt verwandte Arbeiten vor,
u.a. für Zugriffskontrolle in dynamischen Umgebungen und Workflows (insbe-
sondere Delegation) sowie Sicherheitsarchitekturen für Workflows.

Kapitel 4 stellt Anwendungsfälle vor, insbesondere aus dem Bereich Em-
ployability. Die Anforderungsanalyse in Kapitel 5 ergibt 44 generelle Sicher-
heitsanforderungen. Ein Schwerpunkt liegt auf der Verwendung von Workflow-
Zustand für Sicherheitsentscheidungen sowie organisationsübergreifenden Um-
gebungen. Die Analyse des Stands der Technik ergibt eine mangelnde Integrati-
on mit Workflows. Hinsichtlich föderativen Identitätsmanagements (FIM) wird
die Integration mit FIM-Konzepten u.a. anhand von Datenfluss und nötigem
Kontext untersucht.

In Kapitel 6 wird die Architektur entworfen (vgl. Schaubild 6.2). Für eine
Auswahl der Anforderungen, die vielfältige Sicherheitsfunktionalität abdeckt,
wird die Integration in die bestehende Architektur anhand der Auswirkungen
verschiedener Alternativen auf Aufbau und Schnittstellen betrachtet. Im zwei-
ten Schritt wird Unterstützung für föderatives Identitätsmanagement hinzu-
gefügt. Die technologiespezifischen Aspekte werden in einer Bibliothek gekap-
selt. Identitätsinformationen werden an den Schnittstellen nach außen durch
zwei Policy Enforcement Points erfasst. Diese setzen auch die Sicherheits-
entscheidungen eines gemeinsamen Policy Decision Point durch. Die Erfassung
und Nutzung für Anwendungszwecke und Zugriffskontrolle werden beschrieben.
Die Erläuterung der technischen Aspekte der Implementierung ist Gegenstand
von Kapitel 7. Insbesondere werden Datenformate und Schemata für eindeutige
Referenzen auf Daten definiert. Die Interaktion der Komponenten wird analy-
siert, und es werden entsprechende Nachrichtenformate entwickelt. Außerdem
werden die nötigen Transformationen der Workflow-Definitionen beschrieben,
und es wird darauf eingegangen, wie Performance-Engpässe behoben werden
können.

Die Evaluation in Kapitel 8 weist nach, dass die Architektur die Erfüllung
der Sicherheitsanforderungen weniger kompliziert und fehlerträchtig macht.
Außerdem zeigen Evolutionsszenarien ihre Flexibilität. Der Prototyp einer An-
wendung zur Nachverfolgung von Workflows, der in einer Benutzerstudie ge-
testet wurde, demonstriert außerdem den praktischen Nutzen der Architektur.
Kapitel 9 wirft schließlich einen Ausblick auf zukünftige Arbeiten in den Be-
reichen Standardisierung, Verfeinerung von Konzepten sowie Benutzerschnitt-
stellen.

Contents

Acknowledgement i

Kurzfassung iii

1 Introduction 1
1.1 Motivation and Goal . 1
1.2 Challenges . 3
1.3 Contributions to the Field . 4
1.4 Outline . 5

2 Fundamentals 7
2.1 Service-oriented Architectures 7
2.2 The Web Services Platform . 8
2.3 Workflow Management . 12
2.4 Security . 16
2.5 Summary . 26

3 Related Work 27
3.1 Policy Specifications for SOA 27
3.2 Access Control Models for Dynamic Environments and Workflows 27
3.3 Delegation . 29
3.4 Model-Driven Security for Workflows 31
3.5 Bertino et al. 32
3.6 Non-Functional Aspects in Workflows 33
3.7 Support for manual activities in workflows 34
3.8 Identity management and workflows 34
3.9 Solutions available on the market 36
3.10 Conclusions . 36

4 Use Cases 39
4.1 Employability Scenario 1: Accreditation of Prior Learning (APL) 39
4.2 Employability Scenario 2: Student Work Placement 40
4.3 Travel-Booking Example . 41

5 Requirements Analysis 43
5.1 Overall Security Requirements 43
5.2 FIM Support in Workflows . 58
5.3 Overall Summary . 69

vi

CONTENTS vii

6 System Design and Architecture 71
6.1 Security configuration . 71
6.2 Security-relevant context . 72
6.3 General Security Enhancements to the WfMS Architecture . . 73
6.4 Design of a System Integrating FIM Functionality 81
6.5 Summary . 102

7 Implementation 103
7.1 Component Overview . 104
7.2 Library for SAML and ID-WSF 107
7.3 Data and Identifier Formats . 108
7.4 Interaction of Components . 109
7.5 Optimisation of component interactions 125
7.6 Workflow transformations . 126
7.7 Implementation of the PDP-Wf and integration of an XACML

PDP . 130
7.8 Summary . 131

8 Evaluation 133
8.1 Security of the architecture . 133
8.2 Evolution scenarios . 136
8.3 User Study: User-Centric Audit based on the Architecture . . . 141
8.4 Summary . 151

9 Summary and Outlook 153
9.1 Summary . 153
9.2 Outlook . 153

A BPMN Model of the APL Scenario 155

B Implementation Details: Data Formats 161
B.1 Data model for tasks . 161
B.2 State model for tasks . 163
B.3 Database model for tasks used by the worklist handler 164

Bibliography 165

List of Tables 178

List of Figures 179

Glossary 181

Detailed List of Contents

Acknowledgement i

Kurzfassung iii

1 Introduction 1
1.1 Motivation and Goal . 1
1.2 Challenges . 3
1.3 Contributions to the Field . 4
1.4 Outline . 5

2 Fundamentals 7
2.1 Service-oriented Architectures 7

2.1.1 Principles of service-orientation 8
2.2 The Web Services Platform . 8

2.2.1 XML and XML Schema 9
2.2.2 SOAP Messages . 9
2.2.3 Service Descriptions (WSDL) 11
2.2.4 Service Discovery . 12

2.3 Workflow Management . 12
2.3.1 The Workflow Reference Model 14
2.3.2 Executable Workflows 15
2.3.3 Workflow Aspects . 16

2.4 Security . 16
2.4.1 Different Definitions of Security 16

2.4.1.1 Whitman and Mattord 16
2.4.1.2 Pfleeger and Pfleeger 17
2.4.1.3 ITU Standards 17
2.4.1.4 Summary . 17

2.4.2 Approaches to Security 17
2.4.3 Access Control . 18

2.4.3.1 Basic Access-control Mechanisms 18
2.4.3.2 Constraints . 19
2.4.3.3 XACML . 20

2.4.4 Security in Service-Oriented Architectures 20
2.4.5 Identity Management 21

2.4.5.1 FIM Concepts 22
2.4.5.2 Social and Privacy Considerations 24
2.4.5.3 Technical Specifications for Federated Identity

Management 25

viii

DETAILED LIST OF CONTENTS ix

2.5 Summary . 26

3 Related Work 27
3.1 Policy Specifications for SOA 27
3.2 Access Control Models for Dynamic Environments and Workflows 27

3.2.1 Team-Based Access Control 27
3.2.2 Workflow Authorization Model 28
3.2.3 Task-based Authorization Controls 28
3.2.4 W-RBAC . 29
3.2.5 Summary . 29

3.3 Delegation . 29
3.4 Model-Driven Security for Workflows 31

3.4.1 The SECTET Model . 31
3.5 Bertino et al. 32
3.6 Non-Functional Aspects in Workflows 33
3.7 Support for manual activities in workflows 34
3.8 Identity management and workflows 34

3.8.1 Hummer et al. 34
3.8.2 Identity Management and Workflows 35

3.9 Solutions available on the market 36
3.10 Conclusions . 36

4 Use Cases 39
4.1 Employability Scenario 1: Accreditation of Prior Learning (APL) 39
4.2 Employability Scenario 2: Student Work Placement 40
4.3 Travel-Booking Example . 41

5 Requirements Analysis 43
5.1 Overall Security Requirements 43

5.1.1 Methodology . 43
5.1.2 Requirements Analysis 44

5.1.2.1 Authentication 44
5.1.2.2 Access Control 46
5.1.2.3 Non-repudiation 49
5.1.2.4 Confidentiality 50
5.1.2.5 Integrity . 50
5.1.2.6 Security Audit and Alarms 50
5.1.2.7 Key Management 51

5.1.3 Summary of Security Requirements 51
5.1.4 Assessment of the State of the Art 52

5.1.4.1 Technological Baseline 52
5.1.4.2 Non-repudiation and confidentiality 52
5.1.4.3 Access Control for Workflow Activities 54
5.1.4.4 Selection of Trusted Web Services 55
5.1.4.5 Access Control for Data Related to a Workflow 55
5.1.4.6 Configuring Trust Relationships 55
5.1.4.7 Authentication of Users 56
5.1.4.8 Authentication and Identity Management for

Web-Service Calls 56
5.1.4.9 Audit . 56

x DETAILED LIST OF CONTENTS

5.1.4.10 Overall Integrity 57
5.1.4.11 Summary . 57

5.1.5 High-Level Design Goals 57
5.2 FIM Support in Workflows . 58

5.2.1 Design Requirements . 58
5.2.2 Requirements Concerning Support for Individual FIM

Concepts . 60
5.2.2.1 Single Sign-on 61
5.2.2.2 Incoming Identity-Web-Service Calls 62
5.2.2.3 Using Attributes for a Personalised Service . . 63
5.2.2.4 Recognising Users in a Stateful Interaction . . 65
5.2.2.5 Invoking Services on Behalf of Users 65
5.2.2.6 Activity-level Authorisation 67
5.2.2.7 Workflow-level Authorisation 68

5.2.3 Conclusions . 69
5.3 Overall Summary . 69

6 System Design and Architecture 71
6.1 Security configuration . 71

6.1.1 Sources of security configuration 71
6.1.1.1 Types of security configuration 72

6.2 Security-relevant context . 72
6.3 General Security Enhancements to the WfMS Architecture . . 73

6.3.1 Approach for the Integration of Security Functionality . 73
6.3.2 Security requirements and their potential implementation 74

6.3.2.1 Encryption and signing of web-service commu-
nication . 75

6.3.2.2 Discovery of trustworthy web services 75
6.3.2.3 Access control for human tasks 76

6.3.3 Summary of necessary extensions 77
6.3.4 Resulting Architecture 78

6.4 Design of a System Integrating FIM Functionality 81
6.4.1 Basic Architecture . 81
6.4.2 Encapsulation of Technology-specific FIM Functionality 82
6.4.3 External Communication and Acquisition of Identity In-

formation . 83
6.4.4 Access Control . 84

6.4.4.1 Decisions and Enforcement 84
6.4.4.2 Decisions for Different Kinds of Activities . . . 85
6.4.4.3 Structure of Policies 85
6.4.4.4 Structure of the Policy-decision Point 86

6.4.5 Connecting Identity Information with Activities 87
6.4.5.1 Storing the Relationship between Identity In-

formation and Activities 87
6.4.5.2 Human Tasks 87
6.4.5.3 Web Services 89

6.4.6 Outgoing Web-Service Calls 90
6.4.6.1 Determining the Identity 90
6.4.6.2 Performing Service Discovery 91

6.4.7 Providing Attributes to Workflow Instances 92

DETAILED LIST OF CONTENTS xi

6.4.7.1 Interface to be used by workflow instances . . 92
6.4.7.2 Information of users about access of workflow

instances to attributes 93
6.4.7.3 Enforcement of the attribute requirements policy 94

6.4.8 Configuration . 95
6.4.9 Correlation of Incoming Web-service Calls 96
6.4.10 Assessment of Design Requirements 98
6.4.11 Sample message flow and user interaction in the archi-

tecture . 99
6.5 Summary . 102

7 Implementation 103
7.1 Component Overview . 104
7.2 Library for SAML and ID-WSF 107
7.3 Data and Identifier Formats . 108
7.4 Interaction of Components . 109

7.4.1 A workflow instance creates a human task instance . . . 110
7.4.2 A user views the list of their tasks 115
7.4.3 A user performs a human task from their worklist . . . 117
7.4.4 Effects of a separation-of-duty constraint on concurrent

actions by several users 120
7.4.5 Invocation of a web service, including service selection . 122
7.4.6 Incoming web service call starts new workflow instance . 123
7.4.7 Deployment . 124

7.5 Optimisation of component interactions 125
7.6 Workflow transformations . 126

7.6.1 Redirection of outgoing calls to the PEP-WS 127
7.6.2 Authorisation of incoming web-service calls 127
7.6.3 Creation of workflow instance IDs 129

7.7 Implementation of the PDP-Wf and integration of an XACML
PDP . 130

7.8 Summary . 131

8 Evaluation 133
8.1 Security of the architecture . 133

8.1.1 Technological baseline and state of the art 134
8.1.2 Authentication requirements 134
8.1.3 Access control requirements 134
8.1.4 Requirements regarding confidentiality, non-repudiation,

integrity, and key management 135
8.1.5 Audit requirements . 136

8.2 Evolution scenarios . 136
8.2.1 Delegation of Authority 136
8.2.2 Generic security architecture 137
8.2.3 Access control for external repositories coupled to the

workflow execution . 137
8.2.4 User-centric audit of workflows 138
8.2.5 User interaction for service selection 139
8.2.6 Explicit user-task assignment and reassignment of duty 140

8.3 User Study: User-Centric Audit based on the Architecture . . . 141

xii DETAILED LIST OF CONTENTS

8.3.1 Motivation of the scenario 141
8.3.2 Related Work . 143
8.3.3 Functionality . 143
8.3.4 Architecture and Design 145
8.3.5 Study Design . 146
8.3.6 Pre-Study . 147
8.3.7 Main Study . 147
8.3.8 Results . 148
8.3.9 Conclusions . 149

8.4 Summary . 151

9 Summary and Outlook 153
9.1 Summary . 153
9.2 Outlook . 153

A BPMN Model of the APL Scenario 155

B Implementation Details: Data Formats 161
B.1 Data model for tasks . 161
B.2 State model for tasks . 163
B.3 Database model for tasks used by the worklist handler 164

Bibliography 165

List of Tables 178

List of Figures 179

Glossary 181

Chapter 1

Introduction

1.1 Motivation and Goal

Information processing systems have become increasingly complex and con-
nected, and continue to become even more so. As a consequence, new paradigms
were necessary to manage this complexity while preserving the necessary flex-
ibility. This concerns, for example, data formats, distribution of data and
processing of data. Think of a curriculum vitae and the information connected
to it, such as university diplomas and letters of reference from past employers.
The grades in a diploma are harmonised by frameworks such as the European
Credit Transfer and Accumulation System (ECTS). The information comes
from different authoritative sources such as universities and employers. We
can imagine a scenario where the contents of a curriculum vitae are stored
in a central repository (known as an e-portfolio) on behalf of the individual
concerned. In this scenario, it would be possible for authoritative sources of
information to add this information to the e-portfolio directly. It would also
be possible to verify the authenticity of the e-portfolio’s contents automatically
and provide aggregated views of the content. Service-oriented architectures are
a promising approach towards this problem. They are based on the notion of
services – autonomous pieces of functionality which are linked through well-
defined interfaces but can still evolve independently. In addition, messages
between services are treated as first-class entities, allowing the implementa-
tion of powerful middleware functionality. For example, the middleware could
automatically locate the correct repository for storing a specific individual’s
curriculum vitae information. While the independence of services is an impor-
tant issue, organisations must be able to coordinate these independent services
in a way that allows them to achieve their business goals and carry out their
business processes. Workflow technology is able to achieve high-level service
compositions by coordinating the data and control flow between services and
human activities.

Security is an important issue in service-oriented architectures, in particular
for applications that handle sensitive personal information. It is necessary to
integrate security functionality into workflows in order to achieve secure service
compositions. Moreover, workflows integrate the activities of both automated
services and human participants. The participation of humans requires adap-
tation to their security requirements. To this end, workflows have to take

1

2 CHAPTER 1. INTRODUCTION

the identities of participants into account, and integrate with other identity-
based services in order to achieve user-centric service compositions. Think of
a service that recommends career development options to an individual. It
first needs to collect information about this individual from various sources.
Evaluating this information may also involve other services which must be ac-
ceptable both to the individual concerned, e. g. in relation to privacy, and to
the recommentation service with respect to the reliability of the results and
other quality-of-service parameters. Finally, the service stores, inter alia, rec-
ommended vocational education courses in a central repository. This certificate
then serves as a prerequisite for funding by the employment administration or
by the individual’s employer as provided for in a collective labour agreement.
To this end, it must be possible to establish the authenticity of the certificate.

To implement a system like this, a systematic analysis of the security re-
quirements of a workflow management system in such a setting is needed. Such
an analysis is an important prerequisite to make advanced security concepts
for workflows explicit and enforce them consistently.

Based on the resulting understanding of the security requirements in ques-
tion, the next step is to determine what the architecture of a workflow manage-
ment system that can meet these requirements must look like. This is a task
we can approach at different levels of abstraction. From a high-level perspec-
tive, the components of the system, their interaction and the interfaces of the
system have to be specified. For a general purpose system, configuration mech-
anisms are needed as well. On a more concrete level, one has to specify how the
system implements relevant existing specifications, especially how it interacts
with other implementations of these specifications. This is because the scope
of the system designed is necessarily limited, and it can achieve security only
in connection with other systems.

Using workflows in such settings, i. e. to orchestrate user-centric service in-
teractions, enables new opportunities for users to understand and influence the
workflows they participate in. For example, it becomes easier to present users
with a live view of workflows processing information about them. Such applica-
tions use the infrastructure provided by a security- and identity-management-
enabled workflow management system.

Overall, the research question addressed in this thesis is how to integrate
support for security and identity management into a workflow management
system, with a focus on applications dealing with personal information. This
question can be broken down into three parts as follows:

• What are the requirements of workflow applications of this kind with
respect to security? Which solutions to these requirements already exist?

• What does the architecture of a workflow management system resulting
from these requirements look like? What is the general structure of the
system, i. e. which components are there and how do they interact? How
can it be embedded into environments based on existing standards?

• How can such a system facilitate user privacy through increased under-
standing and awareness, and more ways to control the execution of work-
flows?

1.2. CHALLENGES 3

1.2 Challenges

This research question and its various facets pose a number of challenges, as
explained in the following. These challenges are of different natures and on
different levels, and had to be approached by carefully combining different
methods.

First, the analysis of security requirements has to be based on real-world
applications to find requirements that are relevant in practice. However, the
analysis should also yield requirements representative for a generic class of
applications. This means we have to pursue two aims that may seem contra-
dictory at first glance. Nevertheless, it is possible to achieve both goals equally
using a combined approach: First, one has to use a carefully selected real-world
application that is representative for the generic class of applications dealing
with personal data. Second, one has to perform a structured analysis based on
enumerable criteria, as this makes it possible to consider requirements that are
not obvious in the chosen application, but have to be accounted for in order to
yield a system with comprehensive functionality.

Second, another set of challenges arises from the assessment of the require-
ments with respect to the state of the art. It is not clear which state of the
art should be considered. There are proposals in academic literature, and also
industrial proposals. Existing approaches are specified on varying levels of ab-
straction and to varying degrees of completeness, and they address different
facets of the problems involved. In addition, they often were intended for dif-
ferent scenarios than the ones investigated here, so their applicability is not
obvious.

Third, coming up with an architecture that integrates existing and new so-
lutions for the security requirements that have been pinpointed is also difficult.
Workflows dealing with personal data in some cases require involving the user
at runtime. Think of domains like e-health and e-employability where sensitive
personal information accrues. The consent of affected users (data subjects) to
the processing of their data is desirable or even required by law. This and other
forms of security-relevant information provided by users during execution of a
workflow is important for security enforcement. However, it is also tedious for
users to frequently express consent and make choices manually, so that auto-
matic, policy-based solutions are needed. Another challenge arises from the
open nature of SOA, which makes it impossible to anticipate every situation
and define how the WfMS should behave to ensure security. The WfMS rather
has to adapt, by taking context into account. Such context is only available
at runtime. For instance, the history of activities is necessary to enforce con-
straints such as separation of duty (SoD). As application services are discovered
at runtime, it is important that a trust relationship with a service is established
in a secure way. Different kinds of information, such as feedback on the past
behaviour of a service, can play a role [BEdH+10]. It is thus mandatory to
use the runtime context of a workflow, combined with external information and
explicit decisions of users, to make security decisions. Such context can include
users and application services involved, their properties, and the data and con-
trol flow of the workflow. Sometimes even security specifications themselves
depend on the context, such as a policy depending on the specific user whose
data is transmitted to an external service. Accordingly, the architecture has to
deal with user feedback and contextual information, i. e. capture, distribute,

4 CHAPTER 1. INTRODUCTION

store and use it, and the resulting architectural requirements and effects are
not obvious. Another challenge is that the architecture should be generic and
that it should abstract from specific protocols. Failure to achieve this would
inhibit the integration of existing security technology. Any ad-hoc modifica-
tion of a workflow management system to accomodate a specific technology
also carries the risk of being specific to this technology only. Instead, our goal
is an architecture that can accomodate new technologies for a certain security
goal while maintaining its general structure.

Additional challenges with respect to the architecture arise from the inte-
gration of federated identity management (FIM) technologies. To ensure user
privacy, the resulting system must support the respective FIM features, like
identity mapping between pseudonyms, prevent leakage of identity informa-
tion between workflow instances, and provide appropriate user control over the
disclosure of personal data. As with other security mechanisms, the implemen-
tation of FIM features needs to take the workflow context into account and
adjust to the requirements of individual workflow definitions.

Finally, there is a gap between the architecture, which is necessarily rather
abstract and generic, and concrete applications with added value for end-user
privacy and security. The challenge is to show that the architecture directly
enables such applications.

1.3 Contributions to the Field

Our first contribution is a requirements analysis (Subsection 5.1.2). We study
a real-life business process, the Accreditation of Prior Learning process (Sec-
tion 4.1). Two factors drive the identification of gaps in the requirements:
Regarding existing security mechanisms in SOAs, we rely on security facets,
defined in ITU-T Recommendation X.810 [ITU95c]. With respect to the work-
flow management domain, we consider well-known workflow aspects (e.g. the
functional, informational, behavioural, procedural and organisational aspects,
see [JB96], [CM06]).

Secondly, we relate these requirements to the state of the art in Subsec-
tion 5.1.4 and identify gaps not yet addressed in literature, as well as existing
solutions. We group existing approaches according to different security mech-
anisms, such as access control, authentication and auditing. One focus is on
access control. We distinguish groups of access control mechanisms for different
workflow aspects. The result of the analysis is that current security solutions
for SOAs are not sufficient because they do not solve our requirements appro-
priately, as we will explain in detail. Mechanisms such as WS-Security [LK06b]
consider messaging between web services, but not the workflow-specific aspects.
This is insufficient, as the entire control flow of a workflow should be subject to
security constraints. Existing workflow management systems (WfMS) and the
corresponding standards are quite mature with respect to the core function-
ality, but they provide only basic security functionality. In particular, access
control is only supported on the level of single web-service calls, which is not
suitable for use cases with actors and multiple web services involved. Further,
they do not take the workflow context (e.g. active sub-workflow, responsible
user) into account when making access control decisions.

Thirdly, we develop the architecture of a WfMS with support for privacy

1.4. OUTLINE 5

and security, in two steps. The first step concerns the anatomy of a WfMS that
allows the secure execution of workflows. In detail: We develop design criteria
a secure WfMS should follow. For instance, it should respect established ref-
erence models and be able to incorporate legacy systems. We identify design
alternatives in relation to our overall goal. We say which new components are
necessary to provide a secure WfMS, and how components interact. For the
use of legacy workflow execution engines, we advocate an aspect-oriented ap-
proach. More precisely, we define how to transform workflow definitions before
they are deployed to a workflow engine to integrate them with the components
of our architecture. We outline how to derive the security configuration of the
WfMS from security annotations to workflow models. The second step then
address the integration of identity management in more detail. In particular,
we determine how concepts of federated identity management (FIM) can be
used in workflows. We do so by analysing the flow of identity information and
the influence of workflow context on FIM functionality. We also describe pecu-
liarities that arise when combining FIM concepts with workflow management
concepts. As in the first step, we consider different design alternatives and
develop configuration mechanisms.

All in all, our work paves the way for the systematic implementation of a se-
cure workflow management system and enables new applications that enhance
security and privacy.

We have designed one such application, namely, an auditing tool dubbed
WoSec (Workflow Security). We have implemented a prototype of this applica-
tion and have evaluated it with real users. More specifically, our contributions
are as follows: We have analysed which information must be provided to users
in order to audit data transfer in distributed applications, and how it can be
presented visually. We have implemented a web-based tool for auditing the
handling of personal data that works with graphical representations of BPMN
models of applications. It allows users to “follow their data” when it is trans-
ferred to another organisation that also provides data to WoSec. It can also
be used to visualise how an organisation intends to handle personal data, en-
abling users to give more informed consent. We propose an extension to a
secure workflow management system that complements this auditing tool by
providing it with information on relevant events. We have designed several
example use cases for distributed data processing that are sufficiently complex
for a realistic evaluation: applying for an internship, trading items on an online
marketplace, and buying a car. In a user study we have designed, we evaluated
the tool and various features of it. The study showed that that users prefer
graphical audit facilities, and that these lead to a better understanding of data
transfers.

To summarise, we have comprehensively addressed the topic of secure work-
flow management in service-oriented architectures from a variety of angles –
from requirements engineering and assessment of the state of the art, through
to architecture on different levels and applications of the resulting architecture.

1.4 Outline

The rest of this thesis is structured as follows:

6 CHAPTER 1. INTRODUCTION

Chapter 2 introduces fundamentals from all relevant areas, and Chapter 3
discusses related work. Chapter 4 introduces the use cases.

Chapter 5 features a requirements analysis and an assessment of the re-
quirements found with respect to the state of the art. Chapter 6 presents the
system design and architecture, while Chapter 7 addresses the implementation
in more detail. Chapter 8 comprises an evaluation using a range of criteria.
Finally, Chapter 9 concludes this and discusses possible future work.

Chapter 2

Fundamentals

This thesis is about access control in loosely coupled information systems.
More explicitly, it explores access control and other security specifications and
their enforcement for workflow specifications, i. e. specifications of service com-
positions, in service-oriented architectures (SOA). This chapter therefore first
introduces the characteristics of service-oriented architectures (Section 2.1) and
their technical realisation (Section 2.2). We then explain workflow management
and its use for service compositions in SOA (Section 2.3). Finally, we describe
security on different levels, ranging from basic concepts to technical solutions
in SOA (Section 2.4).

2.1 Service-oriented Architectures

One of the oldest problems in software engineering is the decomposition of
software and its functionality into smaller parts [Par72]. Back in 1972, Parnas
saw the following advantages of modular programming: (1) Modules could be
developed independently, leading to shorter development times. (2) The entire
product (using Parnas’s terminology) becomes more flexible, because it “should
be possible to make drastic changes to one module without a need to change
others.” (3) The whole system becomes easier to understand because one can
study one module at a time.

While these goals of modularisation are certainly important, the focus of
service-oriented architecture (SOA) is slightly different. The term can best be
explained by looking at its individual components:

• SOA is not a methodology for developing independent pieces. Instead, it
defines an architecture, i. e. an abstract, standardised baseline explaining
“the technology, boundaries, rules, limitations, and design characteristics
that apply to all solutions based on this template” (cf. Section 4.3.1 of
[Erl05]).

• SOA is based on individual units of logic known as services that “exist
autonomously yet [are] not isolated from each other.” They are “required
to conform to a set of principles that allow them to evolve independently,
while still maintaining a sufficient amount of commonality and standard-
ization” (cf. Section 3.1.1 of [Erl05]).

7

8 CHAPTER 2. FUNDAMENTALS

• Finally, a service-oriented architecture is an architecture where automa-
tion logic is decomposed into services, and which encourages such a de-
composition (cf. ibid.).

2.1.1 Principles of service-orientation

According to [Erl05] (Section 3.1.5), the principles of service-orientation ad-
dress several design issues, such as:

• How should services be designed?

• How should service descriptions be designed?

• How should the relationship between services be designed?

• How should messages be designed?

Key aspects include:

• Loose coupling, i. e. a relationship that minimises dependencies.

• A service contract, i. e. a communications agreement that the service
adheres to.

• Autonomy : services have control over their internal logic.

• Abstraction: the details of the logic of a service are hidden from the
outside world; the service contract provides an abstract view only.

• Reusability as the goal behind the division of logic into services.

• Composability : A composite service can coordinate and assemble a num-
ber of other services.

These aspects are closely related and overlap. For example, reusability is a
prerequisite for composability – to combine services in order to provide a more
complex service, they have to be designed with that goal in mind.

Currently, the web services platform is the prevailing implementation of
SOA principles. Data exchanges and message formats are based on open stan-
dards, as described in the next section. This promotes loose coupling and
autonomy of services. While the core standards of the web services platform
are stable, more advanced protocols are still maturing. Section 2.2 explains
the core specifications, which cover service invocations and descriptions. Sub-
section 2.3.2 introduces WS-BPEL, used for workflows based on web services,
and Subsection 2.4.4 and Subsection 2.4.5.3 cover security in service-oriented
architectures and federated identity management, respectively.

2.2 The Web Services Platform

Service-oriented architecture, as explained in the previous section, is a con-
ceptual model. Its usual implementation is based on web services, a widely
accepted technology platform based on open standards.

2.2. THE WEB SERVICES PLATFORM 9

<order xmlns="http://example.org/bookOrder">

<books>

<book pages="55">

<title>Through the Looking Glass</title>

<authors>

<author>Lewis Carroll</author>

</authors>

</book>

<book pages="102">

<title>Moby Dick</title>

<authors>

<author>Herman Melville</author>

</authors>

</book>

</books>

</order>

Figure 2.1: Basic XML example

2.2.1 XML and XML Schema

eXtensible Markup Language (XML) [BPM+08] is a text-based representation
for semi-structured data. The structure of an XML document is made up of
nested elements enclosed in start and end tags. Elements can have attributes,
which are stated in the start tag, and text or other elements as children. Fig-
ure 2.1 shows a very basic example of an XML document. For a detailed de-
scription of features such as comments, processing instructions, escaping, etc.,
the reader is referred to the specification. Note that the order element in the
example has an attribute called xmlns, which specifies the default namespace
for the order element and its children. Namespaces [BTT+09] are an XML
extension that allows less ambiguous element (and attribute) names, thereby
increasing interoperability. With this extension, names can be qualified with a
namespace, avoiding name clashes when combining different XML-based data
formats. This is important for specifications such as SOAP or WSDL, as we
will see below.

It is evident that this example follows a fixed structure. The purpose of
XML Schema ([WF04, TMBM04, MB04]) is to define the structure of an XML
document and allow automated checks of whether a document adheres to this
definition. With XML Schema, one can specify which elements may be nested,
which attributes may occur, and which data types are allowed. The schema in
Figure 2.2 matches the example from Figure 2.1.

2.2.2 SOAP Messages

SOAP1 ([ML07, GHM+07, MGH+07]) is the messaging framework used by web
services. SOAP messages are XML documents. They consist of an Envelope

1Originally, SOAP was an acronym for “Simple Object Access Protocol”. This is no
longer the case in the current version; “SOAP” is now considered a standalone term and
appears as-is in the titles of the respective specifications.

10 CHAPTER 2. FUNDAMENTALS

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://example.org/bookOrder">

<xs:complexType name="AuthorsType">

<xs:sequence>

<xs:element name="author" type="xs:string" minOccurs="1"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="BookType">

<xs:sequence>

<xs:element name="title" type="xs:string" />

<xs:element name="authors" type="AuthorsType" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="ExtendedBookType">

<xs:complexType>

<xs:complexContent mixed="false">

<xs:extension base="BookType">

<xs:attribute name="pages" type="xs:integer" />

</xs:extension>

</xs:complexContent>

<xs:complexType>

</xs:complexType>

<xs:element name="order">

<xs:complexType>

<xs:sequence>

<xs:element name="books">

<xs:complexType>

<xs:sequence>

<xs:element name="book" type="ExtendedBookType" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="orderStatus" type="string" />

</xs:schema>

Figure 2.2: XML Schema for the document from Figure 2.1

2.2. THE WEB SERVICES PLATFORM 11

<?xml version=’1.0’ ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>

<order xmlns="http://example.org/bookOrder">

<books>

<book pages="55">

<title>Through the Looking Glass</title>

<authors>

<author>Lewis Carroll</author>

</authors>

</book>

<book pages="102">

<title>Moby Dick</title>

<authors>

<author>Herman Melville</author>

</authors>

</book>

</books>

</order>

</env:Body>

</env:Envelope>

Figure 2.3: Example of a SOAP Message

element, which can contain a Header element and must contain a Body element.
Figure 2.3 shows a very simple example. To signal error conditions, SOAP
provides a special Fault element that can be used as the content of the Body

instead of payload.

The SOAP specification provides an encoding scheme for remote procedure
calls. The next subsection introduces WSDL, which is used to describe the mes-
sages sent to and received from web services. SOAP also defines a processing
model for SOAP messages and bindings to underlying transport mechanisms.

2.2.3 Service Descriptions (WSDL)

The Web Services Description Language (WSDL) [CCMe01]2 makes it possible
to describe the interfaces of service endpoints.

A WSDL definition consists of two parts: an abstract description of the
service interface, and a concrete description specifying where to find the service
and how to access it. The abstract description starts with the types used,
expressed as an XML Schema definition3. Next are definitions of messages,
which can consist of a number of parts, each of a specific type. Port types

2The presentation here is based on version 1.1 of the language. Version 2.0 has been
published as a W3C Recommendation ([Le07, CWMe07, LHC+07, Ved07]). However, it has
not yet been picked up by the technical community. For example, WS-BPEL 2.0 (introduced
later in this thesis) and the Java API for XML-Based Web Services (JAX-WS) 2.0 [CHe06]
are both based on WSDL 1.1.

3WSDL recommends the use of XML schema to ensure interoperability, but other type
systems are permitted in principle.

12 CHAPTER 2. FUNDAMENTALS

consist of one or more operations; each operation defines an input message,
output message, and possibly a fault message. In the concrete description, a
binding specifies a transport mechanism (commonly, SOAP over HTTP) for
each port type, and the encoding to be used for each operation of that port
type. Ports specify the location of a concrete instance of a port type with a
previously defined binding. Finally, a service is defined as a bundle of ports.

2.2.4 Service Discovery

Because loose coupling is one of the key principles of SOA, the services used
in an application often are not yet known when the application is created.
As a result, it is necessary to discover services at runtime and bind them to
the application. On the one hand, these services have to offer the functionality
required by the application. On the other hand, non-functional properties such
as quality of service or trustworthiness are also important.

The Universal Description, Discovery and Integration specification (UDDI)
defined a protocol for web service registries, including formats for meta data
about services. ID-WSF, which we will introduce in Subsection 2.4.5.3, does
not support the same kind of complex service descriptions, but allows discov-
ery of services based on a user’s identity. An issue important in practice is
the selection of services based on non-functional properties, including security
properties. [BEdH+10] describes different ways to determine the trustworthi-
ness of a service in order to take it into account for service selection. These
use XACML (see Subsection 2.4.3.3) as the protocol of their Trust PDP, but
allow the subject (i. e. the service) to be omitted, so that it becomes possible to
discover services that are trustworthy according to the applicable trust policy.

2.3 Workflow Management

Workflow management is an interdisciplinary field with relations to business
administration, formal methods and software development. This section pro-
vides a brief introduction, based on [Wes07].

A business process consists of activities performed in coordination to achieve
a business goal. Activities in business processes can be performed manually by
employees or with the help of information systems. A workflow is the automa-
tion of a business process, in whole or in part. During a workflow, information
and tasks are passed between participants according to fixed rules. A workflow
management system (WfMS) is a generic software system driven by explicit
process representations (i. e. workflows) to coordinate how these processes are
performed. It can interact with workflow participants and invoke tools and
applications. It can thus be used to integrate different applications and im-
prove collaboration between knowledge workers. A workflow model consists of
activity models and execution constraints between them. A workflow instance
represents a concrete case of a workflow, consisting of activity instances.

Business processes are identified by involving stakeholders in the organ-
isation, resulting in workflows usually modelled using a graphical notation.
The workflow models are then implemented, adding technical configuration.
Several approaches exist to add the necessary configuration directly to the
graphical workflow models [WS07, MTM09, RFMP07]. These approaches use

2.3. WORKFLOW MANAGEMENT 13

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="BookOrder"

targetNamespace="http://example.org/bookOrder"

xmlns:tns="http://example.org/bookOrder"

xmlns:xsd1="http://example.org/bookOrder"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<!-- schema element from the example above -->

</types>

<message name="BookOrderInput">

<part name="body" element="xsd1:order"/>

</message>

<message name="BookOrderOutput">

<part name="body" element="xsd1:orderStatus"/>

</message>

<portType name="BookOrderPortType">

<operation name="BookOrder">

<input message="tns:BookOrderInput"/>

<output message="tns:BookOrderOutput"/>

</operation>

</portType>

<binding name="StockQuoteSoapBinding" type="tns:BookOrderPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="BookOrder">

<soap:operation soapAction="http://example.com/BookOrder"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="BookOrderService">

<documentation>Exemplary BookOrder Service</documentation>

<port name="BookOrderPort" binding="tns:StockQuoteSoapBinding">

<soap:address location="http://example.com/bookorder"/>

</port>

</service>

</definitions>

Figure 2.4: Example of a WSDL document

14 CHAPTER 2. FUNDAMENTALS

so-called annotations, which usually specify security goals on varying levels of
abstraction. The annotations refer to entities that are represented by graphical
elements. Examples of such elements include actors (users or services), repre-
sented by grouping activities they are responsible for, data flow, represented by
message edges, and activities, which constitute the basic elements of a work-
flow. The meaning of such an annotation is that the security goal is important
for the entity in question. For example, the entity has to be accessed or pro-
cessed in a specific way, or a specific instance of the entity at runtime has to
meet certain criteria. To enforce the security requirements expressed by such
annotations, they are either translated into policies evaluated at runtime, or
code is generated to that end, e. g. by inserting predefined workflow fragments.
This turns workflow management into a form of model-driven development.

For modelling workflows, the Business Process Modelling Notation (BPMN)
is a de-facto standard [Obj08]. A brief explanation of the elements of BPMN is
helpful to understand the diagrams in Appendix A. Circles represent events. In
particular, circles with a normal stroke width represent start events, while bold
circles stand for end events. In the basic case, a diagram contains one start
and one end event. Rounded rectangles represent activities. Gateways, i. e.
forks or joins in the workflow’s control flow, are represented by diamonds. The
symbol in the diamond indicates the type of gateway. A ’plus’ symbol indicates
parallel execution and a ’cross’ symbol indicates alternative execution. Solid
edges running mostly horizontally represent the control flow. Diagrams are
structured into multiple containers stacked vertically, which are called pools.
Each pool represents one actor or organisations’s view of the workflow. It con-
tains events, activities and gateways connected by control-flow edges. Pools
can be further divided vertically into lanes. Their meaning is not fixed by the
standard. A common use of lanes is the representation of different roles within
an organisation. Activities in different pools can communicate by exchang-
ing messages. This data flow is represented by dashed edges running mostly
vertically.

2.3.1 The Workflow Reference Model

Workflow
Engine

BP InstanceBP InstanceWf Instance

Modelling tool

WS interface

Worklist Handler
BP InstanceBP InstanceExternal WS

Interfaces for SACMAT‐Paper

Interface 1

Interface 2

Interface 3/4

Figure 2.5: Basic Architecture of a WfMS (WfMC Reference Model)

2.3. WORKFLOW MANAGEMENT 15

Workflows orchestrate the behaviour of services and humans. To this end,
they define a control flow and a data flow between the entities involved, based
on message passing. The reference model of the Workflow Management Coali-
tion (WfMC) [Hol95] defines an architecture for WfMS that offers this func-
tionality (see Figure 2.5). The central component is the workflow execution
engine, which has several interfaces. Interface 1 is between the engine and the
workflow modelling tool, and facilitates the deployment of workflow definitions,
including their security configurations. Interface 2 connects the worklist han-
dler to the engine. The worklist handler performs interactions of the WfMS
with users via human tasks. Note that there is usually a single worklist handler
for all users. Users can choose from different tasks, which are often available
to different users, but ultimately only performed by one user. Interfaces 3 and
4 connect the engine to applications and other WfMSs respectively. These in-
terfaces are very similar at the technical level, and the distinction is mainly
due to historical reasons. Interface 5 deals with administration and monitoring
by providing audit data to an external component and allowing a management
tool access to the engine. In SOA, workflow definitions commonly use WS-
BPEL [JE07]. Applications and other workflows are provided as web services
using SOAP [GHM+07].

2.3.2 Executable Workflows

For execution, another language is used4. The Web Services Business Process
Execution Language for Web Services (WS-BPEL, or BPEL for short) [JE07]
focusses on workflows in service-oriented architectures, i. e. compositions of
web services.

Because BPEL builds upon web services, workflow definitions include WSDL
documents. These are abstract in the sense that they do not include <binding>
or <service> elements. In addition to the usual WSDL definition, they contain
partner link types. Each partner link has a name and either one or two roles
that define the port types the communication partners must provide. In the
workflow definition itself, partner links are defined. They refer to partner link
types and specify the role assumed by the workflow and/or its communication
partner. BPEL allows variables to be specified using either a WSDL message
type, an XML Schema type, or an XML Schema element definition. A BPEL
workflow consists of a single (usually complex) activity. Simple activities, for
example, perform communication (<receive>, <reply>, <invoke>) or copy
variable values (<assign>). Complex activities provide control flow for the
activity or activities they contain (e. g. <sequence>, <if>, <while>, <flow>).
Other definitions include event and fault handlers. Correlation sets are an im-
portant mechanism allowing messages to be routed to workflow instances based
on parts of their application-specific payload.

BPEL workflows are executed by dedicated middleware components re-
ferred to as workflow engines. These engines are usually embedded in a web-
service stack that may add support for protocols facilitating functionality such
as message encryption or reliability. The level of abstraction used by BPEL

4Version 2 of BPMN, now standing for Business Process Model and Notation [Obj11],
specifies execution semantics, but is not yet commonly used.

16 CHAPTER 2. FUNDAMENTALS

also allows for the specification of more concrete and application-specific non-
functional properties, such as security.

2.3.3 Workflow Aspects

Curtis et al. [CKO92] have described common perspectives on workflow, namely
the functional, the behavioural, the organisational and the informational per-
spective. Jablonski and Bussler [JB96] used a slightly different terminology
and structure. They add the operation perspective, and differentiate the be-
havioural perspective into the actual control flow and the causality perspective.
They also add some perspectives that are cross-cutting in nature, in particu-
lar security and history. In the requirements analysis (Section 5.1), we follow
the structure introduced by Charfi and Mezini [CM06], which comprises the
following different perspectives, also known as aspects: The functional per-
spective describes the workflow elements that can be performed, i. e. tasks and
sub-workflows, and their connection with informational entities (data objects).
The behavioural perspective deals with the control flow, including temporal
and causal relationships. The organisational perspective represents the rela-
tionship of the workflow to organisational structures and who performs opera-
tions. Finally, the operational perspective focuses on the involvement of tools
and applications in the workflow.

2.4 Security

2.4.1 Different Definitions of Security

What security actually means is quite fuzzy in the literature. In order to get
a complete picture, this section summarises several sources: two established
textbooks and an international standard.

2.4.1.1 Whitman and Mattord

Whitman and Mattord [WM07] define security as “the quality or state of be-
ing secure – to be free from danger.” They identify different areas of security,
namely physical, personal, operations, communications, network and informa-
tion security.

They see information security as a combination of network security, com-
puter and data security, and information security management. Their book
focusses on the latter aspect.

The authors identify critical characteristics of information, which constitute
its value and thus need to be protected:

• Availability “enables authorised users [...] to access information without
interference or obstruction.”.

• Accuracy means that information is “free from mistakes or errors.”

• Authenticity “is the quality or state of being genuine or original.”

• Confidentiality “ensures that only those with the right and privileges to
access information are able to do so.”

2.4. SECURITY 17

• Integrity is the property of being “whole, complete, and uncorrupted.”

• Utility “is the quality or state or having value for some purpose or end.”

• Possession means “having ownership or control of some object or item.”

Information systems comprise software, hardware, data and people. To
ensure security not only of information itself, but also of the systems that use,
store and transmit it, these must be protected as well.

2.4.1.2 Pfleeger and Pfleeger

For Pfleeger and Pfleeger [PP02], security is about protecting valuable (com-
puter-related) assets against attacks. They define security in terms of three
goals: confidentiality, integrity and availability. This is a less fine-grained
version of the categorisation used by Whitman and Mattord. For example,
integrity includes accuracy, authenticity and utility, and availability includes
utility as well.

2.4.1.3 ITU Standards

The International Telecommunication Union (ITU)’s Telecommunication Stan-
dardization Sector5. has created a security framework for data networks.

X.800 [ITU91] introduces the general structure: security services for differ-
ent security goals, namely authentication, access control, data confidentiality,
data integrity and non-repudiation. These services are implemented by specific
security mechanisms, such as encipherment to ensure confidentiality. X.800 also
recognises the need for management functionality such as collection of security
audit information and key management.

X.810 [ITU95c] gives an overview of several security frameworks and defines
frameworks for authentication, access control, non-repudiation, confidentiality,
integrity, security auditing and alarms, and key management.

2.4.1.4 Summary

Security can be seen as the protection of some entities against threats. The cat-
egorisations of security vary considerably. Both textbooks classify important
properties entities can have. The difference between them is that the partition-
ing of Whitman and Mattord is more fine-grained than that of Pfleeger and
Pfleeger. By contrast, the X.800 framework classifies the mechanisms used to
achieve this protection. While some mechanisms can be mapped one-to-one to
a property (e. g. authentication ensures authenticity), this is not possible for
others.

2.4.2 Approaches to Security

But how does one achieve security goals like these? This subsection outlines
the overall analysis and design process leading to a secure system, based on
[PP02].

5Before 1993, ITU-T was known as the International Telegraph and Telephone Consul-
tative Committee (CCITT, from the French Comité Consultatif International Téléphonique
et Télégraphique). Thus, older standards still bear the CCITT label.

18 CHAPTER 2. FUNDAMENTALS

Security is about protecting valuable assets of a computing system, such
as its hardware, software and data. A chain is only as strong as its weakest
link, and the same applies to security in computing, known as the Principle of
Easiest Penetration: An attacker can use any available means of penetration.
Therefore, instead of pursuing attacks against which a strong defence has been
installed, the attacker can go for the “weakest link in the chain” and use attacks
which had not been considered when designing protections, and against which
no or only weak defences are in place.

Risks to the security of a system are opened up by vulnerabilities, i. e. weak-
nesses in the security system. A threat is “a set of circumstances that has the
potential to cause loss or harm” by triggering a vulnerability. An attack is
the exploitation of a vulnerability, originating from either a human or another
system. Dealing with threats requires implementing a control for the respec-
tive vulnerabilities. Possible controls are software controls, hardware controls,
policies and procedures, and physical controls. The number of possible threats
is uncountable, and implementing a control has a certain cost (such as time
for development and maintenance) associated with it. Moreover, a control can
introduce new vulnerabilities, and also create hidden costs by decreasing the
availability of assets, thereby impeding the normal operation of the system.
This means that controls must be justified by a significant risk, i. e. the possi-
bility for harm to occur, which happens when a threat against a vulnerability
is realised. Security must be easy to use, otherwise it will not be used at all or
deliberately circumvented6.

In conclusion, an appropriate balance between protection and availability is
necessary, and security mechanisms must be as unobtrusive and easy-to-use as
possible. Furthermore, security enforcement should be able to rely on building
blocks that are known to work well, specifically in the case of concrete measures
necessary to enforce a certain security goal for certain kinds of entities. When
these building blocks use concepts that are sufficiently abstract, using them is
straightforward. In a workflow context, it is necessary to provide mechanisms
enforcing security goals for the different entities involved in a workflow.

2.4.3 Access Control

Access control is the one of the most diverse areas of security. It is also hard
to manage, and many approaches have been proposed. This subsection thus
introduces some of the basic concepts important in workflow management and
service-oriented architectures. The purpose of access control is to control at-
tempts by users to perform certain actions on objects (e. g. reading the system
configuration). In general, access control can happen on various levels of ab-
stractions, depending on the available access mechanisms.

2.4.3.1 Basic Access-control Mechanisms

One basic mechanism is discretionary access control (DAC), which can be seen
as a function (U,O,A) → B which determines whether a user u ∈ U can
perform the action a ∈ A on an object o ∈ O. Different implementations of
DAC are possible, such as access control lists or an access control matrix.

6See Chapter 17 of [Sch00] for examples.

2.4. SECURITY 19

However, DAC becomes hard to manage with large numbers of users and
objects because the access control decision must be explicitly coded for each
combination. Therefore, Ferraiolo and Kuhn [FK92] introduced role-based ac-
cess control (RBAC). RBAC avoids this explosion of combinations by intro-
ducing an abstraction between users and objects, namely roles. Permissions
on objects are defined in terms of roles, and each user in turn is assigned one
or more roles. They are granted access to an object if they hold one or more
of the necessary roles. Management of the permission system is also easier,
as roles are coupled to the organisational structure (e.g. job positions). By
now, RBAC has become a formal standard in the United States [ANSI04]. The
RBAC reference model includes users, roles, permissions and sessions. Permis-
sions are assigned to roles, and users are assigned to one or more roles. Users
enable roles in the context of a session and then hold the permissions assigned
to these roles for the duration of the session. Extensions are addressed below.

Attribute-based access control (ABAC) is a generalisation of RBAC. The
entities involved in an authorisation decision, including subjects and resources,
are characterised by attributes. Attributes are name/value pairs and can be
issued by different organisations. Policy rules are expressed in terms of at-
tributes. The most prominent example of an ABAC-based language for autho-
risation policies is XACML, described in Subsection 2.4.3.3.

2.4.3.2 Constraints

Separation of duty prevents fraud and abuse of authority by distributing the
privileges needed to accomplish a certain result among several actors. [KF95]
describes several types of separation of duty (SoD) constraints for the RBAC
model. The simplest type is static SoD, which is based upon mutually exclu-
sive roles. Static SoD is enforced when roles are assigned to users, i. e. during
design. No user may be assigned multiple roles designated as mutually exclu-
sive. Dynamic SoD in turn requires a mechanism by which users can activate
roles. They can only perform operations allowed for their current active roles.
Dynamic SoD prevents the simultaneous activation of mutually exclusive roles.
These two types of SoD are included in the RBAC standard [ANSI04].

Several similar definitions of constraints have been proposed in the litera-
ture. Gligor et al. [GGF98] provide a formalisation of these and other types
of SoD. Ahn and Sandu [AS99] present a language that allows the definition
of separation of duty constraints. Chadwick et al.[CXO+07] present a model
called Multi-session Separation of Duties (MSoD). MSoD constraints do not
depend on user sessions but apply to business contexts, i. e. a set of business
processes for which an MSoD policy is valid. The authors define multi-session
mutually exclusive roles and mutually exclusive privileges through cardinality
constraints. This means that for a specified set of roles or privileges respec-
tively, the constraint limits the number of roles a user may activate or privileges
he may exercise to a given maximum value.

Tan et al. [TCG04] define constraints on workflow executions. In their anal-
ysis, they consider the possibility that the same task is instantiated more than
once during a workflow execution, i.e. the same permission is used more than
once. This is they reason why their definition of entailment constraints and
cardinality constraints is different from [ANSI04]. According to their defini-
tion, entailment constraints restrict who is allowed to perform a task t1 based

20 CHAPTER 2. FUNDAMENTALS

on who has performed another task t2. Examples are separation of duty and
binding of duty (i. e. the same user has to perform t1 and t2). Cardinality
constraints concern tasks which have to be performed more than once during
a workflow execution, e. g. due to loops. They define the consistency of such
constraints, i. e. whether the workflow is still executable, and develop an algo-
rithm to check the consistency. Basin et al. [BBK11] have proposed a solution
for the problem that the semantics of authorisation constraints are not precise
when a workflow contains loops: They place so-called release points for con-
straints in workflow definitions. When the execution of a workflow reaches a
release point, the constraint specified for future task executions is effectively
as if none of the tasks involved in the constraints had been executed previ-
ously. Burri and Karjoth [BK12] have defined additional constraints following
the same basic pattern.

2.4.3.3 XACML

Extensible Access Control Markup Language (XACML) [Mos05, Ris13] allows
authorisation policies to be specified. These policies specify whether a given
subject may perform a given action on a given resource, possibly taking the en-
vironment into account. They are based on attributes for subjects, resources,
actions and the environment. XACML defines a (non-normative) data flow
model for access control systems. It contains components that grant or deny
access requests (policy enforcement point, PEP), take the actual decision (pol-
icy decision point, PDP), create policies (policy administration point, PAP)
and provide context information for the evaluation of policy decision requests
(context handler). The context information includes attributes of subjects,
resources and the environment which are collected by the policy information
point (PIP), from which the context handler can retrieve them. In addition,
XACML defines a format for decision requests and results. An RBAC pro-
file [And05, Ris14b]7 describes how to encode role-based authorisation policies
using XACML. This profile also supports role hierarchies, but it does not cur-
rently support separation of duty.

2.4.4 Security in Service-Oriented Architectures

The textbook by Kanneganti and Chodavarapu [KC08] addresses security with
a focus on service-oriented architectures. The authors classify security into
network security, platform security and application security. They see the
strongest impact of the SOA paradigm on application security. The reason is
that with SOA, network security and application security become similar, as
the network takes over security tasks traditionally handled by applications.

They see similar “functional aspects” of security as in traditional appli-
cations, namely authentication, authorisation, data confidentiality, data in-
tegrity, protection against attacks, and privacy. In a SOA setting, several
“non-functional aspects” of security come into play as well: Interoperability
means making sure that adding security does not break compatibility. Man-
agebility is important because a typical SOA comprises a large number of au-
tonomous services. Another important aspect is ease of development, because
otherwise security will not be adopted.

7The RBAC profile for XACML 3.0 [Ris14b] is not yet an official OASIS Standard.

2.4. SECURITY 21

The authors identify new security approaches in SOA environments: Message-
level security allows more fine-grained protection than transport-level security.
For example, parts of the message can be usable for parties relaying a message,
while others are secured end-to-end. Security as a service allows security func-
tionality to be encapsulated. This makes security easier to use for application
services and allows it to evolve independently from application functionality.

WS-Security [LK06b] provides security on the message level. More specif-
ically, it allows the encryption and signing of SOAP messages or parts of
them. WS-Trust [Ant07] defines a protocol for handling security tokens. WS-
SecurityPolicy [NGG+07] provides for declarative specifications of security re-
quirements.

Kanneganti and Chodavarapu also describe common architectural patterns
in SOA security. Security can be enforced on the endpoints by so-called han-
dlers, or during transport using intermediaries. The latter alternative allows
message routing to be influenced in line with security requirements. When us-
ing security services to implement the actual security functionality, these can
be called explicitly by endpoints. It is also possible to call them implicitly, but
this requires special support from the network. Generic security services are
often configured using declarative policies, e. g. using WS-SecurityPolicy.

2.4.5 Identity Management

An important prerequisite to achieve security goals is to reliably manage the
identity of entities involved. Identity is “a property of a subject that enables
it to be identifiable and to link items of interest to the subject” [PH10]. In
this context, the concept of digital identity is important. It refers to attribute
values of an individual that are immediately accessible by technical means.
Individuals expose different parts of their identity in different contexts. Identity
management means managing these various partial identities.

Identity management is important for security, in particular for authenti-
cation and access control. An identity management system has to check the
identifiers and attribute values that a subject claims to possess, i.e. authenti-
cate the identity of the subject. On this basis, a system can decide whether to
grant access to a particular resource.

In the SOA context, identity management has evolved into federated iden-
tity management (FIM), a set of technologies and processes that let computer
systems distribute identity information dynamically and delegate identity man-
agement functionality to other systems [MR08]. An FIM infrastructure allows
service providers to offload the cost of managing user attributes and login cre-
dentials to an identity provider, thereby increasing scalability. It also provides
users with single sign-on (SSO), making it easier to use services from different
providers [Cha09].

From a technical perspective, there are several competing frameworks spec-
ifying FIM functionality. The most important ones are Security Assertion
Markup Language (SAML) [OAS08] and OpenID [Ope07]. The basic concepts
of SAML and OpenID are similar, but the two technologies are used in differ-
ent settings. OpenID is a lightweight protocol mainly used for user interactions
on the Web. By contrast, SAML is more suited to service-oriented architec-
tures using web-service technologies. We will therefore concentrate on SAML

22 CHAPTER 2. FUNDAMENTALS

and the technologies that extend it. The rest of this subsection presents FIM
concepts and their implementation in the SAML framework.

2.4.5.1 FIM Concepts

Architecture and administration of a federated identity-management
system The basic roles in an identity management federation are an asserting
party (also called identity provider, IdP) which makes claims about individuals,
and a relying party (also called service provider). The individual an identity
provider makes claims about is called a subject. Governance tasks in FIM com-
prise (a) establishing the relationship between users and identity providers,
i.e. creating accounts, verifying user identities by some real-world mechanism
and providing credentials, and (b) establishing a federation between an identity
provider and a service provider. This second group of tasks implies the creation
of a trust relationship, i. e. defining which identity providers are trusted to cor-
rectly authenticate users. Technically, this requires exchanging configurations
such as network addresses and public keys.

Types of identity information Identity information handled by an identity
provider takes the form of attributes, which contain some statement about the
user that may be relevant for the service provider (e. g. the user’s driving license
category). A special kind of attributes are identifiers. They uniquely identify
a user in the context of one domain or system and are usually not valid outside
of that system. It is also possible to have pseudonymous identifiers which are
only valid for the current interaction of the user with a given system (service
provider).

Transfer of identity information to service providers Regarding this
topic, there are two orthogonal criteria:

First, one has to distinguish between scenarios involving direct interaction
of the user with the service provider on the one hand, and scenarios where
two service providers interact without the user being directly involved. Direct
interactions of a user with the service provider usually happen via a web inter-
face. The service provider initiates SSO by redirecting users to their identity
provider; after the user has logged in there, the identitity provider then provides
identity information relating to that user to the service provider. Interactions
between service providers are based on on web service calls. In addition to
the payload, identity information is included in the call. Possibly, the iden-
tity provider is involved to map between identifiers valid for the two involved
service providers (cf. the explanation of ID-WSF in Subsection 2.4.5.3 below).

Second, different kinds of identity information are possible: Attributes (in-
cluding identifiers), which have been asserted by an identity provider, can be
transferred to a service provider. In addition, it is possible for the service
provider to receive tokens that enable it to act on behalf of the user.

Services based on identity information Service providers use identity in-
formation mainly for authorisation, but also for other purposes such as customi-
sation. In particular, identifiers allow recognising users throughout a multi-step
interaction such as a booking process where the user repeatedly has to take

2.4. SECURITY 23

decisions and wait for external events. Some applications require separation of
duty between different steps. For example, no user should be able to approve
their own actions. Other identifiers can be used for customisation, such as
adress data as the suggested shipping address.

An application can also use certain (non-identifying) attributes to provide
different functionality to different groups of users. For example, a car-booking
application might filter available cars depending on the customer’s driving li-
cense category. This is a case of authorisation, because rental cars are only
available to users holding a suitable driving license. The application could also
use attributes like age to adjust the presentation by preferring offers deemed
most interesting to the respective age group, while still allowing the user to
choose other offers. Finally, applications can consist of building blocks that
identity information is necessary or useful for. Examples include a travel
agency’s flight booking service, a calendar service that itinerary data is en-
tered into, or a service that authorises payment based on the user’s consent
expressed through a more secure channel.

The Identity Web Services Framework (ID-WSF) [Lib06] specifies the no-
tion of an identity web service, or identity service for short. This term is “an
abstract notion of a web service that acts upon some resource to either retrieve
information about an identity or identities, update information about an iden-
tity or identities, or perform some action for the benefit of some identity or
identities.” In other words, the functionality of an identity web service depends
on whom it provides a service for. Examples of such functionality include: (a)
Storing information about the holder of an identity (user). In this case, the
service is able to answer requests for such information. (b) Interacting with
the user and returning their decision, such as the authorisation of a payment.
(c) Services that can take a decision based on instructions from a user. In the
case of workflows, this includes a service that can declare the user’s consent to
terms of service based on a policy or on their choice on prior occasions.

Services often depend on information provided by other services. This is
also true for identity web services. To achieve their functionality, they have to
call other identity web services on behalf of the identity that invoked them, by
including credentials.

Access control based on identity information In Subsection 2.4.3.3 we
introduced XACML, a language designed for access control policies. XACML
implements attribute-based access control. When used in a federated identity-
management infrastructure, it is natural to rely on the attributes of subjects
provided by this infrastructure. Attributes are asserted by the identity provider
and have to be validated by the service provider before they are used for access
control. In the reference data-flow model of XACML, validation would be part
of the PIP’s tasks. In PERMIS [ISS], a dedicated component called credential
validation service is used. In order to enforce constraints such as separation of
duty (Subsection 2.4.3.2), identifiers are needed. These are also provided by a
federated identity-management infrastructure and validated in the same way
as other attributes.

Reliability of identity information When service providers use identity
information, especially for access control, they must be able to rely on it. How-

24 CHAPTER 2. FUNDAMENTALS

ever, the level of reliability required depends on the application. For example,
for transactions dealing with small amounts of money, less secure authenti-
cation might suffice. Write access to a resource might require a higher level
of reliability than read access. To allow service providers to assess whether
identity information is acceptable for them, so-called levels of assurance have
been specified. Levels of assurance are integer values, with Level 1 being the
weakest and Level 4 the strongest. Chadwick [Cha09] suggests distinguishing
between registered identity attributes and authoritative identity attributes.

2.4.5.2 Social and Privacy Considerations

Identity management is not only a technical issue. Dealing with digital iden-
tities also impacts social processes. In particular, it facilitates large-scale pro-
cessing of personally identifiable information. Specific legal restrictions apply
to such processing. A report by the Organisation for Economic Co-operation
and Development (OECD) [Run08] adresses public policy issues arising from
the increasing use of identity management methods.

The laws of identity [Cam06] address these and similar concerns. These are
recommendations for FIM implementations and have resulted from intensive
discussions within the identity management research community. Several laws
concern privacy aspects of FIM features and associated user-control mecha-
nisms.

One law requires the system to “only reveal information identifying a user
with the user’s consent” (Law 1). Another (Law 2) requires only “minimal
disclosure for a constrained use.” Another law requires “unidirectional” iden-
tifiers valid only for one service provider (Law 4), to prevent the combining of
identity information provided to different parties. In workflow management,
this means isolation between workflow instances. Finally, the identity system
should provide “unambiguous human-machine communication mechanisms of-
fering protection against identity attacks” (Law 6). The user experience should
be consistent in different situations (Law 7). The remaining laws (Laws 3 and
5) do not address privacy features of FIM systems, but compliance and techni-
cal interoperability in FIM systems. The laws of identity are desirable privacy
properties for any FIM system, including an FIM-enabled workflow manage-
ment system.

General privacy protection principles are also relevant to the field of iden-
tity management. Important sources for such principles are the OECD privacy
protection guidelines [OEC13] and the EU Data Protection Directive [EC95].
The OECD guidelines comprise Collection Limitation, Data Quality, Purpose
Specification, Use Limitation, Security Safeguards, Openness (e.g. about prac-
tices employed), Individual Participation (e.g. a right to information and to
demand correction of data) and Accountability. The EU Directive states prin-
ciples relating to data quality (Article 6) and defines criteria for making data
processing legitimate (Article 7), the data subject’s right of access to data (Ar-
ticle 12), the data subject’s right to object (Article 14) and rules for security of
processing (Article 17).

2.4. SECURITY 25

2.4.5.3 Technical Specifications for Federated Identity
Management

We will now briefly introduce technial specifications that implement the con-
cepts from the previous subsection. As already explained, we will only address
SAML and specifications that build on it. This should also be useful as a
reading guide to these specifications.

SAML The fundamental data structures in SAML are assertions [CKPM05],
which “carry statements about a principal that an asserting party claims to be
true”. The specification defines different kinds of statements. Authentication
statements assert that the user has been authenticated and contain the means
and time of the authentication. An attribute statement gives an attribute type
and value claimed to be true for the user. Identifiers are given in the Subject

element of the assertion, which contains a NameID element. [CKPM05] defines
different kinds of NameIDs. Core alternatives are globally unique names like
e-mail addresses and X.509 subject names, privacy-preserving persistent iden-
tifiers, which have no correspondence to an actual identifier and are specific to
a given service provider, and transient identifiers, i. e. random and temporary
values.

[CKPM05] also defines protocols, i. e. exchanges of protocol messages,
which contain assertions in most cases. Examples include the Assertion Query
and Request Protocol and the Authentication Request Protocol. Note that pro-
tocols only define messages, while bindings specify a particular transport mech-
anism such as HTTP POST. Profiles [HCH+05] define in greater detail how
to use SAML for a particular application, providing for better interoperability
between different implementations. There are two types of profiles. One con-
tains a set of rules describing how to embed SAML assertions into or extract
them from a framework or protocol. The other describes how to use SAML fea-
tures in a particular context by specifying further details left open in the core
specification. An important example is the Web Browser SSO Profile, which
implements the Authentication Request Protocol using the HTTP Redirect,
HTTP POST and HTTP Artifact bindings. It allows identity information to be
transferred from an identity provider to the web frontend of a service provider.
The SAML Token Profile of WS-Security [LK06a] allows SAML assertions to
be used as tokens in WS-Security [LK06b] headers of SOAP messages. The
service provider receiving the message has to validate the evidence provided
by the caller according to the confirmation method specified in the assertion
(e. g. that the sender holds a specific key). These two profiles accordingly sup-
port the two major ways of providing identity information to service providers,
namely through user interactions on a web frontend and through web-service
calls.

[KCM+05] defines how to express so-called authentication context, i. e. ad-
ditional information for assertions that allows service providers “to assess the
level of confidence they can place in that assertion.” The specification distin-
guishes five dimensions relevant for the reliability of identity information: (1)
Identification, i. e. how the original relationship between the subject and its
identifier was created, (2) Technical protection, i. e. how the secret allowing
the subject’s authentication is kept secure, (3) Operational protection, i. e. se-
curity procedures in place at the identity provider, (4) Authentication method,

26 CHAPTER 2. FUNDAMENTALS

i. e. characteristics of the authentication mechanism used (such as password
vs. smartcard), and finally (5) Governing agreements, i. e. the underlying le-
gal framework, such as liability constraints and contractual obligations. The
specification allows detailed stipulation of the technical or organisational mea-
sures taken. However, it leaves it to implementations to define requirements
for the authentication context or compute an aggregate value such as the level
of assurance mentioned above.

XACML, a language for access control policies, has already been introduced
above. The SAML 2.0 Profile of XACML 2.0 [AL05, Ris14a]8 defines an ex-
tension of XACML authorisation decision queries so that SAML attributes can
be transmitted to the policy decision point. This allows identity information
to be used directly for authorisation.

ID-WSF The Liberty Alliance has developed the Identity Web Service Frame-
work (ID-WSF) [JT06, Lan03]. ID-WSF uses SAML and related technologies
to facilitate identity-aware service compositions. It has several capabilities that
go beyond those of SOAP described in the previous section. In particular, ID-
WSF allows services to be discovered based on the user’s identity and provides
a privacy-friendly mechanism for service invocation. ID-WSF also specifies in
greater detail some functionality already defined by SOAP, such as SSO.

ID-WSF comprises several related specifications: The SOAP binding spec-
ification [HKA+07] defines how to invoke identity services. It defines technical
details such as SOAP headers and status codes. The ID-WSF Security Mech-
anisms specification [Hir06b] defines the use of tokens for message authenti-
cation, including tokens that specify the invoking identity. [Hir06a] specifies
how to use SAML assertions as authentication tokens. In addition, ID-WSF
defines an SSO Service that allows a system to obtain SAML assertions as
security tokens. It also defines an Identity Mapping Service that translates ref-
erences to users into alternative formats or identifier namespaces [HAMC07].
The Discovery Service specification [CC07] defines a data format to describe
(identity) web services and specifies a service that detects services of a certain
type available to a given identity.

2.5 Summary

This chapter has introduced concepts and technologies from different fields rel-
evant to the topic of this thesis. We have limited this treatment to the sound
fundaments necessary to a basic understanding of each field. This excludes
more complex concepts described in the literature, which we have yet to eval-
uate the usefulness of in relation to solving our research question. We will
address this in the next chapter.

8The new version of this profile [Ris14a] is not yet an official OASIS Standard.

Chapter 3

Related Work

In this chapter, we now present some approaches that address problems similar
to ours or parts of it. The explanations go deeper than the general overview
in the previous chapter. Moreover, some of the approaches presented provide
solutions for more concrete research questions instead of just a general frame-
work. However, the approaches do not necessarily amount to complete solu-
tions. Nevertheless, they can provide ideas for solving our research question,
or a baseline for comparison.

3.1 Policy Specifications for SOA

The WS-Policy specification [YHV+07] provides a generic model for policies
of entities in a web-service-based system. It also provides a syntax to express
such policies. Policies are structured into policy alternatives, which in turn
are collections of policy assertions. Policy assertions are application-specific
and represent “a requirement, capability, or other property of a behaviour” of
an entity. [VYO+07] provides a way to attach such policies to WSDL service
descriptions. WS-SecurityPolicy [NGG+07] uses the generic framework pro-
vided by WS-Policy. It defines policy assertions that describe the encryption
and signature mechanisms supported or required by web services. It supports
different protocols, including WS-Security.

We already rely on the security mechanisms provided by ID-WSF for confi-
dentiality and non-repudiation. The policies we require concern access control,
which is not addressed by WS-SecurityPolicy.

3.2 Access Control Models for Dynamic Environments
and Workflows

3.2.1 Team-Based Access Control

Thomas [Tho97] introduces the Team-Based Access Control model (TMAC).
It applies to collaboration scenarios where several team members are assigned
to a case and have to access data related to this case. The idea is to assign
users and objects to a team at runtime. Users have a certain role in the team,
and objects are of a certain type. Permissions are defined based on team roles
and object types. At runtime, these abstract permissions are instantiated, so

27

28 CHAPTER 3. RELATED WORK

that the holder of a team role gets access to objects of a certain type. For
example, a rule grants a doctor assigned to a case access to each patient record
related to the case. In TMAC, two team members with the same role in the
organisation but performing different tasks in the case get the same permis-
sions. Differences between the permissions of team members only result from
the roles they already possess outside the context of the team. In [GMPT01],
Georgiadis et al. extend this model with context (e.g. locations or time inter-
vals) linked to a team, and describe more formally how a user joins teams and
how the resulting permissions are computed.

The underlying ideas influenced our concept for permissions delegated to
workflow participants (Subsection 8.2.3). TMAC itself is not directly appli-
cable to workflows because it does not take workflow execution and user-task
assignment in workflows into account (see also Subsection 5.1.4.3).

3.2.2 Workflow Authorization Model

Atluri et al. [AH96] were the first to address synchronisation between the con-
trol flow of a workflow and authorisation for data processed. They present
the Workflow Authorization Model (WAM) that grants permissions for data
processed in a task to the person executing it, based on so-called authorisa-
tion templates. An extension supports roles and authorisation constraints such
as separation of duty. The authors also provide a Petri-net-based method to
determine the possible authorisation states [AH00].

At first glance, WAM addresses requirements similar to ours. However,
it directly specifies the subjects (users or programs) that have to perform a
task, reducing its flexibility. WAM cannot express complex control flow using
branches or loops, which are possible in WS-BPEL. It specifies the types of ob-
jects used and created in a task. Authorisation templates refer to object types
and enable permissions only for the objects directly involved in a task. In other
words, WAM is based on a data-centric workflow model, rather than business
workflows where the control flow of workflows plays a major role and data items
have a relationship to the workflow as a whole (see also Subsection 5.1.4.3). By
contrast, our approach, our approach in Subsection 8.2.3 allows delegations of
permissions valid for more than one task, and determines the delegate based
on the user-task assignment of the workflow.

3.2.3 Task-based Authorization Controls

Thomas et al. [TS98] present an approach called Task-based Authorization Con-
trols (TBAC). The goal of this approach is to “models access controls from a
task-oriented perspective.” Access control permissions are bound to authori-
sation, which here means an explicit act of granting permissions. TBAC intro-
duces authorisation steps, which enable a predefined set of permissions, called
the authorisation step’s protection state. These permissions are associated with
a usage count, thus eventually becoming invalid. Further, the authors specify
the possible states of authorisation steps (e.g. ‘dormant’, ‘valid’ or ‘hold’) and
the transitions between these states. TBAC also allows composite authorisa-
tions, which require approval by several actors.

TBAC is specified in a very abstract way. The specification is not detailed
enough for an implementation. The predefined permissions are static, i. e. not

3.3. DELEGATION 29

derived from some runtime information source such as users or data objects
involved in a workflow. In our architecture, explicit approvals to perform a
task are not mandatory (but described in Subsection 8.2.6). According to our
approach in Subsection 8.2.3, permissions delegated to a workflow participant
are instead based on these participants’ assignment to certain tasks. A usage
count for delegated permissions would be a possible extension. This would
have to be part of the specification of required permissions. However, we have
no requirement for such a feature, which is also not workflow-specific.

3.2.4 W-RBAC

Wainer et al.’s W-RBAC model [WBK03] uses RBAC extended with a concept
of organisations and cases (i. e. workflow instances). It supports constraints
such as separation of duty or binding of duty through predicates. Constraints
ordered by priority are a key feature of W-RBAC. Users may override con-
straints when a workflow could not continue otherwise.

This feature could augment our architecture’s support for constraints. How-
ever, none of our use cases require this feature.

3.2.5 Summary

The different approaches explained in the previous subsections differ in the
context they use for determining which subjects are granted permissions on
which resources, and regarding the significance of (workflow) tasks. All of
them have in common that the consideration of tasks is not sufficient and that
the way subjects and resources are determined does not fit our requirements.

3.3 Delegation

In environments where several users cooperate, it is necessary from time to
time to transfer privileges and responsibilities from one user to another. This
process is known as delegation. In the following, we present existing approaches
to this topic. We can broadly classify these into two groups. First, one needs to
decide under which circumstances delegation should be allowed. Second, one
needs to make sure that delegation actually takes effect, i. e. perform delega-
tion technically. Both aspects of delegation (delegation models and delegation
mechanisms) are also relevant for the implementation of advanced access con-
trol models.

Delegation models Barka and Sandhu [BS00] extend RBAC by adding del-
egation, defining characteristics useful for the classification of delegation oper-
ations. (1) Permanence refers to the time duration of the delegation, which
can be either permanent or temporary. (2) Monotonicity decides whether the
delegating user retains the rights they have delegated. (3) Totality refers to
whether a user has to delegate all permissions attached to a role, or can limit
the delegation to a subset of those permissions. (4) Administration of the del-
egation can be done by the user themselves, or by an agent on their behalf.
(5) The level of delegation can be unbounded or limited. For instance, single-
step delegation does not allow any further delegation. (6) Multiple delegation

30 CHAPTER 3. RELATED WORK

means that a user may delegate to more than one delegate at the same time.
(7) Agreement refers to how delegation is agreed between delegator and dele-
gate. It can either be unilateral (only agreed to by the delegator) or bilateral
(agreed to by both delegator and delegate). (8) Revocation is another impor-
tant issue, which can have unexpected effects. The authors describe several
delegation models and their characteristics according to this taxonomy. Later,
they describe an extension [BS04] with specific emphasis on role hierarchies.
Zhang et al. [ZAC03] provide a framework for the delegation of RBAC roles,
relying heavily on the taxonomy introduced by Barka and Sandhu. Atluri and
Warner [AW05] address the delegation of tasks in workflow systems. They
consider delegation constraints based on time, workload, and workflow vari-
ables. They analyse how to assign users to tasks so that all constraints are
fulfilled. Wainer and Kumar [WK05] define a delegation model for RBAC that
uses RBAC to represent delegation rights. These delegation rights can include
conditions on the delegate, and limit the length of the delegation chain.

Delegation mechanisms Different ways exist to implement delegation tech-
nically. The main distinction is between policy- and token-based solutions.
[TAS09b] provides a more fine-grained classification of ways for a repository
user to provide third parties with access to repository content. This scenario is
useful in a workflow context as well. The classification comprises the following
cases:

1. Direct management of the repository’s policy by the user,

2. issuing of authorisation tokens by the user,

3. issuing authorisation tokens to third parties on the user’s request,

4. evaluating “sticky policies” attached to the repository contents by the
user,

5. using a trusted delegation service that issues tokens on behalf of either
the repository or the user.

The options differ, inter alia, with respect to the security level they provide
and the standardisation efforts still required. For example, Option 1 would
give the user access to the repository’s policy. Option 2 requires agreement on
the token format used.

Technical specifications implementing both policy-based and token-based
solutions also exist. The OAuth protocol [HL10] specifies how an authorisation
server can grant access to a resource by issuing an access token. The XACML
Administration and Delegation Profile [RL14]1 allows policy-based delegation.

In Subsection 8.2.3, we describe an extension of our architecture. The
properties included in the delegation models mentioned above are useful for this
purpose (although not all of them are strictly necessary), but not sufficient: for
our solution, we also neededa more generic way to express the permissions to
be delegated. Regarding the delegation mechanism, we will rely on a delegation
service (Option 5).

1This profile is not yet an official OASIS standard.

3.4. MODEL-DRIVEN SECURITY FOR WORKFLOWS 31

3.4 Model-Driven Security for Workflows

Several researchers have pursued the approach of annotating security require-
ments to graphical workflow models, with the ultimate goal of transforming
them automatically to the enforcement level.

Wolter and Schaad [WS07] have proposed an extension for BPMN to model
authorisation constraints. The extensions comprise role specifications for man-
ual tasks, grouping of tasks, and artifacts for cardinality-based authorisation
constraints. Wolter et al. [WSM07] build upon this modelling extension, pre-
senting an approach that creates XACML policies for annotated BPMN dia-
grams. For each manual task, it creates corresponding XACML rules. Cardi-
nality constraints are transformed into XACML conditions that use a custom
function called check:history. However, the authors do not address how a
BPMS can provide for the evaluation of this function. In [WMS+09], Wolter
et al. describe the transformation framework in more detail.

Menzel et al. [MTM09] analyse some security requirements of workflows.
They define BPMN artifacts to express organisational trust and what they
call security groups, i. e. groups of tasks for which workflow designers can
specify security properties. They define measures for the value of an asset and
for trust ratings, which are used as properties of the newly defined artifacts,
e. g. to describe how severe a breach of confidentiality during the execution of
tasks would be. The transformation starts from a domain-independent security
model and uses so-called security patterns which are based on expert knowledge
of (domain-specific) security strategies.

Rodŕıguez et al. [RFMP07] have also proposed a BPMN extension for se-
curity requirements. They specify graphical notations and define the BPMN
elements to which they may be attached. A model-driven approach is suggested
to enforce the security requirements.

All these works deal with generating policies from BPMN annotations.
They differ regarding the semantics of the annotations and how they are trans-
formed into policies. The approaches of Wolter and Schaad as well as Rodŕıguez
can be adapted to generate the policies needed for workflows in our architecture
from BPMN annotations. The work of Menzel et al. addresses a very specific
problem and is of little relevance to this thesis.

3.4.1 The SECTET Model

Hafner and Breu [HB08] present a model-driven approach for the systematic de-
sign and implementation of security-critical applications in service-oriented ar-
chitectures. Compared to the approaches mentioned earlier in Section 3.4, their
approach is more comprehensive and does not focus on annotations to graphi-
cal BPMN models. The aim of model-driven security engineering is to close the
semantic gap between the security concepts used in the various development
phases. This also reduces the amount of work needed to adapt an application
to new business or security requirements. To this end, the authors have devel-
oped the Sectet framework for model-driven configuration and management
of security infrastructures. Sectet defines a modelling component, a refer-
ence architecture based on web services, and a transformation component that
translates model information into configuration code for the components of the
target architecture. Using Sectet’s domain-specific language (DSL), so-called

32 CHAPTER 3. RELATED WORK

global workflows spanning multiple organisations as well as local workflows are
defined. Together, these comprise the workflow view. They are accompanied
by a so-called interface view, which comprises an interface model, a role model
and a document model. Security policies are defined and relate to elements
of both views. Sectet’s reference architecture “specifies a component infras-
tructure based on Web services technology and specifications”. It is based on
the XACML interaction model, extended by other components. The resulting
architecture is used as the target of model transformations. In summary, work-
flow models are transformed into WS-BPEL and security configuration results
in corresponding XACML 2.0 policies.

Sectet focusses on the model-driven approach and the transformation into
the target architecture. The target architecture specified is a means to achieve
this goal. Even with a model-driven approach, it is still necessary to define a
sensible execution architecture. This is a challenging task, as interoperability
with existing specifications should be ensured. This thesis focusses on provid-
ing an execution architecture and leverages existing technologies. The resulting
architecture can be seen as a target architecture in Sectet terminology. Ac-
cordingly, both approaches can complement each other. Sectet models the
entire system and generates code for the target architecture. By contrast, our
approach is to respect the independence of parties. We have developed the
architecture of a workflow management system which interacts with other au-
tonomous parties in a service-oriented architecture. Instead of using model
transformation for all security problems discovered, we rely on autonomous
subsystems that already provide the necessary security functionality. For ex-
ample, Sectet uses an Authentication and Role Mapping Unit and specifies
its own role model. We in turn rely on authentication information provided by
a federated identity management infrastructure.

3.5 Bertino et al.

Bertino et al. [BCP06, BMPS09] describe the RBAC-WS-BPEL authorisation
model. The model consists of a role hierarchy, permissions to execute activities,
assignment of permissions to roles, and constraints expressed as relations that
must hold for the users executing two given activities. The permissions are
coded as XACML Policy elements. The roles are also expressed as PolicySet
elements. To represent the role hierarchy, the PolicySet elements for roles refer
to those for the comprised elements. The PolicySet elements for roles also refer
to PolicySet elements encoding the role-permission assignment relation. For
the constraints, a special language called Business Process Constraint Language
(BPCL) is introduced. The authors also define a simple architecture that
includes a policy enforcement point for user requests and a policy decision
point that stores both kinds of policies. BPCL supports arbitrary predicates
as constraints. However, evaluation of the predicates is not addressed.

Paci et al. [PFB09] extend this architecture in order to assign roles based
on identity attributes in a privacy-friendly way. They introduce a compo-
nent called identity manager that stores cryptographic certificates attesting
the user’s attributes. Based on a cryptographic protocol performed by the en-
forcement service and a client component running on behalf of the user, the
enforcement service can determine whether the user has the attribute values

3.6. NON-FUNCTIONAL ASPECTS IN WORKFLOWS 33

required to perform a certain task. This approach does not address privacy
with respect to identifiers when enforcing constraints.

Our approach for policies is similar to RBAC-WS-BPEL. Regarding con-
straints, we use a simpler approach and focus more on the architecture used for
their evaluation. The approach of Paci et al. can complement any architecture
involving access control based on users’ attributes, including ours. However, we
use attributes not only for access control, but also for other, application-specific
purposes.

3.6 Non-Functional Aspects in Workflows

Charfi [Cha07] has addressed the modularity of workflow specifications with
respect to cross-cutting concerns. This is important for the integration of non-
functional aspects, especially security aspects, because many of them constitute
cross-cutting concerns. To this end, Charfi adapts the approach of aspect-
oriented programming (AOP). He proposes a concern-based decomposition of
workflow specifications and presents AO4BPEL, an aspect-oriented workflow
language.

In detail, aspect-oriented languages have to define a model for join points,
pointcuts and advices. Join points are points in the execution of a workflow
that can be altered somehow by constructs of the aspect-oriented language. A
pointcut is a language construct used to select related pointcuts. Finally, an
advice, expressed in an advice language, defines the crosscutting functionality
“that needs to be executed at the set of join points that are captured by a
pointcut.” AO4BPEL defines two kinds of join points: the execution of BPEL
activities, and certain internal points during the interpretation of messaging
activities. The pointcut language is based on XPath expressions. It can select
activities directly or based on variables or partner links. One example is the
selection of all activities sending messages through a given partner link. The
advice language in AO4BPEL is WS-BPEL, i. e. advices are WS-BPEL activ-
ities. The input and output variables of the join point are made accessible to
the advice code. The same holds for information about the join point and for
messages processed at the joint point.

Charfi presents different applications of AO4BPEL. In particular, he de-
velops a framework for the integration of middleware support into WS-BPEL
workflows. Regarding non-functional requirements, he distinguishes messaging-
level requirements and workflow-level requirements. The former are associated
with messaging activities which send or receive SOAP messages. The latter,
by contrast, are associated with structured activities and cannot be directly
associated with individual SOAP messages. With respect to security, Charfi
identifies a number of message-level security requirements that can be enforced
using WS-Security. As an example of a security-related workflow-level require-
ment, he mentions the more efficient implementation of an exchange of several
messages with one communication partner. To implement the aspects, he pro-
vides middleware services which are integrated into the workflow through calls
in the advice code. This allows the integration of functionality which cannot
be implemented in WS-BPEL.

Compared with AO4BPEL, our approach focusses on an architecture for
secure workflow execution based on existing BPEL engines. Our PEP-HT and

34 CHAPTER 3. RELATED WORK

PEP-WS can be compared to the middleware services in AO4BPEL. Neverthe-
less, we use a hard-coded BPEL transformation because we do not require the
additional flexibility that AO4BPEL provides (and thus the additional com-
plexity it requires). Similar to Charfi, we also have to deal with workflow-level
requirements, in particular authorisation constraints. While AO4BPEL facili-
tates the integration of non-functional aspects, it does not reduce the complex-
ity of actually implementing solutions to specific workflow-level requirements,
which is one of the main topics of this thesis.

3.7 Support for manual activities in workflows

WS-BPEL itself does not address the integration of manual activities per-
formed by humans. This issue was the subject of independent specifications.
BPEL4People [AA+07b] specifies the integration of human activities into BPEL
workflows. It introduces a new kind of activity called people activity. WS-
HumanTask [AA+07a] defines the behaviour of applications presenting tasks
to users. It provides a state model for tasks and defines so-called generic human
roles representing actions that humans can perform on tasks. People queries
allow dynamic allocation of users to activities. However, the specification does
not define the format of these queries.

Both specifications do not address any security requirements. People queries
provide a way to integrate authorisation mechanisms for human tasks, but we
also need to support SSO in the worklist handler and use the attributes pro-
vided through SSO. Therefore, we use a custom simpler approach to represent
and handle human tasks.

3.8 Identity management and workflows

In this section, we will address two other approaches which combine workflows
with identity management.

3.8.1 Hummer et al.

Hummer et al. [HGS+11] present an approach for identity and access man-
agement in SOA. This approach is based on a new language for specifying
an organisational RBAC model. In this language, one can specify subjects, a
role hierarchy, resources and operations. Permissions are defined using roles,
resources and operations. In addition, one can specify so-called contexts and
define permissions that are only valid in a certain context. The language also
supports separation of duty, but only in the static form. The underlying sce-
nario of the approach is an inter-organisational service-oriented architecture
where each organisation provides services and defines its own RBAC model.
Workflows, which are expressed in WS-BPEL, invoke services from different
organisations using the credentials of users with sufficient permissions. In
[HGS+11], the scopes in the workflows are annotated with contexts and roles.
Contexts represent a special state of the workflow, such as an emergency con-
dition. At runtime, workflows get user credentials (name and password) from a
special service, the credential provider. The user enters their credentials at the
machine running the credential provider. Using these credentials, the workflow

3.8. IDENTITY MANAGEMENT AND WORKFLOWS 35

retrieves a SAML assertion with the user’s identity, their current role, and the
workflow context from the identity provider (it is not mentioned how the iden-
tity provider knows about the workflow context, but apparently it is provided
by the workflow). If the user is registered with another organisation’s identity
provider, the request is forwarded to it. When the workflow has retrieved the
SAML assertion, it uses it in all subsequent calls to web services that require
the same role and context. To achieve all this, Hummer et al. propose an au-
tomatic workflow transformation. In short, calls to the credential provider and
the identity provider are inserted at the beginning of scopes, and the SAML
assertion received as a reply is used as a SOAP header. The service invoca-
tions are intercepted by a policy enforcement point (PEP). This PEP checks
the validity of the SAML assertion and then requests authorisation from a pol-
icy decision point (PDP). The PDP decides the request based on the RBAC
model of the respective organisation, i. e. the one providing the service.

This approach has several shortcomings. (1) According to this approach,
workflows handle unencrypted user passwords in order to retrieve SAML as-
sertions from an identity provider. The authors refer to this process as single
sign-on (SSO), but it is not, as in line with established terminology, login cre-
dentials are (only) handled by a trusted identity provider when performing
SSO [Cha09]. (2) The approach uses an ad-hoc solution to acquire users’ iden-
tity information, in particular, SAML assertions attesting their identity. By
contrast, the approach presented in this thesis is more realistic, as it adheres
to widely-used protocols specified for this purpose. (3) The approach only
addresses the static version of authorisation constraints such as separation of
duty. (4) The evaluation only addresses performance issues, and yields rather
obvious results. It does not address the security properties of the resulting
system.

3.8.2 Identity Management and Workflows

Görig [Gör09] extends a BPEL engine so that workflows can handle identity
tokens. His implementation is based on WS-Security [LK06b], but abstracts
from the actual token type used. He proposes two different mechanisms and
respective BPEL extensions to this end. First, an attribute for incoming mes-
sage activities (such as <receive>) specifies a variable into which the user
context represented by the identity token attached to the message is saved.
The workflow can use this variable in outgoing message activities. A token
is then attached to the outgoing message when the activity is executed. Sec-
ond, Görig introduces special functions to access parts of a token, such as the
username or the value of an attribute. The token is specified by referring to
the activity that has retrieved it. Görig also proposes a declarative mechanism
to specify tokens used in outgoing messages outside of the BPEL code. The
specification mentions two activities – the activity that has retrieved the token,
and the activity that is to use it for an outgoing message.

Compared to Hummer et al., this solution only encompasses a technical
mechanism for dealing with tokens in a BPEL engine, not an entirely new
architecture. The solutions used in our architecture for accessing attributes
and for specifying the identity to be used in outgoing web service calls are
conceptually similar to those described by Görig.

36 CHAPTER 3. RELATED WORK

3.9 Solutions available on the market

As SOA is more and more widely deployed, commercial and open-source sys-
tems have picked up security issues as well. The question now is which security
functionality is available in commercial and open-source solutions. These solu-
tions often support different kinds of web-service applications, the BPEL engine
being only one module of a more comprehensive solution. We have thus looked
at security functionality for web services in general, as well as for workflows in
particular. Features we are interested in are transport security, access control,
auditing, and how the respective functionality can be configured.

We have investigated the following products:

• Apache ODE (Orchestration Director Engine)2 is a BPEL engine orig-
inally developed by Intalio and maintained as a project of the Apache
Software Foundation. ODE does not provide any dedicated security func-
tionality, but it is possible to integrate Apache Rampart for WS-Security
support.

• IBM Business Process Manager3 provides role-based access control for
people interacting with a workflow through people activities. It also
allows for access control for administrative tasks, such as inspecting the
state of running workflow instances.

• Oracle BPEL Process Manager4 support policies for web-service inter-
faces. These policies can specify message protection, authentication (based
on SAML), and authorisation.

• JBoss jBPM5’s documentation mentioned that the “[s]ecurity features of
jBPM are still in alpha stage” in version 3, but no longer does for the
current version. Apparently, security features are not actively developed
at the moment.

The conclusion is that solutions available on the market sometimes do offer
support for existing SOA security protocols. The most advanced support is
that in Oracle BPEL Process Manager. However, this support is not specially
adapted to workflows. In particular, configuration cannot refer to workflow
context. Consequently, there is no support in existing BPEL engines for more
advanced security requirements. Therefore, we only require a bare BPEL en-
gine and do not rely on proprietary security functionality.

3.10 Conclusions

We have reviewed related work from different areas and compared it with each
other and our own work presented in this thesis. Some of this work contains
interesting ideas. However, there are various shortcomings: Some approaches
are based on wrong technical assumptions, and some are not directly applicable
to either workflows, SOA, or both. To summarise, there is still no coherent

2http://ode.apache.org/
3Version 7.5; see http://www-01.ibm.com/software/integration/business-process-manager/
4http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
5http://www.jboss.org/jbpm/

3.10. CONCLUSIONS 37

and integrated solution for secure workflows in SOA. Some of the related work
addressed here will also be considered in the assessment of the state of the art
(Subsection 5.1.4).

Chapter 4

Use Cases

The research presented in this thesis was conducted in the course of the TAS3

(Trusted Architecture for Securely Shared Services) project, an integrated re-
search project funded by the European Union’s Seventh Framework Programme.
TAS3’s goal has been to develop a service-oriented architecture tailored for the
processing of personal data. A focus has been on decentralised data storage
and processing, the dynamic composition of services used in workflows, and
finally increased control opportunities for end users.

To this end, the TAS3 project has focussed on the e-health and e-employ-
ability domains. These domains are well-suited to providing representative
applications for the solutions developed by TAS3. In both domains, many
different parties are involved. Moreover, applications in both domains handle
sensitive personal information protected by law.

This section introduces use cases from both domains. They are based on
scenarios from the application partners of the TAS3 consortium as part of the
Demonstration work package (WP9) [CWK09].

4.1 Employability Scenario 1: Accreditation of Prior
Learning (APL)

Accreditation of Prior Learning (APL) is a procedure for the recognition in
higher education of qualifications acquired on the job, so that these qualifica-
tions can count towards a degree (possibly after some additional training). In
the Netherlands, APL is regulated by collective labour agreements and provided
by specialised companies, and paid for by the employer. The APL scenario has
been taken from the business of the Dutch employability company Kenteq1.

APL is representative for use cases in this and other domains: First, it
processes personally identifiable information (PII), in this case information re-
lated to the career history and job qualifications of a user. Further, it involves
experts at all stages. These experts need access to the PII of a specific candi-
date during workflow execution. We use the term e-portfolio for a repository
that documents the user’s work experience, education, professional career and
credentials. APL uses web-service calls to integrate external applications such
as e-portfolio storage.

1The explanation of APL in this thesis is based on Section 3.1 of [TAS09a].

39

40 CHAPTER 4. USE CASES

Several human actors participate in the APL procedure:

• The candidate is a user who applies for APL and does not belong to the
Kenteq organization.

• The organiser is a Kenteq employee charged with administrative tasks.

• The coach helps the candidate complete their e-portfolio (i.e. a collection
of formal qualifications and work experience not yet formally captured)
and checks available evidence (such as diplomas).

• The assessor executes the actual APL procedure. To do so, they take
formal and informal qualifications into account. Based on this, the as-
sessor validates their equivalence with certain other formal qualifications,
possibly after having requested that the candidate complete additional
training.

• The quality controller ensures that the procedure meets the quality stan-
dards of the APL code, and approves the quality of the report.

The scenario was modelled with support from Intalio using a top-down
approach, the so-called Process Modelling Framework (PMF) [GD07]. This
top-down modelling approach is based on various layers of workflow diagrams,
from one high-level diagram covering the overall flow (the “core” workflow) via
phase-level diagrams down to detailed scenario-level diagrams. This resulted
in a workflow with the following parts:

1. The Commence APL phase contains administrative tasks needed to ini-
tiate the APL procedure.

2. In the PCP Generation phase, the candidate and Kenteq employees
jointly create and validate a personal competencies profile (PCP). The
candidate can agree to store the PCP with an e-portfolio provider avail-
able as a web service.

3. The Reporting phase assesses the abilities of the candidate and creates a
formal report.

4. The Procurement phase encompasses administrative activities like creat-
ing an invoice or storing the final report in the e-portfolio.

Appendix A contains the resulting BPMN diagrams.

4.2 Employability Scenario 2: Student Work Placement

Another scenario from TAS3 is the student work-placement scenario. The mo-
tivation for this scenario2 is the importance of finding appropriate employment
opportunities for university graduates in the UK and elsewhere. This has lead
to increasing activity in the area of student work placement, which has yielded
a complex network of funding bodies and placement schemes. Managing such
programmes is becoming even more difficult because many universities rely on

2The presentation here is based on Chapter 4 of [CWK09].

4.3. TRAVEL-BOOKING EXAMPLE 41

the services of specialised placement providers. Consequently, the respective
requirements need to be captured so that the process can be performed auto-
matically as much as possible. A characteristic of this scenario is that sensitive
and personal data is exchanged between several parties involved: The student,
their university, the placement provider, and companies offering employment.
This means that flexible trust and privacy settings are important. From a tech-
nical standpoint, this scenario involves the integration of services with existing
data sources. The central processes are not automated and involve manual
actions by office workers.

The scenario comprises the following steps:

• The student registers with a placement provider. During registration,
their affiliation with a specific university is confirmed, and status infor-
mation (e.g. the degree programme the student is taking) is transferred
to the placement provider.

• The placement provider uses the status information to determine which
placement programmes the student is eligible for.

• The student selects a programme they are interested in.

• The student provides information specific to the programme by uploading
a file in a standard format or allowing direct access to an e-portfolio.

• They set a policy for this data and specify their trust requirements with
respect to services involved in the placement procedure.

• The student selects a matching service from a list of services meeting
their trust requirements.

• The placement provider releases the student’s data to the chosen service,
which then sends back a list of matching jobs.

• The student can apply for any of these jobs, but this is outside the scope
of the placement procedure.

Because this scenario was only elaborated in a late stage of the TAS3

project, it was not used for the requirements analysis. However, the con-
cepts developed based on the APL scenario are equally applicable to the work
placement scenario.

4.3 Travel-Booking Example

The use cases in TAS3 have been derived from real-world scenarios. Because
the procedures in place are heavily influenced by already mature technology,
they are, however, not fit for demonstrating advanced identity-management
features. For this reason and for ease of understanding, we needed a more
intuitive and straightforward use case.

As such, we chose a corporate travel-booking application encompassing ser-
vices for booking a flight, a hotel and a rental car. A clerk is involved, to
check whether the intended booking confirms to corporate guidelines for travel
expenses. The corresponding workflow consists of the following activities:

42 CHAPTER 4. USE CASES

• Initiate Booking : A web-service call starts the workflow. It contains
the destination, travel dates, and the reason for the trip. Only regular
employees may start the workflow.

• Authorise Travel : A manager has to authorise the trip based on the
destination, travel dates, reason of the trip, and name of the traveller.
Note that a manager may not approve their own trip.

• Choose Airline: The traveller who started the workflow can choose one
of the airlines available for the trip in question.

• Book Flight : The flight is booked by means of a web-service call to the
travel agency. This call is made on behalf of the traveller.

We can think of additional functionality that would enrich this scenario:

• The travel-booking workflow could offer custom functionality based on
user attributes. For example, it might use the traveller’s professional
status to determine the booking class (business or economy) they are
eligible for.

• Other services based on the traveller’s identity could be involved: As part
of the booking workflow, itinerary data could be entered directly into the
traveller’s calendar, or a service could authorise payment if the traveller
has given consent via a more secure channel.

Chapter 5

Requirements Analysis

In this chapter, we analyse the requirements of the architecture envisioned, in
two steps. As the first step (Section 5.1), we consider the security of work-
flows in service-oriented architectures with a broad scope. We systematically
derive security requirements based on a classification of security goals and on
different workflow aspects. We assess the state of the art with respect to these
requirements1, and formulate high-level design goals for a secure workflow man-
agement system. In the second step, we address the integration of federated
identity management (FIM) into a workflow management system (Section 5.2).
To this end, we first set design requirements that a workflow management sys-
tem should follow. We then consider how individual pieces of FIM functionality
can be implemented in such a system2.

5.1 Overall Security Requirements

In this section, we determine security requirements of workflows (and workflow
management systems) in service-oriented architectures. First, we set out the
methodology used (Subsection 5.1.1). We then perform the requirements anal-
ysis according to this methodology (Subsection 5.1.2) and assess the resulting
requirements with respect to the state of the art (Subsection 5.1.4). Finally,
we define and explain high-level design goals for the implementation of a secure
workflow management system (Subsection 5.1.5).

5.1.1 Methodology

We have structured our analysis of security requirements specific to workflows
in service-oriented architectures along two dimensions. The first dimension
takes the different perspectives on workflows (Subsection 2.3.3), i. e. the func-
tional, the behavioural, the organisational, the informational and the opera-
tional aspects, into account. Security has also been described as a workflow
aspect by some researchers. However, we consider it separately, as we want
to analyse its relationship to the perspectives listed above. For the second di-
mension, we rely on a widely used taxonomy for security functionality. While

1This part of the chapter was partly published in [MMvSB10].
2This part of the chapter was published in [MB14].

43

44 CHAPTER 5. REQUIREMENTS ANALYSIS

there are some differences in terminology between various textbooks and stan-
dards (cf. Subsection 2.4.1), they agree in fundamental points. Here, we use
the multiple security frameworks listed in ITU-T Recommendation X.810 (cf.
Subsection 2.4.1.3). In the following, the term security facets is used for the
functionality described by the frameworks, i. e. authentication, access-control,
non-repudiation, confidentiality, integrity, security audit and alarms, and key
management.

All security facets are essential to yield a secure workflow execution. In the
following, we will focus on workflow-specific security requirements, but natu-
rally, there are requirements that are not specific to workflows but need to be
fulfilled as well. For instance, ensuring the confidentiality of web-service invo-
cations is no different for workflows and other applications in service-oriented
architectures.

5.1.2 Requirements Analysis

The structure of this section is based on the different security facets. For each
of these, its relationship to the different workflow aspects is explored. We
illustrate the requirements with examples from the APL use case.

5.1.2.1 Authentication

Authentication means verifying that something is genuine or original. In the
workflow context, this refers to the different entities involved in a workflow and
to their properties.

The functional and behavioural perspectives describe the elements and
structure of the workflow, which have to reflect the business objectives of the
service provider running the workflow (i. e. Kenteq). This means the work-
flow model has to be created by or on behalf of the service provider and its
genuineness has to be ensured.

Example 1 (Genuine Workflow Models): Kenteq’s APL workflow con-
tains the actions that need to be performed before a certificate can be issued,
and the conditions that must be fulfilled. This procedure must be strictly adhered
to in order to accomplish Kenteq’s business objectives.

Based on this, we formulate the following requirement:

• R1: Workflow models deployed on and executed by the system must be
authentic, i. e. originate from the company running the workflow.

The informational perspective concerns data used in the workflow. This
data can serve two purposes: First, it can influence the execution of the work-
flow itself through decision gateways. In this case, we have a connection to
the behavioural perspective. Second, it can serve as input for operations in
the workflow. In both cases, authentic input is necessary to get authentic out-
put. However, authentic input is not sufficient: to ensure authentic output, the
transformation has to be trusted.

Example 2 (Authentic Data): In APL, a so-called personal competency
profile (PCP) is created that reflects the competencies of the candidate. It can
be based on prior certificates (such as diplomas). This information is used

5.1. OVERALL SECURITY REQUIREMENTS 45

to decide whether additional tests are necessary, and is the basis for the final
APL certificate. Diplomas are issued by third parties (such as universities) and
retrieved from the candidate’s e-portfolio, which is maintained by another third
party. Kenteq must be able to rely on the information provided by these third
parties.

This results in the following requirements:

• R2: The system must check whether data relevant to the workflow comes
from a trusted source.

• R3: It must be possible to specify which data sources or services trans-
forming data are trusted.

The operational perspective concerns the services involved. The system
must know which service a workflow is talking to, otherwise it cannot determine
whether it is trusted, for instance. This also holds vice versa: Services must
know which service provider has invoked an operation, and for which user.

Example 3 (Authentication for Web-Service Calls): APL uses data from
an e-portfolio. Kenteq trusts certain e-portfolio repositories to provide authentic
data. Kenteq also stores the final report in the candidate’s e-portfolio. The
repository needs to know that Kenteq initiated this operation on behalf of the
candidate. The interaction with the repository can consist of several steps, like
creating and later amending the e-portfolio.

From this example, we can derive the following requirements:

• R4: The system must be able to authenticate services invoked by the
workflow.

• R5: Services must be able to authenticate the service provider running
a workflow that invokes their operations.

• R6: Workflows must be able to call services on behalf of users. Services
must be able to authenticate the user on whose behalf a workflow invokes
the service’s operations.

• R7: Service providers must be able to link messages referring to the same
user, throughout one or more workflow instances.

Finally, the actors involved in the workflow are important (organisational
perspective) – they influence the execution workflow. Thus, only certain users
may perform tasks. In addition, certain tasks must be performed by the same
person, or may not be performed by the same person (as detailed below). Not
all participants are directly known to the organisation running the workflow.

Example 4 (Authentication of Users): Kenteq has specific employees that
may act as assessors. Assessors may not act as coaches in the same APL case.
The candidates have likely did not have previous contact with Kenteq before the
APL procedure, but have accounts with their current employer’s system that
they would like to use for Kenteq as well.

From this, the following requirements result:

46 CHAPTER 5. REQUIREMENTS ANALYSIS

• R8: The system must be able to reliably determine the properties of
actors.

• R9: The system must be able to determine whether a user is the same
as one who has previously accessed the system.

• R10: Users should be able to use existing accounts for authentication.

5.1.2.2 Access Control

The goal of access control is mainly to prevent unauthorised use, disclosure
and modification. In connection with workflows, this concerns different kinds
of entities which relate to the different workflow perspectives. These entities
include the start of workflow instances and the execution of workflow activities
(both relating to the functional perspective), decisions that affect the execution
flow (relating to the behavioural perspective), and accessing data related to the
workflow (relating to the informational perspective). Access control for these
entities depends on the user seeking access, thus creating a connection to the
organisational perspective.

Workflow Start

Example 5 (Workflow Start): A user gets an APL voucher from their
employer. Their permission to use APL is connected to their account. They
go to the Kenteq website and can start APL. The system assigns this APL
instance to them.

• R11: A user must be able to start a workflow instance if and only if they
have the necessary credentials.

Actually, starting a workflow is merely a special case of performing a task
in it. Thus, the requirements in the following subsection also apply.

Workflow Activities The control flow of workflows is driven by the execu-
tion of activities. The WfMS performs some activities autonomously, but most
require a user to perform them. In the latter case, access control mechanisms
determine who may perform which activities. From the following examples,
we can derive various requirements that the access control mechanisms must
meet.

Example 6 (Explicit Manual Assignment): APL requires the coach and
assessor to be familiar with the field the candidate works in. This decision is
not taken based on a fixed security policy. Instead, in the Allocate Resources
task, the organiser chooses the users to perform these roles based on business-
related criteria. This choice is valid for a particular APL case. However, each
coach/assessor assigned manually must still fulfill the general criteria for these
positions.

• R12: It must be possible to group tasks in a workflow model with com-
mon responsibility.

5.1. OVERALL SECURITY REQUIREMENTS 47

• R13: Assignment of responsibility must be possible based on an explicit
decision by a human actor or by some workflow logic.

• R14: Assignment must be possible on the workflow instance level, i. e.
different assignments for each instance.

• R15: The system must control whether someone manually assigned re-
sponsibility for certain tasks meets the criteria these tasks demand, i.e.
possesses the necessary roles or attribute values.

• R16: Explicit assignment of responsibility (R13 has to be subject to the
same restrictions as (other) tasks (in particular R13 and R17).

In contrast to this example, the next example concerns the allocation of
tasks when no manual assignments have been made.

Example 7 (Automatic Allocation of Tasks): The APL procedure requires
an organiser to perform some purely administrative tasks. Any available clerk
can perform them – it does not matter who.

This leads to the following requirement:

• R17: When no user has been explicitly assigned to a task, the system
should allow any available user to perform it, as long as they are eligible.

The following examples introduce requirements to limit which tasks users
can carry out based on the relationship between tasks. Some of these require-
ments are well-known from the literature.

Example 8 (Binding of Duty): The duties of actors involved in APL are
often interrelated. For instance, the assessor has to write a report based on
their interview with the candidate. This means that the same person must
perform these two tasks (the interview and report). The workflow is started on
behalf of the candidate, who has to perform several tasks in it.

This example leads to a requirement known in the literature as binding of
duty (cf. Subsection 2.4.3.2):

• R18: The system must allow the specification of a single actor to perform
all tasks in a group of related tasks.

• R19: It must be possible to specify that the user who started a workflow
instance must also perform other tasks in this instance.

Example 9 (Reassignment of Duty): The APL for candidate John has
been running for some time. His coach, Bob, goes on vacation. Before doing
so, he agrees with Jane that she will take over coaching John, so that John’s
APL is not delayed. Like Bob, Jane is a qualified coach for John’s employment
domain.

This example shows that strict binding of duty is sometimes unsuitable,
even in non-emergency cases. Accordingly, a controlled mechanism to override
it is necessary. The requirements arising from this example are as follows:

48 CHAPTER 5. REQUIREMENTS ANALYSIS

• R20: The system must allow actors to reassign their involvement in a
workflow, including their responsibilities and privileges to perform tasks
and access related data.

• R21: The user to whom the assignment is transferred must fulfil the
applicable constraints, just like the original assignee (as specified in R15
and R17).

The following example shows a possible conflict of interest in the APL
usecase. Such conflicts are usually remedied by introducing separation of duty
(cf. Subsection 2.4.3.2, as well).

Example 10 (Conflicts of Interest): In any APL case, the coach helps the
candidate complete their e-portfolio, and the assessor examines it. There is a
conflict of interest between these tasks, as the assessor is implicitly evaluating
the quality of the coaching as well. Further, an assessor’s request to revise the
e-portfolio will incur additional work for the coach.

The resulting requirement is as follows:

• R22: The system must enable the specification of tasks that are in con-
flict. It must not assign the same user to conflicting tasks in the same
workflow instance.

Data In the following example, we examine how data, especially personal
data, is used in the APL workflow.

Example 11 (Use of Externally Stored Data): A coach and an assessor
are in charge of an APL candidate. To fulfil their duty, they need access to
the candidate’s personal data, such as a diploma stored in their e-portfolio.
The candidate must agree to this use when they start APL. The assessor may
only access the e-portfolio once the coach has approved this. Kenteq might also
outsource steps of the APL procedure to external service providers who need
access to the data as well.

This example results in the following permissions:

• R23: The system must grant human actors in a workflow the permissions
they need to perform their tasks.

• R24: The system must allow workflow designers to specify which kind
of data is needed for which tasks.

• R25: The system must let users permit the workflow and the actors
involved in it to access their personal data.

• R26: When external services are involved in the workflow, the system
must be able to grant them access as well.

• R27: The system must not allow access (according to R23 and R26) to
data not relevant to the current workflow instance.

• R28: The system must be able to restrict access to the time when par-
ticular tasks are being executing.

5.1. OVERALL SECURITY REQUIREMENTS 49

Web Services Workflows invoke web services to achieve their functional-
ity. Personal data is disclosed to the services, and these services influence the
outcome of the workflow. Consequently, controlling the choice of services is
crucial.

Example 12 (Web Services): A new APL candidate does not yet have
an e-portfolio, so the workflow needs to access a service provider to create one.
Several providers are available, and the candidate wants to select one they trust.
As the candidate often has to make these types of choices, they want to reuse
their usual settings. At the end of the APL procedure, the Upload PCP task
stores the PCP in the e-portfolio.

This gives rise to the following requirements:

• R29: The workflow must respect user settings when selecting service
providers. If specified, the user must be able to confirm the service selec-
tion.

• R30: Users must be able to choose service providers based on certain
trust indicators.

• R31: The system must ensure that only service providers trusted by the
organisation running the workflow are used. This is a generalisation of
R3 that is applicable as well e. g. to services data is only sent to, but not
received from.

5.1.2.3 Non-repudiation

Non-repudiation as a security goal means that the originator of some action or
information cannot deny it.

Example 13 (Reliance on results from business partners): When Kenteq
outsources some part of the APL procedure, it must be able to rely on the
result. In particular, the company wants to have legal remedies at its disposal
for the case that incorrect results occur due to negligence on the part of business
partners. This is only possible if Kenteq can prove that the result originates
from a particular business partner. Conversely, Kenteq stores the complete
APL certificate in an e-portfolio. Because other organisations (such as future
employers) rely on the content of the e-portfolio, Kenteq is responsible for the
accuracy of the APL certificate. Thus, proof is needed that the certificate was
issued by Kenteq.

This results in the following requirements:

• R32 Messages from external service providers to the workflow should be
attributable to them, with minimal risk of repudiation.

• R33 Messages from the workflow to external service providers should be
attributable to it, with minimal risk of repudiation.

50 CHAPTER 5. REQUIREMENTS ANALYSIS

5.1.2.4 Confidentiality

Example 14 (Sensitive data in web-service calls): When the APL work-
flow calls external services, sensitive personal data is transmitted. The candi-
date wants their data to be protected from disclosure to others. Both Kenteq and
the external service provider have a legal obligation to provide such protection.
The same holds when personal data is shown to the coach or the assessor.

This results in the following additional requirements:

• R34: Messages from the workflow to external service providers must be
protected against unintended disclosure to third parties.

• R35: Messages from external service providers to the workflow must be
protected against unintended disclosure to third parties.

• R36: Data shown to workflow participants must be protected against
unintended disclosure to third parties.

Example 15 (Unrelated workflow instances): A candidate performs APL
at Kenteq because it was offered to them by their employer. Later, they use
Kenteq’s services to look for a new job. The user does not want the two cases
to be linked without their consent.

Based on this example, we can formulate the following requirement:

• R37: It should not be possible to link user identities used in unrelated
workflow instances.

5.1.2.5 Integrity

Integrity means that something is complete and uncorrupted, and can apply
to different entities involved in a workflow. Integrity means protection against
unauthorised modification, deletion, creation, insertion and replay [ITU95b].
When integrity is provided for the system the WfMS is running on, its data
storage and its communication links, and the WfMS performs access control
correctly (according to the requirements introduced above), no special work-
flow requirements remain. For this reason, we only state one very generic
requirement:

• R38 The system must ensure the integrity of workflow definitions, the
data used in workflows, and the communication performed by workflows.

5.1.2.6 Security Audit and Alarms

With respect to workflows, security audits must capture all entitities involved
in a workflow, as captured by the different workflow perspectives. Another
important factor is who needs to have access to the audit information.

Example 16 (Audit): Candidate John goes through APL. His first profile
is not accepted by the assessor, so he has to revise it. In the meantime, his
first coach goes on vacation, so he is supported by another coach the second
time. At the end, based on John’s decision, a new e-portfolio is created and his
certificate is stored in it.

5.1. OVERALL SECURITY REQUIREMENTS 51

This example illustrates the following audit requirements:

• R39: The system must let authorised users audit which tasks were exe-
cuted and which branches were taken in a workflow.

• R40: The system must let authorised users audit who performed each
task in the workflow.

• R41: The system must let authorised users audit which services a work-
flow has invoked.

• R42: The system must let authorised users audit which data was pro-
cessed or transferred in the workflow.

Example 17 (Information for End Users): John is interested in finding
out how his data was used by Kenteq. He also has a legal right to access this
information.

This leads to the following requirement:

• R43: Users should be able to access audit information concerning work-
flows that have handled their personal data.

5.1.2.7 Key Management

Cryptographic keys are used mainly to ensure confidentiality and non-repudiation.
Key exchanges are connected with the establishment of trust relationships. The
first question here is which kinds of data and messages require encryption or
cryptographic signatures. Following on from this, the second question is how
trust relationships are established.

Example 18: Trust Relationships A candidate should be able to access
the workflow via their existing account with their employer.This means the
candidate’s employer must authenticate them and notify Kenteq of the authen-
tication.

During the workflow, web services are discovered and invoked. This invoca-
tion requires a trust relationship to ensure non-repudiation and confidentiality.

This example results in the following requirements:

• R44: It must be possible to configure trusted sources of authentication
information.

• R45: The system must be able to retrieve the keys of service providers
that it exchanges messages with.

5.1.3 Summary of Security Requirements

We have analysed the security requirements based on a categorisation of se-
curity functionality and workflow perspectives. The examples stem from a
real-world application that handles sensitive data which demands an increased
level of security.

On this basis, we deem these requirements representative for a broad range
of applications. In a nutshell, they emphasise the use of workflow state for secu-
rity decisions and the distributed, sometimes inter-organisational environments
that modern workflows run in.

52 CHAPTER 5. REQUIREMENTS ANALYSIS

5.1.4 Assessment of the State of the Art

This chapter analyses whether existing technology solves the requirements pin-
pointed in the previous chapter or at least contributes to a solution. This
assessment includes industry specifications (Chapter 2), proposals from the
academic literature (Chapter 3) and available software3.

The remainder of this chapter first establishes the technological baseline
that the assessment is performed against. The assessment itself comes next.
Its structure is based on the same security goals as the requirements analysis.
However, it also takes the layers of a given system into account. Table 5.1 lists
the section where each requirement is addressed.

5.1.4.1 Technological Baseline

This thesis does not try to build the entire architecture needed to fulfil the re-
quirements from scratch. Rather, it focusses on workflows in a service-oriented
architecture and builds on technologies already established in this field.

The respective technological baseline includes the core web-services plat-
form as introduced in Section 2.2, and BPEL for service orchestration (Sub-
section 2.3.2). From this baseline we can perform a well-structured assessment
as follows: First, we determine state of the art that can be combined with
the technological baseline. Then, we analyse how to achieve this combination.
The goal here is to provide a first step towards fulfilling the requirements.
This reduces the amount of work needed, and facilitates interoperability of the
architecture envisioned with existing technology.

5.1.4.2 Non-repudiation and confidentiality

R32, R33 (Subsection 5.1.2.3), R34, and R35 (Subsection 5.1.2.4) require non-
repudiation and confidentiality for web-service messages exchanged between
the workflow and external web services. Usually encryption is used to provide
confidentiality, while cryptographic signatures guarantee that a message orig-
inates from a entity holding a certain signature key (non-repudiation). Both
mechanisms rely on asymmetric encryption schemes like RSA [RSA78]4. WS-
Security [LK06b] makes it possible to encrypt and sign SOAP messages, meet-
ing the above requirements.

WS-BPEL recommends secure transport using WS-Security. However, this
is not mandatory. This also implies that the configuration is not standardised.
Another open issue is key management, addressed below. AO4BPEL (Sec-
tion 3.6) provides a possible way of integrating message handlers into BPEL
workflows. However, it does not define how to implement the functionality
itself, in particular how to integrate it with service discovery and key manage-
ment.

R36 requires confidentiality for data shown to human workflow participants.
When using a web interface to involve human users, HTTPS [Res00] provides
confidentiality for the connection. In order to provide end-to-end confidential-
ity, integrity of the user’s system must be ensured. However, this problem is
not workflow-specific and outside the scope of this thesis.

3The content of this chapter was partly published in [MMvSB10].
4Encrpytion is also possible using only symmetric schemes, but this complicates key

management.

5.1. OVERALL SECURITY REQUIREMENTS 53

Security goal Area Requirement Assessment in

Authentication Workflow Models R1 Subsection 5.1.4.6
Data R2 Subsection 5.1.4.4

R3 Subsection 5.1.4.4
Web Services R4 Subsection 5.1.4.8

R5 Subsection 5.1.4.8
R6 Subsection 5.1.4.8
R7 Subsection 5.1.4.8

Users R8 Subsection 5.1.4.7
R9 Subsection 5.1.4.7
R10 Subsection 5.1.4.7

Access Control Workflow Start R11 Subsection 5.1.4.3
Activities R12 Subsection 5.1.4.3
(including Allocation) R13 Subsection 5.1.4.3

R14 Subsection 5.1.4.3
R15 Subsection 5.1.4.3
R16 Subsection 5.1.4.3
R17 Subsection 5.1.4.3

Constraints R18 Subsection 5.1.4.3
R19 Subsection 5.1.4.3
R20 Subsection 5.1.4.3
R21 Subsection 5.1.4.3
R22 Subsection 5.1.4.3

Data R23 Subsection 5.1.4.5
R24 Subsection 5.1.4.5
R25 Subsection 5.1.4.5
R26 Subsection 5.1.4.5
R27 Subsection 5.1.4.5
R28 Subsection 5.1.4.5

Web Services R29 Subsection 5.1.4.4
R30 Subsection 5.1.4.4
R31 Subsection 5.1.4.4

Non-repudiation R32 Subsection 5.1.4.2
R33 Subsection 5.1.4.2

Confidentiality R34 Subsection 5.1.4.2
R35 Subsection 5.1.4.2
R36 Subsection 5.1.4.2
R37 Subsection 5.1.4.2

Integrity R38 Subsection 5.1.4.10
Security Audit and Alarms R39 Subsection 5.1.4.9

R40 Subsection 5.1.4.9
R41 Subsection 5.1.4.9
R42 Subsection 5.1.4.9
R43 Subsection 5.1.4.9

Key Management R44 Subsection 5.1.4.6
R45 Subsection 5.1.4.6

Table 5.1: Overview of requirements and their assessment

54 CHAPTER 5. REQUIREMENTS ANALYSIS

5.1.4.3 Access Control for Workflow Activities

We have stated a number of requirements relating to controlling who performs
(manual) workflow activities. In Subsection 2.4.3.1, we introduced traditional,
non-workflow-oriented access control models. These models do not contain any
notion of a workflow or the activities one consists of. However, they can be
applied to workflows in a straightforward way in order to perform access control
for individual activities, by considering them to be resources. This way, R11
and R15 are fulfilled.

There are also several approaches for authorisation constraints based on the
relationship between activities (Subsection 2.4.3.2). Support for binding-of-
duty (R18, R19) and separation-of-duty (R22) constraints are described thor-
oughly in the literature. The approaches support instance-specific evaluation
of constraints (R14). The work of Basin et al. [BBK11] provides a solution for
constraints when loops exist in the workflow schema.

Most older access control models for workflows are based on RBAC. How-
ever, adaption to ABAC to fully support R15 is straighforward. For example,
the architecture presented by Hummer et al. (Subsection 3.8.1) uses ABAC.
We deem groups of activities (R12) important for coupling permissions on data
(see Subsection 5.1.4.5 below) with assignments to these groups. There is no
concept for activity groups and the assignment of users to them in existing
models.

A reassignment mechanism (R20, R21) is also absent from existing models.
Reassignment a type of delegation (Section 3.3) that transfers both privileges
and responsibilities. We require bilateral agreement for a reassignment to take
effect. In addition, reassignment is related to task groups. The reassignment
mechanism overrides active binding-of-duty constraints. In this respect, it is
similar to the overriding of constraints in W-RBAC (Subsection 3.2.4). Finally,
the mechanism has to consider permissions on data.

In addition to the shortcomings of the theoretical models, existing specifica-
tions and systems have insufficient support for the integration of access control.
BPEL4People and WS-HumanTask (Section 3.7) address the integration of
manual activities into BPEL workflows. There is an extension mechanism that
allows for dynamic allocation of users to activities, and could thus support the
requirements mentioned so far. However, the format of these queries is not part
of the specification. Mendling et al. [MPS08] have investigated how separation-
of-duty constraints can be enforced using BPEL4People. They determine that
this is possible in general, but not in all situations. One problematic case is
that of two activites which can be performed concurrently.

One must be able to express authorisation requirements, including con-
straints. To this end, suitable policy languages are required. XACML (Sub-
section 2.4.3.3) can be easily profiled for workflow tasks. However, the RBAC
profile does not address separation of duty. The policy languages proposed by
Bertino et al. (Section 3.5) support role-based authorisation and constraints.
However, they do not support activity groups and reassignment.

Finally, we require support for two different strategies for allocating users
to activities: explicit allocation (R13) and automatic allocation (R17). It is
possible to implement explicit allocation manually in a WS-BPEL workflow.
The system still has to apply security mechanisms in order to fulfil R15 and
R16. Automatic allocation to any eligible user is the default strategy in many

5.1. OVERALL SECURITY REQUIREMENTS 55

commercial systems such as Intalio BPMS 6. Further work is necessary to
integrate allocation mechanisms and authorisation constraints.

5.1.4.4 Selection of Trusted Web Services

R30 and R31 require an infrastructure that can determine a trust score for web
services, both from the perspective of users and the organisation running the
workflow. Solutions to this problem are the subject of ongoing research. A
generic policy-based solution must comprise a format to represent user prefer-
ences and tools to edit preferences. Moreover, the selection and confirmation
by the user (R29) has to be integrated into the workflow execution. WS-BPEL
allows workflows to select web services at runtime by explicitly defining ap-
propriate code. We need a mechanism to easily integrate the necessary user
interactions into existing workflows. Making sure that the services used are
trusted by the organisation running the workflow also meets R2 and R3.

5.1.4.5 Access Control for Data Related to a Workflow

Roughly speaking, requirements R23 to R28 seem to suggest the need for a
mechanism that grants access to data somehow related to the workflow. The
permissions granted have to be in sync with the execution of the current work-
flow instance. Section 3.2 presents some models for access control in dynamic
environments and workflows. We will now assess their suitability based on the
above requirements.

TMAC assigns resources to cases. It does not take activities into account,
so it cannot grant a permission just to a person performing a certain task.
More specifically, two team members with the same role in the organisation
but performing different tasks in the case are granted the same permissions.
This means that TMAC does not fulfil R23 and R28. WAM fulfils the re-
quirements at a basic level. However, it directly specifies the subjects (users
or programs) that have to perform a task, not just the criteria for eligibility.
WAM specifies the types of objects used and created in a task. WAM thus
only grants permissions for the duration of an activity, not a whole sequence
of activities. This contradicts R28. Authorisations in TBAC directly refer to
subjects and objects. TBAC does not derive the actual subjects and objects
from the workflow context, so it does not meet R23.

On a more technical level, the system must gain permissions on data related
to the workflow and grant them to users needing access. In particular, R25
requires that users are able to explicitly grant permissions to the workflow.
As stated in Section 3.3, this is an example of delegation, administered by
the WfMS acting as an agent on the data owner’s behalf. Both policy- and
token-based solutions can be leveraged here.

5.1.4.6 Configuring Trust Relationships

R1, R44, and R45 all concern the configuration of trust relationships essential
for the functionality of the WfMS: Who can deploy workflow models? Who can
assert user properties, giving users access to activities and data? How can the
WfMS be sure it is actually talking to a web service it considers trusted? From
a technical perspective, this is achieved by making the respective credentials
known to the system, i. e. for the administrative account allowed to deploy

56 CHAPTER 5. REQUIREMENTS ANALYSIS

workflow definitions, and public keys of identity providers. Authentic public
keys of service providers are usually retrieved from a service registry.

5.1.4.7 Authentication of Users

R8 and R9 require that the system is able to determine users’ properties and
recognise users throughout the execution of the workflow. Users must be able
to reuse their existing accounts to this end (R10).

To meet these requirements, the WfMS has to rely on information provided
by trusted sources (R44, Subsection 5.1.4.6) in an FIM infrastructure. We
have described FIM technologies in Subsection 2.4.5.3. SAML and ID-WSF
support SSO, allowing users to reuse their accounts. They also provide users’
attributes and identifiers to service providers. Support for SSO has to be
integrated into the user interface of the WfMS, though. It is not present in
current systems. In addition, it has to be coupled with the access control
functionality (Subsection 5.1.4.3).

Recognising users throughout the workflow (R9) is only possible when the
lifetime of the user’s pseudonym allows this. R37 requires that workflow in-
stances are prevented from combining information they possess about users.
This combination would be easy if different workflow instances know a user by
the same pseudonym. A solution would be different pseudonyms per workflow
instance. However, this is not supported by the SAML framework, as it only
provides different pseudonyms for different service providers.

5.1.4.8 Authentication and Identity Management for Web-Service
Calls

R4 and R5 require that the service provider running the workflow and the one
running services invoked by it are able to authenticate each other. Signing
the messages exchanged is possible using SAML and WS-Security and meets
these requirements. In addition, proper exchange of public keys is necessary
(Subsection 5.1.4.6).

The ID-WSF protocol suite defines how to perform web-service calls with
the identity of a user. This meets R6. However, integration into the WfMS
is currently absent. ID-WSF also defines an identity-mapping service that
supports different identifiers for each service provider. This mapping service
allows service providers to recognise users independent of the workflow instance
that has invoked the service. It accordingly meets R7.

5.1.4.9 Audit

The WfMC has specified an audit data format for workflows [WfMC98] and
started to develop an XML-based successor [zM08]. Both formats focus on
the execution only, i. e. the state of workflow instances and activities. They
do not address data handling and the messages exchanged between workflow
instances. Weske [Wes07] mentions a monitoring component that visualises the
state of workflow instances but does not state what a visualisation of this kind
should look like. The Intalio Designer BPMS Console5 lists available workflow
definitions and instances, and marks activities currently running. However,

5http://www.intalio.com/bpms/designer

5.1. OVERALL SECURITY REQUIREMENTS 57

it does not address data transfer and is targetted at administrators, not end
users.

In summary, our assessment is as follows: Preliminary approaches for cap-
turing audit information exist. They fulfil R39, but not R40, R41, and R42.
The presentation of audit information is not suitable for end users and thus
does not meet R43.

5.1.4.10 Overall Integrity

Overall system integrity (R38) is a very general requirement. A lot of other
requirements contribute to it. The components used to build a WfMS also have
to meet this requirement, and the environment has to meet the assumptions
made when designing the system. As such, a final assessment regarding this
requirement is not possible at this stage.

5.1.4.11 Summary

Service-oriented architectures can support applications with sensitive, person-
ally identifiable information. We have assessed the requirements of such an
application with respect to the state of the art. Existing SOAs already feature
security mechanisms, but it is not clear how these satisfy the security needs
of workflows. Some approaches work within specific problem areas only. All
of this calls for a comprehensive analysis that can act as a baseline for design-
ing mechanisms to secure workflows. We have evaluated related work from
different sources and identified open issues. In particular, existing approaches
address our requirements only partially. Moreover, most of them are not in-
tegrated into any WfMS. This assessment will be useful for designing security
mechanisms for workflows that fit well into existing WfMSs and are embedded
into an open security framework.

5.1.5 High-Level Design Goals

The functional requirements stated above are manifold and address different
levels. For example, we have already hinted at aspects such as configura-
tion. Our goal is to provide a workflow management system that fulfils these
functional requirements. We can only achieve this with a focussed approach,
otherwise we cannot expect any reusable insights or even to yield a useful archi-
tecture at all. Therefore, we will now formulate and explain design goals which
will help us in the development and evaluation of our architecture6. They are
derived from characteristics of service-oriented architectures, and their purpose
is to aid in the implementation of the functional requirements.

Minimal Changes An existing workflow management system should require
only a few changes. This has the advantage that a solution is easily adapted to
other workflow management systems. Further, it might be possible to continue
using existing tools, such as for modelling and testing.

6The design goals have been published in [MB11].

58 CHAPTER 5. REQUIREMENTS ANALYSIS

Standard Architectures The architecture should follow the XACML ref-
erence architecture and the WfMC workflow reference model where possible.
This allows established technology to be used and will make the architecture
easier to understand and implement.

Structure Preservation In our architecture, we support different kinds of
security specifications, such as trust policies for service calls, attribute-based
authorisation policies for human tasks, and history-based constraints which are
dependencies between tasks. It is not obvious how to map these specifications
from a higher layer, such as a task annotation in a workflow model, to the form
used for runtime enforcement. To illustrate this, consider code generation in
a compiler. In the resulting machine code, even without optimisation, much
semantic information from the source code, such as variable names, is no longer
available. With additional debug information, it may be possible to reconstruct
this to a certain degree and use it to monitor program execution in a debugger,
but not always. The situation with security specifications for workflows is
analogous. For example, when the workflow compares the identifier of a user
who tries to perform a human task against a variable, it may not be obvious that
the purpose of this comparison is to enforce a separation-of-duty constraint.
When a workflow fragment is inserted to perform a complex security-specific
interaction, the information stating which rule has caused the insertion might
not be available. We want to map security specifications to the execution
level so that the structure of the individual rules is preserved. In the compiler
example, this would mean that optimisation does not remove those variables.
With separation of duty, the constraint should be expressed as a rule attached
to a human task and evaluated when that task is performed. This makes
security enforcement easier to understand and debug, and it eases auditing by
making explicit why a security decision has been taken. Consequently, it must
be clear which components of the architecture enforce which types of security
specifications, and how the necessary information is captured and stored.

5.2 FIM Support in Workflows

In the previous section, we addressed a very broad range of security require-
ments for workflows. Now, we narrow the scope by considering the integration
of workflows and a federated identity-management (FIM) infrastructure. First,
this approach makes it possible to address some security features again from a
different perspective. This is because FIM provides solutions for a wide range
of security requirements. Second, this approach is more specific, as it takes
concepts from existing FIM frameworks into account. Third, FIM has brought
about features that can be seen as application functionality rather than secu-
rity functionality. We will therefore address the orchestration of identity-based
services using workflow technology.

5.2.1 Design Requirements

In Subsection 5.2.2, we will determine how different kinds of FIM functionality
can be made available to workflows and integrated into a workflow manage-
ment system. The overall goal of this analysis is the development of workflow

5.2. FIM SUPPORT IN WORKFLOWS 59

management system of this kind. The development should accomodate issues
such as privacy and interoperability. In the following, we formulate design
requirements that will serve as guidelines for further analysis.

We distinguish between privacy-related and architecture-related design re-
quirements. The requirements belonging to the first group (D1 and D2) stem
(1) from the laws of identity stating the desired privacy properties of FIM
applications (Subsection 2.4.5.2). (2) The architecture-related requirements
stem from best practices in the fields of workflow management and SOA, and
(3) from considerations on how to facilitate implementation and system mainte-
nance. Further, [Erl05] lists principles of service orientation leading to some of
the requirements: Services abstract underlying logic (D3) and are autonomous
and composable (D5). Contemporary SOA is based on open standards (D4).

D1 Isolate workflow instances: The laws of identity propose pseudonyms
for users that are different for each service provider to prevent different organ-
isations from combining their identity information about a user. The SAML
framework provides a solution through pseudonymous NameIDs that differ for
each service provider. However, a workflow management system acting as a sin-
gle service provider can host different independent workflows. This means that
the workflow management system needs to prevent several workflow instances
running in the same system from combining their identity information.

D2 User consent : Identity information should be released only with the
unambiguosly expressed consent of the user. When the workflow management
system provides identity information to workflow instances or third parties, it
has to make sure that the user has given such consent. In a distributed environ-
ment, users interact with several parties. An interaction of the user with one
party can trigger data processing in multiple components belonging to other
parties. Nevertheless, users should only have to give consent once. The work-
flow management system is thus only responsible for requesting consent when
one of its components triggers the processing and disclosure of identity infor-
mation. When another party triggers the processing of identity information in
the workflow management system, it assumes that the user has given consent.
The underlying assumption is that a component that discloses identity infor-
mation is responsible for ensuring the user has given consent. This does not
include the further transfer of this data to other users or service providers.

D3 Abstraction from technologies: We need to distinguish between a con-
crete implementation and the generic FIM concepts. Consequently, we have
to provide a concrete and a generic layer with a lean interface between them.
Workflow-specific functionality should only work with the generic view of FIM.
This makes it possible to use existing FIM libraries and update them when
necessary to follow the evolution of the underlying specifications.

D4 Standards-based architecture: The architecture of our system and its
interactions with the environment should be based on established standards.
This includes the WfMC workflow reference model [Hol95] and the reference
architecture of XACML [Mos05].

D5 Clear assignment of functionality to components: We want to assign
responsibility for a security-relevant function to one component, as is the case
for the specifications mentioned in D4. This reduces complexity and makes it
easier to ensure the system behaves correctly.

D6 Declarative configuration where feasible: The workflow management
system offers security functionality for applications with different security re-

60 CHAPTER 5. REQUIREMENTS ANALYSIS

quirements. Consequently, it must be possible to configure the system so that
it fulfils the security requirements of a specific application. We see two al-
ternatives to accomplish this: (1) The workflow management system provides
operations that an application workflow can invoke in order to set configu-
ration options based on its internal state. This requires explicit, imperative-
style code in the application. In addition, the application bears the burden of
keeping the configuration in sync with its internal state. (2) Declarative-style
configuration accompanies the definition of application workflows. When per-
forming security functionality, the workflow management system evaluates this
configuration, taking the state of workflow instances into account. We prefer
(2), as this approach allows for better separation of concerns, i. e. between
the application functionality and FIM. In particular, this eases reuse of exist-
ing application workflows, since developers do not need to modify the workflow
definition itself when configuring the security. This is in line with policy-driven
security pursued by the WS-SecurityPolicy specification [NGG+07]. However,
we expect that in some cases, it will not be possible to provide generic policy-
based solutions, as application logic is closely combined with FIM functionality.
For example, an application might select available offers based on attributes
such as age. In such cases, an imperative approach is inevitable. In summary,
we want to provide declarative configuration wherever possible, and interfaces
abstracting from technical details otherwise.

We have formulated two kinds of design requirements. The architecture-
related requirements are under our control insofar as they concern our workflow
management system and its components. As such, the workflow management
system envisioned must fully implement them. Fulfilment of the privacy-related
requirements not only depends on our workflow management system but also
on the environment it is running in and on the workflow-based application
it executes. We therefore require the resulting system to do its part to fulfil
them. We have already stated this assumption in general terms in D2. We
will address the privacy issues of the various FIM concepts in Subsection 5.2.2,
and the design decisions in Section 6.4 will take these issues into account.
We will assess the resulting system with respect to the design requirements
in Subsection 6.4.10 and state in more detail the assumptions regarding the
environment so that the system as a whole can fulfil them.

5.2.2 Requirements Concerning Support for Individual FIM
Concepts

Taking the design requirements from Subsection 5.2.1 into account, we now
examine how to integrate different FIM concepts into a workflow management
system. The discussion addresses the following aspects:

• Data flow: When implementing the FIM concept, on which occasions
does identity information enter or leave the system? Which components
of the FIM infrastructure are involved? This affects the system’s inter-
faces.

• Context used: Which types of workflow context, such as the execution
history of a workflow instance, have to be considered?

5.2. FIM SUPPORT IN WORKFLOWS 61

• Lifetime: What is the timeframe over which context and identity infor-
mation have to be stored? The alternatives we see are the user’s login
session, the lifetime of a workflow instance, or a single activity. The
answer affects where such information should be stored.

• Need for configuration: Does the functionality apply to workflows without
explicit security configuration, or is it necessary to include a specific
security configuration in each workflow definition?

• Type of configuration: Is entirely declarative configuration possible (cf.
D6), or do workflow definitions have to include special activities that
control the functionality? In the former case, we will have to define how
to evaluate the configuration. In the latter case, we need to figure out
how to provide the necessary information to workflow instances.

• Basis for configuration: Which elements of the workflow definitions must
the configuration refer to, and what is the runtime information corre-
sponding to these references? For example, a separation-of-duty con-
straint refers to activities in the workflow instance and the users that
have performed or will perform these activities. The answer lets us de-
cide which components should implement the functionality, and how they
get the necessary information.

• Privacy issues: How can the workflow management system handle pri-
vacy issues (D1 and D2) arising with respect to the functionality in ques-
tion?

By analysing each FIM feature with respect to these aspects, we have been
able to develop the architecture presented in Section 6.4 in a systematic way.
The resulting architecture and the way it implements FIM functionality is also
in line with our design requirements, as we will demonstrate in Section 8.

The following subsections discuss the FIM concepts presented in Subsec-
tion 2.4.5.1 in the context of workflows. We have covered different ways that
identity information can reach a relying party, i. e. the workflow-management
system in our case. These are addressed in Subsection 5.2.2.1 (single sign-on)
and 5.2.2.2 (incoming web-service calls). Further, we have addressed different
ways of using this information, covered one by one in Subsections 5.2.2.3 to
5.2.2.5. Finally, we have addressed the combination of FIM and access control.
Subsections 5.2.2.6 and 5.2.2.7 address this in relation to individual workflow
activities and the entire workflow respectively.

5.2.2.1 Single Sign-on

This subsection discusses how to perform single sign-on for workflows’ user
interfaces.

• Regarding single sign-on, when does identity information enter/leave the
WfMS?

In a WfMS, users interact with the worklist handler to perform human
tasks through a web-based interface. Identity information enters the
WfMS when the user logs into the tasklist handler using single sign-on.

62 CHAPTER 5. REQUIREMENTS ANALYSIS

• Which kind of workflow context needs to be considered when facilitating
single sign-on for workflows?

At the time of single sign-on, information about workflow instances is not
yet relevant. The information acquired through single sign-on is merely
stored for later use.

• What is the lifetime of context and identity information necessary for
single sign-on?

The information acquired through single sign-on is needed at least for
the duration of the respective single sign-on session. During this session,
the user may view their task list and perform one or more tasks. When
the user has performed a task, the WfMS creates a relation between the
corresponding workflow activity and the user’s identity information. The
required lifetime then depends on the purpose the information is used
for, as we will assess below.

• What kind of configuration is necessary for single sign-on?

How the WfMS uses the information acquired depends on the tasks per-
formed and the corresponding workflow definitions. We do not see any
need, however, to configure how to perform single sign-on. This is because
in our experience, single sign-on is a generic functionality that behaves
the same for different applications.

• Which privacy issues, if any, arise in connection with single sign-on?

Single sign-on causes the identity provider to pass identity information
to the WfMS. This has obvious privacy implications. Therefore, the
user must be able to trust the WfMS and be aware of any disclosure
of their identity information. As long as the user does not perform any
tasks, the WfMS does not need to provide any identity information to
workflow instances. Of course, the user has to trust the WfMS itself
not to disclose the information and to protect it against attacks. The
WfMS must make clear which workflow instances identity information
is potentially provided to when the user performs a task. Further, the
WfMS has to provide access to the privacy policy of the workflow in
question. On top of this, the WfMS could perform automatic checks
based on a consent policy submitted by the user.

5.2.2.2 Incoming Identity-Web-Service Calls

In this subsection, we examine how the WfMS deals with web-service calls that
it obtains.

• Regarding incoming identity-web-service calls, when does identity infor-
mation enter/leave the WfMS?

In the infrastructure envisioned, web-service calls can carry identity in-
formation pointing to the individual in whose name the caller invokes a
service. Workflows orchestrate service compositions and can both invoke
and provide web-service interfaces. When such an interface is invoked,
the call contains identity information in addition to the payload.

5.2. FIM SUPPORT IN WORKFLOWS 63

• What kind of workflow context needs to be considered when processing
incoming identity-web-service calls?

Each web-service call invokes a specific activity in a specific workflow
instance. The WfMS has to determine this activity based on information
in the payload of the call. To this end, WS-BPEL specifies correlation
sets. A correlation set is a named group of properties that identify a
conversation. The values of these properties are initialised by the first
message of the conversation. Subsequent incoming messages are then
routed to the same workflow instance. The context needed here is the
content of the correlation sets of the running workflow instances.

• What is the lifetime of context and identity information necessary to pro-
cess incoming identity-web-service calls?

The identity information included in the incoming call only relates to
a single activity. Again, the lifetime required depends on the purpose
the information is used for. For example, if the activity is part of a
separation-of-duty constraint, the identifier is needed until all other ac-
tivities that are part of the same constraint have been executed. If the
identity information is only used for authorisation on the activity level,
it is not needed afterwards. In any case, identity information is no longer
needed once execution of the workflow instance has finished.

• What kind of configuration is necessary to process incoming identity-web-
service calls?

Correlation sets, which determine the workflow activity and instance a
call is routed to, are a standard feature of WS-BPEL and are not security-
specific. We do not see any need to configure the actual extraction of
identity information from the incoming call.

• Which privacy issues, if any, arise in connection with incoming identity-
web-service calls?

When a call is received, workflow instances receive identity information
directly. It would not be convenient for users if they had to access the
WfMS and give consent. This means the caller has to make sure the user
has consented before making the call.

5.2.2.3 Using Attributes for a Personalised Service

Workflows coordinate web services and human activities. In particular, they
compose web services in order to provide a more complex service for a spe-
cific user. Depending on the application, the user’s attribute values can help
them customise the service to their needs. For example, a workflow for book-
ing a rental car can exclude premium-category vehicles when the user’s driving
license is less than two years old. We now discuss how to facilitate such cus-
tomisations.

• When attribute values are used to personalise a service, when does identity
information enter/leave the WfMS?

The WfMS needs to provide identity information relating to workflow
activities (Sections 5.2.2.1 and 5.2.2.2) to the corresponding workflow
instances.

64 CHAPTER 5. REQUIREMENTS ANALYSIS

• What kind of workflow context needs to be considered when using at-
tributes for a personalised service?

Identity information always belongs to a single user performing tasks in
a workflow instance. A workflow instance can acquire different attributes
for the same user connected to different workflow activities. For example,
this can be the case when a user has used different means of authentica-
tion. Accordingly, the activity that has acquired the identity information
is important too, not just the user it belongs to. Because identity in-
formation, and in turn the user it belongs to, can be uniquely identified
through the activity which has acquired it, no further context information
is required.

• What is the lifetime of context and identity information necessary when
using attributes for a personalised service?

A workflow instance can potentially need identity information acquired
by a specific activity at any point in its lifetime.

• Is configuration necessary to personalise a service based on attributes?

The actual customisations highly depend on the individual application.
For example, one application might perform different functionality de-
pending on attributes such as age or insurance status. Another applica-
tion might include attribute values in calls to external services.

• What kind of configuration is necessary?

The WfMS does not know how to process the attributes. This completely
depends on the workflow definition. It is best specified using imperative
workflow logic, as there are no generic patterns that can act as a basis for
declarative configuration. The sole task of the WfMS is to provide user
attributes to workflow instances, which process this information accord-
ing to the workflow definition. We will assess different ways of providing
attributes in Section 6.4. Configuring declaratively which piece of infor-
mation to retrieve appears feasible. However, the resulting data needs
to be inserted into the data flow of the workflow, which is connected to
the imperative application logic. To this end, we see a need for explicit
activities that retrieve identity information as specified declaratively and
make it available to the application logic of the workflow.

• What is the configuration based on?

It must be possible for developers of workflow applications to state whose
attributes are needed. One way to accomplish this is by referring to
an activity in the workflow, and thus the identity which performed this
activity.

• Which privacy issues, if any, arise in connection with attributes used for
a personalised service?

A user must be aware of which attributes are provided to a workflow
instance before they trigger the actual transfer. Given this, it is implied
that the instance can use the attributes.

5.2. FIM SUPPORT IN WORKFLOWS 65

5.2.2.4 Recognising Users in a Stateful Interaction

Another feature envisioned, different from the previous one, is an application
that interacts with a user over several steps of a workflow. The point here is
not that the application has to behave differently for different users, but that
it has to remember previous interactions with a user.

• When recognising users in a stateful interaction, when does identity in-
formation enter/leave the WfMS?

When a user accesses the WfMS a second time, it has to recognise them
based on the identity information provided.

• What kind of workflow context needs to be considered to recognise users
in a stateful interaction?

The WfMS must know the identifiers of users who have performed activ-
ities in the past, so that it can compare them to the identifier of the user
performing the current activity.

• What is the lifetime of context and identity information necessary to
recognise users?

The interaction of an application with a user usually spans the entire life-
time of a workflow instance, so the WfMS needs to remember identifiers
of past activities until the instance has terminated.

• What kind of configuration is necessary to recognise users?

Applications have tasks that the same user should perform, so one must
be able to specify which tasks these are. This is a kind of workflow-level
authorisation constraint; we consider it below in Section 5.2.2.7.

• Which privacy issues, if any, arise when recognising users in a stateful
interaction?

With this functionality, application workflows can learn that a user is the
one who has performed a previous activity. However, as this is necessary
to maintain a stateful interaction, users can reasonably expect this type
of use when they perform an activity and provide identity information to
a workflow.

5.2.2.5 Invoking Services on Behalf of Users

In a framework based on identity web services, workflows invoke these services
on behalf of a user. This enables them, for instance, to access personal data
the user’s personal data store. To this end, it is also necessary to find services
available to this user, and select one. The framework has to provide a discovery
service that finds services of a given type available to a specific user. The
address of the user’s discovery service is part of the assertion provided by the
identity provider.

• When invoking services on behalf of users, when does identity information
enter/leave the WfMS?

When invoking services on behalf of users, the WfMS has to use identity
information for two purposes: First, it has to discover services available

66 CHAPTER 5. REQUIREMENTS ANALYSIS

to a specific user. Second, it has to add credentials asserting that it is
making the call on behalf of this user when it actually performs the call.

• What kind of workflow context needs to be considered when invoking ser-
vices on behalf of users?

The user on whose behalf the WfMS makes the call depends on the ac-
tivity. For their credentials to be available to the workflow instance,
they must have performed an activity in it before. The WfMS uses this
identity information not only for the actual call, but also to perform ser-
vice discovery. To this end, it contacts the user’s discovery service. In
summary, the context used by the WfMS is the activity performing the
call, and a previously performed activity in the same workflow instance
together with its identity information.

• What is the lifetime of context and identity information necessary when
invoking services on behalf of users?

The WfMS has to remember the credentials of users who have performed
activities in the workflow instance.

• What kind of configuration is necessary to invoke services on behalf of
users?

A characteristic of workflows is that more than one user can be involved,
and that activities triggered by one user might not be executed immedi-
ately but only after some condition is fullfilled. For instance, approval
by another user might be necessary. Accordingly, it is not immediately
clear on whose behalf the WfMS needs to make a call. For each outgoing
call to an identity web service in workflow definitions, it is necessary to
configure which identity information to use.

• What is the configuration based on?

Outgoing calls use identity information that has entered the system in a
previous activity. To specify which identity information to use, workflow
designers thus have to refer to an activity.

• What requirements for the configuration exist?

Referring to a past activity appears to be possible in a straightforward
way by specifying the name of the activity. We deem this sufficient for
a start, although in the case of conditional executions or loops, more
sophisticated mechanisms become necessary. This is because in such a
case, different activity instances with the same name are possible. We
will leave solutions to this issue to future work.

• Which privacy issues, if any, arise when invoking services on behalf of
users?

When invoking services on behalf of users, this issue is twofold: First,
the workflow transfers identity information to the services invoked. The
WfMS alleviates the associated privacy risks by taking user preferences
into account when choosing services. To achieve this, it determines the
trust level of available services according to the user’s policy. Second,
the services invoked may expose the user’s personal data. In principle,

5.2. FIM SUPPORT IN WORKFLOWS 67

the user consents to this by using the workflow, but appropriate control
mechanisms are needed. However, note that this applies to any chaining
of service calls and is not workflow-specific. In addition, the invoked
service may check whether it trusts the WfMS to convey user consent
correctly.

5.2.2.6 Activity-level Authorisation

This subsection examines how to perform authorisation, taking only the current
activity into account. Attribute-based access control uses user attributes to
decide whether access to a given entity should be granted.

• Regarding activity-level authorisation, when does identity information en-
ter/leave the WfMS?

In workflow management, attribute-based access control concerns human
tasks as well as service calls directed to workflow instances in the name
of a user.

• What kind of workflow context needs to be considered for activity-level
authorisation?

The WfMS has to use the attributes associated with the incoming call or
provided via single sign-on to the worklist handler.

• What is the lifetime of context and identity information necessary for
activity-level authorisation?

The access control decision can be taken for each of these workflow ac-
tivities individually. This means that identity information is used imme-
diately for access control and is no longer needed afterwards.

• Is configuration necessary for activity-level authorisation?

The attributes required depend on the application, so each workflow def-
inition needs an access control configuration.

• What is the configuration based on?

Workflow definitions must specify the attributes needed for each activity.

• What kind of configuration is necessary?

A declarative specification such as an XACML policy is suitable for this
purpose.

• Which privacy issues, if any, arise in connection with activity-level au-
thorisation?

We do not see any additional issues in this case. This is primarily because
the WfMS does not need to provide any identity information to workflow
instances.

68 CHAPTER 5. REQUIREMENTS ANALYSIS

5.2.2.7 Workflow-level Authorisation

Workflows are stateful and can involve several users performing tasks. Au-
thorisation needs to take the relationship between tasks into account. This
subsection therefore discusses how to support such authorisation methods in
our architecture. The fundamental concepts that cover most application needs
are separation of duty and binding of duty (see Subsection 2.4.3.2). Separation
of duty requires different users for conflicting activities, such as Authorise pay-
ment and Issue cheque, while binding of duty requires the same user to perform
several activities. We always apply these constraints to complete instances of
workflows, i.e. the most refined business context, using [CXO+07] terminology.
More complex relationships, e.g. based on attribute value, are possible, and
can be implemented following the same basic approach.

• Regarding workflow-level authorisation, when does identity information
enter/leave the WfMS?

As in the previous subsection, workflow-level authorisation concerns hu-
man tasks as well as service calls directed to workflow instances. Autho-
risation decisions use identity information that has entered the WfMS for
different activities, either through single sign-on or incoming web-service
calls.

• What kind of workflow context needs to be considered to perform workflow-
level authorisation?

To facilitate separation or binding of duty, the WfMS needs to know who
has performed past activities in the same workflow instance.

• What is the lifetime of context and identity information necessary for
workflow-level authorisation?

The information may potentially be needed throughout the lifetime of
the workflow instance.

• Is configuration necessary for workflow-level authorisation?

The separation- or binding-of-duty constraints that exist between the
activities of a workflow are application-specific. Accordingly, workflow
developers must be able to specify the constraints for each workflow def-
inition.

• What is the configuration based on?

Constraints specify activities that must be performed by different users
(separation of duty) or the same user (binding of duty).

• What kind of configuration is necessary?

A simple specification would just list activity names. However, this is
not sufficient when activities are executed several times, e. g. in the case
of loops. We will leave solutions to this issue to future work.

• Which privacy issues, if any, arise in connection with workflow-level au-
thorisation?

5.3. OVERALL SUMMARY 69

The WfMS can only enforce separation- and binding-of-duty constraints
correctly with persistent pseudonyms. These allow the WfMS to recognise
users permanently.

5.2.3 Conclusions

We have systematically explored the implications arising from the integration of
FIM functionality into a workflow management system, refining and extending
the general security requirements from Section 5.1. In particular, we have
discussed how the system processes identity information, and what context
and configuration options are needed. This paves the way for us to extend a
secure workflow management system by adding FIM support in Section 6.4.

5.3 Overall Summary

In this chapter, we have presented two different kinds of requirements: a broad
range of general security requirements, and requirements specific to the inte-
gration of FIM functionality. Both encompass a range of functional and design
requirements that the system in question must meet. We also explained our
design requirements in line with this distinction. In the next chapter, we will
design a system of this kind using the same two-step approach. First, we de-
velop the general structure of a secure workflow management system, taking
into account the requirements (both functional and design requirements) from
the first part of this chapter. We then analyse how it can be extended by
adding FIM support.

Chapter 6

System Design and Architecture

In this chapter, we design the architecture of a workflow management system
that fulfils the requirements from the previous chapter1. First, we explain the
types of configuration and workflow context the system has to handle. Fol-
lowing the same structure as for the requirements, we then address extensions
for general security support, limiting ourselves to a subset of the requirements
from Section 5.1. Our aim is a flexible architecture. The resulting architecture
will thus be able to accomodate the remaining requirements, as we will assess
in Section 8.2. After that, we address the integration of FIM functionality into
the resulting workflow management system.

6.1 Security configuration

A general-purpose secure WfMS needs configuration to be able to implement
the security requirements of different applications. In the following, we briefly
explain from which sources such security configuration can be derived, and
which types of security configuration there are.

6.1.1 Sources of security configuration

We see different ways to create the security configuration of a WfMS, i. e. a
definition of how the WfMS has to behave to fulfill the security requirements
of an application: (1) In some cases, default values resulting from general re-
quirements are sufficient, e. g. all communication should be encrypted. (2)
Other sources include the annotations defined by workflow-security modelling
approaches like [WS07], [MTM09] and [RFMP07] (see also Section 2.3), and
settings for the entire model, defined using a suitable language. (3) A security
configuration can also be created at runtime by deriving it from user interac-
tions, e. g. a user giving consent for the workflow to access their personal data,
or by retrieving policies from an appropriate store, such as the trust policy of
a user involved.

There may be several parties with different security requirements, resulting
in several security policies. Think of a loan approval workflow in a bank where
the risk assessment is outsourced. The bank is primarily interested in accurate
risk predictions, while the customer prefers services with no privacy violations.

1The contents of this chapter have been published as part of [MMvSB10] and [MB14].

71

72 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

In addition, the legislator may only allow data transfer to service providers
abroad when the respective country has sufficient data protection laws as well.
When more than one policy exists, conflicts can arise. Such conflicts must be
resolved; [CF09] describes an approach for this.

6.1.1.1 Types of security configuration

Another question is how configuration can be expressed. This issue is important
in deciding which components are most suitable for this purpose. Again, we
see alternatives:

• Declarative policies:

For classic access control, languages like XACML are a solution. For other
uses, like specifying trust, specialised languages exist [BDOS05, KNS05].

• Simple variable:

In this case, certain settings are assigned values of basic data types, either
for the entire WfMS or on the level of workflow instances. Examples
includes turning encryption on and off, or setting the log level.

6.2 Security-relevant context

Our WfMS has to enforce security in a way that adapts to the situation by
using context. For this reason, we now take a closer look at the notion of
context.

Dey [Dey01] provides a definition of context useful for context-aware appli-
cations. He claims that existing definitions of context are too specific. Context
is “all about the whole situation relevant to an application and its set of users,”
and it is not possible to enumerate the important aspects of the situation. He
then defines context as “any information that can be used to characterise the
situation of an entity”. An entity in turn is “a person, place, or object that
is considered relevant to the interaction between a user and an application,
including the user and applications themselves.” A context-aware system is
one that “uses context to provide relevant information and/or services to the
user, where relevancy depends on the user’s task.” Applying this definition to
context-aware security enforcement for workflows means that context is infor-
mation characterising the situation of entities considered relevant to the secu-
rity properties of a workflow. Users’ tasks are explicit in workflow definitions,
so security enforcement can consider which tasks users currently perform.

Rosemann et al. [RRF08] investigate context with respect to business pro-
cesses (workflows) in terms of flexibility. Accordingly, they see context as a
stimulus for change. To come up with a definition of context that is opera-
tional, they develop a taxonomy for context that consists of four layers. The
immediate context “covers those elements that directly facilitate the execu-
tion” of a workflow: data, resources, applications and events. The other layers
(internal, external and environmental) represent increasingly abstract concepts.

For us, it is important that workflows provide an orchestration of entiti-
ties involved in a business interaction in order to achieve a certain outcome.
While implementing the application scenarios, we encountered different kinds
of context that can influence security enforcement:

6.3. GENERAL SECURITY ENHANCEMENTS TO THE WFMS
ARCHITECTURE 73

• Activity context:

This is context relating to particular calls (web-service calls or creation
of human tasks), namely which activity in which workflow instance has
caused the call.

• Associated entities:

This context is entities like users or external data sources associated with
a workflow instance. Examples are a curriculum vitae stored in an ex-
ternal e-portfolio and used in the workflow, or a user whose job qualities
are assessed by the workflow. An entity can be associated with the entire
workflow instance or some element of it. For instance, the user who has
performed a given task is associated with the corresponding activity.

• Execution state:

This type consists of information such as activities waiting for execution
or the iteration of a loop that is currently executing.

The WfMS must have the necessary context information available to enforce
security, an issue we will address below.

6.3 General Security Enhancements to the WfMS
Architecture

In this section, we design an architecture extension based on the design-related
and functional requirements from Section 5.1. The subset of functional require-
ments addressed here covers all security facets and is thus representative for
the entire set of security requirements.

Regarding authentication, we only address the authentication of users (R8
to R11). The treatment of access control encompasses workflow activities (R12
to R15) and the corresponding constraints (R17, R18, and R21), as well as
the selection of web services (R28 to R30). It skips reassignment of duty (R19
and R20), assignment strategies for activities (R12 to R15 as well, and R16 in
particular), and the handling of data (R22 to R27). Further, non-repudiation
and confidentiality of web-service calls (R31 to R34) are addressed, as well as
confidentiality of data shown to workflow participants (R35). We postpone
the problem of linking identities across workflow instances (R36) to the next
section, which addresses the integration of FIM functionality.

The very general requirement regarding integrity (R37) is not addressed at
this stage, as it can only be assessed sensibly when implementing the architec-
ture. Security auditing (R38 to R41) will be the subject of Section 8.3. We
address key management (R43 and R44) in the context of non-repudiation and
confidentiality of web-service calls.

6.3.1 Approach for the Integration of Security Functionality

In Subsection 2.4.4 and Section 3.6 we presented approaches for integrating
non-functional aspects in general and security in particular into workflows.
The next question is how to best integrate the security functionality demanded
by our security enhancements to the architecture of a workflow management
system.

74 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

Workflow
Engine

BP InstanceBP InstanceWf. Instance

Modelling tool

1BPEL
Monitoring

5
WS interface

Worklist Handler

2e.g. WS‐HumanTask

BP InstanceBP InstanceExternal WS

3 4
SOAP

External
workflow engine

SOAP

Figure 6.1: Classical architecture of a WfMS in SOA.

We see three fundamentally different ways of weaving security aspects into
the workflow.

• Security functionality is implemented as part of the workflow engine.

• Security functionality is implemented as a separate component or several
separate components.

• The workflow is transformed so that the transformed workflow performs
security functionality itself.

Alternative 1 should be used only when absolutely necessary, as it conflicts
with the design goal Minimal Changes. Alternative 2 is appropriate when the
aspect itself is best expressed as a workflow or a fragment of one. It is un-
suitable when the natural form of the aspect is different, e. g. declarative. In
such cases, Alternatives 1 and 2 can be used. They are even necessary when
the security functionality cannot be specified as a workflow in an unmodified
workflow engine. In contrast to Alternative 1, Alternative 2 allows the under-
lying concept to be clearly represented more clearly by encapsulating it in a
dedicated component and separating it from the normal workflow execution.
In order to weave security aspects implemented by separate components into
the execution of workflow instances, it is necessary to transform or instrument
workflow definitions (i. e. use Alternative 3).

6.3.2 Security requirements and their potential
implementation

In the following, we go through different kinds of functionality necessary for
a secure WfMS in service-oriented architectures. As indicated above, we have
selected a subset of the requirements from Subsection 5.1.2 that allows us to
explain the general anatomy of our architecture. This subset covers most of
the security frameworks listed in ITU-T Recommendation X.810 (cf. Subsec-
tion 2.4.1.3). When addressing distinct features that a secure WfMS must

6.3. GENERAL SECURITY ENHANCEMENTS TO THE WFMS
ARCHITECTURE 75

possess, we discuss alternatives for their implementation and how they affect
the architecture and the interfaces of a WfMS according to the workflow ref-
erence model (Fig. 6.1).

6.3.2.1 Encryption and signing of web-service communication

Description of requirement The WfMS has to encrypt web-service mes-
sages so that only the recipient can decrypt them, and to sign these messages
so that the recipient can determine who has issued the request, i. e. which
provider or workflow has done so in the name of which user. The bare message
exchange can be accomplished by WS-Security (cf. Subsection 2.4.4).

Necessary information To fulfil this requirement, the WfMS must have
access to the communication partners’ public keys, and private keys to use
itself.

Parts of the architecture affected As this requirement concerns commu-
nication with external services, both the workflow engine and its web-service
interface (interfaces 3 and 4) are affected: They must support the cryptographic
protocol extension and allow the setting of parameters, like the keys to be used.

Implementation We see several alternative implementation routes. One is
by adding support for the protocol extension to the workflow engine. Another
is introducing a new component that acts as a proxy between the workflow
engine and the external web services called. A modification of the workflow
engine would be specific for the combination of a given engine and a given
encryption protocol. When using a proxy, a transformation component must
instrument the specification of the workflow to use the proxy, and the workflow
engine must ignore messages from other sources than the proxy. We advocate
the use of a proxy, as this works with different workflow engines and it can be
replaced to support different encryption protocols. By way of example, a call
ws.function(payload) becomes pep.callWS(wstype, function, payload,

instance, activity).

6.3.2.2 Discovery of trustworthy web services

Description of requirement Service discovery is the search for and selec-
tion of services. In our context, the goal is to find services that are trustworthy,
based on specifications by the application and the users involved in the work-
flow. The context determines whose trust policy is relevant. This tends to be
the user whose data will be transferred to the service in question. There might
be more than one trustworthy service according to the policies applicable. In
this case, if the user so desires, they should be able to explicitly choose one
of these services. As long as the workflow has not called the service, the user
should be able to change the selection.

Necessary information To discover trustworthy web services, the trust
policies of the workflow itself and the user are required. In addition, the WfMS
must receive the user’s decision and remember a selection when the interaction
spans several calls, e. g. when several data items are stored in a repository.

76 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

Parts of the architecture affected This requirement affects the workflow
engine and its web-service interface (interfaces 3 and 4), and the engine’s in-
teraction with the worklist handler (interface 2) to fetch a decision from the
user.

Implementation There are two parts to the implementation of this feature:
(1) The WfMS must manage the workflow’s web-service communication as fol-
lows: It must discover available services and select one that fulfils the trust
policies applicable, store the selection, and route calls to the service selected.
We see two options for doing this: (a) It is possible to implement this almost en-
tirely by transforming the workflow. The only exception is the management of
keys and other encryption parameters for the selected services. This is because
an unmodified workflow engine does not necessarily support the respective pro-
tocol. (b) Implementing this step in the proxy discussed above. – We deem (b)
superior, as it brings together the necessary functionality in one place together
with other functionality used to call web services. It also makes it easier to
recheck trustworthiness directly before future calls. Workflow instrumentation
allowing use of the proxy is alredy required to support encryption and sign-
ing. (2) The user must be involved in the process of service selection. As the
necessary user interactions can be implemented as human tasks, the worklist
handler manages them. The most natural way to express the flow of such
a user involvement (an advice in the terminology of aspect-oriented program-
ming), including user interactions and calls configuring the proxy, is a workflow
fragment. Consequently, we argue that the preferred solution is to weave the
advice into the workflow. Implementation in the workflow engine itself is not
preferred, according to our design goal of Minimal Changes. However, changing
the service selection (an asynchronous user interaction) requires a differently-
designed user interface which has to show the user the state of instances and let
the user make changes. The interface then applies the changes via the so-called
UInvolve Handler without the participation of the workflow engine.

6.3.2.3 Access control for human tasks

Description of requirement It is necessary to control who performs the
human tasks in a workflow. Decisions are either specific for one task and based
on the properties of the user performing the task (such as their job function)
or take the history of the workflow instance into account as well. The latter
holds for stateful authorisation constraints (Subsection 2.4.3.2).

Necessary information Implementing this requires information about users,
such as their role or attributes, about the history of the instance (who has per-
formed which human tasks in this instance?), and the context of human tasks,
namely which activity in which instance has caused them.

Parts of the architecture affected This feature affects the interface of
the workflow engine to the worklist handler (interface 2), as context must be
available. It also affects the worklist handler itself, as the handler must evaluate
whether a user logging into it may perform the human tasks available.

6.3. GENERAL SECURITY ENHANCEMENTS TO THE WFMS
ARCHITECTURE 77

Implementation The functionality required consists of two parts: (1) The
worklist handler must check permissions when a user retrieves the list of tasks
available to them and again when they try to perform a task from this list.
This second check is because the user might no longer be eligible, e. g. when
another user has performed a task in the meantime, connected by a BoD con-
straint. The natural form of access control rules and constraints is a declarative
policy. So including access control directly in the workflow via instrumenta-
tion is not a desirable option. In addition, this would make it hard for the
worklist handler to recheck permissions when the task is actually performed.
The worklist handler needs an interface to a component that can make access
control decisions. However, this functionality should not be implemented in
the worklist handler itself. This is because keeping the necessary history would
require substantial extensions. Thus, a separate component that has access to
the history would appear to be a better solution. (2) The history of human
tasks performed must be captured. We see three alternatives: (a) using a proxy
between the workflow engine and the worklist handler, (b) instrumenting the
workflow, or (c) modifying either the workflow engine or the worklist handler.
We advocate (a) because a separate component is needed anyway to make
access control decisions, and because the worklist handler can retrieve the his-
tory information whenever required. Instrumentation is still needed, though,
to submit the necessary context to the proxy component when creating human
tasks. Instead of wlh.createTask(taskDef, payload, allowedRole), the
workflow now has to call pep.createTask(taskDef, payload, instance,

activity). The parameters instance and activity make up the context
of the call. payload is the body of the message; its meaning is application-
specific. Because the PDP-Wf can determine eligible users using the context
by evaluating a policy, the parameter allowedRole is no longer necessary.

6.3.3 Summary of necessary extensions

In summary, the following functionality must be added to the WfMC workflow
reference model:

Web-service communication Here, the WfMS needs to support protocol
extensions for encrypted web-service calls with cryptographic signatures, per-
form service discovery and keep track of the results, route web-service calls to
the service selected, and enforce that these services adhere to the trust policies
applicable.

User interactions and human tasks The WfMS needs to interact with
users to confirm the selection of web services or to convey consent to the pro-
cessing of personal data. It must support both synchronous and asynchronous
user interactions. For human tasks, it must be able to make authorisation
decisions while taking the history into account.

Handling context information The WfMS must capture and store context
information about workflows, and different components need to access this
information. As a minimum, it must be known which activity in which instance
of a workflow has invoked an operation. The WfMS must also keep state

78 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

information, including history information about who performed human tasks,
the users assigned to human tasks that are still due, and selected web services.

6.3.4 Resulting Architecture

Modelling and transformation

Modelling Tool Security Modelling

Transformation

Workflow definition Security configuration

Execution Workflow
Engine

Transformed workflow definition

Human Tasks and User
Involvement

PEP‐HT

Worklist
Handler

Async
UI

UInvolve
Handler

Misc

PIP

PDP‐Wf

Context
Handler

Web Services

PEP‐
WS

Service
Discovery

Trust
PDP

Key
Store

Modified
component

New
component

Existing
componentKey:

Wf
instance

WSWS

Application

PAP‐Wf

Figure 6.2: Resulting architecture

Figure 6.2 shows the architecture we are proposing. We will now explain
how it provides the functionality just described.

Handling web-service calls A new component, the Policy Enforcement
Point for Web Services (PEP-WS), performs all security-related tasks in con-
nection with web-service calls. It acts as a proxy for these calls, i. e. the work-
flow sends these requests to the PEP-WS instead of the external web service.
The PEP-WS then checks whether the service is still trustworthy according to
the applicable policies, encrypts and signs the request with the correct keys,
and finally sends it to the selected service (Algorithm 1). Thus, the PEP
not only enforces policies, but also acts as a protocol adapter. Handling web-
service calls involves the PEP-WS, the Key Store, the Trust PDP (all shown

6.3. GENERAL SECURITY ENHANCEMENTS TO THE WFMS
ARCHITECTURE 79

Algorithm 1 PEP-WS handling a web-service call

1: ws← PIP.getSelectedWS(activity, pid)
2: policies← PIP.getApplicablePolicy(activity, pid)
3: trusted← TrustPDP.isTrustworthy(ws, policies)
4: if trusted then
5: key ← KeyStore.getKey(ws)
6: msg ← encryptAndSign(request, key)
7: reply ← ws.sendMessage(msg)
8: if isSignatureV alid(reply, key) then
9: return decrypt(reply)

10: else return error
11: else return error

in the box Web Services in Fig. 6.2), the PIP, and a workflow modified by the
Transformation component.

Handling human tasks To handle human tasks, we propose another new
component, the Policy Enforcement Point for Human Tasks (PEP-HT). Like
the PEP-WS, it acts as a proxy between the workflow and the worklist handler.
Before passing on a request to create a human task, it stores context informa-
tion in the PIP. When a task is completed, the PEP-HT stores this information
in the PIP as well, before returning the result to the workflow. We propose
modifying the worklist handler so that it retrieves an authorisation decision
from the PEP-HT before including a human task in a user’s worklist or letting
the user perform the task. The PEP-HT calls the so-called Workflow Policy
Decision Point (PDP-Wf) to make the decision, using history information from
the PIP. The PDP-Wf is a special PDP able to evaluate history information.
It evaluates the appropriate policies, thereby making the reason for the deci-
sion explicit. Handling human tasks involves the PEP-HT, a modified Worklist
handler (in the box Human Tasks and User Involvement in Fig. 6.2), the PIP,
the PDP-Wf and a workflow modified by the Transformation component.

Keeping persistent information There are two kinds of security informa-
tion that must be retained across interactions. (1) The Policy Information
Point PIP stores associated entities, namely the web services selected, the
workflow models the instances belong to (to determine the policies applicable
to the instance), human tasks waiting to be performed and the context of their
creation, the history of who has performed which tasks, and user attributes.
It also stores variables (Section 6.2) defined for workflow instances. (2) When
services are discovered, the Service Discovery component also has to supply
the keys used to communicate with them. The PEP-WS stores these in a new
component, the Key Store. – The Worklist handler is stateful as well, remem-
bering the human tasks waiting to be performed, but this information is not
security-specific. Thus three components – the Worklist handler, the PIP and
the Key Store – have to keep persistent information of different kinds.

Synchronous user interactions Many user interactions, such as asking a
user to select a service, are similar to application workflows and thus best

80 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

expressed as workflow fragments. In addition, they need to be performed at
defined points within the workflow. Accordingly, we use the Transformation
component to include appropriate fragments in workflow definitions before de-
ployment. In AOP terminology, these are advices implemented in the compo-
nent language. The user interactions orchestrated by such advices can change
the configuration of security components. For example, when the user selects
a service, this information has to be stored in the PIP. We provide the UIn-
volve Handler as a single contact point for the workflow. It receives requests to
change the security configuration from the workflow. An example is the regis-
tration of a service selected by the user. The UInvolve Handler checks whether
the configuration change adheres to the policies applicable and passes it to
the right component, in this case the PIP. Thus, synchronous user interactions
require a workflow instrumented by the Transformation component, nearly all
components from the box Human Tasks and User Involvement (UInvolve Han-
dler, PEP-HT and Worklist handler), and the PIP.

Asynchronous user interactions For asynchronous user interaction, such
as revoking consent, our architecture includes a separate component (Async
UI). This modifies the configuration of security components via the UInvolve
Handler.

Providing context information about workflow instances We propose
several ways to handle context information, depending on its type: (1) Activity
context is transmitted directly from the workflow to the PEP-WS or PEP-HT
with the corresponding call; see the interface extension from Sections 6.3.2.1
and 6.3.2.3. (2) Entities associated with an instance include users who have
performed human tasks. The PEP-HT stores this information, which includes
services selected by the user, in the PIP. The workflow invokes the UInvolve
Handler to register the selection, and the UInvolve Handler stores the selected
service in the PIP as well. (3) To keep our architecture extensible, we propose
a component that can make available other kinds of context: the Context
Handler. In all three cases, the Transformation component instruments the
workflow so that it provides the context to the other components. The PEP-WS
and PEP-HT handle context necessary to fulfil their tasks, while the Context
Handler provides the execution state, which can be used for access control
decisions.

Policy evaluation Our architecture has to deal with different types of poli-
cies. For human tasks, the authorisation decision depends on the history of the
workflow instance, i. e. who has performed other tasks. It is based on polices
that can express history-based constraints. Service selection relies on trust
policies that yield a trustworthiness score. The PDP-Wf and the Trust PDP
handle these kinds of policies respectively. In addition, it is conceivable that
other policies apply to the actions performed by a workflow, e. g. legal regula-
tions allowing the processing of sensitive information for certain purposes only.
A Master PDP can combine the results from the evaluation of different policies
and handle possible conflicts [CF09]. It acts as a wrapper for different PDPs,
including the PDP-Wf and Trust PDP. By using policies tailored to particular
domains, the structure of security specifications can be preserved. Such policies

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 81

are stored in the PAP-Wf (Policy Administration Point for Workflows) when
they are specific to workflow models. To summarise, we propose two special
kinds of PDP and and the possibility to introduce additional PDPs by using a
Master PDP to aggregate policy decisions.

Summing up, we require changes to legacy components only where neces-
sary. The architecture has evolved from an established reference model and
allows integration with existing security infrastructure in areas such as au-
thentication or auditing. Like the XACML reference architecture, it contains
separate components for policy decisions, policy enforcement, and providing
context needed for the evaluation of policies. The structure of security specifi-
cations has an explicit representation in the components proposed. We argue
that our architecture meets the design goals from Section 5.1.5.

6.4 Design of a System Integrating FIM Functionality

Building upon the security extensions for a WfMS which were developed in the
previous section, we pursue the integration of the WfMS with an infrastructure
for federated identity management in this section. In detail, we investigate how
a secure WfMS can support FIM functionality, fulfilling the requirements from
Subsection 5.2.2. This section is structured as follows: First, we examine which
functionality a generic FIM layer can perform, in line with D3, and how WfMS
components can use this layer. In line with D5, we then introduce new com-
ponents of an extended WfMS responsible for acquiring identity information,
storing it, and performing functionality based on it, such as access control. This
includes revisiting design decisions already adressed in Section 6.3 with respect
to the architecture not including FIM functionality. We define the interac-
tions between the components, in particular, how workflow context reaches the
components that need it. We also describe the configurations necessary for
workflows running in the extended WfMS.

6.4.1 Basic Architecture

The basis for the extensions presented in the following is the WfMC reference
model presented in Subsection 2.3.1.

This model requires several kinds of extensions: Interfaces 2–4 concern the
communication of workflows with the outside world at runtime. Workflows send
and receive web-service calls through Interfaces 3 and 4. They create instances
of human tasks in the worklist handler through Interface 2 and get notifications
when instances have been performed. One has to extend the worklist handler
and the web-service interface so that identity information is acquired. The
core WfMS has to process that information to provide the FIM functionality
described in Section 5.2.2. Interface 1 concerns the deployment of workflow
definitions. Security configurations must accompany them, so it is necessary
to define the structure of this configuration and how it is distributed to the
components that need it.

We will extend this architecture in line with the design decisions explained
in the following subsections. Figure 6.3 shows the extended architecture. New
WfMS components have grey backgrounds. The diagram is structured into
several parts: The main part of the WfMS, the engine that executes workflow

82 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

instances, is at the top. Below are the other components, including our new
security components. The left part contains components specific to the han-
dling of human tasks. The right part in turn deals with web services. The
space in between contains components common to both groups. Components
that are not part of the WfMS but of the surrounding infrastructure have a
dashed edge and are shown at the bottom of the diagram.

IdI (past activities)

Incoming/outgoing
WS calls

Execution Engine

PEP‐HT

Worklist
HandlerHu

m
an

 ta
sk
s

PIP‐Wf

PDP‐Wf

IdP PDP
Trust
PDP

PEP‐WS

W
eb services

Trust Policy
Store

IdI Access

Create/completion
of human tasks Access to attributes

IdI for activity

SSO
Authorisation

(single activity) get trust ranking

User policies

Incoming/
outgoing
WS calls

IdP

Service
discovery

Keystore

Wf
instance

WSWS

Security
component

Existing
component
with added
security

functionality

External
(security)
component

Key:

Workflow
application

External
application

Figure 6.3: Architecture of a WfMS with FIM Support

6.4.2 Encapsulation of Technology-specific FIM
Functionality

Problem In order conform with D3, technology-dependent FIM functional-
ity should be encapsulated in a separate layer. The WfMS envisioned relies
on different kinds of FIM functionality. We can partition the functionality re-
quired depending on how it deals with identity information, namely acquiring,
outputting or accessing it: (1) Acquisition of identity information: Technically,
identity information is represented as SAML assertions. The WfMS acquires it
either through SSO in the case of web-based interactions, i. e. a user performing
human tasks through the worklist handler, or when it receives identity-web-
service calls through its web-service interface (Sections 5.2.2.1 and 5.2.2.2).

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 83

(2) Outputting identity information: The WfMS has to use identity informa-
tion when invoking web services on behalf of users according to ID-WSF, and
when requesting activity-level authorisation decisions using [AL05] (Sections
5.2.2.5 and 5.2.2.6). The exact behaviour for all this depends on the techni-
cal specifications mentioned. (3) Accessing parts of identity information: For
some tasks, the WfMS itself needs to access parts of identity information. In
particular, it needs to access attributes to provide a personalised service, and
identifiers to recognise users in a stateful interaction and perform workflow-
level authorisation (Sections 5.2.2.3, 5.2.2.4, and 5.2.2.7). Consequently, we
need an FIM-layer implementation that can acquire and output identity infor-
mation while encapsulating the implementation details, and that allows access
to attributes and identifiers. Because several components of the WfMS need
access to this functionality (as we will explain below in more detail), they must
be able to share identity information stored in the FIM layer.

Alternatives It is possible to either implement protocol-specific ad hoc where
it is required, encapsulate it in a library of our own, or use an existing library.

Discussion Using a library that handles the protocol-specific implementation
details leads to better encapsulation. On the one hand, using an existing library
might require some trade-offs to make the other parts of the implementation
compatible with it. On the other hand, it will provide a stable ground for
dealing with the protocols in question. Implementing our own library would
require considerable effort, weakening the focus on the technology-independent
features of the architecture.

Conclusion We choose to use a library encapsulating the technology-specific
details of the implementation. While an existing library may have some short-
comings that influence implementation decisions, the alternative – implement-
ing a library supporting distributed setups from scratch – is impractical because
of the amount of work it would require. Therefore, an existing library should
be used. The choice of a particular library will be made in Section 7.2.

Impact on the architecture For external communication based on SAML
and ID-WSF, several components have to use the library implementing these
protocols. This is indicated in Figure 6.3 by a small circle at the respective end
of an arrow. In addition, these components need access to identity information
(identifiers or other attributes) handled by the library. Components are marked
with a small star to indicate this.

6.4.3 External Communication and Acquisition of Identity
Information

Problem FIM functionality is visible at the external interfaces of the WfMS,
namely the user interface for humans and the web-service interfaces. The
WfMS has to use special protocols here to acquire and eventually output iden-
tity information. It also has to prevent unauthorised access to workflows. The
question now is where to perform this functionality.

84 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

Alternatives The first option is to use proxy components. All external com-
munication of workflows would pass through these proxies. They can selec-
tively block messages, add or remove data such as identity information, and
translate messages to and from protocol-specific formats. Alternatively, work-
flow definitions can be instrumented so that workflows themselves perform this
functionality. We have presented these different approaches for integrating
non-functional concerns into workflows in Subsection 6.3.1.

Discussion Requiring workflow instances to handle the respective protocols
would require complex, technology-specific instrumentations. By contrast, as-
signing this functionality to dedicated components makes it easier to change the
underlying protocol and to delegate technology-specific funcionality to ZXID,
the library we have decided to use in Subsection 6.4.2.

Conclusion We have decided to have two dedicated proxies to isolate the
workflow engine from the worklist handler and from external web services re-
spectively.

Impact on the Architecture The two proxies are called Policy Enforce-
ment Point for Human Tasks (PEP-HT) and Policy Enforcement Point for
Web Services (PEP-WS). This is because they can enforce security decisions,
as we will explain below. They are shown in the respective blocks of the archi-
tecture diagram.

6.4.4 Access Control

In Subsection 6.4.3, we already introduced components that intercept all com-
munication between the WfMS and its environment. These proxies can selec-
tively block messages for security reasons. In this subsection, we now have to
take several design decisions concerning the access control part of our architec-
ture. This concerns the partitioning of the system as a whole into components
for policy decisions and policy enforcement, for human tasks and web services,
and for activity- and workflow-level authorisation constraints.

6.4.4.1 Decisions and Enforcement

Problem We have to decide whether to separate access control decisions and
enforcement.

Alternatives We can integrate access control decisions into the proxies al-
ready introduced or assign this functionality to one or more separate compo-
nents.

Discussion The XACML reference architecture distinguishes between access
control decisions and their enforcement, and assigns these decisions to distinct
components, a Policy Enforcement Point (PEP) and a Policy Decision Point
(PDP). The latter takes access control decisions by evaluating declarative poli-
cies. This distinction is in line with D4 and D5.

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 85

Conclusion We have decided to assign access control enforcement and policy-
based access control decisions to separate components.

6.4.4.2 Decisions for Different Kinds of Activities

Problem The question is whether to use the same PDP (or the same set of
PDPs, cf. Subsection 6.4.4.4) for different kinds of activities (i. e. human tasks
and incoming web service calls), or different ones for each of these two activity
types.

Alternatives One alternative is to use the same PDP(s) for both kinds of
activities. In this case, the (separate) PEPs either have to use the same re-
quest format; if they use different formats, the PDP needs to understand both
formats. The other alternative is to use different PDPs.

Discussion For both kinds of activities, access control decisions are based
on the attributes and identifiers of the users attempting to to perform them.
Moreover, workflow-level authorisation constraints are not limited to a single
kind of activity. Thus, the same information needs to be provided to the PDP
by the two PEPs, and the PDP functionality for both kinds of activities is the
same.

Conclusion We will use one combined PDP for all activities.

6.4.4.3 Structure of Policies

In Subsection 5.2.2.6 and 5.2.2.7, we addressed the need to authorise the exe-
cution of activities both on the activity and workflow level. The WfMS should
perform both kinds of authorisation based on policies. Depending on the struc-
ture of the policies, we see several options with respect to the components
responsible for evaluating the policies.

Problem How should policies be structured with respect to activity- and
workflow-level constraints?

Alternatives One option is to separate the policy into two parts. The alter-
native is to allow the mixing of two kinds of constraints. Both options allow
the same constraints to be expressed, but the latter makes it possible to group
constraints of both kinds. Application developers may find this more intuitive.
Workflow-level constraints are expressed as predicates over tuples of activities.
We have to decide what kind of constraints to allow.

Discussion The respective parts of the security specification are usually in-
dependent; see Chapter 8 of [BMPS09]. Having two independent policy parts
allows their independent evolution. This is particularly important as languages
for stateless activity-level policies are widely established and not workflow-
specific, whereas languages for workflow-level constraints are not yet standard-
ised to the same extent. Most approaches for workflow-level constraints use
only the identifiers of users performing activities, not their attributes. It is

86 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

possible to keep a history of previous access control decisions and refer to it in
policies. The ITU-T access control framework [ITU95a] specifies the concept
of Retained Access Control Decision Information (Retained ADI). [CXO+07]
provides an implementation, but it uses an extension of PERMIS instead of
XACML. Even with such support in the policy language, this approach requires
specifying each constraint in the policy multiple times for each activity con-
cerned. As a result, these constraints become less clear and it is more difficult
to change the policy.

Conclusion We will use policies with two separate parts. We deem workflow-
level constraints that do not take attributes into account sufficient. In partic-
ular, we support the predicates = and 6=, which represent binding of duty and
separation of duty.

6.4.4.4 Structure of the Policy-decision Point

Problem Having decided to separate the activity- and workflow-level parts
of policies, the question now is how to assign the evaluation of these parts to
components.

Alternatives We have to decide whether to implement a monolithic PDP or
use separate components responsible for the two different parts of the policy.

Discussion The evaluation of activity-level constraints is stateless. By con-
trast, workflow-level constraints take the execution history into account. On
the one hand, a monolithic PDP can have better performance, as it only needs
to access identity information once and saves communication overhead. On the
other hand, a modular PDP is more flexible: First, the policy language can
be changed. Second, the stateless part of the policies heavily depends on the
specific technology used. For example, when identity information is provided
as SAML assertions, a policy can refer to the authentication method used,
which is expressed in a way specific to SAML. Being able to plug in an existing
implementation is favorable with respect to D3.

Conclusion We have chosen a modular implementation, because we deem
flexibility more important.

Impact on the Architecture There are two PDPs in our architecture: (1)
A PDP for the evaluation of workflow-level constraints, called Policy Decision
Point for Workflows (PDP-Wf). See the middle part of the architecture dia-
gram. (2) For the stateless part, any existing PDP compliant with the SAML
profile for XACML [AL05] can be used. – The PDP-Wf uses ZXID library
functions to invoke a stateless PDP, shown at the bottom of the diagram, us-
ing the SAML/XACML profile. ZXID can be configured to automatically relay
the attributes acquired through SSO or an incoming ID-WSF-compliant web-
service call to the external PDP. Both PEPs request access-control decisions
from the PDP-Wf.

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 87

6.4.5 Connecting Identity Information with Activities

Identity information, whether acquired via SSO or incoming web-service calls,
is connected to a specific execution of an activity in a specific workflow instance.
The WfMS uses it immediately to authorise this activity (Sections 5.2.2.6 and
5.2.2.7), but also needs it later on, e. g. to invoke services on behalf of the user or
for workflow-level authorisation of other activities. In this subsection, we decide
where to store the relationship between activities and identity information, and
how to establish this relationship in the first place.

6.4.5.1 Storing the Relationship between Identity Information and
Activities

Problem Which component or components should store the relationship be-
tween identity information and activities?

Alternatives This relationship can be stored separately or together for hu-
man tasks and web-service calls.

Discussion On the one hand, establishing the relationship between identity
information and an activity works quite differently for human tasks and web-
service calls, as described below. However, this does not preclude storing the
information in one place once the relationship has been established. On the
other hand, workflow-level authorisation constraints can involve activities of
both kinds. It is easier to evaluate them when the necessary information is
stored in one place.

Conclusion We have decided to use one component for storage, as the in-
formation for human tasks and web-service calls must be combined anyway to
evaluate workflow-level constraints.

Impact on the Architecture The new component is named Policy Infor-
mation Point for Workflows (PIP-Wf), shown in the middle part of the archi-
tecture diagram. It provides identity information belonging to past activities
to the PDP-Wf. Other components submit these relationships to be stored in
it, as explained below.

6.4.5.2 Human Tasks

In a traditional WfMS, human tasks are executed as follows: An activity in a
workflow instance creates a task instance by sending a request to the worklist
handler. When a user has completed the tasks, the worklist handler sends
a response to the workflow instance. Our envisioned WfMS in turn has to
handle the identity information of users acquired through SSO, and has to
decide whether a user may perform a task based on that information.

Example 19 (Creation of a human task instance): In our travel book-
ing example, the request to create a human task comprises the following: The
name of the human task definition (“Travel Authorisation”), the payload for
the human task (i. e. the name of the traveller, the destination and date

88 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

of the trip, and the reason for the trip), an endpoint for the callback such
as http://bp-engine.example/ode/processes/TravelBooking/Authorise

Travel.Callback/, the name of the activity (“Authorise Travel”), and the
ID of the workflow instance (e.g. “BP2342”).

Problem Establishing the relationship between identity information and ac-
tivities has two facets. The first is how to establish this relationship in order
to perform access control for the current activity. This includes defining which
components are involved in access control. The second concerns establishing
this relationship before it is stored in the PIP-Wf. These facets are indepen-
dent, as in the first case, it is not yet clear whether the activity will actually
be performed. Moreover, it is possible that different components will establish
the relationship in the two cases.

Alternatives One possibility is that the worklist handler does not directly
access any component of the WfMS except for the PEP-HT. This means it
sends all access requests to the PEP-HT, which in turn forwards them to the
PDP-Wf. The PEP-HT also registers completed human tasks in the PIP-Wf.
The alternative is that the worklist handler does perform some or all of these
calls itself.

Discussion Both alternatives require changes to the worklist handler. How-
ever, decoupling it from the PDP-Wf and the PIP-Wf requires changes that
are less specific to our architecture. In any case, we have to extend the worklist
handler to support SSO and request an access control decision before allowing
users to see or perform tasks. Were the worklist handler to call the PDP-Wf
directly, it would have to know which activity in which workflow instance had
created a task, and support the protocol for such requests.

Conclusion We have decided to extend the worklist handler only minimally
and assign additional functionality to the PEP-HT. This means that the PEP-
HT forwards access control requests and registers completed tasks.

Impact on the Architecture Using ZXID extends the worklist handler to
include SSO functionality, as indicated by a circle in the diagram. For each
human task instance, the PEP-HT creates an ID, stores it and the endpoint
reference of the callback in the PIP-Wf, and forwards the request to the worklist
handler. Users can log into the worklist handler once using SSO and perform
multiple tasks. Here, authorisation has to occur twice: When a user views
their worklist, the worklist handler must know whether to include a given task.
When a user actually performs the task, authorisation is required again because
of constraints. Think of a BoD constraint between two tasks. As soon as a
user has performed one of the two tasks, other users are no longer allowed
to perform the remaining task. Whenever a task is completed, the worklist
handler includes the correspoding ZXID session ID in the response. The PEP-
HT stores this in the PIP-Wf before forwarding it to the workflow instance.
The architecture diagram shows an arrow from the PEP-HT to the worklist
handler. It stands for the creation and completion of human tasks and for
authorisation requests. The PEP-HT is also connected to the PDP-Wf (for

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 89

authorisation requests) and the PIP-Wf (to store which identity information
belongs to completed tasks).

6.4.5.3 Web Services

For incoming web-service calls, the WfMS has to perform access control before
the calls trigger an activity in a workflow instance.

Example 20 (Incoming web-service call requiring authorization): We now
assume that managers do not approve trips by human tasks. Instead, there is
a dedicated application where they can view which employees are absent due to
business trips, annual leave, illness, etc. The travel approval workflow noti-
fies this application of new requests for business trips using a web-service call.
Managers view the list of open requests at some later point, and approve trips
based on the overview provided by the application. The application sends the
results back to the workflow as a web-service call, using the credentials of the
manager who approved the request. If these approvals were not subject to access
control, it would be easy to send fake approvals to the travel booking workflow,
allowing business trips to be booked without approval.

Problem As explained in Section 5.2.2.2, BPEL provides correlation sets to
determine the context of the call, i. e. the activity and workflow instance the
call is directed to. Normally, it is the workflow engine that performs corre-
lation. However, the WfMS needs this context to perform authorisation, and
to establish the relationship between identity information and an activity, in
order to store this relationship in the PIP-Wf.

Alternatives We see several approaches for addressing this problem: (1) Re-
implementing correlation in the PEP-WS. (2) Instrumenting the workflow, es-
pecially activities receiving calls: The idea is to insert a workflow fragment that
sends the ID of the workflow instance and the name of the receiving activity
to the PEP-WS. With this information, the PEP-WS can perform authorisa-
tion and send the authorisation result as a reply. If authorisation is denied,
the received message is discarded, and the receiving activity is started again.
(3) Close integration of the PEP-WS with the workflow engine to perform
correlation without actually delivering the message. (4) A minimal solution
supporting only calls that start new workflow instances. For such calls, no
correlation is necessary. However, the PEP-WS must learn the ID of the newly
created instance. This is possible using a simple workflow instrumentation.

Discussion We deem (1) impractical. It would require reimplementing a
substantial part of the functionality of the workflow engine in the PEP-WS.
To accomplish this, the PEP-WS would need workflow state currently not
available to it, such as the activities waiting for calls. (3) makes our extensions
contingent on a particular workflow engine, contrary to our design objectives.
(2) is reasonable. (4) is suitable for a large class of applications and is easiest
to implement.

90 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

Conclusion Our pragmatic solution is to start with (4) and leave (2) as
future work. Subsection 6.4.9 features a detailed illustration of the workflow
instrumentation necessary for (2).

Impact on the Architecture The PEP-WS receives web-service calls using
ZXID, indicated by a small circle in the diagrams. The PEP-WS then sends
a request to the PDP-Wf. The request contains the activity and workflow
instance in question and a ZXID session ID referring to the identity informa-
tion. If the request is granted, the PEP-WS forwards the call to the engine,
which creates a new workflow instance. This new instance sends its ID to the
PEP-WS, which registers the identity information for the start activity of that
instance in the PIP-Wf.

6.4.6 Outgoing Web-Service Calls

For outgoing web-service calls made on behalf of users (Section 5.2.2.5), the
WfMS first has to determine which service to call, then make the call. As such
it has to include the correct credentials. Because we rely on unidirectional iden-
tifiers valid for one service provider only, the WfMS has to map the identifier
of the user valid for itself to one valid for the provider of the service invoked.

ZXID provides the technical parts of the required functionality: Based on
a ZXID session ID, ZXID can discover services of a given type available for the
respective user, perform identity mapping, i. e. get credentials with identifiers
valid for the service invoked, and perform the actual call according to the
ID-WSF protocols. ID-WSF distinguishes between the sender identity (the
user on whose behalf the call is made) and the invocation identity (the service
provider actually performing the call). It also provides for the identification of
intermediaries when service invocations are chained; see Sections 4.3 and 7.3
of [Hir06b]. The invoked service can perform access control according to its
own policies, taking into account the invocation identity and the intermediaries
that were part of the call chain.

6.4.6.1 Determining the Identity

Problem The WfMS first has to determine in whose name it has to perform
the call, i. e. which identity to use.

Alternatives There are two main alternatives for solving this problem: (1)
When a workflow instance performs an activity ar receiving an incoming web
service call, a handle representing the acquired identity information is provided
as part of the message and can be stored in a (BPEL) variable. The handle can
then be used in an activity ai invoking a web service, causing this call to be
performed on behalf of of the same user. (2) For each activity invoking a web
service (ai for short), a policy has to specify another activity (ar for short)
– either a human task or an activity that receives a web-service call. The
WfMS then uses identity information from ar to perform ai. The difference
to to Alternative 1 is that the identity information is not selected by explicit
workflow logic, but through the evaluation of a dedicated policy.

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 91

Discussion While (1) is more flexible, (2) is in line with D6. It does not
require changing existing workflow definitions; a small additional configuration
is sufficient.

Conclusion Based on this argument, we choose Alternative (2).

Impact on the Architecture There has to be a component to evaluate the
additional configuration. We assign this task to the PDP-Wf as it involves
policy evaluation, even though the decision is not for access control purposes.
The PEP-WS asks the PDP-Wf which credentials to use for ai. The PDP-
Wf determines ar and looks up the identity information belonging to the last
execution of ar in the PIP-Wf.

Example 21 (Web-service call using identity information): In our earlier
example, ar is a human task in which the user confirms the flight details. ai
is an activity that invokes a flight booking service. ai is executed shortly after
ar. The user knows that performing ar will trigger the booking, so they agree
to the use of their credentials to perform the call to the booking service.

6.4.6.2 Performing Service Discovery

Problem When the PEP-WS knows which identity information to use, it can
perform service discovery. To select a service, it has to take user preferences
into account. We assume that these preferences have been coded explicitly as
personalised trust policies.

Alternatives We see several alternatives for dealing with these policies. (1)
The Trust PDP and the component that stores the policies (Trust Policy Store)
are separate components. The Trust PDP retrieves the user’s policy from the
policy store based on the user’s identity. (2) Like Alternative 1, but it is the
component interested in the trust policy decision that retrieves the user’s policy
from the policy store and provides it to the Trust PDP as part of the request.
(3) The Trust PDP has an internal trust policy store on its own. Note that in
a distributed setting, users should be able to choose a Trust PDP, as well as
the Trust Policy Store. Thus, which Trust PDP is used and from which Trust
Policy Store the policy is retrieved depends on the user.

Discussion Alternative 2 discloses the trust policy to the WfMS, the other
methods do not. Alternatives 1 and 2 would require trust policies to be ex-
pressed in a common policy language. This is not the case for Alternative 3,
which is therefore more interoperable, as there is currently no common trust-
policy language in widespread use. An argument in favor of one central Trust
PDP would be that it able to compute a trust ranking for all services available.

Conclusion Our current implementation is similar to (2). The reason is that
we are using an existing Trust PDP that supports dynamic policies passed at
runtime but does not store user policies itself. At the moment, we are only
using one central Trust PDP. This means that users cannot choose between
several. One advantage of this is that a central Trust PDP has access to more
user feedback and can thus deliver more accurate trust rankings.

92 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

Algorithm 2 PEP-WS performing a call to an identity web service

Require: activity, instanceId, svctype, payload
identity ← PDPWf.getIdentity(activity, instanceId)
services← Discovery.getServices(svctype, identity)
maxScore← −∞
bestService← null
policy ← PolicyStore.getPolicy(identity)
for all service in services do
score← TrustPDP.getScore(service)
if score > maxScore then
maxScore← score
bestService← service

if maxScore < 0 then
return error

result← bestService.call(payload)

Impact on the Architecture This design decision leads to the inclusion
of two external components in our architecture. The PEP-WS retrieves user
policies from the Trust Policy Store and then retrieves trust scores from the
Trust PDP. See Algorithm 2.

6.4.7 Providing Attributes to Workflow Instances

There are two problems to be solved with respect workflow instances accessing
identity attributes. The first problem is how the interface available to workflow
instances should look like. This is addressed in Subsection 6.4.7.1. The second
problem is how users should be informed about which identity attributes may
be used by a workflow instance and can give their consent. Subsection 6.4.7.2
addresses this question.

6.4.7.1 Interface to be used by workflow instances

Problem Workflows must be able to access user attributes to provide a per-
sonalised service (Section 5.2.2.3).

Alternatives There are different ways to accomplish this (cf. [Gör09] and
Subsection 3.8.2). They include (1) extending the interfaces of the WfMS so
that all attributes available are provided once the workflow instance receives a
call or a human task is completed, or (2) letting workflow instances explicitly
fetch the attributes they need.

Discussion The interface of (2) is simpler. In addition, (1) would require
changing interfaces and transferring attribute values even when the workflow
does not need them. In most cases, there is no need for workflow instances to
access identifiers. In particular, one can ensure that two tasks are performed by
the same user by specifying a binding-of-duty constraint, which is evaluated by
the PDP-Wf. Moreover, when attributes are only needed by web services that
the workflow instance invokes, it is not necessary that the workflow instance
itself knows these attributes.

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 93

Conclusion We have chosen to implement Alternative (2). This option is
very flexible and allows workflows to access identity information regardless of
how it has entered the WfMS.

Impact on the Architecture We will provide an Identity-Information Ac-
cess Service workflows can invoke in order to retrieve attribute values. Work-
flows have to specify their instance ID and the name of the activity that has
aquired the identity information.

Example 22: In our travel booking example, we assume that executives
are allowed to travel business class while other employees are limited to econ-
omy class. Thus, the workflow has to determine a user’s professional status
and pass the corresponding booking class information to the flight booking ser-
vice. We assume that the identity provider passes on the professional status as
an attribute. To do this, the workflow sends a request to the IdI Access service
which includes the workflow-instance ID, the name of the activity (“Initiate
booking”), and the name of the attribute (“job status”). The IdI Access ser-
vice replies with the value of the attribute as acquired by the specified activity.
Depending on the value, which is either “executive” or “regular employee”, the
workflow chooses the booking class and includes it in the call to the flight book-
ing service.

6.4.7.2 Information of users about access of workflow instances to
attributes

Problem As discussed in Subsection 5.2.2.1 and Subsection 5.2.2.3, users
must be aware (and thus have to be informed) which identity attributes pro-
vided to the WfMS through SSO will be (potentially) accessible by workflow
instances. At the time SSO is performed, it is not yet known with which work-
flow instances the user will interact. Accordingly, the information has to be
provided to the user at a later point.

Alternatives We see three fundamental alternatives regarding when and how
often this information is provided to the user: (1) Information is provided once
during the execution of each workflow instance. An opportunity for this is
the first task that the user performs in the workflow instance. (2) Each time
the user is about to perform a human task (belonging to a specific workflow
instance), they are informed which attributes the workflow will (potentially)
access. When the user continues to perform the task, this is interpreted as
consent to access the attributes according to this notification. This approach
allows access to be requested to more or fewer attributes depending on which
execution path of the workflow is taken. (3) The user is only informed when
the workflow instance tries to access identity attributes; these attributes are
only transmitted to the workflow instance if the user gives their consent.

In the case of (1) or (2), a further problem is how to determine which
attributes will potentially access. One possibility is an analysis of workflow
definitions to determine which calls to the IdI Access service occur. Another
possibility is a to manually specify which attributes the workflow will poten-
tially access.

94 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

Discussion With (1) and (2), the notification is done when the user performs
a human task. By contrast, (3) potentially results in several notifications not
connected to user interactions that would occur anyway. Moreover, a syn-
chronous interface for accessing attributes is sufficient with (1) and (2). This
is not possible with (3) because users have to grant (or deny) consent before
the attributes can be provided to the workflow. With (2) (and even more so
with (1)), the user is informed about potential disclosure of attributes that
perhaps will not occur at all. This is not an issue with (3). This also makes it
necessary to have a specification as to which attributes the workflow instance
will potentially access. It might be possible to automatically derive this speci-
fication from the workflow definition. However, this is a difficult task because
BPEL allows complex control and data flow so that it is not obvious which
calls exactly might be made to the IdI Access service.

Conclusion With Alternative 2, user interactions are efficient while it is still
possible to have different execution paths or phases of a workflow with different
attribute requirements. Moreover, implementation does not pose particular
difficulties. Therefore, we choose this approach.

In addition, we choose to define the attribute requirements manually due
to the conceptual and technical difficulty of deriving them automatically. Note
that this does not preclude using an automatic approach later, as the handling
of the specifications is the same regardless of how they have been created.

Impact on the Architecture Each workflow definition has to be accom-
panied by an attribute requirements policy. For each human task, it has to
specify which identity attributes of the user performing that task will be po-
tentially accessed by the workflow. The worklist handler must be able to access
the policy applicable to each task being performed. It must compute the inter-
section of the user’s attributes and the attribute requirements of the workflow
and show the result to the user.

6.4.7.3 Enforcement of the attribute requirements policy

Problem A workflow instance must not access attributes beyond what is
specified in the attribute requirements policy, because that would not be cov-
ered by the user’s consent. The question is how this can be ensured.

Alternatives (1) The WfMS trusts that the workflow only accesses attributes
as specified in the policy. This can be supported by respective audits. (2) The
IdI Access service enforces the policy and denies requests for attributes not
specified in the policy.

Discussion Alternative 2 requires some additional implementation effort.
Alternative 1 poses security risks that can only partially be mitigated by audits;
these audits also cause additional cost.

Conclusion We choose Alternative 2 because it provides better security at
reasonable effort.

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 95

Impact on the Architecture In line with Subsection 6.4.4.1, the actual
policy evaluation should be performed by the PDP-Wf. The IdI Access ser-
vice has to request the PDP-Wf’s decision before responding to requests for
attributes.

6.4.8 Configuration

In the previous subsections, we suggested that the components of the system
must first be configured to perform the functionality required. We will now
summarise which configurations are needed and determine how to make them
available to the WfMS components that need them.

In Section 5.2.2, we examined the necessary configurations for FIM func-
tionality used in a WfMS. Earlier in this subsection, we determined the com-
ponents responsible. The need for another kind of policy became apparent in
Subsection 6.4.7.2. This resulted in the following types of configuration to be
used by our envisioned WfMS:

Activity policy: Access control policies for activities, consisting of two parts:
authorisation on the level of individual activities (activity-level constraints) and
constraints involving multiple activities (workflow-level constraints). This sep-
aration into two parts suggests itself given that the two parts are independent
and evaluation works quite differently for each of them. This is similar to the
approach of Bertino et al. (cf. Section 3.5). – Note that users’ trust policies are
not part of the configuration of the WfMS. This is because the WfMS merely re-
trieves them from a policy store and forwards them to the Trust PDP. XACML
policies are an obvious way of expressing activity-level constraints. These poli-
cies need to specify which subjects are allowed to perform which actions on
which resources. XACML uses attributes to describe all of these. More explic-
itly, the resource is specified by using activity names as a resource attribute.
Unlike in the work of Bertino et al., the policy is not limited to roles for de-
scribing subjects. Instead, an arbitrary combination of attributes can be used,
allowing for more flexible policies. Solutions for workflow-level constraints in-
clude BPCL from the work of Bertino et al. already mentioned, or a simple
set of BoD and SoD constraints each referring to two or more activities.

Example 23 (Two-part access control policy for activities): The first part,
activity-level constraints, may take the following form. As XACML is very
verbose, we state this part in natural language; translation into XACML is
straightforward.

• For resources with activity name = "Initiate Booking" or activity name

= "Choose Airline" and action “perform”, require subject attribute
employment status = "regular".

• For resources with activity name = "Authorise Travel" and action
“perform”, require subject attribute job status = "executive".

The second part, workflow-level constraints, is a set of BoD and SoD con-
straints:

• BoD(“Initiate Booking”, “Choose Airline”): The employee initiating the
travel booking workflow must confirm the details of their trip.

96 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

• SoD(“Initiate Booking”, “Authorise Travel”): No employee, not even an
executive, may approve their own trip.

Identity selection policy: For each activity performing an outgoing web-
service call, the identity information to be used has to be given by specifying
the activity that has acquired this information. This is just a set of pairs
of activity names, such as {(Confirm Booking,Book Flight)}, which indicates
that the identity information acquired by the “Confirm Booking” activity is to
be used for the web-service call in the “Book Flight” activity.

Attribute requirements policy: As explained briefly in Subsection 6.4.7.2,
this policy needs to list the attributes a workflow potentially requires with re-
spect to the user performing each task in the workflow. A straightforward way
to express this is by listing human tasks and a set of attributes for each one.
Human tasks for which no attributes of the user performing them are required
can be omitted. As an example, {(Request Booking, {job position})} indi-
cates that the workflow requires the job position attribute (so that it can
decide which booking classes are allowed according to the organisation’s rules
for business trips.

As shown in Figure 6.2, accompanying security configuration has to be
created in addition to workflow definitions, e. g. as special annotations to
workflow activities (cf. also Subsection 6.1.1). After a transformation into the
policies defined in the previous paragraph, the workflow definitions alongside
with these policies have to be deployed to the WfMS. This is done by a special
tool triggered from the workflow modelling component. This tool has to make
sure the user is allowed to deploy workflow definitions (according to a system-
wide policy) and has administrative access to the components of the secure
WfMS. The identity selection policy and the attribute requirements policy have
to be deployed to the PDP-Wf, using the identifier of the workflow definition
in the Workflow Engine. There are alternative ways of providing the activity
policy to the stateless PDP: (1) The activity policy is deployed to the PDP-
Wf, which provides it with every authorisation request. This is not possible
with every PDP implementation and can be inefficient. (2) The part of the
policy relating to individual activities (1) is deployed directly to the stateless
PDP. Requests made by the PDP-Wf to the stateless PDP include the name
of the workflow definition, so that the stateless PDP can determine the policy
applicable. – Our current approach is based on Alternative 1. We propose
switching to Alternative 2 for efficiency reasons.

6.4.9 Correlation of Incoming Web-service Calls

In Subsection 6.4.5.3, we raised the question of how the PEP-WS can determine
the workflow instance and activity that an incoming web-service call is directed
to. This is necessary so that the PEP-WS can perform authorisation before
the message is actually processed by the workflow instance. We sketched a way
to accomplish this, and we now describe it in more detail.

Consider a workflow with a <receive> activity r1 that receives a message
with payload P (Figure 6.4). For each such activity, the workflow definition is
instrumented as follows:

• The interface of r1 is extended so that the incoming message also contains
a message ID m1 created by the PEP-WS.

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 97

r1: <receive>
Payload P

r1: <receive>
Payload P,
Msg ID m1

r1‘: <invoke>
m1, i1, r1

r1‘‘: <receive>
Authz?

Authz?

Figure 6.4: Original <receive> activity

r1: <receive>
Payload P

r1: <receive>
Payload P,
Msg ID m1

r1‘: <invoke>
m1, i1, r1

r1‘‘: <receive>
Authorisation?

Authorisation?

Figure 6.5: Fragment inserted for the <receive> activity

• After r1, an <invoke> activity r′1 is inserted, which calls the PEP-WS
to inform it of the workflow instance (i1) and activity (r1) that m1 was
directed to.

• Another <receive> activity r′′1 is inserted after r′1. It retrieves the au-
thorisation decision from the PEP-WS. If authorisation is granted, exe-
cution of the workflow instance continues normally. If not, execution of
r1 restarts.

Figure 6.5 shows the result of the instrumentation in a form similar to
BPMN. The corresponding instrumentation in WS-BPEL is straightforward.
Assume r1 originally looks as follows:

<receive partnerLink="PL1" portType="PT1"

operation="sendToPL1" variable="v1" name="r1" />

This is transformed into the following:

<sequence>

<repeatUntil>

<sequence>

<receive partnerLink="PL1Ext" portType="PT1Ext"

operation="sendToPL1" variable="v1ext" name="r1" />

<assign><!-- Copy m1, i1 and r1 into

a variable context --></assign>

<invoke partnerLink="PEPWS"

portType="PEPWSContextNotification"

operation="informAboutContext"

inputVariable="context" />

<receive partnerlink="PEPWS"

portType="PEPWSContextNotificationCallback"

98 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

operation="sendAuthorisationDecision"

variable="authorisationDecision" />

</sequence>

<condition>

<!-- authorisation granted -->

</condition>

</repeatUntil>

<assign>

<!-- copy payload part of v1ext into v1 -->

</assign>

</sequence>

6.4.10 Assessment of Design Requirements

In Subsection 5.2.1, we introduced a number of design requirements. We can
group these into privacy-related (D1 and D2) and architecture-related (D3 to
D6). We will now assess our architecture with respect to these design require-
ments by means of plausibility arguments.

D1 requires preventing workflow instances from combining identity infor-
mation. We allow workflow instances to access any identity attribute of users
that could serve as a quasi-identifier. As such, workflow definitions must be
validated before deployment to ensure they adhere to the respective privacy
policy. In particular, workflows may only correlate identity information from
different sources when this is necessary to fulfil the workflow’s purpose and is
specified in the workflow’s policy.

According to D2, identity information should be released only with the
user’s consent. In light of this requirement, it is necessary to distinguish which
entity is responsible for requesting the user’s consent. When an external caller
invokes a web-service interface of the workflow or when the user logs in via
SSO through an identity provider, the transfer of identity information is ini-
tiated by a component that is not part of the WfMS. We see this component
(the caller or identity provider respectively) as responsible for ensuring that
the user has consented to this transfer. The WfMS itself is responsible when
it provides identity information to workflow instances or performs calls to ex-
ternal web services that include identity information. Identity information in-
cluded in web-service calls is directed to a specific workflow instance, to which
the WfMS provides it without further checks. Identity information acquired
through SSO is only provided to a workflow instance when the user performs
a task in the instance. The attribute requirements policy (which is enforced
automatically) states which attributes the workflow instance will potentially
access, and the user is informed accordingly before completing a task. This
means attributes are only disclosed to workflow instances with the user’s in-
formed consent. When the WfMS invokes a web service, it checks that the
service is trustworthy according to the user’s policy (Subsection 6.4.6.2). The
identity provider issues an assertion containing the user’s identity information
specifically for the service invoked. This means the identity provider can (and
should) control which information to release.

D3 postulates abstraction from the actual technologies used. Firstly, we
achieve this by building the architecture around generic concepts of identity

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY 99

management and access control: The fundamental concepts used, namely iden-
tifiers, attributes, and the transfer of identity information in service calls and
user interactions, are independent from any particular specification such as
SAML. Secondly, the architecture uses a dedicated software layer to encapsu-
late the details of the technology actually used (Subsection 6.4.2). This layer
has a sufficiently generic interface based on technology-independent concepts.
It provides high-level interfaces for acquiring identity information through web-
service calls and user interactions, accessing it using generic concepts such as
identifier and attribute, and outputting it for access control or web-service calls.

D4 requires a standards-based architecture, and D5 aims at clearly speci-
fying the component responsible for a certain piece of functionality. The stan-
dards relevant for our architecture are the WfMC reference model for workflow
management functionality, and the XACML reference architecture for its ac-
cess control functionality. Following existing standard architectures is also
one important step towards a clear assignment of functionality to components.
Following the WfMC reference model ensures that the functionality needed is
implemented for all interfaces of the WfMS. In line with the XACML reference
architecture, the tasks of policy enforcement, policy decision and storing in-
formation needed for this are assigned to dedicated components (Subsections
6.4.4.1 and 6.4.5.1). Our architecture specification also defines whether shared
or distinct components are responsible for similar functionality with respect to
human tasks and web services, and specifies how these interact (Subsections
6.4.5.2 and 6.4.5.3).

According to D6, declarative means of configuration should be preferred
over explicit control of FIM functionality by individual workflows. The ar-
chitecture employs declarative policies for access control and determining the
identity to use in web-service calls (Subsection 6.4.8). These policies are inde-
pendent from the workflow definition itself, so can be easily adapted when more
powerful specification mechanisms become available. When workflows need at-
tribute values for application-specific purposes, they must fetch them explicitly.
We conclude that the WfMS uses declarative policies wherever possible in an
application-dependent way.

In summary, the WfMS fulfils the architecture-related design requirements.
We support the privacy-related requirements with respect to workflow-specific
functionality. In addition, these requirements need to be supported by identity
management technology in general.

6.4.11 Sample message flow and user interaction in the
architecture

In the following, we provide a case study based on the travel booking example,
demonstrating how the corresponding security specification is evaluated during
workflow execution.

The example workflow definition, dubbed P , is a linear sequence of four
activities. a1 (Initiate booking) receives incoming (identity) web service calls
that start the workflow. The interface comprises a destination, travel dates,
and a reason as input. a2 (Authorise travel) is a human task which displays
destination, travel dates, reason, and the name of the traveller, plus asks for
authorisation. a3 (Choose airline) is a human task for the traveler. a4 (Book
flight) is a call to a web service provided by a travel agency.

100 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

This workflow definition is accompanied by the following security con-
figuration: (1) Activity level authorisation: a1 and a3 require an attribute
employment status with the value regular. a2 requires an attribute position
with the value manager. (2) Workflow-level authorisation constraints: {BoD(a1,
a3),SoD(a1, a2)} (3) Identity selection for the outgoing WS call: {(a3, a4)}. –
the WfMS executes a4 in the name of the user who performed a3.

We now list the steps in a sample execution of P , together with the com-
ponent interactions they cause:

• John, a regular employee, initiates a WS call to the interface of a1 to
start the booking workflow for a trip to London on June 20–22 to visit a
trade fair. The PEP-WS intercepts this call and uses the ID-WSF library
to extract the identity information (IdI). Since a1 is the initial activity
of P, the PEP-WS creates a new workflow instance ID, P1. It then asks
the PDP-Wf for authorisation. The PDP-Wf in turn sees from the policy
that a1 is subject to a BoD as well as a SoD constraint. It looks up the
IdI for a2 and a3 in the PIP-Wf. The result is that these activities have
not yet been performed, meaning the constraints cannot be violated. The
PDP-Wf then calls the stateless PDP, passing on John’s IdI. As John is
a regular employee, authorisation is granted. The PDP-Wf forwards this
decision to the PEP-WS, which then calls a1 in the Workflow Engine,
passing on the new ID P1, and stores the connection of John’s IdI to a1
in the PIP-Wf.

• The Workflow Engine starts the execution of a2, sending a request to
the PEP-HT. The PEP-HT assigns the ID h1 to the new human task
instance and registers this ID in the PIP-Wf together with P1 and a2.
It then forwards the request to the worklist handler. Bob, a manager
in John’s department, then logs into the worklist handler via SSO, us-
ing the company’s IdP. The ID-WSF library handles the SSO process
and stores Bob’s IdI. For all available tasks, including h1, the worklist
handler requests an authorisation decision from the PEP-HT. The PEP-
HT determines that h1 was created by a2 in P1 by asking the PIP-Wf.
The PEP-HT then sends an authorisation request containing Bob’s IdI,
the ID of the activity (a2), and the ID of the workflow instance (P1),
to the PDP-Wf. The PDP-Wf’s policy states that a SoD conflict with
a1 exists. It looks up the IdI for a1 in the PIP-Wf and determines that
a1 was performed by a different identity, namely John. It then requests
authorisation from the stateless PDP. This is granted because Bob is an
executive. The worklist handler receives the PDP-Wf’s decision via the
PEP-HT and shows h1 in Bob’s worklist. The same steps are executed
for all other human tasks currently registered in the worklist handler; if
Bob is (currently) allowed to perform them, they are shown in his work-
list as well. Bob chooses h1 and completes it, authorising John’s trip.
Because new authorisation constraints might apply due to activities exe-
cuted in parallel, the worklist handler requests authorization again, and
it is granted the same way as before. The PEP-HT registers h1 as com-
pleted, with a pointer to Bob’s PII. The worklist handler sends the com-
pleted task (Bob’s decision) to the PEP-HT. The PEP-HT determines

6.4. DESIGN OF A SYSTEM INTEGRATING FIM FUNCTIONALITY101

the callback address for h1 from the PIP and forwards the result to the
Workflow Engine.

• The Workflow Engine starts the execution of a3, sending a request to
the PEP-HT. The PEP-HT assigns the ID h2 for the new human task
instance and registers it in the PIP-Wf together with P1 and a3. It then
forwards the request to the worklist handler. John then logs into the
worklist handler via SSO, using the company’s IdP. The ID-WSF library
handles the SSO process and stores John’s IdI. For all available tasks,
including h2, the worklist handler requests an authorisation decision from
the PEP-HT. The PEP-HT determines that h2 was created by a3 in P1

by asking the PIP-Wf. It then sends an authorisation request containing
John’s IdI, a3, and P1, to the PDP-Wf. The PDP-Wf’s policy states that
a BoD relation with a1 exists. It looks up the IdI for a1 in the PIP-Wf and
determines that a1 was performed by the same identity. It then requests
authorisation from the stateless PDP. This is granted just as for a1. The
worklist handler receives the PDP-Wf’s decision via the PEP-HT and
shows h2 in John’s worklist. Again, the same steps are executed for all
other human tasks currently registered in the worklist handler; if John
is (currently) allowed to perform them, they are shown in his worklist
as well. John chooses h2 and completes it, choosing Universum Airways.
The worklist handler requests authorisation again, which is granted the
same way as before. The PEP-HT registers h2 as completed, with a
pointer to (the new copy of) John’s PII. The worklist handler sends the
completed task to the PEP-HT. The PEP-HT determines the callback
address for h2 from the PIP and forwards the result to the Workflow
Engine.

• The Workflow Engine starts execution of a3, a request to book a flight
to London with Universum Airways around June 22-24. Its message to
the PEP-WS includes a4, P1 and the service type, i.e. “flight booking”.
The PEP-WS asks the PDP-Wf which identity to use for the call. The
policy states that the identity from a3 should be used, so the PDP-Wf
looks up who has performed a3 in P1 in the PIP-Wf. It sends the result,
a pointer to John’s IdI, to the PEP-WS. The PEP-WS now performs ser-
vice discovery using the ID-WSF library and discovers two flight booking
services, b1 and b2. It then retrieves John’s trust policy from his trust
policy store. The PEP-WS calls the Trust PDP with this policy to re-
trieve trust scores for b1 and b2. According to his policy, John trusts b2,
but not b1. The PEP-WS accordingly calls b2, using John’s credentials.
The ID-WSF library performs identity mapping automatically through
the Identity Mapping Service.

One can see that a simple workflow accompanied by a simple correspond-
ing policy led to many actions performed by the WfMS in the background.
This would be very tedious for workflow designers to specify explicitly. Our
WfMS, by contrast, performs the required actions automatically. This facil-
itates the use of FIM for workflows and improves reliability with respect to
identity management.

102 CHAPTER 6. SYSTEM DESIGN AND ARCHITECTURE

6.5 Summary

In this chapter, we have developed architecture extensions in two steps, lead-
ing to a secure and identity-aware workflow management system. We have also
investigated how this system can be configured and which kinds of workflow
context it can adapt to. While we have not addressed all requirements, the sys-
tem is flexible enough to cope with the remaining ones without major changes,
as we will show in Section 8.2.

Chapter 7

Implementation

In the previous chapter, we described the architecture of our secure workflow
management system, i. e. its components and their relationship. Now we will
describe the technical aspects needed to actually implement the components
themselves and the communication links between them1.

The remainder of this chapter is structured as follows:

• We begin with an overview of the components defined in both variants
of the architecture, briefly explain their functionality again, and analyse
which components from both variants correspond to each other. We also
hint at possible discovery methods that would allow the components to
find each other.

• We decide which library to use for handling the technical details of SAML
and ID-WSF.

• We determine which data each component uses, either directly or by
referencing it. We define the data formats used for literal data, and the
identifier schemes used for references to data.

• Based on several scenarios covering the identity management function-
ality described in the previous chapter, we analyse the interaction of
components. We consider which messages components exchange in these
scenarios, and define XML data formats for these messages. This provides
a sound definition of the communication.

• We explain the process of deploying security configurations for workflow
definitions, and of deploying the workflow definitions themselves. We
elaborate on the necessary transformations of workflow definitions.

• We show how to address performance bottlenecks in the architecture and
its implementation based on one example.

• We explain in detail how to achieve the necessary transformations of
workflow definitions.

• We briefly examine the use of legacy software components.

1Parts of this chapter are based on the author’s contribution to [TAS11], a public project
deliverable accepted by the European Commission.

103

104 CHAPTER 7. IMPLEMENTATION

Secure WfMS WfMS/FIM Remark

Workflow Engine Workflow Engine no differences
PDP-Wf PDP-Wf The latter is specified in more de-

tail.
PIP PIP-Wf The latter additionally stores

identity attributes.
PAP-Wf – In the latter architecture, PAP

functionality is included in the
PDP-Wf.

Context Handler IdI Access The latter has a narrower scope.
PEP-WS PEP-WS
Key Store – Considered an implementation is-

sue in the latter version, part of
ZXID.

Trust PDP Trust PDP
– Trust Policy Store Identity-based service
Service Discovery IdP Described as part of the IdP, fol-

lowing ID-WSF specifications.
UInvolve Handler –
Async UI –
PEP-HT PEP-HT
Worklist Handler Worklist Handler
– IdP Also handles service discovery.
– PDP Handles non-workflow-specific de-

cisions.

Table 7.1: Components described in both versions of the architecture.

7.1 Component Overview

Table 7.1 lists the components described in the basic architecture for a secure
WfMS and the version of the architecture that integrates federated identity
management. The main differences are as follows: Some names have changed
slightly. The handling of service discovery and key management is different due
to the introduction of ZXID and identity management. Security-specific and
asynchronous user interactions are not addressed in the latter architecture.

Next, we consider how other components must be able to discover these
components:

• Workflow Engine:

– Replies to outgoing requests are either made in the same connection
or to an address specified in the original request. This address must
allow identification of the respective workflow instance and partner
link.

– Requests to start new workflow instances must be directed to specific
preconfigured endpoints. These endpoints must be published, e. g.
in a service directory.

7.1. COMPONENT OVERVIEW 105

• Workflow PDP: This component is needed only by other components of
our architecture. Thus, its address can be hardcoded in the configuration
of these components.

• The same holds for the PIP-Wf, the IdI Access component, the UIn-
volve Handler and the PDP.

• The Context Handler provides status information about workflow in-
stances to external components. It thus has to notify them that relevant
information is available. For example, a user’s control centre should know
about the workflow instances the user is involved in. This notification
may involve an additional intermediary. Once the initial notification has
been made, the control centre can retrieve additional information.

• PEP-WS:

– First, the PEP-WS handles requests from the Workflow Engine to
external web-services. This is achieved by instrumenting the work-
flow to call the PEP-WS instead. The PEP-WS’s address can be
preconfigured.

– Second, it also handles web-service messages sent to the engine.
Because SOAP is based on HTTP, one can simply redirect HTTP
connection requests to the engine to the PEP-WS. The HTTP head-
ers still contain the original address, so the PEP-WS can forward
them after applying authorisation and protocol translations.

• The Trust PDP is part of the overall security infrastructure, usually
including more than one workflow engine and associated security compo-
nents. However, its address can still be preconfigured in the PEP-WS.

• The responsible IdP is determined based on the user who authenticates to
the system. A trust relationship is established before the system accepts
authentication provided by a given IdP. A session is always established
when a user logs in using one of the preconfigured IdPs.

• Service Discovery is performed by a discovery service that may be
different for each user. The responsible service is determined when a
user’s IdP provides authentication to the system.

• In our architecture, there is only one Worklist Handler per workflow
management system. It is therefore preconfigured in the PEP-HT. It
might be desirable to have user-specific worklist handlers so that users
can see task from different workflow management systems in one place.
This would require an allocation mechanism, as potentially distributing
every task to every user would be infeasible. The worklist handler for
users to whom a task has been allocated can then be determined using
service discovery.

• Async UI is not covered in detail. However, the same considerations as
for the Worklist Handler apply.

Table 7.2 and Table 7.3 list the types of data handled by each component
and the identifiers used by it. Based on this overview, we will then select
suitable data formats and identifier schemes.

106 CHAPTER 7. IMPLEMENTATION

Component Type of data used: Identifiers used for:

Wf Engine Workflow definitions Workflow definitions
Runtime informa-
tion about workflow
instances

Workflow instances

Workflow activities
PDP-Wf Policies Workflow definitions

Identity information Workflow instances
Workflow activities
Blocks of identity infor-
mation
Users

PIP(-Wf) Identity information
obtained

Blocks of identity infor-
mation

Status of human tasks Users
Workflow definitions
Workflow instances
Workflow activities

Context handler Status of workflow in-
stances and activities

Workflow definitions

Workflow instances
Workflow activities

IdI Access Attributes Workflow definitions
Workflow instances
Workflow activities
Blocks of identity infor-
mation
Attributes

PEP-WS Trust levels of web ser-
vices

Web-service endpoints

SOAP messages to and
from web services

Web-service types

Workflow definitions
Workflow instances
Workflow activities

Key Store Cryptographic keys of
web services

Web-service endpoints

Trust PDP Ratings (and other
sources for computing
trust scores)

Web-service endpoints

Web-service providers
Users

Trust Policy Store Trust policies Users
IdP/Service Discovery Registration of services Web-service endpoints

Authentication infor-
mation for users

Service types

Users

Table 7.2: Data and identifiers used by the components (part 1).

7.2. LIBRARY FOR SAML AND ID-WSF 107

Component Type of data used: Identifiers used for:

UInvolve Handler Security configuration Workflow definitions
Workflow instances

and Workflow activities
Users

Async UI Human tasks
Web-service endpoints
Other objects referred to
in security configuration

PEP-HT Status information about
active human tasks

Workflow definitions

Workflow instances
Workflow activities
Instances of human tasks
Blocks of identity infor-
mation

Worklist Handler Definitions of human
tasks

Definitions of human
tasks

Active human tasks Instances of human tasks
(Parts of) attribute re-
quirements policies

attributes

PDP Policies
Identity information

Table 7.3: Data and identifiers used by the components (part 2).

7.2 Library for SAML and ID-WSF

As decided in Subsection 6.4.2, a library should be used to handle the SAML
and ID-WSF protocols. Several libraries that provide the desired functionality
are available. ZXID2 is a library that implements the ID-WSF protocols. Other
possibilities are the Liberty Open Source Toolkit3, another implementation of
ID-WSF, and OpenSAML4, which implements only SAML itself, not the ID-
WSF that is built on top of it.

In comparison with SAML, ID-WSF specifies additional details facilitating
interoperability. This makes it advantageous to choose a library supporting
it. ZXID persists identity information as ZXID sessions and lets these be
addressed using so-called ZXID session IDs. It can perform SSO and extract
identity information from ID-WSF-compliant web-service calls. Both functions
lead to the creation of a ZXID session, which stays available until it is explicitly
deleted. ZXID can make outgoing ID-WSF calls and request authorisation
decisions using identity information from a specified ZXID session. Finally,
ZXID provides an interface to access attributes and identifiers. By sharing
ZXID session IDs, components running on the same machine can use ZXID to
access identity information.

2http://www.zxid.org/
3http://www.cahillfamily.com/OpenSource/
4https://wiki.shibboleth.net/confluence/display/OpenSAML/Home

108 CHAPTER 7. IMPLEMENTATION

ZXID is used throughout the architecture. First, several components use
ZXID for external communication by means of a special protocol supported
by ZXID. Second, these components access identity information (identifiers or
attributes) already stored in a ZXID session.

7.3 Data and Identifier Formats

The previous section lists the data and identifier types used by the architecture
components. Here, we describe the formats these take.

• Workflow definitions follow the WS-BPEL specification [JE07] (Sub-
section 2.3.2).

• The runtime information about workflow instances needed by the
workflow engine is also given in the WS-BPEL specification. However,
not all of this information is required by other components. Only the
information on whether a given activity in a given workflow instance is
currently active is needed.

• Possible elements for identity information are described in Subsec-
tion 2.4.5.1. A block of identity information can be expressed by a SAML
assertion. On a more fine-grained level, there are pairs of attribute types
and attribute values. We will discuss identifier formats for attribute types
below. Attribute values can be expressed as simple strings.

• Access control policies specify who is allowed to execute which activ-
ities. They contain rules based on the attributes of the respective user
and on the activity in question. This can be achieved using XACML
policies (Subsection 2.4.3.1). How user attributes should be referred to is
specified in the SAML 2.0 Profile for XACML (Subsection 2.4.5.3). The
name of the activity can be specified as a resource attribute. For each
workflow definition, a separate XACML policy is specified. In addition,
history-based constraints (separation of duty, binding of duty) must be
be specified in a non-standard format.

• The status of human tasks can be expressed straightforwardly: For
each human task instance, an identifier of the instance and of the human
task definition must be stored. If the human task has been claimed by
a user, a reference to their identity information must also be stored.
Section B.2 features a detailed explanation of possible states of human
tasks.

• Trust levels of web services are simply numeric values.

• Messages sent to and received from web services are in SOAP format
(Subsection 2.2.2).

• The cryptographic keys of web services can be embedded as part of the
SecurityContext element of an ID-WSF endpoint reference (cf. Section
2.3.3 of [CC07]).

7.4. INTERACTION OF COMPONENTS 109

Type of object Context Format
Workflow definitions WfMS String
Workflow instances WfMS Number
Workflow activities Workflow definition String
Block of identity information WfMS ZXID session ID
Users WfMS5 String
Attribute types Global LDAP object ID
Web-service type Global URN
Web-service instance Global Endpoint URL
Human task definition WfMS String
Human task instance WfMS, Number

Worklist Handler

Table 7.4: Identifier formats.

• User ratings, expressed as tuples of a persistent user ID, a service ID and
a value, can act as a simple basis for computing trust levels. Trust
policies are user-specific. Both types of information are out of scope
here. [BEdH+10] provides a classification of possible trust policies.

• Service registrations consist of a service type and a service endpoint.

• The identity provider must be able to authenticate registered users. Pass-
words are a simple example of this type of authentication information.

• Section B.1 proposes a format for definitions of human tasks.

In addition, several types of objects must be uniquely identifiable. Table 7.4
lists the context in which these have to be unique, and the format used.

7.4 Interaction of Components

Up to now, we have looked at the implementation of individual components and
the data formats used. As the next step, we will now analyse the interactions
between components. To this end, we will look at different scenarios covering
all interactions between components. These are as follows:

• A workflow instance creates a human task instance.

• A user views the list of their tasks.

• A user performs a human task.

• A user tries to perform two tasks, and a separation-of-duty constraint
applies.

• The workflow invokes a web service, including the computation of trust
rankings and service selection.

• An incoming web-service call starts a new workflow instance.

5For different service providers, different identifiers (pseudonyms) are used. Automatic
translation is performed in a privacy-preserving way.

110 CHAPTER 7. IMPLEMENTATION

• A workflow definition and accompanying security policies and human task
definitions are deployed.

We will now explain these interactions in more detail, define interfaces and
review how data formats and identifiers are used in these interactions.

7.4.1 A workflow instance creates a human task instance

This scenario involves the workflow as well as the PEP-HT, which handles the
creation of the task instance, the PIP-Wf, which stores information about the
newly created task instance, and the worklist handler.

Schematically, the interaction is as follows:

1. The workflow sends a request to create a human task instance. Instead
of sending it directly to the worklist handler, the workflow sends it to
the PEP-HT, which acts as a proxy. This request contains information
about the context of the task, e.g. the workflow instance.

2. The PEP-HT creates a new, unique task instance identifier. It stores the
identifier and information about the task instance in the PIP-Wf so that
it is available later for the evaluation of policy decision requests.

3. The PEP-HT then forwards the request to the worklist handler, including
the task instance identifier.

Extending the data and identifier formats defined above, we will now discuss
the interface for creating an instance of a human task:

Creating tasks requires only three fixed parameters:

• an ID of the task instance, created by the PEP-HT,

• the ID of the task definition (which must have been deployed previously),
and

• a callback URL to which the notification of the completion of the task
will be sent. The format of the callback message will be defined in a
separate section below.

The other parameters depend on the input parameters defined in the task
definition. While it would be possible to define an interface (as a WSDL)
that works for all task definitions, such an interface description would not be
very useful for creating stubs for calling the method or validating invocations.
Therefore, we will dynamically create a WSDL interface description for each
task definition.

For the task definition given above, the body of a SOAP message would
look as follows (note that we use the document/literal wrapped convention for
SOAP calls):

<createTask xmlns="urn:tas3:examples:taskdef1:createRequest">

<!-- ":createRequest" added to the ID of the task definition -->

<taskid>taskid-0815</taskid>

<taskdef>urn:tas3:examples:taskdef1</taskdef>

<!-- This may seem redundant, but makes it possible to determine

7.4. INTERACTION OF COMPONENTS 111

the applicable task definition without splitting the string in

the namespace declaration. -->

<callback>http://example.org/axis2/taskdef1Callback/</callback>

<taskInput>

<number_x>5</number_x>

<number_y>6</number_y>

<x_or_y>same</x_or_y><!-- the preselected choice -->

<correct>false</correct><!-- the checkbox will be

unchecked initially. -->

<flavour>

<choice value="vanilla">Vanilla</choice>

<choice value="choco">Chocolate</choice>

<choice value="forest">Forest Fruits</choice>

</flavour>

<privacy_policy caption="Privacy policy"

url="http://example.org/privacy_policy" />

<taskInput>

</createTask>

A generic schema (without the parts specific to each task definition) for this
message body looks as follows:

<!-- In each generated schema for a specific task definition, a

different targetNamespace will be used. -->

<schema targetNamespace="urn:tas3:examples:taskdef1:createRequest"

xmlns="http://www.w3.org/2001/XMLSchema">

<element name="createTask">

<complexType>

<sequence>

<element name="taskid" type="string"/>

<element name="taskdef" type="string"/>

<element name="callback" type="string"/>

<element name="taskInput">

<!-- to be replaced (as explained below) by

a more specific definition for the

particular task definition. -->

<sequence>

<any namespace="##any" minOccurs="0" />

</sequence>

</element>

</sequence>

</complexType>

</element>

</schema>

As indicated, we need to fill in the type definition of the taskInput element.
For each input parameter of the task, we need to add one element, resulting
in a sequence. The schema elements correspond to the possible parameters as
follows:

• For text inputs:

112 CHAPTER 7. IMPLEMENTATION

<element name="id of the text input " type="string" />}

• For boolean inputs (checkboxes):

<element name="id of the boolean input " type="boolean" />}

• For a dynamic list of choices:

<element name="id of the dynamic_choice input " >

<complexType>

<sequence>

<element name="choice" minOccurs="0"

maxOccurs="unbounded">

<complexType>

<sequence>

<element name="caption" type="string">

<element name="id" type="string">

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

• For a static list of choices:

<element name="id of the static_choice input " type="string" />}

• For a URL:

<element name="id of the URL form element " >

<complexType>

<sequence>

<element name="caption" type="string">

<element name="url" type="string">

</sequence>

</complexType>

</element>

Given these definitions, the schema definition for our sample task definition
looks as follows:

<schema targetNamespace="urn:tas3:examples:taskdef1:createRequest"

xmlns="http://www.w3.org/2001/XMLSchema">

<element name="createTask">

<complexType>

<sequence>

<element name="taskid" type="string"/>

<element name="taskdef" type="string"/>

<element name="callback" type="string"/>

<element name="taskInput">

<complexType>

<sequence>

7.4. INTERACTION OF COMPONENTS 113

<element name="number_x" type="string" />

<element name="number_y" type="string" />

<element name="x_or_y" type="string" />

<element name="correct" type="boolean" />

<element name="flavour">

<complexType>

<sequence>

<element name="choice" minOccurs="0" maxOccurs="unbounded">

<complexType>

<sequence>

<element name="caption" type="string">

<element name="id" type="string">

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

<element name="privacy_policy">

<complexType>

<sequence>

<element name="caption" type="string">

<element name="url" type="string">

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</schema>

The task creation component will be provided as a servlet and has to of-
fer two different functionalities. First, it offers a WSDL describing the task
creation interface. Second, it provides a (generic) interface that accepts such
requests. It is sufficient to provide one endpoint here (independent of the task
to be created), as requests can be dispatched based on the namespace and the
taskdef element.

An example of a full WSDL is given below. The URL where the WSDL
can be retrieved depends on the location where the servlet is deployed.

<wsdl:definitions

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="urn:tas3:examples:taskdef1:createRequest"

targetNamespace="urn:tas3:examples:taskdef1:createRequest" >

<wsdl:types>

<schema targetNamespace="urn:tas3:examples:taskdef1:createRequest"

114 CHAPTER 7. IMPLEMENTATION

xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="createTaskRequestType">

<!-- Insert the sequence element that appears as the child of

the complexType element in the definition of the createTask

element in the schema above. -->

</complexType>

<element name="createTask" type="tns:createTaskRequestType" />

<element name="createTaskResponse">

<complexType/>

</element>

</schema>

</wsdl:types>

<wsdl:message name="createTaskRequest">

<wsdl:part name="root" element="tns:createTask"/>

</wsdl:message>

<wsdl:message name="empty">

<wsdl:part name="parameters" element="tns:createTaskResponse"/>

</wsdl:message>

<wsdl:portType name="createTaskPT">

<wsdl:operation name="createTask">

<wsdl:input message="tns:createTaskRequest"/>

<wsdl:output message="tns:empty"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="createTaskSoapBinding" type="tns:createTaskPT">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="createTask">

<wsdl:input><soap:body use="literal"/></wsdl:input>

<wsdl:output><soap:body use="literal"/></wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="CreateTaskSoapService">

<wsdl:port name="createTaskPort" binding="tns:createTaskSoapBinding">

<soap:address

location="http://example.org/CreateTaskServlet/createTask"/>

<!-- determined by the implementation -->

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

This interface is provided by the worklist handler and used by the PEP-HT.
There is another interface provided by the PEP-HT and used by the workflow
instance. This interface is essentially the same. However, it has to be extended
with context information needed for authorisation. We will discuss this issue

7.4. INTERACTION OF COMPONENTS 115

below when we address the necessary workflow transformations.
The worklist handler can store the information using two database tables

described in Section B.3.
To register the task instance in the PIP-Wf, the following information is

necessary:

• The ID of the workflow instance (which can also be used to deduce the
ID of the workflow model),

• the new task instance ID created by the PEP-HT,

• the information that the task has not yet been performed and no user
has claimed it, and

• the callback URL that will be used to inform the workflow when the task
has been completed.

7.4.2 A user views the list of their tasks

In this scenario, we assume that a human task instance has been properly cre-
ated and is registered in the PIP-Wf and the worklist handler. Schematically,
the following steps occur for each task registered in the worklist handler when
a user logs in and views their task list:

1. For each available instance of a human task, the worklist handler sends
its ID and a reference to the user’s identity information to the PEP-HT
and asks for authorisation.

2. The PEP-HT retrieves information about the task instance from the PIP-
Wf.

3. The PEP-HT sends a policy decision request with all of this information
to the PDP-Wf.

4. The PDP-Wf reads the policy applicable to the workflow model in ques-
tion from its policy store.

5. Using the policy, it determines other task instances relevant to the current
decision request. Other task instances can be relevant because of binding-
of-duty or separation-of-duty constraints.

6. The PDP-Wf determines who has executed these task instances by in-
voking the PIP-Wf.

7. The PIP-Wf sends a reply with the requested assignments.

8. It then evaluates the policy and answers the request. Part of this concep-
tual step is actually performed by a separate, stateless PDP. Accordingly,
this step can be split up as follows:

a) First, the PDP-Wf checks whether constraints are fulfilled. If not,
it sends a Deny response to the PEP-HT’s request.

116 CHAPTER 7. IMPLEMENTATION

b) If all constraints are met, the PDP-Wf checks whether the user is
allowed to perform the task based on their attributes. To do so,
it contacts a general-purpose PDP, passing the policy applicable to
the task in question and the user’s attributes in SAML format.

c) The (general-purpose) PDP evaluates the policy and returns a de-
cision to the PDP-Wf.

d) The PDP-Wf returns the overall decision to the PEP-HT.

9. The PEP-HT forwards the decision to the worklist handler, which, de-
pending on the decision, includes the task in the worklist shown to the
user or not.

The worklist handler’s user interface consists of two views:

• Task list: A page that shows the tasks available to the current user in
a table, showing the title of the task and whether the task is already
claimed by the current user.

• Task display: This screen shows a task with a caption, text explanation
and form elements according to the task definition. The values of the
form elements are initially set according to the task creation request.
The user can either save a task, causing the entered data to be persisted,
or complete it. In the latter case, the data the user entered will be sent
back to the workflow.

The following interfaces are used in the steps described above:

• The PEP-HT handles authorisation requests for human task instances.

– Input parameters: ZXID session ID, task instance ID

– Result: Boolean value

• The PIP-Wf provides information about a human task instance.

– Input parameter: Task instance ID

– Result: Workflow model ID, workflow instance ID, workflow task
ID

• The PDP-Wf handles authorisation requests for instances of workflow
tasks.

– Input parameters: Workflow model ID, workflow instance ID, task
ID, ZXID session ID

– Result: Boolean value

• The PIP-Wf can determine who has performed specific workflow tasks in
a given workflow instance.

– Input parameters: Workflow instance ID, task ID

– (Pseudonymous) user IDs

• The general-purpose PDP answers policy requests that do not rely on
history information.

7.4. INTERACTION OF COMPONENTS 117

– Input parameters: Applicable XACML policy, user attributes as a
SAML assertion

– Result: Boolean value

7.4.3 A user performs a human task from their worklist

The next scenario again builds upon the scenarios discussed before: We assume
that a human task instance has been deployed and that the user can see it in
their worklist. Again, we list conceptual steps that are part of this scenario.
Note that several steps are the same as in the previous scenario.

1. The user chooses one of the tasks in their worklist in order to perform it.

2. The worklist handler sends the task’s ID and a reference to the user’s
identity information to the PEP-HT and claims the task for that user.

3. The PEP-HT retrieves information about the task instance from the PIP-
Wf.

4. The PEP-HT sends a policy decision request with all of this information
to the PDP-Wf.

5. The PDP-Wf reads the policy applicable to the workflow model in ques-
tion from its policy store.

6. Using the policy, it determines other task instances relevant to the current
decision request. Other task instances can be relevant because of binding-
of-duty or separation-of-duty constraints.

7. The PDP-Wf determines who has executed these task instances by in-
voking the PIP-Wf.

8. The PIP-Wf sends a reply with the requested assignments.

9. It then evaluates the policy and answers the request. The sub-steps are
the same as in the previous scenario.

10. If authorisation is granted, the PEP-HT registers the task as claimed. To
this end, it sends a request to the PIP-Wf.

11. The PEP-HT also requests the attributes potentially accessed based on
the task from the PDP-Wf.

12. The PDP-Wf sends a response based on the applicable attribute require-
ments policy.

13. The PEP-HT forwards the decision and the list of attributes to the work-
list handler.

14. The worklist handler gets the user’s attributes from the ZXID session
and computes the intersection with the list of required attributes.

15. If the task has been claimed successfully, the worklist handler displays
it to the user, accompanied by a notice listing the attributes potentially
accessed by the workflow.

118 CHAPTER 7. IMPLEMENTATION

16. Now the user completes the task. The worklist handler notifies the PEP-
HT.

17. The PEP-HT marks the task as completed in the PIP-Wf.

18. The PEP-HT then returns the result to the workflow.

The following new interfaces are used in the steps described above:

• The PEP-HT provides an interface for claiming a human task instance.
This is similar to a simple authorisation request when viewing a task;
in addition, this interface provides information about the potentially re-
quired attributes.

– Input parameters: ZXID session ID, task-instance ID

– Result: Boolean value (authorisation result), list of attribute names

• The PIP-Wf provides an interface for registering a human-task instance
as claimed.

– Input parameters: Task instance ID, user ID.

– Result: None.

• The PEP-HT and the workflow have to provide an interface through
which they can be notified of task completions.

A notification of the completion of a task requires only one fixed parame-
ter, namely the ID of the task instance. This is sent to the callback URL
passed when creating the task instance. Most parameters, however, are
determined by individual task definitions. We will dynamically create a
WSDL interface description for each task definition.

For the task definition given above, the body of the SOAP message would
look as follows (again, we use the document/literal wrapped convention
for SOAP calls):

<taskCompleted

xmlns="urn:tas3:examples:taskdef1:completedNotification">

<!-- ":completedNotification" added to the

ID of the task definition -->

<taskid>taskid-0815</taskid>

<taskOutput>

<x_or_y>y</x_or_y>

<correct>true</correct>

<flavour>forest</flavour>

<taskOutput>

</createTask>

As above, we look at all possible form elements in task definitions and
consider how to transform them into schema elements:

– For text inputs where readonly is not set to true:
<element name="id of the text input" type="string" />

7.4. INTERACTION OF COMPONENTS 119

– For boolean inputs (checkboxes) where readonly is not set to true:
<element name="id of the boolean input" type="boolean" />

– For a dynamic list of choices where readonly is not set to true:
<element name="id of the dynamic choice input" type="string"

/>

(only the ID of the chosen option is returned).

– For a static list of choices where readonly is not set to true:
<element name="id of the static choice input" type="string" />

(only the value of the chosen option is returned).

– URLs are always read-only.

Thus, for our example, the WSDL would look as follows:

<wsdl:definitions

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="urn:tas3:examples:taskdef1:taskCompletion"

targetNamespace="urn:tas3:examples:taskdef1:taskCompletion" >

<wsdl:types>

<schema

targetNamespace="urn:tas3:examples:taskdef1:taskCompletion"

xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="taskCompletionRequestType">

<sequence>

<element name="taskid" type="string"/>

<element name="taskOutput">

<complexType>

<sequence>

<element name="x_or_y" type="string" />

<element name="correct" type="boolean" />

<element name="flavour" type="string" />

</sequence>

</complexType>

</element>

</sequence>

</complexType>

<element name="taskCompletion"

type="taskCompletionRequestType" />

<element name="taskCompletionResponse">

<complexType/>

</element>

</schema>

</wsdl:types>

<wsdl:message name="taskCompletionRequest">

<wsdl:part name="root" element="tns:taskCompletion"/>

</wsdl:message>

<wsdl:message name="empty">

120 CHAPTER 7. IMPLEMENTATION

<wsdl:part name="parameters"

element="tns:taskCompletionResponse"/>

</wsdl:message>

<wsdl:portType name="taskCompletionPT">

<wsdl:operation name="taskCompletion">

<wsdl:input message="tns:taskCompletionRequest"/>

<wsdl:output message="tns:empty"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="taskCompletionSoapBinding"

type="tns:taskCompletionPT">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="taskCompletion">

<wsdl:input><soap:body use="literal"/></wsdl:input>

<wsdl:output><soap:body use="literal"/></wsdl:output>

</wsdl:operation>

</wsdl:binding>

<!-- No endpoint defined because the operation has to be

provided by the invoking workflow or proxy (PEP). -->

• The PIP-Wf also provides an interface for registering a human task in-
stance as completed.

– Input parameters: Task instance ID, user ID.

– Result: None.

7.4.4 Effects of a separation-of-duty constraint on
concurrent actions by several users

The following scenario is basically a modification of the previous one where
not all steps run through “cleanly”. Instead, it exemplifies what happens when
authorisation is denied because constraints apply. The interfaces used here are
the same as those that we have already discussed in detail.

1. Two human task instances t1 and t2 are created as described in Subsec-
tion 7.4.1.

2. A user views their worklist as described in Subsection 7.4.2.

3. The user chooses task t1 in order to perform it.

4. The worklist handler sends the ID of task t1 and a reference to the user’s
identity information to the PEP-HT and claims the task t1 for that user.

5. The PEP-HT retrieves information about the task instance from the PIP-
Wf.

7.4. INTERACTION OF COMPONENTS 121

6. The PEP-HT sends a policy decision request with all of this information
to the PDP-Wf.

7. The PDP-Wf reads the policy applicable to the workflow model in ques-
tion from its policy store.

8. Using the policy, it determines other task instances relevant to the current
decision request. Other task instances can be relevant because of binding-
of-duty or separation-of-duty constraints.

9. The PDP-Wf determines who has executed these task instances by in-
voking the PIP-Wf.

10. The PIP-Wf sends a reply with the requested assignments.

11. The PDP-Wf then evaluates the policy and answers the request. The
sub-steps are the same as in the previous scenario.

12. The authorisation is granted, so the PEP-HT registers the task as claimed.
To this end, it sends a request to the PIP-Wf.

13. The PEP-HT forwards the positive decision to the worklist handler.

14. The worklist handler displays it to the user.

15. The user interrupts their work on task t1 and selects task t2, which also
appears in their worklist.

16. The worklist handler sends the ID of t2 and a reference to the user’s
identity information to the PEP-HT and claims the task t2 for the user.

17. The PEP-HT retrieves information about the task instance from the PIP-
Wf.

18. The PEP-HT sends a policy decision request with all of this information
to the PDP-Wf.

19. The PDP-Wf reads the policy applicable to the workflow model in ques-
tion from its policy store.

20. Using the policy, it determines other task instances relevant to the current
decision request. Other task instances can be relevant because of binding-
of-duty or separation-of-duty constraints.

21. The PDP-Wf determines who has executed these task instances by in-
voking the PIP-Wf.

22. The PIP-Wf sends a reply with the requested assignments, namely that
the user has already claimed the task t1.

23. The PDP-Wf then evaluates the policy and answers the request. The
sub-steps are the same as in the previous scenario. The result is that
authorisation is denied, because the user has already claimed t1.

24. The PEP-HT forwards this decision to the worklist handler, which dis-
plays an error message indicating that the user is not allowed to perform
t2.

122 CHAPTER 7. IMPLEMENTATION

A similar situation arises for two users when two tasks are connected by
a binding-of-duty constraint. Here, the second user can no longer claim the
second task once the first user has claimed the first task.

7.4.5 Invocation of a web service, including service selection

The next scenario is largely independent of the previous ones. However, it
assumes that a human task instance related to a web-service call has been
completed and the user who performed it is registered in the PIP-Wf. After
this, the following conceptual steps occur:

1. The workflow triggers a web-service call and sends it to the PEP-WS,
which acts as a proxy. This call includes the context of the call.

2. The PEP-WS sends the context to the PDP-Wf and requests the selection
of a user whose identity is to be used for the call.

3. The PDP-Wf determines the corresponding workflow model ID for the
workflow instance via the PIP-Wf.

4. The PDP-Wf looks up the applicable workflow policy.

5. The PDP-Wf retrieves relevant user task assignment history from the
PIP-Wf.

6. Based on this history (which user has performed a human task related to
the call?), it selects a user and returns the result to the PEP-WS.

7. The PEP-WS performs service discovery and finds all services of the
respective types that are available to the user.

8. The PEP-WS performs service discovery to find the trust policy store of
the user.

9. The PEP-WS retrieves the user’s trust policy.

10. For each service, the PEP-WS retrieves a trust ranking from the Trust
PDP.

11. The PEP-WS selects the service with the highest trust ranking.

12. The PEP-WS performs the actual call to the selected service.

13. The web service sends a reply.

14. The PEP-WS forwards the reply to the workflow.

Again, several interfaces are involved here. Here, we will only address those
interfaces not yet introduced in the previous sections:

• The web-service call has to include the payload of the actual call, and
context information:

– The ID of the workflow instance.

– The ID of the workflow activity making the call.

7.4. INTERACTION OF COMPONENTS 123

– The type of service to be invoked.

• The PDP-Wf has to provide an interface for identity selection.

– Input parameters: Workflow instance ID, workflow activity ID

– Result: ZXID session ID

• The PIP-Wf has to make it possible to find out the workflow model for
a given workflow instance.

– Input parameter: Workflow instance ID

– Result: Workflow model ID

• The discovery service determines which services of a given type are avail-
able to a user:

– Input parameters:

∗ Token identifying the user, directed to the discovery service

∗ Service type, encoded as a URN

– Result: Endpoint references to services of the given type, accompa-
nied by tokens identifying the user and directed to the respective
service.

• The trust policy store has to provide an interface to retrieve a user’s trust
policy:

– Input parameter: Token identifying a user.

– Result: Trust policy in a format understood by the Trust PDP.

• The Trust PDP has to provide an interface to determine the trust ranking
of a service:

– Input parameter: Endpoint URL of the service.

– Result: Trust score (integer value, possibly negative) and whether
the service is trusted according to the user’s policy (boolean value).

7.4.6 Incoming web service call starts new workflow instance

Until now, all interactions were triggered by an event within the workflow man-
agement system. By contrast, we now look at a scenario that is triggered from
the outside, by a web-service call sent to the workflow management system. It
consists of the following steps:

1. An external entity sends a web-service message addressed to a web-service
interface of a workflow. The respective interface is configured to start a
new workflow instance (the corresponding WS-BPEL activity has the
attribute createInstance="yes").

2. The PEP-WS intercepts this message.

3. The PEP-WS extracts the identity information contained in the message.

124 CHAPTER 7. IMPLEMENTATION

4. The PEP-WS sends the payload of the message to the workflow engine,
together with an identifier for the request.

5. The workflow engine determines the workflow model and the activity
within it that the message is directed to.

6. The workflow engine creates a new workflow instance, which handles the
web-service call.

7. The workflow instance sends a request to the PEP-WS, containing its
ID, the ID of the activity that started the workflow instance, and the
identifier for the original request created by the PEP-WS.

8. The PEP-WS determines whether the user is authorised to perform that
activity, by invoking the PDP-Wf.

9. If not, it sends an error message in reply to the web-service message.

10. It also sends a reply to the workflow instance indicating whether the
original web-service call was authorised or not.

11. Finally, the PEP-WS sends a request to the PIP-Wf in order to store the
information that the user responsible for the original call has performed
the starting activity of the new workflow instance.

12. Depending on the authorisation result, the workflow instance continues
execution or immediately terminates.

Note that this scenario resembles the one already described in Subsec-
tion 6.4.9.

Two new interfaces are needed for this scenario. First, the workflow has to
accept web-service calls that not only contains the payload originally sent by
the external entity, but also additional context information. We address this
issue later when we describe the workflow transformations necessary.

The other interface has to be provided by the PEP-WS. Through this in-
terface, the PEP-WS gets information about the the workflow activities that
processed the calls it forwarded to the workflow engine.

• Input parameters: Request identifier (generated by the PEP-WS and sent
to the workflow engine together with the forwarded request), workflow
definition ID, workflow instance ID, activity ID.

• Result: Authorisation decision (boolean value).

7.4.7 Deployment

In this final scenario, we consider the deployment of workflows, policies and
human task definitions. This is actually a prerequisite for all the other scenar-
ios.

1. A workflow developer creates human task definitions, possibly used in
several different workflows.

2. The workflow developer then creates a workflow definition, incorporating
human tasks and calls to external web services.

7.5. OPTIMISATION OF COMPONENT INTERACTIONS 125

3. Finally, the developer writes the policies for the workflow, i.e. an ac-
cess control policy, determining who may perform which activities in in-
stances of the workflow, including separation-of-duty and binding-of-duty
constraints, and an attribute requirements policy.

4. The workflow modelling tool deploys the security configuration to the
PDP-Wf.

5. Then, it deploys the human task definitions to the worklist handler.

6. Finally, it deploys the workflow definition to the workflow engine. This is
the last step to ensure that the corresponding access control policy and
human task definitions are already available.

Quite obviously, three different deployment interfaces are needed:

• The workflow engine has to provide an interface for deploying workflow
definitions.

– Input parameters: Identifier of the workflow definition, workflow
definition in WS-BPEL format.

– Result: Acknowledgement of deployment.

• The PDP-Wf has to provide an interface for deploying access control
policies:

– Input parameters: Identifier of the workflow definition, access con-
trol policy, attribute requirements policy (both in the format de-
scribed in Subsection 6.4.8).

– Result: Acknowledgement of deployment.

• The worklist handler has to provide an interface to deploy human task
definitions:

– Input parameters: definition ID, human task definition as specified
in Section B.1.

– Result: Acknowledgement of deployment.

7.5 Optimisation of component interactions

Component interactions consisting of a large number of messages exchanged
might indicate situations where performance can be improved, e.g. by changing
the component where a particular kind of information is stored, or caching it
in a component that frequently needs to access it. In the implementation of
our architecture as described up to this point, a prominent example of such
a performance bottleneck is the repeated authorisation of users to perform
human tasks or activities in general (see Subsection 7.4.2, Subsection 7.4.3, and
Subsection 7.4.4 above). The reason for performing authorisation repeatedly
is that authorisation results may become invalid due to certain events.

A promising way to overcome the performance bottleneck while preserving
decision responsibilities as they are is to introduce caching together with inval-
idation notifications. With this approach, authorisation decisions do not have

126 CHAPTER 7. IMPLEMENTATION

to be requested again as long as it is known that decisions received before are
still valid. The following events may cause an authorisation result to become
invalid:

• The attribute assertions regarding the user that were used for authorisa-
tion may expire. A possible solution would be assertions that are valid
for a longer time, and notifications from the IdP when attributes are re-
voked. However, this would require additional infrastructure. Another
solution would be caching the attribute assertions presented by the IdP
the last time the user logged in and comparing them with the ones pre-
sented in the current session. Information from the PDP-Wf about which
attributes were necessary for authorisation would make this solution even
more viable. However, PDPs do not usually provide such detailed infor-
mation on the reasons for an authorisation decision. In the end, the
validity period of attributes is rather long (days at least) compared to
user sessions (usually less than an hour). This mitigates this problem, so
no further action is necessary.

• The login session of the user expires. This requires re-authenticating
the user, but not necessarily repeated authorisation, provided that the
attribute assertions provided by the user have not changed. Accordingly,
the user’s attributes from the previous login session have to be cached so
that they can be compared with those in the new login session Only if
the attributes have changed is authorisation repeated.

• The status of another activity related to the one for which authorisation
has been performed by means of a BoD or SoD constraint has changed,
i. e. it has been claimed or performed by some user. The solution here
is to provide notifications of such events. The main question now is the
granularity of such notifications. The first possibility is to provide notifi-
cations per workflow activity: Whenever the status of an activity changes,
invalidation notifications are sent for all related activities and the respec-
tive human tasks. Because the number of human tasks currently active
in a workflow instance is usually small (there are seldom more than two
human tasks active simultaneously), a simplification is possible at little
cost: Whenever the status of an activity changes, invalidation occurs for
all activities of the same workflow instance. This solution can be im-
plemented by extending only one interface: When the worklist handler
sends a request to the PEP-HT that a human task has been claimed or
completed, the PEP-HT includes a list of the IDs of human tasks for
which authorisations are to be invalidated. For the PEP-HT to be able
to do this, the PIP-Wf has to provide a new interface which makes it
possible to look up all active human tasks of a given workflow instance.

7.6 Workflow transformations

To integrate workflows with the security infrastructure, the following workflow
transformations are necessary:

7.6. WORKFLOW TRANSFORMATIONS 127

• Outgoing web-service calls have to be redirected to the PEP-WS. In ad-
dition to the payload, the ID of the activity and of the workflow instance
have to be included in the call.

• For incoming web-service calls, a request identifier is added to the pay-
load. In the workflow, a loop with a request for authorisation has to be
added (cf. Subsection 6.4.9).

• Requests creating human tasks have to be sent to the PEP-HT. The ID
of the activity and of the workflow instance must also be added to this
request. This transformation is similar to the transformation for outgoing
web-service calls and not described separately.

7.6.1 Redirection of outgoing calls to the PEP-WS

SOAP messages are described in WSDL documents (Subsection 2.2.2, Subsec-
tion 2.2.3). They can consist of a number of parts. Non-payload information
is usually encoded in headers. In detail, adding workflow context to SOAP
messages in the form of a header requires the following transformations:

• An XML element for workflow context has to be defined. It consists of
two sub-elements, activity-id and workflow-instance-id.

• The WSDLs of services invoked by the workflow have to be extended. To
each request (i. e. outgoing) message, a part with the name wf-context

is added, referring to the XML document introduced in the previous step.

• In the binding part of the WSDL, each input element of an operation

element is modified. The binding declaration for the message body now
has to contain the name of the respective part, because it is no longer
evident which part becomes the body. A soap:header is added which
refers to the wf-context part defined in the previous step.

• A BPEL variable holding the workflow instance ID is defined.

• For each invoke activity, a separate BPEL variable is defined. It has the
same type as the wf-context part. This variable is initialised (using a
copy activity) immediately before the invoke activity using the workflow
instance ID from the respective variable and the activity ID as a literal
value.

• If the invoke activity uses the outputVariable attribute, it is replaced
by fromPart sub-elements of the fromParts child element of the invoke

activity. A fromPart element is added in order to copy the contents of
the respective variable to the wf-context part.

• reply activities are treated analogously.

7.6.2 Authorisation of incoming web-service calls

For the authorisation of incoming web-service calls, further modifications are
necessary. The PEP-WS needs to add the request identifier in a SOAP header.
In addition, a SOAP interface for transferring the authorisation result is needed.

128 CHAPTER 7. IMPLEMENTATION

This transformation has already been described conceptually in Subsection 6.4.9.
The following description adds more technical details.

• An XML element must be defined for holding a request identifier. It
contains only one value.

• The WSDLs of services provided by the workflow have to be extended. A
part with the name request-identifier is added to each request (i. e.
incoming message). This part contains a reference to the XML document
introduced in the previous step.

• In the binding part of the WSDL, each input element of an operation

element is modified. The binding declaration for the message body now
has to contain the name of the respective part, because it is no longer
evident which part becomes the body. A soap:header is added which
refers to the request-identifier part defined in the previous step.

• For each receive activity, a separate BPEL variable is defined. It has
the same type as the request-identifier part.

• Furthermore, for each receive activity, another separate BPEL variable
is defined. It has the same type as the wf-context part.

• Finally, for each receive activity, another separate BPEL variable hold-
ing a boolean value (the authorisation result) is defined.

• If the receive activity uses the inputVariable attribute, it is replaced
by toPart sub-elements of the toParts child element of the receive

activity. A toPart element is added in order to copy the contents of the
request-identifier part to the variable defined in the previous step.

• In addition, a temporary variable or several temporary variables are in-
troduced for each receive activity. If the receive activity uses the
inputVariable attribute, a variable with the same type as the variable
referenced by this attribute is introduced. If it uses the toParts child
element, a variable is introduced for each toPart sub-element, again with
the same type as the variable originally used there.

• These temporary variable(s) replace the variables originally referenced.

• The receive activity (thus modified) is replaced by a structured activity
as follows:

– A repeatUntil activity is created.

– Its child activity is a sequence activity.

– The first child activity in the sequence is the (modified) receive

activity.

– Second, a copy activity initialises the variable holding the workflow
context for the receive activity using the workflow-instance ID from
the respective variable and the activity ID as a literal value.

7.6. WORKFLOW TRANSFORMATIONS 129

– Third, an invoke activity calls an authorisation service provided by
the PEP-WS. The variable holding the request identifier is copied
to one part, the variable initialised in the previous step that holds
the workflow context is copied to another part. The reply is copied
to the respective variable.

– The condition of the repeatUntil activity is that the variable hold-
ing the authorisation result is true.

– Finally, a sequence activity is introduced. Its first child activity
is the repeatUntil activity. After that, copy activities are cre-
ated, which assign the received data stored in temporary variables
to the variables where they would have been stored in the unmodi-
fied BPEL workflow.

– The sequence described in the previous step replaces the receive

activity.

pick activities are treated similarly (although in a more complex way).

7.6.3 Creation of workflow instance IDs

Up to now, we have assumed that a workflow instance ID is created by the
workflow engine as soon as the workflow instance starts, and that the BPEL
code of the workflow instance can determine this ID. Unfortunately, this is
only possible using extensions that are not part of the BPEL specification. For
example, Apache Ode provides an XPath variable named $ode:pid.

An implementation-agnostic way of generating unique workflow instance
IDs would be to let the PEP-WS do it. There are two ways of starting workflow
instances, both of which we have to consider:

1. The first case is a workflow instance started by an external call to a spe-
cial activity (one with createInstance="true"). This call is subject to
authorisation, as described in Subsection 7.4.6. However, the interaction
described there has to be modified slightly:

• In step 7, the request does not contain the ID of the workflow in-
stance.

• Instead, if authorisation was successful, the PEP-WS creates a new
ID and includes it in the reply described in step 10.

• A new BPEL variable holding the workflow instance ID is intro-
duced. In step 10, the ID is copied from the reply of the PEP-WS
to this variable.

In addition, the workflow transformation described in Subsection 7.6.2 is
slightly changed:

• There is no repeatUntil loop. Instead, if authorisation is denied,
the new workflow instance is immediately terminated.

2. A user starts a new workflow instance through a dedicated console. In this
case the applicable policy is known beforehand and enforced by the PEP-
HT. Therefore, the new workflow instance is created immediately, without

130 CHAPTER 7. IMPLEMENTATION

the need to exchange several messages. The PEP-HT can directly create
a new workflow instance ID and include it in the web-service message
creating the new workflow instance.

7.7 Implementation of the PDP-Wf and integration of
an XACML PDP

In Subsection 6.4.4.4, we decided to use an XACML-compliant stateless PDP,
extended by a custom PDP for stateful decisions. In this chapter we have,
up to this point, only mentioned one PDP-Wf. In Section 7.3, we already
mentioned that a policy (separately defined for each workflow definition) has
to consist of an XACML policy where the workflow activity is specified as a
resource attribute, and additional history-based constraints. Subsection 7.4.7
only mentions deployment of the policy to the PDP-Wf.

Therefore, some details about about the separation of the PDP-Wf into two
parts will be given in the following. We need to be able to distinguish between
the XACML policies applicable to different workflow definitions during deploy-
ment. To this end, we can rely on hierarchically nested XACML PolicySets.
Workflow definitions are identified by an additional resource attribute. The
global PolicySet contains one nested PolicySet for each workflow definition,
which contains a <Target> element specifying the workflow definition it is ap-
plicable to. The part relevant to a given workflow definition is updated during
the deployment of security configuration for that workflow definition. Only the
history-based policy is deployed to the PDP-Wf proper. The PDP-Wf stores
this policy (i. e. BoD and SoD constraints) in a relational database (indexed
by workflow model ID and task IDs); the database assumes the role a a policy
store.

When the PDP-Wf receives a decision request (through the interface intro-
duced in Subsection 7.4.2), it first evaluates the history-based policy: It looks
up the relevant constraints (i. e. those which belong to the workflow model
ID and contain the task ID specified in the request). Through calls to the
PIP-Wf, it determines whether the other tasks with task IDs occuring in the
relevant constraints have already been performed or claimed in the current
workflow instance (with the workflow instance ID also given in the request to
the PDP-Wf), and if yes, by which user. The user ID of the user who needs
to be authorised is determined via ZXID, using the ZXID session ID given in
the request. If another task occuring in a BoD constraint has already been
performed or claimed by a different user, or another task occuring in an SoD
constraint has been performed or claimed by the same user, the request is
denied immediately.

Otherwise, the stateless policy still has to be evaluated by the XACML
PDP. The decision request to this PDP is sent using a ZXID library function
which takes the user’s attributes from the ZXID session with the specified ID;
the workflow model ID and the task ID are added as resource attributes. The
result is then forwarded to the caller (i. e. the PEP-HT or PEP-WS).

7.8. SUMMARY 131

7.8 Summary

In this chapter, we have explained the implementation in detail. From a high-
level component overview, we have derived detailed data formats and identifier
schemes based on comprehensive interaction scenarios. This in-depth treat-
ment shows the feasibility of the implementation. One important aspect is the
workflow transformation, which enables compatibility with legacy workflows.
We have broken it down to a level where it can be directly implemented. We
have also shown that the performance of the implementation can be tuned
without compromising the basic structure of the architecture, which is based
on functional criteria.

Chapter 8

Evaluation

The goal of this thesis was to provide a flexible architecture with easily usable
security mechanisms for a broad range of workflow-based applications. We will
perform the evaluation with respect to this goal in two steps.

First, we evaluate how secure the architecture is. A näıve criterium would
be the fulfilment of the functional security requirements from Chapter 5. This
criterium, however, is not conclusive for several reasons. The requirements
listed there are not from a single application. For this reason, they are rather
high-level and abstract. In addition, it is already possible without the presented
architecture to implement these requirements in some way or other. Therefore,
the goal of designing the architecture was not to allow the implementation
in itself, but to provide a more convenient way. Consequently, we deem the
following criteria appropriate:

• With the architecture, is it easier to fulfil the security requirements than
without it?

• Does the architecture help to avoid mistakes in the implementation of
security specifications that might otherwise lead to security vulnerabili-
ties?

Second, the architecture should be flexible, i. e. usable for a broad range of
workflow-based applications. Obviously, not all requirements of all applications
could be foreseen in the design of the architecture. Therefore, some extensions
will likely become necessary to support new requirements. To evaluate how
easily such requirements can be accommodated by the architecture, we consider
several evolution scenarios. These scenarios encompass security requirements
already part of the requirements found in Chapter 5, but not yet supported
by the architecture, as well as advanced definitions of security properties from
the literature. Finally, we present the practical results regarding one use case
(user-centric audit) obtained in a user study.

8.1 Security of the architecture

We will now evaluate how secure the architecture is. Based on the technological
baseline and the assessment of the state of the art in Subsection 5.1.4, we go
through the requirements from Subsection 5.1.2 one by one. We analyse the

133

134 CHAPTER 8. EVALUATION

coverage of the respective functionality by our architecture and the extent to
which the configuration mechanisms of the architecture help to avoid mistakes
regarding security specifications for that functionality.

8.1.1 Technological baseline and state of the art

The technological baseline consists of the core web-services platform (Sec-
tion 2.2) and BPEL for service orchestration (Subsection 2.3.2). In other words,
it comprises the functional, i. e. non-security-specific parts of an architecture
for distributed applications.

The state of the art considered in our analysis provides security mechanisms.
We are interested only in such security mechanisms that can be used with the
technological baseline (possibly with some adjustments). Recalling the results
from Subsection 5.1.4.11, existing approaches address our requirements only
partially. Moreover, most of them are not integrated into any WfMS.

8.1.2 Authentication requirements

In Subsection 5.1.2.1, we introduced requirements regarding the authentication
of workflow models (R1), data (R2 and R3), service providers, requesters and
users (R4–R10).

R1 is fulfilled by organisational measures and access control for the de-
ployment of workflow models. R2 and R3 are supported by the integration
of service discovery and trust evaluation (Section 6.3 and Subsection 6.4.6.2).
These subsystems provide authentic information about services available to a
user and about trust ratings of services. R4–R10 are fulfilled by the integration
with ID-WSF. Fulfilling R9 introduces a privacy risk at first sight (which would
violate R37), but this can be mitigated by certfication of workflow models.

8.1.3 Access control requirements

R2 and R3 (see previous subsection) also have an access control aspect. First,
the integration of trust evaluation makes it possible to control based on trust
policies whether data is transmitted to services and the results are used by
the workflow. Second, the integration of user interactions for service selection
ensures that the decisions of the user are respected regarding this. Below in
Subsection 8.2.5, we describe an evolution scenario relating to the automatic
performance of these user interactions. With this extension, workflow designers
will be able to support service selection based on trust scores with great ease.

The integration with service discovery components provided by the architec-
ture makes it unnecessary to perform all the necessary steps explicitly. In par-
ticular, a policy-based solution is used instead of hard-coded decisions. Thereby
the security rule itself is separated from its enforcement, allowing it to be spec-
ified by specialists and to be reviewed indedently from the enforcement logic.
This reduces the risks of implementation errors that would cause the disclosure
of sensitive information to the wrong service providers or users, or decisions
based on false information retrieved from untrusted sources.

The requirements in Subsection 5.1.2.2 (R11 to R22) concern access control
for human tasks in workflows.

8.1. SECURITY OF THE ARCHITECTURE 135

R11 and R19 essentially demand that other requirements (R15–R17 and
R18 respectively) are also fulfilled when an activity that starts the workflow
is involved. On the technical level, this may pose some problems when estab-
lishing the connection between a incoming message and a workflow instance.
Subsection 7.6.2 describes how we can overcome these problems.

Automatic assignment of users to tasks (R17), taking into account policy
constraints, and the evaluation of assignment constraints separately for each
workflow instance (R14) are fullfilled according to the design of the architecture.

R12 is possible as part of binding-of-duty constraints (R18/R19). In addi-
tion, Subsection 8.2.6 shows how to support this requirement in combination
with explicit assigmnent of users (R13) and controlled reassignment of duty
(R20 and R21).

Finally, separation of duty R22 is supported as well, assuming that the
identity management infrastructure always provides the same identifier for the
same user. This holds for persistent SAML NameIDs issued by the same identity
provider if it is ensured that no user can have more than one account at that
identity provider.

R23 to R28 concern access control for data external to the workflow man-
agement system but related to particular workflow executions. While our ar-
chitecture does not directly accommodate these requirements, we explain in
Subsection 8.2.3 how to do so based on extension points already foreseen.

Regarding web services, R29, R30 and R31 demand consideration of the
trust requirements of users and the organisation (this part is already fulfilled
by our architecture through the integration of a Trust PDP) and the involve-
ment of users. The latter part is addressed by the evolution scenario in Sub-
section 8.2.5.

The automatic consideration of stateful access-control constraints avoids
complicated logic for explicitly managing the required state information. Au-
tomatic assignment of available actors also increases the flexibility of the work-
flow execution. Finally, taking decisions based on policies is less error-prone
than hard-coding the decisions in workflow logic.

8.1.4 Requirements regarding confidentiality,
non-repudiation, integrity, and key management

Non-repudiation (R32 and R33) and confidentiality (R34 and R35) for incom-
ing and outgoing web-service communication as well as key management (R44
and R45) are fulfilled through the integration with ID-WSF-based infrastruc-
tures and the corresponding configuration. The architecture thus enables im-
plementations to rely on established high-level protocols instead of low-level
cryptography, thereby automating the establishment of trust as well.

Confidentiality on the user interface level (R36) is a ensured via HTTPS
encryption of the web interface. According to [ITU95b], integrity mechanisms
have to protect against unauthorised modification, creation, deletion, insertion
and replay of data. This has to be guaranteed on all levels of the system.
Measures on the operating system and database level are not addressed by this
thesis. Concerning the underlying protocols, ID-WSF requires per-message
data integrity and transaction integrity mechanisms for the communication
channel and messages [Lan03]. The integrity of data relevant to the workflow
security mechanisms developed in this thesis (especially policies and runtime

136 CHAPTER 8. EVALUATION

context) is protected through encryption, digital signatures and access control
mechanisms.

8.1.5 Audit requirements

R39 and R40 concern the recording of audit information, while R41 and R42 de-
mand its accessibility in a user-centric way. While the former requirements are
fulfilled by existing technology to some degree, the latter are not. Section 8.3
presents a prototype based on our architecture.

8.2 Evolution scenarios

In the following, we investigate several scenarios for the evolution of the archi-
tecture. The first two scenarios examine the integration of related work with
our architecture. They concern concepts where the architecture presented in
this thesis describes only basic solutions, but where more sophisticated solu-
tions are available for specific aspects in isolation and described in the litera-
ture. We sketch approaches for integrating them with our architecture. The
third scenario concerns access control for external data repositories that de-
pends on the state of the workflow. These evolution scenarios demonstrate the
flexibility of the architecture.

8.2.1 Delegation of Authority

One of our requirements is that the workflow must be able to invoke services
on behalf of users (Subsection 5.2.2.5). This requirement, also known as dele-
gation of authority, has been studied in depth in the literature. According to
[Cha08], an important requirement on the conceptual level is the fine-grained
decision of which privileges, attributes and roles are to be delegated. In addi-
tion, delegation should be subject to an express delegation policy. The author
proposes a delegation-of-authority web service, which is invoked by users and
issues delegation certificates. These certificates can be issued for an arbitrary
period of time, can be used an unlimited number of times, and can be revoked
at any time.

By contrast, we currently rely on the service discovery specified in ID-WSF.
When a user logs into the worklist handler using SSO, the IdP supplies a token
that makes it possible to use the discovery service and the identity mapping
services. When a workflow needs to invoke a service with privileges of the
user, it may have to use the discovery service in order to find a specific service
endpoint. It then retrieves a token from the identity mapping service which
allows the invocation of the desired service on behalf of the user. This token
gives the delegate, i. e. the workflow management system, full access rights,
exceeding the privileges required by the workflow, and thus the scope of the
delegation as understood by the user. It is possible to ensure through manual
audits that workflows only use these privileges according to the workflow’s
purpose and only after the user has expressed consent. However, this can not be
enforced automatically and there are no explicit policies stating the privileges
required by the workflow. Consequently, the privacy protection provided this
mechanism is insufficient.

8.2. EVOLUTION SCENARIOS 137

More controlled delegation and consequently better privacy protection can
be achieved by integrating the above-mentioned delegation service into our
architecture. To enable this, workflow designers would have to specify the fol-
lowing: Which kinds of services does the workflow need to invoke on behalf
of users? Because specific service endpoints might only be known after ser-
vice discovery, they cannot be part of the specification. Which data does the
workflow access, and which actions does it perform on that data? For which
period should the delegation be valid? However, this is difficult to determine
in general. If the workflow takes longer, it might be blocked until the user
renews the delegation. Furthermore, it can be difficult to exactly determine
the privileges required by the workflow when it starts. On the other hand,
users might be reluctant to delegate privileges that might not be needed. One
possible solution would be to let workflow designers specify the required priv-
ileges separately for different branches of the workflow. However, this would
require repeatedly asking the user for delegation, and the workflow would be
blocked until the user actually performs it. It must be possible for permissions
to be expressed generically (i. e. based on service types and categories of data)
and to be delegated by the user based on such a generic definition. This re-
quirement mainly affects the service provider, because they need to understand
the generic permission definitions, but the delegation service must support the
delegation of such permissions as well. There should be a web interface to the
delegation service which is trusted by the user, and it should be possible for the
workflow management system to send a request to this web interface (which
the user can then grant or deny). This provides for a seamless user interaction.

8.2.2 Generic security architecture

We have described an architecture based on policy enforcement points for the
interfaces of a WfMS and a dedicated PDP-Wf which can handle the state
information to be used in access control policies for workflows. There exist
generic proposals for security enforcement architectures. One such architecture
is [CF12]. It separates the application-independent and application-dependent
functionality of the PDP into different components, providing generic handling
of, say, obligations and sticky policies. It also provides for a Master PDP
aggregating the decisions of multiple PDPs. This current thesis by contrast
deals with the special security requirements of workflows dealing with identity
information, but does not propose a generic solution applicable to all kinds
of applications. For example, the access control policy defined for the current
workflow could be combined with sticky policies for the different user data
accessed in the workflow. However, mapping the concepts developed here to a
more generic architecture is a substantial effort and left as future work.

8.2.3 Access control for external repositories coupled to the
workflow execution

Requirements R23 to R28 (defined in Section 5.1.2.2) basically demand that
users involved in a workflow instance have access to (externally stored) data
related to that instance. Their access rights have to be limited to particular
data and must only be valid while they are performing certain tasks. For ex-
ample, a clerk in a health insurance company processing reimbursement claims

138 CHAPTER 8. EVALUATION

for a customer’s medical bills and checking them for plausibility should have
access that customer’s file, but only while actually processing the claim.

The technical difficulty here arises from the fact that the the WfMS and
data repository are separate components. If data access by users is included in
the workflow as a human task, the point in the workflow where access is possi-
ble is defined exactly, so there is no need to additionally define when access is
allowed. However, there are good reasons to keep the workflow and data access
separated: The data stored in the repository can have a complex structure, and
there is not necessarily one precisely defined part of it relevant for the work-
flow. In knowledge-intensive workflows, such data often serves as background
information for a number of tasks, and is not specifically assigned to a single
task. Reducing the dependencies between the workflow and the data related
to it also allows for their independent evolution. This aspect is particularly
important in service-oriented architectures with multiple stakeholders.

A straightforward approach to implement this requirement is to use a dele-
gation mechanism, as described above in Subsection 8.2.1: The user delegates
access rights to external repositories to the workflow management system,
which in turn delegates them to workflow participants charged with certain
tasks. To this end, workflow designers have to specify the following: Which
permissions have to be delegated? Again, it must be possible to express the
required permissions generically. For which tasks are the delegated permissions
necessary? This is used to determine both the delegate (i. e. the user perform-
ing these tasks) and the duration of the delegation (i. e. during some intervals
encompassing these tasks). Note that these tasks should be subject to binding
of duty. The WfMS has to ensure that delegations are granted to a user as
soon as they are assigned to a group of tasks, and revoked as soon as that user
(i. e. the delegate) has finished the respective tasks.

In order to ensure the timely revocation of delegation, the WfMS has to
keep track of the execution of workflow instances. For this purpose we propose
a new component called the Workflow Delegation Manager (WDM for short).
The Context Handler, which we specified as a dedicated extension point in
Subsection 6.3.4, can be used to provide the necessary information about the
execution progress of workflow instances to the WDM. We have to additionally
instrument workflow definitions so that the context handler is informed about
the execution of tasks and can determine whether a group of tasks defined in
the security specification of a workflow definition is currently active. The Con-
text Handler then informs the WDM when a group of tasks becomes active or
inactive. The WDM in turn uses the Delegation Service to cause delegations
and revocations of the permissions delegated to the WfMS by the user. Its
decisions are based on the specifications outlined above. The delegate is de-
termined by querying the PIP-Wf is assigned to one of the tasks in a group of
tasks referred to in such a specification.

8.2.4 User-centric audit of workflows

Requirements R39 to R43 (defined in Subsection 5.1.2.6) demand the gener-
ation of meaningful audit events and their presentation to affected end users
(data subjects).

The workflow reference model includes an interface for audit information.
The WfMC has specified a format for audit messages [WfMC98]. This format

8.2. EVOLUTION SCENARIOS 139

is focused on states of workflow instances and activity instances and does not
address the handling of data items and the relationship between different work-
flows through message exchanges. This makes it insufficient for our purposes.
We see two alternatives for providing audit information: (1) We could rely on
the audit events generated by the BPEL engine. However, [WfMC98] is in-
sufficient for our purposes. But without a widely supported standard format,
this would require separate implementations for every BPEL engine to be sup-
ported (either by adding event generation to it, or by handling the format used
by that engine). In addition, formats used by existing BPEL engines do not
include the necessary information either. (2) The workflow definitions written
can be instrumented. This means that workflows are modified so that they
generate audit events. A similar approach is pursued in [YCW+10]. It needs
to be generalised in order to include all information necessary. – Because of
the wider applicability and the likely easier implementation, we advocate (2).

The integration is based on one component of the architecture, the context
handler. It has to provide different kinds of audit information. Some of this
information is already available to components of the WfMS, while some has
to be specifically captured for audit purposes:

• Activities performed and branches taken can be provided to the Context
Handler by instrumenting the workflow definition: For each activity, a
call to the context handler is added.

• The user who performed a given task is already known to the PEP-HT.
Therefore, once a task has been completed, this component should inform
the Context Handler which user performed it.

• The invoked service is known to the PEP-WS. Like the PEP-HT, it should
inform the Context Handler of the service invoked.

• Determining the data processed in each workflow activity is more com-
plex. Assuming that the payload of web-service calls is accompanied by
respective meta data, the PEP-WS can extract it and provide it to the
Context Handler. For human tasks, workflow definitions can be anno-
tated with a description about the data used in each task. Then the
Context Handler can determine which data was used in a completed hu-
man task.

All this information has to be provided to the audit application immediately
so that the audit can be performed in real time.

8.2.5 User interaction for service selection

R29 (Section 5.1.2.2) requires the possibility for users to confirm the selection of
services invoked as part of a workflow. Doing this manually is tedious and error-
prone. Therefore, the authors of [MvSB11b] and [MvSB11a] have developed the
concept of user involvements, i. e. workflow fragments for security-specific user
interactions that are automatically inserted as a result of certain annotations.

For service selection, the following steps have to be performed:

• The list of available services for a given service invocation is retrieved.

140 CHAPTER 8. EVALUATION

• The list is presented to the user, who chooses one of the services or
declines the invocation.

• If the user chooses a valid entry, the respective service is called.

A straightforward way to implement these steps with our architecture is as
follows:

• The PEP-WS provides a (new) interface to perform service discovery (in-
cluding determining trust scores) for a given service type, and to retrieve
the list of service endpoints and their associated trust scores.

• Further, the PEP-WS provides another new interface to set the selected
service for a certain service (identified by activity name and workflow
instance ID).

• A human task definition is added to workflow definitions, allowing the
user to select a service endpoint from a list.

• Workflow definitions are instrumented as follows: Before a web-service
call activity (with the respective annotation), several workflow activities
are added: First, the list of services is retrieved from the PEP-WS. Then,
a human task is created to allow the user to select a service, and the
workflow waits for completion of this task. Finally, the service selection
is set in the PEP-WS.

Note that a binding-of-duty constraint should be specified between the web-
service call activity and a human task, so that the system can determine which
user will perform the service selection.

8.2.6 Explicit user-task assignment and reassignment of
duty

We have formulated two requirements calling for explicit assignment of users
to tasks. R13 is the more general one. It demands that it must be possible
to determine the user responsible for a human task by the explicit decision of
another user, or by some workflow logic. R20 treats a specific case: For several
tasks connected by a binding-of-duty constraint (for which such a transfer of
responsibility has been allowed), it should be possible to transfer the respon-
sibilility for the remaining tasks from one user to another. In both cases, the
assigned user has to fulfil the applicable policy. For the latter requirement,
R21 explicitly demands this.

In order to implement these requirements, we propose introducing unique
identifiers for groups of task connected by BoD. Note that binding-of-duty is
an equivalence relationship and thus induces a partitioning of the sets of all
activities of a workflow definition. Tasks for which no BoD constraint has been
defined form their own partition (with cardinality 1).

Second, we need the possibility to determine available users. We assume
there is a directory to this end, making it possible to check the applicable
policy separately for each user. Note that the attributes of these users must be
known to the PDP-Wf as well (or it must be able to retrieve them). Thus, the

8.3. USER STUDY: USER-CENTRIC AUDIT BASED ON THE
ARCHITECTURE 141

PEP-HT can provide an interface to determine eligible users for a given group
of tasks, and to assign one of these users.

In order to reassign the responsibility for groups of tasks, it is convenient to
know which of them are still active. The data structures in the PIP-Wf must
be changed so that it is possible to assign a user to a entire group of tasks.
It must be possible to determine who is currently assigned to such a group,
who has performed the individual tasks, and whether the group of tasks is
currently active. We consider a group of tasks active when there are still tasks
to be performed. This can be determined using control flow analysis. At the
points in a workflow definition where a group of tasks becomes inactive, calls
to the PEP-HT have to be inserted. The PEP-HT can thus keep track of the
status of a group of tasks and update the data in the PIP-Wf accordingly. The
status can also be used to enable and disable delegated privileges connected to
a group of tasks (see Subsection 8.2.3 above).

To perform the actual reassignment, a user interface is necessary. In Sub-
section 6.3.4, we introduced the Async UI component, which is suitable for
this purpose. When a user accesses this interface, it can determine the groups
of tasks currently assigned to them. When a user chooses to reassign respon-
sibility for one of these groups, it can retrieve a list of eligible users from the
PEP-HT and perform the reassignment if necessary.

8.3 User Study: User-Centric Audit based on the
Architecture

Until now, we have focused on the technical aspect of secure workflow man-
agement. We now show that it has an application with a real benefit for users.
To this end, we present a real-world application of workflow security1 and an
evaluation with users.

8.3.1 Motivation of the scenario

Earlier in this chapter (Subsection 8.2.4), we showed that the workflow manage-
ment system can provide audit information. This enables applications allowing
the user to understand the workflow execution and its security and privacy as-
pects. We explain the relevance of such applications in the following.

Today, companies outsource parts of their processes to other companies that
can perform them more efficiently. As an example, think of a loan approval
process: Consumer loans are highly standardised products with low profit mar-
gins. Banks and other organizations granting loans share information about
risk factors and credit defaults through specialised credit bureaus like SCH-
UFA in Germany. As the first step of the loan approval, the creditor queries
risk information from such an agency, then calculates the interest rate. This
calculation can be outsourced as well. If a credit default occurs, information
is sent to the credit agency. This example shows that outsourcing leads to
personally identifiable information (PII) being transferred to third parties. PII
is protected by law in the European Union [EC95] and elsewhere. The law
gives individuals (data subjects, i.e. the person the data relates to) the right

1The contents of this chapter have been published in [MKB12a] and [MKB12b], based
on the B. Sc. thesis of Murat Kavak supervised by this author.

142 CHAPTER 8. EVALUATION

to request information on how their data is processed, and where it is trans-
ferred. It also requires the informed consent of individuals to any processing
and transfer of PII that is not necessary for the service provided. In order to
give this informed consent, the user must be able to assess how his or her data
will be used.

Current mechanisms fulfil the law formally, but are not useful in reality.
Companies usually require individuals to give consent by signing terms and
conditions that are both very broad and detailed. Information on data pro-
cessing that companies provide is normally in text form. With large amounts
of text, it is hard for users to find the details they are interested in. When
PII is processed in a distributed way, companies have to tell individuals which
other companies they have transferred it to, or where they have acquired it.
In principle, this allows users to ask the other companies for information on
their data. In practice, this is too tedious and time-consuming for users, espe-
cially when they have to follow their data over multiple hops. We conclude that
information must be structured in a way that is easily accessible to individuals.

Workflow management supports the complete lifecycle of orchestrations,
i. e. applications combining lower-level functionality, from models to executable
workflows. Non-functional requirements, including security requirements, can
be expressed as annotations to graphical workflows models [MvSB11b].

The goal of this section is to study how to let users track workflows that
use and transfer their data with ease. Because the right to information is
not limited to finished cases, users must be able to get information about
running workflows as well. This process in general is known as auditing. A
workflow management system can automatically generate the necessary events
at runtime. To design auditing tools, we also need to understand how real
users work with them. All these tasks are challenging, for various reasons at
different levels:

• We need a succinct representation of audit information that is easy to
understand at first glance. A system of this kind should also allow for
drill-down in order to get more details. In particular, it should be easy to
switch to another workflow following the data flow. Such a representation
is not readily apparent.

• It is not possible to determine which auditing features are useful for users
without a realistic scenario they themselves are part of.

• The functionality envisioned should reuse artifacts created anyway when
modeling and deploying a workflow. This minimises the additional effort
for application developers. This point concerns two issues in particu-
lar: First, audit information must be presented to the user. This step
can reuse graphical workflow diagrams. However, additional information
about their structure is needed. Second, the audit tool must acquire the
necessary information at runtime. This requires an interface between
the audit tool and the security components of the WfMS. However, the
implementation is not readily apparent, as we will explain.

To this end, we have designed and implemented an auditing tool dubbed
WoSec (Workflow Security) and have evaluated it with real users. More specif-
ically, our contributions are as follows:

8.3. USER STUDY: USER-CENTRIC AUDIT BASED ON THE
ARCHITECTURE 143

• We have analysed which information must be provided to users in order
to audit data transfer in distributed applications, and how it can be
presented visually.

• We have developed WoSec, a web-based tool for auditing the handling
of PII. It works with graphical representations of BPMN models of ap-
plications. It allows users to “follow their data” when it is transferred
to another organisation that also provides data to WoSec. It can also
be used to visualise how an organisation intends to handle PII, enabling
users to give more informed consent.

• We have designed several sample use cases for distributed data processing
that are sufficiently complex for a realistic evaluation: applying for an
internship, trading items on an online marketplace, and buying a car.

• We have designed a user study for evaluating our tool and various features
of it. Having carried out the study, it shows that users prefer graphical
audit facilities, and that these lead to a better understanding of data
transfers. We have discovered that usability is curbed severely when
workflow diagrams do not fit the screen without scrolling. This finding
as well as other ones lead the way to an improved version of our audit
facility.

8.3.2 Related Work

Weske [Wes07] mentions a monitoring component that visualises the status of
workflow instances, but makes no statement on how such a visualisation should
look. The Intalio Designer BPMS Console lists available workflow definitions
and instances and marks activities currently running. However, it does not
address data transfer and is targeted at administrators, not end users. To
the best of our knowledge, the effectiveness of generic audit facilities for data
processing dedicated to end users has not been studied or empirically evaluated
in the literature.

8.3.3 Functionality

In the following, we present requirements with respect to the functionality of
our audit tool from the user perspective. We have derived them by system-
atically inspecting which kinds of data that users are interested in arise in
real-world workflows. This description serves as a basis for our proposal of an
architecture able to provide this functionality.

We can explore this in more detail by taking a user-centric approach and
considering a set of workflows handling one person’s data This individual is
allowed to track how their data is processed. To this end, they can access a list
of workflow instances handling their data, and a detailed audit view for each.
This view contains historical and live information, as we will explain below.

General structure: Because BPMN is a generally accepted standard,
and BPMN diagrams already exist for applications modelled as workflows, we
have decided to use them as the basis for visualising audit information. Note
that such diagrams are static and do not contain information on the current
state of workflow instances. They contain lanes (horizontal) representing the

144 CHAPTER 8. EVALUATION

workflow (coordinating the overall application behaviour) and roles involved
in it as well as external parties, activities (rectangles), solid arrows (mostly
horizontal) representing the control flow, and arrows (mostly vertical, dashed)
representing the data flow between the workflow and persons/external parties.

Execution progress: WoSec visualises execution progress by highlighting
activities already executed and currently executing in this diagram, using a dif-
ferent color. When an activity starts execution, the tool automatically scrolls
the viewport to that activity and notifies the user acoustically. Detailed infor-
mation about activities is available, such as the time when they were performed
and the user who performed them.

(a) Animation of data flow (b) Information box with details about an activity

Figure 8.1: Screenshots of WoSec

Data transfer: A data object moving between activities indicates data
transfer (Fig. 8.1a). An information box provides details about the data
transferred (Fig. 8.1b). This box is shown when pointing at activities and
contains a colored mark indicating whether the activity sends or retrieves data,
the external party involved, and the data itself, possibly with attachments
displayed as links. The audit view allows access to historical information as
follows: A timeslider lets the user move to some point in the past and and
replay events from there. In the case of loops, activities can be executed more
than once. Information boxes for activities also contain information about
earlier executions of an activity, not just the most recent one.

Multiple diagrams: When multiple organisations are involved in a work-
flow, they model their respective part independently, so there is no overall di-
agram for the whole workflow. Instead, several diagrams show the perspective
of each participating organisation, where the workflows of other organisations
are only represented by their interfaces called by the current workflow. This
leads to smaller diagrams that are easier to take in. It must be easy for users
to discover what happens with their data in the other workflow. WoSec accom-
plishes this as follows: When an activity transfers data to another workflow,
the user can jump to the other workflow instance from there. WoSec then
opens it in another view and scrolls to the activity which receives the data.

Color scheme: As we add information to the basic BPMN diagrams by
changing the colour of elements, we need a colour scheme in line with our
intentions. We start out with diagrams that use the colour scheme of Intalio
BPMN Designer2, i. e. white tasks on a very light blue pool background. Our

2http://www.intalio.com/bpms/designer

8.3. USER STUDY: USER-CENTRIC AUDIT BASED ON THE
ARCHITECTURE 145

Event type Meaning
EventCommand to initialise a workflow instance
StartingTask to mark a task as active
FinishingTask to mark a task as finished
SpecifyingParticipant to specify the communication partner
TransferringData for data transfers between two active tasks

Table 8.1: List of event types the server sends to the client

goal is that active tasks stand out, finished tasks retreat into the background,
and information boxes are prominently visible, even compared to active tasks.
This leads to active tasks in red, finished tasks in light green, and information
boxes in a saturated light blue.

8.3.4 Architecture and Design

We now describe the architecture of our application that yields the function-
ality presented in Section 8.3.3. It has to address three main issues: First, the
WfMS has to provide information on the execution of workflow instances to the
auditing tool. We have addressed this issue in Subsection 8.2.4. Second, work-
flow diagrams that have been created in order to be translated into executable
workflows must be provided to WoSec in a suitable form, i. e. a mapping from
activities to graphical elements must be created. Third, we need to develop
the internal architecture of WoSec.

Creation of graphical workflow models: Domain experts and workflow
modelers initially create workflows as BPMN diagrams in a graphical modeling
tool. These models are translated into executable BPEL workflows. It is possi-
ble to instrument them automatically to provide audit information. Then the
models are deployed in a BPEL engine. From the same BPMN diagrams, we
need to create graphical representations for our auditing tool. It must be easy
to highlight elements in them, and it must be clear which elements belong to
which workflow activities. Intalio BPMN Designer produces an SVG version
of workflow diagrams where elements are annotated with activity names. We
have to create a description file for the mapping between activities and graph-
ical elements. The SVG graphic and the description file are then deployed
to WoSec. Figure 8.2 shows how the auditing tool fits in the overall WfMS
architecture.

Intalio BPMN
Designer

BPMNBPEL
translation

Preparation
tool

BPEL Execution
Engine

WoSec

Events

Instrumentation

SVG

SVG + description file

Figure 8.2: Integration of the auditing tool into the overall WfMS architecture

146 CHAPTER 8. EVALUATION

Internal Architecture of WoSec: WoSec itself displays audit informa-
tion by overlaying it on the SVG diagrams. We have taken the following design
decisions: (1) We have chosen a client/server design because we need a server
part that stores workflow definitions and is able to receive audit events at any
time. In general, an application running on the user’s computer cannot achieve
this. (2) The client can either be a stand-alone application or a web application
running in a browser. This also brings up the question of where to handle the
graphical representation. Because a web application does not require installing
any software and is thus easier to use, and modern browsers natively support
SVG, we have pursued this option. (3) A question in any client/server appli-
cation is the granularity of information transferred between client and server.
In our solution, all event information is cached on the client side and thus sent
only once per login session to minimise response times. To be able to display
the events, the following information is provided for each event: an event type
(see Table 8.1), a timestamp, the id of the SVG element the element applies
to, a list of all entities involved, attachments sent, and a list of data used and
the purpose of use.

8.3.5 Study Design

The goal of our study was to find out whether our visualisation improves users’
understanding of how their PII is processed. In addition, we want to dis-
cover shortcomings of WoSec, possible misconceptions of how audit informa-
tion should be presented to users, and consequently opportunities for improving
WoSec in particular and audit facilities for end users in general.

To achieve these goals, we need an appropriate scenario and a realistic
baseline for comparison. We also need to measure measure participants’ un-
derstanding. This requires asking participants for their assessment according
to criteria we deem important. In addition, we need to check these answers
for plausibility. We do this by asking questions about what has happened in
the scenarios and analysing participants’ behaviour during the study. We use
textual audit messages as the baseline, as organisations still use these to answer
information requests and fulfil their legal obligations.

The scenarios used in the study must be sufficiently complex. This means
that several organisations should be involved in processing different kinds of
data. The scenarios must match the interests of the study group. Although
they are less detailed than in the real world, they must appear as natural as
possible.

We provide a realistic web application and the corresponding audit view at
the same time, using a split browser window. The upper half shows the mock-
up of a web application, while the lower half contains an audit view, which
either uses our visualisation or is text-based.

We chose to evaluate an early prototype of WoSec in order to get preliminary
feedback. Subsequently, we improved it and then carried out a more extensive
and sophisticated study. In both studies, we compared our graphical auditing
tool to a text-based audit view. Before working through the scenario, we asked
the participants questions about their Internet usage and some demographic
information. In each round, the participants worked with one scenario and
one variant of the audit view. After each round, we asked the participants
assessment questions, as well as control questions about the scenario. Finally,

8.3. USER STUDY: USER-CENTRIC AUDIT BASED ON THE
ARCHITECTURE 147

we asked them to compare the different rounds. The full questionnaires can be
found on a dedicated website3.

8.3.6 Pre-Study

The early prototype was tested with individuals who are IT users, but who
do not have a significant computer-science education. The participants were
16 high-school students. The scenario was a fictitious social network called
“FaceVZ”. Such a scenario is well-known to the target group and, according
to our expectations, triggers increased privacy awareness due to recent media
reports about privacy threats in such networks. The scenario included several
steps: Images are uploaded to a social network, face recognition linking the
pictures to accounts is performed, and finally free prints of the pictures can be
ordered. We used two versions of the scenario, with a subtle difference: In one
version the user address was submitted to the print service, in the other the
prints had to be picked up in a shop. All participants used both the graphical
and the text-based audit. To rule out learning effects, the participants were
split into two groups, each of which used the two versions in a different order.

This pre-study revealed some shortcomings in the implementation, leading
to visualisation errors. One key result was that the participants liked the
graphical version better. When participants were asked to decide between
versions on a 7-step Likert scale where 1 indicates a strong preference for the
textual version and 7 for the graphical version, they preferred the graphical
version with respect to user-friendliness (mean: 5.69) and clarity (mean: 5.13).
The group that tried out the graphical version first was able to give about 50 %
more answers to the control questions. Unfortunately, the participants did not
fully understand the purpose of such an audit system, as they were not able to
give any examples of possible applications of such audit systems.

8.3.7 Main Study

For the main study, we used an improved version of the visualisation with more
features. We tested the following hypotheses:

• H1: Our visualisation helps users to understand which of their data is
transmitted to which organisations.

• H2: The visual audit facility has good usability.

• H3: Users prefer a graphical audit facility over a text-based one.

Because the participants of our pre-study were not able to really see the
benefits of an audit facility, presumably because of their young age, we chose to
perform the main study with more experienced participants. To evaluate the
functionality of WoSec in full, we devised a more sophisticated study setup. We
decided to use two different configurations of the visualisation, in addition to
the text-based audit view: While both configurations allow access to all audit
information available, one contains additional features aimed at improving us-
ability. This makes it possible to test the influence of the non-essential features

3http://dbis.ipd.uni-karlsruhe.de/english/1746.php

148 CHAPTER 8. EVALUATION

and explore the opinion of the participants regarding the additional functions.
To avoid learning and order effects when comparing the configurations, we
used different scenarios for the different configurations. The participants went
through the scenarios in the same order, but the order of configurations was
randomised.

In both configurations, the visualisation was immediately updated when
something relevant had happened in the web application. Both contained the
basic animations, i. e. activities starting execution blink, and animation of data
transfer. In addition, the full-featured configuration automatically scrolls to
activities that are becoming active. It also shows the actual data transferred,
the user causing the activity, and the reason for transferring the data. For
activities, a window shown on right-click contains a textual description of the
activity and all users involved.

We recruited our study participants from our directory of individuals in-
terested in user studies related to information systems, which includes mostly
university students and adults with university education. We designed three
scenarios specifically for this group:

(1) Internship application: In this scenario, eligible students are supported
in applying for placement in an internship program relating to their course
of study. First, participants enter their registration information. They then
wait for several steps: A university coordinator has to approve their applica-
tion, registration data is written to a database, and the university coordinator
chooses a placement service, which then sends a list of possible internships. Fi-
nally, the participant chooses an internship. (2) Online trade: In this scenario,
participants have to sell an item. First, they have to enter their trader data
and the item description. They then wait for another customer to open the ad,
buy the item and send their contact data. The participant now receives the
address of the buyer, has to prepare the parcel and hand it to a parcel service.
(3) Car purchase: Here, the participants have to buy a car on credit. They
have to wait for a list of available cars and choose one. They then have to enter
their personal data and, in our example, state that they want to buy the car
on credit. They choose a bank for the loan and accept the terms of the credit
bureau. They then have to wait for several steps happening in the background:
The bank receives the credit application and receives a score from the credit
bureau. We assume that it grants the application. The car dealer receives
a confirmation from the bank, reserves the car chosen and sends a purchase
confirmation to the customer.

We paid the participants e 10 for their participation. To incentivise active
participation, we promised an additional amount based on the level of partici-
pation. We computed this amount based on the number of questions answered.
This means that participants who answered all 60 questions were paid another
e 5. In addition to the questions answered, we recorded for which scenarios,
tasks, and participants information boxes for activities were shown. To get an
overall impression how the user interface was used, we recorded a so-called heat
map, overlaying mouse clicks onto a screenshot of the user interface.

8.3.8 Results

In total, 17 individuals participated in our study. The study group included
participants of different ages (20–74 years). All of them had some technical

8.3. USER STUDY: USER-CENTRIC AUDIT BASED ON THE
ARCHITECTURE 149

background, and all expressed some privacy concerns regarding Internet usage.
We performed the study in two separate meetings with participants, with

7 of them in the first and 10 in the second one. Due to technical problems, we
were only able to test the full visualisation at the first meeting. This means that
7 participants used the full visualisation for all three scenarios. We weighted
them with 1/3 when computing the mean values to achieve the same weight per
participant.

We compared the ratings the participants gave the text-based and graph-
ical audit view, as well as the restricted and full graphical version. We first
tested all samples for normal distribution with the Shapiro/Wilk test [SW65].
Because this test did not confirm a normal distribution, we had to use the
Wilcoxon/Mann/Whitney test to compare samples. The average answers and
the result of the significance tests are shown in Table 8.2. For all tests, we
required a level of significance of α = 0.05. We performed one-sided tests of
whether the underlying random variable of the sample with the larger mean was
actually significantly larger. Table 8.3 contains the mean values of the ques-
tions asking for a direct comparison. The samples did not show a significant
difference from the neutral value 4.

In Section 8.3.5, we hypothesised that our visualisation helps users to un-
derstand which of their data is transmitted to which organizations. (H1) The
statistically significant difference for Q1, Q2, Q3, Q8 and Q9 shows that the
visualisation indeed led to a better understanding of data transfers. Moreover,
the participants were slightly more satisfied with the amount of information
available in the visualisation (Q11), although the difference was not significant.

Regarding H2: The visual audit has good usability, we cannot show any
statistical significance for Q5, Q6, Q7 and Q12. This indicates that the usability
of all audit systems is equal. Nevertheless, the restricted visual audit scores
significantly better than the full one. We conclude that automatic changes of
the viewport decrease usability.

As one may expect, we could not show any statistically significant difference
for H3, Users prefer a graphical audit facility over a text-based one through
questions Q10, Q11, Q12 and Q13. Yet, except for a small outlier (Q10), the
participants evaluated the visual audit slightly better than the textual audit.

In total, our tool improves users’ understanding, but there is potential
for better usability. In particular, participants were annoyed by automatic
scrolling. On the other hand, some participants noted that the size available
for the diagram was too small, and the heat maps showed that the scrollbars
were used a lot. We conclude that automated scrolling should be improved,
or scrolling should be made unnecessary. We believe that splitting diagrams
into parts and easy navigation between the parts can alleviate these problems.
Participants mostly accessed the additional information provided by the in-
formation boxes when answering the questions. This indicates that they had
used the audit facility mainly for that purpose. In a future study, participants
should answer the control questions solely based on their usage of the system
up to that point.

8.3.9 Conclusions

Using our architecture for a secure workflow-management system, we created
a graphical tool that allows end users to audit workflows involving data trans-

150 CHAPTER 8. EVALUATION

G
T

F
R

G
/
T

s
R

/
F
s

Q
1

H
av

e
y
o
u

b
ee

n
a
b
le

to
tr

a
ce

th
e

fl
ow

o
f

th
e

d
a
ta

?S
1

5
.7

1
4

5
.3

1
6
.1

>
=

Q
2

H
av

e
y
o
u

b
ee

n
a
b
le

to
tr

a
ce

w
h
y

a
d
a
ta

fl
ow

h
a
s

h
a
p
p

en
ed

?S
1

5
.9

9
4
.3

5
.7

8
6
.2

>
=

Q
3

C
o
u
ld

y
o
u

p
re

d
ic

t
fo

ll
ow

in
g

st
ep

s?
S
1

5
.4

3
4

5
.2

6
5
.6

>
=

Q
4

H
ow

w
a
s

th
e

n
u
m

b
er

o
f

a
n
im

a
ti

o
n
s?

S
2

4
.8

3
4
.6

5
>

=
Q

5
H

av
e

y
o
u

b
ee

n
a
b
le

to
o
ri

en
t

y
o
u
rs

el
f

w
it

h
o
u
t

p
ro

b
le

m
s?

S
1

5
.0

1
5
.2

4
.5

1
5
.5

=
=

Q
6

H
ow

cl
ea

r
w

a
s

th
e

a
u
d
it

in
g

to
o
l?
S
3

4
.6

1
4
.1

3
.9

2
5
.3

=
>

Q
7

H
ow

u
se

r-
fr

ie
n
d
ly

w
a
s

th
e

a
u
d
it

in
g

to
o
l?
S
4

4
.6

4
.3

4
.3

9
4
.8

=
=

Q
8

H
ow

m
u
ch

in
fo

rm
a
ti

o
n

co
n
te

n
t

d
id

th
e

a
u
d
it

in
g

to
o
l

co
n
ta

in
?S

5
5
.3

4
3
.9

4
.6

3
6
.1

3
>

>
Q

9
D

o
y
o
u

fe
el

a
d
eq

u
a
te

ly
in

fo
rm

ed
a
b

o
u
t

a
ll

a
ct

io
n
s?

S
1

4
.9

3
3
.9

4
.7

5
5
.1

1
>

=

L
e
g
e
n
d
:

G
:

a
ll

g
ra

p
h
ic

a
l

v
e
rs

io
n
s

T
:

te
x
tu

a
l

v
e
rs

io
n

F
:

fu
ll

g
ra

p
h
ic

a
l

v
e
rs

io
n

R
:

re
st

ri
c
te

d
g
ra

p
h
ic

a
l

v
e
rs

io
n

s
:

si
g
n
ifi

c
a
n
c
e

te
st

S
1
:

1
=

a
b
so

lu
te

ly
n
o
t

7
=

a
b
so

lu
te

ly
y
e
s

S
2
:

1
=

to
o

fe
w

7
=

to
o

m
u
c
h

S
3
:

1
=

n
o
t

c
le

a
r

a
t

a
ll

7
=

a
b
so

lu
te

ly
c
le

a
r

S
4
:

1
=

n
o
t

u
se

r-
fr

ie
n
d
ly

a
t

a
ll

7
=

a
b
so

lu
te

ly
u
se

r-
fr

ie
n
d
ly

S
5
:

1
=

v
e
ry

li
tt

le
in

fo
rm

a
ti

o
n

c
o
n
te

n
t

7
=

v
e
ry

m
u
c
h

Table 8.2: Assessment of different audit configurations

8.4. SUMMARY 151

Mean
Q10 How clear was the textual visualisation compared to the graph-
ical visualisation?S1

4.8

Q11 How much information content did the textual representation
contain compared to the graphical visualisation?S2

3.5

Q12 How user-friendly was the textual representation compared to
the graphical visualisation?S3

3.3

Q13 Which visualisation do you prefer?S4 4.5
Legend:

S1: 1 = very unclear 7 = very clear
S2: 1 = very little 7 = very much
S3: 1 = not user-friendly at all 7 = very user-friendly
S4: 1 = strongly prefer textual 7 = strongly prefer graphical

Table 8.3: Direct comparison of text-based and graphical audit

fer, and described its integration into a WfMS. We have carried out a study
comparing the tool with text-based audit facilities which represent the cur-
rent state of the art, and assessed its impact on effectiveness and usability.
Next to other points, the results show a usability problem related to limited
viewport sizes and automatic scrolling. However, the design of the graphical
auditing tool and the implementation of a prototype demonstrated that our
secure workflow-management system is well-suited for such an application.

8.4 Summary

As shown in this chapter, the architecture as originally described already fulfils
many security requirements of workflow management systems, using built-in
functionality and configuration mechanisms that help in avoiding incorrect se-
curity specifications. It is also flexible enough that it can be extended to meet
the remaining requirements. Moreover, it enables applications with practical
benefits, as demonstrated.

Chapter 9

Summary and Outlook

9.1 Summary

At the beginning of this thesis, we provided a comprehensive presentation of
the fundamentals of the field (information security, workflow management, and
service-oriented architectures) and related work. We then introduced use cases
based on real applications that were developed as part of the TAS3 research
project. Based on this, we performed a detailed requirements analysis, well-
structured according to well-known aspects of security and workflow manage-
ment. A comparison with the state of the art showed that these requirements
were not sufficiently supported before, especially not in combination and in
the dynamic setting we face today. The requirements analysis was continued
in greater detail on a more technical level concerning integration with a frame-
work for federated identity management.

We then designed a system architecture capable of fulfilling the require-
ments. This was followed by a detailed description of important implementa-
tion aspects: the division into individual components, data formats and iden-
tifier schemes, the interfaces used for interaction between the components, and
the approaches used for integrating components that implement existing stan-
dards.

Finally, we evaluated the security requirements, i. e. whether the architec-
ture and the configuration mechanisms it provides make it easier to fullfil these
requirements and help avoid mistakes. We also analysed the architecture’s
capability to accommodate additional requirements by means of evolution sce-
narios. The results show that the structure of the architecture is well-suited for
the requirements originally described as well as additional requirements. Fi-
nally, a user study involving a practical scenario supported by the architecture
demonstrated its real-life benefit.

9.2 Outlook

Further research perspectives arise from the architecture and its implemen-
tation, and most importantly from the evolution scenarios presented in Sec-
tion 8.2. We can divide them into three main categories:

• On the technical level, standardised protocols and policy formats, per-
formance and deeper technical integration are important topics. For ex-

153

154 CHAPTER 9. SUMMARY AND OUTLOOK

ample, a standardised way of referring to workflow activities in policies
would promote interoperability between tools for workflow definitions and
policy decision points. Interoperability is also important for higher-level
policies, especially those responsible for coupling access control for exter-
nal repositories with the workflow execution.

• On the conceptual level, the relationship of access control for workflows
and delegation should be investigated more closely. This concerns espe-
cially access control for external repositories and the explicit assignment
of users to tasks or group of tasks. In both cases, a delegation policy can
support fine-grained control regarding which transfers of permissions are
permitted. Further investigation is also warranted regarding workflow-
specific concepts for more generic security architectures. This concerns in
particular the handling of stateful access-control policies and the usage of
obligations to perform generic tasks such as recording audit information
or deactivating access permissions.

• Regarding user interaction and user interfaces, the most efficient and
most user-friendly route for security-specific user interactions should be
studied. This concerns functionality such as service selection (already
treated in Subsection 8.2.5) or the revocation of permissions. Especially
when users should be able to interact with the workflow management
system at any time during workflow execution (we have referred to such
user interactions as asynchronous), further exploration is necessary as
to how the user can access such functionality easily. The classical user
interface of workflow management systems based on a task list should also
be studied further in order to provide a more flexible user experience.

Appendix A

BPMN Model of the APL
Scenario

Commence APL PCP Generation Reporting Procurement

PCP,
report,
certificate

Figure A.1: BPMN Model of the APL Scenario: Top-Level Workflow (Core)

Receive contract

Candidate registered?

 Finalise candidate details

Input candidate data

Allocate resources

Name, ...

Yes

NoNo

Yes

Figure A.2: BPMN Model of the APL Scenario: “Commence APL” Part
(Phase)

155

156 APPENDIX A. BPMN MODEL OF THE APL SCENARIO

Test candidate

Test?

Approvals

Create PCP

PCP exists?

Review PCP

Interview Update PCP

Test must be implemented once!

No

No

Yes

Yes

Yes

No

Yes

No

Figure A.3: BPMN Model of the APL Scenario: “PCP Generation” Part
(Phase)

Conduct
assessment

Candidate review Create initial report QC review Submit final report

Role: Assessor

Role: Candidate

Output: Final report

Figure A.4: BPMN Model of the APL Scenario: “Reporting” Part (Phase)

Start

Create allocation task Receive allocation

End

Email notification

ContractID Allocation of roles

Allocate ressources Allocation completed

Figure A.5: BPMN Model of the APL Scenario: “Allocate Resources” Part
(Scenario)

157

Receive coach
approval

Request candidate revision

Request coach
approval

Approved?

Receive revision

Loop

Request assessment Receive assessment

Assessor decision?

Loop

End loop

CandidateID,
ContractID,
instructions

CandidateID,
ContractID,
instructions

Approval

End

Separation of duty between coach's approval and assessment.

Approval request Approval done

Assessment
request

Assessment
done

No

Accept

Revision
Yes

No

Yes
Revision

Accept

Figure A.6: BPMN Model of the APL Scenario: “Approvals” Part (Scenario)

Request PCP
completion

Start

Email notification Receive confirmation

End

Create new PCP

Complete PCP PCP completedHandle to PCP stored in a repository

Create PCP

Figure A.7: BPMN Model of the APL Scenario: “Create PCP” Part (Scenario)

158 APPENDIX A. BPMN MODEL OF THE APL SCENARIO

Email candidate

Start

Create task for candidate Receive confirmation

ContractID,
Reference Profile,
username,
password,
instruction,
APL information

Figure A.8: BPMN Model of the APL Scenario: “Finalising Candidate Details”
Part (Scenario)

Automate?

Completeness check

Automated input

Manual input

Accepted

End loop

Loop

Candidate data

Quality depends on data source,
and possibly on the assertions
the data source makes.

Start input

Input order Input completed

Automated input process

Different sources to choose from! Their trustworthiness or reputation can differ.

Manual or automatic checks (or combination) possible

No

yesyes

No

Figure A.9: BPMN Model of the APL Scenario: “Input Candidate Data” Part
(Scenario)

159

Receive contract

Review contract

Accepted?

Request valid contract

Valid contract

KPI: Valid contract

Check authenticity of contract

Message to Contract Service

Message to Commence APL

Yes

NoNo

Yes

Figure A.10: BPMN Model of the APL Scenario: “Receive Contract” Part
(Scenario)

Request review

Start

Email notification Receive confirmation

End

Civil service
number

Figure A.11: BPMN Model of the APL Scenario: “Review PCP” Part (Sce-
nario)

Appendix B

Implementation Details: Data
Formats

B.1 Data model for tasks

In the field of workflow management systems, so-called human tasks usually
work as follows: Some information is provided to a human user, this user
performs the tasks based on the information shown, and then enters some
information (in the simplest case a boolean decision), which is sent back to the
workflow.

First, we can make a distinction based on the direction of the data flow.
The naming (input vs. output) is derived from a view of the human task as a
function.

• Input parameters: These are parameters set by the workflow and sent to
the client application. The user can see the value, but not modify it.

• Output parameters: These are initially empty or set to some default value
(cf. below). The user can enter a value which is sent to the workflow on
completion of the task.

• Input/output parameters: This is a combination of the two types men-
tioned before. The workflow sets a value, which is shown to the user.
The user can choose to modify this value. The final value is sent to the
workflow on completion of the task.

• Finally, there is data that is not part of the interface of a task, but of its
definition. This includes, but is not limited to, default values for output
parameters, captions for parameters, text shown in the form for informa-
tional purposes, and the general formatting of the form. While this is
certainly a major issue for commercial workflow systems, and only insuf-
ficiently addressed as of yet, the focus of TAS3 is not on user interfaces,
but on security. We thus want to focus on the security features unique
to a TAS3-embedded secure BPMS. We want to provide a clean user in-
terface needed to demonstrate these features without wasting effort on
sophisticated user interfaces that are hard to implement if they are sup-
posed to be sufficiently general. In fact, generation of user interfaces for
workflows is a research area of its own.

161

162 APPENDIX B. IMPLEMENTATION DETAILS: DATA FORMATS

The second distinction is based on the data types. While there are sophis-
ticated data type models – for instance, in XML Schema and HTML5 forms1

– this is again not the focus of TAS3 research. Here is an incomplete list of
some of the required data types of generic importance. We list some data types
needed of generic importance, but without making a claim to be complete:

• Free-form text: This type can also be used to display and enter numbers
and similar. While more specific types would allow form input (n.b.:
these relate to output parameters as introduced above) validation, free-
form strings allow any data to be shown to and entered by the user.
Conversion and validation then need to be performed by the workflow.

• Boolean values: This would be displayed as a check-box in front of a text
caption. Such fields can be used both as input and output parameters.

• List of choices (dynamic): For this parameter type, a text caption is fol-
lowed by a drop-down list. The values are set by the workflow at runtime
(input parameters), as is the preselected (default) value. The user selects
one of the values, and the identifier is sent back to the workflow.

• List of choices (static): This is the same as the previous item, except that
the choices are static and need not be passed by the workflow.

• URL: This is a special case of a text parameter. It is only useful as an
input parameter to display the URL as a clickable link. In addition to
the URL itself, a link title should be given.

Note that it is not necessary to use a parameter as an output parameter
only because this is stated as possible in the list above. The task definition
should allow allow a parameter to be set as input-only, which will result in a
rendering as read-only in the form.

Having considered the parameter types, we now look at the non-dynamic
parts of the task definition. Again, we are looking for a clean and lean solution
for applications to showcase security, not for a generic solution that would nec-
essarily be very broad and complex. We deem the following items important:

• A title to be displayed as a heading.

• Free-form text to be displayed as an explanation. While allowing markup,
e.g. HTML, would allow for formatting, this would require validation
of the markup and a definition of allowed markup, or else would open
security vulnerabilities. Thus, we opt for text-only. Any markup will be
escaped and thus not rendered.

• Captions for input/output form elements. Again, this is simple text.

We have now considered all relevant aspects for designing a format for task
definitions. The following is an example of a task definition in XML, covering
all elements listed above:

1http://dev.w3.org/html5/spec/Overview.html#states-of-the-type-attribute

B.2. STATE MODEL FOR TASKS 163

<taskdefinition xmlns="urn:tas3:wp3:schema:taskdef"

id="urn:tas3:examples:taskdef1">

<title>Compare two numbers (i.e. check whether x < y)</title>

<text>Please compare the numbers x and y given below

and say which is larger</text>

<input type="text" caption="x" id="number_x" readonly="true" />

<input type="text" caption="y" id="number_y" readonly="true" />

<input type="static_choice" caption="Which number is larger?"

id="x_or_y">

<!-- attribute "readonly" not given, thus considered false. -->

<option value="x" text="x" />

<option value="y" text="y" />

<option value="same" text="Both are equal." />

</input>

<input type="boolean" caption="I think my answer is correct."

id="correct" />

<text>As our way to say ’thank you’, we would like to offer

you a dish of ice-cream. Please choose from the available

flavours.</text>

<input type="dynamic_choice" caption="Ice-cream flavour"

id="flavour" />

<!-- Flavours are only known at runtime and

have to be passed by the workflow. -->

<text>All your data is treated with due care.

Please find a link to our privacy policy below.</text>

<input type="url" id="privacy_policy">

<!-- Both the caption and the URL itself have to be passed

at runtime. -->

</taskdefinition>

B.2 State model for tasks

There are quite sophisticated state models for tasks, e.g. in the WS-HumanTask
specification[AA+07a]. We limit our implementation to three states, as follows:

• Created: The task has been created and is ready to be performed, but is
not assigned to any specific user.

• Claimed: A specific user has indicated that they are working on the task,
but have not yet completed it.

• Completed: A user has performed the tasks and the results have been
sent back to the workflow.

Note that the states Claimed and Completed are parameterised with a user
identity.

These states are especially important for enforcing history-based constraints
on authorisation for task execution. A task in the Created state does not affect
any authorisation decision. A task claimed by a user may be performed by that
user, so it should be treated like a completed task for access control purposes.

164 APPENDIX B. IMPLEMENTATION DETAILS: DATA FORMATS

B.3 Database model for tasks used by the worklist
handler

To store the task definition, we use the following database tables:

• A table taskdefs, with the following fields:

– id of type String: the id of the task definition

– version of type Integer: an incrementing index distinguishing dif-
ferent versions of task definitions with the same id. Together with
the id field it forms the primary key for the table.

– title of type String

• A table taskdef elements, with the following fields:

– taskdef id of type String and taskdef version of type Integer:
Together, a foreign key to the taskdefs table.

– type of type String: Either “text” or “input”, corresponding to
<text> or <input> elements in the task definition

– input type of type String: null for <text> elements, for <input>

elements possible values are “text”. “boolean”. “static choice”.
“dynamic choice”. and “url”.

– element id of type String: The id of the input element where ap-
plicable, the string “null” otherwise.

– element index of type Integer: The sequential index of the corre-
sponding <text> or <input> element. This is important for form
rendering and web-service interfaces.

– read only of type Boolean: Determines whether the input element
is read-only. null where not applicable.

– caption of type String: The caption of the form element, where
applicable. For <text> elements, the field contains the content of
the element. Otherwise, a null value is stored.

• A table taskdef choices, which lists the option of static choice input
elements and has the following fields:

– taskdef id of type String, taskdef version of type Integer, and
element id of type String: Together, they form a foreign key to the
taskdef elements table.

– value of type String: The value identifying the option.

– text of type String: A description of the option, displayed to the
user.

– element index of type Integer: The sequential index of the option,
used for rendering.

Bibliography

[AA+07a] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP AG.
Web Services Human Task (WS-HumanTask), Version 1.0, 2007.

[AA+07b] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP AG.
WS-BPEL Extension for People (BPEL4People), Version 1.0,

2007.

[AH96] Vijayalakshmi Atluri and Wei-Kuang Huang.
An Authorization Model for Workflows.
In Elisa Bertino, Helmut Kurth, Giancarlo Martella, and Emilio

Montolivo, editors, Computer Security — ESORICS 96, vol-
ume 1146 of Lecture Notes in Computer Science, pages 44–64.
Springer Berlin / Heidelberg, 1996.

10.1007/3-540-61770-1 27.

[AH00] Vijayalakshmi Atluri and Wei-Kuang Huang.
A Petri net based safety analysis of workflow authorization mo-

dels.
J. Comput. Secur., 8(2,3):209–240, August 2000.

[AL05] Anne Anderson and Hal Lockhart.
SAML 2.0 profile of XACML v2.0.
OASIS Standard, OASIS, February 2005.
http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-

saml-profile-spec-os.pdf.

[And05] Anne Anderson.
Core and hierarchical role based access control (RBAC) profile of

XACML v2.0.
Technical report, OASIS, February 2005.

[ANSI04] ANSI/INCITS.
INCITS 359-2004: Information Technology - Role Based Access

Control.
Standard, February 2004.

[Ant07] Anthony Nadalin et al. (eds.).
WS-Trust 1.3.
Technical report, OASIS, March 2007.

[AS99] Gail-Joon Ahn and Ravi Sandhu.
The RSL99 Language for Role-based Separation of Duty Con-

straints.

165

166 BIBLIOGRAPHY

In Proceedings of the Fourth ACM Workshop on Role-based Access
Control, RBAC ’99, pages 43–54, New York, NY, USA, 1999.
ACM.

[AW05] Vijayalakshmi Atluri and Janice Warner.
Supporting conditional delegation in secure workflow management

systems.
In Proceedings of the tenth ACM symposium on Access control

models and technologies, SACMAT ’05, pages 49–58, New
York, NY, USA, 2005. ACM.

[BBK11] David Basin, Samuel J. Burri, and Gunter Karjoth.
Obstruction-Free Authorization Enforcement: Aligning Security

with Business Objectives.
In Proceedings of the 2011 IEEE 24th Computer Security Foun-

dations Symposium, CSF ’11, pages 99–113, Washington, DC,
USA, 2011. IEEE Computer Society.

[BCP06] E. Bertino, J. Crampton, and F. Paci.
Access Control and Authorization Constraints for WS-BPEL.
In International Conference on Web Services, 2006 (ICWS ’06),

pages 275 –284, September 2006.

[BDOS05] Piero Bonatti, Claudiu Duma, Daniel Olmedilla, and Nahid Shah-
mehri.

An Integration of Reputation-based and Policy-based Trust Man-
agement.

In Proceedings of the Semantic Web Policy Workshop, 2005.

[BEdH+10] Klemens Böhm, Sandro Etalle, Jerry den Hartog, Christian
Hütter, Slim Trabelsi, Daniel Trivellato, and Nicola Zannone.

A Flexible Architecture for Privacy-Aware Trust Management.
Journal of Theoretical and Applied Electronic Commerce Re-

search, 5(2):77–96, 2010.

[BK12] Samuel J. Burri and Günter Karjoth.
Flexible Scoping of Authorization Constraints on Business Pro-

cesses with Loops and Parallelism.
In Florian Daniel, Kamel Barkaoui, and Schahram Dustdar, ed-

itors, Business Process Management Workshops, volume 100
of Lecture Notes in Business Information Processing, pages
411–422. Springer Berlin Heidelberg, 2012.

[BMPS09] Elisa Bertino, Lorenzo Martino, Federica Paci, and Anna Squic-
ciarini.

Security for Web Services and Service-Oriented Architectures.
Springer, Berlin/Heidelberg, 2009.

[BPM+08] Tim Bray, Jean Paoli, Eve Maler, François Yergeau, and C. M.
Sperberg-McQueen.

Extensible Markup Language (XML) 1.0 (Fifth Edition).
W3C Recommendation, W3C, November 2008.
http://www.w3.org/TR/2008/REC-xml-20081126/.

[BS00] E. Barka and R. Sandhu.
Framework for role-based delegation models.

BIBLIOGRAPHY 167

In Proceedings of the 16th Annual Computer Security Applica-
tions Conference, ACSAC ’00, pages 168–176, Washington,
DC, USA, 2000. IEEE Computer Society.

[BS04] E. Barka and Ravi Sandhu.
Role-based Delegation Model/Hierarchical Roles (RBDM1).
In Computer Security Applications Conference, 2004. 20th An-

nual, pages 396 – 404, dec. 2004.

[BTT+09] Tim Bray, Richard Tobin, Henry S. Thompson, Dave Hollander,
and Andrew Layman.

Namespaces in XML 1.0 (Third Edition).
W3C Recommendation, W3C, December 2009.
http://www.w3.org/TR/2009/REC-xml-names-20091208/.

[Cam06] Kim Cameron.
The Laws of Identity.
www.identityblog.com/?p=352, 2006.
Last accessed 16 March 2014.

[CC07] Jeff Hodges Conor Cahill.
Liberty ID-WSF Discovery Service Specification.
Specification, Liberty Alliance, 2007.
http://projectliberty.org/liberty/content/download/3449/22973/file/liberty-

idwsf-disco-svc-2.0-errata-v1.0.pdf.

[CCMe01] Erik Christensen, Francisco Curbera, Greg Meredith, and San-
jiva Weerawarana (eds.).

Web Services Description Language (WSDL) 1.1.
W3C Note, W3C, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[CF09] David W. Chadwick and Kaniz Fatema.
An advanced policy based authorisation infrastructure.
In Proceedings of the 5th ACM workshop on Digital identity man-

agement, DIM 2009, pages 81–84, 2009.

[CF12] David W. Chadwick and Kaniz Fatema.
A privacy preserving authorisation system for the cloud.
J. Comput. Syst. Sci., 78(5):1359–1373, September 2012.

[Cha07] Anis Charfi.
Aspect-Oriented Workflow Languages: AO4BPEL and Applica-

tions.
PhD thesis, Technische Universität Darmstadt, Fachbereich In-

formatik, 2007.

[Cha08] David W. Chadwick.
Securing Web Services: Practical Usage of Standards and Spec-

ifications, chapter Dynamic Delegation of Authority in Web
Services.

IGI Global, 2008.

[Cha09] David Chadwick.
Federated Identity Management.
In Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors,

Foundations of Security Analysis and Design V, volume 5705

168 BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 96–120. Springer
Berlin / Heidelberg, 2009.

[CHe06] Roberto Chinnici, Marc Hadley, and Rajiv Mordani (eds.).
The Java API for XML-Based Web Services (JAX-WS) 2.0.
JCP Specification JSR-224, Final Release, Java Community Pro-

cess, April 2006.
http://jcp.org/aboutJava/communityprocess/final/jsr224/index.html.

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over.
Process modeling.
Communications of the ACM, 35:75–90, September 1992.

[CKPM05] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler.
Assertions and Protocols for the OASIS Security Assertion

Markup Language (SAML) V2.0.
Oasis standard, OASIS, March 2005.
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-

os.pdf.

[CM06] Anis Charfi and Mira Mezini.
Aspect-Oriented Workflow Languages.
In Robert Meersman and Zahir Tari, editors, On the Move to

Meaningful Internet Systems 2006: CoopIS, DOA, GADA,
and ODBASE, volume 4275 of Lecture Notes in Computer Sci-
ence, pages 183–200. Springer Berlin / Heidelberg, 2006.

[CWK09] Brecht Claerhout, Sandra Winfield, and Tom Kirkham.
Pilot specification and use case scenarios.
Project Delieverable D9.1 (version 3.0 Resubmitted), TAS3 Con-

sortium, December 2009.
http://www.tas3.eu/.

[CWMe07] Roberto Chinnici, Sanjiva Weerawarana, Jean-Jacques Moreau,
and Arthur Ryman (eds.).

Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language.

W3C recommendation, W3C, June 2007.
http://www.w3.org/TR/2007/REC-wsdl20-20070626.

[CXO+07] David W. Chadwick, Wensheng Xu, Sassa Otenko, Romain
Laborde, and Bassem Nasser.

Multi-session Separation of Duties (MSoD) for RBAC.
In Proceedings of the 2007 IEEE 23rd International Conference

on Data Engineering Workshop, ICDEW ’07, pages 744–753,
Washington, DC, USA, 2007. IEEE Computer Society.

[Dey01] Anind K. Dey.
Understanding and Using Context.
Personal Ubiquitous Comput., 5(1):4–7, January 2001.

[Erl05] Thomas Erl.
Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[EC95] European Community.

BIBLIOGRAPHY 169

Directive 95/46/EC of the European Parliament and of the Coun-
cil of 24 October 1995 on the protection of individuals with re-
gard to the processing of personal data and on the free move-
ment of such data.

[FK92] David Ferraiolo and Richard Kuhn.
Role-based Access Controls.
In Proceedings of the 15th NIST-NCSC National Computer Secu-

rity Conference, pages 554–563, 1992.

[GD07] Rick Geneva and Tom Debevoise.
The Microguide to Process Modeling in BPMN.
BookSurge Publishing, July 2007.

[GGF98] V.D. Gligor, S.I. Gavrila, and D. Ferraiolo.
On the formal definition of separation-of-duty policies and their

composition.
In Security and Privacy, 1998. Proceedings. 1998 IEEE Sympo-

sium on, pages 172 –183, May 1998.

[GHM+07] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Yves Lafon,
Jean-Jacques Moreau, Anish Karmarkar, and Henrik Frystyk
Nielsen.

SOAP Version 1.2 Part 1: Messaging Framework (Second Edi-
tion).

W3C Recommendation, W3C, April 2007.
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[GMPT01] Christos K. Georgiadis, Ioannis Mavridis, George Pangalos, and
Roshan K. Thomas.

Flexible Team-based Access Control Using Contexts.
In Proceedings of the Sixth ACM Symposium on Access Control

Models and Technologies, SACMAT ’01, pages 21–27, New
York, NY, USA, 2001. ACM.

[Gör09] Heiko Görig.
Kontextbezogene Zugriffskontrolle für BPEL (Engines).
Diplomarbeit, Universität Stuttgart, April 2009.

[HAMC07] Jeff Hodges, Robert Aarts, Paul Madsen, and Scott Cantor.
Liberty ID-WSF Authentication, Single Sign-On, and Identity

Mapping Services Specification.
Technical report, Liberty Alliance, 2007.
http://projectliberty.org/liberty/content/download/3439/22943/file/liberty-

idwsf-authn-svc-2.0-errata-v1.0.pdf.

[HB08] Michael Hafner and Ruth Breu.
Security Engineering for Service-Oriented Architectures.
Springer Publishing Company, Incorporated, 1 edition, 2008.

[HCH+05] John Hughes, Scott Cantor, Jeff Hodges, Frederick Hirsch, Pra-
teek Mishra, Rob Philpott, and Eve Maler.

Profiles for the OASIS Security Assertion Markup Language
(SAML) V2.0.

OASIS Standard, OASIS, March 2005.

170 BIBLIOGRAPHY

http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-
os.pdf.

[HGS+11] Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe
Zdun, and Schahram Dustdar.

An Integrated Approach for Identity and Access Management in
a SOA Context.

In Proceedings of the 16th ACM Symposium on Access Control
Models and Technologies, SACMAT ’11, pages 21–30, New
York, NY, USA, 2011. ACM.

[Hir06a] Frederick Hirsch.
ID-WSF 2.0 SecMech SAML Profile.
Technical report, Liberty Alliance, 2006.
http://projectliberty.org/liberty/content/download/894/6258/file/liberty-

idwsf-security-mechanisms-saml-profile-v2.0.pdf.

[Hir06b] Frederick Hirsch.
Liberty ID-WSF Security Mechanisms Core.
Technical report, Liberty Alliance, 2006.
http://projectliberty.org/liberty/content/download/3478/23060/file/liberty-

idwsf-security-mechanisms-core-2.0-errata-v1.0.pdf.

[HKA+07] Jeff Hodges, John Kemp, Robert Aarts, Greg Whitehead, and
Paul Madsen.

Liberty ID-WSF SOAP Binding Specification.
Technical report, Liberty Alliance, 2007.
http://www.projectliberty.org/liberty/content/download/3483/23075/file/liberty-

idwsf-soap-binding-2.0-errata-v1.0.pdf.

[HL10] E. Hammer-Lahav.
The OAuth 1.0 Protocol.
RFC 5849 (Informational), April 2010.

[Hol95] David Hollingsworth.
The Workflow Reference Model.
WfMC Specification TC00-1003, Workflow Management Coali-

tion, 1995.

[ITU91] International Telecommunications Union.
Security Architecture for Open Systems Interconnection for

CCITT applications (Recommendation X.800), March 1991.

[ITU95a] International Telecommunications Union.
Security Frameworks for Open Systems: Access Control Frame-

work (ITU-T Recommendation X.812), November 1995.

[ITU95b] International Telecommunications Union.
Security Frameworks for Open Systems: Integrity Frameworks

(ITU-T Recommendation X.815), November 1995.

[ITU95c] International Telecommunications Union.
Security Frameworks for Open Systems: Overview (ITU-T Rec-

ommendation X.810), November 1995.

[ISS] ISSRG: University of Kent, Information Systems Security Re-
search Group.

Modular PERMIS Project.

BIBLIOGRAPHY 171

[JB96] Stefan Jablonski and Christoph Bussler.
Workflow Management – Modeling Concepts, Architecture and

Implementation.
International Thomson Computer Press, 1996.

[JE07] Diane Jordan and John Evdemon.
Web Services Business Process Execution Language Version 2.0.
OASIS Standard, OASIS, April 2007.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[JT06] Yuzo Koga Jonathan Tourzan.
Liberty ID-WSF Web Services Framework Overview, Version 2.0.
Technical report, Liberty Alliance, 2006.
http://projectliberty.org/liberty/content/download/889/6243/file/liberty-

idwsf-overview-v2.0.pdf.

[KC08] Ramarao Kanneganti and Prasad Chodavarapu.
SOA Security.
Manning Publications Co., Greenwich, Connecticut, USA, 2008.

[KCM+05] John Kemp, Scott Cantor, Prateek Mishra, Rob Philpott, and
Eve Maler.

Authentication Context for the OASIS Security Assertion Markup
Language (SAML) V2.0.

OASIS Standard, OASIS, March 2005.
http://docs.oasis-open.org/security/saml/v2.0/saml-authn-

context-2.0-os.pdf.

[KF95] D. Richard Kuhn and David F. Ferraiolo.
Role-Based Access Control (RBAC): Features and Motivations.
Proceedings of the 11th Annual Computer Security Application

Conference, pages 241–248, 1995.

[KNS05] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone.
A Framework for Concrete Reputation-systems with Applications

to History-based Access Control.
In Proceedings of the 12th ACM Conference on Computer and

Communications Security, pages 260–269, 2005.

[Lan03] Susan Landau.
Liberty ID-WSF Security and Privacy Overview.
Technical report, Liberty Alliance, 2003.
http://www.projectliberty.org/liberty/content/download/1298/8259/file/liberty-

idwsf-security-privacy-overview-v1.0.pdf.

[Le07] Canyang Kevin Liu and David Booth (eds.).
Web Services Description Language (WSDL) Version 2.0 Part 0:

Primer.
W3C Recommendation, W3C, June 2007.
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626.

[LHC+07] Amelia A. Lewis, Hugo Haas, Roberto Chinnici, Sanjiva Weer-
awarana, Jean-Jacques Moreau, and David Orchard.

Web Services Description Language (WSDL) Version 2.0 Part 2:
Adjuncts.

W3C Recommendation, W3C, June 2007.

172 BIBLIOGRAPHY

http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626.

[Lib06] Liberty Alliance Project.
Liberty ID-WSF Web Services Framework Overview Version 2.0,

2006.

[LK06a] Kelvin Lawrence and Chris Kaler.
Web Services Security: SAML Token Profile 1.1.
OASIS Standard, OASIS, February 2006.
http://docs.oasis-open.org/wss/oasis-wss-SAMLTokenProfile-1.1.

[LK06b] Kelvin Lawrence and Chris Kaler.
Web Services Security: SOAP Message Security 1.1 (WS-Security

2004).
OASIS Standard Specification, OASIS, February 2006.
http://www.oasis-open.org/committees/download.php/16790/wss-

v1.1-spec-os-SOAPMessageSecurity.pdf.

[MB04] Ashok Malhotra and Paul V. Biron.
XML Schema Part 2: Datatypes (Second Edition).
W3C Recommendation, W3C, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[MB11] Jens Müller and Klemens Böhm.
The Architecture of a Secure Business-Process-Management Sys-

tem in Service-Oriented Environments.
In Proceedings of the 2011 Ninth IEEE European Conference on

Web Services, pages 49–56, 2011.

[MB14] Jens Müller and Klemens Böhm.
Identity Business Processes.
Int. J. of Trust Management in Computing and Communications,

2(1):40–77, 2014.

[MGH+07] Jean-Jacques Moreau, Martin Gudgin, Marc Hadley, Noah
Mendelsohn, Yves Lafon, Anish Karmarkar, and Henrik
Frystyk Nielsen (eds.).

SOAP Version 1.2 Part 2: Adjuncts (Second Edition).
W3C Recommendation, W3C, April 2007.
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/.

[MKB12a] Jens Müller, Murat Kavak, and Klemens Böhm.
A Graphical Audit Facility for Data Processing and its Evaluation

with Users.
Technical Report 2012, 1, Karlsruhe Reports in Informatics, 2012.

[MKB12b] Jens Müller, Murat Kavak, and Klemens Böhm.
A Graphical Audit Facility for Data Processing and Its Evaluation

with Users.
In Quan Z. Sheng, Guoren Wang, Christian S. Jensen, and Guan-

dong Xu, editors, Web Technologies and Applications, volume
7235 of Lecture Notes in Computer Science, pages 618–627.
Springer Berlin Heidelberg, 2012.

[ML07] Nilo Mitra and Yves Lafon.
SOAP Version 1.2 Part 0: Primer (Second Edition).
Technical report, W3C, April 2007.

BIBLIOGRAPHY 173

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

[MMvSB10] Jens Müller, Jutta Mülle, Silvia von Stackelberg, and Klemens
Böhm.

Secure Business Processes in Service-Oriented Architectures – A
Requirements Analysis.

In Proceedings of the 2010 Eighth IEEE European Conference on
Web Services, ECOWS ’10, pages 35–42, Washington, DC,
USA, 2010. IEEE Computer Society.

[Mos05] Tim Moses.
eXtensible Access Control Markup Language (XACML) Version

2.0.
OASIS Standard, OASIS, February 2005.
http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-

core-spec-os.pdf.

[MPS08] Jan Mendling, Karsten Ploesser, and Mark Strembeck.
Specifying Separation of Duty Constraints in BPEL4People Pro-

cesses.
In Business Information Systems, volume 7, pages 273–284. 2008.

[MR08] Eve Maler and Drummond Reed.
The Venn of Identity: Options and Issues in Federated Identity

Management.
IEEE Security and Privacy, 6(2):16–23, March 2008.

[MTM09] Michael Menzel, Ivonne Thomas, and Christoph Meinel.
Security Requirements Specification in Service-Oriented Business

Process Management.
In Availability, Reliability and Security, International Conference

on, pages 41–48, Los Alamitos, CA, USA, 2009. IEEE Com-
puter Society.

[MvSB11a] Jutta Mülle, Silvia von Stackelberg, and Klemens Böhm.
A Security Language for BPMN Process Models.
Technical Report 2011, 9, Karlsruhe Reports in Informatics, 2011.

[MvSB11b] Jutta Mülle, Silvia von Stackelberg, and Klemens Böhm.
Modelling and Transforming Security Constraints in Privacy-

Aware Business Processes.
In Proceedings of the 2011 IEEE International Conference on

Service-Oriented Computing and Applications, 2011.

[NGG+07] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir,
and Hans Granqvist.

WS-SecurityPolicy 1.2.
OASIS Standard, OASIS, July 2007.
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-

securitypolicy-1.2-spec-os.html.

[OAS08] OASIS.
Security Assertion Markup Language (SAML) V2.0 Technical

Overview, 2008.

[Obj08] Object Management Group.
Business Process Modeling Notation, Version 1.1.

174 BIBLIOGRAPHY

OMG Available Specification, January 2008.

[Obj11] Object Management Group.
Business Process Modeling Notation, Version 2.0.
OMG Available Specification, January 2011.

[OEC13] OECD (Organization for Economic Co-operation and Develop-
ment).

Recommendation of the Council concerning Guidelines governing
the Protection of Privacy and Transborder Flows of Personal
Data (2013).

Technical Report C(80)58/FINAL, as amended on 11 July 2013
by C(2013)79, July 2013.

[Ope07] OpenID Foundation.
OpenID Authentication 2.0, 2007.

[Par72] D. L. Parnas.
On the Criteria To Be Used in Decomposing Systems into Mo-

dules.
Communications of the ACM, 15:1053–1058, December 1972.

[PFB09] Federica Paci, Rodolfo Ferrini, and Elisa Bertino.
Identity Attribute-Based Role Provisioning for Human WS-BPEL

Processes.
In Proceedings of the 2009 IEEE International Conference on Web

Services, ICWS ’09, pages 535–542, Washington, DC, USA,
2009. IEEE Computer Society.

[PH10] Andreas Pfitzmann and Marit Hansen.
A terminology for talking about privacy by data minimization:

Anonymity, Unlinkability, Undetectability, Unobservability,
and Identity Management (v0.34).

Technical report, August 2010.
http://dud.inf.tu-dresden.de/literatur/Anon Terminology v0.34.pdf.

[PP02] Charles P. Pfleeger and Shari Lawrence Pfleeger.
Security in Computing.
Prentice Hall Professional Technical Reference, 3rd edition, 2002.

[Res00] E. Rescorla.
HTTP Over TLS.
RFC 2818 (Informational), May 2000.
Updated by RFC 5785.

[RFMP07] Alfonso Rodŕıguez, Eduardo Fernández-Medina, and Mario Piat-
tini.

A BPMN Extension for the Modeling of Security Requirements
in Business Processes.

IEICE - Trans. Inf. Syst., E90-D(4):745–752, March 2007.

[Ris13] Erik Rissanen.
eXtensible Access Control Markup Language (XACML) Version

3.0.
OASIS Standard, OASIS, January 2013.
http://docs.oasis-open.org/xacml/xacml-saml-

profile/v2.0/cs02/xacml-saml-profile-v2.0-cs02.pdf.

BIBLIOGRAPHY 175

[Ris14a] Erik Rissanen.
XACML SAML profile version 2.0.
Committee Specification 02, OASIS, August 2014.
http://docs.oasis-open.org/xacml/xacml-saml-

profile/v2.0/cs02/xacml-saml-profile-v2.0-cs02.pdf.

[Ris14b] Erik Rissanen.
XACML v3.0 Core and hierarchical role based access control

(RBAC) profile version 1.0.
Committee Specification 02, OASIS, October 2014.

[RL14] Erik Rissanen and Hal Lockhart.
XACML v3.0 Administration and Delegation Profile Version 1.0.
Committee Specification Draft 04 / Public Review Draft 02, OA-

SIS, November 2014.
http://docs.oasis-open.org/xacml/3.0/administration/v1.0/csprd02/xacml-

3.0-administration-v1.0-csprd02.pdf.

[RRF08] Michael Rosemann, Jan Recker, and Christian Flender.
Contextualisation of Business Processes.
International Journal of Business Process Integration and Man-

agement, 3(1):47–60, 2008.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman.
A method for obtaining digital signatures and public-key cryp-

tosystems.
Communications of the ACM, 21(2):120–126, 1978.

[Run08] Mary Rundle.
At a Crossroads: ”Personhood” and Digital Identity in the Infor-

mation Society.
STI Working Paper 2007/7, OECD Directorate for Science, Tech-

nology and Industry, February 2008.

[Sch00] Bruce Schneier.
Secrets and Lies – Digital Security in a Networked World.
Wiley Computer Publishing, 2000.

[SW65] S. S. Shapiro and M. B. Wilk.
An Analysis of Variance Test for Normality (Complete Samples).
Biometrika, 3(52):1–22, 1965.

[TAS09a] Design Requirements of an Adjusted, Process Driven Trust and
Security Environment.

Project Delieverable D1.4 (3.0), TAS3 Consortium, May 2009.
http://www.tas3.eu/.

[TAS09b] Specification of Secure Data Repositories and Authoritative
Sources.

Technical Report D4.2 (1.2), TAS3 Consortium, May 2009.
http://www.tas3.eu/.

[TAS11] Open Source Software and Documentation Implementing the De-
sign.

Project Delieverable D3.2 (3.0), TAS3 Consortium, December
2011.

http://www.tas3.eu/.

176 BIBLIOGRAPHY

[TCG04] Kaijun Tan, Jason Crampton, and Carl A. Gunter.
The Consistency of Task-Based Authorization Constraints in

Workflow Systems.
In Proceedings of the 17th IEEE workshop on Computer Security

Foundations, pages 155–, Washington, DC, USA, 2004. IEEE
Computer Society.

[Tho97] Roshan K. Thomas.
Team-based access control (TMAC): a primitive for applying role-

based access controls in collaborative environments.
In Proceedings of the Second ACM Workshop on Role-Based Ac-

cess Control, RBAC ’97, pages 13–19, New York, NY, USA,
1997. ACM.

[TMBM04] Henry S. Thompson, Murray Maloney, David Beech, and Noah
Mendelsohn.

XML Schema Part 1: Structures (Second Edition).
W3C Recommendation, W3C, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[TS98] Roshan K. Thomas and Ravi S. Sandhu.
Task-Based Authorization Controls (TBAC): A Family of Models

for Active and Enterprise-Oriented Autorization Management.
In Proceedings of the IFIP TC11 WG11.3 Eleventh International

Conference on Database Securty XI: Status and Prospects,
pages 166–181, London, UK, UK, 1998. Chapman & Hall, Ltd.

[Ved07] Asir S. Vedamuthu.
Web Services Description Language (WSDL) Version 2.0 SOAP

1.1 Binding.
W3C Note, W3C, June 2007.
http://www.w3.org/TR/2007/NOTE-wsdl20-soap11-binding-

20070626.

[VYO+07] Asir S Vedamuthu, Ümit Yalçinalp, David Orchard, Toufic
Boubez, Frederick Hirsch, Prasad Yendluri, and Maryann
Hondo.

Web Services Policy 1.5 - Attachment.
W3C Recommendation, W3C, September 2007.
http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904.

[WBK03] Jacques Wainer, Paulo Barthelmess, and Akhil Kumar.
W-RBAC - A workflow security model incorporating controlled

overriding of constraints.
Int. J. Cooperative Inf. Syst., 12(4):455–485, 2003.

[Wes07] Mathias Weske.
Business Process Management: Concepts, Languages, Architec-

tures.
Springer, 2007.

[WF04] Priscilla Walmsley and David C. Fallside.
XML Schema Part 0: Primer (Second Edition).
W3C Recommendation, W3C, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

BIBLIOGRAPHY 177

[WfMC98] Workflow Management Coalition.
Audit Data Specification, 1998.

[WK05] Jacques Wainer and Akhil Kumar.
A fine-grained, controllable, user-to-user delegation method in

RBAC.
In Proceedings of the Tenth ACM Symposium on Access Control

Models and Technologies, SACMAT ’05, pages 59–66, New
York, NY, USA, 2005. ACM.

[WM07] Michael E. Whitman and Herbert J. Mattord.
Principles of Information Security.
Course Technology Press, Boston, MA, United States, 3rd edition,

2007.

[WMS+09] Christian Wolter, Michael Menzel, Andreas Schaad, Philip Misel-
dine, and Christoph Meinel.

Model-Driven Business Process Security Requirement Specifica-
tion.

Journal of Systems Architecture, 55(4):211 – 223, 2009.

[WS07] Christian Wolter and Andreas Schaad.
Modeling of task-based authorization constraints in BPMN.
In Proceedings of the 5th international conference on Business pro-

cess management, BPM’07, pages 64–79, Berlin, Heidelberg,
2007. Springer-Verlag.

[WSM07] Christian Wolter, Andreas Schaad, and Christoph Meinel.
Deriving XACML Policies from Business Process Models.
In Proceedings of the 2007 International Conference on Web Infor-

mation Systems Engineering, WISE’07, pages 142–153, Berlin,
Heidelberg, 2007. Springer-Verlag.

[YCW+10] Jinhui Yao, Shiping Chen, Chen Wang, David Levy, and John Zic.
Accountability as a Service for the Cloud.
In Proceedings of the 2010 IEEE International Conference on Ser-

vices Computing, pages 81–88, 2010.

[YHV+07] Prasad Yendluri, Maryann Hondo, Asir S Vedamuthu, Frederick
Hirsch, David Orchard, Ümit Yalçinalp, and Toufic Boubez.

Web Services Policy 1.5 - Framework.
W3C Recommendation, W3C, September 2007.
http://www.w3.org/TR/2007/REC-ws-policy-20070904.

[ZAC03] Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu.
A Rule-Based Framework for Role-Based Delegation and Revoca-

tion.
ACM Transactions on Information and System Security,

6(3):404–441, August 2003.

[zM08] zur Muehlen, M. (ed.).
Business Process Analytics Format (BPAF).
WfMC Draft Standard WFMC-TC-1015, February 2008.

List of Tables

5.1 Overview of requirements and their assessment 53

7.1 Components described in both versions of the architecture. 104
7.2 Data and identifiers used by the components (part 1). 106
7.3 Data and identifiers used by the components (part 2). 107
7.4 Identifier formats. 109

8.1 List of event types the server sends to the client 145
8.2 Assessment of different audit configurations 150
8.3 Direct comparison of text-based and graphical audit 151

178

List of Figures

2.1 Basic XML example . 9
2.2 XML Schema for the document from Figure 2.1 10
2.3 Example of a SOAP Message . 11
2.4 Example of a WSDL document . 13
2.5 Basic Architecture of a WfMS (WfMC Reference Model) 14

6.1 Classical architecture of a WfMS in SOA. 74
6.2 Resulting architecture . 78
6.3 Architecture of a WfMS with FIM Support 82
6.4 Original <receive> activity . 97
6.5 Fragment inserted for the <receive> activity 97

8.1 Screenshots of WoSec . 144
8.2 Integration of the auditing tool into the overall WfMS architecture 145

A.1 BPMN Model of the APL Scenario: Top-Level Workflow (Core) . . 155
A.2 BPMN Model of the APL Scenario: “Commence APL” Part (Phase)155
A.3 BPMN Model of the APL Scenario: “PCP Generation” Part (Phase)156
A.4 BPMN Model of the APL Scenario: “Reporting” Part (Phase) . . 156
A.5 BPMN Model of the APL Scenario: “Allocate Resources” Part (Sce-

nario) . 156
A.6 BPMN Model of the APL Scenario: “Approvals” Part (Scenario) . 157
A.7 BPMN Model of the APL Scenario: “Create PCP” Part (Scenario) 157
A.8 BPMN Model of the APL Scenario: “Finalising Candidate Details”

Part (Scenario) . 158
A.9 BPMN Model of the APL Scenario: “Input Candidate Data” Part

(Scenario) . 158
A.10 BPMN Model of the APL Scenario: “Receive Contract” Part (Sce-

nario) . 159
A.11 BPMN Model of the APL Scenario: “Review PCP” Part (Scenario) 159

179

Glossary

ABAC Attribute-Based Access Control 19
AOP Aspect-Oriented Programming 33
APL Accreditation of Prior Learning 39

BPCL Business-Process Constraint Language 32
BPEL Business Process Execution Language 15
BPMN Business Process Model and Notation 15
BPMN Business Process Modelling Notation 14

CCITT Comité Consultatif International Téléphonique et Télégraphique / In-
ternational Telegraph and Telephone Consultative Committee 17

DAC Discretionary Access Control 18
DSL Domain-specific Language 31

ECTS European Credit Transfer and Accumulation System 1

FIM Federated Identity Management 21

ID-WSF Identity Web Services Framework 23
IdP Identity Provider 22
ITU International Telecommunications Union 17
ITU-T ITU Telecommunication Standardization Sector 17

MSoD Multi-session Separation of Duty 19

OECD Organisation for Economic Co-operation and Development 24

PAP-Wf Policy Administration Point for Workflows 81
PCP Personal Competency Profile 44
PEP-HT Policy Enforcement Point for Human Tasks 79
PEP-WS Policy Enforcement Point for Web Services 78
PIP Policy Information Point 79
PMF Process Modelling Framework 40

RBAC Role-based Access Control 19

SAML Security Assertion Markup Language 21
SOA Service-oriented architecture 7

181

182 GLOSSARY

SoD Separation of Duty 19
SSO Single Sign-On 21

TAS3 Trusted Architecture for Securely Shared Services 39
TBAC Task-based Authorization Controls 28
TMAC Team-Based Access Control 27

WAM Workflow Authorization Model 28
WfMC Workflow Management Coalition 15
WfMS Workflow Management System 12
WS-BPEL Web Services Business Process Execution Language 15
WSDL Web Services Description Language 11

XACML Extensible Access Control Markup Language 20
XML eXtensible Markup Language 9

